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To Margaret, as always



Preface

Namely, because the shape of the whole universe is most perfect and, in fact,
designed by the wisest creator, nothing in all of the world will occur in which
no maximum or minimum rule is somehow shining forth.

Leonhard Euler (1744)

We can treat this firm stand by Euler [411] (“. . . nihil omnino in mundo con-
tingint, in quo non maximi minimive ratio quapiam eluceat”) as the most
fundamental principle of Variational Analysis. This principle justifies a va-
riety of striking implementations of optimization/variational approaches to
solving numerous problems in mathematics and applied sciences that may
not be of a variational nature. Remember that optimization has been a major
motivation and driving force for developing differential and integral calculus.
Indeed, the very concept of derivative introduced by Fermat via the tangent
slope to the graph of a function was motivated by solving an optimization
problem; it led to what is now called the Fermat stationary principle. Besides
applications to optimization, the latter principle plays a crucial role in prov-
ing the most important calculus results including the mean value theorem,
the implicit and inverse function theorems, etc. The same line of development
can be seen in the infinite-dimensional setting, where the Brachistochrone
was the first problem not only of the calculus of variations but of all func-
tional analysis inspiring, in particular, a variety of concepts and techniques in
infinite-dimensional differentiation and related areas.

Modern variational analysis can be viewed as an outgrowth of the calculus
of variations and mathematical programming, where the focus is on optimiza-
tion of functions relative to various constraints and on sensitivity/stability of
optimization-related problems with respect to perturbations. Classical notions
of variations such as moving away from a given point or curve no longer play
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a critical role, while concepts of problem approximations and/or perturbations
become crucial.

One of the most characteristic features of modern variational analysis
is the intrinsic presence of nonsmoothness, i.e., the necessity to deal with
nondifferentiable functions, sets with nonsmooth boundaries, and set-valued
mappings. Nonsmoothness naturally enters not only through initial data of
optimization-related problems (particularly those with inequality and geomet-
ric constraints) but largely via variational principles and other optimization,
approximation, and perturbation techniques applied to problems with even
smooth data. In fact, many fundamental objects frequently appearing in the
framework of variational analysis (e.g., the distance function, value functions
in optimization and control problems, maximum and minimum functions, so-
lution maps to perturbed constraint and variational systems, etc.) are in-
evitably of nonsmooth and/or set-valued structures requiring the development
of new forms of analysis that involve generalized differentiation.

It is important to emphasize that even the simplest and historically earliest
problems of optimal control are intrinsically nonsmooth, in contrast to the
classical calculus of variations. This is mainly due to pointwise constraints on
control functions that often take only discrete values as in typical problems of
automatic control, a primary motivation for developing optimal control theory.
Optimal control has always been a major source of inspiration as well as a
fruitful territory for applications of advanced methods of variational analysis
and generalized differentiation.

Key issues of variational analysis in finite-dimensional spaces have been
addressed in the book “Variational Analysis” by Rockafellar and Wets [1165].
The development and applications of variational analysis in infinite dimen-
sions require certain concepts and tools that cannot be found in the finite-
dimensional theory. The primary goals of this book are to present basic con-
cepts and principles of variational analysis unified in finite-dimensional and
infinite-dimensional space settings, to develop a comprehensive generalized
differential theory at the same level of perfection in both finite and infinite di-
mensions, and to provide valuable applications of variational theory to broad
classes of problems in constrained optimization and equilibrium, sensitivity
and stability analysis, control theory for ordinary, functional-differential and
partial differential equations, and also to selected problems in mechanics and
economic modeling.

Generalized differentiation lies at the heart of variational analysis and
its applications. We systematically develop a geometric dual-space approach
to generalized differentiation theory revolving around the extremal principle,
which can be viewed as a local variational counterpart of the classical convex
separation in nonconvex settings. This principle allows us to deal with noncon-
vex derivative-like constructions for sets (normal cones), set-valued mappings
(coderivatives), and extended-real-valued functions (subdifferentials). These
constructions are defined directly in dual spaces and, being nonconvex-valued,
cannot be generated by any derivative-like constructions in primal spaces (like
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tangent cones and directional derivatives). Nevertheless, our basic nonconvex
constructions enjoy comprehensive calculi, which happen to be significantly
better than those available for their primal and/or convex-valued counter-
parts. Thus passing to dual spaces, we are able to achieve more beauty and
harmony in comparison with primal world objects. In some sense, the dual
viewpoint does indeed allow us to meet the perfection requirement in the
fundamental statement by Euler quoted above.

Observe to this end that dual objects (multipliers, adjoint arcs, shadow
prices, etc.) have always been at the center of variational theory and applica-
tions used, in particular, for formulating principal optimality conditions in the
calculus of variations, mathematical programming, optimal control, and eco-
nomic modeling. The usage of variations of optimal solutions in primal spaces
can be considered just as a convenient tool for deriving necessary optimality
conditions. There are no essential restrictions in such a “primal” approach
in smooth and convex frameworks, since primal and dual derivative-like con-
structions are equivalent for these classical settings. It is not the case any
more in the framework of modern variational analysis, where even nonconvex
primal space local approximations (e.g., tangent cones) inevitably yield, un-
der duality, convex sets of normals and subgradients. This convexity of dual
objects leads to significant restrictions for the theory and applications. More-
over, there are many situations particularly identified in this book, where
primal space approximations simply cannot be used for variational analysis,
while the employment of dual space constructions provides comprehensive
results. Nevertheless, tangentially generated/primal space constructions play
an important role in some other aspects of variational analysis, especially in
finite-dimensional spaces, where they recover in duality the nonconvex sets
of our basic normals and subgradients at the point in question by passing to
the limit from points nearby; see, for instance, the afore-mentioned book by
Rockafellar and Wets [1165]

Among the abundant bibliography of this book, we refer the reader to the
monographs by Aubin and Frankowska [54], Bardi and Capuzzo Dolcetta [85],
Beer [92], Bonnans and Shapiro [133], Clarke [255], Clarke, Ledyaev, Stern and
Wolenski [265], Facchinei and Pang [424], Klatte and Kummer [686], Vinter
[1289], and to the comments given after each chapter for significant aspects of
variational analysis and impressive applications of this rapidly growing area
that are not considered in the book. We especially emphasize the concur-
rent and complementing monograph “Techniques of Variational Analysis” by
Borwein and Zhu [164], which provides a nice introduction to some fundamen-
tal techniques of modern variational analysis covering important theoretical
aspects and applications not included in this book.

The book presented to the reader’s attention is self-contained and mostly
collects results that have not been published in the monographical literature.
It is split into two volumes and consists of eight chapters divided into sections
and subsections. Extensive comments (that play a special role in this book
discussing basic ideas, history, motivations, various interrelations, choice of
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terminology and notation, open problems, etc.) are given for each chapter.
We present and discuss numerous references to the vast literature on many
aspects of variational analysis (considered and not considered in the book)
including early contributions and very recent developments. Although there
are no formal exercises, the extensive remarks and examples provide grist for
further thought and development. Proofs of the major results are complete,
while there is plenty of room for furnishing details, considering special cases,
and deriving generalizations for which guidelines are often given.

Volume I “Basic Theory” consists of four chapters mostly devoted to basic
constructions of generalized differentiation, fundamental extremal and varia-
tional principles, comprehensive generalized differential calculus, and complete
dual characterizations of fundamental properties in nonlinear study related to
Lipschitzian stability and metric regularity with their applications to sensi-
tivity analysis of constraint and variational systems.

Chapter 1 concerns the generalized differential theory in arbitrary Banach
spaces. Our basic normals, subgradients, and coderivatives are directly defined
in dual spaces via sequential weak∗ limits involving more primitive ε-normals
and ε-subgradients of the Fréchet type. We show that these constructions have
a variety of nice properties in the general Banach spaces setting, where the
usage of ε-enlargements is crucial. Most such properties (including first-order
and second-order calculus rules, efficient representations, variational descrip-
tions, subgradient calculations for distance functions, necessary coderivative
conditions for Lipschitzian stability and metric regularity, etc.) are collected
in this chapter. Here we also define and start studying the so-called sequen-
tial normal compactness (SNC) properties of sets, set-valued mappings, and
extended-real-valued functions that automatically hold in finite dimensions
while being one of the most essential ingredients of variational analysis and
its applications in infinite-dimensional spaces.

Chapter 2 contains a detailed study of the extremal principle in variational
analysis, which is the main single tool of this book. First we give a direct vari-
ational proof of the extremal principle in finite-dimensional spaces based on a
smoothing penalization procedure via the method of metric approximations.
Then we proceed by infinite-dimensional variational techniques in Banach
spaces with a Fréchet smooth norm and finally, by separable reduction, in
the larger class of Asplund spaces. The latter class is well-investigated in the
geometric theory of Banach spaces and contains, in particular, every reflexive
space and every space with a separable dual. Asplund spaces play a prominent
role in the theory and applications of variational analysis developed in this
book. In Chap. 2 we also establish relationships between the (geometric) ex-
tremal principle and (analytic) variational principles in both conventional and
enhanced forms. The results obtained are applied to the derivation of novel
variational characterizations of Asplund spaces and useful representations of
the basic generalized differential constructions in the Asplund space setting
similar to those in finite dimensions. Finally, in this chapter we discuss ab-
stract versions of the extremal principle formulated in terms of axiomatically
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defined normal and subdifferential structures on appropriate Banach spaces
and also overview in more detail some specific constructions.

Chapter 3 is a cornerstone of the generalized differential theory developed
in this book. It contains comprehensive calculus rules for basic normals, sub-
gradients, and coderivatives in the framework of Asplund spaces. We pay most
of our attention to pointbased rules via the limiting constructions at the points
in question, for both assumptions and conclusions, having in mind that point-
based results indeed happen to be of crucial importance for applications. A
number of the results presented in this chapter seem to be new even in the
finite-dimensional setting, while overall we achieve the same level of perfec-
tion and generality in Asplund spaces as in finite dimensions. The main issue
that distinguishes the finite-dimensional and infinite-dimensional settings is
the necessity to invoke sufficient amounts of compactness in infinite dimen-
sions that are not needed at all in finite-dimensional spaces. The required
compactness is provided by the afore-mentioned SNC properties, which are
included in the assumptions of calculus rules and call for their own calcu-
lus ensuring the preservation of SNC properties under various operations on
sets and mappings. The absence of such a SNC calculus was a crucial obsta-
cle for many successful applications of generalized differentiation in infinite-
dimensional spaces to a range of infinite-dimensions problems including those
in optimization, stability, and optimal control given in this book. Chapter 3
contains a broad spectrum of the SNC calculus results that are decisive for
subsequent applications.

Chapter 4 is devoted to a thorough study of Lipschitzian, metric regularity,
and linear openness/covering properties of set-valued mappings, and to their
applications to sensitivity analysis of parametric constraint and variational
systems. First we show, based on variational principles and the generalized
differentiation theory developed above, that the necessary coderivative condi-
tions for these fundamental properties derived in Chap. 1 in arbitrary Banach
spaces happen to be complete characterizations of these properties in the As-
plund space setting. Moreover, the employed variational approach allows us to
obtain verifiable formulas for computing the exact bounds of the correspond-
ing moduli. Then we present detailed applications of these results, supported
by generalized differential and SNC calculi, to sensitivity and stability analy-
sis of parametric constraint and variational systems governed by perturbed
sets of feasible and optimal solutions in problems of optimization and equi-
libria, implicit multifunctions, complementarity conditions, variational and
hemivariational inequalities as well as to some mechanical systems.

Volume II “Applications” also consists of four chapters mostly devoted
to applications of basic principles in variational analysis and the developed
generalized differential calculus to various topics in constrained optimization
and equilibria, optimal control of ordinary and distributed-parameter systems,
and models of welfare economics.

Chapter 5 concerns constrained optimization and equilibrium problems
with possibly nonsmooth data. Advanced methods of variational analysis
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based on extremal/variational principles and generalized differentiation hap-
pen to be very useful for the study of constrained problems even with smooth
initial data, since nonsmoothness naturally appears while applying penaliza-
tion, approximation, and perturbation techniques. Our primary goal is to de-
rive necessary optimality and suboptimality conditions for various constrained
problems in both finite-dimensional and infinite-dimensional settings. Note
that conditions of the latter – suboptimality – type, somehow underestimated
in optimization theory, don’t assume the existence of optimal solutions (which
is especially significant in infinite dimensions) ensuring that “almost” optimal
solutions “almost” satisfy necessary conditions for optimality. Besides con-
sidering problems with constraints of conventional types, we pay serious at-
tention to rather new classes of problems, labeled as mathematical problems
with equilibrium constraints (MPECs) and equilibrium problems with equilib-
rium constraints (EPECs), which are intrinsically nonsmooth while admitting
a thorough analysis by using generalized differentiation. Finally, certain con-
cepts of linear subextremality and linear suboptimality are formulated in such
a way that the necessary optimality conditions derived above for conventional
notions are seen to be necessary and sufficient in the new setting.

In Chapter 6 we start studying problems of dynamic optimization and op-
timal control that, as mentioned, have been among the primary motivations
for developing new forms of variational analysis. This chapter deals mostly
with optimal control problems governed by ordinary dynamic systems whose
state space may be infinite-dimensional. The main attention in the first part of
the chapter is paid to the Bolza-type problem for evolution systems governed
by constrained differential inclusions. Such models cover more conventional
control systems governed by parameterized evolution equations with control
regions generally dependent on state variables. The latter don’t allow us to
use control variations for deriving necessary optimality conditions. We de-
velop the method of discrete approximations, which is certainly of numerical
interest, while it is mainly used in this book as a direct vehicle to derive op-
timality conditions for continuous-time systems by passing to the limit from
their discrete-time counterparts. In this way we obtain, strongly based on the
generalized differential and SNC calculi, necessary optimality conditions in the
extended Euler-Lagrange form for nonconvex differential inclusions in infinite
dimensions expressed via our basic generalized differential constructions.

The second part of Chap. 6 deals with constrained optimal control systems
governed by ordinary evolution equations of smooth dynamics in arbitrary Ba-
nach spaces. Such problems have essential specific features in comparison with
the differential inclusion model considered above, and the results obtained (as
well as the methods employed) in the two parts of this chapter are generally in-
dependent. Another major theme explored here concerns stability of the max-
imum principle under discrete approximations of nonconvex control systems.
We establish rather surprising results on the approximate maximum principle
for discrete approximations that shed new light upon both qualitative and
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quantitative relationships between continuous-time and discrete-time systems
of optimal control.

In Chapter 7 we continue the study of optimal control problems by appli-
cations of advanced methods of variational analysis, now considering systems
with distributed parameters. First we examine a general class of hereditary
systems whose dynamic constraints are described by both delay-differential
inclusions and linear algebraic equations. On one hand, this is an interesting
and not well-investigated class of control systems, which can be treated as a
special type of variational problems for neutral functional-differential inclu-
sions containing time delays not only in state but also in velocity variables.
On the other hand, this class is related to differential-algebraic systems with
a linear link between “slow” and “fast” variables. Employing the method of
discrete approximations and the basic tools of generalized differentiation, we
establish a strong variational convergence/stability of discrete approximations
and derive extended optimality conditions for continuous-time systems in both
Euler-Lagrange and Hamiltonian forms.

The rest of Chap. 7 is devoted to optimal control problems governed by
partial differential equations with pointwise control and state constraints. We
pay our primary attention to evolution systems described by parabolic and
hyperbolic equations with controls functions acting in the Dirichlet and Neu-
mann boundary conditions. It happens that such boundary control problems
are the most challenging and the least investigated in PDE optimal control
theory, especially in the presence of pointwise state constraints. Employing
approximation and perturbation methods of modern variational analysis, we
justify variational convergence and derive necessary optimality conditions for
various control problems for such PDE systems including minimax control
under uncertain disturbances.

The concluding Chapter 8 is on applications of variational analysis to eco-
nomic modeling. The major topic here is welfare economics, in the general
nonconvex setting with infinite-dimensional commodity spaces. This impor-
tant class of competitive equilibrium models has drawn much attention of
economists and mathematicians, especially in recent years when nonconvex-
ity has become a crucial issue for practical applications. We show that the
methods of variational analysis developed in this book, particularly the ex-
tremal principle, provide adequate tools to study Pareto optimal allocations
and associated price equilibria in such models. The tools of variational analysis
and generalized differentiation allow us to obtain extended nonconvex versions
of the so-called “second fundamental theorem of welfare economics” describ-
ing marginal equilibrium prices in terms of minimal collections of generalized
normals to nonconvex sets. In particular, our approach and variational de-
scriptions of generalized normals offer new economic interpretations of market
equilibria via “nonlinear marginal prices” whose role in nonconvex models is
similar to the one played by conventional linear prices in convex models of
the Arrow-Debreu type.
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The book includes a Glossary of Notation, common for both volumes,
and an extensive Subject Index compiled separately for each volume. Using
the Subject Index, the reader can easily find not only the page, where some
notion and/or notation is introduced, but also various places providing more
discussions and significant applications for the object in question.

Furthermore, it seems to be reasonable to title all the statements of the
book (definitions, theorems, lemmas, propositions, corollaries, examples, and
remarks) that are numbered in sequence within a chapter; thus, in Chap. 5 for
instance, Example 5.3.3 precedes Theorem 5.3.4, which is followed by Corol-
lary 5.3.5. For the reader’s convenience, all these statements and numerated
comments are indicated in the List of Statements presented at the end of each
volume. It is worth mentioning that the list of acronyms is included (in al-
phabetic order) in the Subject Index and that the common principle adopted
for the book notation is to use lower case Greek characters for numbers and
(extended) real-valued functions, to use lower case Latin characters for vectors
and single-valued mappings, and to use Greek and Latin upper case characters
for sets and set-valued mappings.

Our notation and terminology are generally consistent with those in Rock-
afellar and Wets [1165]. Note that we try to distinguish everywhere the notions
defined at the point and around the point in question. The latter indicates
robustness/stability with respect to perturbations, which is critical for most
of the major results developed in the book.

The book is accompanied by the abundant bibliography (with English
sources if available), common for both volumes, which reflects a variety of
topics and contributions of many researchers. The references included in the
bibliography are discussed, at various degrees, mostly in the extensive com-
mentaries to each chapter. The reader can find further information in the
given references, directed by the author’s comments.

We address this book mainly to researchers and graduate students in math-
ematical sciences; first of all to those interested in nonlinear analysis, opti-
mization, equilibria, control theory, functional analysis, ordinary and partial
differential equations, functional-differential equations, continuum mechanics,
and mathematical economics. We also envision that the book will be useful
to a broad range of researchers, practitioners, and graduate students involved
in the study and applications of variational methods in operations research,
statistics, mechanics, engineering, economics, and other applied sciences.

Parts of the book have been used by the author in teaching graduate
classes on variational analysis, optimization, and optimal control at Wayne
State University. Basic material has also been incorporated into many lectures
and tutorials given by the author at various schools and scientific meetings
during the recent years.
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5

Constrained Optimization and Equilibria

This chapter is devoted to applications of the basic tools of variational analy-
sis and generalized differential calculus developed above to the study of con-
strained optimization and equilibrium problems with possibly nonsmooth
data. Actually it is a two-sided process, since optimization ideas lie at the
very heart of variational analysis as clearly follows from the previous mate-
rial. Let us particularly mention variational descriptions of the normals and
subgradients under consideration in both finite and infinite dimensions; see
Theorem 1.6, Subsect. 1.1.4, and Theorem 1.88 for more details. Moreover, the
main instrument of our analysis—the extremal principle—itself gives neces-
sary conditions for set extremality, which are at the core of the basic results on
generalized differential calculus and related characterizations of Lipschitzian
stability and metric regularity developed in Chaps. 2–4.

The primary objective of this chapter is to derive necessary optimality
and suboptimality conditions for various problems of constrained optimization
and equilibria in infinite-dimensional spaces. Note that results of the latter
(suboptimality) type ensure that “almost” optimal solutions “almost” satisfy
necessary conditions for optimality without imposing assumptions on the ex-
istence of exact optimizers, which is essential in infinite dimensions. Starting
with problems of mathematical programming under functional and geometric
constraints, we consider then various problems of multiobjective optimization,
minimax problems and equilibrium constraints, some concepts of extended
extremality, etc. The key tools of our analysis are based on the extremal prin-
ciple and its modifications together with generalized differential calculus. A
major role is played by the SNC calculus that is crucial for applications to
constrained optimization and equilibrium problems in infinite dimensions.

5.1 Necessary Conditions in Mathematical Programming

This section concerns first-order necessary optimality and suboptimality con-
ditions for general problems of mathematical programming with operator,
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functional, and geometric constraints. We derive such conditions in various
forms depending on the type of assumptions imposed on the initial data. Let
us first examine optimization problems with only geometric constraints given
by arbitrary nonempty subsets of Banach and Asplund spaces.

5.1.1 Minimization Problems with Geometric Constraints

Given a function ϕ: X → IR finite at a reference point and a nonempty subset
Ω of a Banach space X , we consider the following minimization problem with
geometric constraints:

minimize ϕ(x) subject to x ∈ Ω ⊂ X . (5.1)

The constrained problem (5.1) is obviously equivalent to the problem of un-
constrained minimization:

minimize ϕ(x) + δ(x ;Ω), x ∈ X,

where the indicator function δ(·;Ω) imposes an “infinite penalty” on the con-
straint violation. Thus, given a local optimal solution x̄ to (5.1), we get

0 ∈ ∂̂
(
ϕ + δ(·;Ω)

)
(x̄) ⊂ ∂

(
ϕ + δ(·;Ω)

)
(x̄) (5.2)

by the generalized Fermat rule from Proposition 1.114. To pass from (5.2) to
efficient necessary optimality conditions in terms of the initial data (ϕ,Ω), one
needs to employ subdifferential sum rules for ϕ + δ(·;Ω). The simplest result
in this direction follows from the sum rule in Proposition 1.107(i) provided
that ϕ is Fréchet differentiable at x̄ .

Proposition 5.1 (necessary conditions for constrained problems with
Fréchet differentiable costs). Let x̄ be a local optimal solution to problem
(5.1) in a Banach space X . Assume that ϕ is Fréchet differentiable at x̄. Then

−∇ϕ(x̄) ∈ N̂(x̄ ;Ω), −∇ϕ(x̄) ∈ N(x̄ ;Ω) .

Proof. Applying Proposition 1.107(i) to the first inclusion in (5.2) and using
the relationship ∂̂δ(x̄ ;Ω) = N̂(x̄ ;Ω), we arrive at −∇ϕ(x̄) ∈ N̂(x̄ ;Ω). This
immediately implies the second necessary condition in the proposition due to
the inclusion N̂(x̄ ;Ω) ⊂ N(x̄ ;Ω). �

If ϕ is not Fréchet differentiable at x̄ , one cannot proceed in the above
way using Fréchet-like subgradient constructions, which don’t possess a satis-
factory calculus even in finite dimensions. The picture is completely different
for our basic constructions ∂ϕ and N(·,Ω), which enjoy a full calculus in gen-
eral nonsmooth settings of Asplund spaces. Before going in this direction, let
us present a rather surprising result providing upper subdifferential necessary
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conditions in the minimization problem (5.1) that happen to be very efficient
for a special class of functions ϕ. These necessary optimality conditions gener-
alize those in Proposition 5.1 and actually reduce to them in the proof due to
the variational description of Fréchet subgradients in Theorem 1.88(i) applied
to the Fréchet upper subdifferential ∂̂+ϕ(x̄) defined in (1.52).

Proposition 5.2 (upper subdifferential conditions for local minima
under geometric constraints). Let x̄ be a local optimal solution to the
minimization problem (5.1) in a Banach space X , where ϕ: X → IR is finite
at x̄. Then one has the inclusions

−∂̂+ϕ(x̄) ⊂ N̂(x̄ ;Ω), −∂̂+ϕ(x̄) ⊂ N(x̄ ;Ω) . (5.3)

Proof. We only need to prove the first inclusion in (5.3), which is trivial when
∂̂+ϕ(x̄) = ∅. Assume that ∂̂+ϕ(x̄) �= ∅ and take x∗ ∈ ∂̂+ϕ(x̄) = −∂̂(−ϕ)(x̄).
Applying Theorem 1.88(i) to the Fréchet subgradient −x∗ from ∂̂(−ϕ)(x̄), we
find a function s: X → IR with s(x̄) = ϕ(x̄) and s(x) ≥ ϕ(x) whenever x ∈ X
such that s(·) is Fréchet differentiable at x̄ with ∇s(x̄) = x∗. It gives

s(x̄) = ϕ(x̄) ≤ ϕ(x) ≤ s(x)

for all x ∈ Ω around x̄ . Thus x̄ is a local optimal solution to the constrained
minimization problem:

minimize s(x) subject to x ∈ Ω

with a Fréchet differentiable objective. Applying Proposition 5.1 to the latter
problem, we conclude that −x∗ ∈ N̂(x̄ ;Ω), which gives (5.3) and complete
the proof of the proposition. �

When ϕ is Fréchet differentiable at x̄ , the result of Proposition 5.2 re-
duces to the inclusion −∇ϕ(x̄) ∈ N̂(x̄ ;Ω) in Proposition 5.1 due to ∂̂+ϕ(x̄) =
{∇ϕ(x̄)} in this case. An interesting class of optimization problems satisfying
the assumptions of Proposition 5.2 contains problems of concave minimiza-
tion when ϕ is concave and continuous around x̄ , and hence ∂̂+ϕ(x̄) agrees
with the (nonempty) upper subdifferential of convex analysis. If X is Asplund,
∂̂+ϕ(x̄) �= ∅ when ϕ is Lipschitz continuous around x̄ and upper regular at x̄ ,
i.e., ∂̂+ϕ(x̄) = ∂+ϕ(x̄). Indeed, in this case one has ∂+ϕ(x̄) = −∂(−ϕ)(x̄) �= ∅
by Corollary 2.25. Observe that the latter class contains, besides strictly differ-
entiable functions and concave continuous functions, the so-called semiconcave
functions that are very important for many applications; see more discussions
in Subsect. 5.5.4 containing comments to this chapter.

Note that the condition ∂̂+ϕ(x̄) = ∅, when the inclusions in (5.3) are triv-
ial, itself is an easy checkable necessary optimality condition for (5.1) whenever
the constraints are not into account and ϕ is not Fréchet differentiable at x̄ .
Indeed, since 0 ∈ ∂̂ϕ(x̄) �= ∅ at a point of local minimum, then ∂̂+ϕ(x̄) must
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be empty by Proposition 1.87. However, it is a trivial necessary condition
that doesn’t carry much information for constrained minimization problems.
The following lower subdifferential conditions, expressed in terms of basic and
singular lower subgradients of the cost function ϕ, are more conventional for
constrained minimization.

Proposition 5.3 (lower subdifferential conditions for local minima
under geometric constraints). Let x̄ be a local optimal solution to the
minimization problem (5.1), where Ω is locally closed and ϕ is l.s.c. around
x̄ while X is Asplund. Assume that

∂∞ϕ(x̄) ∩
(
− N(x̄ ;Ω)

)
= {0} (5.4)

and that either Ω is SNC at x̄ or ϕ is SNEC at x̄; all these assumptions hold
if ϕ is locally Lipschitzian around x̄. Then one has

∂ϕ(x̄) ∩
(
− N(x̄ ;Ω)

)
�= ∅, i.e., 0 ∈ ∂ϕ(x̄) + N(x̄ ;Ω) . (5.5)

Proof. It follows from the subdifferential sum rule in Theorem 3.36 applied
to the basic subdifferential of the sum in (5.2). �

Remark 5.4 (upper subdifferential versus lower subdifferential con-
ditions for local minima). Observe that, despite the broader applicability
of Proposition 5.3, the upper subdifferential conditions of Proposition 5.2 may
give an essentially stronger result for special classes of nonsmooth problems,
even in the case of Lipschitzian functions ϕ in finite dimensions. In particular,
for concave continuous functions ϕ one has, by Theorem 1.93, that

∂ϕ(x̄) ⊂ ∂+ϕ(x̄) = ∂̂+ϕ(x̄) �= ∅ .

Then comparing the second inclusion in (5.3) (which is even weaker than the
first inclusion therein) with the one in (5.5), we see that the necessary con-
dition of Proposition 5.2 requires that every element x∗ of the set ∂̂+ϕ(x̄)
must belong to −N(x̄ ;Ω), instead of that some element x∗ from the smaller
set ∂ϕ(x̄) belongs to −N(x̄ ;Ω) by Proposition 5.3. This shows that the up-
per subdifferential necessary conditions for local minima may have sizeable
advantages over the lower subdifferential conditions above when the former
apply. Let us illustrate it by a simple example:

minimize ϕ(x) := −|x | subject to x ∈ Ω := [−1, 0] ⊂ IR .

Obviously x̄ = 0 is not an optimal solution to this problem. However, it cannot
be taken away by the lower subdifferential necessary condition (5.5), which
gives in this case the relations

∂ϕ(0) = {−1, 1}, N(0;Ω) = [0,∞), and − 1 ∈ −N(0;Ω) .

On the other hand, the upper subdifferential necessary conditions in (5.3),
which are the same in this case, don’t hold for x̄ = 0, since
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∂̂+ϕ(0) = [−1, 1] and [−1, 1] �⊂ N(0;Ω) .

This confirms non-optimality of x̄ = 0 in the example problem by Proposi-
tion 5.2 in contrast to Proposition 5.3.

Observe that the class of minimization problems for the difference of two
convex functions (i.e., for the so-called DC-functions important in various
applications) can be equivalently reduced to minimizing concave functions
subject to convex constraints; see, e.g., Horst, Pardalos and Thoai [583] for
more developments and discussions.

Note also that, when ϕ is upper regular at x̄ and Lipschitz continuous
around this point, one has the relationship

∂Cϕ(x̄) = cl ∗∂̂+ϕ(x̄)

between Clarke’s generalized gradient and the Fréchet upper subdifferential of
ϕ at x̄ provided that X is Asplund. Indeed, it follows from the symmetry (2.71)
of the generalized gradient and its representation via the basic subdifferential
in Theorem 3.57(ii). Moreover, the weak∗ closure operation above is redundant
if X is WCG; see Theorem 3.59(i). Thus, if one replaces in this case the
basic subdifferential ∂ϕ(x̄) in Proposition 5.3 by its Clarke counterpart, the
obtained lower subdifferential result is substantially weaker than the upper
subdifferential condition of Proposition 5.2 with ∂̂+ϕ(x̄) = ∂Cϕ(x̄).

In many areas of the variational theory and applications (in particular,
to optimal control) geometric constraints are usually given as intersections of
sets; see, e.g., the next section and Chap. 6. Based on the above results for
problem (5.1) and calculus rules for basic normals to set intersections, one can
derive necessary optimality conditions for optimization problems with many
geometric constraints. To furnish this in the case of upper subdifferential
conditions, we employ the second inclusion in (5.3), since the first one doesn’t
lead to valuable pointbased results for set intersections due to the lack of
calculus for Fréchet normals.

Let us present general results in both lower and upper subdifferential forms
considering for simplicity the case of two set intersections in geometric con-
straints given in products of Asplund spaces. In the next theorem we use
the qualification and PSNC conditions introduced in Subsect. 3.1.1; see also
discussions therein.

Theorem 5.5 (local minima under geometric constraints with set
intersections). Let x̄ be a local optimal solution to problem (5.1) with Ω =
Ω1 ∩ Ω2, where the sets Ω1,Ω2 ⊂

∏m
j=1 X j are locally closed around x̄ and

the spaces X j are Asplund. Then the following assertions hold:
(i) Assume that the system {Ω1,Ω2} satisfies the limiting qualification

condition at x̄. Given J1, J2 ⊂ {1, . . . ,m} with J1 ∪ J2 = {1, . . . ,m}, we also
assume that Ω1 is PSNC at x̄ with respect to J1 and that Ω2 is strongly PSNC
at x̄ with respect to J2. Then one has
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−∂̂+ϕ(x̄) ⊂ N(x̄ ;Ω1) + N(x̄ ;Ω2) .

(ii) In addition to the assumptions in (i), suppose that ϕ is l.s.c. around
x̄ and SNEC at this point and that(

− ∂∞ϕ(x̄)
)
∩
[
N(x̄ ;Ω1) + N(x̄ ;Ω2)

]
= {0} (5.6)

(all the additional assumptions are satisfied if ϕ is Lipschitz continuous around
x̄). Then one has

0 ∈ ∂ϕ(x̄) + N(x̄ ;Ω1) + N(x̄ ;Ω2) . (5.7)

(iii) Assume that ϕ is l.s.c. around x̄, that both Ω1 and Ω2 are SNC at
this point, and that the qualification condition[

x∗ ∈ ∂∞ϕ(x̄), x∗
1 ∈ N(x̄ ;Ω1), x∗

2 ∈ N(x̄ ;Ω2) ,

x∗ + x∗
1 + x∗

2 = 0
]

=⇒ x∗ = x∗
1 = x∗

2 = 0
(5.8)

holds. Then one has (5.7).

Proof. To prove (i), we use Proposition 5.2 and then apply the intersection
rule from Theorem 3.4 to the basic normal cone N(x̄ ;Ω) in (5.3). This gives

N(x̄ ;Ω) = N(x̄ ;Ω1 ∩Ω2) ⊂ N(x̄ ;Ω1) + N(x̄ ;Ω2) , (5.9)

and thus we arrive at the upper subdifferential inclusion in (i).
Assertion (ii) follows from Proposition 5.3 under the SNEC assumption on

ϕ and from the intersection rule of Theorem 3.4 by substituting (5.9) into (5.4)
and (5.5). Recall finally that every function ϕ locally Lipschitzian around x̄
is SNEC at x̄ due to Corollary 1.69 (see the discussion after Definition 1.116)
with ∂∞ϕ(x̄) = {0} by Corollary 1.81.

It remains to prove (iii). Using Proposition 5.3 in the case of SNC sets Ω,
we need to express the SNC assumption on Ω and the other conditions of that
proposition in terms of Ω1, Ω2, and ϕ. By Corollary 3.81 the set intersection
Ω = Ω1 ∩ Ω2 is SNC at x̄ if both Ωi are SNC at this point and satisfy the
qualification condition

N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
= {0} , (5.10)

which also ensures the intersection formula (5.9); see Corollary 3.5. It is easy
to check that (5.8) implies both qualification conditions (5.4) and (5.10).
Indeed, (5.10) follows right from (5.8) with x∗ = 0. To get (5.4), we take
x∗ ∈ N(x̄ ;Ω1∩Ω2) with −x∗ ∈ ∂∞ϕ(x̄) and find x∗

i ∈ N(x̄ ;Ωi ), i = 1, 2, such
that x∗

1 + x∗
2 = x∗ by Corollary 3.5. Thus x∗ + x∗

1 + x∗
2 = 0, which gives x∗ = 0

by (5.8) and ends the proof of the theorem. �

Let us present a corollary of Theorem 5.5 that unifies and simplifies its
assumptions for the case of finitely many geometric constraints.
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Corollary 5.6 (local minima under many geometric constraints). Let
x̄ be a local optimal solution to problem (5.1) with Ω = Ω1 ∩ . . . ∩Ωn, where
each Ωi is locally closed around x̄ in the Asplund space X . Assume that all
but one of Ωi are SNC at x̄ and that[

x∗
1 + . . . + x∗

n = 0, x∗
i ∈ N(x̄ ;Ωi )

]
=⇒ x∗

i = 0, i = 1, . . . , n . (5.11)

Then the upper subdifferential necessary condition

−∂̂+ϕ(x̄) ⊂ N(x̄ ;Ω1) + . . . + N(x̄ ;Ωn)

holds. If in addition ϕ is l.s.c. around x̄ and SNEC at this point and if (5.11)
is replaced by the stronger qualification condition[

x∗ ∈ ∂∞ϕ(x̄), x∗
i ∈ N(x̄ ;Ωi ), i = 1, . . . , n ,

x∗ +
n∑

i=1

x∗
i = 0

]
=⇒ x∗ = x∗

1 = . . . = x∗
n = 0 ,

then one has the lower subdifferential inclusion

0 ∈ ∂ϕ(x̄) + N(x̄ ;Ω1) + . . . + N(x̄ ;Ωn)

Furthermore, the latter necessary optimality condition still holds if the SNEC
property of ϕ at x̄ is replaced by the SNC property of all Ω1, . . . ,Ωn at this
point in the assumptions above.

Proof. It is clear that the qualification condition (5.11) together with the
SNC property of all but one Ωi imply the assumptions of Theorem 5.5(i) for
two and then for n sets, by induction, and hence ensure the intersection rule

N(x̄ ;Ω1 ∩ . . . ∩Ωn) ⊂ N(x̄ ;Ω1) + . . . + N(x̄ ;Ωn) ;

cf. Corollary 3.37. This justifies the upper subdifferential necessary condition
of the corollary. The lower subdifferential condition is derived by induction
from assertion (ii) of Theorem 5.5 under the SNEC assumption on ϕ and from
assertion (iii) of this theorem under the SNC assumption on all Ωi . �

5.1.2 Necessary Conditions under Operator Constraints

In this subsection we derive necessary optimality conditions in extended prob-
lems of mathematical programming that contain, along with geometric con-
straints, also operator constraints given by set-valued and single-valued map-
pings with values in infinite-dimensional spaces. Our analysis is mainly based
on the reduction to minimization problems containing only geometric con-
straints given by intersections of two sets one of which is an inverse image of
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some set under a set-valued or single-valued mapping. Then we apply results
on the generalized differential calculus developed in Chaps. 1 and 3 including
efficient rules that ensure the fulfillment and preservation of SNC properties.
In this way we derive general necessary optimality conditions of both lower
and upper subdifferential types under certain constraint qualifications ensur-
ing the so-called normal/qualified form of optimality conditions as well as
necessary conditions without such qualifications.

Let us consider the following constrained optimization problem:

minimize ϕ0(x) subject to x ∈ F−1(Θ) ∩Ω , (5.12)

where ϕ0: X → IR, F : X →→ Y , Ω ⊂ X , and Θ ⊂ Y , and where

F−1(Θ) := {x ∈ X | F(x) ∩Θ �= ∅}

is the inverse image of the set Θ under the set-valued mapping F . Model (5.12)
covers many special classes of optimization problems, in particular, classical
problems of nonlinear programming with equality and inequality constraints;
see the next subsection.

Observe that (5.12) reduces to the problem of constrained minimization
admitting only geometric constraints given by the intersection of two sets:
Ω1 = F−1(Θ) and Ω2 = Ω. Thus one can apply the results of the preced-
ing subsection and then calculus rules for the normal cones to inverse images
and intersections as well as those preserving the SNC property, which are
developed in Chaps. 1 and 3. In this way we arrive at necessary optimality
conditions for the general problem (5.12) obtained in the normal form, i.e.,
with a nonzero multiplier corresponding to the cost function ϕ0. Let us first
derive upper subdifferential necessary conditions for optimality in the mini-
mization problem (5.12).

Theorem 5.7 (upper subdifferential conditions for local minima un-
der operator constraints). Given a local optimal solution x̄ to problem
(5.12) with Banach spaces X and Y , we have the assertions:

(i) Assume that Ω = X , that F = f : X → Y is Fréchet differentiable at x̄
with the surjective derivative ∇ f (x̄), and that either f is strictly differentiable
at x̄ or it is continuous around this point with dim Y < ∞. Then

−∂̂+ϕ0(x̄) ⊂ ∇ f (x̄)∗ N̂( f (x̄);Θ) .

(ii) Assume that X is Asplund, that Ω is locally closed around x̄, that
F = f : X → Y is strictly differentiable at x̄ with the surjective derivative, and
that the qualification condition

∇ f (x̄)∗N( f (x̄);Θ) ∩
(
− N(x̄ ;Ω)

)
= {0}

holds. Then one has

−∂̂+ϕ0(x̄) ⊂ ∇ f (x̄)∗N( f (x̄);Θ) + N(x̄ ;Ω)
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provided that either Ω or Θ is SNC at x̄ and f (x̄), respectively.
(iii) Assume that both spaces X and Y are Asplund, that the sets Ω, Θ,

and gph F are closed, and that the set-valued mapping S(·) := F(·) ∩ Θ is
inner semicompact around x̄. Then

−∂̂+ϕ0(x̄) ⊂
⋃ [

D∗
N F(x̄, ȳ)(y∗)

∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Θ)
]

+N(x̄ ;Ω)
(5.13)

under one of the following requirements on (F,Θ,Ω):

(a) Ω is SNC at x̄, the qualification conditions

⋃[
D∗

N F(x̄, ȳ)(y∗)
∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Θ)

]
⋂ (

− N(x̄ ;Ω)
)

= {0},
(5.14)

N(ȳ;Θ) ∩ ker D̃∗
M F(x̄, ȳ) = {0} for all ȳ ∈ S(x̄) (5.15)

are satisfied, and either the inverse mapping F−1 is PSNC at (ȳ, x̄) or Θ is
SNC at ȳ for all ȳ ∈ S(x̄).

(b) The qualification conditions (5.14) and

N(ȳ;Θ) ∩ ker D∗
N F(x̄, ȳ) = {0} for all ȳ ∈ S(x̄) (5.16)

are satisfied, and either F is PSNC at (x̄, ȳ) and Θ is SNC at ȳ, or F is SNC
at (x̄, ȳ) for all ȳ ∈ S(x̄).

Proof. To justify (i) in the Banach space setting, we are based on the first up-
per subdifferential condition in Proposition 5.2 and then employ the equality
for computing N̂(x̄ ; f −1(Θ)) from Corollary 1.15.

To prove (ii) when X is Asplund (while Y may be arbitrarily Banach)
and f is strictly differentiable at x̄ with the surjective derivative, we apply
assertion (i) of Theorem 5.5 with Ω1 = f −1(Θ) and Ω2 = Ω assuming that
either Ω or f −1(Θ) is SNC at x̄ and f (x̄), respectively, and that

N(x̄ ; f −1(Θ)) ∩
(
− N(x̄ ;Ω)

)
= {0} .

When Ω is SNC at x̄ , the result of (ii) follows from Theorem 1.17 providing
the normal cone representation

N(x̄ ; f −1(Θ)) = ∇ f (x̄)∗N( f (x̄);Θ) .

When Ω is not assumed to be SNC at x̄ , we need to involve the SNC property
of f −1(Θ) at x̄ , which is equivalent to the SNC property of Θ at f (x̄) by
Theorem 1.22. This justifies (ii).
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To prove assertion (iii), we apply Theorem 5.5(i) for Ω1 = F−1(Θ) and
Ω2 = Ω. Then we use the upper estimate of N(x̄ ; F−1(Θ)) for general mul-
tifunctions from Theorem 3.8, which requires that both spaces X and Y are
Asplund. To employ this theorem, we first observe that the set F−1(Θ) is
locally closed around x̄ under the assumptions of (iii); see the proof of The-
orem 3.8 noting that S(·) is assumed to be lower semicompact around x̄ . By
Theorem 3.8 we get

N(x̄ ; F−1(Θ)) ⊂
⋃[

D∗
N F(x̄, ȳ)(y∗)

∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Θ)
]

under the assumptions on F and Θ made in (a). If now Ω is supposed to be
SNC at x̄ , then we arrive at (5.13) by using the upper subdifferential inclusion

−∂̂+ϕ0(x̄) ⊂ N(x̄ ; F−1(Θ)) + N(x̄ ;Ω)

of Theorem 5.5 under the qualification condition

N(x̄ ; F−1(Θ)) ∩
(
− N(x̄ ;Ω)

)
= {0} .

If Ω is not supposed to be SNC at x̄ , we need to use the SNC property of
F−1(Θ) at x̄ that is ensured by Theorem 3.84 under the assumptions made
in (b). This completes the proof of the theorem. �

Note that, by Proposition 1.68, the PSNC property of F holds in (b) if
F is Lipschitz-like around (x̄, ȳ). Observe also that the result of assertion
(ii)in Theorem 5.7 reduces to the one in assertion (iii) of this theorem if X is
additionally assumed to be Asplund while Θ is locally closed around f (x̄).

Next we derive lower subdifferential optimality conditions in the normal
form for problem (5.12) based on assertions (ii) and (iii) of Theorem 5.5 and
employing the calculus results used in the proof of Theorem 5.7.

Theorem 5.8 (lower subdifferential conditions for local minima un-
der operator constraints). Given a local optimal solution x̄ to problem
(5.12), suppose that X is Asplund, that Ω is locally closed around x̄, and that
ϕ0 is l.s.c. around this point. Then we have the assertions:

(i) Let Y be Banach, and let F = f : X → Y be strictly differentiable at x̄
with the surjective derivative ∇ f (x̄). Then

0 ∈ ∂ϕ0(x̄) + ∇ f (x̄)∗N( f (x̄);Θ) + N(x̄ ;Ω)

provided that[
x∗ ∈ ∂∞ϕ0(x̄), x∗

1 ∈ ∇ f (x̄)∗N( f (x̄);Θ), x∗
2 ∈ N(x̄ ;Ω) ,

x∗ + x∗
1 + x∗

2 = 0
]

=⇒ x∗ = x∗
1 = x∗

2 = 0
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and that one of the following requirements holds:

(a) ϕ0 is SNEC at x̄, and either Ω is SNC at x̄ or Θ is SNC at f (x̄);

(b) both Ω and Θ have the SNC property at x̄ and f (x̄), respectively.

(ii) Let Y be Asplund, let the sets Θ and gph F be closed, and let the
set-valued mapping S(·) = F(·) ∩Θ be inner semicompact around x̄. Then

0 ∈ ∂ϕ0(x̄) +
⋃ [

D∗
N F(x̄, ȳ)(y∗)

∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Θ)
]

+N(x̄ ;Ω)
(5.17)

under one of the following requirements on (ϕ0, F,Θ,Ω):
(c) ϕ0 is SNEC at x̄ and[

x∗ ∈ ∂∞ϕ0(x̄), x∗
1 ∈

⋃[
D∗

N F(x̄, ȳ)(y∗)
∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Θ)

]
,

x∗
2 ∈ N(x̄ ;Ω), x∗ + x∗

1 + x∗
2 = 0

]
=⇒ x∗ = x∗

1 = x∗
2 = 0

(5.18)

in addition to the assumptions in either (a) or (b) of Theorem 5.7(iii), where
(5.14) is superseded by (5.18).

(d) Ω is SNC at x̄, the qualification conditions (5.16) and (5.18) are sat-
isfied, and either F is PSNC at (x̄, ȳ) and Θ is SNC at ȳ, or F is SNC at
(x̄, ȳ) for all ȳ ∈ S(x̄).

Proof. To prove assertion (i), we base on Theorem 5.5(ii) with Ω1 = f −1(Θ)
and Ω2 = Ω. Then the desired result in case (a) follows from the representa-
tion of the normal cone N(x̄ ; f −1(Θ)) in the proof of Theorem 5.7(ii). When
ϕ0 is not assumed to be SNEC at x̄ , we need to use conditions ensuring the
SNC property of the intersection f −1(Θ)∩Ω at x̄ . Since both sets f −1(Θ) and
Ω are SNC at this point under the assumptions made in (b) and since ∇ f (x̄)
is surjective, the SNC property of the intersection follows from Corollary 3.81.

The proof of assertion (ii) is similar based on Theorem 5.5(ii) with
Ω1 = F−1(Θ) and Ω2 = Ω and the upper estimate of N(x̄ ; F−1(Θ)) from
the proof of Theorem 5.7(iii). This gives the subdifferential inclusion (5.17)
in case (c). To justify (5.17) in case (d), we observe that both sets in the in-
tersection F−1(Θ) and Ω are SNC at x̄ under the assumption made, and the
qualification condition (5.18) ensures the SNC property of this intersection by
Corollary 3.81. This completes the proof of the theorem. �

Note that the result in assertion (i) of Theorem 5.8 follows from the one
in assertion (ii) provided that the space Y is Asplund and the set Θ is closed.
However, these assumptions are not imposed in (i). Observe also that the
qualification conditions (5.15) and (5.16) coincide when X is finite-dimensional
while (5.15) is weaker in general. The main advantage of (5.15) is that it always
holds together with the PSNC property of F−1 at (ȳ, x̄) if F is metrically
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regular around this point. Thus we arrive at following efficient corollary of
Theorems 5.7 and 5.8, where the cost function ϕ0 is supposed to be locally
Lipschitzian to simplify the assumptions in the latter theorem.

Corollary 5.9 (upper and lower subdifferential conditions under
metrically regular constraints). Let x̄ be a local optimal solution to prob-
lem (5.12) under the common assumptions in Theorem 5.7(iii) together with
(5.14) and the SNC requirement on Ω at x̄. Suppose also that F is metrically
regular around (x̄, ȳ) for all ȳ ∈ S(x̄). Then the upper subdifferential condition
(5.13) holds. If in addition ϕ0 is locally Lipschitzian around x̄, then the lower
subdifferential condition (5.17) holds as well.

Proof. The upper subdifferential condition (5.15) follows from Theorem 5.7(iii)
in case (a) due to the coderivative characterization of metric regularity in The-
orem 4.18(c). To derive the lower subdifferential condition (5.17) from case (c)
of Theorem 5.8(ii), we observe that ϕ0 is automatically SNEC at x̄ when it is
locally Lipschitzian and that (5.18) reduces to (5.14) under this assumption. �

Both upper subdifferential (5.13) and lower subdifferential (5.17) necessary
optimality conditions for problem (5.12) admit essential simplifications if F is
assumed to be single-valued and strictly Lipschitzian at a minimum point x̄ .
This is due to the scalarization formula for the normal coderivative established
in Theorem 3.28 under the assumption that f is w∗-strictly Lipschitzian.
Observe that for mappings between Asplund spaces the notions of strictly
Lipschitzian and w∗-strictly Lipschitzian mappings from Definition 3.25 are
equivalent by Proposition 3.26.

Corollary 5.10 (upper and lower subdifferential conditions under
strictly Lipschitzian constraints). Let x̄ be a local solution to problem
(5.12) in Asplund spaces X and Y , where F = f : X → Y is single-valued and
strictly Lipschitzian at x̄. Then one has

−∂̂+ϕ0(x̄) ⊂
⋃[

∂〈y∗, f 〉(x̄)
∣∣∣ y∗ ∈ N( f (x̄);Θ)

]
+ N(x̄ ;Ω) , (5.19)

0 ∈ ∂ϕ0(x̄) +
⋃[

∂〈y∗, f 〉(x̄)
∣∣∣ y∗ ∈ N( f (x̄);Θ)

]
+ N(x̄ ;Ω) (5.20)

under the corresponding assumptions of Theorems 5.7(iii) and 5.8(ii), where
S(x̄) = { f (x̄)} and f is PSNC at x̄ automatically.

Proof. By Theorem 3.28 we have

D∗
N f (x̄)(y∗) = ∂〈y∗, f 〉(x̄) for all y∗ ∈ Y ∗

if f : X → Y is a mapping between Asplund spaces that is strictly Lipschitzian
at x̄ . Thus the upper subdifferential condition (5.13) and lower subdifferential
condition (5.17) reduce to (5.19) and (5.20), respectively. �
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As we have mentioned, the necessary optimality conditions obtained above
for problem (5.12) are given in the normal/qualified form under certain con-
straint qualifications that ensure such a normality. What happens if such con-
straint qualifications are not fulfilled? Then we expect to get necessary con-
ditions in a generalized non-qualified form (sometimes called the Fritz John
form) with a nonnegative (may be zero) multiplier corresponding to the cost
function. Let us formulate upper and lower subdifferential conditions in this
form that actually follow from Theorems 5.7 and 5.8.

Theorem 5.11 (necessary optimality conditions without constraint
qualifications). Given a local optimal solution x̄ to problem (5.12), we have
the assertions:

(i) Assume that X and Y are Banach, that Ω = X and Θ = {0}, and that
F = f : X → Y is Fréchet differentiable at x̄. Then there exists λ0 ≥ 0 such
that for every x∗ ∈ ∂̂+ϕ0(x̄) there is y∗ ∈ Y ∗ for which

0 = λ0x∗ + ∇ f (x̄)∗y∗, (λ0, y∗) �= 0 , (5.21)

provided that either f is strictly differentiable at x̄ and the image space
∇ f (x̄)X is closed in Y , or f is continuous around x̄ and dim Y < ∞.

(ii) Assume that X is Asplund while Y is Banach, that f : X → Y is strictly
differentiable at x̄ with the surjective derivative ∇ f (x̄), and that Ω is locally
closed around x̄. Then there exists λ0 ≥ 0 such that for every x∗ ∈ ∂̂+ϕ0(x̄)
there is y∗ ∈ N( f (x̄);Θ) for which

−λ0x∗ −∇ f (x̄)∗y∗ ∈ N(x̄ ;Ω), (λ0, y∗) �= 0 ,

provided that either Ω is SNC at x̄ or Θ is SNC at f (x̄).
(iii) Assume that both X and Y are Asplund, that Ω and Θ are closed,

and that S(·) = F(·) ∩ Θ is inner semicompact around x̄. Then there exists
λ0 ≥ 0 such that for every x∗ ∈ ∂̂+ϕ0(x̄) there are ȳ ∈ S(x̄) and dual elements
y∗ ∈ N(ȳ;Θ), x∗

1 ∈ D∗
N F(x̄, ȳ)(y∗), and x∗

2 ∈ N(x̄ ;Ω) satisfying

0 = λ0x∗ + x∗
1 + x∗

2 , (λ0, y∗, x∗
1 ) �= 0 , (5.22)

provided that one of the following properties holds for every ȳ ∈ S(x̄):

(a) Ω is SNC at x̄ and F−1 is PSNC at (ȳ, x̄);

(b) Ω is SNC at x̄ and Θ is SNC at ȳ;

(c) F is PSNC at (x̄, ȳ) and Θ is SNC at ȳ;

(d) F is SNC at (x̄, ȳ).
(iv) Let ϕ0 be locally Lipschitzian around x̄ in addition to the assumptions

in (iii). Then there are λ0 ≥ 0, x∗ ∈ ∂ϕ0(x̄), ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Θ), x∗
1 ∈

D∗
N F(x̄, ȳ)(y∗), and x∗

2 ∈ N(x̄ ;Ω) such that (5.22) holds provided that one of
the properties (a)–(d) in (iii) is fulfilled for every ȳ ∈ S(x̄).
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Proof. To prove (i), observe that it follows from Theorem 5.7(i) with the “nor-
mal” multiplier λ0 = 1 if ∇ f (x̄): X → Y is surjective under the assumptions
made. If ∇ f (x̄) is not surjective and the space ∇ f (x̄)X is closed in Y , then
it is easy to show (by the separation theorem; cf. the proof of Theorem 1.57)
that ker∇ f (x̄)∗ �= {0}, i.e., there is 0 �= y∗ ∈ Y ∗ such that ∇ f (x̄)∗y∗ = 0.
Thus we get (5.21) with λ0 = 0 and y∗ �= 0.

Let us derive the upper subdifferential conditions in (iii) from the ones in
Theorem 5.7(iii) noting that the proof of (ii) is entirely similar (it is actually
contained in the proof below) based on assertion (ii) of Theorem 5.7. Observe
that Theorem 5.7(iii) implies the desired result of (iii) with λ0 = 1 if the
qualification conditions (5.14) and (5.16) are satisfied. Assuming the opposite,
we need to show that the relations in (iii) hold with λ0 = 0 and (y∗, x∗

1 ) �= 0.
Indeed, if (5.14) is not satisfied, then there are ȳ ∈ S(x̄) and dual elements
y∗ ∈ N(ȳ;Θ) and 0 �= x∗ ∈ D∗

N F(x̄, ȳ)(y∗) such that −x∗ ∈ N(x̄ ;Ω). This
gives (5.22) with λ0 = 0, x∗

1 = x∗, and x∗
2 = −x∗. If (5.16) is not satisfied,

then there are ȳ ∈ S(x̄) and 0 �= y∗ ∈ N(ȳ;Θ) such that 0 ∈ D∗
N F(x̄, ȳ)(y∗).

This gives (5.22) with λ0 = 0, y∗ �= 0, and x∗
1 = x∗

2 = 0.
It remains to prove the lower subdifferential necessary conditions in asser-

tion (iv) provided that the cost function ϕ0 is Lipschitz continuous around
x̄ . We have mentioned above that under the latter assumption ϕ0 is auto-
matically SNEC at x̄ and the qualification condition (5.18) reduces to (5.14).
Hence we conclude from Theorem 5.8 that (5.22) holds with λ0 = 1 and some
x∗ ∈ ∂ϕ0(x̄) under the constraint qualifications (5.14) and (5.16). If either
(5.14) or (5.16) is not satisfied, we justify(5.22) with λ0 = 0 similarly to the
proof of the upper subdifferential conditions in assertion (iii). �

Note that assertion (i) of Theorem 5.11 gives a upper subdifferential ex-
tension of the classical Lyusternik version of the Lagrange multiplier rule for
problems with equality operator constraints in Banach spaces that reduces to
our result when f is strictly differentiable at x̄ . When dim Y < ∞ and f is
merely Fréchet differentiable at x̄ , this result also follows from Theorems 6.37
and 6.38 in the case of equality constraints; cf. the proof in Subsect. 6.3.4. It is
easy to check that assertions (ii)–(iv) of Theorem 5.11 are actually equivalent
to the corresponding assertions of Theorems 5.7 and 5.8 if the qualification
condition (5.16) is assumed instead of (5.15) in Theorem 5.7 and if ϕ0 is as-
sumed to be locally Lipschitzian in Theorem 5.8(ii). In general Theorems 5.7
and 5.8 contain more subtle requirements ensuring the upper subdifferential
optimality conditions in the normal form.

It is interesting to observe that the version of the Lagrange multiplier
rule in assertion (i) of Theorem 5.11 is not valid even in the case of finite-
dimensional spaces X , Y and a linear cost function ϕ0 if f is assumed to be
merely Fréchet differentiable at x̄ with no continuity requirement on it around
this point. This is demonstrated by the following example.
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Example 5.12 (violation of the multiplier rule for problems with
Fréchet differentiable but discontinuous equality constraints). Nec-
essary optimality conditions with Lagrange multipliers don’t hold for a two-
dimensional problem of minimizing a linear cost function subject to the equal-
ity constraint given by a function that is Fréchet differentiable at a point of
the global minimum but not continuous around this point.

Proof. Consider the problem of minimizing ϕ0(x1, x2) := x1 subject to

0 = f (x1, x2) :=

⎧⎨
⎩

x2 + x2
1 if x2 ≥ 0 ,

x2 − x2
1 otherwise .

It is easy to check that x̄ = (0, 0) is a global minimizer for this problem,
where f is Fréchet differentiable at x̄ but not continuous around this point.
Since ∇ϕ0(0, 0) = (1, 0) and ∇ f (0, 0) = (0, 1), the only pair (λ0, λ1) = (0, 0)
satisfies the optimality condition (5.21) given by

0 = λ0∇ϕ0(x̄) + λ1∇ f (x̄) ,

a contradiction. Note that f is not strictly differentiable at x̄ . �

Let us formulate efficient consequences of Theorem 5.11 in the case of
strictly Lipschitzian mappings F = f : X → Y between Asplund spaces.

Corollary 5.13 (strictly Lipschitzian constraints with no qualifica-
tion). Let x̄ be a local optimal solution to problem (5.12), where X and Y
are Asplund, Ω and Θ are closed, and F = f is single-valued and strictly
Lipschitzian at x̄. Then there exists λ0 ≥ 0 such that for every x∗ ∈ ∂̂+ϕ0(x̄)
there is y∗ ∈ N( f (x̄);Θ) satisfying

−λ0x∗ ∈ ∂〈y∗, f 〉(x̄) + N(x̄ ;Ω), (λ0, y∗) �= 0 ,

provided that one of the following properties is fulfilled:
(a) Ω is SNC at x̄ and f −1 is PSNC at ( f (x̄), x̄);
(b) Θ is SNC at f (x̄).

If in addition ϕ0 is Lipschitz continuous around x̄, then there are λ0 ≥ 0 and
y∗ ∈ N( f (x̄);Θ) satisfying

0 ∈ λ0∂ϕ0(x̄) + ∂〈y∗, f 〉(x̄) + N(x̄ ;Ω), (λ0, y∗) �= 0 ,

provided that either (a) or (b) holds.

Proof. Both upper and lower subdifferential conditions of the corollary fol-
low directly from Theorem 5.11 and the coderivative scalarization formula,
which ensures that x∗

1 = 0 if y∗ = 0 in the conditions above. In this case
the requirements in (b) and (c) of Theorem 5.11 reduce to the SNC prop-
erty of Θ at f (x̄), since f is automatically PSNC at x̄ due to its locally
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Lipschitz continuity. Let us show that the SNC property of f in (d) of The-
orem 5.11 is redundant in the case of strictly Lipschitzian mappings. Indeed,
by Corollary 3.30 such mappings f : X → Y are SNC if and only if Y is finite-
dimensional, which is included to the SNC requirement on Θ. Thus properties
(a)–(d) of Theorem 5.11 reduce to (a) and (b) in the corollary. �

Remark 5.14 (lower subdifferential conditions via the extremal prin-
ciple). Note that the lower subdifferential (but not upper subdifferential)
necessary optimality conditions obtained above can be derived by the direct
application of the extremal principle with the subsequent use of calculus rules
and SNC properties for basic normals to inverse images. Indeed, it is easy
to observe that, given a local optimal solution x̄ to the constrained problem
(5.12), the point (x̄, ϕ0(x̄)) is locally extremal for the system of three sets in
the space X × IR:

Ω0 := epi ϕ0, Ω1 := F−1(Θ) × IR, Ω2 := Ω × IR .

Applying the exact extremal principle from Theorem 2.22 to this system and
then using the calculus results as above, we arrive at necessary conditions for
x̄ of the subdifferential type expressed in terms of basic normals and subgra-
dients. Note that this way leads us not only to exact/pointbased optimality
conditions of the above type but also to necessary conditions in an approx-
imate/fuzzy form expressed via Fréchet normals and subgradients at points
nearby the local minimizer without any SNC assumptions. To derive necessary
conditions of the latter type, one needs to employ the approximate version of
the extremal principle from Theorem 2.20 and then the corresponding rules
of fuzzy calculus; see Theorem 1.14, Lemma 3.1, and Remark 3.21. We are
going to present more results of this direction in the subsequent parts of this
chapter for special classes of constrained optimization problems (5.12) and
their multiobjective counterparts.

This subsection is concluded by considering a special class of optimization
problems with operator constraints of the equality type f (x) = 0 given by
single-valued mappings with infinite-dimensional range spaces. Note that the
specific feature of the latter constraints in comparison with the general ones
in problem (5.12) is that the set Θ = {0} is never SNC unless the range space
for f is finite-dimensional.

We explore a fruitful approach to necessary optimality conditions for such
problems, under additional finitely many inequality constraints as well as that
of the geometric type, based on reducing the constrained problems to uncon-
strained minimization by some exact penalization technique. This reduction
becomes possible under the following weakened metric regularity property of
operator constraint mappings relative to geometric constraints at the reference
point versus to around it as in Definition 1.47.

Definition 5.15 (weakened metric regularity). A single-valued mapping
f : X → Y between Banach spaces is metrically regular at a point x̄ ∈ Ω
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relative to a set Ω ⊂ X if there are a constant µ > 0 and a neighborhood
U of x̄ such that

dist(x ; S) ≤ µ‖ f (x) − f (x̄)‖ for all x ∈ U ∩Ω ,

where S := {x ∈ Ω| f (x) = f (x̄)}.

It is easy to see that the above regularity holds if the Ω-restrictive mapping
fΩ(x) := f (x)+∆(x ;Ω) defined on the whole space X is locally metrically reg-
ular around x̄ in the sense of Definition 1.47(ii). Thus the sufficient conditions
for the latter metric regularity established in Chap. 4 ensure the fulfillment
of the Ω-relative metric regularity of f at the reference point x̄ . It is not
hard to observe that they are definitely necessary for the weakened metric
regularity of nonsmooth mappings. This is largely related to the fact that the
metric regularity concept from Definition 5.15 is not robust with respect to
perturbations of the initial point, in contrast to the case of Definition 1.47.

The next result establishes the desired reduction of constrained optimiza-
tion problems of the mentioned type to unconstrained problems via a certain
exact penalization, which is convenient for the subsequent applications to nec-
essary conditions of the lower subdifferential type in constrained minimization.

Theorem 5.16 (exact penalization under equality constraints). Let x̄
be a local optimal solution to the constrained problem (CP):

minimize ϕ0(x) subject to ϕi (x) ≤ 0, i = 1, . . . ,m, f (x) = 0, x ∈ Ω ,

where f : X → Y is a mapping between Banach spaces, and where ϕi are real-
valued functions. Assume that f is locally Lipschitzian around x̄ and metri-
cally regular at this point relative to Ω. Denoting

I (x̄) :=
{

i ∈ {1, . . . ,m}
∣∣ ϕi (x̄) = 0

}
,

we suppose also that the functions ϕi are locally Lipschitzian around x̄ for
i ∈ I (x̄)∪ {0} and upper semicontinuous at x̄ for i ∈ {1, . . . ,m} \ I (x̄). Then
x̄ is a local optimal solution to the unconstrained problem (UP) of minimizing
the objective:

max
{
ϕ0(x) − ϕ0(x̄), max

i∈I(x̄)
ϕi (x)

}
+ µ

(
‖ f (x)‖ + dist(x ;Ω)

)
for all µ > 0 sufficiently large.

Proof. It is easy to see that x̄ is a local solution to the problem of minimizing

ϕ(x) := max
{
ϕ0(x) − ϕ0(x̄), max

i∈I(x̄)
ϕi (x)

}
subject to f (x) = 0, x ∈ Ω

under the assumptions imposed on ϕi . Since f is continuous and metrically
regular at x̄ relative to Ω, there exist a number µ1 > 0 and a neighborhood
U of x̄ such that for any x ∈ U ∩Ω there is u ∈ Ω satisfying
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ϕ(u) ≥ ϕ(x̄), f (u) = 0, ‖x − u‖ ≤ µ1‖ f (x)‖ .

Let 	 be a common Lipschitz constant for ϕ and f on U , and let µ2 ≥ 	µ1.
Then for any x ∈ U ∩Ω and the above u ∈ Ω corresponding to x one has

ϕ(x) ≥ ϕ(x) − ϕ(u) + ϕ(x̄) ≥ −	‖x − u‖ + ϕ(x̄)

≥ −	µ1‖ f (x)‖ + ϕ(x̄) ≥ −µ2‖ f (x)‖ + ϕ(x̄) ,

i.e., x̄ is a local solution to the problem

minimize ϕ(x) + µ2‖ f (x)‖ subject to x ∈ Ω .

Observe now that x ∈ Ω is equivalent to dist(x ;Ω) = 0, that the latter
function is obviously metrically regular at x̄ relative to Ω, and that ϕ(x) +
µ2‖ f (x)‖ is Lipschitz. Using the above arguments, we find µ3 > 0 such that
x̄ is a local solution to the problem:

minimize ϕ(x) + µ2‖ f (x)‖ + µ3dist(x ;Ω) .

To complete the proof of the theorem, it remains to take µ := max{µ2, µ3} . �

Based on the above exact penalization result and employing subdifferen-
tial and SNC calculus results of Chap. 3 together with pointbased coderivative
criteria of metric regularity from Chap. 4, we derive efficient conditions for
optimal solutions to constrained problems of the (C P) type treated in Theo-
rem 5.16.

Theorem 5.17 (necessary conditions for problems with operator
constraints of equality type). Let x̄ be a local optimal solution to problem
(CP), where both spaces X and Y are Asplund, where the functions ϕi satisfy
the assumptions of Theorem 5.16, and where the set Ω is locally closed around
x̄. Assume also that the mapping f is strictly Lipschitzian at x̄ and such that
f −1
Ω is PSNC at ( f (x̄), x̄). Then there are numbers λi ≥ 0 for i ∈ I (x̄) ∪ {0}

and a linear functional y∗ ∈ Y ∗ not equal to zero simultaneously and satisfying

0 ∈ ∂
( ∑

i∈I(x̄)∪{0}
λiϕi

)
(x̄) + ∂〈y∗, f 〉(x̄) + N(x̄ ;Ω) .

Proof. Assume first that f is metrically regular at x̄ relative to Ω. Then
there is µ > 0 such that x̄ is a local optimal solution to the unconstrained
problem (UP) in Theorem 5.16. Hence

0 ∈ ∂
(

max
{
ϕ0(·) − ϕ0(x̄), max

i∈I(x̄)
ϕi (·)

}
+ µ

(
‖ f (·)‖ + dist(·;Ω)

))
(x̄) .

Applying now the subdifferential sum rule from Theorem 3.36 to the latter
function and then using the maximum rule from Theorem 3.46(ii), the chain
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rule from Corollary 3.43 for the composition ‖ f (x)‖ = (ψ◦ f )(x) with ψ(y) :=
‖y‖, and the subdifferential formula for the distance function dist(x ;Ω) from
Theorem 1.97, we arrive at the necessary optimality conditions of the theorem
with

(
λi

∣∣ i ∈ I (x̄) ∪ {0}
)
�= 0.

If f is not supposed to be metrically regular at x̄ relative to Ω, then
mapping fΩ(x) := f (x) + ∆(x ;Ω) is not metrically regular around x̄ in the
sense of Definition 1.47(ii). By Theorem 4.18(c) this happens when either
ker D̃∗

M fΩ(x̄) �= {0} or f −1
Ω is not PSNC at ( f (x̄), x̄). The latter is impossible

due to the assumption of this theorem. Thus there is y∗ �= 0 such that

0 ∈ D̃∗
M fΩ(x̄)(y∗) ⊂ D∗

N fΩ(x̄)(y∗) = D∗
N

(
f + ∆(·;Ω)

)
(x̄)(y∗) .

Using the coderivative sum rule from Proposition 3.12 whose qualification
assumption holds due to Lipschitz continuity of f and then employing the
scalarization formula of Theorem 3.28, since f is strictly Lipschitzian, we
arrive at the inclusion

0 ∈ D∗
N f (x̄)(y∗) + N(x̄ ;Ω) = ∂〈y∗, f 〉(x̄) + N(x̄ ;Ω) .

This ensures the conclusion of the theorem with y∗ �= 0. �

Note that if f is assumed to be merely Lipschitz continuous around x̄ (but
not strictly Lipschitzian at this point), then the conclusion of Theorem 5.17
holds in the form of

0 ∈ ∂
( ∑

i∈I(x̄)∪{0}
λiϕi

)
(x̄) + D∗

N f (x̄)(y∗) + N(x̄ ;Ω)

with (λi , y∗) �= 0. This directly follows from the proof of the theorem.

The next corollary describes a broad class of operator constraints involv-
ing generalized Fredholm mappings that satisfy the assumptions of the above
theorem. This result is especially important for applications to problems of
optimal control; see Chap. 6.

Corollary 5.18 (necessary conditions for optimization problems with
generalized Fredholm operator constraints). Let x̄ be a local optimal so-
lution to the above problem (CP) with operator constraints. Assume that f is
generalized Fredholm at x̄, that Ω is SNC at x̄, and that all the other data in
(CP) satisfy the assumptions of Theorem 5.17. Then the necessary optimality
conditions of the theorem hold.

Proof. As proved in Theorem 3.35, f −1
Ω is PSNC at ( f (x̄), x̄) under the

assumptions imposed on f and Ω. Since every compactly strictly Lipschitzian
mapping is automatically strictly Lipschitzian and the addition of a linear
bounded operator doesn’t violate this property, we conclude that f is strictly
Lipschitzian at x̄ and thus complete the proof of the corollary. �
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5.1.3 Necessary Conditions under Functional Constraints

In this subsection we study in more detail a special class of the constrained
problems (5.12) having finitely many functional constraints of equality and in-
equality types defined by real-valued functions on infinite-dimensional spaces.
Namely, given ϕi : X → IR for i = 0, 1, . . . ,m + r and Ω ⊂ X , we consider the
following problem of nondifferentiable programming:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0(x) subject to

ϕi (x) ≤ 0, i = 1, . . . ,m ,

ϕi (x) = 0, i = m + 1, . . . ,m + r ,

x ∈ Ω .

(5.23)

Note that the functions ϕi may be extended-real-valued while the assumption
about their real-valuedness doesn’t restrict the generality due to the additional
geometric constraints in (5.23). It is clear that (5.23) is a particular case of
(5.12) with F = (ϕ1, . . . , ϕm+r ): X → IRm+r and

Θ =
{

(α1, . . . , αm+r ) ∈ IRm+r
∣∣∣ αi ≤ 0 for i = 1, . . . ,m and

αi = 0 for i = m + 1, . . . ,m + r
}
.

(5.24)

Thus the results of the preceding subsection directly imply necessary optimal-
ity conditions for problem (5.23) by taking into account the form of the set
Θ in (5.24). However, the specific structure of (5.23) allows us to derive also
more subtle necessary conditions for local minima than those induced by the
general scheme (5.12).

Let us first obtain upper subdifferential conditions for local minima in
(5.23). The next theorem contains new results that are specific for problems
with inequality constraints together with necessary optimality conditions for
(5.23) that follow from the results of Subsect. 5.1.2. As always, we use the
common coderivative symbol D∗ for the basic coderivatives of mappings with
values in finite-dimensional spaces. For brevity we present only necessary op-
timality conditions without constraint qualifications; the normal counterparts
of these conditions either follow from the corresponding results of the preced-
ing subsection or can be derived in a similar way.

Theorem 5.19 (upper subdifferential conditions in nondifferentiable
programming). Let x̄ be a local optimal solution to problem (5.23), where the
set Ω is locally closed around x̄ and the functions ϕi are continuous around
this point for i = m + 1, . . . ,m + r . The following assertions hold:

(i) Assume that X admits a Lipschitzian C1 bump function (this is auto-
matic when X admits a Fréchet differentiable renorm, in particular, when X
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is reflexive), and that either Ω or f := (ϕm+1, . . . , ϕm+r ) is SNC at x̄. Then
for any Fréchet upper subgradients x∗

i ∈ ∂̂+ϕi (x̄), i = 0, . . . ,m, there are
(λ0, . . . , λm+r ) ∈ IRm+r+1, x∗ ∈ D∗ f (x̄)(λm+1, . . . , λm+r ), and x̃∗ ∈ N(x̄ ;Ω)
satisfying the relations

λi ≥ 0 for i = 0, . . . ,m, λiϕi (x̄) = 0 for i = 1, . . . ,m , (5.25)

0 =
m∑

i=0

λi x
∗
i + x∗ + x̃∗, (λ0, . . . , λm+r , x∗) �= 0 . (5.26)

If ϕi are Lipschitz continuous around x̄ for i = m + 1, . . . ,m + r , then in
addition to (5.25) one has

−
m∑

i=0

λi x
∗
i ∈ ∂

( m+r∑
i=m+1

λiϕi

)
(x̄) + N(x̄ ;Ω), (λ0, . . . , λm+r ) �= 0 , (5.27)

with no other assumptions on (ϕi ,Ω) besides the local closedness of Ω.
(ii) Assume that X is Asplund, that f := (ϕ1, . . . , ϕm+r ) is continu-

ous around x̄, and that either Ω or f is SNC at x̄. Then there exists
λ0 ≥ 0 such that for every Fréchet upper subgradient x∗

0 ∈ ∂̂+ϕ0(x̄) there
are (λ1, . . . , λm+r ) ∈ IRm+r , x∗ ∈ D∗ f (x̄)(λ1, . . . , λm+r ), and x̃∗ ∈ N(x̄ ;Ω)
satisfying (5.25) and

0 = λ0x∗
0 + x∗ + x̃∗, (λ0, . . . , λm+r , x∗) �= 0 . (5.28)

If ϕi are Lipschitz continuous around x̄ for i = 1, . . . ,m + r , then in addition
to (5.25) one has

−λ0x∗
0 ∈ ∂

( m+r∑
i=1

λiϕi

)
(x̄) + N(x̄ ;Ω), (λ0, . . . , λm+r ) �= 0 , (5.29)

with no other assumptions on (ϕi ,Ω) besides the local closedness of Ω.

Proof. To prove (i) under the general assumptions made, we take arbitrary
elements x∗

i ∈ ∂̂+ϕi (x̄) for i = 0, . . . ,m and apply the variational description
from Theorem 1.88(ii) with S = LC1 to the subgradients −x∗

i ∈ ∂̂(−ϕi )(x̄).
In this way we find functions si : X → IR for i = 0, . . . ,m satisfying

si (x̄) = ϕi (x̄) and si (x) ≥ ϕi (x) around x̄

such that each si (x) is continuously differentiable around x̄ with ∇si (x̄) = x∗
i .

It is easy to check that x̄ is a local solution to the following optimization
problem of type (5.23) but with the cost and inequality constraint functions
continuously differentiable around x̄ :
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize s0(x) subject to

si (x) ≤ 0, i = 1, . . . ,m ,

ϕi (x) = 0, i = m + 1, . . . ,m + r ,

x ∈ Ω .

(5.30)

Apply now the necessary conditions of Theorem 5.11(iii) to problem (5.30),
which corresponds to (5.12) with the single-valued mapping

F := (s1, . . . , sm, ϕm+1, . . . , ϕm+r )

and the set Θ defined in (5.24). Observe that

N
(
(ϕ1(x̄), . . . , ϕm+r (x̄));Θ

)
=
{

(λ1, . . . , λm+r ) ∈ IRm+r
∣∣∣ λi ≥ 0 ,

λiϕi (x̄) = 0 for i = 1, . . . ,m
}

with si (x̄) = ϕi (x̄), i = 1, . . . ,m, and that

F(x) =
(
s(x), 0) + (0, ϕm+1(x), . . . , ϕm+r (x)

)
(5.31)

for the above F , where s := (s1, . . . , sm): X → IRm is continuously differen-
tiable around x̄ . Thus the condition y∗ ∈ N(ȳ;Θ) in Theorem 5.11(iii) with
y∗ = (λ1, . . . , λm+r ) reduces to the sign and complementary slackness condi-
tions in (5.25) as i = 1, . . . ,m.

Since Y = IRm+r in Theorem 5.11(iii), the SNC and PSNC properties
of F in (5.31) are equivalent to the SNC property of f = (ϕm+1, . . . , ϕm+r )
by Theorem 1.70. It is easy also to see that one of the requirements (a)–
(d) in Theorem 5.11(iii) holds if and only if either Ω or f is SNC at x̄ .
The coderivative sum rule from Theorem 1.62(ii) applied to the sum in (5.31)
ensures that relation (5.22) with x∗

1 ∈ D∗F(x̄, ȳ)(y∗) and x∗
2 ∈ N(x̄ ;Ω) therein

is equivalent to the conditions

0 =
m∑

i=0

λi∇si (x̄) + x∗ + x̃∗, (λ0, . . . , λm+r , x̃∗) �= 0 ,

with x∗ ∈ D∗ f (x̄)(λm+1, . . . , λm+r ), x̃∗ ∈ N(x̄ ;Ω), and λ0 ≥ 0. Recalling that
∇si (x̄) = x∗

i for i = 0, . . . ,m, we arrive at (5.26). To derive (5.27) from (5.26)
when ϕi are locally Lipschitzian for i = m + 1, . . . ,m + r , it is sufficient to
observe that f is automatically SNC at x̄ in this case and then to apply the
scalarization formula to the coderivative D∗ f (x̄), which gives

D∗ f (x̄)(λm+1, . . . , λm+r ) = ∂
( m+r∑

i=m+1

λiϕi

)
(x̄) .



5.1 Necessary Conditions in Mathematical Programming 25

It remains to prove (ii). To proceed, we use directly Theorem 5.11(iii)
with F = f := (ϕ1, . . . , ϕm+r ) and Θ defined in (5.24). In this way one
has (5.25) and (5.28) under the general assumptions made in (ii) with some
x∗ ∈ D∗ f (x̄)(λ1, . . . , λm+r ). When all ϕ1, . . . , ϕm+r are Lipschitz continuous
around x̄ , the latter implies (5.29) by the coderivative scalarization. �

Note that the necessary conditions of Theorem 5.19 are given in terms
of either coderivatives of the “condensed” mappings (ϕm+1, . . . , ϕm+r ): X →
IRr and (ϕ1, . . . , ϕm+r ): X → IRm+r or via subgradients of the sums in (5.27)
and (5.29). Based on coderivative and subdifferential calculus rules, they may
be expressed in a separated form involving coderivatives and subgradients
of single functions ϕi by some weakening of the results. In particular, for the
coderivative result of Theorem 5.19 it can be done by applying the coderivative
sum rule of Theorem 3.10 to

f (x) =
(
ϕm+1(x), 0, . . . , 0

)
+ . . . +

(
0, . . . , 0, ϕm+r (x)

)
and then by using Theorems 1.80 and 2.40 to express coderivatives of ϕi via
basic and singular subgradients of both ϕi and −ϕi . For brevity we present the
results of this type just for Lipschitzian functions ϕi when the corresponding
conditions simply follow from the subdifferential calculus rule of Theorem 3.36.
In this case it is convenient to use the two-sided symmetric subdifferential

∂0ϕ(x̄) := ∂ϕ(x̄) ∪ ∂+ϕ(x̄)

for each function ϕi , i = m + 1, . . . ,m + r , describing the equality constraints
in the optimization problem (5.23) under consideration.

Corollary 5.20 (upper subdifferential conditions with symmetric
subdifferentials for equality constraints). Let x̄ be a local optimal so-
lution to problem (5.23), where the set Ω is locally closed around x̄ and the
functions ϕi are Lipschitz continuous around this point for i = m+1, . . . ,m+r .
Then the following assertions hold:

(i) Assume that X admits a Lipschitzian C1 bump function. Then for any
x∗

i ∈ ∂̂+ϕi (x̄), i = 0, . . . ,m, there are multipliers (λ0, . . . , λm+r ) �= 0 satisfying
(5.25) and such that

−
m∑

i=0

λi x
∗
i ∈

m+r∑
i=m+1

λi∂
0ϕi (x̄) + N(x̄ ;Ω) .

(ii) Assume that X is Asplund and that ϕi are Lipschitz continuous around
x̄ for i = 1, . . . ,m as well. Then there is λ0 ≥ 0 such that for every Fréchet
upper subgradient x∗

0 ∈ ∂̂+ϕ0(x̄) there are multipliers (λ1, . . . , λm+r ) ∈ IRm+r

satisfying (5.25) and

−λ0x∗
0 ∈

m∑
i=1

λi∂ϕi (x̄) +
m+r∑

i=m+1

λi∂
0ϕi (x̄) + N(x̄ ;Ω), (λ0, . . . , λm+r ) �= 0 .
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Proof. The inclusion in (i) follows from (5.27) due to the subdifferential sum
rule in Theorem 3.36 and the relationships

∂(λϕ)(x̄) = λ∂ϕ(x̄) for λ ≥ 0 and ∂(λϕ)(x̄) ⊂ λ∂0ϕ(x̄) for λ ∈ IR .

Similarly we derive the inclusion in (ii) from (5.29) in Theorem 5.19(ii). �

Another way (actually more precise than in Corollary 5.20) to describe
necessary optimality conditions in terms of single functions for problems with
equality constraints, is to use the even subdifferential set for ϕ at x̄ given by

∂ϕ(x̄) ∪ ∂(−ϕ)(x̄)

with only nonnegative multipliers. This is due to

∂(λϕ)(x̄) ⊂ |λ|
[
∂ϕ(x̄) ∪ ∂(−ϕ)(x̄)

]
for all λ ∈ IR . (5.32)

We are going to use this description in what follows. Note that the above
“even” set is the same for the functions ϕ and −ϕ; this is where the name
comes from, although the set ∂ϕ(x̄)∪ ∂(−ϕ)(x̄) doesn’t reduce to the classical
gradient when ϕ is smooth.

Next let us derive necessary optimality conditions of the lower subdiffer-
ential type for problem (5.23) with inequality, equality, and geometric con-
straints. By results of this type we mean, similarly to Subsect. 5.1.2, such
necessary optimality conditions that involve, instead of upper subgradients
of the cost and inequality constraint functions, their lower subgradients or
normal vectors to their epigraphs. We obtain several results in this direction
depending on the assumptions made on the initial data by using different
techniques. As in the case of upper subdifferential results, we focus on general
optimality conditions without constraint qualifications related to the normal
(qualified) form in the same way as in preceding subsection.

The first theorem of this type provides necessary optimality conditions in
problem (5.23) given via normals and subgradients for each constraint sep-
arately. It is based on the direct application of the extremal principle even
without using any calculus rule. We present necessary conditions in the ap-
proximate and exact forms depending on the corresponding version of the
extremal principle used in the proof. The latter conditions are also specified
for problems with Lipschitzian data.

Theorem 5.21 (necessary conditions via normals and subgradients
of separate constraints). Let x̄ be a local optimal solution to problem (5.23),
where the space X is Asplund and the set Ω is locally closed around x̄. The
following assertions hold:

(i) Assume that the functions ϕi are l.s.c. around x̄ for i = 0, . . . ,m and
continuous around this point for i = m + 1, . . . ,m + r . Then for any ε > 0
there are points
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(x0, α0) ∈ epi ϕ0 ∩
[
(x̄, ϕ0(x̄)) + ε IB

]
, x̂ ∈ Ω ∩

(
x̄ + ε IB

)
,

(xi , αi ) ∈ epi ϕi ∩
[
(x̄, 0) + ε IB

]
, i = 1, . . . ,m ,

(xi , αi ) ∈ gphϕi ∩
[
(x̄, 0) + ε IB

]
, i = m + 1, . . . ,m + r ,

and dual elements

(x∗
i ,−λi ) ∈ N̂((xi , αi ); epi ϕi ) + ε IB∗, i = 0, . . . ,m ,

(x∗
i ,−λi ) ∈ N̂((xi , αi ); gph ϕi ) + ε IB∗, i = m + 1, . . . ,m + r ,

x̂∗ ∈ N̂(x̂ ;Ω) + ε IB∗

satisfying the relations

x∗
0 + . . . + x∗

m+r + x̂∗ = 0 , (5.33)

‖(x∗
0 , λ0)‖ + . . . + ‖(x∗

m+r , λm+r )‖ + ‖x̂∗‖ = 1 . (5.34)

(ii) Assume that all but one of the sets epi ϕi (i = 0, . . . ,m), gphϕi (i =
m + 1, . . . ,m + r), and Ω are SNC at the points (x̄, ϕ0(x̄)), (x̄, 0), and x̄,
respectively. Then there are

(x∗
0 ,−λ0) ∈ N((x̄, ϕ0(x̄)); epi ϕ0), x̂∗ ∈ N(x̂ ;Ω) ,

(x∗
i ,−λi ) ∈ N((x̄, 0); epi ϕi ) for i = 1, . . . ,m ,

(x∗
i ,−λi ) ∈ N((x̄, 0); gph ϕi ) for i = m + 1, . . . ,m + r

satisfying relations (5.33) and (5.34) with λi ≥ 0 for i = 0, . . . ,m. If in
addition ϕi is assumed to be upper semicontinuous at x̄ for those i = 1, . . . ,m
where ϕi (x̄) < 0, then

λiϕi (x̄) = 0 for i = 1, . . . ,m .

(iii) Assume that the functions ϕi are Lipschitz continuous around x̄ for
all i = 0, . . . ,m + r . Then there are multipliers (λ0, . . . , λm+r ) �= 0 such that

0 ∈
m∑

i=0

λi∂ϕi (x̄) +
m+r∑

i=m+1

λi

[
∂ϕi (x̄) ∪ ∂(−ϕi )(x̄)

]
+ N(x̄ ;Ω) ,

λi ≥ 0 for all i = 0, . . . ,m + r, and λiϕi (x̄) = 0 for i = 1, . . . ,m .
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Proof. To prove (i), we assume without loss of generality that ϕ0(x̄) = 0.
Then it is easy to observe that (x̄, 0) is a local extremal point of the following
system of closed sets in the Asplund space X × IRm+r+1:

Ωi :=
{
(x, α0, . . . , αm+r )

∣∣ αi ≥ ϕi (x)
}
, i = 0, . . . ,m ,

Ωi :=
{
(x, α0, . . . , αm+r )

∣∣ αi = ϕi (x)
}
, i = m + 1, . . . ,m + r ,

Ωm+r+1 := Ω × {0} .

Now approximate optimality conditions in (i) follow directly from the approx-
imate version of the extremal principle in Theorem 2.20. Similarly applying
the exact version of the extremal principle under the SNC assumptions in
Theorem 2.22, we find elements (x∗, λi ) and x̂∗ satisfying (5.33), (5.34), and
the normal cone inclusions in (ii). It follows from Proposition 1.76 on basic
normals to epigraphs that λi ≥ 0 for i = 0, . . . ,m. To establish (ii), it remains
to show that the complementary slackness conditions hold under the addi-
tional assumption on ϕi . Indeed, if ϕi (x̄) < 0 for some i ∈ {1, . . . ,m}, then
ϕi (x) < 0 for all x around x̄ provided that ϕi is upper semicontinuous at x̄ .
The latter implies that (x̄, 0) is an interior point of the epigraph of ϕi . Thus
N((x̄, 0); epi ϕi ) = {0} and x∗

i = λi = 0 for this i , which completes the proof
of assertion (ii).

To prove (iii), we observe by Proposition 1.76 and Corollary 1.81 that

(x∗,−λ) ∈ N((x̄, ϕ(x̄)); epi ϕ) ⇐⇒ x∗ ∈ λ∂ϕ(x̄), λ ≥ 0

if ϕ is Lipschitz continuous around x̄ . On the other hand,

(x∗,−λ) ∈ N((x̄, ϕ(x̄)); gphϕ) ⇐⇒ x∗ ∈ D∗ϕ(x̄)(λ) = ∂〈λ, ϕ〉(x̄)

by the coderivative scalarization for locally Lipschitzian functions. Invoking
finally (5.32) and taking (5.33) and (5.34) into account, we complete the proof
of (iii) and the whole theorem. �

Remark 5.22 (comparison between different forms of necessary op-
timality conditions). Similarly to Corollary 5.20 we can write down neces-
sary optimality conditions in more conventional form replacing, for the case
of equality constraints, the even subdifferential set ∂ϕi (x̄) ∪ ∂(−ϕi )(x̄) with a
nonnegative multiplier λi by the two-sided symmetric subdifferential ∂0ϕi (x̄)
with an arbitrary multiplier λi . It follows from the definitions that the sym-
metric form of necessary conditions is more precise than the latter one. Let
us illustrate this by thefollowing example in IR2:

minimize x1 subject to ϕ(x1, x2) := | |x1| + x2| + x1 = 0 .

Based on the computation of subgradients for the function ϕ in Example 2.49,
we conclude that x̄ = (0, 0) is not an optimal solution to the above problem
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due to Theorem 5.21(iii), while the usage of λ∂0ϕ(0) with λ ∈ IR doesn’t allow
us to make such a conclusion. Of course, such a conclusion cannot be made
by using Clarke’s generalized gradient ∂Cϕ(x̄) and Warga’s minimal derivate
container Λ0ϕ(x̄) for ϕ that are two-sided subdifferential constructions always
containing ∂0ϕ(x̄), which is illustrated by the computation in Example 2.49.

Since both ∂Cϕ(x̄) and Λ0ϕ(x̄) may be essentially bigger (never smaller)
than ∂ϕ(x̄), the usage of the basic subdifferential in the results above leads
us to more precise necessary optimality conditions for local minima in prob-
lems with nonsmooth cost functions and inequality constraints. The simplest
illustrative example is given by the unconditional one-dimensional problem

minimize ϕ(x) := −|x |, x ∈ IR ,

where x̄ = 0 is not a minimum (but maximum) point, while 0 ∈ ∂Cϕ(0) =
[−1, 1]. On the other hand, 0 /∈ ∂ϕ(0) = {−1, 1}.

For the two-dimensional problem

minimize x1 subject to ϕ(x1, x2) := |x1| − |x2| ≤ 0

we have ∂ϕ(0, 0) = {(v1, v2)| − 1 ≤ v1 ≤ 1, v2 = 1 or v2 = −1}, and hence
the point x̄ = (0, 0) is ruled out from being optimal by Theorem 5.21(iii), while
the use of ∂Cϕ(0, 0) = {(v1, v2)| − 1 ≤ v1 ≤ 1, −1 ≤ v2 ≤ 1} doesn’t allow us
to do it. Another example of a two-dimensional problem with a nonsmooth
inequality constraint is given by

minimize x2 subject to ϕ(x1, x2) := | |x1| + x2| + x2 ≤ 0 ,

where ∂ϕ(0, 0) = {(v1, v2)| |v1|+ 1 ≤ v2 ≤ 2} ∪ {(v1, v2)| 0 ≤ v2 ≤ −|v1|+ 1};
see Example 2.49 for details. Thus the result of Theorem 5.21(iii) allows us
to rule out the non-optimal point x̄ = (0, 0), while it cannot be done with the
help of either ∂Cϕ(0, 0) or Λ0ϕ(0, 0).

The next optimization result we are going to obtain in the form of the
Lagrange principle, which says that necessary optimality conditions in con-
strained problems can be given as necessary conditions for unconstrained local
minima of some Lagrange functions (Lagrangian) built upon the original con-
straints with suitable multipliers. For the minimization problem (5.23) we
consider the standard Lagrangian

L(x, λ0, . . . , λm+r ) := λ0ϕ0(x) + . . . + λm+rϕm+r (x) (5.35)

involving the cost function and the functional (but not geometric) constraints,
and also the essential Lagrangian

LΩ(x ; λ0, . . . , λm+r ) := λ0ϕ0(x) + . . . + λm+rϕm+r (x) + δ(x ;Ω) (5.36)

involving the geometric constraints as well.
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To derive general results of the Lagrange principle type, let us first estab-
lish a calculus lemma that is certainly of independent interest and will be also
used in the sequel. Given a single-valued mapping f : X → Z between Banach
spaces and subsets Ω ⊂ X and Θ ⊂ Z , we consider the set

E( f,Θ,Ω) :=
{
(x, z) ∈ X × Z

∣∣ f (x) − z ∈ Θ, x ∈ Ω
}
, (5.37)

which can be viewed as a generalized epigraph of the function f on Ω with
respect to Θ. If, in particular, f = (ϕ0, . . . , ϕm): X → IRm+1 and if Θ = IRm+1

−
is the nonnegative orthant of Z = IRm+1, then the set (5.37) is the epigraph
of the vector function f with respect to the standard order on IRm+1. For
Θ = {0} the set (5.37) is just the graph of f . If, more generally, Θ ⊂ Z
is a convex cone inducing an order on Z , then (5.37) is the epigraph of the
restriction fΩ := f |Ω of the mapping f : X → Z on the set Ω with respect to
this order on Z . Note that we can always write

fΩ(x) = f (x) + ∆(x ;Ω) for all x ∈ X

via the indicator mapping ∆(x ;Ω) := 0 ∈ Z if x ∈ Ω and ∆(x) := ∅ otherwise.

In the next lemma we use the property of strong coderivative normality
given in Definition 4.8; some sufficient conditions for this property are listed
in Proposition 4.9.

Lemma 5.23 (basic normals to generalized epigraphs). Let f : X → Z
be a mapping between Banach spaces, and let Ω ⊂ X and Θ ⊂ Z be such sets
that x̄ ∈ Ω and f (x̄) − z̄ ∈ Θ. The following assertions hold:

(i) Assume that f is locally Lipschitzian around x̄ relative to Ω. Then

D∗
M fΩ(x̄)(z∗) = ∂〈z∗, fΩ〉(x̄) for all z∗ ∈ Z∗ .

(ii) One always has

(x∗, z∗) ∈ N
(
(x̄, z̄); E( f,Ω,Θ)

)
=⇒ −z∗ ∈ N( f (x̄) − z̄;Θ) .

Assume further that both X and Z are Asplund, that f is continuous around x̄
relative to Ω, and that both Ω and Θ are locally closed around x̄ and f (x̄)− z̄,
respectively. Then

N
(
(x̄, z̄); E( f,Ω,Θ)

)
⊂
{

(x∗, z∗) ∈ X∗ × Z∗
∣∣∣ x∗ ∈ D∗

N fΩ(x̄)(z∗) ,

−z∗ ∈ N( f (x̄) − z̄;Θ)
}
.

(5.38)

(iii) Assume in addition to (ii) that f is locally Lipschitzian around x̄
relative to Ω and that fΩ is strongly coderivatively normal at x̄. Then
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N
(
(x̄, z̄); E( f,Ω,Θ)

)
⊂
{

(x∗, z∗) ∈ X∗ × Z∗
∣∣∣ x∗ ∈ ∂〈z∗, fΩ〉(x̄) ,

−z∗ ∈ N( f (x̄) − z̄;Θ)
}
.

(5.39)

(iv) Assume that f is locally Lipschitzian around x̄ relative to Ω. Then
the opposite inclusion holds in (5.39) in the case of arbitrary Banach spaces
X and Z . If in addition fΩ is strongly coderivatively normal at x̄, then the
opposite inclusion holds in (5.38) as well.

Proof. Assertion (i) is an extension of the mixed scalarization formula in
Theorem 1.90 and can be proved in the exactly same way. In fact, one can
observe that the linear structure of Ω = X is never used in the proof of
Theorem 1.90 in contrast to the proof of the normal scalarization formula
in Lemma 3.27 and Theorem 3.28. Note that assertion (i) provides a bridge
between assertions (ii) and (iii) of this theorem.

The first inclusion in (ii) follows directly from the definition of basic nor-
mals via the limit of ε-normals due to the structure of the set E( f,Ω,Θ) in
(5.37). To prove the second inclusion in (ii), we observe that the latter set is
represented as the inverse image

E( f,Ω,Θ) = g−1(Θ) with g(x, z) := fΩ(x) − z;

so we can apply Theorem 3.8 on basic normals to inverse images in Asplund
spaces with F = g. It is easy to see that g(·) ∩ Θ is inner semicompact at x̄
with g(x̄, z̄)∩Θ = f (x̄)− z̄ under the continuity and closedness assumptions
made. Let us show that for the mapping g of the above special structure one
automatically has

ker D̃∗
M g(x̄, z̄) = {0} and g−1 is PSNC at ( f (x̄) − z̄, x̄, z̄) .

First check the kernel condition. Picking any z∗ ∈ Z∗ with 0 ∈ D̃∗
M g(x̄, z̄)(z∗),

we find (xk, zk) → (x̄, z̄) and (u∗
k , v

∗
k ) ∈ D̂∗g(xk, zk)(z∗k ) such that

xk ∈ Ω, ‖(u∗
k , v

∗
k )‖ → 0, and z∗k

w∗
→ z∗ as k → ∞ .

Since g(x, z) = fΩ(x) − z, one has

D̂∗g(xk, zk)(z∗k ) =
(

D̂∗ fΩ(xk)(z∗k ), 0
)

+ (0,−z∗k )

by Theorem 1.62(i). Hence

u∗
k ∈ D̂∗ fΩ(xk)(z∗k ) and v∗k = −z∗k , k ∈ IN ,

which gives ‖z∗k ‖ → 0 = z∗, i.e., ker D̃∗
M g(x̄, z̄) = {0}. To check the PSNC

property of g−1 at ( f (x̄) − z̄, x̄, z̄), we proceed in a similar way taking

(u∗
k , v

∗
k , z∗k ) ∈ N̂((xk, zk); gph g) with ‖(u∗

k , v
∗
k )‖ → 0 and z∗k

w∗
→ 0 .
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Then, by the above arguments, one has ‖z∗k ‖ → 0, which justifies the PSNC
property of g−1 at ( f (x̄) − z̄, x̄, z̄). Thus all the assumptions of Theorem 3.8
are verified, and we arrive at (5.38) due to

(u∗, v∗) ∈ D∗
N g(x̄, z̄)(z∗) ⇐⇒ u∗ ∈ D∗

N fΩ(x̄)(z∗), v∗ = −z∗ ,

as follows from the sum rule of Theorem 1.62(ii) applied to g(x, z) = fΩ(x)−z.
Let us prove inclusion (5.39) in (iii) under the additional assumptions

made therein. Taking into account assertion (i) of the theorem, we have

D∗
N fΩ(x̄)(z∗) = D∗

M fΩ(x̄)(z∗) = ∂〈z∗, fΩ〉(x̄), z∗ ∈ Z∗ , (5.40)

which shows that (5.39) follows from (5.38) in this case.
It remains to prove (iv). First let us justify the opposite inclusion in (5.39).

Picking any z∗ ∈ −N( f (x̄) − z̄;Θ) and x∗ ∈ ∂〈z∗, fΩ)(x̄), we are going to
show that (x∗, z∗) ∈ N

(
(x̄, z̄); E( f,Ω,Θ)

)
. By definitions of basic normals

and subgradients one has sequences ε1k ↓ 0, ε2k ↓ 0, xk
Ω→ x̄ , zk → z̄, x∗

k
w∗
→ x∗,

and z∗k
w∗
→ z∗ as k → ∞ such that

x∗
k ∈ ∂̂ε1k 〈z∗k , fΩ〉(xk) and − z∗k ∈ N̂ε2k ( f (xk) − zk ;Θ) for all k ∈ IN .

It is easy to deduce from the definitions of ε-normals and ε-subgradients with
the use of the local Lipschitz continuity of fΩ around xk for k sufficiently large
that the above inclusions yield

(x∗
k , z∗k ) ∈ N̂εk

(
(xk, zk); E( f,Ω,Θ)

)
for large k ∈ IN ,

where εk := ε1k + (	 + 1)ε2k ↓ 0 with the Lipschitz constant 	 of fΩ around
x̄ . The latter implies the opposite inclusion in (5.39) as k → ∞. The opposite
inclusion in (5.38) follows from the one in (5.39) due to the normal coderiva-
tive representation (5.40) under the coderivative normality assumption. �

Now we come back to the main optimization problem (5.23) under con-
sideration in this subsection and define the set

E(ϕ0, . . . , ϕm+r ,Ω) :=
{

(x, α0, . . . , αm+r ) ∈ X × IRm+r+1
∣∣∣ x ∈ Ω, ϕi (x) ≤ αi ,

i = 0, . . . ,m; ϕi (x) = αi , i = m + 1, . . . ,m + r
}
,

which corresponds to (5.37) with f = (ϕ0, . . . , ϕm+r ): X → IRm+r+1 and Θ =
IRm+1

− × {0} ⊂ IRm+r+1. The next result, based on the extremal principle,
provides necessary optimality conditions for (5.23) via basic normals to the
generalized epigraph E(ϕ0, . . . , ϕm+r ,Ω) in a very broad framework and can
be equivalently expressed in an extended form of the Lagrange principle under
Lipschitzian assumptions on ϕi , i = 0, . . . ,m + r . For convenience we assume
in what follows that ϕ0(x̄) = 0 at the optimal solution under consideration,
which doesn’t restrict the generality.
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Theorem 5.24 (extended Lagrange principle). Let x̄ be a local optimal
solution to problem (5.23), where the space X is Asplund. Assume that the
set Ω is locally closed around x̄ and that the functions ϕi are l.s.c. around x̄
relative to Ω for i = 0, . . . ,m and continuous around this point relative to Ω
for i = m +1, . . . ,m +r . Then there are Lagrange multipliers (λ0, . . . , λm+r ) ∈
IRm+r+1, not equal to zero simultaneously, such that

(0,−λ0, . . . ,−λm+r ) ∈ N
(
(x̄, 0); E(ϕ0, . . . , ϕm+r ,Ω)

)
, (5.41)

which automatically implies the sign and complementary slackness conditions
in (5.25). If in addition the functions ϕi , i = m +1, . . . ,m + r , are continuous
around x̄ relative to Ω, then (5.41) implies also that

0 ∈ D∗
N

(
(ϕ0, . . . , ϕm+r ) + ∆(·;Ω)

)
(x̄)(λ0, . . . , λm+r ) . (5.42)

Moreover, if all the functions ϕi , i = 0, . . . ,m + r , are Lipschitz continu-
ous around x̄ relative to the set Ω, then the coderivative inclusion (5.42) is
equivalent to the subdifferential one

0 ∈ ∂LΩ(·, λ0, . . . , λm+r )(x̄) (5.43)

in terms of the essential Lagrangian (5.36). In this case the necessary condition
(5.41) is equivalent to the simultaneous fulfillment of (5.25) and (5.43).

Proof. Since x̄ is a local optimal solution to (5.23), there is a neighborhood
U of x̄ such that x̄ provides the minimum to ϕ0 over x ∈ U subject to the
constraints in (5.23). Consider the sets

Ω1 := E(ϕ0, . . . , ϕm+r ,Ω) and Ω2 := cl U × {0}

in the Asplund space X × IRm+r+1 and observe that (x̄, 0) is an extremal
point of the system {Ω1,Ω2}. Indeed, one obviously has (x̄, 0) ∈ Ω1∩Ω2 and(
Ω1−(0, νk, 0, . . . , 0)

)
∩Ω2 = ∅, k ∈ IN , for any sequence of negative numbers

νk ↑ 0 by the local optimality of x̄ in (5.23). Taking into account that both sets
Ω1 and Ω2 are locally closed around (x̄, 0) and that Ω2 is SNC at this point
due to x̄ ∈ int U and 0 ∈ IRm+r+1, we apply the exact version of the extremal
principle from Theorem 2.22 and arrive at (5.41) with (λ0, . . . , λm+r ) �= 0. By
Lemma 5.23(ii) with Θ = IRm+1

− × {0} one immediately has from (5.41) the
complementary slackness and sign conditions (5.25) and, under the continuity
assumption on ϕi for i = m + 1, . . . ,m + r , the coderivative inclusion (5.42).
If ϕi are locally Lipschitzian around x̄ for all i = 0, . . . ,m + r , the equivalence
statements in the theorem follow from assertions (iii) and (iv) of Lemma 5.23,
since the coderivative normality assumption holds for any mapping with a
finite-dimensional image space. �

Using further calculus rules for basic normals, coderivatives, and subgra-
dients, we can derive various consequences of inclusions (5.41)–(5.43). Let us
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present some results expressed in terms of subgradients of the standard La-
grangian (5.35) involving the cost function and functional (but not geometric)
constraints in the optimization problem (5.23).

Corollary 5.25 (Lagrangian conditions and abstract maximum prin-
ciple). Let x̄ be a local optimal solution to (5.23). Assume that the space X
is Asplund, that the functions ϕi are Lipschitz continuous around x̄ for all
i = 0, . . . ,m + r and that the set Ω is locally closed around this point. Then
there are Lagrange multipliers λ0, . . . , λm+r , not all zero, such that the condi-
tions (5.25) and

0 ∈ ∂L(·, λ0, . . . , λm+r )(x̄) + N(x̄ ;Ω) (5.44)

hold. If in addition the set Ω is convex, then

〈x∗, x̄〉 = max
[
〈x∗, x〉

∣∣ x ∈ Ω
]

(5.45)

for some x∗ ∈ −∂L(·, λ0, . . . , λm+r )(x̄).

Proof. Inclusion (5.44) follows from (5.43) due to the subdifferential sum rule
from Theorem 2.33(c). It implies the maximum condition (5.45) in the case of
convex geometric constraints by the representation of basic normals to convex
sets from Proposition 1.5. �

Note that the second assertion in Corollary 5.25 gives an abstract max-
imum principle, which is directly induced by the convex structure via the
normal cone representation for convex geometric constraints. Note also that
the results obtained imply those in terms of separate constraints similarly to
Corollary 5.20 and Theorem 5.21(iii).

Passing to the next topic, we observe that lower subdifferential conditions
for the minimization problem (5.23) obtained in Theorem 5.21(iii) employ
the basic subgradient sets ∂ϕi (x̄) for i = 0, . . . ,m and ∂ϕi (x̄) ∪ ∂(−ϕi )(x̄) for
i = m + 1, . . . ,m + r , which are nonsmooth extensions of the classical strict
derivative. While the results of this type seem to be unimprovable for gen-
eral equality constraints in infinite dimensions, we may derive more subtle in
certain situations (generally independent) results employing extensions of the
usual—not strict—Fréchet derivative for nonsmooth cost and inequality con-
straint functions. Some results in this direction are given in Theorem 5.19 via
Fréchet upper subdifferentials. Now we derive lower subdifferential conditions
in a mixed form that involve subgradient extensions of the strict derivative
for equality constraint functions and those of the usual Fréchet derivative for
functions describing the objective and inequality constraints.

To proceed, recall some notions of nonsmooth analysis related to convex
directional approximations of functions and sets. Given ϕ: X → IR finite at x̄ ,
the extended-real-valued function
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d+ϕ(x̄ ; h) := lim sup
z→h
t↓0

ϕ(x̄ + t z) − ϕ(x̄)
t

(5.46)

is the upper Dini-Hadamard directional derivative of ϕ at x̄ in the direction
h. One can put z = h in (5.46) if ϕ is Lipschitzian around x̄ . A function
p(x̄ ; ·): X → IR is an upper convex approximation of ϕ at x̄ if it is convex,
l.s.c., and positively homogeneous with p(x̄ ; h) ≥ d+ϕ(x̄ ; h) for all h ∈ X .
Then the subdifferential of p(x̄ ; ·) at h = 0 in the sense of convex analysis is
called the p-subdifferential of ϕ at x̄ and is denoted by

∂pϕ(x̄) := ∂p(x̄ ; 0) =
{

x∗ ∈ X∗| 〈x∗, h〉 ≤ p(x̄ ; h) for all h ∈ X
}
. (5.47)

Observe that the subdifferential (5.47) depends on an upper convex ap-
proximation p(x̄ ; ·), i.e., is not uniquely defined. For example, the function
ϕ(x) = −|x | on IR admits a family of upper convex approximations at x̄ = 0
given by p(0; h) = γ h for any γ ∈ [−1, 1]. It follows from Subsect. 2.5.2A that
Clarke’s generalized directional derivative ϕ◦(x̄ ; h) automatically provides an
upper convex approximation for any locally Lipschitzian function ϕ. However,
this approximation may not be the best one, as we see from the above example
of ϕ(x) = −|x |. Note also that p(x̄ ; h) = 〈∇ϕ(x̄), h〉 is an upper convex approx-
imation of ϕ whenever ϕ is Gâteaux differentiable at x̄ , i.e., p-subdifferentials
are nonsmooth extensions of the usual (not strict) derivative of a function
at a reference point. There are various efficient realizations of the idea to
build a convex-valued subdifferential in the scheme (5.47) corresponding to
specific classes of functions admitting upper convex approximations, which
are along the initial line of developing nonsmooth analysis; see the comments
and references in Subsect. 1.4.1.

Recall also the construction of the contingent cone to a set Ω ⊂ X at
x̄ ∈ Ω defined in Subsect. 1.1.2 by

T (x̄ ;Ω) := Lim sup
t↓0

Ω − x̄
t

. (5.48)

This is a nonempty and closed cone that reduces to the classical tangent cone
for convex sets Ω, while (5.48) is nonconvex in general. Note that

N̂ε(x̄ ;Ω) ⊂
{

x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ε‖x‖ for all v ∈ T (x̄ ;Ω)
}

(5.49)

whenever ε ≥ 0. Moreover, (5.49) holds as equality if X is finite-dimensional.
Thus in the latter case the Fréchet normal cone N̂(x̄ ;Ω) is polar/dual to the
contingent cone (5.48) due to the equality relationship in (5.49).

Theorem 5.26 (mixed subdifferential conditions for local minima).
Let x̄ be a local optimal solution to problem (5.23), where the space X is As-
plund, where the set Ω is locally closed around x̄, and where all the functions
ϕi are locally Lipschitzian around this point. Assume also that there exists a
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convex closed subcone M of T (x̄ ;Ω) with M∗ ⊂ N(x̄ ;Ω) and that the func-
tions ϕi , i ∈ I (x̄) ∪ {0}, admit upper convex approximations at x̄, which are
continuous at some point of M. Denote ϑ(x) := ‖(ϕm+1(x), . . . , ϕm+r (x))‖ and
suppose that this function admits an upper convex approximation at x̄ whose
subdifferential (5.47) is contained in ∂ϑ(x̄). Then there are Lagrange multi-
pliers λi ≥ 0 for i ∈ I (x̄) ∪ {0} and (λm+1, . . . , λm+r ) ∈ IRr , not equal to zero
simultaneously, such that

0 ∈
∑

i∈I(x̄)∪{0}
λi∂pϕi (x̄) + ∂

( m+r∑
i=m+1

λiϕi

)
(x̄) + N(x̄ ;Ω) , (5.50)

where ∂pϕi (x̄) stand for the subdifferentials (5.47) corresponding to the upper
convex approximations pi (x̄ ; ·) of ϕi for i ∈ I (x̄) ∪ {0}.

Proof. First we consider the case when f := (ϕm+1, . . . , ϕm+r ): X → IRr is
metrically regular at x̄ relative to Ω. Then Theorem 5.16 ensures that, for
some µ > 0, x̄ is a local optimal solution to the unconstrained minimization
problem (U P) defined therein. Invoking the form of the cost function in (U P)
and employing the definition of upper convex approximations as well as the
convexity assumption on M ⊂ T (x̄ ;Ω), one can derive by standard separation
arguments of convex programming with the usage of standard subdifferential
formulas of convex analysis that there are numbers λi ≥ 0, i ∈ I (x̄), sum of
which is 1, such that

0 ∈
∑

i∈I(x̄)

λi∂pϕi (x̄) + µ∂pϑ(x̄) + M∗ .

Taking into account that M∗ ⊂ N(x̄ ;Ω) and ∂pϑ(x̄) ⊂ ∂ϑ(x̄) and then ap-
plying the chain rule from Corollary 3.43 to the latter subdifferential of the
composition ϑ = (ψ ◦ f ) with ψ(y) := ‖y‖, we arrive at (5.50) under the
metric regularity assumption.

If f is not metrically regular at x̄ relative to Ω, then fΩ = f +∆(·;Ω) is
not metrically regular around x̄ in the sense of Definition 1.47(ii). By Theo-
rem 4.18(c) this happens when either ker D̃∗

M fΩ(x̄) �= {0} or f −1
Ω is not PSNC

at ( f (x̄), x̄). Since the image space for fΩ is finite-dimensional, the latter
PSNC condition automatically holds, and hence the absence of the metric
regularity means that there is nonzero y∗ ∈ IRr such that 0 ∈ D̃∗

M fΩ(x̄)(y∗).
The rest of the proof follows the one in Theorem 5.17. �

Note that Theorem 5.26 and the previous results in terms of basic sub-
gradients give generally independent conditions even in the case of problems
with only inequality constraints. In particular, one can check that the function
ϕ(x1, x2) = | |x1| + x2| + x2 from the last example considered in Remark 5.22
doesn’t admit upper convex approximations at x̄ = 0 whose subdifferentials
are proper subsets of the basic subdifferential ∂ϕ(0). On the other hand, The-
orem 5.26 allows us to establish non-optimality of the point x̄ = 0 in the
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one-dimensional optimization problem:⎧⎨
⎩

minimize ϕ0(x) := x subject to

ϕ1(x) := x2 sin(1/x) ≤ 0 as x �= 0 with ϕ1(0) = 0 ,

while the above necessary conditions in terms of basic subgradients don’t
work, since ∂ϕ1(0) = [−1, 1].

The final result of this subsection concerns lower subdifferential necessary
optimality conditions for problems (5.23) with non-Lipschitzian data. The
previous results obtained for such problems are expressed in terms of normals
to graphical and epigraphical sets and cannot be reduced to subgradients of
the corresponding functions in the absence of Lipschitzian assumptions. Now
we are going to derive new necessary conditions for non-Lipschitzian problems
in a fuzzy subdifferential form that involve Fréchet subgradients of the cost
and constraint functions in (5.23). To proceed, we need the following lemma,
which is a weak non-Lipschitzian counterpart of the (strong) fuzzy sum rule
given in Theorem 2.33(b) under the semi-Lipschitzian assumption. Note that
this result involves a weak∗ neighborhood of the origin in X∗ instead of a
small dual ball as in Theorem 2.33(b). This lemma is derived from the density
result of Corollary 2.29 by using properties of infimal convolutions; see Fabian
[414, 415] for a complete proof and more discussions.

Lemma 5.27 (weak fuzzy sum rule). Let X be an Asplund space, and let
ϕ1, . . . , ϕn be extended-real-valued l.s.c. functions on X . Then for any x̄ ∈ X ,
ε > 0, x∗ ∈ ∂̂(ϕ1 + . . .+ ϕn)(x̄), and any weak∗ neighborhood V ∗ of the origin
in X∗ there are xi ∈ x̄ + ε IB and x∗

i ∈ ∂̂ϕi (xi ) such that |ϕi (xi ) − ϕi (x̄)| ≤ ε
for all i = 1, . . . , n and

x∗ ∈
n∑

i=1

x∗
i + V ∗ .

Now we are ready to establish a weak approximate version of the La-
grange multiplier rule for local optimal solutions to problem (5.23) with non-
Lipschitzian functional constraints.

Theorem 5.28 (weak subdifferential optimality conditions for non-
Lipschitzian problems). Let x̄ be a local optimal solution to problem (5.23)
in an Asplund space X . Assume that the functions ϕi are l.s.c. around x̄ for
i = 0, . . . ,m and continuous around this point for i = m + 1, . . . ,m + r , and
that the set Ω is locally closed around x̄. Then for any ε > 0 and any weak∗

neighborhood V ∗ of the origin in X∗ there are
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xi ∈ x̄ + ε IB with |ϕi (xi ) − ϕi (x̄)| ≤ ε for i = 0, . . . ,m + r ,

x∗
i ∈ ∂̂ϕi (xi ) for i = 0, . . . ,m ,

x∗
i ∈ ∂̂ϕi (xi ) ∪ ∂̂(−ϕi )(xi ) for i = m + 1, . . . ,m + r ,

x̂∗ ∈ N̂(x̂ ;Ω) with x̂ ∈ Ω ∩ (x̄ + ε IB), and

λi ≥ 0 for i = 0, . . . ,m + r with
m+r∑
i=0

λi = 1

satisfying the relation

0 ∈
m+r∑
i=0

λi x
∗
i + x̂∗ + V ∗ .

Proof. Consider the constraint sets

Ωi =

⎧⎨
⎩

{x ∈ X | ϕi (x) ≤ 0} for i = 1, . . . ,m ,

{x ∈ X | ϕi (x) = 0} for i = m + 1, . . . ,m + r

and observe that the original constraint problem (5.23) is obviously equivalent
to the unconstrained problem with “infinite penalties”:

minimize ϕ0(x) + δ(x ;Ω1 ∩ . . . ∩Ωm+r ∩Ω), x ∈ X .

By the generalized Fermat principle and the cost function structure in the
latter problem we have

0 ∈ ∂̂
(
ϕ0 +

m+r∑
i=1

δ(·;Ωi ) + δ(·;Ω)
)
(x̄) .

Picking any ε > 0 and a weak∗ neighborhood V ∗ of the origin in X∗ and then
applying Lemma 5.27 to the above sum, we find

x∗
0 ∈ ∂̂ϕ0(x0) with ‖(x0, ϕ0(x0)) − (x̄, ϕ0(x̄))‖ ≤ ε ,

x̃∗ ∈ N̂(x̂ ;Ω) with x̂ ∈ Ω ∩ (x̄ + ε IB) ,

x̃∗
i ∈ N̂(x̃i ;Ωi ) with x̃i ∈ Ωi ∩ (x̄ + (ε/2)IB) for i = 1, . . . ,m + r

satisfying the relation

0 ∈ x∗
0 +

m+r∑
i=1

x̃∗
i + x̃∗ +

( 1
m + r + 1

)
V ∗ .
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Taking into account the structures of the set Ωi , we now consider the
following two cases.

Case (a). There are either i ∈ {1, . . . ,m} and λ �= 0 satisfying (0, λ) ∈
N((x̃i , 0); epi ϕi ) or i ∈ {m + 1, . . . ,m + r} satisfying 0 ∈ ∂ϕi (x̃i )∪ ∂(−ϕi )(x̃i ).
Let this happen for some i ∈ {1, . . . ,m}. Then by the basic cone representation
from Theorem 2.35 in Asplund spaces we find (xi , αi ) ∈ epi ϕi and (x∗

i ,−λi ) ∈
N̂((xi , αi ); epi ϕi ) such that

‖xi − x̃i‖ ≤ ε/2, λi > 0, and x∗
i ∈ λi V

∗ .

It is easy to see that N̂((xi , αi ); epi ϕi ) ⊂ N̂((xi , ϕi (xi )); epi ϕi ) due to αi ≥
ϕi (xi ), and so (x∗

i ,−λi ) ∈ N((xi , ϕi (xi )); epi ϕi ). Thus we have in this situation
the inclusions

x∗
i /λi ∈ ∂̂ϕi (xi ) and x∗

i /λi ∈ V ∗ ,

which ensure that all the required relations in the theorem hold with λi = 1
for the reference index i (the other λi are zero) and x̂∗ = 0.

Consider further case (a) with some i ∈ {m +1, . . . ,m +r}. Using the basic
subdifferential representation from Theorem 2.34(b) for continuous functions
on Asplund spaces, we find (xi , x∗

i ) ∈ X × X∗ such that

xi ∈ x̃i + (ε/2)IB and x∗
i ∈

[
∂̂ϕi (xi ) ∪ ∂̂(−ϕi )(xi )

]
∩ V ∗ .

This also implies the conclusions of the theorem with λi = 1 for the reference
index i , x̂∗ = 0, and all other λi equal to zero.

Case (b). Otherwise to the assumptions in case (a). First we consider an
index i ∈ {m + 1, . . . ,m + r} corresponding to the equality constraints, i.e.,
when Ωi = {x ∈ X | ϕi (x) = 0}. Observe that Ωi × {0} = Λ1 ∩Λ2 for

Λ1 := gphϕi and Λ2 :=
{
(x, α) ∈ X × IR

∣∣ α = 0
}
,

where the second set is SNC at (x̃i , 0) and the qualification condition of Corol-
lary 3.5 reduces to 0 /∈ ∂ϕi (x̃i ) ∪ ∂(−ϕi )(x̃i ). Applying now the intersection
formula from this corollary and then using Theorems 1.80 and 2.40(ii) that
give the subdifferential representations of coderivatives for continuous func-
tions, we arrive at the inclusion

N(x̃i ;Ωi ) ⊂ ∂∞ϕi (x̃i ) ∪ ∂∞(−ϕi )(x̃i ) ∪ IR+∂ϕi (x̃i ) ∪ IR+∂(−ϕi )(x̃i ) ,

where IR+S := {νs| ν ≥ 0, s ∈ S}. This imply, invoking the normal and
subdifferential representations form Theorems 2.34(b), 2.35(b), and 2.38, that
for all i = m + 1, . . . ,m + r there are xi ∈ x̃i + (ε/2)IB, νi ≥ 0, and

x∗
i ∈ ∂̂ϕi (xi ) ∪ ∂̂(−ϕi )(xi ) with νi x

∗
i ∈ x̃∗

i + 1
m+r+1 V ∗ .
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Next let us consider an index i ∈ {1, . . . ,m} corresponding to the inequal-
ity constraints, i.e., when Ωi = {x ∈ X | ϕi (x) ≤ 0}. Representing Ωi via the
intersection form as Ωi × {0} = Λ1 ∩Λ2 with

Λ1 := epi ϕi and Λ2 :=
{
(x, α) ∈ X × IR

∣∣ α = 0
}
,

we observe that the assumptions of Corollary 3.5 hold at (x̃i , 0), since Λ2 is
SNC at this point and the qualification condition of the corollary reduces to

(0, λ) ∈ N((x̃i , 0); epi ϕi ) =⇒ λ = 0 .

Hence, taking the above (x̃i , x̃∗
i ) with

x̃∗
i ∈ N̂(x̃i ;Ωi ) ⊂ N(x̃i ;Ωi ), x̃i ∈ Ωi ∩ (x̄ + (ε/2)IB) ,

we find ν̃i ≥ 0 such that (x̃∗
i ,−ν̃i ) ∈ N((x̃i , 0); epi ϕi ). Then using the lim-

iting representation of basic normals from Theorem 2.35(b), we approxi-
mate (x̃∗

i , ν̃i ) in the weak∗ topology of X∗ × IR by elements (x̂∗
i ,−ν̂i ) ∈

N̂((x̂i , αi ); epi ϕi ) with (x̂i , αi ) sufficiently close to (x̃i , 0). Without loss of gen-
erality we may assume that αi = ϕi (x̂i ); cf. case (a). If ν̂i �= 0, we put xi := x̂i ,
νi := ν̂i , and x∗

i := x̂∗
i /νi ∈ ∂̂ϕi (xi ) to get

x∗
i ∈ ∂̂ϕi (xi ) with νi x

∗
i ∈ x̃∗

i + 1
m+r+1 V ∗ .

If ν̂i = 0, we use Lemma 2.37 to find a strong approximation (νi x∗
i , xi ) of

(x̂∗
i , x̂i ) in the norm topology of X × X∗ such that νi ≥ 0 and x∗

i ∈ ∂̂ϕi (xi ).
Combining the above relationships, one has

‖x̂ − x̄‖ ≤ ε, ‖xi − x̄‖ ≤ ε for i = 0, . . . ,m + r, |ϕ0(x0) − ϕ0(x̄)| ≤ ε ,

x̃∗ ∈ N̂(x̂ ;Ω), x∗
i ∈ ∂̂ϕi (xi ) for i = 0, . . . ,m ,

x∗
i ∈ ∂̂ϕi (xi ) ∪ ∂̂(−ϕi )(xi ) for i = m + 1, . . . ,m + r, and

0 ∈ x∗
0 +

m+r∑
i=1

νi x
∗
i + x̂∗ + V ∗ with νi ≥ 0 for all i = 1, . . . ,m + r .

Letting now λ := 1/(1 +
∑m+r

i=1 νi ), x̂∗ := λx̃∗, λ0 := λ, and λi := λνi for
i = 1, . . . ,m + r , we arrive at all the conclusions of the theorem but

|ϕi (xi ) − ϕi (x̄)| ≤ ε for i = 1, . . . ,m (5.51)

noticing that for i = m + 1, . . . ,m + r the latter estimates are automatic
due to the continuity of ϕi for these i . It is not the case in (5.51) when ϕi

are supposed to be merely l.s.c. around x̄ for i = 1, . . . ,m. Observe that if
ϕi (x̄) = 0, then (5.51) directly follows from the lower semicontinuity of ϕi for
this i ∈ {1, . . . ,m}. If otherwise ϕi (x̄) < 0 for some i ∈ {1, . . . ,m}, we replace
this constraint by φi (x) := ϕi (x)− ϕi (x̄) ≤ 0 and observe that x̄ is an optimal
solution to the new problem with φi (x̄) = 0 and ∂̂φi (x̄) = ∂̂ϕi (x̄). This fully
justifies (5.51) and completes the proof of the theorem. �
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5.1.4 Suboptimality Conditions for Constrained Problems

This subsection is devoted to suboptimality conditions for problems of mathe-
matical programming in infinite-dimensional spaces. This means that we don’t
assume the existence of optimal solutions and obtained conditions held for
suboptimal (ε-optimal) solutions, which always exist. The latter is particu-
larly important for infinite-dimensional optimization problems, where the ex-
istence of optimal solutions requires quite restrictive assumptions. As pointed
out by L. C. Young, any theory of necessary optimality conditions is “naive”
until the existence of optimal solutions is clarified. This was the primary
motivation for developing theories of generalized curves/relaxed controls in
problems of the calculus of variations and optimal control to automatically
ensure the existence of optimal solutions; see Chap. 6 for more details and
discussions. However, the approaches developed in the mentioned areas of
infinite-dimensional optimization are substantially based on specific features
of continuous-time dynamic constraints governed by differential and related
equations. This doesn’t apply to general optimization problems in infinite
dimensions. A natural approach to avoiding troubles with the existence of
optimal solutions in general optimization problems is to show that “almost”
optimal (i.e., suboptimal) solutions “almost” satisfy necessary conditions for
optimality. From the practical viewpoint this has about the same effect and
applications as necessary optimality conditions.

In what follows we are going to derive necessary optimality conditions of
the subdifferential type for problems of nondifferentiable programming (5.23)
with equality and inequality constraints under both Lipschitzian and non-
Lipschitzian assumptions on the initial data. Similar results can be obtained
for more general problems with operator constraints of type (5.12) that are
not considered in this subsection for brevity.

Let us start with suboptimality conditions for problems (5.23) with non-
Lipschitzian data. The following result is similar to Theorem 5.28. The only
essential difference is that the obtained weak suboptimality conditions don’t
include conclusion (5.51) for the inequality constraints given by l.s.c. functions.
The proof of the next theorem is also similar to the proof of Theorem 5.28,
but it is somewhat more involved with the usage of the lower subdifferential
variational principle from Theorem 2.28 instead the Fermat stationary one
for the corresponding unconstrained problem.

Recall that feasible solutions to the optimization problem (5.23) are those
x satisfying all the constraints, and that by inf ϕ0 we mean the infimum of
thecost function with respect to all feasible solutions to (5.23). We always
assume that inf ϕ0 > −∞. It is natural to say that a point x is an ε-optimal
solution to (5.23) if it is feasible to this problem with

ϕ0(x) ≤ inf ϕ0 + ε .

Theorem 5.29 (weak suboptimality conditions for non-Lipschitzian
problems). Let X be an Asplund space, and let V ∗ be an arbitrary weak∗
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neighborhood of the origin in X∗. Assume that Ω is closed, that ϕ0, . . . , ϕm

are l.s.c., and that ϕm+1, . . . , ϕm+r are continuous on the set of ε-optimal
solutions to (5.23) for all ε > 0 sufficiently small. Then there exists ε̄ > 0
such that for every 0 < ε < ε̄ and every ε2-optimal solution x̄ to (5.23) there
are (xi , x∗

i , λi ) satisfying the conditions:

xi ∈ x̄ + ε IB for i = 0, . . . ,m + r with |ϕ0(x0) − ϕ0(x̄)| ≤ ε ,

x∗
i ∈ ∂̂ϕi (xi ) for i = 0, . . . ,m ,

x∗
i ∈ ∂̂ϕi (xi ) ∪ ∂̂(−ϕi )(xi ) for i = m + 1, . . . ,m + r ,

x̂∗ ∈ N̂(x̂ ;Ω) with x̂ ∈ Ω ∩ (x̄ + ε IB) ,

λi ≥ 0 for i = 0, . . . ,m + r with
m+r∑
i=0

λi = 1, and

0 ∈
m+r∑
i=0

λi x
∗
i + x̂∗ + V ∗ .

Proof. For any v ∈ X and γ > 0 we consider a family of weak∗ neighborhoods
of the origin in X∗ given by

V ∗(v; γ ) :=
{

x∗ ∈ X∗∣∣ |〈x∗, v〉| < γ
}

that form a basis of the weak∗ topology. Taking an arbitrary weak∗ neighbor-
hood V ∗ in the theorem, we find γ̄ > 0, p ∈ IN , and v j ∈ X with ‖v j‖ = 1,
1 ≤ j ≤ p, such that

p⋂
j=1

V ∗(v j ; 2γ̄ ) ⊂ V ∗ .

Let us show that the conclusions of the theorem hold for every ε satisfying

0 < ε < ε̄ := min
{
γ̄ , 1

}
.

Indeed, take any feasible x̄ with ϕ0(x̄) < inf ϕ0 + ε2 and find η ∈ (0, ε) such
that ϕ0(x̄) < inf ϕ0 + (ε − η)2. Considering the constraint sets Ωi as defined
in the proof of Theorem 5.28, observe that for the function

ϕ(x) := ϕ0(x) + δ(x ;Ω1) + . . . + δ(x ;Ωm+r ) + δ(x ;Ω), x ∈ X ,

one has ϕ(x̄) < infX ϕ + (ε − η)2. Then applying the lower subdifferential
variational principle from Theorem 2.28(b), we find a feasible solution u ∈ X
to (5.23) and u∗ ∈ ∂̂ϕ(u) satisfying ‖u − x̄‖ < ε − η and
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‖u∗‖ < ε − η < γ̄ , ϕ0(u) < inf ϕ0 + (ε − η)2 < inf ϕ0 + ε − η ,

which implies that |ϕ0(u) − ϕ0(x̄)| < ε − η.
Now we take γ := γ̄ /(m + r + 1) and consider the weak∗ neighborhood

V̂ ∗ :=
p⋂

j=1

V ∗(v j ; γ )

of 0 ∈ X∗. Employing the weak fuzzy sum rule from Lemma 5.27 to u∗ ∈ ∂̂ϕ(u)
with the neighborhood V̂ ∗ and the number η and then following the proof of
Theorem 5.28, we arrive at all the conclusions of this theorem. �

Our next result provides strong suboptimality conditions in a quali-
fied/normal form for problems with partly Lipschitzian data under appro-
priate constraint qualifications. In what follows we use the notation

I (x) :=
{

i ∈ {1, . . . ,m + r}
∣∣ ϕi (x) = 0

}
and Λ(x) :=

{
λi ≥ 0

∣∣ i ∈ I (x)
}

for any feasible solution x of problem (5.23).

Theorem 5.30 (strong suboptimality conditions under constraint
qualifications). Let X be Asplund, and let ε > 0. Assume that ϕ0 is l.s.c.,
that Ω is closed, and that either ϕ0 is SNEC or Ω is SNC on the set of
ε-optimal solutions to (5.23). Suppose also that on this set the functions
ϕ1, . . . , ϕm+r are locally Lipschitzian around x and the following qualification
condition holds:

if x∗
∞ ∈ ∂∞ϕ0(x), x∗ ∈ N(x ;Ω), x∗

i ∈ ∂ϕi (x), i ∈ {1, . . . ,m} ∩ I (x),

x∗
i ∈ ∂ϕi (x) ∪ ∂(−ϕi )(x), i ∈ {m + 1, . . . ,m + r}, λi ∈ Λ(x), and

x∗
∞ +

∑
i∈I(x)

λi x
∗
i + x∗ = 0 ,

then x∗
∞ = x∗ = 0 and λi = 0 for all i ∈ I (x).

Under these assumptions one has the suboptimality conditions as follows: for
every ε-optimal solution x̄ to (5.23) and every ν > 0 there is an ε-optimal
solution x̂ to this problem such that ‖x̂ − x̄‖ ≤ ν and the estimate∥∥∥x̂∗

0 +
∑

i∈I (̂x)

λ̂i x̂
∗
i + x̂∗

∥∥∥ ≤ ε

ν

is satisfied with some x̂∗
0 ∈ ∂ϕ0(x̂), x̂∗ ∈ N(x̂ ;Ω), λ̂i ∈ Λ(x̂),

x̂∗
i ∈ ∂ϕi (x̂) for i ∈

{
1, . . . ,m

}
∩ I (x̂), and

x̂∗
i ∈ ∂ϕi (x̂) ∪ ∂(−ϕi )(x̂) for i = m + 1, . . . ,m + r .
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Conversely, if the above suboptimality conditions hold for any problem of min-
imizing a l.s.c. function ϕ0: X → IR concave on its domain in a Banach space
X , then X must be Asplund.

Proof. As in the proof of Theorem 5.29, we consider the penalized function

ϕ(x) := ϕ0(x) + δ(x ;Ω1) + . . . + δ(x ;Ωm+r ) + δ(x ;Ω), x ∈ X ,

and observe that x̄ is an ε-optimal solution to the unconstrained problem of
minimizing ϕ. Applying the lower subdifferential variational principle to this
function with the given ν > 0, we find an ε-optimal solution to the original
problem (5.23) and x̂∗ ∈ ∂ϕ(x̂) satisfying the estimates ‖x̂ − x̄‖ ≤ ν and
‖x̂∗‖ ≤ ε/ν. Having the subdifferential equality

∂ϕ(x̂) = ∂
(
ϕ0 +

∑
i∈I (̂x)

δ(·;Ωi ) + δ(·;Ω)
)
(x̂) ,

we apply to the latter sum the basic subdifferential sum rule from Theo-
rem 3.36 under the assumptions made with the efficient subdifferential condi-
tions for the SNC property of the constraint sets Ωi obtained in Corollary 3.85.
Then taking into account the representations of basic normals to the sets Ωi

from the proof of case (b) in Theorem 5.28 when all ϕi are Lipschitz continu-
ous, we arrive at the desired suboptimality conditions.

It remains to prove the converse statement of the theorem. Let X be a
Banach space, and let ϕ: X → IR be an arbitrary concave continuous function.
By the continuity of ϕ, for any x̄ ∈ X and ε > 0 there is 0 < ε1 < ε such
that ϕ(x̄) < ϕ(x) + 2ε whenever x ∈ x̄ + ε1 IB. Consider the unconstrained
optimization problem:

minimize ϕ0(x) := ϕ(x) + δ(x ; x̄ + ε1 IB), x ∈ X .

Applying to the this problem the suboptimality conditions of the theorem,
we find x̂ ∈ x̄ + (ε/2)IB such that ∂ϕ0(x̂) = ∂ϕ(x̂) �= ∅. Due to the basic
subdifferential representation

∂ϕ(x̂) = Lim sup
x→x̂
ε↓0

∂̂εϕ(x)

for arbitrary continuous functions on Banach spaces (see Theorem 1.89), for
every ε > 0 there is xε ∈ x̄ + ε IB with ∂̂εϕ(xε) �= ∅. This implies that, for
any concave continuous function ϕ: X → IR and any ε > 0, the set of points
{x ∈ X | ∂̂εϕ(x) �= ∅} is dense in X . Then by Corollary 2.29 (see also the
discussion after it) the space X must be Asplund. �

If ϕ0 is Lipschitzian continuous on the set of ε-optimal solutions to (5.23),
then ϕ0 is automatically SNC and ∂∞ϕ0(x) = {0}. In this case the qualifi-
cation condition of Theorem 5.30 is a constraint qualification. Moreover, it
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reduces to the classical Mangasarian-Fromovitz constraint qualification when
the functions ϕ1, . . . , ϕm+r are strictly differentiable at such x and Ω = X .
Thus we arrive at the following consequence of the above theorem.

Corollary 5.31 (suboptimality under Mangasarian-Fromovitz con-
straint qualification). Let X be Asplund, and let ϕ0 be locally Lipschitzian
on the set of ε-optimal solutions to (5.23) with Ω = X for some ε > 0. As-
sume that ϕ1, . . . , ϕm+r are strictly differentiable and satisfy the Mangasarian-
Fromovitz constraint qualification on the latter set. Then for every ε-optimal
solution x̄ to (5.23) and every ν > 0 there are an ε-optimal solution x̂ to this
problem, a subgradient x∗

0 ∈ ∂ϕ0(x̂), and multipliers (λ1, . . . , λm+r ) ∈ IRm+r

satisfying ‖x̂ − x̄‖ ≤ ν, λi ≥ 0 and λiϕi (x̂) = 0 for i = 1, . . . ,m, and

∥∥∥x∗
0 +

m+r∑
i=1

λi∇ϕi (x̂)
∥∥∥ ≤ ε

ν
.

Proof. Follows directly from Theorem 5.30 due to ∂ϕ(x) = {∇ϕ(x)} for
strictly differentiable functions. �

Our final result in this section provides strong suboptimality conditions for
Lipschitzian problems (5.23) with no constraint qualifications.

Corollary 5.32 (strong suboptimality conditions without constraint
qualifications). Let X be Asplund, and let ε > 0. Assume that Ω is closed
and that all ϕ0, . . . , ϕm+r are locally Lipschitzian on the set of ε-optimal solu-
tions to (5.23). Then for every ν > 0 and every ε-optimal solution x̄ to (5.23)
there is an ε-optimal solution x̂ to this problem such that ‖x̂ − x̄‖ ≤ ν and∥∥∥ ∑

i∈I (̂x)∪{0}
λi x̂

∗
i + x̂∗

∥∥∥ ≤ ε

ν
,

∑
i∈I (̂x)∪{0}

λi = 1

with some λi ≥ 0 for i ∈ I (x̂) ∪ {0}, x̂∗ ∈ N(x̂ ;Ω), x̂∗
0 ∈ ∂ϕ0(x̂),

x̂∗
i ∈ ∂ϕi (x̂) for i ∈

{
1, . . . ,m

}
∩ I (x̂), and

x̂∗
i ∈ ∂ϕi (x̂) ∪ ∂(−ϕi )(x̂) for i = m + 1, . . . ,m + r .

Proof. Suppose first that the qualification condition of Theorem 5.30 is ful-
filled. Then we have the suboptimality conditions of this theorem with some
λ̂i ∈ Λ(x̂). Now letting

λ := 1 +
∑

i∈I(x̄)

λ̂i , λ0 :=
1
λ
, and λi :=

λ̂i

λ
for i ∈ I (x̂) ,

we arrive at the relations of the corollary with the multipliers (λ0, . . . , λm+r ).
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Assuming finally that the qualification condition of Theorem 5.30 is not
fulfilled and taking into account that x∗

∞ = 0 by the Lipschitz continuity of
ϕ0, we find an ε-optimal solution x̂ to problem (5.23), multipliers λ̂i ≥ 0 for
i ∈ I (x̂), not all zero, as well as dual elements x∗ ∈ N(x̂ ;Ω), x̂∗

i ∈ ∂ϕi (x̂) for
i ∈ {1, . . . ,m} ∩ I (x̂), and x̂∗

i ∈ ∂ϕi (x̂)∪ ∂(−ϕi )(x̂) for i ∈ {m + 1, . . . ,m + r}
satisfying the equality ∑

i∈I (̂x)

λ̂i x̂
∗
i + x∗ = 0 .

Dividing the latter by λ :=
∑

i∈I (̂x) λ̂i > 0, one has at the suboptimality con-

ditions of the corollary with λ0 := 0, λi := λ̂i/λ for i ∈ I (x̂), x̂∗ := x∗/λ, and
the same x̂∗

i as above. �

Observe that if problem (5.23), as well as that considered in Subsect. 5.1.2,
has many geometric constraints x ∈ Ωi , i = 1, . . . , n, they can be obviously
reduced to the one x ∈ Ω := ∩n

i=1Ωi given by the set intersection. Then
we may handle these constraints by using intersection rules for basic normals
as in Subsect. 5.1.1 and thus extend the corresponding necessary optimality
and suboptimality conditions of Subsects. 5.1.2–5.1.4 to optimization prob-
lems with many geometric constraints. To extend necessary optimality and
suboptimality conditions expressed in terms of Fréchet normals to geomet-
ric constraints, as those in Theorems 5.21(i) and 5.29, one may use fuzzy
intersection rules for Fréchet normals discussed in Subsect. 3.1.1.

Note also, besides deriving lower suboptimality conditions by applying the
lower subdifferential variational principle, we can obtain their upper counter-
parts from the upper subdifferential variational principle of Theorem 2.30;
see the paper [938] by Mordukhovich, Nam, and Yen for various results and
discussions in this direction.

5.2 Mathematical Programs
with Equilibrium Constraints

In this section we consider a special class of optimization problems known as
mathematical programs with equilibrium constraints (MPECs). A characteris-
tic feature of these problems is the presence, among other constraints, “equi-
librium constraints” of the type y ∈ S(x), where S(x) often represents the
solution map to a “lower-level” problem of parametric optimization. MPECs
naturally appear in various aspects of hierarchical optimization and equilib-
rium theory as well as in many practical applications, especially those related
to mechanical and economic modeling. We refer the reader to the books by
Luo, Pang and Ralph [820], Outrata, Kočvara and Zowe [1031], and Facchinei
and Pang [424] for systematic expositions, examples, and applications of such
problems in finite-dimensional spaces.
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Typically the equilibrium constraints y ∈ S(x) in MPECs are solution
maps to parametric variational inequalities and complementarity problems of
different types. An important class of MPECs, which was actually a start-
ing point of this active area of research and applications, contains problems
of bilevel programming (that go back to Stackelberg games), where S(x) is
the solution map to a parametric problem of linear or nonlinear program-
ming. Note that most MPECs, even in relatively simple cases of mathemati-
cal programs with complementarity constraints, are essentially different from
standard problems of nonlinear programming with equality and inequality con-
straints; possible reductions lead to various irregularities, e.g., to the violation
of the Mangasarian-Fromovitz constraint qualification and the like.

A general class of MPECs considered first in Subsect. 5.2.1 is given in the
abstract form:

minimize ϕ(x, y) subject to y ∈ S(x), x ∈ Ω , (5.52)

where S: X →→ Y be a set-valued mapping between Banach spaces, ϕ: X ×Y →
IR, and Ω ⊂ X . Our main attention is paid to the case when the equilibrium
map S is given in the form

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ f (x, y) + Q(x, y)

}
(5.53)

with f : X × Y → Z and Q: X × Y →→ Z , i.e., S describes solution maps to the
parametric variational systems

0 ∈ f (x, y) + Q(x, y)

considered in Chap. 4 with their various specifications. As we know, model
(5.53) covers solution maps to the classical variational inequalities and com-
plementarity problems as well as to their extensions and modifications stud-
ied in Sect. 4.4. In what follows we are going to derive first-order necessary
optimality conditions for general MPECs given in (5.52), (5.53) and for their
important special cases. Our approach is mainly based on reducing MPECs to
the optimization problems with geometric constraints considered in Sect. 5.1,
with taking into account their special structures, and then on employing the
sensitivity theory for parametric variational systems (coderivative estimates
and efficient conditions for Lipschitzian stability) developed in Sect. 4.4. The
results obtained involve second-order subdifferentials of extended-real-valued
potentials defining variational and hemivariational inequalities in composite
forms, which are the most interesting for applications.

5.2.1 Necessary Conditions for Abstract MPECs

In this subsection we consider abstract MPECs of type (5.52) and present
necessary optimality conditions in lower and upper subdifferential forms. Such
conditions are derived by reducing (5.52) to the standard form (5.1) with two
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geometric constraints and then employing the results of Theorem 5.5. In this
way we take an advantage of the product structure on X × Y , which allows
us to impose mild qualification and SNC assumptions on the initial data of
(5.52). Let us start with upper subdifferential necessary optimality conditions
for general MPECs. Unless otherwise stated, we suppose that ϕ: X × Y → IR
is an extended-real-valued function finite at reference points.

Theorem 5.33 (upper subdifferential optimality conditions for ab-
stract MPECs). Let (x̄, ȳ) be a local optimal solution to (5.52). Assume
that the spaces X and Y are Asplund and that the sets gph S and Ω are locally
closed around (x̄, ȳ) and x̄, respectively. Assume also that either S is PSNC
at (x̄, ȳ) or Ω is SNC at x̄, and that the mixed qualification condition

D∗
M S(x̄, ȳ)(0) ∩

(
− N(x̄ ;Ω)

)
= {0}

is fulfilled. Then one has

−x∗ ∈ D∗
N S(x̄, ȳ)(y∗) + N(x̄ ;Ω)

for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ).

Proof. Observe that (x̄, ȳ) provides a local minimum to the function ϕ sub-
ject to the constraints (x, y) ∈ Ω1 := gph S and (x, y) ∈ Ω2 := Ω × Y in the
Asplund space X × Y . Applying the upper subdifferential conditions of Theo-
rem 5.5(i) to the latter problem, one can easily see that the PSNC property of
Ω1 at (x̄, ȳ) with respect to X reduces to the PSNC property of the mapping
S at this point, and that Ω2 is always strongly PSNC at (x̄, ȳ) with respect
to Y being also SNC at this point if and only if Ω is SNC at x̄ . Moreover,
the mixed qualification condition of the theorem clearly implies that the set
system {Ω1,Ω2} satisfies the limiting qualification condition at (x̄, ȳ) in the
sense of Definition 3.2. Thus we have, by Theorem 5.5(i), that

−∂̂+ϕ(x̄, ȳ) ⊂ N
(
(x̄, ȳ); gph S

)
+ N(x̄ ;Ω) × {0} ,

which surely implies the upper subdifferential condition of this theorem. �

The upper subdifferential conditions of Theorem 5.33 carry nontrivial in-
formation for MPECs when ∂̂+ϕ(x̄, ȳ) �= ∅. We have discussed in Subsect. 5.1.1
some important classes of functions ϕ satisfying this requirement. Recall that
one automatically has ∂̂+ϕ(x̄, ȳ) �= ∅ when ϕ is either Fréchet differentiable at
(x̄, ȳ) or concave and continuous around (x̄, ȳ). If both X and Y are Asplund,
the latter case can be extended to the class of functions Lipschitz continuous
around (x̄, ȳ) and upper regular at this point, in particular, to semiconcave
functions.

The next more conventional lower subdifferential conditions of for local
minima in MPEC problems (5.52) have a different nature in comparison
with the above upper subdifferential conditions being generally independent
of them; cf. the discussions in Remark 5.4.
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Theorem 5.34 (lower subdifferential optimality conditions for ab-
stract MPECs). Let (x̄, ȳ) be a local optimal solution to (5.52), where X
and Y are Asplund, where ϕ is l.s.c. around (x̄, ȳ), and where Ω and gph S
are locally closed around (x̄, ȳ) and x̄, respectively. The following hold:

(i) In addition to the assumptions of Theorem 5.33, suppose that ϕ is
SNEC at (x̄, ȳ), and that the conditions

(x∗
∞, y∗∞) ∈ ∂∞ϕ(x̄, ȳ), 0 ∈ x∗

∞ + D∗
N S(x̄, ȳ)(y∗∞) + N(x̄ ;Ω)

are satisfied only for x∗
∞ = y∗∞ = 0; these additional assumptions are au-

tomatically fulfilled if ϕ is locally Lipschitzian around (x̄, ȳ). Then there is
(x∗, y∗) ∈ ∂ϕ(x̄, ȳ) such that

0 ∈ x∗ + D∗
N S(x̄, ȳ)(y∗) + N(x̄ ;Ω) . (5.54)

(ii) Assume that both S and Ω are SNC at (x̄, ȳ) and x̄, respectively, and
that the qualification condition[

(x∗
∞, y∗∞) ∈ ∂∞ϕ(x̄, ȳ), x∗

1 ∈ D∗
N S(x̄, ȳ)(y∗∞), x∗

2 ∈ N(x̄ ;Ω) ,

x∗
∞ + x∗

1 + x∗
2 = 0

]
=⇒ x∗

∞ = y∗∞ = x∗
1 = x∗

2 = 0

is fulfilled. Then there is (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) such that the optimality condition
(5.54) holds.

Proof. As in the proof of Theorem 5.33, we reduce (5.52) to minimiz-
ing ϕ(x, y) subject to the geometric constraints: (x, y) ∈ Ω1 = gph S and
(x, y) ∈ Ω2 = Ω × Y . Applying Theorem 5.5 to the latter problem, it is easy
to check that the qualification condition (5.7) reduces to the one assumed in
(i) of this theorem, and the lower subdifferential optimality condition (5.7)
gives (5.54). Similarly we see that the qualification condition (5.8) reduces to
the one assumed in (ii) of this theorem, which completes the proof. �

Based on the coderivative characterization of the Lipschitz-like property,
we arrive at the following effective corollary of Theorems 5.33 and 5.34 that
ensures the fulfillment of both upper and lower subdifferential optimality con-
ditions above via intrinsic requirements on the initial data of the MPEC prob-
lem (5.52) under consideration.

Corollary 5.35 (upper and lower subdifferential conditions under
Lipschitz-like equilibrium constraints). Let (x̄, ȳ) be a local optimal so-
lution to the MPEC problem (5.52) with Asplund spaces X and Y and with
locally closed sets gph S and Ω. Assume that S is Lipschitz-like around (x̄, ȳ).
Then one has

−x∗ ∈ D∗
N S(x̄, ȳ)(y∗) + N(x̄ ;Ω) for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) .
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If in addition ϕ is locally Lipschitzian around (x̄, ȳ), then

−x∗ ∈ D∗
N S(x̄, ȳ)(y∗) + N(x̄ ;Ω) for some (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) .

Proof. We know from Theorem 4.10 that S is Lipschitz-like around (x̄, ȳ)
if and only if D∗

M S(x̄, ȳ)(0) = {0} and S is PSNC at (x̄, ȳ) for closed-graph
mappings between Asplund spaces. Thus the Lipschitz-like property of S im-
plies the fulfillment of all the assumptions in Theorem 5.33 ensuring the upper
subdifferential optimality condition. If in addition ϕ is Lipschitz continuous
around (x̄, ȳ), then ∂∞ϕ(x̄, ȳ) = {0}, and hence we have the stated lower
subdifferential optimality condition by Theorem 5.34(i). �

As follows from Corollary 5.35, the Lipschitz-like property of equilibrium
constraints is a constraint qualification ensuring the normal form of both up-
per and lower subdifferential conditions for general MPECs. If now S is given
in a parametric form of constraint and/or variational systems considered in
Sects. 4.3 and 4.4, one can derive necessary optimality conditions of the normal
(Karush-Kuhn-Tucker) type for problems (5.52) with the corresponding equi-
librium constraints y ∈ S(x) using the results of these sections, which provide
upper estimates for D∗

N S(x̄, ȳ) and efficient conditions for the Lipschitz-like
property of such mappings.

We are not going to utilize here the results of Sect. 4.3 on parametric
constraint systems in the form

S(x) :=
{

y ∈ Y
∣∣ g(x, y) ∈ Θ, (x, y) ∈ Ω

}
,

since constraints in this form are not specific for MPECs, and necessary opti-
mality conditions for (5.52) obtained in this way don’t actually bring new in-
formation in comparison with those, which have been derived in Subsects. 5.1.2
and 5.1.3 for problems with operator and functional constraints. Our main
attention will be paid to necessary optimality conditions for MPECs in form
(5.52) with equilibrium constraints governed by the parametric variational
systems (5.53) considered in Sect. 4.4.

Before establishing such conditions in what follows, we conclude this
subsection by deriving general necessary optimality conditions for abstract
MPECs of type (5.52) in the non-qualified (Fritz John) form without impos-
ing any constraint qualification.

Theorem 5.36 (upper and lower subdifferential conditions for non-
qualified MPECs). Let (x̄, ȳ) be a local optimal solution to problem (5.52).
Assume that the spaces X and Y are Asplund and that the sets gph S and Ω
are locally closed around (x̄, ȳ) and x̄, respectively. Then there is λ ∈ {0, 1}
such that for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there exist x∗

1 ∈ D∗
N S(x̄, ȳ)(λy∗) and

x∗
2 ∈ N(x̄ ;Ω) satisfying
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λx∗ + x∗
1 + x∗

2 = 0, (λ, x∗
1 ) �= 0 (5.55)

provided that either S is PSNC at (x̄, ȳ) or Ω is SNC at x̄.
If in addition ϕ is locally Lipschitzian around (x̄, ȳ), then there are λ ≥ 0,

(x∗, y∗) ∈ ∂ϕ(x̄, ȳ), x∗
1 ∈ D∗

N S(x̄, ȳ)(λy∗), and x∗
2 ∈ N(x̄ ;Ω) satisfying (5.55).

Proof. This result follows from Theorems 5.33 and 5.34. Let us first justify
the upper subdifferential conditions. If the mixed qualification condition of
Theorem 5.33 is satisfied, we have (5.55) with λ = 1 by the assertion of that
theorem under the assumptions made. If the latter qualification condition
doesn’t hold, there is x∗ �= 0 satisfying

x∗ ∈ D∗
M S(x̄, ȳ)(0) ⊂ D∗

N S(x̄, ȳ)(0) and − x∗ ∈ N(x̄ ;Ω) .

Thus one gets (5.55) with λ = 0, x∗
1 = x∗ �= 0, and x∗

2 = −x∗.
Assume in addition that ϕ is Lipschitz continuous around (x̄, ȳ) and apply

assertion (i) of Theorem 5.34. Then we have relations (5.55) with λ = 1
and some (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) due to this assertion, provided that the mixed
qualification condition

D∗
M S(x̄, ȳ)(0) ∩ (−N(x̄ ;Ω)) = {0}

and the other assumptions of Theorem 5.34(i) are satisfied. If the latter
qualification condition doesn’t hold, we arrive at (5.55) with λ = 0 and x∗

1 �= 0
as in the above proof of the upper subdifferential condition. �

5.2.2 Variational Systems as Equilibrium Constraints

In this subsection we consider MPECs with equilibrium constraints defined
by parameter-dependent generalized equations:

minimize ϕ(x, y) subject to 0 ∈ f (x, y) + Q(x, y), x ∈ Ω , (5.56)

where f : X × Y → Z and Q: X × Y →→ Z are, respectively, single-valued
and set-valued mappings between Banach (mostly Asplund) spaces. In other
words, model (5.56) describes MPECs of type (5.52) governed by parametric
variational systems S(x), which are the solution maps (5.53) to perturbed
generalized equations. Our goal is to derive necessary optimality conditions
for local solutions to problem (5.56) in terms of its initial data (ϕ, f, Q,Ω). We
are going to derive both upper and lower subdifferential optimality conditions
for (5.56) based on the results of Theorems 5.33 and 5.34, i.e., to obtain
necessary conditions in the normal/qualified form. Similarly to Theorem 5.36,
one can deduce from the corresponding non-qualified necessary optimality
conditions with possibly zero multipliers associated with the cost function.

To derive the desired necessary conditions from the above theorems, we
need to express the assumptions and conclusions of these theorems involving
the equilibrium constraints



52 5 Constrained Optimization and Equilibria

y ∈ S(x) ⇐⇒ 0 ∈ f (x, y) + Q(x, y)

in (5.56) via the initial data f and Q. This can be done by employing the
results of Sect. 4.4, which provide upper estimates for the coderivatives of
such mappings (variational systems) S as well as sufficient conditions for their
PSNC and Lipschitz-like properties. What one actually may derive from the
results of Sect. 4.4 concerning applications to necessary optimality conditions
in MPECs are upper estimates for D∗

N S(x̄, ȳ) and sufficient conditions for the
SNC property of S via f and Q. In this way we get efficient conditions for
the fulfillment of the constraint qualification

D∗
N S(x̄, ȳ)(0) ∩

(
− N(x̄ ;Ω)

)
= {0} (5.57)

and the other assumptions and conclusions of Theorem 5.33 and 5.34 in terms
of the initial data of the MPEC problem (5.56) and its specification.

Let us start with upper subdifferential necessary optimality conditions for
the MPEC problem (5.56). The first theorem provides necessary conditions
of this type for the case of equilibrium constraints governed by general para-
metric variational systems in (5.56).

Theorem 5.37 (upper subdifferential conditions for MPECs with
general variational constraints). Let (x̄, ȳ) be a local optimal solution to
the MPEC problem (5.56), where f : X × Y → Z and Q: X × Y →→ Z are map-
pings between Asplund spaces. Assume that f is continuous around (x̄, ȳ),
that Ω is locally closed around x̄, and that the graph of Q is locally closed
around (x̄, ȳ, z̄) with z̄ := − f (x̄, ȳ). Suppose also that one of the following
assumptions (a)–(c) holds:

(a) Ω and Q are SNC at x̄ and (x̄, ȳ, z̄), respectively, and the two quali-
fication conditions are satisfied:[

(x∗, 0) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗), −x∗ ∈ N(x̄ ;Ω)
]

=⇒ x∗ = 0 ,

[
(x∗, y∗) ∈ D∗

N f (x̄, ȳ)(z∗) ∩
(
− D∗

N Q(x̄, ȳ, z̄)(z∗)
)]

=⇒ x∗ = y∗ = z∗ = 0 ;

the latter is equivalent to[
0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + D∗

N Q(x̄, ȳ, z̄)(z∗)
]

=⇒ z∗ = 0 (5.58)

when f is strictly Lipschitzian at (x̄, ȳ).
(b) Ω is SNC at x̄, dim Z < ∞, f is Lipschitz continuous around (x̄, ȳ),

and the qualification conditions[
(x∗, 0) ∈ ∂〈z∗, f 〉(x̄, ȳ) + D∗

N Q(x̄, ȳ, z̄)(z∗), −x∗ ∈ N(x̄ ;Ω)
]

=⇒ x∗ = 0

and (5.58) are satisfied.
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(c) Q is SNC at (x̄, ȳ, z̄), f is PSNC at (x̄, ȳ) (which is automatic when
it is Lipschitz continuous around this point), and the qualification conditions
from part (a) hold.

Then for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there are x̃∗ ∈ N(x̄ ;Ω) and z∗ ∈ Z∗

supporting the necessary optimality condition

(−x∗ − x̃∗,−y∗) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗) .

Proof. Let us apply the upper subdifferential optimality conditions from The-
orem 5.33 to problem (5.56), i.e., in the case when the equilibrium constraints
y ∈ S(x) are given in the variational/generalized equation form (5.53). It is
easy to see that the continuity and closedness assumptions made on f and Q
ensure the local closedness of S. To proceed further, we first assume that Ω
is SNC at x̄ and use the coderivative upper estimate for such mappings S(·)
obtained in Theorem 4.46. Then one has

D∗
N S(x̄, ȳ)(y∗) ⊂

{
x∗ ∈ X∗

∣∣∣ ∃z∗ ∈ Z∗ with

(x∗,−y∗) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗)
}

and, substituting the latter into the qualification condition (5.57) and the
upper subdifferential necessary condition of Theorem 5.33, we arrive at the
conclusions of this theorem under the assumptions in (a) and (b).

Now we consider the remaining case when S is PSNC in Theorem 5.33
and provide efficient conditions in terms of f and Q ensuring the latter (even
SNC) property for S. Actually it was done in the proof of Theorem 4.59 as
a part of checking the coderivative criterion for the Lipschitz-like property of
S based on the application of the SNC calculus from Theorem 3.84. Using
these results, we arrive at the upper subdifferential optimality condition of
the theorem under the assumptions in (c). �

Next we derive lower subdifferential optimality conditions for the MPEC
(5.56) based on the application of Theorem 5.34 with the treatment of the
equilibrium constraint S in (5.56) by the results of Theorem 4.46 and 3.84.

Theorem 5.38 (lower subdifferential conditions for MPECs with
general variational constraints). Let (x̄, ȳ) be a local optimal solution
to (5.56), where f : X × Y → Z and Q: X × Y →→ Z are mappings between
Asplund spaces. Assume that ϕ is l.s.c. around (x̄, ȳ), that f is continuous
around (x̄, ȳ), that Ω is locally closed around x̄, and that the graph of Q is
locally closed around (x̄, ȳ, z̄) with z̄ = − f (x̄, ȳ). The following assertions
hold:

(i) Suppose that in addition to the assumptions of Theorem 5.37 the func-
tion ϕ is SNEC at (x̄, ȳ) and that the conditions
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(x∗
∞ − x̂∗,−y∗∞) ∈ D∗

N f (x̄, ȳ)(z∗) + D∗
N Q(x̄, ȳ, z̄)(z∗) ,

(x∗
∞, y∗∞) ∈ ∂∞ϕ(x̄, ȳ) with some x̂∗ ∈ N(x̄ ;Ω), z∗ ∈ Z∗

are satisfied only when x∗
∞ = y∗∞ = 0; both of the latter assumptions are

automatically fulfilled if ϕ is Lipschitz continuous around (x̄, ȳ). Then there
are (x∗, y∗) ∈ ∂ϕ(x̄, ȳ), x̃∗ ∈ N(x̄ ;Ω), and z∗ ∈ Z∗ such that

(−x∗ − x̃∗,−y∗) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗) . (5.59)

(ii) Suppose that both Ω and Q are SNC at x̄ and (x̄, ȳ, x̄), respectively,
that f is PSNC at (x̄, ȳ), and that the qualification conditions[

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗) ∩

(
− D∗

N Q(x̄, ȳ, z̄)(z∗)
)]

=⇒ x∗ = y∗ = z∗ = 0 ,

[
(x∗

∞, y∗∞) ∈ ∂∞ϕ(x̄, ȳ), (x∗
1 ,−y∗∞) ∈ D∗

N f (x̄, ȳ)(z∗) + D∗
N Q(x̄, ȳ, z̄)(z∗) ,

x∗ ∈ N(x̄ ;Ω), z∗ ∈ Z∗, x∗
∞ + x∗

1 + x∗
2 = 0

]
=⇒ x∗

∞ = y∗∞ = x∗
1 = x∗

2 = 0

are fulfilled. Then there are (x∗, y∗) ∈ ∂ϕ(x̄, ȳ), x̃∗ ∈ N(x̄ ;Ω), and z∗ ∈ Z∗

satisfying the optimality condition (5.59).

Proof. To justify (i), we use Theorem 5.34(i) and then proceed similarly to
the proof of Theorem 5.37 employing the upper coderivative estimate and the
efficient conditions for the SNC property of the equilibrium map S obtained
in Theorems 4.46 and 4.59, respectively. Assertion (ii) can be proved by the
same based on Theorem 5.34(ii). �

Let us present efficient consequences of Theorems 5.37 and 5.38(i) ensur-
ing the validity of the Lipschitz-like property of the equilibrium map S in
(5.56) and hence the fulfillment of the qualification and PSNC conditions in
Theorems 5.33 and 5.34(i).

Corollary 5.39 (upper and lower subdifferential conditions under
Lipschitz-like variational constraints). Let (x̄, ȳ) be a local optimal solu-
tion to (5.56), where f : X × Y → Z and Q: X × Y →→ Z are mappings between
Asplund spaces. Assume that f is continuous around (x̄, ȳ), that Ω is locally
closed around x̄, that the graph of Q is locally closed around (x̄, ȳ, z̄) with
z̄ = − f (x̄, ȳ), and that the qualification conditions[

(x∗, 0) ∈ D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗)
]

=⇒ x∗ = 0 ,

[
(x∗, y∗) ∈ D∗

N f (x̄, ȳ)(z∗) ∩
(
− D∗

N Q(x̄, ȳ, z̄)(z∗)
)]

=⇒ x∗ = y∗ = z∗ = 0

are satisfied. Then for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there are x̃∗ ∈ N(x̄,Ω)
and z∗ ∈ Z∗ such that the optimality condition (5.59) holds. If in addition
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ϕ is Lipschitz continuous around (x̄, ȳ), then there are (x∗, y∗) ∈ ∂ϕ(x̄, ȳ),
x̃∗ ∈ N(x̄ ;Ω), and z∗ ∈ Z∗ satisfying (5.59).

Proof. These assertions follow directly from Theorems 5.37 and 5.38(i), re-
spectively. They are also consequences of Corollary 5.35 and Theorem 4.59
ensuring the Lipschitz-like property of the equilibrium constraint S in the
MPEC problem (5.56). �

One can easily derive concretizations and simplifications of the results
obtained in some special cases using coderivative representations for f and/or
Q; compare, in particular, Sect. 4.4 for the cases of strictly differentiable
mappings f and convex-graph multifunctions Q, as well as for parameter-
independent fields Q = Q(y).

In what follows we are going to discuss in more details the most interesting
cases of variational constraints in (5.56) when the equilibrium map S is given
in a subdifferential form, which covers the classical variational inequalities
and complementarity problems as well as hemivariational inequalities and
further generalizations. Let us pay the main attention to the two classes of
generalized variational inequalities (GVIs) with a composite subdifferential
structure considered in Sect. 4.4, where the equilibrium mapping S is given in
forms (4.66) and (4.67). The first class of GVIs induces MPECs of the type:

minimize ϕ(x, y) subject to 0 ∈ f (x, y) + ∂(ψ ◦ g)(x, y), x ∈ Ω (5.60)

governed by single-valued mappings f : X×Y → X∗×Y ∗ and g: X×Y → W be-
tween Banach spaces and by an extended-real-valued function ψ : W → IR. Let
us derive both upper and lower subdifferential necessary optimality conditions
in (5.60) for simplicity considering locally Lipschitzian cost functions ϕ in the
case of lower subdifferential conditions. We start with the case of smooth and
parameter-independent mappings g: Y → W in (5.60) with surjective deriva-
tives allowing the space generality in necessary optimality conditions for (5.60)
expressed in terms of the (normal) second-order subdifferential of ϕ: W → IR.
Following the terminology of Sect. 4.4, we label such problems as MPECs
governed by parametric hemivariational inequalities (HVIs) with composite
potentials.

Theorem 5.40 (upper, lower subdifferential conditions for MPECs
governed by HVIs with composite potentials). Let (x̄, ȳ) be a local
optimal solution to problem (5.60) with f : X × Y → Y ∗, g: Y → W , and
ψ : W → IR. Suppose that W is Banach, X is Asplund, Y is finite-dimensional
and that the following assumptions hold:

(a) f is strictly differentiable at (x̄, ȳ) with the surjective partial derivative
∇x f (x̄, ȳ): X → Y ∗.

(b) g is C1 around ȳ with the surjective derivative ∇g(ȳ): Y → W , and
the mapping ∇g: Y → L(Y, W ) is strictly differentiable at ȳ.
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(c) Ω is locally closed around x̄ and the graph of ∂ψ is locally closed
around (w̄, v̄), where w̄ := g(ȳ) and where v̄ ∈ W ∗ is a unique functional
satisfying the relations

− f (x̄, ȳ) = ∇g(ȳ)∗v̄, v̄ ∈ ∂ψ(w̄) .

Then for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there is u ∈ Y such that

−x∗ ∈ ∇x f (x̄, ȳ)∗u + N(x̄ ;Ω) ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + ∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, v̄)

(
∇g(ȳ)u

) (5.61)

provided that u = 0 is the only vector satisfying the system of inclusions⎧⎨
⎩

0 ∈ ∇x f (x̄, ȳ)∗u + N(x̄ ;Ω) ,

0 ∈ ∇y f (x̄, ȳ)∗u + ∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, v̄)

(
∇g(ȳ)u

)
.

In in addition ϕ is locally Lipschitzian around (x̄, ȳ), then there are u ∈ Y
and (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) satisfying (5.61).

Proof. To establish the upper subdifferential conditions of the theorem, we
employ the results of Theorem 5.37 under the assumptions in (c) for Q(y) :=
∂(ψ ◦ g)(y). Taking into account the strict differentiability of f at (x̄, ȳ) with
the surjectivity of ∇x f (x̄, ȳ) and the parameter-independence of Q, one has
condition (5.58) automatically fulfilled while the first qualification condition
in Theorem 5.37(a) reduces to[
0 ∈ ∇x f (x̄, ȳ)∗u + N(x̄ ;Ω), 0 ∈ ∇y f (x̄, ȳ)∗u+∂2(ψ ◦ g)(ȳ, z̄)(u)

]
=⇒ u =0

with z̄ := − f (x̄, ȳ) provided that the mapping ∂(ψ ◦ g)(·) is locally closed-
graph around (ȳ, z̄). Observe the SNC property of Q and PSNC property of
f at the reference points follow immediately from the finite dimensionality
of Y and the strict differentiability of f . Then, by the upper subdifferen-
tial optimality conditions of Theorem 5.37 applied to (5.60), for every upper
subgradients (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there is u ∈ Y such that

−x∗ ∈ ∇x f (x̄, ȳ)∗u + N(x̄ ;Ω), −y∗ ∈ ∇y f (x̄, ȳ)∗u + ∂2(ψ ◦ g)(ȳ, z̄)(u) .

Using now the first-order subdifferential chain rule of Proposition 1.112(i), we
have the equality

∂(ψ ◦ g)(y) = ∇g(y)∗∂ψ(w)

for all y close to ȳ and w = g(y), which implies that the graph of ∂(ψ ◦g)(·) is
locally closed around (ȳ, z̄) if and only if the subdifferential mapping ∂ψ(·) is
closed-graph around (w̄, v̄). Applying further the second-order subdifferential
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chain rule of Theorem 1.127 to ∂2(ψ ◦ g)(ȳ, z̄) in the above relationships and
taking into account that ∇g(ȳ)∗∗ = ∇g(ȳ) under the assumptions made, we
arrive at the upper subdifferential conditions stated in the theorem.

If ϕ is locally Lipschitzian around (x̄, ȳ), the lower subdifferential condi-
tions of the theorem are deduced by a similar way from Theorem 5.38(i). �

Recall that the assumption in (c) of the above theorem on the closed graph
of ∂ψ around (w̄, v̄) automatically holds if ψ is either continuous around this
point or amenable at (w̄, v̄); see the definition in Subsect. 3.2.5.

The next result provides necessary optimality conditions for the MPEC
problem (5.60) governed by parameter-dependent GVIs with composite poten-
tials in finite-dimensional spaces under essentially less restrictive assumptions
on f and g (but more restrictive on ψ) than those imposed in Theorem 5.40.

Theorem 5.41 (upper, lower subdifferential conditions for MPECs
governed by GVIs with composite potentials). Let (x̄, ȳ) be a local
optimal solution to (5.60), where f : X × Y → X∗ × Y ∗ and g: X × Y → W
are mappings between finite-dimensional spaces. Suppose that f is continuous
around (x̄, ȳ), that g is twice continuously differentiable around this point,
that ψ is l.s.c. around w̄ := g(x̄, ȳ), and that Ω is locally closed around x̄.
Denote z̄ := − f (x̄, ȳ) ∈ ∂(ψ ◦ g)(x̄, ȳ) and

M(x̄, ȳ) :=
{
v̄ ∈ W ∗∣∣ v̄ ∈ ∂ψ(w̄), ∇g(x̄, ȳ)∗v̄ = z̄

}
and assume that:

(a) The function ψ is lower regular around w̄ and the graphs of ∂ψ and
∂∞ψ are closed when w is near w̄.

(b) The following first-order and second-order qualification conditions for
the composition ψ ◦ g hold:

∂∞ψ(w̄) ∩ ker∇g(x̄, ȳ)∗ = {0} ,

∂2ψ(w̄, v̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} for all v̄ ∈ M(x̄, ȳ) .

(c) One has the two relationships:[
(x∗, y∗) ∈

⋃
v̄∈M(x̄,ȳ)

(
∇2〈v̄ , g〉(x̄, ȳ)u + ∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)

(
∇g(x̄, ȳ)u

))

⋂(
− D∗ f (x̄, ȳ)(u)

)]
=⇒ (x∗, y∗, u) = (0, 0, 0) ,

[
(x∗, 0) ∈ D∗ f (x̄, ȳ)(u) +

⋃
v̄∈M(x̄,ȳ)

(
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)
(
∇g(x̄, ȳ)u

))
, −x∗ ∈ N(x̄ ;Ω)

]
=⇒ x∗ = 0 .
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Then for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there is u ∈ X × Y such that

(−x∗,−y∗) ∈ D∗ f (x̄, ȳ)(u) +
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)
(
∇g(x̄, ȳ)u

)]
+ N(x̄ ;Ω) .

(5.62)

If in addition ϕ is Lipschitz continuous around (x̄, ȳ), then there are elements
(x∗, y∗) ∈ ∂ϕ(x̄, ȳ) and u ∈ X × Y satisfying (5.62).

Proof. Apply the upper and lower subdifferential optimality conditions of
Theorems 5.33 and 5.34(i) in the case of

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ f (x, y) + ∂(ψ ◦ g)(x, y)

}
.

Then use the upper estimate of D∗
N S(x̄, ȳ) obtained in Theorem 4.50 based

on the second-order subdifferential sum rule. In this way we arrive at the con-
clusions of the theorem under the assumptions made. �

Observe that the first relationship in (c) of the above theorem reduces to

0 ∈ ∂〈u, f 〉(x̄, ȳ) +
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)∗u

+∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)(∇g(x̄, ȳ)u)
]

=⇒ u = 0

when f is locally Lipschitzian around (x̄, ȳ). The latter holds automatically
if g = g(y) and f is strictly differentiable at (x̄, ȳ) with the surjective partial
derivative ∇x f (x̄, ȳ).

It happens that the first-order assumptions of Theorem 5.41 are automat-
ically satisfied if the potential φ := ψ ◦ g of the equilibrium constraints in
(5.60) is strongly amenable; see the definition in Subsect. 3.2.5.

Corollary 5.42 (optimality conditions for MPECs with amenable
potentials). Let (x̄, ȳ) be a local optimal solution to the MPEC problem (5.60)
in finite dimensions with Ω closed around x̄, f continuous around (x̄, ȳ), and
with the potential φ = ψ ◦ g strongly amenable at this point. Suppose that
the assumptions in (c) and the second-order qualification condition in (b) of
Theorem 5.41 are satisfied. Then one has the upper subdifferential optimality
condition of this theorem with no other assumptions. The above lower sub-
differential condition holds as well if in addition ϕ is Lipschitz continuous
around (x̄, ȳ).

Proof. It follows from Theorem 5.41 due to the properties of strongly
amenable functions discussed in Subsect. 3.2.5 and the second-order subd-
ifferential chain rule given in Corollary 3.76. �
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Now we consider MPECs governed by the generalized variational inequal-
ities with composite fields:

minimize ϕ(x, y) subject to 0 ∈ f (x, y) + (∂ψ ◦ g)(x, y), x ∈ Ω , (5.63)

where g: X × Y → W , ψ : W → IR, and f : X × Y → W ∗. The next theo-
rem provides general necessary optimality conditions of the upper and lower
subdifferential types for such MPECs.

Theorem 5.43 (upper, lower subdifferential conditions for MPECs
governed by GVIs with composite fields). Let (x̄, ȳ) be a local optimal
solution to problem (5.63) with Ω closed around x̄, w̄ := g(x̄, ȳ), and z̄ :=
− f (x̄, ȳ). The following assertions hold:

(i) Assume that X, Y are Asplund while W is Banach, that g = g(y)
is strictly differentiable at ȳ with the surjective derivative ∇g(ȳ), that f is
strictly differentiable at (x̄, ȳ) with the surjective partial derivative ∇x f (x̄, ȳ),
and that u = 0 ∈ W ∗∗ is the only element satisfying

0 ∈ ∇x f (x̄, ȳ)∗u + N(x̄ ;Ω), 0 ∈ ∇y f (x̄, ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, z̄)(u) .

Then for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there is u ∈ W ∗∗ such that

−x∗ ∈ ∇x f (x̄, ȳ)∗u + N(x̄ ;Ω) ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, z̄)(u)

(5.64)

provided that either Ω is SNC at x̄ or ∂ψ is SNC at (w̄, z̄).
(ii) Assume that X, Y, W, W ∗ are Asplund, that f and g are continuous

around (x̄, ȳ), that the graph of ∂ψ is norm-closed around (w̄, z̄), that

∂2
Nψ(w̄, z̄)(0) ∩ ker D∗

N g(x̄, ȳ) = {0} ,

that x∗ = 0 is the only element satisfying

(x∗, 0) ∈ D∗
N f (x̄, ȳ)(u) + D∗

N g(x̄, ȳ) ◦ ∂2
Nψ(w̄, z̄)(u), −x∗ ∈ N(x̄ ;Ω)

for some u ∈ W ∗∗, and that (x∗, y∗, u) = (0, 0, 0) is the only one satisfying

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(u) ∩

(
− D∗

N g(x̄, ȳ) ◦ ∂2
Nψ(w̄, z̄)(u)

)
.

Then for every upper subgradient (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ) there are x̃∗ ∈ N(x̄ ;Ω)
and u ∈ W ∗∗ such that

(−x∗ − x̃∗,−y∗) ∈ D∗
N f (x̄, ȳ)(u) + D∗

N g(x̄, ȳ) ◦ ∂2
Nψ(w̄, z̄)(u) (5.65)

provided that either f is Lipschitz continuous around (x̄, ȳ) and dim W < ∞,
or g is PSNC at (x̄, ȳ) and ∂ψ is SNC at (w̄, z̄), or g is SNC at (x̄, ȳ) and
∂ψ−1 is PSNC at (z̄, w̄).

(iii) Assume that ϕ is Lipschitz continuous around (x̄, ȳ) in addition to
the assumptions in either (i) or (ii). Then there are, respectively, (x∗, y∗) ∈
∂ϕ(x̄, ȳ) and u ∈ W ∗∗ satisfying (5.64) and (x∗, y∗) ∈ ∂ϕ(x̄, ȳ), x̃∗ ∈ N(x̄ ;Ω),
u ∈ W ∗∗ satisfying (5.65).
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Proof. To establish (i), we employ the upper subdifferential optimality con-
ditions of Theorem 5.33 and the coderivative formula of Proposition 4.53 for
the equilibrium map

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ f (x, y) + (∂ψ ◦ g)(x, y)

}
in (5.63). As follows from Theorem 1.22, the SNC property of S at (x̄, ȳ) is
equivalent to the one of ∂ψ at (w̄, z̄) under the surjectivity assumption on
∇g(ȳ). Then combining the assumptions and conclusions of Theorem 5.33
and Proposition 4.53, we justify (i). The proof of (ii) is similar based on the
optimality conditions of Theorem 5.33 and the upper coderivative estimate of
Theorem 4.54. The sufficient conditions of the SNC property of the composi-
tion ∂ψ ◦ g are derived from Theorem 3.98 as in the proof of Theorem 4.54.

The lower subdifferential optimality conditions in (iii) follow from Theo-
rem 5.34(i) by employing the above arguments. �

Let us present some consequences of the upper and lower subdifferential
assertions (ii) and (iii) of Theorem 5.43 in the case of strictly differentiable
mappings f and g with finite-dimensional image spaces and possibly non-
surjective derivatives when the relationships of the theorem admit essential
simplifications.

Corollary 5.44 (optimality conditions for special MPECs governed
by GVIs with composite fields). Let (x̄, ȳ) be a local optimal solution to
problem (5.63) with f : X ×Y → IRm and g: X ×Y → IRm strictly differentiable
at (x̄, ȳ) and with Ω ⊂ X closed around x̄. Assume that X and Y are Asplund,
that gph ∂ψ is closed around (w̄, z̄) (which is automatic for continuous and
for amenable functions), that

∂2ψ(w̄, z̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} .

and that the system of inclusions⎧⎨
⎩

x∗ ∈ ∇x f (x̄, ȳ)∗u + ∇x g(x̄, ȳ)∗∂2ψ(w̄, z̄)(u), −x∗ ∈ N(x̄ ;Ω) ,

0 ∈ ∇y f (x̄, ȳ)∗u + ∇y g(x̄, ȳ)∗∂2ψ(w̄, z̄)(u)

has only the trivial solution x∗ = u = 0. Then for every (x∗, y∗) ∈ ∂̂+ϕ(x̄, ȳ)
there is u ∈ IRm such that

−x∗ ∈ ∇x f (x̄, ȳ)∗u + ∇x g(x̄, ȳ)∗∂2ψ(w̄, z̄)(u) + N(x̄ ;Ω) ,

−y∗ ∈ ∇y f (x̄, ȳ)∗u + ∇y g(ȳ)∗∂2ψ(w̄, z̄)(u) .
(5.66)

If in addition the cost function ϕ is Lipschitz continuous around (x̄, ȳ), then
there are (x∗, y∗) ∈ ∂ϕ(x̄, ȳ) and u ∈ IRm satisfying (5.66).

Proof. This easily follows from Theorem 5.43(ii,iii) due to the coderivative
representation for strictly differentiable functions. �
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Remark 5.45 (optimality conditions for MPECs under canonical
perturbations). Consider the class of MPECs

minimize ϕ(x, z, y) subject to z ∈ f (x, y) + Q(x, y), (x, z) ∈ Ω , (5.67)

with equilibrium constraints given by solution maps to canonically perturbed
generalized equations

Σ(x, z) :=
{

y ∈ Y
∣∣ z ∈ f (x, y) + Q(x, y)

}
.

One can treat (5.67) as a particular case of the MPECs (5.56) with respect
to the parameter pair p := (x, z). Hence the above necessary optimality con-
ditions obtained for (5.56) readily imply the corresponding results for (5.67).
One the other hand, the canonical structure of parameter-dependent equilib-
rium constraints in (5.67) allows us to derive special results for this class of
MPECs. This can be done on the base of the upper and lower subdifferential
optimality conditions of Theorem 5.33 and 5.34 (see also Corollary 5.35) under
the Lipschitz-like property of the equilibrium map Σ(·) efficient conditions for
which are obtained in Subsect. 4.4.3. The latter results automatically induce
necessary optimality conditions for MPECs (5.67) and also for (5.56) that are
generally independent of those obtained in Corollary 5.39 and their specifi-
cations. We refer the reader to the corresponding results and discussions in
Subsect. 4.4.3.

5.2.3 Refined Lower Subdifferential Conditions
for MPECs via Exact Penalization

Here we develop another approach to necessary optimality conditions for
MPECs governed by parametric variational systems of type (5.56). In contrast
to the preceding subsection, this approach is not directly based on applying
calculus rules to the general optimality conditions of Subsect. 5.2.1 but in-
volves a preliminary penalization procedure, which leads to more subtle lower
subdifferential results in some settings. On the other hand, the penalization
approach doesn’t allow us to derive necessary optimality conditions of the
upper subdifferential type given in Subsect. 5.2.2.

To begin with, we define a Lipschitzian property of set-valued mappings
at reference points of their graphs.

Definition 5.46 (calmness of set-valued mappings). Let F : X →→ Y be
a set-valued mapping between Banach spaces, and let (x̄, ȳ) ∈ gph F. Then F
is calm at (x̄, ȳ) with modulus 	 ≥ 0 if there are neighborhoods U of x̄ and
V of ȳ such that

F(x) ∩ V ⊂ F(x̄) + 	‖x − x̄‖IB for all x ∈ U . (5.68)

If one may choose V = Y in (5.68) with x̄ ∈ dom F, the mapping F is calm
at the point x̄.
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The latter calmness property of set-valued mappings at points of their do-
mains is also known as upper Lipschitzian property of F at x̄ ∈ dom F (in the
sense of Robinson). Following the terminology of this book, the graph-localized
calmness property (5.68) may be alternatively called the upper-Lipschitz-like
property of F at (x̄, ȳ) ∈ gph F .

One can see that the above calmness/upper Lipschitzian properties of set-
valued mappings are less restrictive than their “full” counterparts from Defin-
ition 1.40, where x̄ is replaced by u ∈ U that varies around x̄ together with x .
On the other hand, the calmness properties, in contrast to the full Lipschitzian
ones, are not robust with respect to perturbations of the reference point x̄ .
Moreover, the above calmness properties don’t imply that (x̄, ȳ) ∈ int (gph F)
and x̄ ∈ int (dom F), respectively. Note also that for single-valued mappings
F = f : X → Y the calmness property of f doesn’t reduce to the standard
local Lipschitzian property of single-valued mappings. A classical setting, due
to Robinson, when a mapping F : IRn →→ IRm is calm/upper Lipschitzian at
every point x̄ ∈ dom F but may not be locally Lipschitzian around x̄ is the
one when F is piecewise polyhedral, i.e., its graph is expressible as the union of
finitely many (convex) polyhedral sets. Such mappings are important for ap-
plications in mathematical programming with finitely many linear constraints
of equality and inequality types.

In this subsection we use the calmness property (5.68) for the study of
MPECs governed by parametric variational systems. First let us consider the
following optimization problem containing constraints in the form of nonpara-
metric generalized equations:

minimize ϕ(t) subject to 0 ∈ F(t), t ∈ Ω , (5.69)

where F : T →→ Z is a set-valued mapping between Banach spaces, ϕ: T → IR,
and Ω ⊂ T . Since the constraints in (5.69) can be written as t ∈ F−1(0)∩Ω,
this problem is a special case of the optimization problem (5.12) considered in
Subsect. 5.1.2. Applying the necessary optimality conditions obtained there
for the latter problem unavoidably requires the Lipschitz-like property of F−1

(or the metric regularity property of F) around a minimum point due to the
qualification condition (5.15) with Θ = {0}. However, this property may be
relaxed by using preliminary an exact penalization procedure.

Indeed, problem (5.69) can be equivalently written as:

minimize ϕ(t) subject to z ∈ F(t), z = 0, t ∈ Ω .

The next auxiliary result, which is strongly related to Theorem 5.16, provides
a reduction of (5.69) to general MPECs considered in Subsect. 5.2.1.

Lemma 5.47 (exact penalization under generalized equation con-
straints). Let t̄ be a local optimal solution to problem (5.69) in the framework
of Banach spaces. Assume that ϕ is Lipschitz continuous around t̄ with mod-
ulus 	ϕ and that the mapping (F−1 ∩ Ω)(z) := F−1(z) ∩ Ω is calm at (0, t̄)
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with modulus 	. Then there are neighborhoods V of t̄ and U of 0 ∈ Z such
that (t̄, 0) ∈ T × Z solves the penalized problem

minimize ψ(t, z) := ϕ(t) + µ‖z‖ subject to z ∈ F(t) ∩ U, t ∈ Ω ∩ V

provided that µ ≥ 	ϕ · 	.

Proof. Since F−1 ∩Ω is calm at (0, t̄) with modulus 	 ≥ 0, there are neigh-
borhoods V of t̄ and U of 0 ∈ Z such that for some t̂ ∈ F−1(0) ∩Ω one has
the estimate

‖t − t̂‖ ≤ 	‖z‖ whenever t ∈ F−1(z) ∩Ω ∩ V, z ∈ U .

Using this and the Lipschitz continuity of ϕ with modulus 	ϕ , we get

ϕ(t̄) ≤ ϕ(t̂) = ϕ(t) +
(
ϕ(t̂) − ϕ(t)

)
≤ ϕ(t) + 	ϕ‖t̂ − t‖ ≤ ϕ(t) + 	ϕ · 	‖z‖

≤ ϕ(t) + µ‖z‖

whenever t ∈ F−1(z) ∩Ω ∩ V , z ∈ U , and µ ≥ 	ϕ · 	. �

Theorem 5.48 (necessary optimality conditions under generalized
equation constraints). Let t̄ be a local optimal solution to problem (5.69),
where T and Z are Asplund and where Ω and gph F are locally closed around
t̄ and (t̄, 0), respectively. Assume that ϕ is locally Lipschitzian around t̄ with
modulus 	ϕ, that F−1 ∩Ω is calm at (0, t̄) with modulus 	, and that the mixed
qualification condition

D∗
M F(t̄, 0)(0) ∩

(
− N(t̄ ;Ω)

)
= {0}

is fulfilled. Suppose also that either F is PSNC at (t̄, 0) or Ω is SNC at t̄.
Then for any µ ≥ 	ϕ · 	 there is z∗ ∈ Z∗ with ‖z∗‖ ≤ µ such that

0 ∈ ∂ϕ(t̄) + D∗
N F(t̄, 0)(z∗) + N(t̄ ;Ω) .

If in particular F is given in the form

F(t) := g(t) + Θ with g: T → Z and Θ ⊂ Z ,

then there is z∗ ∈ −N(−g(t̄);Θ) with ‖z∗‖ ≤ µ such that

0 ∈ ∂ϕ(t̄) + D∗
N g(t̄)(z∗) + N(t̄ ;Ω) (5.70)

provided that g is continuous around t̄, that Θ is locally closed around −g(t̄),
that the qualification condition

D∗
M g(t̄)(0) ∩

(
− N(t̄ ;Ω)

)
= {0} (5.71)

holds, and that either g is PSNC at t̄ or Ω is SNC at this point.
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Proof. From the viewpoint of necessary optimality conditions the penalized
optimization problem in Lemma 5.47 can be equivalently written as :

minimize ϕ(t) + µ‖z‖ subject to z ∈ F(t), t ∈ Ω ,

which is a special form of the general MPECs (5.52). Now applying to this
problem the result of Theorem 5.34(i) in the case of Lipschitzian cost functions
and then using the subdifferential sum rule of Theorem 2.33(c) for ϕ(t)+µ‖z‖,
we justify the first part of the theorem.

Now let F(t) := g(t) +Θ and apply the general statement of the theorem
to this particular mapping, which is the sum of g and Θ(t) := Θ for all t ∈ T .
It is easy to see that the latter mapping is PSNC at any (t̄, z̄) ∈ T × Θ and
that its both coderivatives D∗ = D∗

N , D∗
M are computed by

D∗Θ(t̄, z̄)(z∗) =

⎧⎨
⎩

0 if −z∗ ∈ N(z̄;Θ) ,

∅ otherwise.

Then we have by the coderivative sum rules of Theorem 3.10 applied to both
coderivatives D∗ = D∗

N , D∗
M of the sum f + Θ that

D∗F(t̄, 0)(z∗) ⊂

⎧⎨
⎩

D∗g(t̄)(z∗) if −z∗ ∈ N(−g(t̄);Θ) ,

∅ otherwise.

Substituting this into the general qualification and necessary optimality con-
ditions of the theorem, we arrive at relations (5.71) and (5.70), respectively.
It remains to observe that the PSNC property of g at t̄ implies the one for
F = g + Θ at (t̄, 0) due to Theorem 3.88. �

Note that the qualification condition (5.71) holds and g is PSNC at t̄ if it is
Lipschitz continuous around this point. Observe also that the above approach
based on the exact penalization doesn’t allow us to deduce upper subdifferential
optimality conditions for (5.69) from the ones for (5.52), since the required
sum rule is not generally valid for the Fréchet upper subdifferential of the sum
ϕ(·) + µ‖ · ‖ unless ϕ is Fréchet differentiable at a minimum point.

Next we derive necessary optimality conditions for the MPEC problem
with equilibrium constraints governed by parametric variational systems:

minimize ϕ(x, y) subject to 0 ∈ f (x, y) + Q(x, y), (x, y) ∈ Ω , (5.72)

where f : X × Y → Z , Q: X × Y →→ Z , and Ω ⊂ X × Y . Observe that prob-
lem (5.72) is more general than (5.56), where the geometric constraints don’t
depend on y. The results obtained below are based on reducing the MPEC
problem (5.72) to the one in (5.69) governed by nonparametric generalized
equations and then on employing Theorem 5.48 and calculus rules. Note that
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these results are generally different from those obtained in Subsect. 5.2.2 even
in the case of y-independent geometric constraints.

There are at least two ways of reducing (5.72) to (5.69). The first one is
directly by considering

F(t) = F(x, y) := f (x, y) + Q(x, y)

and then using the general optimality conditions of Theorem 5.48. The second
way consists of reducing (5.72) to a special form of Theorem 5.48 with

F(x, y) := g(x, y) + Θ, Θ := gph Q, and

g(x, y) := (−x,−y, f (x, y)) .
(5.73)

Let us explore just the latter way for brevity. It leads to the following necessary
optimality conditions for the MPEC problem (5.72).

Theorem 5.49 (optimality conditions for MPECs via penalization).
Let (x̄, ȳ) be a local optimal solution to problem (5.72), where f : X × Y → Z
and Q: X × Y →→ Z are mappings between Asplund spaces. Assume that ϕ
is Lipschitz continuous around (x̄, ȳ) with modulus 	ϕ, that f is continuous
around this point, and that the sets Ω and gph Q are locally closed around
(x̄, ȳ) and (x̄, ȳ, z̄) with z̄ := − f (x̄, ȳ), respectively. Suppose also that the
mapping G: X × Y × Z →→ X × Y given by

G(u, v, w) :=
{
(x, y) ∈ Ω

∣∣ (u + x, v + y, w − f (x, y)
)
∈ gph Q

}
is calm at (0, 0, 0, x̄, ȳ) with modulus 	, that the qualification condition

D∗
M f (x̄, ȳ)(0) ∩

(
− N((x̄, ȳ);Ω)

)
= {0}

is fulfilled, and that either f is PSNC at (x̄, ȳ) or Ω is SNC at this point.
Then there are (x∗, y∗, z∗) ∈ X∗ × Y ∗ × Z∗ with ‖(x∗, y∗, z∗)‖ ≤ 	ϕ · 	 and
(x∗, y∗) ∈ D∗

N Q(x̄, ȳ, z̄)(z∗) satisfying

(−x∗,−y∗) ∈ ∂ϕ(x̄, ȳ) + D∗
N f (x̄, ȳ)(z∗) + N((x̄, ȳ);Ω) ,

which implies that

0 ∈ ∂ϕ(x̄, ȳ) + D∗
N f (x̄, ȳ)(z∗) + D∗

N Q(x̄, ȳ, z̄)(z∗) + N((x̄, ȳ);Ω) .

Proof. Apply the special case of Theorem 5.48 with the data of (5.73). Since

g(x, y) = (−x,−y, 0) + (0, 0, f (x, y)) ,

it is easy to observe from Theorem 1.70 that g is PSNC at (x̄, ȳ) if and only
if f is PSNC at this point. Then using the sum rules from Theorem 1.62(ii)
for both coderivatives D∗ = D∗

N , D∗
M , we have
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D∗g(x̄, ȳ)(x∗, y∗, z∗) = (−x∗,−y∗) + D∗ f (x̄, ȳ)(z∗) .

Thus we get the qualification condition and the necessary optimality condi-
tion of the theorem directly from (5.71) and (5.70) of Theorem 5.48. �

For further applications of Theorem 5.49 one needs to provide efficient
conditions ensuring the calmness property of the mapping G in this theorem.
As we know, G is calm at the reference point if it is Lipschitz-like around
it. Since G is given in the form of constraint systems, sufficient conditions
for the latter property follow from the results of Subsect. 4.3.2. Let us im-
plement these results considering for simplicity the case when the base f in
the equilibrium constraint of (5.72) is strictly Lipschitzian at (x̄, ȳ). In this
case f is automatically PSNC at (x̄, ȳ) and the qualification condition of
Theorem 5.49 is satisfied; hence the Lipschitz-like property of G implies the
necessary optimality conditions for the MPEC problem in the latter theorem.

Corollary 5.50 (equilibrium constraints with strictly Lipschitzian
bases). In the general framework of Theorem 5.49, suppose that f is strictly
Lipschitzian at (x̄, ȳ), that Q is SNC at (x̄, ȳ, z̄), and that the relation

(x∗, y∗) ∈
[
∂〈z∗, f 〉(x̄, ȳ) + N((x̄, ȳ);Ω)

]
∩
(
− D∗

N Q(x̄, ȳ, z̄)(z∗)
)

(5.74)

holds only for x∗ = y∗ = z∗ = 0. Then there is z∗ ∈ Z∗ such that the necessary
optimality condition

0 ∈ ∂ϕ(x̄, ȳ) + ∂〈z∗, f 〉(x̄, ȳ)(z∗) + D∗
N Q(x̄, ȳ, z̄)(z∗) + N((x̄, ȳ);Ω)

is satisfied.

Proof. Let h: X × Y × Z × X × Y → X × Y × Z be defined by

h(u, v, w, x, y) :=
(
u + x, v + y, w − f (x, y)

)
.

Then the mapping G in Theorem 5.49 is represented as the constraint system

G(u, v, w) =
{

(x, y) ∈ X × Y
∣∣∣ h(u, v, w, x, y) ∈ gph Q ,

(u, v, w, x, y) ∈ X × Y × Z ×Ω
}
.

To ensure the Lipschitz-like property of G around (0, 0, 0, x̄, ȳ), we apply
the result of Corollary 4.41. It is easy to see from the structure of G that h is
strictly Lipschitzian at (0, 0, 0, x̄, ȳ) if and only if f is strictly Lipschitzian at
(x̄, ȳ) and that the set {0}×N((x̄, ȳ);Ω) is PSNC at (0, 0, 0, x̄, ȳ) with respect
to the first three components in the product space X×Y ×Z×X×Y . Then the
qualification condition (4.44) of Corollary 4.41 applied to the above mapping
G reads that (u∗, v∗, w∗, x∗, y∗, z∗) = (0, 0, 0, 0, 0, 0) is the only solution to
the inclusion system
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⎩

(u∗, v∗, w∗, 0, 0) ∈ ∂
〈
(x∗, y∗, z∗), h

〉
(0, 0, 0, x̄, ȳ) + {0} × N((x̄, ȳ);Ω) ,

(x∗, y∗, z∗) ∈ N((x̄, ȳ, z̄); gph Q),

which is equivalent to require that the above relations yields x∗ = y∗ = z∗ = 0.
By the elementary subdifferential sum rule we have

∂
〈
(x∗, y∗, z∗), h

〉
(0, 0, 0, x̄, ȳ) =

(
x∗, y∗, z∗, (x∗, y∗) + ∂

〈
− z∗, f

〉
(x̄, ȳ)

)
,

and therefore the above qualification condition is equivalent to say that sys-
tem (5.74) has only the trivial solution (x∗, y∗, z∗) = (0, 0, 0). This completes
the proof of the corollary. �

Similarly to the preceding subsection one can derive, based on calculus
rules, further consequences of Theorem 5.49 and Corollary 5.50 for the cases
of equilibrium constraints in (5.72) governed by generalized variational in-
equalities with composite potentials and composite fields, i.e., when

Q(x, y) = ∂(ψ ◦ g)(x, y) and Q(x, y) = (∂ψ ◦ g)(x, y) .

The results obtained in this way are expressed in terms of the second-order sub-
differentials of extended-real-valued functions ψ . Leaving this to the reader,
we present next another corollary of Theorem 5.49 for a special class of
MPECs in finite dimensions, where the mapping G in Theorem 5.49 may
not be Lipschitz-like but still satisfies the weaker calmness property.

Consider the following MPEC problem with both variational and nonva-
riational constraints of the polyhedral type:

minimize ϕ(x, y) subject to

0 ∈ A1x + B1y + c1 + Q(A2x + B2y + c2), Lx + My + e ≤ 0 ,
(5.75)

where x ∈ IRn, y ∈ IRm , Q: IRs →→ IRm , C ∈ R p×n , D ∈ IR p×m , and Ai , Bi , ci

(i = 1, 2) are matrices and vectors of appropriate dimensions.

Corollary 5.51 (optimality conditions for MPECs with polyhedral
constraints). Let (x̄, ȳ) be a local optimal solution to (5.75). Assume that
ϕ is Lipschitz continuous around (x̄, ȳ) and that Q is piecewise polyhedral,
i.e., its graph is a union of finitely many polyhedral sets. Then there are vec-
tors (x∗, y∗) ∈ ∂ϕ(x̄, ȳ), (u∗, v∗) ∈ IRs × IRm, and z∗ := (λ1, . . . , λp) ∈ IR p

satisfying the relations

0 = x∗ + A∗
2u∗ + A∗

1v
∗ + L∗z∗, 0 = y∗ + B∗

2 u∗ + B∗
1v

∗ + M∗z∗ ,

u∗ ∈ D∗Q
(

A2 x̄ + B2 ȳ + c2,−A1 x̄ − B1 ȳ − c1

)
(v∗), and

λ j ≥ 0, λ j
(
(Lx̄) j + (M ȳ) j + e j

)
= 0 for j = 1, . . . , p .
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Proof. As mentioned above, a piecewise polyhedral set is calm at every point of
its domain. Since both sets gph Q and Ω := {(x, y) ∈ IRn+m | Lx +My+e ≤ 0}
are piecewise polyhedral, the mapping

G(u, v) :=
{
(x, y) ∈ Ω

∣∣ (u + A2x + B2y + c2, v − A1x − B1y − c1) ∈ gph Q
}

is calm at (0, 0), and hence all the assumptions of Theorem 5.49 are fulfilled.
Then taking into account the particular structure of the initial data in (5.75)
as a special form of (5.72), we deduce the necessary optimality conditions of
the corollary directly from the ones in Theorem 5.49. �

To illustrate the obtained necessary optimality conditions for MPECs, we
consider the following example, where the equilibrium constraint is governed
by a one-dimensional variational inequality of the so-called second kind, i.e.,
defined by the subdifferential of a convex continuous function:

minimize 1
2 x − y subject to 0 ∈ y − x + ∂|y|, x ∈ [−2, 0] .

It is simple to observe that (x̄, ȳ) = (−1, 0) is the unique global solution to this
problem, which is a special case of (5.75) with Q(y) = ∂|y|. Since this mapping
Q is obviously piecewise polyhedral, all the assumptions of Corollary 5.51 are
fulfilled. To check the necessary optimality conditions of this corollary, we
need to compute the coderivative D∗Q(0, 1), i.e., the basic normal cone to
the graph of ∂|y| at the reference point. It can be easily done geometrically
applying the representation of Theorem 1.6, which gives

N((0,−1); gph ∂| · |)=
{
(u, v) ∈ IR2

∣∣ either uv=0, or u > 0 and v < 0
}
.

Then the necessary optimality conditions of Corollary 5.51 reduce to

( 1
2 ,−

1
2 ) ∈ N

(
(0,−1); gph ∂| · |

)
,

which is definitely satisfied.

Remark 5.52 (implementation of optimality conditions for MPECs).
The most challenging task in applications of the above optimality conditions
to specific MPECs is to compute (or to obtain efficient upper estimates) of
the coderivatives for the field multifunctions Q. In the cases when Q is given
in the subdifferential form Q(·) = ∂ψ(·), as well as in the composite sub-
differential forms considered in Subsect. 5.2.2, this reduces to computing or
estimating the second-order subdifferentials of the corresponding potentials.
Some examples and discussions on such calculations were presented in Sub-
sects. 1.3.5 and 4.4.2; see, in particular, Example 4.67 related to mechanical
applications. As mentioned above, the second-order subdifferentials for gen-
eral classes of nonsmooth functions important in optimization and various
applications were computed in the papers of Dontchev and Rockafellar [364]
and Mordukhovich and Outrata [939]. Many specific calculations and appli-
cations in this direction can be found in the papers by Kočvara, Kružik and
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Outrata [689], Kočvara and Outrata [691, 690], Lucet and Ye [816], Mor-
dukhovich, Outrata and Červinka [940], Outrata [1024, 1025, 1027, 1030], Ye
[1338, 1339], Ye and Ye [1343], Zhang [1360], and the references therein.

In particular, complete calculations have been done by Outrata [1027] for
MPECs with implicit complementarity constraints given by

f (x, y) ≥ 0, y − g(x, y) ≥ 0, 〈 f (x, y), y − g(x, y)〉 = 0 ,

where f and g are smooth single-valued mappings from IRn × IRm into IRm .
Such problems are important for various engineering, economic, and mechani-
cal applications. They correspond to the standard nonlinear complementarity
problems when g = 0. It is easy to see that the implicit complementarity
constraints can be equivalently written as the equilibrium constraints

0 ∈ f (x, y) + (∂ϕ ◦ h)(x, y)

with ϕ(·) := δ(·; IRm
+) and h(x, y) := y − g(x, y). The main part of calcula-

tions for such MPECs consists of computing the basic normal cone to the
graph of N(·; IRm

+), which is done by Outrata in [1024]. Based on the non-
smooth calculus developed above, we can extend these results to nonsmooth
complementarity problems with nondifferentiable mappings f and g.

5.3 Multiobjective Optimization

This section is devoted to multiobjective constrained optimization problems,
where objective/cost functions may not be real-valued, i.e., optimization is
conducted with respect to more general preference relations. Such problems,
which probably first arose in economic modeling (see, e.g., Chap. 8), are cer-
tainly important for applications. They are also interesting mathematically
having often significant differences in comparison with single-objective mini-
mization/maximimization problems and requiring special considerations.

In what follows we study general classes of multiobjective/vector opti-
mization problems with various constraints in infinite-dimensional spaces. The
involved concepts of optimality (efficiency, equilibrium) are given by prefer-
ence relations that cover the standard ones well-recognized in the theory and
applications while extending and generalizing them in several directions.

First we consider multiobjective problems, where the notion of optimality
for a cost mapping f : X → Z between Banach spaces is described by means
of a generalized order relation defined by a given subset M ⊂ Z , which may
be generally nonconic and nonconvex having an empty interior. Such a no-
tion of ( f, M)-optimality is actually induced by the concept of local extremal
points of set systems (see Sect. 2.1) and extends the classical concepts of
Pareto/weak Pareto optimality as well as their generalizations. To derive nec-
essary optimality conditions for multiobjective problems of this type with var-
ious constraints, we employ the extremal principle of Sect. 2.2, together with
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the developed generalized differential and SNC calculi, that lead us to compre-
hensive results for such multiobjective as well as related minimax problems in
terms of our basic normals and subgradients. Note that our approach doesn’t
rely on any scalarization techniques and results that are conventionally used
in the study of multiobjective optimization problems.

Along with the multiobjective problems of the above type, we consider
some classes of constrained problems, where the optimality concept is gener-
ally described by an abstract nonreflexive preference relation satisfying certain
transitivity and local satiation requirements. Such preference relations may go
far beyond generalized Pareto/weak Pareto concepts of optimality being use-
ful for some important applications. To handle multiobjective problems of the
latter type, we develop an extended extremal principle that applies not just
to system of sets but to systems of set-valued mappings. Roughly speaking,
the main difference between the conventional and extended extremal prin-
ciple is that the latter allows us to take into account a local deformation of
sets, rather than their (linear) translation, in extremal systems. In this way
we derive new necessary optimality conditions for constrained multiobjective
problems with general nonreflexive preference relations under reasonable as-
sumptions. We discuss some specifications of the results obtained and their
relationships with previous developments.

5.3.1 Optimal Solutions to Multiobjective Problems

Let us start with an abstract concept of optimality that covers conventional
notions of optimal solutions to multiobjective problems and is induced by the
concept of set extremality from Definition 2.1.

Definition 5.53 (generalized order optimality). Given a single-valued
mapping f : X → Z between Banach spaces and a set 0 ∈ Θ ⊂ Z , we say that
a point x̄ ∈ X is locally ( f,Θ)-optimal if there are a neighborhood U of
x̄ and a sequence {zk} ⊂ Z with ‖zk‖ → 0 as k → ∞ such that

f (x) − f (x̄) /∈ Θ − zk for all x ∈ U and k ∈ IN . (5.76)

The set Θ in Definition 5.53 may be viewed as a generator of an extended
order/preference relation between z1, z2 ∈ Z defined via z1 − z2 ∈ Θ. In the
scalar case of Z = IR and Θ = IR−, the above optimality notion is clearly
reduced to the standard local optimality.

Note that we don’t generally assume that Θ is either convex or its in-
terior is nonempty. If Θ is a convex subcone of Z with riΘ �= ∅, then
the above optimality concept covers the conventional concept of optimal-
ity (called sometimes Slater optimality) requiring that there is no x ∈ U
with f (x) − f (x̄) ∈ riΘ. This extends the notion of weak Pareto optimal-
ity/efficiency corresponding to f (x)− f (x̄) ∈ intΘ in the above relations. To
reduce it to the notion in Definition 5.53, we take zk := −z0/k for k ∈ IN in
(5.76) with some z0 ∈ riΘ. The standard notion of Pareto optimality can be
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formulated in these terms as the absence of x ∈ U for which f (x)− f (x̄) ∈ Θ
and f (x̄) − f (x) /∈ Θ. Of course, the Pareto-type notions can be written in
the classical terms of utility functions when Θ = IRm

−.
On the other hand, it is convenient for the further study to formulate the

following minimax problem over a compact set as a problems of of multiob-
jective optimization.

Example 5.54 (minimax via multiobjective optimization). Let x̄ be a
local optimal solution to the minimax problem:

minimize ϕ(x) := max
{
〈z∗, f (x)〉

∣∣ z∗ ∈ Λ
}
, x ∈ X ,

where f : X → Z and where Λ ⊂ Z∗ is weak∗ sequentially compact subset
of Z∗ such that there is z0 ∈ Z with 〈z∗, z0〉 > 0 for all z∗ ∈ Λ. Suppose
for simplicity that ϕ(x̄) = 0. Then x̄ is locally ( f,Θ)-optimal in the sense of
Definition 5.53 with

Θ :=
{

z ∈ Z
∣∣ 〈z∗, z〉 ≤ 0 whenever z∗ ∈ Λ

}
.

Proof. Taking z0 given above, one can easily check that (5.76) holds with the
sequence zk := z0/k, k ∈ IN . �

We’ll show in the next subsection that the ( f,Θ)-optimality under gen-
eral constraints can be comprehensively handled on the base of the extremal
principle of Sect. 2.2 and the efficient representations of basic normals to gen-
eralized epigraphs obtained in Lemma 5.23 together with the SNC calculus in
infinite dimensions.

However, there are multiobjective problems arising, e.g., in control appli-
cations and game-theoretical frameworks, where appropriate concepts of op-
timality require nonlinear transformations of sets in extremal systems instead
of their linear translations as in Definition 5.53. This can be formalized by
considering general preference relations on Z satisfying certain requirements
that allow us to use suitable techniques of variational analysis.

Given a subset Q ⊂ Z × Z , we say that z1 is preferred to z2 and write
z1 ≺ z2 if (z1, z2) ∈ Q. A preference ≺ is nonreflexive if the corresponding set
Q doesn’t contain the diagonal (z, z). In the sequel we consider nonreflexive
preference relations satisfying the following requirements.

Definition 5.55 (closed preference relations). Let

L(z) :=
{

u ∈ Z
∣∣ u ≺ z

}
be a level set at z ∈ Z with respect to the given preference ≺. We say that
≺ is locally satiated around z̄ if z ∈ clL(z) for all z in some neighborhood
of z̄. Furthermore, ≺ is almost transitive on Z provided that for all u ≺ z
and v ∈ clL(u) one has v ≺ z. The preference relation ≺ is called closed
around z̄ if it is locally satiated and almost transitive simultaneously.
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Note that, while the local satiation property definitely holds for any reason-
able preference, the almost transitivity requirement may be violated for some
natural preferences important in applications, in particular, for those related
to the ( f,Θ)-optimality in Definition 5.53. Indeed, consider the case of the
so-called “generalized Pareto” preference induced by a closed cone Θ ⊂ Z
such that z1 ≺ z2 if and only if z1 − z2 ∈ Θ and z1 �= z2. This is, of course, a
particular case of Definition 5.53. The next proposition completely describes
the requirements on Θ under which this preference is almost transitive. Recall
that a cone Θ is pointed if Θ ∩ (−Θ) = {0}.

Proposition 5.56 (almost transitive generalized Pareto). The gener-
alized Pareto preference ≺ defined above is almost transitive if and only if the
cone Θ ⊂ Z is convex and pointed.

Proof. Let us first show that the cone Θ is convex if the above preference
≺ is almost transitive. Taking arbitrary elements z1, z2 ∈ Θ \ {0}, λ ∈ (0, 1),
and a ∈ Z , we define u := a + λz1 and v := a − (1 − λ)z2. Since λz1 �= 0,
one has u ≺ a and a ≺ v. By the almost transitivity property we have u ≺ v,
which means that λz1 + (1 − λ)z2 = u − v ∈ Θ, i.e., Θ is convex.

To prove that Θ is pointed under the transitivity of ≺, we take z ∈ Θ ∩
(−Θ) and put u := a + z and v := a − (−z). If z �= 0, then the almost
transitivity property implies that u ≺ v, which gives 0 = u − v ∈ Θ \ {0}.
This is a contradiction, and so z = 0.

To prove the converse statement of the proposition, we assume that Θ is
convex and pointed, and take v ∈ clL(u) with v ≺ z. Then there are z1, z2 ∈ Θ
such that v = u + z1, z = u − z2, and z2 �= 0. By the convexity of Θ one has
(v − z)/2 = z1/2 + z2/2 ∈ Θ, and so v ∈ clL(z). The assumption on v = z
yields z1 = −z2 �= 0, which contradicts the pointedness of Θ. Thus we have
v ≺ z and complete the proof of the proposition. �

Invoking the characterization of Proposition 5.56, we observe that the
almost transitivity condition of Definition 5.55 may fail to fulfill for important
special cases of generalized Pareto preferences (and hence in the setting of
Definition 5.53). It happens, in particular, for the preference described by the
following lexicographical ordering on IRm .

Example 5.57 (lexicographical order). Let ≺ be a preference on IRm,
m ≥ 3, defined by the lexicographical order, i.e., u ≺ v if there is an integer
j ∈ {0, . . . ,m − 1} such that ui = vi for i = 1, . . . , j and u j+1 < v j+1 for the
corresponding components of the vectors u, v ∈ IRm. Then this preference is
locally satiated but not almost transitive on IRm.

Proof. It is easy to check that the lexicographical preference ≺ is locally
satiated on IRm . On the other hand, this preference is generated by the convex
cone Θ := {(z1, . . . , zm) ∈ IRm | z1 ≤ 0}, which is not pointed, and thus the
almost transitivity property is violated by Proposition 5.56. To illustrate this,
let us consider the vectors
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z := (0, 0, 1, . . . , 0), u := (0, . . . , 0), v := (0, 1, 1, 0, . . . , 0)

in IRm and the sequence vk := (−1/k, 1, 1, 0, . . . , 0) → v as k → ∞. Then
u ≺ z, vk ≺ u, but v �≺ z while v ∈ clL(u). �

In the rest of this section we derive necessary optimality conditions in
constrained multiobjective problems, where concepts of local optimality for a
(vector) mapping f : X → Z at x̄ are given by a generalized order Θ on Z in
the sense of Definition 5.53 as well as by closed preferences on Z in the sense
of Definition 5.55. The results obtained in both cases are based on somewhat
different techniques and are generally independent.

5.3.2 Generalized Order Optimality

This subsection concerns necessary optimality conditions for constrained mul-
tiobjective problems with local optimal solutions understood in the sense of
Definition 5.53. This definition suggests the possibility of using the extremal
principle for set systems to derive necessary conditions for such a general-
ized order optimality being actually inspired by the concept of local extremal
points for system of sets. Our main goal is to obtain necessary conditions in
the pointbased/exact form involving generalized differential constructions at
the reference optimal solution. We mostly focus on qualified necessary optimal-
ity conditions taking into account that they directly imply, in our dual-space
approach, the corresponding non-qualified optimality conditions similarly to
the derivation in Sects. 5.1 and 5.2.

To get general results on necessary condition for generalized order opti-
mality under minimal assumptions, we need an extended version of the exact
extremal principle from Theorem 2.22 for the case of two sets in products of
Asplund spaces. This result involves the PSNC and strong PSNC properties of
sets in the product space X1× X2 with respect to an index set J ⊂ {1, 2} that
may be empty; see Definition 3.3. Note that both PSNC and strong PSNC
properties are automatic if J = ∅, and both reduce to the SNC property of
sets when J = {1, 2}. Our primary interest in the following lemma is an inter-
mediate case, which takes into account the product structure that is essential
for the main result of this subsection.

Lemma 5.58 (exact extremal principle in products of Asplund
spaces). Let x̄ ∈ Ω1∩Ω2 be a local extremal point of the sets Ω1,Ω2 ⊂ X1×X2

that are supposed to be locally closed around x̄, and let J1, J2 ⊂ {1, 2} with
J1∪ J2 = {1, 2}. Assume that both spaces X1 and X2 are Asplund, and that Ω1

is PSNC at x̄ with respect to J1 while Ω2 is strongly PSNC at x̄ with respect
to J2. Then there exists x∗ �= 0 satisfying

x∗ ∈ N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
.
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Proof. Applying the approximate extremal principle of Theorem 2.20 to the
extremal system {Ω1,Ω2, x̄} and taking a sequence εk ↓ 0 as k → ∞, we find
uk ∈ Ω1, vk ∈ Ω2, u∗

k ∈ N̂(uk ;Ω1), and v∗k ∈ N̂(vk ;Ω2) such that

‖uk − x̄‖ < εk, ‖vk − x̄‖ < εk, ‖u∗
k + v∗k ‖ < εk ,

1
2 − εk < ‖u∗

k‖ < 1
2 + εk,

1
2 − εk < ‖v∗k ‖ < 1

2 + εk

for all k ∈ IN . Since the sequences {u∗
k} and {v∗k } are bounded in the duals to

Asplund spaces, they weak∗ converge to some u∗ and v∗ along subsequences.
Thus u∗ ∈ N(x̄ ;Ω1), v∗ ∈ N(x̄ ;Ω2), and u∗ + v∗ = 0.

It remains to show that x∗ := u∗ �= 0. Assuming the contrary and using
the strong PSNC property of Ω2 at x̄ with respect to J2, we get ‖v∗jk‖ → 0
as k → ∞ for each j ∈ J2. This implies by the relations of the approximate
extremal principle that ‖u∗

jk‖ → 0 for each j ∈ J2 as well. Since Ω1 is assumed
to be PSNC at x̄ with respect to J1, this gives that ‖u∗

jk‖ → 0 for all j ∈ J1.
Due to J1 ∪ J2 = {1, 2}, we conclude that ‖u∗

k‖ → 0 as k → ∞. This is a
contradiction, which completes the proof of the lemma. �

Based on the above lemma and generalized differential calculus, we next
derive necessary optimality conditions for constrained multiobjective prob-
lems, where the optimality is understood in the sense of Definition 5.53. Given
a mapping f : X → Z and sets Ω ⊂ X and Θ ⊂ Z , we consider the generalized
epigraph E( f,Ω,Θ) defined in (5.37) and the restriction fΩ := f |Ω of f on
Ω. Recall that the notion of strong coderivative normality needed for the last
statement of the theorem is introduced in Definition 4.8 and some sufficient
conditions for this property are presented in Proposition 4.9.

Theorem 5.59 (necessary conditions for generalized order optimal-
ity). Let f : X → Z be a mapping between Asplund spaces, and let Ω ⊂ X
and Θ ⊂ Z be such sets that x̄ ∈ Ω and 0 ∈ Θ. Suppose that the point x̄
is locally ( f,Θ)-optimal relative to Ω (i.e., subject to the constraint x ∈ Ω).
The following assertions hold:

(i) Assume that the set

E( f,Ω,Θ) := {(x, z) ∈ X × Z
∣∣ f (x) − z ∈ Θ, x ∈ Ω

}
is locally closed around (x̄, z̄) with z̄ := f (x̄) and that dim Z < ∞. Then there
is z∗ ∈ Z∗ satisfying

(0,−z∗) ∈ N
(
(x̄, z̄); E( f,Ω,Θ)

)
, z∗ �= 0 , (5.77)

which always implies that z∗ ∈ N(0;Θ), and it also implies that 0 ∈
D∗

N fΩ(x̄)(z∗) provided that f is continuous around x̄ relative to Ω and that
Ω and Θ are locally closed around x̄ and 0, respectively. If in addition f is
Lipschitz continuous around x̄ relative to Ω, then (5.77) is equivalent to
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0 ∈ ∂〈z∗, fΩ〉(x̄), z∗ ∈ N(0;Θ) \ {0} . (5.78)

(ii) Let f be continuous around x̄ relative to Ω, let Ω and Θ be locally
closed around x̄ and 0, respectively, and let

(a) either Θ be SNC at 0,
(b) or f −1

Ω be PSNC at (z̄, x̄).

Then there is z∗ ∈ Z∗ satisfying

0 �= z∗ ∈ N(0;Θ) ∩ ker D∗
N fΩ(x̄) , (5.79)

which is equivalent to (5.78) and to (5.77) provided that f is Lipschitz continu-
ous around x̄ relative to Ω and that the restriction fΩ is strongly coderivatively
normal at this point.

Proof. Assume for simplicity that z̄ = f (x̄) = 0. Then, according to Defini-
tion 5.53, the point (x̄, 0) ∈ X × Z is a local extremal point of the set system
{Ω1,Ω2}, where

Ω1 := E( f,Ω,Θ), Ω2 := cl U × {0} ,

and where U is a neighborhood of the local optimality from (5.76) with x ∈ Ω.
Consider first the framework of assertion (i), where the set Ω1 is locally

closed around (x̄, 0) even if f may not be continuous around x̄ ; cf. Theo-
rem 5.24. Since U is a neighborhood of x̄ and Z is finite-dimensional, the
set Ω2 is SNC at (x̄, 0). Thus in this case we can use the conventional ver-
sion of the exact extremal principle from Theorem 2.22, which immediately
gives (5.77) and hence z∗ ∈ N(0;Θ). The other conclusions in (i) follow from
Lemma 5.23 under the assumptions made.

Next we consider the general Asplund space setting of assertion (ii), where
the continuity assumption on f and the closedness assumptions on Ω and
Θ directly imply the local closedness of E( f,Ω,Θ) around (x̄, 0). Thus we
may employ the product space version of the exact extremal principle from
Lemma 5.58 provided that there are index sets J1, J2 ⊂ {1, 2} with J1 ∪ J2 =
{1, 2} such that Ω1 is PSNC at (x̄, 0) with respect to J1 while Ω2 is strongly
PSNC at (x̄, 0) with respect to J2.

Let us take J1 = {2} and J2 = {1}, i.e., X1 = Z and X2 = X in the
framework of Lemma 5.58. It is easy to see that Ω2 is strongly PSNC at (x̄, 0)
with respect to X , since U is a neighborhood of x̄ ; note that Ω2 is never
SNC at (x̄, 0) unless Z is finite-dimensional. It remains to show that the set
Ω1 = E( f,Ω,Θ) is PSNC at (x̄, 0) with respect to Z .

Since the latter set is represented as the inverse image

E( f,Ω,Θ) = g−1(Θ) with g(x, z) := fΩ(x) − z ,

one may apply Theorem 3.84 to ensure the stronger SNC property of this
set. However, in this way we arrive at excessive conditions for the required
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PSNC property. Let us establish more subtle sufficient conditions for the latter
property by taking into account the specific structure of the mapping g. We
need to show that, given arbitrary sequences (xk, zk) → (x̄, 0) with xk ∈ Ω

and g(xk, zk) ∈ Θ and also (x∗
k , z∗k ) ∈ N̂

(
(xk, zk); E( f,Ω,Θ)

)
, one has[

‖x∗
k ‖ → 0, z∗k

w∗
→ 0

]
=⇒ ‖z∗k ‖ → 0 .

Consider locally closed sets Λ1,Λ2 ⊂ X × Z × Z defined by Λ1 := gph g,
Λ2 := X × Z ×Θ and observe that

(x∗
k , z∗k , 0) ∈ N̂((xk, zk, vk);Λ1 ∩Λ2) for all k ∈ IN , (5.80)

where vk := g(xk, zk). We are going to justify, using the full strength of The-
orem 3.79 on the PSNC property of set intersections in the product of three
spaces X × Z × Z = X1 × X2 × X3, that the set Λ1 ∩Λ2 is PSNC at (x̄, 0, 0)
with respect to Z = X2.

First let us consider case (a) in (ii) when Θ is assumed to be SNC at 0. In
this case we take J1 = {2} and J2 = {1, 2, 3} in the notation of Theorem 3.79
and observe that Λ2 is SNC at (x̄, 0, 0), i.e., its strong PSNC property at
(x̄, 0, 0) with respect to J2 \ J1 = {1, 3} is automatic. Let us check that Λ1

is PSNC at (x̄, 0, 0) with respect to J1 = {2}. The latter means that for
any sequences (xk, zk, vk) → (x̄, 0, 0) and (x∗

k , z∗k , v
∗
k ) ∈ N̂((xk, zk, vk); gph g)

as k → ∞ one has[
‖(x∗

k , v
∗
k )‖ → 0, z∗k

w∗
→ 0

]
=⇒ ‖z∗k ‖ → 0 .

Indeed, since the relation (x∗
k , z∗k , v

∗
k ) ∈ N̂((xk, zk, vk); gph g) can be rewritten

as (x∗
k , z∗k ) ∈ D̂∗g(xk, zk)(−v∗k ) and hence it gives

x∗
k ∈ D̂∗ fΩ(xk)(−v∗k ) and z∗k = v∗k (5.81)

by the structure of g and Theorem 1.62(i), we derive from (5.81) that ‖z∗k ‖ =
‖v∗k ‖ → 0 as k → ∞, which justifies the PSNC property of Λ1 at (x̄, 0, 0) with
respect to J1 = {2}.

To employ Theorem 3.79 in case (a), it remains to verify the mixed qualifi-
cation condition of Definition 3.78 for the set system {Λ1,Λ2} ⊂ X1×X2×X3

at (x̄, 0, 0) with respect to (J1\ J2)∪(J2\ J1) = {1, 3}. Taking into account the
structures of Λ1 and Λ2, the latter condition reduces to the following: for any
sequences (x∗

k , z∗k , v
∗
k ) ∈ N̂((xk, zk, vk); gph g) and u∗

k ∈ N̂(uk ;Θ) satisfying

(xk, zk, vk, uk) → (x̄, 0, 0, 0), ‖x∗
k ‖ → 0, z∗k

w∗
→ 0, (u∗

k , v
∗
k ) w∗

→ (u∗,−u∗)

as k → ∞ with some u∗ ∈ N(0;Θ) one has u∗ = 0. It follows from the previous
discussion that relations (5.81) hold for the above sequences whatever k ∈ IN .
Thus the mentioned mixed qualification condition is equivalent to
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N(0;Θ) ∩ ker D̃∗
M fΩ(x̄) = {0} (5.82)

for the sets Λ1 and Λ2 under consideration. If (5.82) doesn’t hold, then we
immediately arrive at the optimality condition (5.79), since the mixed coderiv-
ative is never larger than the normal one. Thus we may assume that (5.82)
is fulfilled, and then Theorem 3.79 ensures the PSNC property of the inter-
section Λ1 ∩ Λ2 at (x̄, 0, 0) with respect to Z . By the latter PSNC property
one has ‖z∗k ‖ → 0 from (5.80), and therefore the set E( f,Ω,Θ) is PSNC at
(x̄, 0) with respect to Z . This allows us to apply Lemma 5.58 to the above set
system {Ω1,Ω2} and arrive at the optimality condition (5.77). In turn, (5.77)
implies (5.79) by Lemma 5.23, which also ensures the other conclusions of the
theorem in case (a).

To complete the proof of the theorem, it remains to consider case (b) in
(ii). The only difference between the above proof in case (a) is that now we
need to justify the PSNC property of the intersection Λ1 ∩ Λ2 at (x̄, 0, 0)
with respect to Z = X2 in the product space X × Z × Z = X1 × X2 ×
X3 under the PSNC assumption on f −1

Ω at (0, x̄). To proceed, we again use
Theorem 3.79 with another arrangement of the index sets therein in the case
under consideration. Namely, let us now take J1 = {2, 3} and J2 = {1, 2}
in the notation of Theorem 3.79. Then J2 \ J1 = {1}, and the set Λ2 is
obviously strongly PSNC at (x̄, 0, 0) with respect to J2. Let us check that Λ1

is PSNC at (x̄, 0, 0) with respect to J1 under the assumption in (b). Indeed, the
required PSNC property means that for any sequences (xk, zk, vk) → (x̄, 0, 0)
and (x∗

k , z∗k , v
∗
k ) ∈ N̂ ((xk, zk, vk); gph g) one has[

‖x∗
k ‖ → 0, (z∗k , v

∗
k ) w∗

→ (0, 0)
]

=⇒ ‖(z∗k , v
∗
k )‖ → 0 as k → ∞ .

By the above arguments in case (a) the latter is equivalent to say that for any
sequences (xk, x∗

k , z∗k ) satisfying

x∗
k ∈ D̂∗ fΩ(xk)(z∗k ) and xk → x̄, ‖x∗

k ‖ → 0, z∗k
w∗
→ 0

one has ‖z∗k ‖ → 0 as k → ∞, which is obviously equivalent to the PSNC
property of f −1

Ω at (0, x̄) assumed in (b).
Finally, the application of Theorem 3.79 in case (b) requires the fulfill-

ment of the mixed qualification condition from Definition 3.78 for {Λ1,Λ2}
at (x̄, 0, 0) with respect to (J1 \ J2) ∪ (J2 \ J1) = {1, 3}, which happens to be
the same as in case (a). This completes the proof of the theorem. �

Taking into account that fΩ(x) = f (x)+∆(x ;Ω) with the indicator map-
ping ∆(·;Ω) of the set Ω and employing the coderivative/subdifferential and
PSNC sum rules developed in Chap. 3, one may easily derive from Theo-
rem 5.59 the corresponding (generally more restrictive) conditions expressed
in terms of f and Ω separately. It can be also done in the framework of (5.77)
by using intersection rules for the set
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E( f,Ω,Θ) =
{
(x, z)

∣∣ f (x) − z ∈ Θ
}
∩
(
Ω × Z

)
.

This allows us (again based on comprehensive calculus rules) to deal effi-
ciently with constrained multiobjective problems related to generalized or-
der optimality, where constraints are given in various forms similar to those
studied in Sect. 5.1 for single-objective minimization. In this way we obtain
necessary optimality conditions for multiobjective problems with geometric
and operator constraints described as x ∈ G−1(Λ) ∩ Ω, which particularly
include functional constraints of equality and inequality types. Let us present
a corollary of Theorem 5.59 in case (a) therein considering for simplicity only
multiobjective problems with operator (no geometric) constraints given by
inverse images of sets under set-valued mappings between Asplund spaces.

Corollary 5.60 (multiobjective problems with operator constraints).
Let f : X → Z and G: X →→ Y be mappings between Asplund spaces, and let
Θ ⊂ Z and Λ ⊂ Y be nonempty subsets. Suppose that x̄ is ( f,Θ)-optimal
subject to x ∈ G−1(Λ), where f is continuous, G is closed-graph, and Θ and
Λ are closed around the corresponding points. Suppose also that Θ is SNC
at 0 and that the set-valued mapping S(·) := G(·) ∩ Λ is inner semicompact
around x̄. Then there is z∗ ∈ N(0;Θ) \ {0} such that⋃[

D∗
N G(x̄, ȳ)(y∗)

∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Λ)
]⋂(

− D∗
N f (x̄)(z∗)

)
�= ∅

under one of the following requirements on ( f,G,Λ):
(a) f is PSNC at x̄, the qualification conditions

N(ȳ;Λ) ∩ ker D̃∗
M G(x̄, ȳ) = {0} for all ȳ ∈ S(x̄) ,

⋃[
D∗

N G(x̄, ȳ)(y∗)
∣∣∣ ȳ ∈ S(x̄), y∗ ∈ N(ȳ;Λ)

]⋂(
− D∗

M f (x̄)(0)
)

= {0}

hold, and either G−1 is PSNC at (ȳ, x̄) or Λ is SNC at ȳ for all ȳ ∈ S(x̄).
(b) The second qualification condition in (a) holds together with

N(ȳ;Λ) ∩ ker D∗
N G(x̄, ȳ) = {0} for all ȳ ∈ S(x̄) ,

and either G is PSNC at (x̄, ȳ) and Λ is SNC at ȳ, or G is SNC at (x̄, ȳ) for
all ȳ ∈ S(x̄).

Proof. Using assertion (ii) in Theorem 5.59 in case (a) therein, we find z∗ ∈
N(0;Θ) satisfying

0 ∈ D∗
N

[
f + ∆(·;Ω)

]
(x̄)(z∗)

with Ω := G−1(Λ). The latter implies, by the coderivative sum rule of Theo-
rem 3.10, that

N(x̄ ; G−1(Λ)) ∩
(
− D∗

N f (x̄)(z∗)
)
�= ∅
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provided that

N(x̄ ; G−1(Λ)) ∩
(
− D∗

M f (x̄)(z∗)
)

= {0} ,

and that either f is PSNC at x̄ or G−1(Λ) is SNC at this point. If f is sup-
posed to be PSNC at x̄ , then the corollary follows from Theorem 3.8 giving
the representation of basic normals to the inverse image G−1(Λ) under the
assumptions made in (a). Otherwise, one needs to employ Theorem 3.84 en-
suring the SNC property of G−1(Λ) at x̄ , which gives the conclusions of the
corollary under the assumptions made in (b). �

Note that the PSNC conditions on f and G−1 and both qualification con-
ditions in (a) of Corollary 5.60 automatically hold if f is Lipschitz continuous
around x̄ and G is metrically regular around (x̄, ȳ) for all ȳ ∈ S(x̄). Note also
the results of Corollary 5.60 provide qualified necessary optimality conditions
for multiobjective problems under the most suitable constraint qualifications.
They easily imply necessary conditions in a non-qualified form admitting the
violations of constraint qualifications; cf. Subsect. 5.1.2 for problems of mini-
mizing extended-real-valued functions (i.e., with a single objective).

Similarly to Subsect. 5.1.3 one may derive from Theorem 5.59 and Corol-
lary 5.60 the corresponding necessary optimality conditions for multiobjec-
tive problems with functional constraints given by equalities and inequali-
ties. However, some results of Subsect. 5.1.3 (and the preceding material of
Sect. 5.1) essentially exploit specific features of single-objective minimiza-
tion problems. It particularly concerns upper subdifferential conditions for
minimizing extended-real-valued functions. Nevertheless, for multiobjective
problems we can obtain necessary optimality conditions of the upper subdif-
ferential type involving inequality constraints (but not objective mappings)
under additional assumptions on the Asplund space X in question. For sim-
plicity we present such necessary optimality conditions with no constraint
qualifications for multiobjective problems having only inequality constraints,
since only these constraints are of special interest from the viewpoint of upper
subdifferential optimality conditions.

Theorem 5.61 (upper subdifferential optimality conditions for mul-
tiobjective problems). Given f : X → Z and Θ ⊂ Z closed around 0, sup-
pose that x̄ is ( f,Θ)-optimal subject to the inequality constraints

ϕi (x) ≤ 0, i = 1, . . . ,m ,

with ϕi : X → IR finite at x̄ for all i = 1, . . . ,m. Assume that Z is Asplund while
X admits a Lipschitzian C1-smooth bump function (which is automatic when X
admits a Fréchet differentiable renorm), that f is Lipschitz continuous around
x̄, and that Θ is SNC at the origin. Then for any Fréchet upper subgradients
x∗

i ∈ ∂̂+ϕi (x̄), i = 1, . . . ,m, there are z∗ ∈ N(0;Θ) and (λ1, . . . , λm) ∈ IRm

satisfying
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λi ≥ 0, λiϕ(x̄) = 0 for all i = 1, . . . ,m

such that (z∗, λ1, . . . , λm) �= 0 and one has

0 ∈ D∗
N f (x̄)(z∗) +

m∑
i=1

λi x
∗
i .

If in addition f is strictly Lipschitzian at x̄, then

0 ∈ ∂〈z∗, f 〉(x̄) +
m∑

i=1

λi x
∗
i , (z∗, λ1, . . . , λm) �= 0 .

Proof. Given x∗
i ∈ ∂̂ϕi (x̄) for i = 1, . . . ,m and using the variational descrip-

tion of Fréchet subgradients −x∗
i ∈ ∂̂(−ϕi )(x̄) from Theorem 1.88(ii) with

S = LC1 (i.e., in spaces admitting Lipschitzian C1 bump functions), we find
si : X → IR for i = 1, . . . ,m and a neighborhood U of x̄ such that

si (x̄) = ϕi (x̄), si (x) ≥ ϕi (x) for all x ∈ U, i = 1, . . . ,m ,

and each si is continuously differentiable on U with ∇si (x̄) = x∗
i , i = 1, . . . ,m.

It follows from the construction of si that x̄ is an ( f,Θ)-optimal solution not
only subject to the original constraints ϕi (x) ≤ 0 but also subject to the
smooth inequality constraints

si (x) ≤ 0, i = 1, . . . ,m .

Let us apply to the latter problem the necessary optimality conditions from
Corollary 5.60 with G(x) :=

(
s1(x), . . . , sm(x)

)
and Λ := IRm

−. In this case

D∗G(x̄)(λ1, . . . , λm) =
m∑

i=1

λi∇si (x) =
m∑

i=1

λi x
∗
i and

N(ȳ;Λ) =
{
(λ1, . . . , λm) ∈ IRm

∣∣ λi ≥ 0, λiϕi (x̄) = 0, i = 1, . . . ,m
}
,

where ȳ :=
(
ϕ1(x̄), . . . , ϕm(x̄)

)
=
(
s1(x̄), . . . , sm(x̄)

)
. It is easy to see that all

the assumptions of Corollary 5.60(b) are fulfilled for the problem under con-
sideration, except the qualification condition involving the kernel of D∗G(x̄).
If the latter is satisfied, we get the conclusion of the theorem with z∗ �= 0 by
Corollary 5.60. Otherwise, we obviously have the conclusion of the theorem
with (λ1, . . . , λm) �= 0, which completes the proof. �

By specifying the ordering set Θ one may derive from the general results
obtained above necessary optimality conditions for particular multiobjective
problems. Observe that if Θ is a convex cone, which is the case in many typical
applications, then the optimality condition z∗ ∈ N(0;Θ) in Theorems 5.59,
5.61 and Corollary 5.60 reads as



5.3 Multiobjective Optimization 81

〈z∗, z〉 ≤ 0 for all z ∈ Θ .

Let us present an application of the above results to the constrained min-
imax problem:

minimize ϕ(x) := max
{
〈z∗, f (x)〉

∣∣ z∗ ∈ Λ
}

subject to x ∈ Ω , (5.83)

where f : X → Z , Ω ⊂ X , and Λ ⊂ Z∗. As shown in Example 5.54, the min-
imax objective in (5.83) can be reduced to the generalized order optimality
considered in Theorem 5.59. The next result gives a concretization and re-
finement of the latter theorem applied to (5.83) with a new complementary
slackness condition specific for the minimax problems under consideration.
For simplicity we formulate a minimax counterpart of Theorem 5.59 only in
the case of the coderivative condition (5.79) therein.

Theorem 5.62 (optimality conditions for minimax problems). Let x̄
be a local optimal solution to the constrained minimax problem (5.83) with
z̄ := f (x̄), where f : X → Z is a mapping between Asplund spaces that is
continuous around x̄ relative to Ω. Suppose that Ω is locally closed around x̄,
that Λ ⊂ Z∗ is weak∗ sequentially compact, and that there is z0 ∈ Z for which
〈z∗, z0〉 = 1 whenever z∗ ∈ Λ. Then there is z̄∗ ∈ Z∗ satisfying the inclusions

0 ∈ D∗
N fΩ(x̄)(z̄∗) with z̄∗ �= 0 , (5.84)

z̄∗ ∈ cl ∗co
[
coneΛ] = cl ∗

{ m∑
i=1

αi z
∗
i

∣∣∣ αi ≥ 0, z∗i ∈ Λ, m ∈ IN
}

(5.85)

and the complementary slackness condition〈
z̄∗, z̄ − ϕ(x̄)z0

〉
= 0 (5.86)

provided that:
(a) either the set

Θ :=
{

z ∈ Z
∣∣ 〈z∗, z〉 ≤ 0 for all z∗ ∈ Λ

}
is SNC at f (x̄) − ϕ(x̄)z0,

(b) or the inverse mapping f −1
Ω is PSNC at (z̄, x̄).

Proof. First observe that the maximum is attached in (5.83) under the as-
sumptions imposed on Λ and f . Build the set

Θ := Θ +
(
ϕ(x̄)z0 − z̄

)
upon the given data in the theorem and show that x̄ is locally ( f,Θ)-optimal
relative to Ω. Since z̄ − ϕ(x̄)z0 ∈ Θ, one has 0 ∈ Θ. We need to check
that condition (5.76) holds with some zk → 0. Assuming the contrary, take
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zk := z0/k for k ∈ IN and find x ∈ U from a neighborhood of x̄ such that
x ∈ Ω and one has〈

z∗, f (x)
〉
− ϕ(x̄) =

〈
z∗, f (x)

〉
− ϕ(x̄)

〈
z∗, z0

〉
≤ −

〈
z∗, z0

〉
/k < 0 for all z∗ ∈ Λ

as k → ∞, which contradicts the local optimality of x̄ in the minimax problem
(5.84). Applying Theorem 5.59(ii) in this setting and taking into account the
convexity of Θ, we find z̄∗ satisfying (5.84) and〈

z̄∗, z −
(
z̄ − ϕ(x̄)z0

)〉
≤ 0 for all z ∈ Θ . (5.87)

It remains to show that (5.87) implies (it is actually equivalent to) both con-
ditions (5.85) and (5.86). Indeed, we have from (5.87) and the conic structure
of Θ the inequality〈

z̄∗, αz −
(
z̄ − ϕ(x̄)z0

)〉
≤ 0 for all α > 0 and z ∈ Θ .

It gives, by passing to the limit as α → ∞, that 〈z̄∗, z〉 ≤ 0 whenever z ∈ Θ,
and hence (5.85) holds. Moreover, one has the inequality〈

z̄∗, z̄ − ϕ(x̄)z0

〉
≤ 0 ,

since z̄ − ϕ(x̄)z0 ∈ Θ. The opposite inequality follows from (5.87) with z = 0.
Thus we get (5.86) and complete the proof of the theorem. �

Observe that all the assumptions of Theorem 5.62 involving the set Λ
automatically hold if this set consists of finitely many linearly independent el-
ements. In the latter case the general minimax problem (5.83) actually reduces
to minimizing the maximum of a finite number of real-valued functions:

minimize ϕ(x) = max
{
ϕi (x)

∣∣ i = 1, . . . , n
}

subject to x ∈ Ω . (5.88)

Let us present an easy consequence of Theorem 5.62 for problem (5.88) as-
suming for simplicity that all ϕi are locally Lipschitzian.

Corollary 5.63 (minimax over finite number of functions). Let x̄ be
a local optimal solution to problem (5.88) in an Asplund space X , where all
ϕi : X → IR are Lipschitz continuous around x̄ and where Ω is locally closed
around this point. Then there are numbers λi ≥ 0, i = 1, . . . , n, such that

λi
(
ϕi (x̄) − ϕ(x̄)

)
= 0 for i = 1, . . . , n and

0 ∈ ∂
( n∑

i=1

λiϕi + δ(·;Ω)
)
(x̄) ⊂ ∂

( n∑
i=1

λiϕi

)
(x̄) + N(x̄ ;Ω) .
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Proof. It follows directly from Theorem 5.62 with Z = IRn and Λ consisting
of the basic unit vectors. Note that these necessary optimality conditions with
the last inclusion in the theorem can be also derived from the ones in scalar
optimization employing the calculus rule of Theorem 3.46(ii) for subdifferen-
tiation of maximum functions. �

Similarly to the above multiobjective results one can get, based on The-
orem 5.62 and Corollary 5.63, necessary optimality conditions for minimax
problems with operator and other constraints as well as upper subdifferential
conditions in the case of constraints given by inequalities.

5.3.3 Extremal Principle for Set-Valued Mappings

Our next goal is to derive necessary optimality conditions for constrained
multiobjective problems, where the notion of optimality is described by a
closed preference relation in the sense of Definition 5.55. As observed in Sub-
sect. 5.3.1, this notion may be different from the generalized order optimal-
ity studied in the preceding subsection. From the viewpoint of variational
geometry, general closed preferences lead to considering extremal systems of
set-valued mappings/multifunctions (but not just systems of sets) related to
nonlinear deformations vs. (linear) translations. In this subsection we study
such extremal systems of multifunctions and derive appropriate versions of
the extremal principle for them in both approximate and exact forms. The
latter form of the extremal principle for set-valued mappings requires certain
extensions of limiting normals and the SNC property in the case of moving sets
that take into account the dependence of sets on deformation parameters. We
begin with the definition of local extremality for systems of multifunctions.

Definition 5.64 (extremal systems of multifunctions). Let Si : Mi →→ X ,
i = 1, . . . , n, be set-valued mappings from metric spaces (Mi , di ) into a Ba-
nach space X . We say that x̄ is a local extremal point of the system
{S1, . . . , Sn} at (s̄1, . . . , s̄n) provided that x̄ ∈ S1(s̄1) ∩ . . . ∩ Sn(s̄n) and there
exists a neighborhood U of x̄ such that for every ε > 0 there are si ∈ dom Si

satisfying the conditions

d(si , s̄i ) ≤ ε, dist
(
x̄ ; Si (si )

)
≤ ε as i = 1, . . . , n, and

S1(s1) ∩ . . . ∩ Sn(sn) ∩ U = ∅ . (5.89)

In this case {S1, . . . , Sn, x̄} is called the extremal system at (s̄1, . . . , s̄n).

It is easy to see that the above definition extends to set-valued mappings
the notion of set extremality from Definition 2.1. Indeed, considering for sim-
plicity an extremal system of two sets {Ω1,Ω2, x̄}, we reduce it to the above
notion for set-valued mappings by letting
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M1 := X, M2 := {0}, S1(s1) := Ω1 + s1, S2(0) := Ω2 ,

which corresponds to the linearity of set-valued mappings (or to the trans-
lation of sets) in Definition 5.64. The next example shows that the extremal
systems involving deformations of sets cannot be reduced to those obtained by
their translations. Indeed, consider the moving sets (i.e., set-valued mappings)
defined by

S1(s1) :=
{
(x, y) ∈ IR2

∣∣ |x | − 2|y| ≥ s1
}
,

S2(s2) :=
{
(x, y) ∈ IR2

∣∣ |y| − 2|x | ≥ s2
}
,

(5.90)

which can be viewed as deformations of the initial sets Ω1 := S1(0) and Ω2 :=
S2(0). One can check that (0, 0) is a local extremal point of {S1, S2} in the
sense of Definition 5.64, while it is not the case with respect to Definition 2.1.

Our major example of extremal systems involving set deformations relates
to problems of multiobjective optimization with respect to closed preference
relations described in Definition 5.55.

Example 5.65 (extremal points in multiobjective optimization with
closed preferences). Let f : X → Z be a mapping between Banach spaces,
let ≺ be a closed preference relation on Z with the level set L(z), and let x̄ be
an optimal solution to the constrained multiobjective problem:

minimize f (x) subject to x ∈ Ω ,

where “minimization” is understood with respect to the preference ≺. Then
(x̄, f (x̄)) is a local extremal point at ( f (x̄), 0) for the system of multifunctions
Si : Mi →→ X × Z , i = 1, 2, defined by

S1(s1) := Ω × clL(s1) with M1 := L( f (x̄)) ∪ { f (x̄)} ,

S2(s2) = S2 :=
{
(x, f (x))

∣∣ x ∈ X
}

with M2 := {0} .

Proof. First we observe that (x̄, f (x̄)) ∈ S1( f (x̄)) ∩ S2 due to the local sa-
tiation property of ≺. To establish (5.89), we assume the contrary and find,
given any neighborhood U of (x̄, f (x̄)), a point s1 ∈ L( f (x̄)) close to f (x̄)
but not equal to the latter by the preference nonreflexivity, for which

S1(s1) ∩ S2 ∩ U �= ∅ .

This yields the existence of x near x̄ with (x, f (x)) ∈ S1(s1) = Ω × clL(s1).
Hence x ∈ Ω and f (x) ≺ f (x̄) by the almost transitivity property of ≺. This
contradicts the local optimality of x̄ in the constrained multiobjective problem
under consideration. �

Before establishing the extremal principle for set-valued mappings and its
applications to multiobjective optimization, let us present two other examples
of extremal systems that are certainly of independent interest.



5.3 Multiobjective Optimization 85

Example 5.66 (extremal points in two-player games). Let (x̄, ȳ) ∈ Ω×
Θ be a saddle point of a payoff function ϕ: X ×Y → IR over subsets Ω ⊂ X
and Θ ⊂ Y of Banach spaces, i.e.,

ϕ(x, ȳ) ≤ ϕ(x̄, ȳ) ≤ ϕ(x̄, y) whenever (x, y) ∈ Ω ×Θ .

Define a set-valued mapping S1: [ϕ(x̄, ȳ),∞)×(−∞, ϕ(x̄, ȳ)] →→ Ω× IR×Θ× IR
and a set S2 ⊂ Ω × IR ×Θ × IR by

S1(α, β) := Ω × [α,∞) ×Θ × (−∞, β], S2 := hypoϕ(·, ȳ) × epi ϕ(x̄, ·) .

Then the point
(
x̄, ϕ(x̄, ȳ), ȳ, ϕ(x̄, ȳ)

)
is locally extremal for the system {S1, S2}

at
(
ϕ(x̄, ȳ), ϕ(x̄, ȳ)

)
.

Proof. One obviously has(
x̄, ϕ(x̄, ȳ), ȳ, ϕ(x̄, ȳ)

)
∈ S1

(
ϕ(x̄, ȳ), ϕ(x̄, ȳ)

)
∩ S2 .

Furthermore, it follows from the definition of the saddle point (x̄, ȳ) that

S1(α, β) ∩ S2 = ∅ whenever (α, β) ∈ [ϕ(x̄, ȳ),∞) × (−∞, ϕ(x̄, ȳ)]

and (α, β) �=
(
ϕ(x̄, ȳ), ϕ(x̄, ȳ)

)
. Thus

(
x̄, ϕ(x̄, ȳ), ȳ, ϕ(x̄, ȳ)

)
is a local extremal

point of {S1, S2} in the above sense. �

Example 5.67 (extremal points in time optimal control). Let τ be
an optimal solution to the following optimal control problem: minimize the
transient time τ > 0 subject to the endpoint constraint x(τ ) = 0 over absolutely
continuous trajectories x : [0, τ ] → IRn of the ordinary differential equation

ẋ(t) = f
(
x(t), u(t)

)
, x(0) = x0, u(t) ∈ U a.e. t ∈ [0, τ ] (5.91)

corresponding to measurable controls u(·). Consider the reachable set mul-
tifunction S1: (0,∞) →→ IRn defined by

S1(s1) :=
{

x(s1) ∈ IRn
∣∣∣ x(·) is feasible in (5.91) on [0, s1]

}
,

and let S2 = {0} ⊂ IRn. Then 0 ∈ IRn is a local extremal point of the system
{S1, S2} at (τ , 0) in the sense of Definition 5.64 with M1 = (0,∞) and M2 =
{0} ⊂ IR.

Proof. Follows directly from the definitions. �

Next we derive the extremal principle for systems of multifunctions in an
approximate form similar to the one in Theorem 2.20. This result is actually
equivalent to the approximate extremal principle for systems of sets in Theo-
rem 2.20 and happens to be yet another characterization of Asplund spaces.
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Theorem 5.68 (approximate extremal principle for multifunctions).
Let Si : Mi →→ X be set-valued mappings from metric spaces (Mi , di ) into a
Banach space X for i = 1, . . . , n. Then the following are equivalent:

(a) X is Asplund.
(b) For any extremal system {S1, . . . , Sn, x̄} at (s̄1, . . . , s̄n) the approx-

imate extremal principle holds provided that each Si is closed-valued
around s̄i . This means that for every ε > 0 there are si ∈ dom Si , xi ∈ Si (si ),
and x∗

i ∈ X∗, i = 1, . . . , n, satisfying

d(si , s̄i ) ≤ ε, ‖xi − x̄‖ ≤ ε, x∗
i ∈ N̂

(
xi ; Si (si )

)
+ ε IB∗ , (5.92)

x∗
1 + . . . + x∗

n = 0, ‖x∗
1‖ + . . . + ‖x∗

n ‖ = 1 . (5.93)

(c) For any extremal system {S1, . . . , Sn, x̄} at (s̄1, . . . , s̄n) the ε-normal
counterpart of the approximate extremal principle holds with

N̂
(
xi ; Si (si )

)
+ ε IB∗ replaced by N̂ε

(
xi ; Si (si )

)
in (5.92), i = 1, . . . , n, provided that each Si is closed-valued around s̄i .

Proof. First note that (b)⇒(c), since one always has

N̂(x̄ ;Ω) + ε IB∗ ⊂ N̂ε(x̄ ;Ω) .

Observe further that the ε-extremal principle for multifunctions in (c) implies
the one for systems of sets from Definition 2.5(i). Thus implication (c)⇒(a)
in the theorem follows from (c)⇒(a) in Theorem 2.20. It remains to prove
that (a)⇒(b), i.e., that the approximate extremal principle holds for any ex-
tremal system of multifunctions in Asplund spaces. It can be done similarly
to the procedure in Sect. 2.2 based on the direct variational arguments in
Fréchet smooth spaces and the method of separable reduction. In what fol-
lows we give another proof that employs the Ekeland variational principle in
Theorem 2.26(i) and the fuzzy subgradient condition for minimum points of
semi-Lipschitzian sum in Lemma 2.32, which is equivalent to the approximate
extremal principle for systems of sets.

Let x̄ be a local extremal point of the system {S1, . . . , Sn} at (s̄1, . . . , s̄n),
where X is Asplund in Definition 5.64. Take U := x̄ + r IB and, given ε > 0,
choose ε′ > 0 satisfying

ε′ < min
{
ε2/(5ε + 12n2 + ε2), r2/4

}
.

Then we take s1, . . . , sn from Definition 5.64 corresponding to ε′. Denote Ω :=
S1(s1) × . . .× Sn(sn) and form the function

ϕ(y1, . . . , yn) :=
n∑

i, j=1

‖yi − y j‖ + δ
(
(y1, . . . , yn);Ω

)
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as (y1, . . . , yn) ∈ U n, which is l.s.c. and positive on the complete metric space
U n. Whenever y′i ∈ Si (si ) are chosen by

‖y′i − y′j‖ ≤ dist
(
x̄ ; Si (si )

)
+ dist

(
x̄ ; Sj (s j )

)
+ ε′ ≤ 3ε′

one has ϕ(y′1, . . . , y′n) ≤ 3n2ε′ < ε2/4. By the Ekeland variational principle
from Theorem 2.26(i) applied to the above function ϕ we find x ′

i ∈ y′i +
(ε/2)IB ⊂ x̄ + ε IB for i = 1, . . . , n such that the perturbed function

n∑
i, j=1

‖yi − y j‖ +
ε

2

n∑
i=1

‖yi − x ′
i ‖ + δ

(
(y1, . . . , yn);Ω

)
(5.94)

attains its global minimum at (x ′
1, . . . , x ′

n) on U n. Assume that U n = Xn

without loss of generality and denote

ψ(y1, . . . , yn) :=
n∑

i, j=1

‖yi − y j‖, (y1, . . . , yn) ∈ Xn ,

for which ψ(x ′
1, . . . , x ′

n) > 0 by the construction. Now applying Theorem 2.20
and Lemma 2.32(i) to (5.94) and taking into account that

∂̂δ
(
(y1, . . . , yn);Ω

)
= N̂

(
y1; S1(y1)

)
× . . .× N̂

(
yn; Sn(sn)

)
for any yi ∈ S(si ) ,

we find xi ∈ Si (si )∩ (x ′
i + ε′ IB) ⊂ (x̄ + ε IB), zi ∈ x ′

i + ε′ IB for i = 1, . . . , n, and
(−x∗

1 , . . . ,−x∗
n ) ∈ ∂̂ψ(z1, . . . , zn) such that

0 ∈ (−x∗
1 , . . . ,−x∗

n ) + N̂
(
x1; S1(s1)

)
× . . .× N̂

(
xn; Sn(sn)

)
+ ε′(n + 1)(IB∗)n .

The latter relation clearly implies that

x∗
i ∈ N̂

(
xi ; Si (si )

)
+ ε IB∗ whenever i = 1, . . . , n

for the chosen number ε, which gives (5.92).
Let us show that x∗

1 , . . . , x∗
n satisfy (5.93) as well. Shrinking ε′ further

if necessary, we can make ψ(z1, . . . , zn) > 0. Observe that the inclusion
(−x∗

1 , . . . ,−x∗
n ) ∈ ∂̂ψ(z1, . . . , zn) yields

〈−x∗
1 − . . .− x∗

n , h〉

≤ lim inf
t→0

ψ(z1 + th, . . . , zn + th) − ψ(z1, . . . , zn)
t

= lim inf
t→0

∑n
i, j=1 ‖(zi + th) − (z j + th)‖ −

∑n
i, j=1 ‖zi − z j‖

t
= 0

for any unit vector h ∈ X . This gives the first relation (Euler equation) in
(5.93). It remains to show that
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‖x∗
1‖ + . . . + ‖x∗

n ‖ ≥ 1 ,

which implies the second relations in (5.93) by normalization. To proceed, we
observe that the function ψ is positively homogeneous, and hence the inclusion
(−x∗

1 , . . . ,−x∗
n ) ∈ ∂̂ψ(z1, . . . , zn) implies

n∑
i=1

〈−x∗
i ,−zi 〉 ≤ lim inf t→0

ψ(z1 − t z1, . . . , zn − t zn) − ψ(z1, . . . , zn)
t

= −ψ(z1, . . . , zn) .

Using −x∗
1 = x∗

2 + . . . + x∗
n from the Euler equation, one has

ψ(z1, . . . , zn) ≤
n∑

i=1

〈−x∗
i , zi 〉 =

n∑
i=2

〈x∗
i , z1 − zi 〉

≤ max
{
‖x∗

i ‖
∣∣∣ i = 2, . . . , n

} n∑
i=2

‖z1 − zi‖

≤ max
{
‖x∗

i ‖
∣∣∣ i = 1, . . . , n

}
ψ(z1, . . . , zn) .

Since ψ(z1, . . . , zn) > 0, the latter gives the estimate

max
{
‖x∗

i ‖
∣∣∣ i = 1, . . . , n

}
≥ 1 ,

which completes the proof of the theorem. �

Our next intention is to obtain the extremal principle for multifunctions
in the exact/limiting form similar to the one in Theorem 2.22 for systems of
sets. It is natural to derive such a result by passing to the limit as ε ↓ 0 in
relations (5.92) and (5.93) of the approximate extremal principle. However,
the situation here is somewhat different from the case of the extremal principle
for sets, since now the sets Si (si ) in (5.92) are moving, i.e., they depend on
certain points that converge to s̄i as ε ↓ 0. To perform the limiting procedure
and to obtain the extremal principle in a suitable limiting form, we need
to describe limiting normals to moving sets and also to impose appropriate
normal compactness requirements that allow us to pass to the limit in infinite-
dimensional settings. Let us first define the cone of limiting normals to moving
sets that is useful in both finite and infinite dimensions.

Definition 5.69 (limiting normals to moving sets). Let S: Z →→ X be
a set-valued mapping from a metric space Z into a Banach space X , and let
(z̄, x̄) ∈ gph S. Then

N+

(
x̄ ; S(z̄)

)
:= Lim sup

(z,x)
gph S→ (z̄,x̄)
ε↓0

N̂ε

(
x ; S(z)

)
(5.95)
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is the extended normal cone to S(z̄) at x̄. The mapping S is normally
semicontinuous at (z̄, x̄) if

N+

(
x̄ ; S(z̄)

)
= N(x̄ ; S(z̄)

)
. (5.96)

Observe that one can equivalently put ε = 0 in (5.95) if X is Asplund and
S is closed-valued around x̄ . This follows directly from formula (2.51) giving a
representation of ε-normals in Asplund spaces. Note also that the normality
notion in (5.95) has nothing to do with a (generalized) differentiability of the
set-valued mapping S(·): the variable z there is just a parameter of moving
sets, which is involved in the limiting process.

One always has the inclusion “⊃” in (5.96), i.e., more limiting normals may
obviously appear during the process in (5.95) involving the moving sets S(·)
than during the one in (1.2) that takes only the set S(x̄) into account. How-
ever, N+

(
x̄ ; S(z̄)

)
agrees with the basic normal cone N

(
x̄ ; S(z̄)

)
when the sets

S(z) behave reasonably well as z → z̄, not merely when they are parameter-
independent. Let us present simple sufficient conditions for property (5.96);
see also Commentary to this chapter for more results in this direction.

Proposition 5.70 (normal semicontinuity of moving sets). Let
S: Z →→ X be a multifunction from a metric space Z into a Banach space
X . Then S is normally semicontinuous at (z̄, x̄) ∈ gph S in the following two
cases:

(i) S(z) = g(z) + Ω around z̄, where Ω ⊂ X is an arbitrary nonempty set
and g: Z → X is continuous at z̄.

(ii) S is convex-valued near z̄ and inner semicontinuous at this point, i.e.,

S(z̄) ⊂ Lim inf
z→z̄

S(z) .

Proof. In case (i) the normal semicontinuity property follows directly from
definitions (1.2) and (5.95) and from the continuity of g(·). Note that this
case is sufficient for applications to the exact extremal principle involving the
translation of fixed sets.

Let us consider case (ii). Taking x∗ ∈ N+

(
x̄ ; S(z̄)

)
, we find sequences εk ↓ 0,

xk → x̄, zk → z̄, and x∗
k

w∗
→ x∗ such that

xk ∈ S(zk) and x∗
k ∈ N̂εk

(
xk ; S(zk)

)
for all k ∈ IN .

Employing Proposition 1.3 on the representation of ε-normals to convex sets,
one has the explicit description

〈x∗
k , u − xk〉 ≤ εk‖u − xk‖ for all u ∈ S(zk) .

Let us show that the inner semicontinuity assumption in (ii) implies that

〈x∗, u − x̄〉 ≤ 0 for all u ∈ S(z̄) ,
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which means that x∗ ∈ N
(
x̄ ; S(z̄)

)
, since the basic normal cone agrees with

the normal cone of convex analysis for convex sets. Indeed, assume on the
contrary that the latter is violated at some ū ∈ S(z̄), i.e., 〈x∗, ū − x̄〉 > 0.
Using the inner semicontinuity of S at z̄, for the given ū and the sequence
zk → z̄ we find a sequence uk → ū such that uk ∈ S(zk) for all k ∈ IN . We
have the representation

〈x∗
k , uk − xk〉 = 〈x∗, ū − x̄〉 +

[
〈x∗

k − x∗, ū − x̄〉 + 〈x∗
k , uk − ū〉 − 〈x∗

k , xk − x̄〉
]
.

One can see that all the terms in the square brackets tend to zero as k → ∞
due to the corresponding convergence of xk, uk, x∗

k and the boundedness of
{x∗

k }. This allows us to conclude that

〈x∗
k , uk − xk〉 > εk‖uk − xk‖ for large k ∈ IN ,

which contradicts the above representation of ε-normals and completes the
proof of the proposition. �

To proceed towards the exact extremal principle for multifunctions in the
case of infinite-dimensional image spaces, we need the following normal com-
pactness property of set-valued mappings, which involves their images but not
graphs as in the basic SNC definition.

Definition 5.71 (SNC property of moving sets). We say that a set-
valued mapping S: Z →→ X between a metric space Z and a Banach space
X is imagely SNC (or just ISNC) at (z̄, x̄) ∈ gph S if for any sequences
(εk, zk, xk, x∗

k ) satisfying

x∗
k ∈ N̂εk

(
xk ; S(zk)

)
, εk ↓ 0, (zk, xk)

gph S→ (z̄, x̄), x∗
k

w∗
→ 0

one has ‖x∗
k ‖ → 0 as k → ∞.

This property is automatic, besides the finite-dimensional setting for X ,
when S admits the representation

S(z) = g(z) + Ω around z̄

provided that g: Z → X is continuous at z̄ and that Ω ⊂ X is SNC at x̄ −g(z̄).
One may equivalently put εk = 0 in Definition 5.71 if X is Asplund and
S is closed-valued around z̄. Similarly to the case of fixed sets, there are
strong relationships between the above ISNC property and the corresponding
counterparts of the CEL property for moving sets. In particular, a mapping
S: Z →→ X between Banach spaces is ISNC at (z̄, x̄) if there are numbers
α, η > 0 and a compact set C ⊂ X such that

N̂ε

(
x ; S(z)

)
⊂
{

x∗ ∈ X∗
∣∣∣ η‖x∗‖ ≤ εα + max

c∈C
|〈x∗, c〉|

}
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whenever (z, x) ∈ gph S ∩
(
(z̄, x̄) + ηIBZ×X

)
. The latter surely holds if S is

uniformly CEL around (x̄, z̄) in the sense that there are a compact set C ⊂ Z ,
neighborhoods V ×U of (x̄, z̄) and O of the origin in Z , and a number γ > 0
such that one has

S(x) ∩ U + t O ⊂ S(x) + γC for all x ∈ U and t ∈ (0, γ ) ;

cf. the proof of Theorem 1.26. In accordance with Definition 1.24, S is said to
be uniformly epi-Lipschitzian around (x̄, z̄) if C can be selected as a singleton.
The latter is always fulfilled for any x̄ ∈ S(z̄) if there is a neighborhood V of
z̄ such that S(z) is convex for z ∈ V and int

(
∩z∈V S(z)

)
�= ∅; cf. the proof of

Proposition 1.25. Similarly to Subsect. 1.2.5 we can define the partial ISNC
property of set-valued mappings and ensure the fulfillment of this property
for uniformly Lipschitz-like as well as partially CEL multifunctions.

It is worth mentioning that the extended normal cone (5.95) and the ISNC
property from Definition 5.71, as well their mapping/function counterparts
and partial analogs, enjoy full calculi similar to those for the basic construc-
tions and SNC properties developed in this book. We are not going to present
and applied such results in what follows; their formulations and proofs are
parallel to those for “non-moving” objects.

Now we are ready to establish the exact/limiting extremal principle for
systems of multifunctions, which extends (is actually equivalent to) the exact
extremal principle for systems of sets obtained in Theorem 2.22.

Theorem 5.72 (exact extremal principle for multifunctions).
(i) Let Si : Mi →→ X , i = 1, . . . , n, be multifunctions from metric spaces

(Mi , di ) into an Asplund space X . Assume that x̄ is a local extremal point of
the system {S1, . . . , Sn} at (s̄1, . . . , s̄n), where each Si is closed-valued around
s̄i and all but one of them are ISNC at the corresponding points (s̄i , x̄) of their
graphs. Then the following exact extremal principle holds: there are

x∗
i ∈ N+

(
x̄ ; Si (s̄i )

)
f or i = 1, . . . , n

satisfying the generalized Euler equation

x∗
1 + . . . + x∗

n = 0 wi th (x∗
1 , . . . , x∗

n ) �= 0 .

(ii) Conversely, let the exact extremal principle hold for every extremal
system of two multifunctions {S1, S2, x̄} with the image space X , where both
mappings Si are closed-valued around the corresponding points s̄i and one of
them is ISNC at (s̄i , x̄). Then X is Asplund.

Proof. Part (ii) follows directly from Theorem 2.22(ii), since the exact ex-
tremal principle for systems of multifunctions implies the one for systems of
sets, while the ISNC property for moving sets reduces to the standard SNC
property when sets are fixed. It remains to justify part (i) of the theorem.

To proceed, we apply the approximate extremal principle given in The-
orem 5.68(b) when X is Asplund. It ensures that for each k ∈ IN there are
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sik with d(sik, s̄i ) ≤ 1
k , xik ∈ x̄ + 1

k IB, and x∗
ik ∈ N̂

(
xik ; Si (sik)

)
, i = 1, . . . , n,

satisfying the relations

‖x∗
1k‖ + . . . + ‖x∗

nk‖ ≥ 1 − 1/k and ‖x∗
1k + . . . + x∗

nk‖ ≤ 1/k . (5.97)

By normalization if necessary one can always select bounded sequences {x∗
ik},

i = 1, . . . , n, satisfying (5.97). Since the dual ball IB∗ ⊂ X∗ is sequentially
weak∗ compact by the Asplund property of X , we find x∗

i ∈ X∗ such that

x∗
ik

w∗
→ x∗

i along a subsequence of k → ∞ for all i = 1, . . . , n. Now passing
to the limit as k → ∞ and using definition (5.95), we arrive at the desired
relationships in the theorem except the nontriviality of (x∗

1 , . . . , x∗
n ).

To establish the latter, suppose that all x∗
i are zero and assume for defi-

niteness that the first n − 1 mappings Si are ISNC at (s̄i , x̄), i = 1, . . . , n − 1.
Then ‖x∗

ik‖ → 0 as k → ∞ for i = 1, . . . , n−1 by the construction of x∗
i . Pass-

ing to the limit at the second relation in (5.97), we conclude that ‖x∗
nk‖ → 0

as well. This clearly contradicts the first relation in (5.97) for large k ∈ IN
and completes the proof of the theorem. �

Note that the extended normal cone (5.95) cannot be generally replaced
in Theorem 5.72 by the basic one (1.2) unless the corresponding mapping
Si is assumed to be normally semicontinuous. Indeed, consider the extremal
system of multifunctions {S1, S2} defined in (5.90) with the local extremal
point x̄ = 0 ∈ IR2 at (s̄1, s̄2) = (0, 0). It is easy to check that neither S1 nor
S2 is normally semicontinuous at (0, 0, 0), and that

N
(
0, S1(0)

)
∩
[
− N

(
0, S2(0)

)]
= {0} .

Hence an analog of Theorem 5.72 with N+ replaced by N doesn’t hold for this
extremal system of multifunctions.

5.3.4 Optimality Conditions with Respect to Closed Preferences

In this subsection we present some applications of the extended extremal prin-
ciple to general problems of constrained multiobjective optimization, where
objective mappings are “minimized” with respect to closed preference rela-
tions. Let us first consider the following multiobjective problem with only
geometric constraints:

minimize f (x) with respect to ≺ subject to x ∈ Ω , (5.98)

where f : X → Z is a mapping between Banach spaces, where Ω ⊂ X , and
where ≺ is a nonreflexive preference relation on Z with the moving level
set L(·) from Definition 5.55. The next theorem gives necessary optimality
conditions for (5.98) in both approximate/fuzzy and exact/limiting forms.
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Theorem 5.73 (optimality conditions for problems with closed pref-
erences and geometric constraints). Let x̄ be a local optimal solution to
problem (5.98) with z̄ := f (x̄), where the preference ≺ is closed and where
both spaces X and Z are Asplund. Assume that f is continuous around x̄ and
that Ω is locally closed around this point. The following assertions hold:

(i) For every ε > 0 there are (x0, x1, z0, z1, x∗, z∗) ∈ X2 × Z2 × X∗ × Z∗

satisfying x0, x1 ∈ x̄ + ε IBX , z0, z1 ∈ z̄ + ε IBZ ,

x∗ ∈ N̂(x1;Ω), z∗ ∈ N̂
(
z1; clL(z0)

)
with ‖(x∗, z∗)‖ = 1, and

0 ∈ x∗ + D̂∗ f (x0)(z∗) + ε IBX∗ .

Moreover, one has

0 ∈ ∂̂〈z∗, f 〉(x0) + N̂(x1;Ω) + ε IBX∗ with ‖z∗‖ = 1

if f is Lipschitz continuous around x̄.
(ii) Assume that either f is SNC at x̄, or Ω is SNC at x̄ and the mapping

clL: Z →→ Z generated by the level sets of ≺ is ISNC at (z̄, z̄). Then there are
x∗ and z∗, not both zero, satisfying

x∗ ∈ D∗
N f (x̄)(z∗) ∩

(
− N(x̄ ;Ω)

)
and z∗ ∈ N+

(
z̄; clL(z̄)

)
.

Furthermore, one has

0 ∈ ∂〈z∗, f 〉(x̄) + N(x̄ ;Ω) with z∗ ∈ N+

(
z̄; clL(z̄)

)
\ {0}

provided that f is strictly Lipschitzian at x̄ and either dim Z < ∞, or Ω is
SNC at x̄ and clL is ISNC at (z̄, z̄).

Proof. First we prove (i) based on the approximate extremal principle from
Theorem 5.68. It is shown in Example 5.65 that (x̄, z̄) is a local extremal
point of the system {S1, S2} at (z̄, 0), where Si : Mi →→ X × Z , i = 1, 2, are
defined therein with

S1(z) = Ω × clL(z) and S2 ≡ gph f .

Since the space X × Z is Asplund and both Si are locally closed-valued under
the general assumptions made, we apply the assertion of Theorem 5.68(b),
which gives z0 ∈ z̄ + ε IBZ and (xi , zi ) ∈ (x̄, z̄) + ε IBX×Z for i = 1, 2 satisfying

(x∗
1 , z∗1) ∈ N̂

(
(x1, z1); S1(z0)

)
, (x∗

2 , z∗2) ∈ N̂
(
(x2, z2); S2

)
,

‖(x∗
1 , z∗1) + (x∗

2 , z∗2)‖ ≤ ε, ‖(x∗
1 , z∗1)‖ + ‖(x∗

2 , z∗2)‖ ≥ 1 − ε ,
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where x1 ∈ Ω, z1 ∈ clL(z0), and z2 = f (x2). Taking into account the struc-
tures of S1, S2 and the product formula for N̂ from Proposition 1.2, we have
from the first line above that

x∗
1 ∈ N̂(x1;Ω), z∗1 ∈ N̂

(
z1; clL(z0)

)
, x∗

2 ∈ D̂∗ f (x2)(−z∗2) .

Put x0 := x2 x∗ := x∗
1 , z∗ := z∗1 and employ normalization to ensure

‖(x∗, z∗)‖ = 1. Then using the second line above and shrinking ε if neces-
sary, one easily gets that the pair (x∗, z∗) satisfies all the conclusions in (i)
when f is supposed to be merely continuous around x̄ . If f is assumed to be
Lipschitz continuous around this point, then we know that

D̂∗ f (x0)(z∗) = ∂̂〈z∗, f 〉(x0) ,

which therefore completes the proof of assertion (i).
To prove (ii), we apply the exact extremal principle from Theorem 5.72(i)

to the extremal system {S1, S2, (x̄, z̄)} under consideration. The structures of
Si and the product formulas in Proposition 1.2 ensure that the ISNC/SNC
assumptions of the theorem imply the required ISNC properties in Theo-
rem 5.72, and also that

N+

(
(x̄, z̄); S1(z̄)

)
= N(x̄ ;Ω) × N+

(
z̄; clL(z̄)

)
,

N+

(
(x̄, z̄); S2

)
=
{
(x∗, z∗)

∣∣ x∗ ∈ D∗
N f (x̄)(−z∗)

}
.

Thus all the conclusions in the first part of (ii) follow directly from the exact
extremal principle of Theorem 5.72.

To justify the necessary optimality conditions in the second part of (ii), it
suffices to observe that, by Theorem 3.28,

D∗
N f (x̄)(z∗) = ∂〈z∗, f 〉(x̄) when f is strictly Lipschitzian at x̄ ,

and that f is SNC at x̄ if it Lipschitz continuous around x̄ while dim Z < ∞;
see Corollary 1.69(i). This completes the proof of the theorem. �

It is worth mentioning that when f : X → Z is strictly Lipschitzian at
x̄ and X is Asplund, the SNC property of f at x̄ is equivalent to the finite
dimensionality of Z due to Corollary 3.30. Observe also that the only difference
between the ISNC property of the mapping clL at (z̄, z̄) in Theorem 5.73(ii)
and the one for the level set mapping L is that z̄ ∈ clL(z̄) while z̄ /∈ L(z̄),
since the preference ≺ is locally satiated and nonreflexive.

Remark 5.74 (comparison between optimality conditions for multi-
objective problems). We obtained above the two basic results on necessary
optimality conditions in problems of multiobjective optimization with geo-
metric constraints: Theorem 5.59 and Theorem 5.73. Although both concepts
of multiobjective optimality considered in these theorems extend most of the
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conventional notions, they are generally different; see the results and discus-
sions in Subsect. 5.3.1. Nevertheless, necessary optimality conditions obtained
in Theorems 5.59 and 5.73 have a lot in common. Compare, in particular, the
coderivative conditions in assertions (ii) of these theorems. Employing the
coderivative sum rule from Proposition 3.12 to fΩ(x) = f (x) + ∆(x ;Ω) with
the qualification condition

D∗
N f (x̄)(0) ∩

(
− N(x̄ ;Ω)

)
= {0} ,

we derive from (5.79) and the normal compactness conditions imposed in
Theorem 5.59(ii) that the ( f,Θ)-optimality of x̄ relative to Ω implies the
existence of (x∗, z∗) �= 0 satisfying

0 ∈ x∗ + D∗
N f (x̄)(z∗), x∗ ∈ N(x̄ ;Ω), z∗ ∈ N(0;Θ)

provided that either f is SNC at x̄ , or Ω is SNC at x̄ and Θ is SNC at 0.
In the general setting (even in finite dimensions) Theorem 5.59(ii) gives more
delicate necessary conditions for generalized order optimality. On the other
hand, Theorem 5.73(ii) applies to multiobjective optimization problems with
respect to closed preference relations that cannot be handled by conventional
translations of fixed sets in extremal systems but involve nonlinear deforma-
tions of moving sets.

Similarly to the case of generalized order optimality in Subsect. 5.3.2, as
well as to previous developments in this chapter, one can derive various con-
sequences of Theorem 5.73 in multiobjective problems with closed preference
relations under operator and functional constraints. All these consequences
are based on applications of the comprehensive generalized differential and
SNC calculi developed in Chap. 3. As an example of such results, let us
present the following corollary of the coderivative optimality conditions in
Theorem 5.73(ii) to multiobjective problems with operator constraints.

Corollary 5.75 (optimality conditions for problems with closed pref-
erences and operator constraints). Let ≺ be a closed preference on Z with
the level set L(·), and let x̄ be a local optimal solution to the multiobjective
optimization problem:

minimize f (x) with respect to ≺ subject to x ∈ G−1(Λ) ,

where f : X → Z and G: X →→ Y are mappings between Asplund spaces with
z̄ := f (x̄), and where Λ ⊂ Y . Suppose that f is continuous and S(·) := G(·)∩Λ
is inner semicompact around x̄, and that the sets gph G and Λ are locally
closed around the corresponding points. Then there are x∗ and z∗, not both
zero, such that

−x∗ ∈ D∗
N f (x̄)(z∗), z∗ ∈ N+

(
z̄; clL(z̄)

)
, and
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x∗ ∈
⋃[

D∗
N G(x̄, ȳ)(y∗)

∣∣∣ y∗ ∈ N(ȳ;Λ), ȳ ∈ S(x̄)
]

under one of the following requirements on ( f,G,Λ):
(a) f is SNC at x̄, the qualification condition

N(ȳ;Λ) ∩ ker D̃∗
M G(x̄, ȳ) = {0} for all ȳ ∈ S(x̄)

is satisfied, and either G−1 is PSNC at (ȳ, x̄) or Λ is SNC at ȳ for all ȳ ∈
S(x̄).

(b) clL is ISNC at (z̄, z̄), the qualification condition

N(ȳ;Λ) ∩ ker D∗
N G(x̄, ȳ) = {0} for all ȳ ∈ S(x̄)

is satisfied, and either G is PSNC at (x̄, ȳ) and Λ is SNC at ȳ, or G is SNC
at (x̄, ȳ) for all ȳ ∈ S(x̄).

Proof. To derive this corollary from the coderivative optimality conditions of
Theorem 5.73(ii), it suffices to apply Theorem 3.8 that gives the representation
of basic normals to G−1(Λ) under the assumptions in (a), and Theorem 3.84
that ensures the SNC property of G−1(Λ) under the assumptions in (b). �

Let us next consider multiobjective problems with respect to closed prefer-
ences under functional constraints of equality and inequality types. Similarly
to Subsect. 5.3.2, we may derive necessary optimality conditions for such prob-
lems of the two types: involving basic lower subgradients of constraint func-
tions and also those using Fréchet upper subgradients of functions describing
inequality constraints. For simplicity we present results only for problems with
inequality constraints, since only these constraints distinguish between lower
and upper subdifferential conditions.

Theorem 5.76 (lower and upper subdifferential conditions for mul-
tiobjective problems with inequality constraints). Let ≺ be a closed
preference on Z with the level set L(·), and let x̄ be a local optimal solution
to the multiobjective problem:

minimize f (x) with respect to ≺ subject to ϕi (x) ≤ 0, i = 1, . . . ,m ,

where f : X → Z is continuous around x̄ with z̄ := f (x̄), while ϕi : X → IR are
merely finite at x̄ for all i = 1, . . . ,m. Suppose that either f is SNC at x̄ or
clL is ISNC at (z̄, z̄). The following assertions hold:

(i) Assume that both spaces X and Z are Asplund, and that each ϕi

is Lipschitz continuous around x̄. Then there are z∗ ∈ Z∗ and multipliers
(λ1, . . . , λm) ∈ IRm satisfying

z∗ ∈ N+

(
x̄ ; clL(z̄)

)
, λi ≥ 0, λiϕi (x̄) = 0 as i = 1, . . . ,m (5.99)

such that (z∗, λ1, . . . , λm) �= 0 and one has
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0 ∈ D∗
N f (x̄)(z∗) + ∂

( m∑
i=1

λiϕi

)
(x̄) ⊂ D∗

N f (x̄)(z∗) +
m∑

i=1

λi∂ϕi (x̄) .

(ii) Assume that Z is Asplund while X admits a Lipschitzian C1 bump
function (which is automatic when X admits a Fréchet smooth renorm). Then
for any x∗

i ∈ ∂̂+ϕi (x̄), i = 1, . . . ,m, there are 0 �= (z∗, λ1, . . . , λm) ∈ Z∗ × IRm

satisfying (5.99) and

0 ∈ D∗
N f (x̄)(z∗) +

m∑
i=1

λi x
∗
i .

Proof. The lower subdifferential optimality conditions in assertions (i) of the
theorem follow directly from assertions (i) and (ii) of Corollary 5.73 with
Y = IRm , G(x) =

(
ϕ1(x), . . . , ϕm(x)

)
, and Λ = Rm

−. Indeed, it suffices to
observe that in this case one has

N(ȳ;Λ) =
{
(λ1, . . . , λm) ∈ IRm

∣∣ λi ≥ 0, λiϕi (x̄) = 0, i = 1, . . . ,m
}
,

D∗G(x̄)(λ1, . . . , λm) = ∂
( m∑

i=1

λiϕi

)
(x̄) ⊂

m∑
i=1

λi∂ϕi (x̄) .

To justify the upper subdifferential condition in (ii), we take arbitrary ele-
ments x∗

i ∈ ∂̂+ϕi (x̄) for i = 1, . . . ,m and find, by the variational descriptions
of Fréchet subgradients from Theorem 1.88(ii), functions si : X → IR continu-
ously differentiable in some neighborhood U of x̄ and such that

si (x̄) = ϕi (x̄), ∇si (x̄) = x∗
i , si (x) ≥ ϕi (x) for all i = 1, . . . ,m .

It is easy to see that x̄ is a local optimal solution to the multiobjective problem

minimize f (x) with respect to ≺ subject to si (x) ≤ 0, i = 1, . . . ,m .

Applying now the optimality condition from assertion (i) of this theorem to
the latter problem, we complete the proof of (ii). �

In the conclusion of this subsection let us briefly discuss some applications
of the (extended) extremal principle to a class of multiobjective games with
many players. Such problems can be roughly described as games with n play-
ers, where each player wants to choose a strategy x̄i from a space Xi such
that they ≺i optimize (with respect to the preference ≺i on Y ) an objective
mapping f : X1 × . . .× Xn → Z given all other players choices x̄ j , j �= i .

This is a general game setting that covers, in particular, the case when each
of the players can have a different objective mapping fi : X1 × . . .× Xn → Zi .
In the latter case one has f := ( f1, . . . , fn): X1× . . .×Xn → Z := Z1× . . .× Zn

with the ordering ≺i on Z defined by
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z ≺i v for z, v ∈ Z provided that zi ≺i vi for zi , vi ∈ Zi .

It is well known that an essential concept in all game theory is that of a
saddle point. Let us give a generalized version of this concept for the above
multiobjective setting, where ≺ stands for (≺1, . . . ,≺n).

Definition 5.77 (saddle points for multiobjective games). A point x̄ =
(x̄1, . . . , x̄n) is a local ≺-saddle point of f : X1 × . . .× Xn → Z if for each
i = 1, . . . , n there is a neighborhood Ui of x̄i such that

f (x̄) ≺i f (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄n) f or all xi ∈ Ui .

Observe that this notion of saddle points may be different from the usual
concept considered in Example 5.66 with preferences not depending on players
and spaces. Indeed, let the payoff mapping f : IR4 → IR2 be given by

f (x, y, u, v) := (x2 + u,−y2 − ev) ,

and let us group the variables so that x and y are for the first player and u
and v are for the second one. This means that X1 = X2 = Z = IR2. The order
≺1 on Z = IR2 for the first player is that (w, s) ≺1 (w̃, s̃) if w < w̃ and s ≥ s̃
or w ≤ w̃ and s > s̃. The order ≺2 on Z = IR2 for the second player is that
(w, s) ≺2 (w̃, s̃) if w < w̃ and s < s̃. This is a mixture of Pareto and weak
Pareto optimality. One can check that any point of the form (0, 0, u, v) is a
local ≺-saddle point for these orderings.

Now we present necessary optimality conditions for multiobjective games
with additional constraints on player strategies. For simplicity we formulate
results only for the case of geometric constraints.

Given f : X1×. . .×Xn → Z and ≺i as in Definition 5.77 and constraint sets
Ωi ⊂ Xi for i = 1, . . . , n, we consider the following multiobjective constrained
game G: find local ≺-saddle points of f subject to the constraints xi ∈ Ωi ⊂ Xi

for each i = 1, . . . , n. Let x̄ be a local optimal solution to game G. Then one
has, by Definition 5.77 of ≺-saddle points, that the i-th component x̄i of x̄
is a local solution to the following multiobjective constrained optimization
problem for each player i :

minimize f (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄n) subject to xi ∈ Ωi ,

where “minimization” is understood with respect to the preference ≺i on Z .
Denote fi (xi ) := f (x̄1, . . . , x̄i−1, xi , x̄i+1, . . . , x̄n), z̄i := fi (x̄i ) for i =

1, . . . , n and consider the level sets Li (z) induced by the preferences ≺i on
Z . Employing the above results for problems of multiobjective optimization,
based on the approximate and exact versions of the extremal principle for
multifunctions, we arrive at necessary optimality conditions in multiobjec-
tive games. For brevity these results are formulated only for the case of Lip-
schitzian objective mappings.
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Theorem 5.78 (optimality conditions for multiobjective games). Let
x̄ = (x̄1, . . . , x̄n) be a local optimal solution to the above game G, where the
preferences ≺i are closed on Z and where the spaces X1, . . . , Xn, Z are As-
plund. Suppose that the mapping f : X1 × . . . × Xn → Z is Lipschitz contin-
uous around x̄ and that the sets Ωi ⊂ Xi are locally closed around x̄i for all
i = 1, . . . , n. The following assertions hold:

(i) For every ε > 0 there are (xi , ui , zi , vi , z∗i ) ∈ Xi × Xi × Z × Z × Z∗

satisfying xi , ui ∈ x̄ + ε IBXi , zi , vi ∈ z̄i + ε IBZ , ‖z∗i ‖ = 1, and

0 ∈ ∂̂〈z∗i , fi 〉(xi ) + N̂(ui ;Ωi ) + ε IBX∗
i
, z∗i ∈ N̂

(
vi ; clLi (zi )

)
, i = 1, . . . , n .

(ii) Assume that f is strictly Lipschitzian at x̄ and either dim Z < ∞, or
Ωi is SNC at x̄i and clLi is ISNC at (z̄i , z̄i ) for each i = 1, . . . , n. Then there
are z∗1, . . . , z∗n ∈ Z∗ such that ‖z∗i ‖ = 1 and

0 ∈ ∂〈z∗i , fi 〉(x̄i ) + N(x̄i ;Ωi ), z∗i ∈ N+

(
z̄i ; clLi (z̄i )

)
as i = 1, . . . , n .

Proof. Since for each player i = 1, . . . , n the i-th component x̄i of x̄ is a
local optimal solution to the multiobjective optimization problem formulated
above, we apply both assertions of Theorem 5.73 to these problems and get
the necessary optimality conditions in (i) and (ii). �

5.3.5 Multiobjective Optimization with Equilibrium Constraints

The last subsection of this section is devoted to problems of multiobjective
optimization that involve equilibrium constraints of the type

0 ∈ q(x, y) + Q(x, y)

governed by parametric variational systems. We have considered such con-
straints in Sect. 5.3 in the framework of MPECs with single (real-valued)
objective functions. Now we are going to study multiobjective optimization
problems with equilibrium constraints, where optimal solutions are under-
stood either in the sense of generalized order optimality from Definition 5.53 or
in the sense of closed preference relations from Definition 5.55. As discussed in
Subsect. 5.3.1, both of these multiobjective notions cover, in particular, stan-
dard equilibrium concepts related to Pareto-type optimality/efficiency and
the like. Thus the multiobjective optimization problems studied in what fol-
lows include the so-called equilibrium problems with equilibrium constraints
(EPECs) that are important for many applications. Note that equilibrium
concepts on the upper level of multiobjective problems can be described by
vector variational inequalities; see, in particular, Giannessi [504] and the ref-
erences therein. For convenience we adopt the abbreviation EPECs (or EPEC
problems, slightly abusing the language) for all the multiobjective problems
with equilibrium-type constraints considered in this subsection.
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Although EPECs may have constraints of other types (geometric, opera-
tor, functional) along with equilibrium ones, they are not included for brevity;
it can be done similarly to Sect. 5.2. We pay the main attention to point-
based/exact necessary optimality conditions for EPECs formulated at the ref-
erence optimal solution.

First let us study EPECs, where optimal solutions are understood in the
sense of generalized order optimality from Definition 5.53. The following result
gives necessary optimality conditions for an abstract version of such problems
with equilibrium constraints described by a general parameter-dependent mul-
tifunction. In its formulation we use the strong PSNC property of F : X →→ Y at
(x̄, ȳ) ∈ gph F that, in accordance with Definitions 1.67 and 3.3, means that
for any sequences (εk, xk, yk, x∗

k , y∗k ) ∈ [0,∞) × (gph F) × X∗ × Y ∗ satisfying

εk ↓ 0, (xk, yk) → (x̄, ȳ), x∗
k ∈ D̂∗

εk
F(xk, yk)(y∗), and (x∗

k , y∗k ) w∗
→ (0, 0)

one has ‖x∗
k ‖ → 0 as k → ∞. It holds, in particular, for mappings F : X →→ Y

that are partially CEL around (x̄, ȳ); see Theorem 1.75. Note that one can
equivalently put εk = 0 in the relations above for closed-graph mappings
between Asplund spaces.

Theorem 5.79 (generalized order optimality for abstract EPECs).
Let f : X × Y → Z , Θ ⊂ Z with 0 ∈ Θ, and S: X →→ Y with (x̄, ȳ) ∈ gph S.
Suppose that the point (x̄, ȳ) is locally ( f,Θ)-optimal subject to y ∈ S(x). The
following assertions hold:

(i) Assume that the set

E( f, S,Θ) :=
{
(x, y, z) ∈ X × Y × Z

∣∣ f (x, y) − z ∈ Θ, y ∈ S(x)
}

is locally closed around (x̄, ȳ, z̄) with z̄ := f (x̄, ȳ) and that dim Z < ∞. Then
there is z∗ ∈ Z∗ satisfying

(0,−z∗) ∈ N
(
(x̄, ȳ, z̄); E( f, S,Θ)

)
, z∗ ∈ N(0;Θ) \ {0} .

(ii) Assume that Z is Asplund, that f is continuous around (x̄, ȳ), and
that gph S and Θ are locally closed around (x̄, ȳ) and 0, respectively. Then
there is z∗ ∈ N(0;Θ) \ {0} satisfying

0 ∈ D∗
N f (x̄, ȳ)(z∗) + N

(
(x̄, ȳ); gph S

)
(5.100)

in each of the following cases:
(a) Θ is SNC at 0,[
(x∗, y∗) ∈ D∗

M f (x̄, ȳ)(0), −x∗ ∈ D∗
N S(x̄, ȳ)(y∗)

]
=⇒ x∗ = y∗ = 0 ,

and either S is SNC at (x̄, ȳ) or f is PSNC at this point; the latter prop-
erty and the above qualification condition are automatic when f is Lipschitz
continuous around (x̄, ȳ).
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(b) f is Lipschitz continuous around (x̄, ȳ), f −1 is strongly PSNC at
(z̄, x̄, ȳ), and[

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(0), −x∗ ∈ D∗

N S(x̄, ȳ)(y∗)
]

=⇒ x∗ = y∗ = 0 .

Moreover, (5.100) is equivalent to

0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + N
(
(x̄, ȳ); gph S

)
if f is strictly Lipschitzian at (x̄, ȳ).

Proof. Observe the EPEC problem under consideration is equivalent to the
multiobjective optimization problem studied in Theorem 5.59 for the mapping
f of two variables under the geometric constraints (x, y) ∈ Ω := gph S. Thus
assertion (i) of this theorem follows directly from assertion (i) of Theorem 5.59.
To prove (ii), we use Theorem 5.59(ii) that ensures the existence of z∗ ∈
N(0;Θ) \ {0} satisfying

0 ∈ D∗
N

(
f + ∆(·; gph S)

)
(x̄, ȳ)

when either Θ is SNC at 0 or
(

f + ∆(·; gph S)
)−1 is PSNC at (z̄, x̄, ȳ). To

proceed, we apply the coderivative sum rule from Proposition 3.12 to the
special sum f + ∆(·; gph S). This gives

0 ∈ D∗
N f (x̄, ȳ)(z∗) + N

(
(x̄, ȳ); gph S

)
under the limiting qualification condition (3.25) of that proposition, which is
automatically fulfilled if

D∗
M f (x̄, ȳ)(0) ∩

(
− N((x̄, ȳ); gph S)

)
= {0}

and if either f is PSNC at (x̄, ȳ) or S is SNC at this point; it certainly holds
when f is Lipschitz continuous around (x̄, ȳ). Thus we get (5.100) under the
assumptions in (a).

To justify (5.100) in case (b), one needs to check that the assumptions
in (b) yield that

(
f + ∆(·; gph )

)−1 is PSNC at (z̄, x̄, ȳ). Indeed, the latter
property means that for any sequences (xk, yk, x∗

k , y∗k , z∗k ) with (xk, yk) → (x̄, ȳ)
satisfying

(x∗
k , y∗k ) ∈ D̂∗( f + ∆(·; gph S)

)
(xk, yk)(z∗k ), ‖(x∗

k , y∗k )‖ → 0, and z∗k
w∗
→ 0

one has ‖z∗k ‖ → 0 as k → ∞. It follows from the proof of Theorem 3.10 that
the qualification condition in (b) implies the fuzzy sum rule for the Fréchet
coderivative D̂∗( f + ∆(·; gph S)

)
(xk, yk) considered above, which ensures the

existence of εk ↓ 0, (xik, yik) → (x̄, ȳ) for i = 1, 2, and (x̃∗
k , ỹ∗k , z̃∗k ) such that
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(x̃∗
k , ỹ∗k ) ∈ D̂∗ f (x1k, y1k)(z̃∗k ) + N̂

(
(x2k, y2k); gph S)

and ‖(x̃∗
k , ỹ∗k , z̃∗k )−(x∗

k , y∗k , z∗k )‖ ≤ εk for all k ∈ IN . Thus (x̃∗
k , ỹ∗k ) = (x∗

1k, y∗1k)+
(x∗

2k, y∗2k) for some

(x∗
1k, y∗1k) ∈ D̂∗ f (x1k, y1k)(z̃∗k ) and (x∗

2k, y∗2k) ∈ N̂
(
(x2k, y2k); gph S

)
.

Since f is locally Lipschitzian around (x̄, ȳ), the sequence (x∗
1k, y∗1k) in bounded

in X∗ × Y ∗; hence, by the Asplund property of X × Y , it contains a subse-
quence weak∗ converging to some (x∗, y∗) ∈ D∗

N f (x̄, ȳ)(0). By ‖(x̃∗
k , ỹ∗k )‖ → 0

and (x∗
2 , y∗2 ) = (x̃∗

k , ỹ∗k ) − (x∗
1k, y∗1k) one has that (x∗

2k, y∗2k)
w∗
→ (−x∗,−y∗) ∈

N
(
(x̄, ȳ); gph S

)
along a subsequence of k → ∞. By the qualification condi-

tion in (b) we get x∗ = y∗ = 0. The latter implies that (x∗
1k, y∗1k, z∗k ) w∗

→ 0 with
(x∗

1k, y∗1k) ∈ D̂∗ f (x1k, y1k)(z∗k ). Employing now the strong PSNC property of
f −1 at (z̄, x̄, ȳ), we conclude that ‖z∗k ‖ → 0. The last statement in the theo-
rem follows from the scalarization formula of Theorem 3.28. �

Necessary optimality conditions for abstract EPECs obtained in Theo-
rem 5.79 are given in the normal form under general constraint qualification.
Let us present a corollary of these results providing necessary optimality con-
ditions in the non-qualified (Fritz John) form with no qualification conditions
imposed on the initial data.

Corollary 5.80 (non-qualified conditions for abstract EPECs). Let
(x̄, ȳ) be locally ( f,Θ)-optimal subject to y ∈ S(x), where f : X × Y → Z ,
Θ ⊂ Z , and S: X →→ Y satisfy the common assumptions of Theorem 5.79(ii).
Then there are 0 �= (x∗, y∗, z∗) ∈ X∗ × Y ∗ × Z∗ such that the necessary
optimality conditions

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗), −x∗ ∈ D∗

N S(x̄, ȳ)(y∗), z∗ ∈ N(0;Θ)

hold in each of the following cases:
(a) f is PSNC at (x̄, ȳ) and Θ is SNC at 0;
(b) S and Θ are SNC at (x̄, ȳ) and 0, respectively;
(c) f is Lipschitz continuous around (x̄, ȳ) and f −1 is strongly PSNC at

(z̄, x̄, ȳ) with z̄ = f (x̄, ȳ).

Proof. If the qualification conditions in either case (a) or (b) of Theo-
rem 5.79(ii) are fulfilled, then one has the optimality conditions in the corollary
with z∗ �= 0. The violation of these constraint qualifications directly implies
that the desired optimality conditions are satisfied with (x∗, y∗) �= 0. �

Our next step is to derive necessary optimality conditions for multiobjec-
tive problems with equilibrium constraints governed by parameter-dependent
generalized equations/variational systems. They correspond to the above ab-
stract framework with
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S(x) :=
{

y ∈ Y
∣∣ 0 ∈ q(x, y) + Q(x, y)

}
. (5.101)

To derive optimality conditions for EPECs with equilibrium/variational con-
straints of type (5.101), one needs to apply the results of Theorem 5.79 and
Corollary 5.80 to the mapping S(·) given in (5.101). For simplicity we present
below only those optimality conditions for such problems that don’t require
constraint qualifications, i.e., correspond to Corollary 5.80. Optimality con-
ditions of normal form can be derived via Theorem 5.79 similarly to lower
subdifferential conditions for MPECs in Subsect. 5.2.2.

Theorem 5.81 (generalized order optimality for EPECs governed
by variational systems). Let f : X × Y → Z be a mapping between Asplund
spaces with z̄ := f (x̄, ȳ), let Θ ⊂ Z with 0 ∈ Z , and let (x̄, ȳ) be locally
( f,Θ)-optimal subject to the constraints

0 ∈ q(x, y) + Q(x, y) ,

where q: X×Y → P and Q: X×Y →→ P are mappings into an Asplund space P
with p̄ := −q(x̄, ȳ). Assume that f and q are continuous around (x̄, ȳ), that
Θ is closed around 0, and that Q is closed-graph around (x̄, ȳ, p̄). Then there
are (x∗, y∗, z∗, p∗) ∈ X∗×Y ∗×Z∗×P∗ satisfying the relations (x∗, y∗, z∗) �= 0,
z∗ ∈ N(0;Θ), and

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗)

⋂(
− D∗

N q(x̄, ȳ)(p∗) − D∗
N Q(x̄, ȳ, p̄)(p∗)

)
in each of the following cases:

(a) f is PSNC at (x̄, ȳ), Θ and Q are SNC at 0 and (x̄, ȳ, p̄), respectively,
and one has the qualification condition[
(x∗, y∗) ∈ D∗

N q(x̄, ȳ)(p∗) ∩
(
− D∗

N Q(x̄, ȳ, p̄)(p∗)
)]

=⇒ x∗ = y∗ = p∗ = 0 ,

which is equivalent to[
0 ∈ ∂〈p∗, q〉(x̄, ȳ) + D∗

N Q(x̄, ȳ, p̄)(p∗)
]

=⇒ p∗ = 0 (5.102)

when q is strictly Lipschitzian at (x̄, ȳ).
(b) f is PSNC at (x̄, ȳ), Θ is SNC at 0, dim P < ∞, q is Lipschitz

continuous around (x̄, ȳ), and (5.102) holds.
(c) Θ is SNC at 0, q is PSNC at (x̄, ȳ), and the qualification condition in

(a) is satisfied.
(d) f is Lipschitz continuous around (x̄, ȳ), f −1 is strongly PSNC at

(z̄, x̄, ȳ), Q is SNC at (x̄, ȳ, p̄), and the qualification condition in (a) holds.
(e) f and q are Lipschitz continuous around (x̄, ȳ), dim P < ∞, f −1 is

strongly PSNC at (z̄, x̄, ȳ), and (5.102) is satisfied.
Furthermore, if f is strictly Lipschitzian at (x̄, ȳ), then the above op-

timality conditions can be equivalently written as follows: there are z∗ ∈
N(0;Θ) \ {0} and p∗ ∈ P∗ such that

0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + D∗
N q(x̄, ȳ)(p∗) + D∗

N Q(x̄, ȳ, p̄)(p∗) .
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Proof. Based on the optimality conditions from Corollary 5.80, where S is
defined in (5.101), we need to give efficient conditions under which the coderiv-
ative D∗

N S(x̄, ȳ) of S and the SNC property of this mappings can be efficiently
expressed in terms of the initial data (q, Q) of (5.101). To proceed, we first
use Theorem 4.46 giving the upper coderivative estimate (4.63) for S via the
coderivatives of q and Q under the assumptions made therein. Combining
these assumptions with those in (a) and (c) of Corollary 5.80, we arrive at
the conclusion of the theorem in cases (a), (b), (d), and (e). It remains to
consider case (c) in Corollary 5.80, which requires efficient conditions for the
SNC property of the mapping S from (5.101). In this case we employ the
proof of Theorem 4.59, where it is shown (on the base of Theorem 3.84) that
mapping (5.101) is SNC at (x̄, ȳ) if q is PSNC at this point in addition to
the qualification condition in (a) and the SNC property of Q at (x̄, ȳ, p̄).
Combining these assumptions with those (b) of Corollary 5.80, we justify the
result of this theorem in case (c). The last statement of the theorem follows
as usual from the scalarization formula of Theorem 3.28. �

We can derive many consequences of Theorem 5.81 similarly to our con-
siderations in Sections 4.4 and 5.2. Let us present just some of them related
to equilibrium constraints given in composite subdifferential forms that are
the most interesting for applications. The first result concerns EPECs with
equilibrium constraints governed by the so-called hemivariational inequalities
with composite potentials.

Corollary 5.82 (optimality conditions for EPECs governed by HVIs
with composite potentials). Let f : X × Y → Z be a continuous mapping
with z̄ := f (x̄, ȳ), let Θ ⊂ Z be a closed set with 0 ∈ Θ, and let (x̄, ȳ) be
locally ( f,Θ)-optimal subject to the equilibrium constraints

0 ∈ q(x, y) + ∂(ψ ◦ g)(y) ,

where q: X × Y → Y ∗, g: Y → W , and ψ : W → IR. Suppose that W is Ba-
nach, that X and Z are Asplund, that dim Y < ∞, and that the following
assumptions hold:

(a) Either f is PSNC at (x̄, ȳ) and Θ is SNC at 0, or f is Lipschitz
continuous around (x̄, ȳ) and f −1 is strongly PSNC at (z̄, x̄, ȳ).

(b) q is strictly differentiable at (x̄, ȳ) with the surjective partial derivative
∇x q(x̄, ȳ).

(c) g is continuously differentiable around ȳ with the surjective derivative
∇g(ȳ), and the mapping ∇g(·) from Y to the space of linear bounded operators
from Y to W is strictly differentiable at ȳ.

(d) The graph of ∂ψ is locally closed around (w̄, v̄), where w̄ := g(ȳ) and
where v̄ ∈ W∗ is a unique functional satisfying the relations

−q(x̄, ȳ) = ∇g(ȳ)∗v̄ , v̄ ∈ ∂ψ(w̄) .



5.3 Multiobjective Optimization 105

Then there are (y∗, z∗, u) ∈ Y ∗× Z∗×Y such that (y∗, z∗) �= 0, z∗ ∈ N(0;Θ),(
−∇x q(x̄, ȳ)∗u, y∗

)
∈ D∗

N f (x̄, ȳ)(z∗), and

−y∗ ∈ ∇yq(x̄, ȳ)∗u + ∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, v̄)

(
∇g(ȳ)u

)
.

Furthermore, if f is strictly Lipschitzian at (x̄, ȳ), then the above opti-
mality conditions can be written as follows: there are z∗ ∈ N(0;Θ) \ {0} and
u ∈ Y such that

0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + ∇q(x̄, ȳ)∗u

+
(
0,∇2〈v̄ , g〉(ȳ)∗u + ∇g(ȳ)∗∂2

Nψ(w̄, v̄)
(
∇g(ȳ)u

))
.

Proof. This follows from Theorem 5.81 with Q(y) = ∂(ψ◦g)(y) by computing

D∗Q(ȳ, p̄)(u) = ∂2(ψ ◦ g)(ȳ, p̄)(u) with p̄ := −q(x̄, ȳ)

using the second-order subdifferential chain rule from Theorem 1.127. Ob-
serve that Q is SNC by dim Y < ∞ and that the qualification condition in
Theorem 5.81 holds automatically, since ∇x q(x̄, ȳ) is surjective and Q doesn’t
depend on the parameter x . �

The next corollary provides necessary optimality conditions for EPECs,
where equilibrium constraints are given by parameter-dependent variational
systems (labeled as generalized variational inequalities–GVIs) with composite
potentials. For brevity and simplicity we consider only the case of amenable
potentials in finite dimensions. Note that no surjectivity assumptions on deriv-
atives are imposed.

Corollary 5.83 (generalized order optimality for EPECs governed
by GVIs with amenable potentials). Let f : X × Y → Z be a continuous
mapping, let Θ ⊂ Z be a closed set with 0 ∈ Θ, and let (x̄, ȳ) be locally
( f,Θ)-optimal subject to the parameter-dependent equilibrium constraints

0 ∈ q(x, y) + ∂(ψ ◦ g)(x, y) ,

where q: X × Y → X∗ × Y ∗, g: X × Y → W , and ψ : W → IR, dim (X × Y ×
W ) < ∞, and Z is Asplund. Assume that q is Lipschitz continuous around
(x̄, ȳ) and the potential ϕ := ψ ◦ g is strongly amenable at this point. Denote
p̄ := −q(x̄, ȳ) ∈ ∂(ψ ◦ g), w̄ := g(x̄, ȳ),

M(x̄, ȳ) :=
{
v̄ ∈ W ∗∣∣ v̄ ∈ ∂ψ(w̄), ∇g(x̄, ȳ)∗v̄ = p̄

}
and impose the second-order qualification conditions:

∂2ψ(w̄, v̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} for all v̄ ∈ M(x̄, ȳ) and
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0 ∈ ∂〈u, q〉(x̄, ȳ)+

⋃
v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)
(
∇g(x̄, ȳ)u

)]
=⇒ u = 0 .

Then there are 0 �= (x∗, y∗, z∗) with z∗ ∈ N(0;Θ) satisfying the relations
(−x∗,−y∗) ∈ D∗

N f (x̄, ȳ)(z∗) and

(x∗, y∗) ∈ ∂〈u, q〉(x̄, ȳ)+
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)
(
∇g(x̄, ȳ)u

)]
with some u ∈ X × Y in each of the following cases:

(a) f is PSNC at (x̄, ȳ) and Θ is SNC at 0;
(b) f is Lipschitz continuous around (x̄, ȳ) and f −1 is strongly PSNC at

(z̄, x̄, ȳ), where z̄ := f (x̄, ȳ).
Furthermore, these optimality conditions are equivalent to the existence of

z∗ ∈ N(0;Θ) \ {0} and u ∈ X × Y satisfying

0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + ∂〈u, q〉(x̄, ȳ)+
⋃

v̄∈M(x̄,ȳ)

[
∇2〈v̄ , g〉(x̄, ȳ)(u)

+∇g(x̄, ȳ)∗∂2ψ(w̄, v̄)
(
∇g(x̄, ȳ)u

)]
when f is strictly Lipschitzian at (x̄, ȳ).

Proof. This follows from Theorem 5.81 with Q(x, y) = ∂(ψ ◦ g)(x, y) by
applying the second-order subdifferential chain rule for amenable functions
derived in Corollary 3.76. �

The last corollary of Theorem 5.81 concerns EPECs involving equilib-
rium/variational constraints governed by parametric generalized equations
with composite fields. Constraints of this type may be considered in full gener-
ality similarly to MPECs in Sect. 2.2. For simplicity we present necessary op-
timalityconditions only for a special class of such EPECs under some smooth-
ness assumptions.

Corollary 5.84 (optimality conditions for EPECs with composite
fields). Let (x̄, ȳ) be locally ( f,Θ)-optimal subject to

0 ∈ q(x, y) + (∂ψ ◦ g)(x, y) ,

where f : X × Y → Z and Θ ⊂ Z are the same as in the previous corollary
while g: X × Y → W , ψ : W → IR, and q: X × Y → W ∗. Suppose that X and
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Y are Asplund while dim W < ∞, that both q and g are strictly differentiable
at (x̄, ȳ), and that gph ∂ψ is locally closed around (w̄, p̄) with w̄ = g(x̄, ȳ)
and p̄ = −q(x̄, ȳ); the latter is automatic for continuous and for amenable
functions. Assume also the qualification conditions

∂2ψ(w̄, p̄)(0) ∩ ker∇g(x̄, ȳ)∗ = {0} and

[
0 ∈ ∇q(x̄, ȳ)∗u + ∇g(x̄, ȳ)∗∂2ψ(w̄, p̄)(u)

]
=⇒ u = 0 .

Then there are 0 �= (x∗, y∗, z∗) with z∗ ∈ N(0;Θ) satisfying

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗)

⋂[
−∇q(x̄, ȳ)∗u + ∇g(x̄, ȳ)∗∂2ψ(w̄, p̄)(u)

]
for some u ∈ X × Y in each of the cases (a) and (b) of the previous corollary.

Furthermore, these optimality conditions are equivalent to

0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + ∇q(x̄, ȳ)∗u + ∇g(x̄, ȳ)∗∂2ψ(w̄, p̄)(u)

with z∗ ∈ N(0;Θ) \ {0} when f is strictly Lipschitzian at (x̄, ȳ).

Proof. This follows from Theorem 5.81 with Q(x, y) = (∂ψ ◦ g)(x, y) and
the upper estimate for the coderivative D∗Q(x̄, ȳ, p̄) derived in Theorem 4.54
under the assumptions made. �

The results obtained directly imply necessary optimality conditions for
EPECs with specific types of equilibria, as well as for minimax problems with
equilibrium constraints, as discussed in Subsects. 5.3.1 and 5.3.2.

Next we derive some results for EPECs with respect to closed preferences
that are similar to but generally independent of those given above. As be-
fore, we present only pointbased/exact optimality conditions for the problems
under consideration. Let us start with optimality conditions for EPECs with
abstract equilibrium constraints governed by general set-valued mappings.

Proposition 5.85 (optimality conditions for abstract EPECs with
closed preferences). Let (x̄, ȳ) be a local optimal solution to the multiobjec-
tive optimization problem:

minimize f (x, y) with respect to ≺ subject to y ∈ S(x) ,

where f : X × Y → Z is a mapping between Asplund spaces that is continuous
around (x̄, ȳ) with z̄ := f (x̄, ȳ), where the preference ≺ is closed on Z with
the level set L(·), and where S: X →→ Y is closed-graph around (x̄, ȳ). Assume
that either f is SNC at (x̄, ȳ), or S is SNC at this point and clL: Z →→ Z is
ISNC at (z̄, z̄). Then there are 0 �= (x∗, y∗, z∗) ∈ X∗ × Y ∗ × Z∗ satisfying
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(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗), −x∗ ∈ D∗

N S(x̄, ȳ)(y∗), and z∗ ∈ N+

(
z̄; clL(z̄)

)
.

Furthermore, one has

0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + N
(
(x̄, ȳ); gph S

)
with z∗ ∈ N+

(
z̄; clL(z̄)

)
\ {0}

provided that f is strictly Lipschitzian at (x̄, ȳ) and either dim Z < ∞, or S
is SNC at (x̄, ȳ) and clL is ISNC at (z̄, z̄).

Proof. This follows directly from Theorem 5.73(ii) with the constraint set
Ω := gph S in the Asplund space X × Y . �

Now we are ready to derive necessary optimality conditions for EPECs
involving closed preference relations and equilibrium constraints governed by
parametric variational systems/generalized equations (5.101).

Theorem 5.86 (optimality conditions for EPECs with closed prefer-
ences and variational constraints). Let (x̄, ȳ) be a local optimal solution
to the multiobjective optimization problem:

minimize f (x, y) with respect to ≺ subject to 0 ∈ q(x, y) + Q(x, y) ,

where f : X ×Y → Z , q: X ×Y → P and Q: X ×Y →→ P are mappings between
Asplund spaces, and where ≺ is a closed preference relation on Z . Suppose
that f and q are continuous around (x̄, ȳ), and that Q is closed-graph around
(x̄, ȳ, p̄) with p̄ := −q(x̄, ȳ) ∈ Q(x̄, ȳ). Then there are (x∗, y∗, z∗, p∗) ∈ X∗ ×
Y ∗ × Z∗ × P∗ satisfying the relations

(x∗, y∗, z∗) �= 0, z∗ ∈ N+

(
z̄; clL(z̄)

)
with z̄ := f (x̄, ȳ), and

(x∗, y∗) ∈ D∗
N f (x̄, ȳ)(z∗)

⋂(
− D∗

N q(x̄, ȳ)(p∗) − D∗
N Q(x̄, ȳ, p̄)(p∗)

)
in each of the following cases:

(a) f is SNC at (x̄, ȳ), Q is SNC at (x̄, ȳ, p̄), and the qualification con-
dition[

(x∗, y∗) ∈ D∗
N q(x̄, ȳ)(p∗) ∩

(
− D∗

N Q(x̄, ȳ, p̄)(p∗)
)]

=⇒ x∗ = y∗ = p∗ = 0

holds, which is equivalent to (5.102) when q is strictly Lipschitzian at (x̄, ȳ).
(b) f is SNC at (x̄, ȳ), dim P < ∞, q is Lipschitz continuous around

(x̄, ȳ), and (5.102) is satisfied.
(c) clL is ISNC at (z̄, z̄), g is PSNC at (x̄, ȳ), and the qualification con-

dition in (a) holds.
Furthermore, for f strictly Lipschitzian at (x̄, ȳ) the above optimality con-

ditions can be equivalently written as follows: there is a nonzero element
z∗ ∈ N+

(
z̄; clL(z̄)

)
satisfying
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0 ∈ ∂〈z∗, f 〉(x̄, ȳ) + D∗
N q(x̄, ȳ)(p∗) + D∗

N Q(x̄, ȳ, p̄)(p∗)

with some p∗ ∈ P∗. In this case the SNC assumption on f in (a) and (b)
implies that dim Z < ∞.

Proof. Apply Proposition 5.85 with S given in (5.101). To proceed, we need
to use efficient conditions ensuring an upper estimate of the coderivative
D∗

N S(x̄, ȳ) and the SNC property of S at (x̄, ȳ) in terms of the initial data
(q, Q) in (5.101). It can be done similarly to the proof of Theorem 5.81 based
on the corresponding results of Sect. 4.4. �

Similarly to the above setting of generalized order optimality we can derive
from Theorem 5.86 the corresponding counterparts of Corollaries 5.82, 5.83,
and 5.84 that give necessary optimality conditions for EPECs with closed
preference relations and equilibrium constraints governed by the composite
variational systems considered above.

5.4 Subextremality and Suboptimality at Linear Rate

This section is devoted to the study of less restrictive concepts of set extremal-
ity and of (sub)optimal solutions to standard minimization problems as well
as multiobjective optimization problems than the ones considered before. It
happens that the necessary extremality and optimality conditions obtained
above for the conventional notions are necessary and sufficient for the new
notions studied in the section.

The main difference between the conventional notions and those intro-
duced and studied below is that the latter relate to extremality/optimality
not at the point in question but in a neighborhood of it, and that they involve
a linear rate in the sense precisely defined in what follows. To some extent,
this is similar to the linear rate of openness that distinguishes the covering
properties described in Definition 1.51 from general openness properties in the
framework of the classical open mapping theorems. We also mention the re-
lationship between general continuity and Lipschitz continuity properties; the
latter actually mean “continuity at a linear rate.” It happens that, as in the
case of covering and Lipschitzian properties admitting complete dual charac-
terizations, similar characterizing results hold for properly defined extremality
and optimality notions with a linear rate. The main goal of this section is to
realize these proper definitions, to clarify their specific features, and to justify
the corresponding necessary and sufficient extremality/optimality conditions.

We start with set extremality first defining the notion of linear subextremal-
ity (or subextremality at a linear rate) for systems of sets and showing that
such systems are fully characterized by the generalized Euler equations of the
extremal principle, in both approximate and exact forms. Then we consider
linear suboptimality for constrained multiobjective optimization problems and
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obtain necessary and sufficient conditions for this concept via coderivatives.
The final part of this section is devoted to characterizing linear subminimal-
ity of lower semicontinuous functions in terms of their subdifferentials and
to the subsequent derivation of necessary and sufficient conditions for linear
subminimality in constrained problems. We illustrate by striking examples es-
sential differences between the standard minimality and linear subminimality
notions for real-valued functions. Note that for strictly differentiable functions
the linear subminimality reduces to the classical stationarity in the sense of
vanishing the strict derivative at the reference point.

5.4.1 Linear Subextremality of Set Systems

Given two subsets Ω1 and Ω2 of a Banach space X , we consider the constant

ϑ(Ω1,Ω2) := sup
{
ν ≥ 0

∣∣ ν IB ⊂ Ω1 −Ω2

}
(5.103)

describing the measure of overlapping for these sets. Note that one has
ϑ(Ω1,Ω2) = −∞ in (5.103) if Ω1 ∩ Ω2 = ∅. It is easy to observe that a
point x̄ ∈ Ω1 ∩Ω2 is locally extremal for the set system {Ω1,Ω2} in the sense
of Definition 2.1 if and only if

ϑ
(
Ω1 ∩ Br (x̄),Ω2 ∩ Br (x̄)

)
= 0 for some r > 0 , (5.104)

where Br (x̄) := x̄ + r IB as usual. Modifying the constant ϑ(·, ·) in (5.104), we
come up to the following notion of linear subextremality for systems of two
sets in Banach spaces.

Definition 5.87 (linear subextremality for two sets). Given Ω1,Ω2 ⊂
X and x̄ ∈ Ω1∩Ω2, we say that the set system {Ω1,Ω2} is linearly subex-
tremal around the point x̄ if ϑlin(Ω1,Ω2, x̄) = 0, where

ϑlin(Ω1,Ω2, x̄) := lim inf
xi

Ωi→x̄
r↓0

ϑ
(
[Ω1 − x1] ∩ r IB, [Ω2 − x2] ∩ r IB

)
r

(5.105)

with i = 1, 2, and where the measure of overlapping ϑ(·, ·) is defined in (5.103).

It is clear that the set extremality in the sense of (5.104) implies the linear
subextremality in the sense of (5.105), but not vice versa. Let us discuss some
specific features of linear subextremality for set systems that distinguish this
notion from the concept of (5.104):

(a) The constant ϑlin(Ω1,Ω2, x̄) defined in (5.105), in contrast to the one
ϑ
(
Ω1∩ Br (x̄),Ω2 ∩ Br (x̄)

)
from (5.103), involves a linear rate of set perturba-

tions as r ↓ 0. Therefore condition (5.105) describes a local nonoverlapping at
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linear rate for the sets Ω1 and Ω2, while the condition in (5.104) corresponds
to a local nonoverlapping of these sets with an arbitrary rate as r ↓ 0,

(b) Condition (5.105) requires not the precise local nonoverlapping of the
given sets but up to their infinitesimally small deformations. It follows from
the representation

ϑlin(Ω1,Ω2, x̄) = lim inf
xi

Ωi→x̄

ϑlin(Ω1 − x1,Ω2 − x2), where i = 1, 2 and

ϑlin(Ω1,Ω2) := lim inf
r↓0

ϑ(Ω1 ∩ r IB,Ω2 ∩ r IB)
r

with ϑ(·, ·) defined in (5.103).

(c) Condition (5.105) doesn’t require that the sets Ω1 and Ω2 nonoverlap
exactly at the point x̄ . One can see from the relations in (b) that (5.105)
holds if, given any neighborhood U of x̄ , there are points x1 ∈ Ω1 ∩ U and
x2 ∈ Ω2 ∩ U ensuring an approximate nonoverlapping of the translated sets
Ω1 − x1 and Ω2 − x2 with a linear rate.

We have proved in Theorem 2.20 that, for arbitrary Asplund spaces, the
relations of the extremal principle in the approximate form of Definition 2.5
provide necessary conditions for the local set extremality in the sense of De-
finition 2.1 equivalently described in (5.104). It happens in fact that these
relations are necessary and sufficient for the linear set subextremality defined
above. The exact statements are given in the next theorem.

Theorem 5.88 (characterization of linear subextremality via the ap-
proximate extremal principle). Let Ω1 and Ω2 be subsets of a Banach
space X , and let x̄ ∈ Ω1 ∩Ω2. The following assertions hold:

(i) Assume that for every positive ε there are x̂i ∈ Ωi ∩ (x̄ + ε IB) and
x∗

i ∈ N̂ε(x̂i ;Ωi ) for i = 1, 2 such that

‖x∗
1 + x∗

2‖ ≤ ε and ‖x∗
1‖ + ‖x∗

2‖ = 1 . (5.106)

Then {Ω1,Ω2} is linearly subextremal around x̄.
(ii) Conversely, assume that both sets Ωi are locally closed and that the

system {Ω1,Ω2} is linearly subextremal around x̄. Then for every ε > 0 there
are x̂i ∈ Ωi ∩ (x̄ + ε IB) and x∗

i ∈ N̂(x̂i ;Ωi ), i = 1, 2, satisfying (5.106) pro-
vided that X is Asplund. Moreover, if the latter property holds for any linearly
subextremal system {Ω1,Ω2} ⊂ X around some point x̄ ∈ Ω1 ∩Ω2, than the
space X must be Asplund.

Proof. To prove (i), we suppose that {Ω1,Ω2} is not linearly subextremal
around x̄ , i.e., one has

ϑlin(Ω1,Ω2, x̄) =: α > 0
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for the constant ϑlin in (5.105). The latter means that there is r > 0 such that

ϑ
(
[Ω1 − x1] ∩ r IB, [Ω2 − x2] ∩ r IB

)
> (αr)/2 (5.107)

for any positive r ≤ r and every xi ∈ Ωi ∩r IB, i = 1, 2, where ϑ(·, ·) is defined
in (5.103). On the other hand, it follows from the conditions assumed in (i)
with ε := min{α/16, 1/4} and from the very definition (1.1) of ε-normals,
which actually fits well the subextremality at a linear rate, that there is a
positive number r < r such that

〈x∗
i , x〉 ≤ α

32‖x‖ whenever x ∈
[
Ωi − xi

]
∩ r IB, i = 1, 2 .

Since x∗
2 = −x∗

1 + (x∗
1 + x∗

2 ), one has

−〈x∗
1 , x〉 ≤

(
α
32 + ε

)
‖x‖ ≤ 3α

32‖x‖ for all x ∈
[
Ω2 − x2

]
∩ r IB and

〈x∗
1 , x〉 ≤ (αr)/8 for all x ∈

[
(Ω1 − x1) ∩ r IB

]
−
[
(Ω2 − x2) ∩ r IB

]
.

Now it follows from (5.107) and the first relations in (5.106) that

‖x∗
1‖ ≤ 1/4 and ‖x∗

2‖ ≤ ‖x∗
1‖ + ε ≤ 1/2 ,

which contradicts the second relations in (5.106) and justifies assertion (i).
Next let us justify assertion (ii) of the theorem following the procedure

in the proofs of Lemma 2.32(ii) and Theorem 2.51(i) related to establishing
necessary conditions for set extremality. It happens that the same ideas work
for the more general notion of set subextremality at a linear rate.

Let {Ω1,Ω2} be linearly subextremal around x̄ , i.e., (5.105) holds. Given
ε ∈ (0, 1), we find xi ∈ Ωi ∩ (ε/2)IB for i = 1, 2 and 0 < r < ε such that

ϑ
(
[Ω1 − x1] ∩ r IB, [Ω2 − x2] ∩ r IB

)
< (rε)/8 .

This implies, by definition (5.103) of the overlapping constant ϑ(·, ·), the
existence of a ∈ (rε/8)IB satisfying

a /∈
(
[Ω1 − x1] ∩ r IB

)
−
(
[Ω2 − x2] ∩ r IB

)
.

Therefore one has

‖u − x1 − v + x2 − a‖ > 0 if u ∈ Ω1 ∩ (x1 + r IB), v ∈ Ω2 ∩ (x2 + r IB) .

Since X is assumed to be Asplund, the product space X × X is Asplund
as well; for convenience we equipped it with the maximum norm ‖(u, v)‖ :=
max{‖u‖, ‖v‖}. Define a real-valued function on X × X by

ϕ(u, v) := ‖u − x1 − v + x2‖, (u, v) ∈ X × X ,

and observe from the above that
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ϕ(u, v) > 0 for (u, v) ∈ Ω :=
[
Ω1 ∩ (x1 + r IB)

]
×
[
Ω2 ∩ (x2 + r IB)

]
with ϕ(x1, x2) = ‖a‖ ≤ (rε)/8 .

It follows from Ekeland’s variational principle (Theorem 2.26) that there are
ū ∈ Ω1 ∩ (x1 + (r/4)IB) and v̄ ∈ Ω2 ∩ (x2 + (r/4)IB) such that (ū, v̄) is the
minimum point to the extended-real-valued function

ϕ(u, v) + ε
2‖(u, v) − (ū, v̄)‖ + δ((u, v);Ω), (u, v) ∈ X × X .

Applying now the subgradient description of the approximate extremal prin-
ciple given in Lemma 2.32(i) in any Asplund space and taking into account
that the first two terms in the above sum are convex, we find

(y1, y2) ∈ (ū, v̄) + r
4 IB ⊂ (x1, x2) + r

2 IB, (z1, z2) ∈ Ω ∩
[
(ū, v̄) + r

4 IB
]
,

and (x∗
1 j , x∗

2 j ), j = 1, 2, 3, satisfying

(x∗
11, x∗

21) ∈ ∂̂ϕ(y1, y2), ‖(x∗
12, x∗

22)‖ ≤ ε/2 ,

x∗
13 ∈ N̂(z1;Ω1), x∗

23 ∈ N̂(z2;Ω2), and

‖(x∗
11, x∗

21) + (x∗
12, x∗

22) + (x∗
13, x∗

23)‖ ≤ ε/2 .

Moreover, x∗
11 = −x∗

21 =: x∗, where x∗ is a subgradient of the norm calculated
at the nonzero point y1 − x1 − y2 + x2 − a. Thus ‖x∗‖ = 1 and

‖x∗
13 + x∗

23‖ ≤ ‖x∗
13 + x∗‖ + ‖x∗

23 − x∗‖ = ‖(x∗
11, x∗

21) + (x∗
13, x∗

23)‖ ≤ ε ,

2 − ε ≤ ‖x∗
13‖ + ‖x∗

23‖ ≤ 2 + ε .

Denote x̂1 := x13, x̂2 := x23,

x∗
1 := x∗

13

/
(‖x∗

13‖ + ‖x∗
23‖), and x∗

2 := x∗
23

/
(‖x∗

13‖ + ‖x∗
23‖) .

Then one has x∗
i ∈ N̂(x̂i ;Ωi ), x̂i ∈ Ωi ∩ (x̄ + ε IB) for i = 1, 2, and

‖x∗
1‖ + ‖x∗

2‖ = 1, ‖x∗
1 + x∗

2‖ ≤ ε
/
(2 − ε) ≤ ε ,

which gives all the relations of the approximate extremal principle for linearly
subextremal systems in Asplund spaces. The last statement of the theorem
follows from implication (b)⇒(a) in Theorem 2.20. �

The next result, which is a consequence of Theorem 5.88, characterizes
the linear suboptimality of set systems via the relations of the exact extremal
principle under additional assumptions.
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Theorem 5.89 (characterization of linear subextremality via the ex-
act extremal principle). Let the system {Ω1,Ω2} ⊂ X be linearly subex-
tremal around x̄ ∈ Ω1 ∩Ω2. Assume that X is Asplund, that the sets Ω1 and
Ω2 are locally closed around x̄, and that one of them is SNC at this point.
Then there is x∗ ∈ X∗ satisfying

0 �= x∗ ∈ N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
. (5.108)

Furthermore, condition (5.108) is necessary and sufficient for the linear subex-
tremality of {Ω1,Ω2} around x̄ if dim X < ∞.

Proof. Let us justify the first statement of the theorem based on assertion
(ii) of Theorem 5.88. Picking εk ↓ 0 as k → ∞ and using the latter result, we
find sequences xik → x̄ and x∗

ik ∈ N̂(x1k ;Ωi ) for i = 1, 2 such that

‖x∗
1k + x∗

2k‖ ≤ εk and ‖x∗
1k‖ + ‖x∗

2k‖ = 1 whenever k ∈ IN . (5.109)

Since X is Asplund and the sequences {x∗
1k} and {x∗

2k} are bounded in X∗,
there are subsequences of them that weak∗ converge to x∗

1 and x∗
2 , respectively.

It follows from the first relations in (5.109) and the lower semicontinuity of the
norm function in the weak∗ topology of X∗ that x∗

1 = −x∗
2 =: x∗. Furthermore,

x∗ ∈ N(x̄ ;Ω1) ∩
(
− N(x̄ ;Ω2)

)
by the definition of the basic normal cone. It

remains to show that x∗ �= 0 if one of the sets (say Ω1) is SNC at x̄ .

On the contrary, assume that x∗ = 0. Then x∗
1k

w∗
→ 0, and hence ‖x∗

1k‖ → 0
by the SNC property of Ω1 at x̄ . It follows from the first relation in (5.109)
that ‖x∗

2k‖ → 0 as well. This obviously contradicts the second relation in
(5.109) and finishes the proof of (5.108) for linearly subextremal systems of
closed sets in Asplund spaces.

Assume now that (5.108) holds for {Ω1,Ω2, x̄} with ‖x∗‖ = 1 while X
is finite-dimensional. Using representation (1.8) of the basic normal cone in
finite dimensions, we find sequences xik

Ωi→ x̄ , x∗
1k → x∗, and x∗

2k → −x∗ such
that x∗

ik ∈ N̂(xik ;Ωi ) for i = 1, 2 and all k ∈ IN . Since x∗
1k + x∗

2k → 0 and
‖x∗

1k‖+ ‖x∗
2k‖ → 2‖x∗‖ = 2 as k → ∞, one concludes by the standard normal-

ization that for every ε > 0 there are xi ∈ Ωi ∩ (x̄ + ε IB) and x∗
i ∈ N̂(xi ;Ωi ),

i = 1, 2, satisfying (5.106). Thus {Ω1,Ω2} is linearly subextremal around x̄
by assertion (i) of Theorem 5.88. This completes the proof of the theorem. �

Note that the above proof of the second part of Theorem 5.89 essentially
employs the finite dimensionality of the space X ensuring the agreement be-
tween the norm and weak∗ topology on X∗; cf. the fundamental Josefson-
Nissenzweig theorem discussed, e.g., in Subsect. 1.1.3. On the other hand, the
latter assumption can be relaxed for sets Ωi of special functional structures;
see the next two subsections for more details.

Remark 5.90 (linear subextremality for many sets). The above def-
inition of linear set subextremality concerns the case of two sets. Given a
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system of finitely many sets {Ω1, . . . ,Ωn}, n ≥ 2, in a Banach space X , we
define its linear subextremality in the following way: {Ω1, . . . ,Ω2} is linearly
subextremal around x̄ ∈ Ω1 ∩ . . . ∩Ωn if the system of two sets

Ω̃1 :=
n∏

i=1

Ωi and Ω̃2 :=
{
(x, . . . , x) ∈ Xn

∣∣ x ∈ X
}

is linearly subextremal around (x̄, . . . , x̄) ∈ Xn in the sense of Definition 5.87.
This is equivalent to say that, given any j ∈ {1, . . . , n}, the system of two
sets

Ω1 :=
∏

i∈{1,...,n}\ j

Ωi and Ω2 :=
{
(x, . . . , x) ∈ Xn−1

∣∣ x ∈ Ω j
}

is linearly subextremal around (x̄, . . . , x̄) ∈ Xn−1.
Based on the above results for the case of two sets and elementary cal-

culations, one can obtain the corresponding counterparts of Theorems 5.88
and 5.89 for systems of finitely many sets. In particular, a system of locally
closed sets {Ω1, . . . ,Ωn}, n ≥ 2, in an Asplund space X is linearly subex-
tremal around x̄ if and only if the following relations of the approximate
extremal principle holds: for every ε > 0 there are xi ∈ Ωi ∩ (x̄ + ε IB) and
x∗

i ∈ N̂ (xi ;Ωi ) for i = 1, . . . , n satisfying

‖x∗
1 + . . . + x∗

n ‖ ≤ ε, ‖x∗
1‖ + . . . + ‖x∗

n ‖ = 1 .

If in addition all but one Ωi are SNC at xi , then for any system {Ω1, . . . ,Ωn}
linearly subextremal around x̄ one has the relations of the exact extremal
principle: there are x∗

i ∈ N(x̄ ;Ωi ), i = 1, . . . , n, satisfying

x∗
1 + . . . + x∗

n = 0, ‖x∗
1‖ + . . . + ‖x∗

n ‖ = 1 .

Furthermore, the latter relations are necessary and sufficient for the linear
subextremality of {Ω1, . . . ,Ωn} around x̄ when X is finite-dimensional.

5.4.2 Linear Suboptimality in Multiobjective Optimization

In this subsection we consider some problems of constrained multiobjective
optimization and study a new notion of linearly suboptimal solutions to such
problems. This notion closely relates to (is actually induced by) the linear
subextremality of set systems studied in the preceding subsection (similarly
to the relationship between the generalized order optimality and set extremal-
ity in Subsect. 5.3.1), while we formulate it independently via the initial data.
Our primary intention is to obtain necessary and sufficient conditions (as
well as merely necessary conditions) for linearly suboptimal solutions in both
approximate/fuzzy and exact/pointbased forms. Although the former condi-
tions will be derived under more general assumptions, the latter ones have
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some advantages due to the possibility of using well-developed calculus for
our basic normal/coderivative/subdifferential constructions. This is crucial to
cover various constraints in multiobjective problems.

Given a mapping f : X → Z between Banach spaces, subsets Ω ⊂ X and
Θ ⊂ Z , and a point x̄ ∈ Ω with f (x̄) ∈ Θ, we introduce the constant

ϑlin( f,Ω,Θ, x̄) := lim inf
x

Ω→x̄, z
Θ→ f (x)

r↓0

ϑ
(

f (Br (x) ∩Ω) − f (x),Θ − z
)

r
, (5.110)

where ϑ(·, ·) is defined in (5.103).

Definition 5.91 (linearly suboptimal solutions to multiobjective
problems). Given ( f,Ω,Θ, x̄) as above, we say that x̄ is linearly sub-
optimal with respect to ( f,Ω,Θ) if one has

ϑlin( f,Ω,Θ, x̄) = 0

for the constant ϑlin( f,Ω,Θ, x̄) defined in (5.110).

It is easy to check that every x̄ locally ( f,Θ)-optimal in the sense of
Definition 5.53 (with f (x̄) = 0 for simplicity) subject to the constraint x ∈ Ω
happens to be also linearly suboptimal with respect to ( f,Ω,Θ). Thus the
above notion of linearly suboptimal solutions is an extension of the (exact)
generalized order optimality for constrained multiobjective problems studied
in Subsect. 5.3.5. Besides suboptimality versus optimality, another crucial
difference between the solution notions in Definitions 5.91 and 5.53 is the linear
rate; cf. the discussion on the relationships between the set extremality and
linear subextremality after Definition 5.87. This allows us to obtain necessary
and sufficient conditions for linearly suboptimal solutions in general settings.
First we derive a “fuzzy” result in this direction, which is closely related (being
actually equivalent) to the characterization of the linear subextremality via
the approximate extremal principle from Theorem 5.88. To formulate this
result, we define a set-valued mapping F : X →→ Z built upon ( f,Ω,Θ) by

F(x) :=

⎧⎨
⎩

f (x) −Θ if x ∈ Ω,

∅ otherwise .
(5.111)

Note that the graph of this mapping F agrees with the generalized epigraph
set E( f,Ω,Θ) considered in Subsect. 5.3.2.

Theorem 5.92 (fuzzy characterization of linear suboptimality in
multiobjective optimization). Let X and Y be Banach, and let x̄ ∈ Ω
with f (x̄) ∈ Θ. The following assertions hold:

(i) Assume that for every ε > 0 there are (x, z) ∈ (x̄, 0) + ε IBX×Z with
z ∈ F(x) and z∗ ∈ Z∗ with 1 − ε ≤ ‖z∗‖ ≤ 1 + ε satisfying the inclusion
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0 ∈ D̂∗
ε F(x, z)(z∗) . (5.112)

Then x̄ is linearly suboptimal with respect to ( f,Ω,Θ).
(ii) Conversely, assume that x̄ is linearly suboptimal with respect to

( f,Ω,Θ). Then for every ε > 0 there are (x, z) ∈ (x̄, 0) + ε IBX×Z with
z ∈ F(x) and z∗ ∈ Z∗ with 1 − ε ≤ ‖z∗‖ ≤ 1 + ε satisfying the inclusion

0 ∈ D̂∗F(x, z)(z∗)

provided that gph F is locally closed around (x̄, 0) and that both spaces X and
Z are Asplund.

Proof. It is easy to see that x̄ is linearly suboptimal with respect to ( f,Ω,Θ)
if and only if the system of two sets

Ω1 := gph F and Ω2 := X × {0} ⊂ X × Z

is linearly subextremal around (x̄, 0) ∈ X × Z . Then applying the charac-
terization of the linear subextremality from Theorem 5.88 to this set system
{Ω1,Ω2} and taking into account that N̂ε((x, 0);Ω2) = (ε IB∗)× Z∗ and that

(0,−z∗) ∈ N̂ε((x, z);Ω1) ⇐⇒ 0 ∈ D̂∗
ε F(x, z)(z∗)

for all ε ≥ 0, we arrive at all the conclusions of the theorem. �
Corollary 5.93 (consequences of fuzzy characterization of linear
suboptimality). Condition (5.112) always implies that z∗ ∈ N̂ε( f (x);Θ)
for all ε ≥ 0. Moreover, for any x ∈ X close to x̄ with z = f (x) ∈ Θ one has

0 ∈ D̂∗F(x, z)(z∗) ⇐⇒ 0 ∈ ∂̂〈z∗, fΩ〉(x), z∗ ∈ N̂( f (x);Θ)

with fΩ = f +δ(·;Ω) provided that f is Lipschitz continuous around x̄ relative
to the constraint set Ω.

Proof. Follows directly from the definitions and the (easy) scalarization for-
mula for the Fréchet coderivative of locally Lipschitzian functions. �

Our next theorem provides necessary conditions and sufficient conditions
(as well as pointbased characterizations) for linearly suboptimal solutions to
multiobjective optimization problems given in the condensed form, i.e., via
the mapping F built in (5.111) upon the initial data ( f,Ω,Θ). These results
are expressed in terms of the mixed coderivative (1.25) and the reversed mixed
coderivative (1.40) of the mapping F calculated exactly at the reference solu-
tion. Note that the PSNC property of the mapping F−1 imposed in assertion
(ii) of next theorem agrees with the PSNC property of the set E( f,Ω,Θ)
in Theorem 5.59. Hence either one of the assumptions (a) and (b) of Theo-
rem 5.59(ii) with z̄ = 0 ensures the required PSNC property of F−1 at (0, x̄);
see the proof of Theorem 5.59. Recall also that sufficient conditions for the
strong coderivative normality of F in assertion (iii) of the next theorem are
listed in Proposition 4.9.
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Theorem 5.94 (condensed pointbased conditions for linear subopti-
mality in multiobjective problems). Let F be a mapping between Banach
spaces built in (5.111) upon ( f,Ω,Θ). The following hold:

(i) Assume that dim X < ∞ and that there is 0 �= z∗ ∈ Z∗ satisfying

0 ∈ D∗
M F(x̄, 0)(z∗) .

Then x̄ is linearly suboptimal with respect to ( f,Ω,Θ).
(ii) Conversely, assume that x̄ is linearly suboptimal with respect to

( f,Ω,Θ). Then there is 0 �= z∗ ∈ Z∗ satisfying

0 ∈ D̃∗
M F(x̄, 0)(z∗)

provided that both X and Z are Asplund, that gph F is locally closed around
(x̄, 0), and that F−1 is PSNC at (0, x̄); the latter is automatic when either
dim Z < ∞ or F is metrically regular around (x̄, 0).

(iii) Let dim X < ∞, let Z be Asplund, and let F be closed-graph around
(x̄, 0). Assume also that F is SNC and strongly coderivatively normal at (x̄, 0)
with D∗F(x̄, 0) := D∗

M F(x̄, 0) = D∗
N F(x̄, 0). Then x̄ is linearly suboptimal

with respect to ( f,Ω,Θ) if and only if there is 0 �= z∗ ∈ Z∗ satisfying

0 ∈ D∗F(x̄, 0)(z∗) .

Proof. Let us first justify (i). Using 0 ∈ D∗
M F(x̄, 0)(z∗) and the definition

of the mixed coderivative with dim X < ∞, we find εk ↓ 0, xk → x̄ , zk → 0,
x∗

k → 0, and z∗k → z∗ such that

zk ∈ F(xk) and x∗
k ∈ D̂∗

εk
F(xk, zk)(z∗k ) whenever k ∈ IN .

Note that the first inclusion above implies, due to the construction of F in
(5.111), that xk ∈ Ω and zk = f (xk) ∈ Θ. Furthermore, since ‖z∗k − z∗‖ → 0
and ‖z∗‖ = 1, we may assume without loss of generality that ‖z∗k ‖ = 1 for all
k ∈ IN . From x∗

k ∈ D̂∗
εk

F(xk, zk)(z∗k ) one has

〈x∗
k , x − xk〉 − 〈z∗k , z − zk〉 ≤ εk

(
‖x − xk‖ + ‖z − zk‖

)
whenever the pair (x, z) is sufficiently close to (x̄, 0). This implies the estimate

−〈z∗k , z − zk〉 ≤
(
εk + ‖x∗

k ‖
)(
‖x − xk‖ + ‖z − zk‖

)
,

which means that

0 ∈ D̂∗
γk

F(xk, zk)(z∗k ) with γk := εk + ‖x∗
k ‖ ↓ 0 as k → ∞ .

Applying now assertion (i) of Theorem 5.92, we conclude that x̄ is linearly
suboptimal with respect to ( f,Ω,Θ).

To prove (ii), let us take a point x̄ linearly suboptimal with respect to
( f,Ω,Θ) and pick an arbitrary sequence εk ↓ 0 as k → ∞. Using assertion



5.4 Subextremality and Suboptimality at Linear Rate 119

(ii) of Theorem 5.92, we find sequences (xk, zk) → (x̄, 0) with zk ∈ F(xk) and
z∗k ∈ Z∗ with ‖z∗k ‖ = 1 satisfying 0 ∈ D̂∗F(xk, zk)(z∗k ) for all k ∈ IN . Since Z is

Asplund, there is z∗ ∈ Z∗ such that z∗k
w∗
→ z∗ as k → ∞ along a subsequence,

and one clearly has 0 ∈ D̃∗
M F(x̄, 0)(z∗) by passing to the limit. Furthermore,

z∗ �= 0 by the PSNC assumption made. The latter assumption obviously
holds if Z is finite-dimensional. It is also fulfilled when F is metrically regular
around (x̄, 0) by Proposition 1.68 and the equivalence between the Lipschitz-
like property of F and the metric regularity of F−1. Thus we arrive at all the
conclusions in (ii).

The final assertion (iii) is a direct combination of (i) and (ii). Note that
D̃∗

M F(x̄, 0) = D∗
N F(x̄, 0) and the PSNC property of F−1 is equivalent to the

SNC property of F in this case, since dim X is finite-dimensional. �

Using full calculus, we deduce from the condensed results of Theorem 5.94(ii)
comprehensive necessary conditions for linear suboptimality in multiobjective
problems and their specifications subject to various (in particular, equilib-
rium) constraints expressed separately via the initial data ( f,Ω,Θ), i.e., in
terms of generalized differential constructions for each of f , Ω, and Θ; cf.
the results of Subsects. 5.3.2 and 5.3.5 for generalized order optimality. The
situation for sufficient conditions and also for the characterization of linear
suboptimality is more delicate: we have to employ calculus rules with equal-
ities, which are essentially more restrictive than those we need for necessity.
Let us present some results in this direction providing the characterization
of linear suboptimality in terms of the initial data ( f,Ω,Θ) based on the
condensed conditions of Theorem 5.94(iii).

Theorem 5.95 (separated pointbased criteria for linear suboptimal-
ity in multiobjective problems). Let f : X → Z be Lipschitz continuous
around x̄ with dim X < ∞, and let Ω ⊂ X and Θ ⊂ Z be locally closed around
x̄ and z̄ := f (x̄) ∈ Θ, respectively. Impose one of the following assumptions
(a)–(c) on the initial data:

(a) dim Z < ∞ and either Ω = X , or f strictly differentiable at x̄.
(b) Z is Asplund, Ω = X , Θ is normally regular and SNC at z̄, and f is

strictly Lipschitzian at x̄.
(c) Z is Asplund, Ω is normally regular at x̄, Θ is normally regular and

SNC at z̄, and f is N -regular at x̄.

Then x̄ is linearly suboptimal with respect to ( f,Ω,Θ) if and only if there is
0 �= z∗ ∈ Z∗ satisfying

0 ∈ ∂〈z∗, f 〉(x̄) + N(x̄ ;Ω), z∗ ∈ N(z̄;Θ) .

Proof. Since gph F = E( f,Ω,Θ) with the latter set defined in (5.37), we
have

D∗
N F(x̄, 0)(z∗) =

{
x∗ ∈ X∗∣∣ (x∗,−z∗) ∈ N

(
(x̄, 0); E( f,Ω,Θ)

)}
.
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Then assertions (iii) and (iv) of Lemma 5.23 ensure the representation

D∗
N F(x̄, 0)(z∗) =

⎧⎨
⎩

∂〈z∗, fΩ〉(x̄) if z∗ ∈ N(z̄;Θ) ,

∅ otherwise
(5.113)

provided that Z is Asplund and that the restriction fΩ of f on Ω is locally
Lipschitzian around x̄ and strongly coderivatively normal at this point.

Consider first the case of Ω = X . Then we observe from (5.113) that F is
strongly coderivatively normal at (x̄, 0) if either dim Z < ∞, or f is strictly
Lipschitzian at x̄ and Θ is normally regular at z̄; see Proposition 4.9. To
meet all the assumptions of Theorem 5.94(iii), one needs also to check (in
the case of dim Z = ∞) that F−1 is PSNC at (0, x̄). Invoking the proof of
Theorem 5.59(ii), we ensure this property if either Θ is SNC at z̄ or f −1 is
PSNC at (z̄, x̄). Since X is finite-dimensional, the latter is equivalent to the
SNC property of f at (x̄, z̄) and, by Corollary 3.30, reduces to dim Z < ∞ for
strictly Lipschitzian mappings. Thus we complete the proof of the theorem in
the case of Ω = X .

To proceed in the constraint case of Ω �= X under the assumptions made,
it remains to ensure the equality

∂〈z∗, fΩ〉(x̄) = ∂〈z∗, f 〉(x̄) + N(x̄ ;Ω)

in (5.113). By the sum rule of Proposition 1.107(ii) we have this equality when
f is strictly differentiable at x̄ . Moreover, this equality holds and fΩ is also N -
regular (and hence strongly coderivatively normal) at x̄ if f is N -regular and
Ω is normally regular at this point; see Propositions 3.12 and 4.9. Combining
these facts with the assumptions on Θ in (c) needed in the case of dim Z = ∞
similarly to the above proof for Ω = X , we arrive at all the requirements of
Theorem 5.94(iii) and complete the proof of the theorem. �

Let us present a corollary of the last theorem giving a characterization of
linearly suboptimal solutions to multiobjective problems with operator con-
straints. Note that the corresponding necessary optimality conditions obtained
in Corollary 5.60 hold true without any change for linearly suboptimal solu-
tions under general operator constraints given by set-valued and nonsmooth
mappings. However, the necessary and sufficient conditions presented below
require essentially more restrictive assumptions on the initial data ensuring
the equality in the calculus rule for inverse images and in addition the normal
regularity of inverse images in infinite dimensions. This inevitably confines
our consideration to strictly differentiable mappings describing operator and
functional constraints in multiobjective problems.

Corollary 5.96 (pointbased criteria for linear suboptimality under
operator constraints). Let f : X → Z , g: X → Y , Θ ⊂ Z , and Λ ⊂ Y .
Assume that dim X < ∞, that Θ and Λ are locally closed around z̄ and ȳ :=
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g(x̄), respectively, and that f is strictly differentiable at z̄ while g has this
property at ȳ. Suppose also that one of the following assumptions holds:

(a) Y is Banach, dim Z < ∞, and ∇g(ȳ) is surjective.
(b) dim Y < ∞, Z is Asplund, Λ is normally regular at ȳ, Θ is normally

regular and SNC at z̄, and

N(ȳ;Λ) ∩ ker∇g(x̄)∗ = {0} .

Then x̄ is linearly suboptimal with respect to ( f, g−1(Λ),Θ) if and only if
there is 0 �= z∗ ∈ Z∗ satisfying

0 ∈ ∇ f (x̄)∗z∗ + ∇g(x̄)∗N(ȳ;Λ), z∗ ∈ N(z̄;Θ) .

Proof. We use Theorem 5.95 with Ω := g−1(Λ). First apply Theorem 1.17
to ensure the calculus formula

N(x̄ ;Ω) = ∇g(x̄)∗N(ȳ;Λ)

under the surjectivity assumption on ∇g(ȳ) made in (a) when Y is Banach.
Then we arrive at the conclusion of this corollary due to Theorem 5.95(a).

To ensure the normal regularity of Ω = g−1(Λ), needed in Theorem 5.95(c)
in addition to the above calculus formula, we employ Theorem 3.13(iii) with
F(y) = δ(y;Λ) therein, which justifies the conclusion of the corollary under
the assumptions made in (b). Note that we cannot get anything but strict
differentiability from the N -regularity condition on g in the latter theorem,
since the graphical regularity of g is equivalent to its strict differentiability at
the reference point due to Corollary 3.69 with dim X < ∞. �

The result obtained has a striking consequence for the case of multiobjec-
tive problems with functional constraints in the classical form of equalities and
inequalities given by strictly differentiable functions. In this case an appropri-
ate multiobjective version of the Lagrange multiplier rule in the normal form
provides necessary and sufficient conditions for linear suboptimality under the
Mangasarian-Fromovitz constraint qualification.

Corollary 5.97 (linear suboptimality in multiobjective problems
with functional constraints). Let f : X → Z be strictly differentiable at
x̄ with dim X < ∞ and Z Asplund, let Θ be normally regular and SNC at z̄,
and let

Ω :=
{

x ∈ X
∣∣ ϕi (x) ≤ 0, i = 1, . . . ,m; ϕi (x) = 0, i = m + 1, . . . ,m + r

}
,

where each ϕi is strictly differentiable at x̄. Assume the Mangasarian-Fromovitz
constraint qualification:
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(a) ∇ϕm+1(x̄), . . . ,∇ϕm+r (x̄) are linearly independent, and
(b) there is u ∈ X satisfying

〈∇ϕi (x̄), u〉 < 0, i ∈ {1, . . . ,m
}
∩ I (x̄) ,

〈∇ϕi (x̄), u〉 = 0, i = m + 1, . . . ,m + r ,

where I (x̄) :=
{

i = 1, . . . ,m + r
∣∣ ϕi (x̄) = 0

}
.

Then x̄ is linearly suboptimal with respect to ( f,Ω,Θ) if and only if there is
z∗ ∈ N(z̄;Θ) \ {0} and (λ1, . . . , λm+r ) ∈ IRm+r such that

∇ f (x̄)∗z∗ +
m+r∑
i=1

λi∇ϕi (x̄) = 0 ,

λi ≥ 0 and λiϕi (x̄) = 0 for all i = 1, . . . ,m .

Proof. Follows from Corollary 5.96(b) with

Λ :=
{

(α1, . . . , αm+r ) ∈ IRm+r
∣∣∣ αi ≤ 0 for i = 1, . . . ,m and

αi = 0 for i = m + 1, . . . ,m + r
}

and g := (ϕ1, . . . , ϕm+r ): X → IRm+r . �

Let us next derive necessary and sufficient conditions for linear subopti-
mality in multiobjective problems with equilibrium constraints, i.e., in EPECs
in the terminology of Subsect. 5.3.5. Taking into account the above discus-
sions, the general framework for such problems is formulated as follows. Given
f : X × Y → Z , S: X →→ Y , and Θ ⊂ Z , we say that (x̄, ȳ) is linearly subop-
timal with respect to ( f, S,Θ) if it is linearly suboptimal with respect to
( f, gph S,Θ) in the sense of Definition 5.91. We are mostly interested in equi-
librium constraints described by solution maps to parametric variational sys-
tems of the type

0 ∈ q(x, y) + Q(x, y) .

First observe, based on Theorem 5.94(ii) and calculus rules of the inclu-
sion type, that all the necessary conditions obtained in Subsect. 5.3.5 for
generalized order optimality hold true for linearly suboptimal solutions to
the EPECs under consideration. To derive criteria for linear suboptimality,
we need to employ more restrictive calculus rules of the equality type that
provide exact formulas for computing coderivatives of solution maps given
by equilibrium constraints and also ensure graphical regularity of these maps
in appropriate settings. To proceed, we rely on the results of Theorem 5.95
with Ω = gph S ⊂ X ×Y and on the corresponding coderivative formulas and
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regularity assertions established in Subsect. 4.4.1 for parametric variational
systems. In the next theorem we impose for simplicity the strict differentiabil-
ity assumption on f (instead of N -regularity in (c) of Theorem 5.95), which is
unavoidable when dim Z < ∞ while it may be relaxed in infinite dimensions;
see Theorem 3.68.

Theorem 5.98 (characterization of linear suboptimality for general
EPECs). Let f : X × Y → Z and q: X × Y → P be strictly differentiable at
(x̄, ȳ) with z̄ := f (x̄, ȳ) ∈ Θ and p̄ := −q(x̄, ȳ); let Θ ⊂ Z and the graph of
Q: X × Y →→ P be locally closed around z̄ and (x̄, ȳ, p̄) ∈ gph Q, respectively;
let both X and Y be finite-dimensional; and let

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ q(x, y) + Q(x, y)} .

Assume in addition that one of the following requirements holds:
(a) dim Z < ∞, P is Banach, ∇x q(x̄, ȳ) is surjective, and Q = Q(y).
(b) Z and P are Asplund, Θ is SNC and normally regular at z̄, Q =

Q(x, y) is SNC and N -regular at (x̄, ȳ, p̄), and the adjoint generalized equation

0 ∈ ∇q(x̄, ȳ)∗ p∗ + D∗
N Q(x̄, ȳ, p̄)(p∗)

has only the trivial solution p∗ = 0.

Then (x̄, ȳ) is linearly suboptimal with respect to ( f, S,Θ) if and only if there
are z∗ ∈ N(z̄;Θ) \ {0} and p∗ ∈ P∗ satisfying

0 ∈ ∇ f (x̄, ȳ)∗z∗ + ∇q(x̄, ȳ)∗ p∗ + D∗
N Q(x̄, ȳ, p̄)(p∗) .

Proof. Employing Theorem 5.95 with Ω = gph S ⊂ X × Y , we conclude that
(x̄, ȳ) is linearly suboptimal with respect to ( f, S,Θ) if and only if there is
z∗ ∈ N(z̄;Θ) \ {0} satisfying

0 ∈ ∇ f (x̄, ȳ)∗z∗ + N
(
(x̄, ȳ); gph S

)
provided that both X and Y are finite-dimensional, that f is strictly differen-
tiable at (x̄, ȳ), and that either dim Z < ∞ or Z is Asplund, Θ is SNC and
normally regular at z̄, and S is N -regular at (x̄, ȳ).

To obtain results in terms of the initial data for the solution map S, we
thus need to represent N

(
(x̄, ȳ); gph S

)
via (q, Q) and also to invoke additional

conditions ensuring the N -regularity of S at (x̄, ȳ) when dim Z = ∞. First
consider the case of dim Z < ∞, when we don’t need to ensure the regularity
of S. In this case one has by Theorem 4.44(i) that

N
(
(x̄, ȳ); gph S) =

{
(x∗, y∗) ∈ X∗ × Y ∗

∣∣∣ x∗ = ∇x q(x̄, ȳ)∗ p∗ ,

y∗ ∈ ∇yq(x̄, ȳ)∗ p∗ + D∗
N Q(ȳ, p̄)(p∗) for some p∗ ∈ P∗

}
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when P is Banach, Q = Q(ȳ), and ∇x q(x̄, ȳ) is surjective. This gives the
conclusion of the theorem in case (a).

If Q = Q(x, y) and Z is Asplund, we employ assertion (ii) of Theorem 4.44,
which gives the representation formula for N

(
(x̄, ȳ); gph S

)
and simultaneously

ensures the N -regularity of S at (x̄, ȳ) under the regularity assumption on Q
but with no surjectivity of ∇x q(x̄, ȳ). Combining this with the assumptions
in Theorem 5.95(c), we complete the proof of the theorem. �

The most restrictive assumption in (b) of Theorem 5.98 is the N -regularity
of the field Q. It holds, in particular, when Q is convex-graph. The reader can
easily get a specification of Theorem 5.98 in this case from the results of
Corollary 4.45 expressed explicitly in terms of Q but not its coderivative.

Let us present a specification of Theorem 5.98 in the case of Q = ∂(ψ ◦ g),
i.e., when the field of the generalized equation under consideration is given
in the subdifferential form with a composite potential. As discussed in Sub-
sect. 4.4.1, such a model covers classical variational inequalities and their
extensions. To obtain characterizations of linear suboptimality for EPECs of
this type, we involve second-order subdifferential chain rules giving a repre-
sentation of D∗Q = ∂2(ψ ◦ g) via the initial data (ψ, g). Again, we may
apply only those calculus results that ensure chain rules as equalities. Since
graphical regularity is not a realistic property for subdifferential mappings
with nonsmooth potentials, we restrict ourselves to case (a) of Theorem 5.98
combined with the coderivative calculation in Theorem 4.49 for solution maps
to parametric hemivariational inequalities (HVIs).

Corollary 5.99 (linear suboptimality for EPECs governed by HVIs
with composite potentials). Let Q(y) = ∂(ψ ◦g)(y) under the assumptions
in case (a) of Theorem 5.98, where

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ q(x, y) + ∂(ψ ◦ g)(y)

}
,

q: X ×Y → Y ∗, g: Y → W , ψ : W → IR, and W is Banach. Suppose in addition
that g ∈ C1 with the surjective derivative ∇g(ȳ), that ∇g(·) is strictly differ-
entiable at ȳ, and that the graph of ∂ψ is locally closed around (w̄, v̄), where
w̄ := g(ȳ) and where v̄ ∈ W ∗ is a unique functional satisfying

−q(x̄, ȳ) = ∇g(ȳ)∗v̄ .

Then (x̄, ȳ) is linearly suboptimal with respect to ( f, S,Θ) if and only if there
are z∗ ∈ N(z̄;Θ) \ {0} and (uniquely defined) u ∈ Y such that

0 = ∇x f (x̄, ȳ)∗z∗ + ∇x q(x̄, ȳ)∗u and

0 ∈ ∇y f (x̄, ȳ)∗z∗ + ∇yq(x̄, ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, v̄)

(
∇g(ȳ)u

)
.

Proof. Follows from Theorem 5.98(a) due to the calculation of D∗
N S(x̄, ȳ) for

the above mapping S given in Theorem 4.49, which is based on the second-
order subdifferential formula from Theorem 1.127. �
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Finally in this subsection, we present a criterion for linear suboptimality for
EPECs governed by parametric generalized equations with composite fields.

Corollary 5.100 (linear suboptimality for EPECs governed by HVIs
with composite fields). Let Q(y) = (∂ψ ◦ g)(y) under the assumptions in
case (a) of Theorem 5.98, where P = W ∗ for some Banach space W , where

S(x) :=
{

y ∈ Y
∣∣ 0 ∈ q(x, y) + (∂ψ ◦ g)(y)

}
with g: Y → W and ψ : W → IR, and where g is strictly differentiable at ȳ
with the surjective derivative ∇g(ȳ). Denoting w̄ := g(ȳ) and p̄ := −q(x̄, ȳ),
we assume that the graph of ∂ψ is locally closed around (w̄, p̄), which is au-
tomatic when ψ is either continuous or amenable. Then (x̄, ȳ) is linearly
suboptimal with respect to ( f, S,Θ) if and only if there are z∗ ∈ N(z̄;Θ) \ {0}
and (uniquely defined) u ∈ W ∗∗ satisfying

0 = ∇x f (x̄, ȳ)∗z∗ + ∇x q(x̄, ȳ)∗u and

0 ∈ ∇y f (x̄, ȳ)∗z∗ + ∇yq(x̄, ȳ)∗u + ∇g(ȳ)∗∂2
Nψ(w̄, p̄)(u) .

Proof. Follows from Theorem 5.98(a) due to the calculation of D∗
N S(x̄, ȳ)

for the above mapping S given in Proposition 4.53 based on the coderivative
chain rule from Theorem 1.66. �

5.4.3 Linear Suboptimality for Minimization Problems

In the concluding subsection of Sect. 5.4 (and of the whole chapter) we study
the above notion of linear suboptimality for usual minimization problems;
thus we refer to this notion as to linear subminimality. Minimization prob-
lems form, of course, a special subclass of the multiobjective optimization
problems considered in the preceding subsection with a single (real-valued)
objective f and with Θ = IR−. On the other hand, such problems and their
linearly suboptimal solutions have some specific features in comparison with
general multiobjective problems. We present characterizing results for linear
subminimality in both approximate and pointbased forms for unconstrained
and constrained problems. Some striking illustrative examples will be given
as well. Besides necessary and sufficient conditions for linear subminimality
involving lower subgradients, we obtain also refined necessary conditions via
upper subgradients, which are specific for minimization problems.

Definition 5.101 (linear subminimality). Let Ω ⊂ X , and let ϕ: X → IR
be finite at x̄ ∈ Ω. We say that x̄ is linearly subminimal with respect to
(ϕ,Ω) if one has



126 5 Constrained Optimization and Equilibria

lim sup
x

Ω→x̄
ϕ(x)→ϕ(x̄)

r↓0

inf
u∈Br (x)∩Ω

ϕ(u) − ϕ(x)
r

= 0 .

The point x̄ is said to be linearly subminimal for ϕ if Ω = X in the above.

Observe that the linear subminimality of x̄ with respect to (ϕ,Ω) corre-
sponds to the linear suboptimality of x̄ with respect to ( f,Ω,Θ) from Defin-
ition 5.91 when f (x) = ϕ(x) − ϕ(x̄) and Θ = IR−.

It is easy to see that any local minimizer for the function ϕ subject to
x ∈ Ω is linearly subminimal with respect to (ϕ,Ω), but not vice versa.
The next example illustrates some striking differences that occur even for
unconstrained problems involving one-dimensional functions.

Example 5.102 (specific features of linear subminimality). One can
check directly from the definition that x̄ = 0 ∈ IR is linearly subminimal
for each of the following functions: ϕ(x) := x2, ϕ(x) := −x2, and ϕ(x) := x3.
These functions are different from the viewpoint of minimization having x̄ = 0
as a minimizer, a maximizer, and just a stationary point, respectively.

The point x̄ = 0 is also linearly subminimal for the piecewise constant and
l.s.c. function

ϕ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1
n
, −1

n
< x ≤ − 1

n + 1
, n ∈ IN ,

0, x = 0 ,

1
n
,

1
n + 1

< x ≤ 1
n
, n ∈ IN .

Although this point is not a local minimizer for ϕ, every neighborhood of x̄ = 0
contains a point of local minimum to this function. However, this is not the
case for the function

ϕ(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1
n

+
1
n2

(
x +

1
n

)
, −1

n
< x ≤ − 1

n + 1
, n ∈ IN ,

0, x = 0 ,

1
n

+
1
n2

(
x − 1

n + 1

)
,

1
n + 1

< x ≤ 1
n
, n ∈ IN ,

which is l.s.c., piecewise linear, and doesn’t have local minimizers at all, while
x̄ = 0 is linearly subminimal for it.

Let us present some equivalent descriptions of linear subminimality in pri-
mal spaces that clarify its relation to perturbed minimization as well as to
generalized stationary points defined via limiting slopes instead of classical
derivatives. For simplicity we put Ω = X in Definition 5.101 taking into ac-
count that ϕ is extended-real-valued.
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Theorem 5.103 (equivalent descriptions of linear subminimality).
Let ϕ: X → IR be finite at x̄ and l.s.c. around this point, and let X be Ba-
nach. The following properties are equivalent:

(a) The point x̄ is linearly subminimal for ϕ.
(b) For any εk ↓ 0 there exists xk

ϕ→ x̄ as k → ∞ such that

ϕ(xk) ≤ ϕ(x) + εk‖x − xk‖ for all x around xk and k ∈ IN .

(c) One has

lim inf
x

ϕ→x̄
|∇ϕ|(x) = 0, where |∇ϕ|(x) := lim sup

u
ϕ→x

max
{
ϕ(x) − ϕ(u), 0

}
‖u − x‖

is called the (strong) slope of ϕ at x.

Proof. It is easy to observe that the property in (b) can be equivalently
described as

lim sup
x

ϕ→x̄
r↓0

τϕ(x, r) = 0, where τϕ(x, r) := inf
‖u−x‖<r

min
{ϕ(u) − ϕ(x)

‖u − x‖ , 0
}
.

Thus (b)⇒(a) due to

τϕ(x, r) ≤ inf
‖u−x‖≤r

ϕ(u) − ϕ(x)
r

≤ 0 for all r > 0 .

To prove (a)⇒(b), assume that x̄ is linearly subminimal for ϕ and find by
Definition 5.101 sequences uk

ϕ→ x̄ and εk ↓ 0 such that

ϕ(x) − ϕ(uk) ≥ −ε2
k for all x ∈ uk + 2εk IB .

By the Ekeland variational principle of Theorem 2.26, employed for each num-
ber k ∈ IN , there is xk ∈ uk + εk IB satisfying

ϕ(xk) ≤ ϕ(uk) and ϕ(x) − ϕ(xk) ≥ −εk‖x − xk‖ whenever x near xk .

One obviously has xk
ϕ→ x̄ and τϕ(xk, r) ≥ −εk for small r > 0, which implies

property (b) due to its description above.
Observing finally that

lim sup
x

ϕ→x̄
r↓0

τϕ(x, r) = − lim inf
x

ϕ→x̄
|∇ϕ|(x) ,

we get the equivalence (b)⇐⇒(c) and complete the proof of the theorem. �

One of the most principal differences between standard local minimiz-
ers and linearly subminimal points is that the former are not stable with
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respect to small perturbations while the latter are. Indeed, consider the sim-
plest quadratic function ϕ(x) := x2 for which x̄ = 0 gives the global minimum.
Perturbing ϕ by ψ(x) := −|x |3/2 around x̄ , we see that x̄ is no longer a local
minimizer for the function ϕ(x) +ψ(x); actually the latter achieves its global
maximum at x̄ = 0. On the other hand, the notion of linear subminimality is
stable relative to any smooth perturbations with vanishing derivatives.

Proposition 5.104 (stability of linear subminimality). Let Ω ⊂ X , and
let ϕ: X → IR and ψ : X → IR be functions on a Banach space X such that ψ
is strictly differentiable at x̄ with ∇ψ(x̄) = 0. Then x̄ is linearly subminimal
with respect to (ϕ,Ω) if and only if it is linearly subminimal with respect to
(ϕ + ψ,Ω).

Proof. It follows directly from Definition 5.101 and from ∇ψ(x̄) = 0 for the
strict derivative of ψ that the linear subminimality of x̄ with respect to (ϕ,Ω)
yields the one of x̄ with respect to (ϕ +ψ,Ω). Applying this to the functions
ϕ + ψ and −ψ , we have the opposite implication. �

An immediate consequence of this observation is that, in any Banach space,
linearly subminimal points of any smooth function reduce to its stationary
points in the classical sense.

Corollary 5.105 (linearly subminimal and stationary points of
strictly differentiable functions). Let ϕ: X → IR be strictly differentiable
at x̄. Then x̄ is linearly subminimal for ϕ if and only if x̄ is a ϕ-stationary
point, i.e., one has ∇ϕ(x̄) = 0.

Proof. It follows from Proposition 5.104 with ϕ = 0 and Ω = X . �

One can see from Corollary 5.105 that, for strictly differentiable real-valued
functions on Banach spaces, the notion of linear subminimality and the sym-
metric one of linear submaximality are equivalent. This is not however the
case for nonsmooth functions. Thus both notions of linear subminimality and
linear submaximality can be treated as one-sided extensions of the classical
stationary concepts to nonsmooth functions.

Let us now derive, based on Theorems 5.92 and 5.94, necessary and suf-
ficient conditions for linear subminimality in both fuzzy/approximate and
pointbased/exact forms. For brevity we formulate only criteria for this prop-
erty but not necessary conditions and sufficient conditions separately. The
next theorem contains condensed results in this direction via Fréchet and ba-
sic subgradients of the restriction ϕΩ(x) := ϕ(x)+δ(x ;Ω) of the cost function
ϕ on the constraint set Ω in the general setting.

Theorem 5.106 (condensed subdifferential criteria for linear sub-
minimality). Let ϕΩ : X → IR be l.s.c. around x̄ ∈ Ω with |ϕ(x̄)| < ∞, and
let X be Asplund. The following assertions hold:
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(i) The point x̄ is linearly subminimal with respect to (ϕ,Ω) if and only
if for every ε > 0 there are x ∈ Ω ∩ (x̄ + ε IB) with |ϕ(x) − ϕ(x̄)| ≤ ε and
x∗ ∈ ∂ϕΩ(x) with ‖x∗‖ ≤ ε.

(ii) Assume that dim X < ∞. Then x̄ is linearly subminimal with respect
to (ϕ,Ω) if and only if 0 ∈ ∂ϕΩ(x̄).

Proof. Assertion (i) of the theorem follows from the fuzzy characterization of
linear suboptimality in Theorem 5.92 with Θ = IR− and f (x) = ϕ(x)−ϕ(x̄).

To prove (ii), we use the pointbased characterization of linear suboptimal-
ity in (iii) of Theorem 5.94 with the same f as in (i) and F defined in (5.111).
Note that this F is automatically SNC and strongly coderivatively normal at
(x̄, 0) due to Z = IR, and one obviously has

0 ∈ D∗F(x̄, 0)(1) ⇐⇒ 0 ∈ ∂ϕΩ(x̄) .

This completes the proof of the theorem. �

Observe that the ε-subdifferential condition in Theorem 5.106(i) cannot
be replaced with 0 ∈ ∂ϕΩ(x); a counterexample is provided by the second
function from Example 5.102.

The second assertion of Theorem 5.106 and subdifferential sum rules of the
equality type imply the next result providing a pointbased characterization of
linear subminimality in terms of basic subgradients of ϕ and basic normals to
Ω calculated at the reference solution x̄ .

Corollary 5.107 (separated pointbased characterization of linear
subminimality). Let dim X < ∞, and let x̄ ∈ Ω with |ϕ(x̄)| < ∞. Sup-
pose also that one of the following assumptions (a)–(c) holds:

(a) ϕ is l.s.c. around x̄ and Ω = X .
(b) ϕ is strictly differentiable at x̄ and Ω is closed around this point.
(c) ϕ is l.s.c. around x̄ and lower regular at this point, Ω is locally closed

and normally regular at x̄, and one has the qualification condition

∂∞ϕ(x̄) ∩
(
− N(x̄ ;Ω)

)
= {0} .

Then x̄ is linearly subminimal with respect to (ϕ,Ω) if and only if

0 ∈ ∂ϕ(x̄) + N(x̄ ;Ω) . (5.114)

Proof. Condition (5.114) coincides with the one in Theorem 5.106(ii) when
Ω = X . When ϕ is strictly differentiable, condition 0 ∈ ∂ϕΩ(x̄) is equivalent
to (5.114) by the equality

∂ϕΩ(x̄) = ∇ϕ(x̄) + N(x̄ ;Ω)

due to Proposition 1.107(ii). Under the assumptions in (c) we have the equality

∂ϕΩ(x̄) = ∂ϕ(x̄) + N(x̄ ;Ω)

due to the equality sum rule in Theorem 3.36. �
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Note that in case (b) the characterization (5.114) of linear subminimality
follows directly from Theorem 5.95(a) on multiobjective optimization, while
in case (a) it follows Theorem 5.95(b) when ϕ is locally Lipschitzian. However,
in case (c) the assumptions ensuring (5.114) by Corollary 5.107 are essentially
weaker than those induced by Theorem 5.95(c). Indeed, the N -regularity as-
sumption on f (x) = ϕ(x)−ϕ(x̄) with Z = IR in Theorem 5.95(c), which is the
graphical regularity of ϕ at x̄ , is equivalent to the strict differentiability of ϕ
at this point due to Proposition 1.94. On the other hand, the lower regularity
of ϕ assumed in Corollary 5.107(c) holds for important classes of nonsmooth
functions encountered in minimization problems. In particular, this includes
convex functions and a broader class of amenable functions discussed above.
Such a difference between the results of Theorem 5.95 in the case of minimiza-
tion problems and the ones of Corollary 5.107 is due to the one-sided specific
character of minimizing extended-real-valued functions, which is missed by
separated conditions in the vector framework.

Based on the results of Corollary 5.107 in the constraint case Ω �= X ,
one may derive their consequences providing necessary and sufficient condi-
tions for linear subminimality in problems with specific types of constraints.
For problems with operator, functional, and/or equilibrium constraints (i.e.,
MPECs) it can be done as in Corollaries 5.96, 5.97, Theorem 5.98, and its two
corollaries. Moreover, in addition to the above results requiring the strict dif-
ferentiability of the objective mapping, we get also characterizations of linear
subminimality in those problems with regular constraints and lower regular
cost functions. We leave details to the reader.

Finally in this subsection, we obtain necessary conditions for linear sub-
minimality in nonsmooth constrained problems, where upper subgradients are
used for functions describing a single objective and inequality constraints.

Let us consider a cost function ϕ0: X → IR finite at x̄ and a constraint set
∆ ⊂ X given by

∆ :=
{

x ∈ Ω ⊂ X with ϕi (x) ≤ 0 for i = 1, . . . ,m
}
,

where ϕi : X → IR for all i . The next theorem gives upper subdifferential
necessary conditions for linearly subminimal solutions with respect to (ϕ0,∆).

Theorem 5.108 (upper subdifferential necessary conditions for lin-
early subminimal solutions). Let x̄ ∈ ∆ be linearly subminimal with re-
spect to (ϕ0,∆), where Ω is locally closed around x̄. Assume that either X
admits a Lipschitzian C1 bump function, or X is Asplund and ϕi (x̄) < 0 for
all i = 1, . . . ,m. Then for any Fréchet upper subgradients x∗

i ∈ ∂̂+ϕi (x̄),
i = 0, . . . ,m, there are 0 �= (λ0, . . . , λm) ∈ IRm+1 such that

λi ≥ 0 for i = 0, . . . ,m, λiϕi (x̄) = 0 for i = 1, . . . ,m, and

−
m∑

i=0

λi x
∗
i ∈ N(x̄ ;Ω) .
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Proof. Suppose that ∂̂+ϕi (x̄) �= ∅ for all i = 0, . . . ,m (otherwise the conclu-
sion of theorem holds trivially) and pick arbitrary x∗ ∈ ∂̂+ϕi (x̄) for each i .
Now applying the variational description of Fréchet subgradients from Theo-
rem 1.88(i) to −x∗

i ∈ ∂̂(−ϕi )(x̄), we find functions si : X → IR for i = 0, . . . ,m
that are Fréchet differentiable at x̄ satisfying

si (x̄) = ϕi (x̄), ∇si (x̄) = x∗
i , and si (x) ≥ ϕi (x) around x̄ .

Consider another constraint set

∆̃ :=
{

x ∈ Ω with si (x) ≤ 0 for all i = 1, . . . ,m
}

and observe that x̄ ∈ ∆̃ and that x̄ is linearly subminimal with respect to
(ϕ0, ∆̃). Moreover, the definitions of linear subminimality and of Fréchet upper
subgradients imply by the construction of s0 that x̄ is linearly subminimal
with respect to (s0, ∆̃). If si (x̄) = ϕi (x̄) < 0 for all i = 1, . . . ,m, we have by
Corollary 5.97 with f (x) = ϕ(x) − ϕ(x̄) and Θ = IR−, the necessary part
of which clearly holds in any Asplund space (see Theorem 5.94(ii) and the
subsequent arguments based on calculus rules in Asplund spaces), that

−∇s0(x̄) = −x∗
0 ∈ N(x̄ ; ∆̃) = N(x̄ ;Ω) .

It remains to consider the alternative case in the theorem when at least one
of the inequality constraints is active at x̄ . In this case all the functions si may
be chosen to be continuously differentiable around x̄ by Theorem 1.88(ii) with
S = LC1. Then using again the necessary conditions for linear subminimality
from Corollary 5.97 held in Asplund spaces, we get the inclusion

−
m∑

i=0

λi∇si (x̄) ∈ N(x̄ ;Ω)

with some (λ0, . . . , λm) �= 0 satisfying the above sign and complementary
slackness conditions. The last relation in the theorem is now follows from
∇si (x̄) = x∗

i for i = 0, . . . ,m. �

Specifying the constraint set Ω is the form of equality, operator, equilib-
rium, and/or other types of constraints and using the fully developed calculus,
one may derive from Theorem 5.108 necessary conditions for linear subopti-
mality involving Fréchet upper subgradients of cost functions similarly to the
upper subdifferential necessary conditions for minimization problems estab-
lished in Sects. 5.1 and 5.2 of this chapter.

5.5 Commentary to Chap. 5

5.5.1. Two-Sided Relationships between Analysis and Optimiza-
tion. This chapter is on applications of the basic tools of variational analysis
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developed in Volume I (Chaps. 1–4) to optimization and equilibrium prob-
lems. More specifically, we consider in this chapter a variety of problems in
non-dynamic constrained optimization (including those with equilibrium con-
straints) and problems of multiobjective optimization, which cover classical
and generalized concepts of equilibrium. Our main attention is devoted to de-
riving necessary optimality and suboptimality conditions of various types for
the problems under consideration using the basic extremal/variational prin-
ciples and the tools of generalized differentiation (with their comprehensive
calculi) developed above.

It has been well recognized that optimization/variational ideas and tech-
niques play a crucial role in all the areas of mathematical analysis, including
those which seem to be far removed from optimization. Among the striking ex-
amples mentioned in Preface, recall the very first (Fermat) derivative concept
the introduction of which was motivated by solving an optimization problem;
the classical (Lagrange) mean value theorem, which is probably the most fun-
damental result of differential and integral calculi whose proof is based on the
reduction to optimization and the usage of Fermat’s stationary principle; and
Bernoulli’s brachistochrone problem, which actually inspired the development
of all (infinite-dimensional) functional analysis.

Yet another powerful illustration of the mightiness of optimization is the
generalized differential calculus developed in Volume I, which is strongly based
on variational ideas, mainly on the extremal principle. Remember that the
extremal principle provides necessary conditions for set extremality, which
can be viewed as a geometric concept of optimality extending classical and
generalized notions of optimal solutions to various optimization-related and
equilibrium problems. Thus the application and specification of the extremal
principle in concrete situations of constrained optimization and equilibria di-
rectly provide necessary optimality conditions in such settings. However, much
more developed and diverse results can be derived while involving the power
of generalized differential calculus together with the associated SNC calculus
in infinite dimensions. This is the main contents of Chap. 5.

It is worth mentioning that the approach to necessary optimality condi-
tions based on the extremal principle, as well as the extremal principle itself
and its proof, essentially distinguish from the conventional approach to de-
riving necessary optimality conditions in constrained optimization, which was
suggested and formalized by Dubovitskii and Milyutin [369, 370] and then
was developed in many subsequent publications; see some reference and dis-
cussions in Subsect. 1.4.1. The Dubovitskii-Milyutin formalism contains the
following three major components:

(a) to treat local minima via the empty intersection of certain sets in the
primal space built upon the initial cost and constraint data;

(b) to approximate the above sets by convex cones with no intersection;
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(c) to arrive at dual necessary optimality conditions in the form of an
abstract Euler equation by employing convex separation.

The fundamental difference of our extremal principle approach from the
formalism by Dubovitskii and Milyutin is the absence of any convex approxi-
mation in the primal space, while a generalized Euler equation is obtained via
nonconvex constructions directly in the dual space by reduction to an approxi-
mating sequence of smooth unconstrained optimization problems; see Chap. 2.

5.5.2. Lower and Upper Subgradients in Nonsmooth Analysis
and Optimization. Considering minimization problems for extended-real-
valued functions, we distinguish in the results presented in this book between
lower subgradient and upper subgradient optimality conditions. Conditions of
these two kinds are significantly different for the case of nonsmooth cost func-
tions and agree, of course, for smooth objectives as in Proposition 5.1. Note
that the first result of the latter type for an arbitrary set Ω ⊂ X that admits
a convex cone approximation K was obtained by Kantorovich [664] as early
as in 1940 in the form

−∇ϕ(x̄) ∈ K ∗

via the dual/conjugate cone K ∗ to K in the general topological spaces X .
Kantorovich’s paper, published in Russian, was probably the first result of
the general theory of extremal problems. Unfortunately, it didn’t draw any
attention either in the USSR or in the West being definitely ahead of its
time. We refer the reader to the brilliant analysis by Polyak [1099] of this
and other earlier developments on optimization, involving the related social
environment, in the former Soviet Union.

In nonsmooth optimization, the concept of subgradient (or of subdifferen-
tial as a collection of subgradients) has been traditionally related to “lower”
properties of nonsmooth functions and thus to minimization vs. maximiza-
tion problems. On the other hand, subgradients/subdifferential of concave
functions were defined by Rockafellar [1142] in the way different from (while
symmetric to) that for convex functions. It corresponded in fact to what we
now call upper subgradients/subdifferential; the latter terminology was explic-
itly introduced in Rockafellar and Wets [1165], although upper subgradient
constructions were not actually employed in that book.

Another terminology, which has been fully accepted in the theory of viscos-
ity solutions to nonlinear partial differential equations as well as in a number
of publications on nonsmooth analysis, is that of “subdifferential” and “su-
perdifferential.” It is interesting to observe that (lower) subgradients are used
to define viscosity “supersolutions,” while “subsolutions” are defined via “su-
pergradients.” In this book we choose, after discussion with Rockafellar and
Wets, to employ the lower and upper subgradient terminology as more nat-
ural and appropriate for optimization, taking “lower” for granted to describe
subdifferential constructions extending the one for convex functions and using
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“upper” instead of “super” for symmetric constructions generalizing that for
concave functions in the framework of convex analysis.

It is worth recalling to this end that Clarke’s generalized gradient (good
name!) on the class of locally Lipschitzian functions, being a lower subdif-
ferential construction (i.e., extending the subdifferential for convex but not
for concave functions), coincides at the same time with its upper subdiffer-
ential counterparts, due to its plus-minus symmetry ∂C(−ϕ)(x̄) = −∂Cϕ(x̄)
like for the classical gradient. This implies, in particular, that any conditions
formulated via Clarke’s generalized gradient, don’t distinguished between min-
imization and maximization of nonsmooth (even convex) functions, between
inequality constraints of the opposite signs, etc. However, as stated by Rock-
afellar [1142], “the theory of the maximum of a convex function relative to
a convex set has an entirely different character from the theory of the mini-
mum.” In contrast, the lower and upper Fréchet-like and basic/limiting sub-
differential constructions of this book are essentially one-sided and different
from each other. We efficiently exploit these differences while deriving lower
and upper subdifferential optimality conditions for constrained minimization
of nonsmooth functions presented in Chap. 5.

5.5.3. Maximization Problems for Convex Functions and Their
Differences. To the best of our knowledge, the first necessary optimality
condition, which indeed distinguishes maximization and minimization, was
obtained by Rockafellar [1142, Section 32] for the problem of maximizing a
convex function ϕ over a convex set Ω in finite dimensions. This condition,
for a local maximizer x̄ ∈ Ω, was given in the set-inclusion form

∂ϕ(x̄) ⊂ N(x̄ ;Ω) (5.115)

that obviously reduces to both inclusions (5.3) in Proposition 5.2 for the
problem of minimizing the concave function −ϕ over Ω. As mentioned in
Subsect. 5.1.1, there is a very important class of DC-functions, represented
as the difference of two convex functions ϕ1 − ϕ2, which can be reduced to
minimizing concave function over convex sets. An analog of the necessary
condition (5.115) for DC-functions reads as

∂ϕ1(x̄) ⊂ ∂ϕ2(x̄); (5.116)

see Hiriart-Urruty [573]. Then some modified versions of (5.115) and (5.116)
were used to derive necessary and sufficient conditions for global maximization
of convex functions, DC-functions, and closely related to them functions over
convex sets; see particularly Strekalovsky [1226, 1227, 1228], Hiriart-Urruty
[573], Hiriart-Urruty and Ledyaev [574], Flores-Bazán [461], Flores-Bazán and
Oettli [462], and Tsevendorj [1272]. The reader can find more details and dis-
cussions on major achievements in this direction in the survey paper by Dür,
Horst and Locatelli [373] and in the recent research by Ernst and Théra [410],
where some other striking differences between maximizing and minimizing
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convex functions have been discovered. We also refer the reader to the recent
study by Dutta [375] who derived characterizations of global maximizers for
some classes of “pseudoconvex” and “quasiconvex” functions on convex sets in
finite dimensions via Clarke’s generalized gradient. Furthermore, he obtained
sufficient conditions for global maximization of general Lipschitzian functions
over such sets via our basic subdifferential constructions.

5.5.4. Upper Subdifferential Conditions for Constrained Mini-
mization. A systematic study of upper subdifferential conditions for con-
strained minimization problems involving general (may be non-Lipschitzian)
cost functions was conducted by Mordukhovich [925] in infinite-dimensional
spaces. Most results of this type presented in Chap. 5 are taken from that
paper. The results obtained seem to be new even in finite dimensions. They
apply to local minimizers, same as more conventional lower subdifferential
conditions, which are given in Chap. 5 in a parallel way. As discussed, these
two kinds of necessary optimality conditions are generally independent, while
upper subdifferential ones may be essentially stronger for some classes of min-
imization problems involving nonsmooth cost functions ϕ. Although the re-
lation ∂̂+ϕ(x̄) = ∅ is itself an easy verifiable necessary condition for a local
minimizer x̄ , the most efficient applications of upper subdifferential optimality
conditions require the nontriviality ∂̂+ϕ(x̄) �= ∅ of the Fréchet upper subdif-
ferential. This is automatic, in particular, for those locally Lipschitzian func-
tions on Asplund spaces that happen to be upper regular at the minimum
point in question; see Remark 5.4 for more details. The latter class contains,
besides smooth and concave continuous functions, a large class of semiconcave
functions important in various applications, especially to optimal control and
viscosity solutions to nonlinear PDEs.

Recall that a function ϕ:Ω → IR defined on a convex set Ω is semiconcave
if there is a nondecreasing upper semicontinuous function ω: IR+ → IR+ with
ω(ρ) → 0 as ρ ↓ 0 such that

λϕ(x1) + (1 − λ)ϕ(x2) − ϕ
(
λx1 + (1 − λ)x2

)
≤ λ(1 − λ) ‖x1 − x2‖ω

(
‖x1 − x2|

) (5.117)

whenever x1, x2 ∈ Ω and λ ∈ [0, 1]; see the recent book by Cannarsa and
Sinestrari [217] and the references therein. The most important case for both
the theory and applications of semiconcavity corresponds to a linear modulus
ω(·) in (5.117). The latter class of functions (in an equivalent form and with
the opposite sign) was probably introduced and employed for the first time in
optimization by Janin [629] under the name “convexity up to a square” (or
“presque convexes du deuxiéme ordre”, PC2, in French). However, the origin
of this construction goes back to partial differential equations, where the class
of semiconcave (with a linear modulus) functions was exactly the one used by
Kruzhkov [720] and Douglis [368] to establish the first global existence and
uniqueness results for solutions to Hamilton-Jacobi equations. Furthermore,
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semiconcave functions have played a remarkable role in powerful uniqueness
theories for generalized (viscosity, minimax, etc.) solutions to Hamilton-Jacobi
and the like equations and their applications to optimal control and differential
games; see particularly [85, 86, 216, 217, 295, 296, 297, 458, 471, 472, 789,
793, 1230] with the comprehensive bibliographies therein.

It is interesting to observe close relationships (in fact the equivalence)
between semiconcave functions and the major subclasses of subsmooth, or
upper-Ck , functions introduced by Rockafellar [1151] in the form

ϕ(x) := min
t∈T

φ(x, t) ,

where T is a compact space and where φ(x, t) is k times continuously differ-
entiable in x ∈ IRn on an open set uniformly in t ∈ T ; see also Penot [1069] for
some infinite-dimensional extensions. As proved by Rockafellar [1151, 1165],
the class of upper-C2 functions fully agrees with the class of functions semi-
concave with a linear modulus, i.e., concave up to a square. The equivalence
between the general class of semiconcave functions (5.117) and the class of
upper-C1 functions was established by Cannarsa and Sinestrari [217]. Fur-
thermore, upper-C2 functions happen to be equivalent to “weakly concave”
functions in the sense of Vial [1286], while upper-C1 functions agree (in finite
dimensions) with “approximately concave” ones considered by Ngai, Luc and
Théra [1006]. We refer the reader to the recent paper by Aussel, Daniilidis and
Thibault [63] for more discussions on these and related classes of nonsmooth
functions and for the comprehensive study of associate geometric concepts.

Observe also that semiconcave functions with linear and more general mod-
uli are closely related to functions called paraconcave in the theory of gener-
alized convexity; see [534, 697, 1040, 1072] and the references therein. This
name was suggested by Rolewicz [1169, 1170] who independently introduced
and studied paraconvexity/paraconcavity in the framework of set-valued map-
pings. A strong interest to such functions has been motivated by approxima-
tion and regularization procedures via the infimal convolution and related
operations, which have been proved to be locally C1,1 in many important
cases due to the following characterization first established by Hiriart-Urruty
and Plazanet [576]: a function is C1,1 around x̄ if it simultaneously paracon-
vex and paraconcave around this point. We particularly refer the reader to the
papers by Eberhard et al. [381, 386, 387] for various applications of this result
to second-order generalized differentiation.

5.5.5. Lower Subdifferential Optimality and Qualification Condi-
tions for Constrained Minimization. In contrast to upper subdifferential
conditions for nonsmooth minimization, their lower subdifferential counter-
parts are more conventional, with a variety of modifications, and have a much
longer history. Of course, for optimization problems with smooth data both
lower and upper subdifferential necessary optimality conditions reduce to clas-
sical results of constrained optimization that go back to the standard versions
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of Lagrange multipliers in the qualified (sometimes called normal or Karush-
Kuhn-Tucker) and non-qualified (sometimes called Fritz John) forms. Results
of the first type contain qualification conditions, which ensure the nontriviality
(λ0 �= 0) of a multiplier corresponding to the objective/cost function. We refer
the reader to the fundamental contributions by Lagrange [737], Karush [665]
(published in the survey paper by Kuhn [723]), John [638], Kuhn and Tucker
[724], and Mangasarian and Fromovitz [841] for the origin of such optimality
and qualification conditions and the main motivations behind them. Further
developments with more detailed historical accounts and various applications
can be particularly found in [7, 9, 111, 112, 89, 158, 163, 164, 249, 255, 370,
376, 432, 499, 504, 512, 544, 571, 588, 595, 602, 618, 707, 718, 801, 824, 860,
840, 892, 902, 962, 1009, 1097, 1119, 1152, 1155, 1160, 1165, 1216, 1256, 1264,
1265, 1267, 1268, 1289, 1315, 1319, 1340, 1341, 1373, 1378] and the numerous
references therein.

Note that the qualification conditions for optimization given in Chap. 5
have the same nature as the qualification conditions obtained in Volume I from
the viewpoint of generalized differential calculus; they are very much interre-
lated. Furthermore, both optimality and qualification conditions of this book
are derived in dual spaces being generally less restrictive than their primal
space counterparts. Thus the common dual space structure of these optimal-
ity and qualification conditions allows us to make a natural bridge between
the optimization results of the qualified and non-qualified types developed in
Chap. 5.

In this book we concentrate on first-order necessary optimality (as well as
suboptimality) conditions for various classes of optimization problems. How-
ever, we use not only first-order but also second-order subdifferential construc-
tions for problems with equilibrium constraints, which is due to the first-order
variational nature of such constraints; see Sects. 5.2 and 5.3 and the corre-
sponding comments to them given below. The reader can find more informa-
tion on second-order optimality conditions in [37, 64, 65, 102, 111, 132, 133,
153, 176, 234, 236, 282, 283, 372, 384, 387, 502, 575, 486, 516, 601, 613, 624,
628, 704, 756, 764, 771, 857, 858, 877, 1037, 1038, 1039, 1067, 1092, 1156,
1165, 1307, 1308, 1310, 1337, 1358] and their bibliographies.

5.5.6. Optimization Problems with Operator Constraints. The ma-
terial of Subsect. 5.1.2 is devoted to necessary optimality conditions of both
lower and upper subdifferential types for minimization problems with the so-
called operator constraints defined in the general form x ∈ F−1(Θ) ∩ Ω via
inverse images/preimages of sets under set-valued mappings. Traditionally op-
erator constraints are defined in the equality form f (x) = 0, where f : X → Y
is a single-valued mapping with an infinite-dimensional range space Y . This
name appeared (probably first in the Russian literature) from the observation
that dynamic constraints in typical problems of the calculus of variations and
optimal control can be written in such a form, where f is a certain differential
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or integral operator into an infinite-dimensional space; see, e.g., Dubovitskii
and Milyutin [370].

It seems that the first general result for such problems in an infinite-
dimensional form of Lagrange multipliers was obtained by Lyusternik in his
seminal work [824], where f is a C1 operator between Banach spaces. To es-
tablish this result, Lyusternik developed his now classical iterative process and
arrived at the “distance estimate,” which is nowadays called metric regular-
ity. Lyusternik’s version of the Lagrange principle (in the qualified form) was
obtained under the Lyusternik regularity condition ker∇ f (x̄)∗ = {0}, which
signifies the surjectivity of the derivative operator ∇ f (x̄): X → Y . It is not
difficult to derive from Lyusternik’s qualified necessary optimality condition
the non-qualified version

λ∇ϕ(x̄) + ∇ f (x̄)∗y∗ = 0, λ ≥ 0, (λ, y∗) �= 0 , (5.118)

of the Lagrange multiplier rule for a local minimizer x̄ of a smooth function
ϕ subject to the operator constraint f (x) = 0 provided that the derivative
image ∇ f (x̄)X is closed in Y ; see, e.g., Ioffe and Tikhomirov [618]. As well
known, the multiplier rule (5.118) doesn’t generally hold, even in the simplest
infinite-dimensional case of Y = 	2 for smooth problems, without the latter
closedness assumption.

First necessary optimality conditions for problems of minimizing a cost
function ϕ0(x) subject to nonsmooth operator constraints f (x) = 0 given by a
Lipschitzian mapping f : X → Y between Banach spaces, together with more
standard constraints

ϕi (x) ≤ 0, i = 1, . . . ,m, and x ∈ Ω ,

were obtained by Ioffe [595], via Clarke’s generalized gradient and normal
cone, in the generalized Lagrange form

0 ∈ ∂C

( m∑
i=0

λiϕi + 〈y∗, f 〉
)
(x̄) + NC(x̄ ;Ω), (λ0, . . . , λm, y∗) �= 0 , (5.119)

accompanied by the usual sign and complementary slackness conditions. Be-
sides the conventional local Lipschitzian property of ϕi , i = 0, . . . ,m, it was
assumed in [595] that: Y has an equivalent norm whose dual is strictly convex;
Ω has a certain “tangential lower semicontinuous property” at x̄ formulated in
terms of Clarke’s tangent cone and directional derivative; and f has a “strict
prederivative” with norm compact values satisfying a version of the “finite
codimension property” relative to TC(x̄ ;Ω). This result was improved by Ioffe
[598] and by Ginsburg and Ioffe [506] who established significantly stronger
counterparts of (5.119), with the usage of the “approximate” subdifferential
and normal cone instead of the convex-valued constructions by Clarke, under
much more subtle versions of the finite codimension property formulated via
the above “approximate” normal and subgradient constructions. Note that
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the latter advanced formulations of the finite codimension property happened
to be closely related to a topological counterpart of the partial sequential nor-
mal compactness (PSNC) property for mappings as well as to the partial CEL
property by Jourani and Thibault [655]; see Subsects. 1.2.5, 4.5.4 and the cor-
responding discussions in Ioffe [607].

5.5.7. Operator Constraints via Basic Calculus. Theorem 5.11 giv-
ing non-qualified necessary conditions in both upper and lower subdifferential
forms for general problems with operator constraints was obtained in Mor-
dukhovich [925], while its qualified counterparts from Theorems 5.7 and 5.8
are new. Observe that the qualified optimality conditions imply in fact the
corresponding non-qualified ones, but not vice versa. This is due to the struc-
ture of the qualification conditions in Theorems 5.7 and 5.8 (as well as in
the subsequent necessary optimality conditions presented in the book), which
usually contain more subtle dual-space information than is needed for the
associated non-qualified optimality conditions. Note also that the developed
SNC calculus allows us to derive a variety of normal compactness-like require-
ments, generally less restrictive than the afore-mentioned finite codimension
property, ensuring the fulfillment of pointbased necessary optimality conditions
for problems with operator constraints.

It is worth mentioning that in our approach to necessary optimality condi-
tions we treat operator constraints as geometric constraints and then employ
generalized differential and SNC calculi to derive results via the initial data.
The presence of both these calculi based on the extremal principle, being char-
acteristic for the basic constructions used in the book, undoubtedly happens
to be the most crucial factor for successful implementing our approach. Note
that this approach doesn’t have any restriction to deal with many geometric
constraints, which is significant for various classes of optimization problems,
in particular, for optimal control; see Chaps. 6 and 7. As well known, the
presence of only one geometric constraint with possibly empty interior (or
that of the operator/equality type) has been a substantial obstacle in the
Dubovitskii-Milyutin formalism and its subsequent developments.

To conclude the discussion around Theorems 5.7, 5.8, and 5.11, let us
comment on those parts of assertions (i) of Theorems 5.7 and 5.11 that don’t
impose the strict (or continuous) differentiability assumptions on the equal-
ity type constraints with values in finite-dimensional spaces. These results
are essentially due to calculating the Fréchet normal cone to inverse images
given in Corollary 1.15, which is based on the Brouwer fixed-point theorem;
cf. also Halkin [543] and Ioffe [595]. Results of this type were developed by
Ioffe [595, 602] and Ye [1340, 1341] to derive necessary optimality conditions
for Lipschitzian problems with finitely many equality and inequality con-
straints via small convex-valued subdifferentials (of Michel-Penot’s [870, 871]
and Treiman’s [1264, 1265] types) that don’t possess any robustness property.
Note that the corresponding results of Theorems 5.7(i) and 5.11(i) don’t re-
quire the local Lipschitz continuity of constraint functions, while still imposing
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the continuity requirement on equality constraint functions around the point
in question. The latter requirement is essential for the validity of Lagrange-
type necessary optimality conditions as demonstrated by Example 5.12, which
is due to Uderzo [1274].

5.5.8. Exact Penalization and Weakened Metric Regularity. The
remainder of Subsect. 5.1.2 concerns another method to deal with minimiza-
tion problems involving operator constraints of the classical equality type
f (x) = 0 given by Lipschitzian mappings. This method known as exact penal-
ization goes back to Eremin [406] and Zangwill [1354] in the context of convex
programming and has been well developed in connection with numerical op-
timization; see, e.g., Bertsekas [111], Burke [188, 189], Polyak [1097], and the
references therein. Regarding applications to necessary optimality conditions
in nonsmooth optimization, this method was first suggested probably by Ioffe
[588] who established Theorem 5.16; cf. also a somewhat different result by
Clarke [249, 255] on exact penalization that didn’t specifically address oper-
ator constraints. We refer the reader to the recent book by Demyanov [318]
and its bibliography for various applications of exact penalization techniques
to necessary optimality conditions in problems of constrained optimization,
the calculus of variations, and optimal control.

The main concept implemented in Theorem 5.16 is regularity at a point
(called weakened metric regularity in Definition 5.15) introduced by Ioffe in
[587]. This notion, which is closely related to subregularity in the terminology
by Dontchev and Rockafellar [366], is generally different from the basic concept
of metric regularity around the point used throughout the book. The weakened
metric regularity is not robust and doesn’t allow adequate characterizations as
well as calculus/preservation properties similar to the basic metric regularity.
At the same time, this weakened metric regularity and the associated (inverse)
notion of calmness happen to be convenient for various applications; see more
comments below in Subsect. 5.5.16.

Theorem 5.17 giving lower subdifferential optimality conditions for Lip-
schitzian problems with equality operator constraints and its Corollary 5.18
providing an efficient specification for operator constraints of the generalized
Fredholm type are new. In comparison with the afore-mentioned results by
Ioffe [598] and by Ginsburg and Ioffe [506] discussed in Subsect. 5.5.6, the
new results impose milder sequential normal compactness assumptions than
the finite codimension property and employ smaller sets of subgradients and
normals. On the other hand, our results require the Asplund (generally non-
separable) space structure of both spaces X and Y , while those in [598, 506]
apply to arbitrary Banach spaces X and to (close to separable) spaces Y ad-
mitting an equivalent norm whose dual is strictly convex.

Note also that the strict Lipschitzian assumption on the operator con-
straint mapping f in Theorem 5.17, which is milder than the strict prederiva-
tive assumption on f imposed in [506, 595, 598], can be relaxed to the merely
local Lipschitz continuity of f , but in this case the basic subdifferential of
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the scalarization ∂〈y∗, f 〉(x̄) in the multiplier rule of Theorem 5.17 should
be replaced with the (larger) normal coderivative D∗

N f (x̄)(y∗). Observe that
such a coderivative form doesn’t have any counterparts in terms of Clarke’s
constructions even in finite dimensions.

5.5.9. Necessary Optimality Conditions in the Presence of Fi-
nitely Many Functional Constraints. Subsection 5.1.3 concerns the more
conventional form (5.23) of mathematical programs with finitely many equal-
ity, inequality, and geometric constraints. Such constrained optimization prob-
lems are specifications of those with operator constraints considered in Sub-
sect. 5.1.2, while the specific form (5.23) allows us to develop a greater variety
of methods and results on necessary optimality conditions.

The upper subdifferential conditions of Theorem 5.19 are partly new and
partly taken from Mordukhovich [925]. Note that the optimality conditions
of Theorem 5.19(i) employ Fréchet upper subgradients not only for the cost
function ϕ0 as in Subsect. 5.2.1 but also for the functions ϕi , i = 1, . . . ,m,
describing the inequality constraints in (5.23). This however requires a special
“smooth bump” structure of the space X in question for applying the needed
smooth variational descriptions of Fréchet subgradients that happen to be
crucial in the proof.

The subsequent results of Subsect. 5.1.3 deal with lower subdifferential con-
ditions for the nondifferentiable programming problem (5.23), which include
not only those via lower subgradients of the cost and inequality constraints
functions but also necessary optimality conditions expressed in terms of gen-
eralized normals to the corresponding epigraphs.

We start with such geometric conditions in assertions (i) and (ii) of The-
orem 5.21, which give both approximate/fuzzy and exact/pointbased forms
of necessary optimality conditions for (5.23) in the general Asplund space
framework derived by a direct application of the corresponding form of the ex-
tremal principle with no Lipschitzian assumptions on the functions involved.
These results in full generality were first presented in Mordukhovich [922],
but in fact the results as well as the methods employed go back (some-
times as transversality conditions in optimal control) to the original publi-
cations by Mordukhovich [887, 889, 892] and by Kruger and Mordukhovich
[717, 718, 719], where necessary optimality conditions of this type were es-
tablished for various specifications of (5.23) in finite-dimensional and Fréchet
smooth spaces.

The subdifferential form of the pointbased conditions as given in The-
orem 5.21(iii), with the replacement of basic normals to epigraphs by ba-
sic subgradients of the corresponding functions under their local Lipschitz
continuity, can be also found in the afore-mentioned papers in the finite-
dimensional, Fréchet smooth, and Asplund space frameworks. Note that in
[706, 707] Kruger obtained an extension of these results to problems with infi-
nitely many inequality constraints given in the inclusion form f (x) ∈ Θ, where
f is a single-valued Lipschitzian mapping while Θ ⊂ Y is an epi-Lipschitzian
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subset of a Fréchet smooth space. The latter requirement reduces to intΘ �= ∅
when Θ is convex; that is where the name “infinite many inequalities” comes
from. Such “inequality type” results can be derived from Theorem 5.8(iv)
under the much milder SNC assumption on Θ in Asplund spaces.

Let us next discuss the treatment of the equality constraints

ϕi (x) = 0, i = m + 1, . . . ,m + r ,

in problem (5.23), which is the same for the upper and lower subdifferential
conditions of Subsect. 5.1.3 being significantly different from that for the in-
equality constraints as well as for the cost function under consideration. When
ϕi , i = m + 1, . . . ,m + r , are locally Lipschitzian, the equality constraints can
be reflected in the necessary optimality conditions by the “condensed term”

∂
( m+r∑

i=m+1

λiϕi

)
(x̄), (λm+1, . . . , λm+r ) ∈ IRr , (5.120)

via the basic subdifferential of the sum λm+1ϕm+1 + . . . + λm+rϕm+r with ar-
bitrary (no sign) Lagrange multipliers; see, in particular, condition (5.27) in
Theorem 5.19. Since λi are not nonnegative in (5.120) and since the basic
subdifferential ∂ is a one-sided construction while satisfying a subdifferential
sum rule, we can replace (5.120) by the larger sum of sets

m+r∑
i=m+1

λi∂
0ϕi (x̄), (λm+1, . . . , λm+r ) ∈ IRr ,

formed via the symmetric subdifferentials ∂0ϕi (x̄) = ∂ϕi (x̄) ∪ ∂+ϕi (x̄) of the
separate equality constraint functions ϕi , but not just via the basic subdif-
ferentials ∂ϕi (x̄); cf. Corollary 5.20. We prefer however to use the more exact
while less conventional subdifferential expression with all the nonnegative mul-
tipliers

m+r∑
i=m+1

λi

[
∂ϕi (x̄) ∪ ∂(−ϕi )(x̄)

]
with λi ≥ 0, i = m + 1, . . . ,m + r ,

reflecting the equality constraints in necessary optimality conditions for (5.23)
and related problems; see Theorem 5.21(iii) and its proof that contains,
by taking into account inclusion (5.32), the derivation of the latter expres-
sion from the geometric conditions (x̄,−λi ) ∈ N((x̄, 0); gphϕi ) in Theo-
rem 5.21(ii) when the constraint functions ϕi are locally Lipschitzian around
x̄ as i = m + 1, . . . ,m + r . This significantly distinguishes the lower sub-
differential optimality conditions of Theorem 5.21(iii) from other versions of
Lagrange multiplier rules in nondifferentiable programming, particularly from
those established by Clarke [249] and Warga [1319] in terms of their two-sided
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subdifferential constructions that equally treat inequality and equality con-
straints; see Remark 5.22 for more discussions and illustrative examples.

5.5.10. The Lagrange Principle. The next topic of Subsect. 5.1.3 relat-
ing to lower subdifferential conditions for constrained optimization problems
of type (5.23) concerns nonsmooth extensions of the so-called Lagrange prin-
ciple. This name was suggested by Tikhomirov (see, in particular, his books
with Ioffe [618], with Alekseev and Fomin [7], and with Brinkhuis [178]) who
observed that necessary optimality conditions in many extremal problems
arising in various areas of mathematics and applied sciences (nonlinear pro-
gramming, calculus of variations, optimal control, approximation theory, in-
equalities, classical mechanics, astronomy, optics, etc.) could be obtained
in the following scheme: define the Lagrangian L(x, λ0, . . . , λm+r ) by formula
(5.35) with multipliers (λ0, . . . , λm+r ) corresponding to the cost function and
to all the functional (equality and inequality type) constraints and then con-
sider the problem of minimizing the Lagrangian subject to the remaining
geometric constraints. The Lagrange principle says, in accordance with the
primary idea of Lagrange [737], that necessary optimality conditions for the
original constrained problem can be derived as necessary optimality condi-
tions for minimizing the Lagrangian subject only to the geometric constraints
(i.e., fully unconstrained if there are no geometric constraints in the original
problem) with some nontrivial set of Lagrange multipliers.

Of course, the validity of the Lagrange principle should be justified for each
class of optimization problems under consideration. Ioffe and Tikhomirov did
this in their book [618] (originally published in Russian in 1974) for extremal
problems with the so-called “smooth-convex” structure, which cover prob-
lems of optimal control involving smooth dynamics, state constraints of the
inequality type, and general geometric constraints on control functions.

The first nonsmooth version of the Lagrange principle was obtained by
Hiriart-Urruty [571] for Lipschitzian problems of type (5.23) via Clarke’s gen-
eralized gradient and normal cone. Further results on the nonsmooth Lagrange
principle were developed by Ioffe [595] for problems with operator constraints
via Clarke’s constructions (see Subsect. 5.5.6) and then by Kruger [707], Mor-
dukhovich [897, 901], and by Ginsburg and Ioffe [506] in terms of nonconvex
subdifferential constructions.

The results of Lemma 5.23 and Theorem 5.24 are new; some special cases
and consequences can be found in [707, 708, 897, 901]. Corollary 5.25 on the
“abstract maximum principle” reveals the fact well understood in variational
analysis that maximum-type optimality conditions relate to the convexity of
geometric constraints by an extremal structure of the normal cone to con-
vex sets. Note to this end that the maximum principle in optimal control of
continuous-time systems doesn’t generally require any explicit convexity as-
sumptions due to a certain “hidden convexity” inherent in such systems; see
Chap. 6 for more details and discussions.
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5.5.11. Mixed Multiplier Rules. It has been well recognized in opti-
mization theory that equality and inequality constraints are of a fundamentally
different nature, and hence they should be treated differently. As seen above,
equality and inequality constraints in nonsmooth optimization problems can
be distinguished by using different subgradient sets in the corresponding nec-
essary optimality conditions. Note that the cost function is usually treated in
necessary conditions as those describing inequality constraints.

Theorem 5.26 presents lower subdifferential optimality conditions of yet
another type for problem (5.23) that significantly distinguish between the
equality and inequality constraints in this problem. The essence of this theo-
rem, first established by Mordukhovich [897, 901] in finite dimensions, is that
it provides a mixed subdifferential generalization of the Lagrange multiplier
rule. Indeed, while our basic robust subdifferential (an extension of the strict
derivative) is used for equality constraints in Lagrangian necessary optimality
conditions, a non-robust extension of the classical derivative is employed for
inequality constraints and the objective function.

The notion of the “upper convex approximation” used in Theorem 5.26 and
the generated “p-subdifferential” construction (5.47) are due to Pshenichnyi
[1108, 1109]. Observe that these objects are defined non-uniquely and gener-
ally non-constructively. One of the possible upper convex approximations is
Clarke’s directional derivative, which is usually not the best one as demon-
strated in the afore-mentioned work by Pshenichnyi. On the other hand, it
is easy to show that any Gâteaux differentiable function admits the best up-
per convex approximation via its Gâteaux derivative (see the discussion after
Theorem 5.26), which thus provides a version of the Lagrange multiplier rule
generally independent on the previous necessary optimality conditions of Sub-
sect. 5.3.1.

5.5.12. Necessary Conditions for Problems with Non-Lipschitzian
Data. As seen from the results and discussions given above, all the lower sub-
differential versions of necessary optimality conditions in a generalized form of
Lagrange multipliers for the problem of nondifferentiable programming (5.23)
were derived under the local Lipschitzian assumption on the functions ϕi ,
i = 0, . . . ,m + r , describing the objective and functional constraints. There
are also results on Lagrange multipliers in the classical differential form as-
suming only differentiability but not strict/continuous differentiability (i.e.,
generally not the local Lipschitz continuity) of functional data partly dis-
cussed above; see Theorems 5.7(i) and 5.11(i) as well as the papers by Halkin
[543], Ioffe [595], and Ye [1340, 1341]. At the same time Theorem 5.21(ii) gives
necessary conditions for problem (5.23) at the reference minimizer x̄ with no
Lipschitzian assumptions but not in a conventional subdifferential form: it
involves basic normals to graphs and epigraphs, i.e., eventually not only basic
but also singular subgradients of the cost and constraint functions.

Alternative lower subdifferential optimality conditions for non-Lipschitzian
problems in the approximate/fuzzy form of Theorem 5.28 were first obtained
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by Borwein, Treiman and Zhu [158] in reflexive spaces, where the reflexivity
of the space in question was essentially used in the proof; see also Borwein
and Zhu [163, 164]. The Asplund space version of such weak fuzzy optimality
conditions were independently derived with different proofs by Mordukhovich
and B. Wang [962] and by Ngai and Théra [1009]. The proof given in the book
is taken from [962]. Results of this type were also obtained by Zhu [1373] for
nondifferentiable programming problems in Banach spaces admitting smooth
renorms with respect to some bornology.

5.5.13. Suboptimality Conditions. The last subsection of Sect. 5.1 is
devoted to suboptimality conditions for constrained optimization problems.
By such results we understand those, which justify the fulfillment of almost
necessary optimality conditions for almost optimal solutions, where “almost”
means “up to an arbitrary ε > 0.”

It seems to be clear that from the viewpoint of practical applications,
as well as from that of justifying numerical algorithms based on necessary
conditions, there are no much difference between necessary optimality and
suboptimality conditions. The main advantage of suboptimality vs. necessary
optimality conditions is that dealing with suboptimality allows us to avoid
principal difficulties with the existence of optimal solutions that may either
not exist (especially in infinite dimensions), or it may be hard to verify their
existence.

The importance of suboptimality conditions has been well recognized in
the classical calculus of variations after the seminal publications by Young
[1349, 1350] and McShane [861, 862]. Recall that the principal purpose of those
fundamental developments was not only to construct variational problems
admitting optimal solutions in the class of “generalized curves” that can be
approximated by suboptimal solutions to the original problem, but also to
establish necessary optimality conditions for generalized curves that happened
to provide suboptimality conditions for minimizing sequences of “ordinary
curves.”

This line of development was continued in optimal control theory by
Gamkrelidge [495, 496, 497] and Warga [1313, 1314, 1315] who indepen-
dently constructed a proper relaxation (the term coined by Warga) of the
original control problem using somewhat different but equivalent convexifica-
tion procedures and eventually obtaining suboptimality conditions for mini-
mizing sequences of original controls via necessary optimality conditions and
approximations of their generalized/relaxed counterparts; see also Ioffe and
Tikhomirov [617], McShane [863], and Young [1351] for discussing relation-
ships of these approaches and results with the classical calculus of variations.
Suboptimality conditions for dynamic optimization and control problems of
various kinds were later derived, without employing any relaxation procedures,
by Gabasov, Kirillova and Mordukhovich [488], Gavrilov and Sumin [500],
Medhin [867], Mordukhovich [901], Moussaoui and Seeger [987], Plotnikov and
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Sumin [1084], Seeger [1199], Sumin [1233, 1234], and Zhou [1367, 1368, 1369]
among other researchers.

For general (not necessarily dynamic) optimization problems in Banach
spaces the first suboptimality conditions were established by Ekeland [396,
397, 399] via his powerful variational principle. As mentioned in [397], such
suboptimality issues were among the primary motivations for developing Eke-
land’s variational principle. Concerning problems of mathematical program-
ming with equality and inequality constraints as in (5.23), Ekeland derived in
[397] qualified suboptimality conditions of the ε-multiplier type under smooth-
ness assumptions on the initial data imposing linearly independence condition
on the gradients of all the constraint functions; this is a stronger qualification
condition than that of Mangasarian and Fromovitz.

Based on the Ekeland variational principle and necessary optimality condi-
tions in appropriately perturbed problems, lower subdifferential suboptimality
conditions were developed in both qualified and non-qualified forms for various
classes of nonsmooth optimization problems by using mostly the generalized
differential constructions of Clarke. The reader can find a number of results
and applications in this direction in the research by Attouch and Wets [47],
Auslender and Teboulle [60], Bustos [207], Dutta [374], Gupta, Shiraishi and
Yokoyama [526], Hamel [546], Kusraev and Kutateladze [733], Loridan [811],
Loridan and Morgan [812], Moussaoui and Seeger [986], and their references.

The results presented in Subsect. 5.5.13 are taken from the paper by Mor-
dukhovich and B. Wang [962] based on the application of the lower subdiffer-
ential variational principle from Theorem 2.28 and appropriate techniques of
the generalized differential calculus. We distinguish between two major types
of suboptimality conditions: the weak conditions from Theorem 5.29 and the
strong ones from Theorem 5.30 and its corollaries given in both qualified and
non-qualified forms.

The weak suboptimality conditions of Theorem 5.29 don’t practically im-
pose any assumptions on the initial data in the Asplund space setting (besides
the minimal local requirements on lower semicontinuity of the cost and in-
equality constraint functions, continuity of those describing the equality con-
straints, and closedness of the geometric constraint), but the results obtained
involve a weak∗ neighborhood V ∗ ⊂ X∗ of the origin providing a weak fuzzy
counterpart of the Lagrange multiplier rule expressed via Fréchet normals and
subgradients near the reference minimizer.

In contrast, the strong suboptimality conditions in both the qualified form
of Theorem 5.30 and the non-qualified form of Corollary 5.32 establish a more
appropriate strong version of the approximate Lagrange multiplier rule, with a
small dual ball ε IB∗ replacing the weak∗ neighborhood V ∗ from Theorem 5.29,
expressed via basic normals and subgradients under additional Lipschitzian
and SNC assumptions. We particularly note the result of Corollary 5.31, which
provides strong suboptimality conditions for smooth problems of nonlinear
programming under the classical Mangasarian-Fromovitz constraint qualifica-
tion.
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5.5.14. Mathematical Programs with Equilibrium Constraints.
The general class of constrained optimization problems studied in Sect. 5.2 is
now known as mathematical programs with equilibrium constraints (MPECs).
This name appeared in the book by Luo, Pang and Ralph [820] containing a
variety of qualitative and numerical results as well as practical applications
for this remarkable class of mathematical programs in finite dimensions. An-
other (nonsmooth) approach to the study of MPECs and related optimization
problems was developed in the book by Outrata, Kočvara and Zowe [1031].

Historically MPECs have their origin in the economic literature of the
1930s concerning problems of hierarchical optimization known now as Stackel-
berg games; see the book by von Stackelberg [1222] for the initial motivations
and applications and the paper by Leitmann [758] for a modern revisiting.
This class of hierarchical problems is closely related to bilevel programming,
where the focus is on two-level mathematical programs interrelated in such a
way that the set of optimal solutions to the lower-level parametric problems is
the set of feasible solutions to the upper-level one. The reader can find more
results, references, and discussions on bilevel programming in the book by
Dempe [316], his comprehensive (till 2003) annotated bibliography [317], and
the recent paper by Dutta and Dempe [377].

It is often appropriate to consider in hierarchical optimization not just
optimal solutions to the lower-level problem but a larger set of the so-called
KKT points, which contains the collection of optimal (or stationary) solutions
together with the corresponding Lagrange multipliers from the first-order op-
timality conditions. In such a way the description of the feasible solution set to
the upper-level problem involves the classical complementary slackness con-
ditions for mathematical programs with inequality constraints. Conditions of
this type are of great importance for their own sake; they have been studied
for years in complementarity theory well developed in mathematical program-
ming; see, e.g., the book by Cottle, Pang and Stone [294] and the recent two-
volume monograph by Facchinei and Pang [424] for comprehensive studies
of various classes of complementarity problems in finite-dimensional spaces.
Considering complementarity conditions in the (lower-level) framework of hi-
erarchical optimization gives rise to the study of mathematical problems with
complementarity constraints (MPCC), which is one of the most significant
parts of both MPEC theory and applications.

On the other hand, there are important classes of MPECs for which feasi-
ble solutions are given by more general conditions than complementarity; in
particular, those defined by parametric variational inequalities; see, e.g., the
afore-mentioned book [424]. It has been well recognized that the most natural
and convenient setup for describing feasible solutions to MPECs, which cov-
ers the previously mentioned settings as well as other remarkable classes of
non-conventional mathematical programs, is Robinson’s framework of para-
metric generalized equations (5.53). This way is proved to be appropriate for
defining not only sets of optimal solutions/KKT points to lower-level optimiza-
tion, complementarity, and variational inequality problems but also for various
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type of equilibria arising in economics, mechanics, and other applied sciences.
Thus it fully justifies the name “equilibrium constraints” widely spread in the
optimization-related literature.

A characteristic feature of both MPCCs and MPECs is the presence of
intrinsic nonsmoothness, even for problems with smooth initial data. Such a
nonsmoothness is sometimes hidden while still playing a crucial role in the
theory and numerical algorithms. It is not thus surprising that the methods
of nonsmooth analysis and generalized differentiation happen to provide fun-
damental tools in developing various theoretical and computational aspects of
MPCCs and MPECs, particularly those related to necessary optimality condi-
tions, sensitivity and stability analysis, convergence rate and error estimates.

The usage of appropriate concepts of generalized differentiation and asso-
ciated calculi gives rise to the corresponding notions of stationarity important
for the MPEC theory and applications: particularly B(ouligand)-stationarity,
C(larke)-stationarity, and M(ordukhovich)-stationarity. The latter notion has
drawn a major attention in recent years due to some practical applications (es-
pecially to mechanical equilibria) and requiring the weakest constraint qualifi-
cations as a first-order necessary optimality condition for MPECs. The reader
can find various qualitative and numerical results dealing with MPEC sta-
tionarity in Anitescu [20], Facchinei and Pang [424], Flegel [454], Flegel and
Kanzov [455, 456], Flegel, Kanzov and Outrata [457], Fukushima and Pang
[480], Hu and Ralph [584], Kočvara, Kružik and Outrata [689], Kočvara and
Outrata [690, 691], Outrata [1024, 1025, 1026, 1027, 1028, 1029, 1030], Ralph
[1116], Ralph and Wright [1117], Scheel and Scholtes [1191], Scholtes [1192],
Scholtes and Stöhr [1194], Treiman [1268], Ye [1338, 1339, 1342], Ye and Ye
[1343], Zhang [1361], etc.

5.5.15. Necessary Optimality Conditions for MPECs via Ba-
sic Calculus. The approach to necessary optimality conditions for general
MPECs and their specifications developed in Subsects. 5.2.1 and 5.2.2 is
based on considering first abstract MPECs of type (5.52) with equilibrium
constraints given by general set-valued mappings y ∈ S(x), then reducing
them to mathematical programs with only geometric constraints studied in
Subsect. 5.1.1 while defined in product spaces, and finally using generalized
differential and SNC calculi involving our basic normal, coderivative, and sub-
differential constructions. Let us emphasize that this approach to derive neces-
sary optimality conditions for general (as well as for more specified) MPECs
allows us to avoid well-recognized obstacles in the study of MPECs, which
occur while employing various conventional methods of reducing MPECs to
usual mathematical programs when, however, standard constraint conditions
are not satisfied even in the case of simple MPCCs with smooth data; see,
e.g., Ye [1338, 1339] for more references and discussions.

Most of the lower and upper subdifferential optimality conditions for gen-
eral MPECs and their specifications presented in Subsects. 5.2.1 and 5.2.2 are
taken from the recent paper by Mordukhovich [911]; some of them are new.
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Note that necessary optimality and qualification conditions of the lower sub-
differential type were previously developed by Outrata, Treiman, Ye, Zhang,
and their collaborators for various classes of MPECs and MPCCs via ba-
sic normals, coderivatives, and subgradients in finite-dimensional spaces; see
[457, 689, 690, 691, 816, 1024, 1025, 1026, 1026, 1028, 1030, 1268, 1338, 1339,
1342, 1343, 1360, 1361], where the reader can find many efficient conditions
expressed in terms of the initial problem data as well as numerous examples
and applications.

Regarding necessary optimality conditions for general/abstract MPECs
obtained in Subsect. 5.2.1, observe a crucial role of the mixed coderivative and
the partial SNC property of the equilibrium map S(·) in the constraint qual-
ification and normal compactness assumptions of Theorems 5.33 and 5.34.
In such a way we strongly explore (in infinite dimensions) a product struc-
ture of the underlying decision-parameter space inherent in MPECs, which
considerably distinguishes this remarkable class of constrained optimization
problems from general mathematical programs with geometric constraints.
Since these assumptions are automatic for Lipschitz-like mappings, in both
finite and infinite dimensions, the results obtained single out a significant and
rather general class of MPECs for which the first-order qualified necessary
optimality conditions are always satisfied; see Corollary 5.35.

The subsequent necessary optimality conditions obtained for structured
MPECs in Subsect. 5.2.2 can be viewed as consequences of the “abstract”
MPEC results from Subsect. 5.2.1 and well-developed generalized differential
and SNC calculi. Moreover, we broadly use the calculation and upper esti-
mates for coderivatives of parametric variational systems derived in Sect. 4.4
for the purpose of sensitivity analysis. Now it is fully employed for necessary
optimality conditions in MPECs, which reveals close relationships between
these seemingly different issues. Observe also the usage of the second-order
subdifferentials in the first-order optimality conditions for the most important
classes of MPECs governed by generalized variational inequalities (GVIs) of
types (5.60) and (5.63) and their specifications. It is not however surpris-
ing, since MPECs constraints themselves accumulate a first-order information
about lower-level parametric problems; see the discussions above.

5.5.16. Exact Penalization and Calmness in Optimality Condi-
tions for MPECs. The results of Subsect. 5.2.3 are based on another ap-
proach to deriving necessary optimality conditions for MPECs with equilib-
rium constraints governed by parametric variational systems of type (5.56): it
involves, besides employing generalized differential and SNC calculi, a prelim-
inary exact penalization procedure; cf. the corresponding development in Sub-
sect. 5.1.2 for optimization problems with operator constraints of the equality
type. In this way we obtain refinements of some lower (but not upper) subd-
ifferential conditions for MPECs governed by parametric variational systems
that were established in Subsect. 5.2.2.
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Lemma 5.47 on the exact penalization for optimization problems under the
generalized equation constraints (5.69) was established by Ye and Ye [1343];
see also Zhang [1360] for a preceding upper Lipschitzian version. Observe its
similarity to the exact penalization result of Theorem 5.16 for optimization
problems under equality constraints, which is due to Ioffe [588]. Furthermore,
we can view the calmness condition from Definition 5.46 used in Lemma 5.47
as an (inverse) set-valued counterpart of the weakened metric regularity from
Definition 5.15.

The calmness terminology for set-valued mappings in the framework of De-
finition 5.46 was suggested by Rockafellar and Wets [1165]. As mentioned in
Subsect. 5.2.3 after this definition, the calmness property of F at x̄ ∈ dom F ,
with V = Y in (5.68), was introduced by Robinson [1130] as the “upper
Lipschitzian” property of set-valued mappings. In [1132], Robinson estab-
lished a major fact about the fulfillment of his upper Lipschitzian prop-
erty for piecewise polyhedral multifunctions between finite-dimensional spaces.
The graph-localized version of the calmness (upper Lipschitzian) property at
(x̄, ȳ) ∈ gph F was later developed, under different names, by Klatte [684]
and then independently by Ye and Ye [1343] in the context of Lemma 5.47
with subsequent MPEC applications.

On the other hand, the calmness property of optimal value functions, in the
sense consonant with the usage of this word in the context of Definition 5.46,
was developed by Clarke [249, 255] (while suggested by Rockafellar; see [249, p.
172]) as a kind of constraint qualification for necessary optimality conditions.
The latter property is closely related to the notion of “Φ1-subdifferential”
introduced by Dolecki and Rolewicz [341] in the framework of exact penal-
ization. We also refer the reader to Burke [188, 189], Facchinei and Pang
[424], Henrion and Jourani [559], Henrion, Jourani and Outrata [560], Hen-
rion and Outrata [561, 562], Klatte and Kummer [686], Outrata [1027, 1030],
Ye [1338, 1339], Zhang [1361, 1362], Zhang and Treiman [1363], and the bibli-
ographies therein for numerous applications of calmness and related properties
to various aspects of optimization and variational analysis.

The necessary optimality conditions of Theorems 5.48, 5.49 and Corol-
lary 5.50 are new in full generality; their finite-dimensional versions and con-
cretizations were obtained by Outrata [1024, 1027], Ye [1338, 1339], Ye and Ye
[1343], and Zhang [1360] with a variety of applications to some special classes
of MPECs, particularly to bilevel programming. Corollary 5.51 and the sub-
sequent example for polyhedral problems are taken from Outrata [1027].

5.5.17. Constrained Problems of Multiobjective Optimization
and Equilibria. Section 5.3 is devoted to the study of constrained problems of
multiobjective optimization, where the objectives are given by general prefer-
ence relations that particularly cover a number of diverse equilibria. There is a
vast literature dealing with various aspects of multiobjective/vector optimiza-
tion and equilibrium models including the existence of optimal and equilib-
rium solutions, optimality conditions, numerical algorithms, and applications.
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We refer the reader to [90, 93, 178, 230, 255, 265, 293, 306, 378, 395, 402, 424,
446, 480, 504, 516, 532, 534, 550, 627, 628, 636, 697, 707, 813, 820, 897, 901,
926, 928, 958, 995, 1000, 1001, 1002, 1029, 1031, 1040, 1046, 1119, 1134, 1181,
1195, 1214, 1312] and the bibliographies therein for a variety of approaches,
results, and discussions. Note that most of the references above don’t partic-
ularly deal with economic modeling and the corresponding concepts of com-
petitive equilibria, which are considered in Chap. 8.

The material presented in Sect. 5.3 mainly concerns general concepts of op-
timal solutions to multiobjective optimization and equilibrium problems with
their specification. The primary goal of the obtained results is the derivation
of necessary optimality conditions for certain remarkable classes of multiob-
jective optimization problems with various constraints including a new class
of the so-called equilibrium problems with equilibrium constraints (EPECs)
important in many practical applications. It is demonstrated by the results
presented in this section that the developed methods of variational analysis
and generalized differentiation happen to be very useful to handle such prob-
lems and lead to powerful optimality conditions most of them are either new
and have been just recently published. We don’t consider here existence and
numerical issues in multiobjective optimization and equilibria, which are far
removed from the methods developed in this book.

Our main attention is paid to the study of two different approaches to
multiobjective optimization and equilibria, which significantly distinct from
each other even from the viewpoint of solution concepts. At the same time,
necessary optimality conditions for constrained problems obtained via these
approaches are based on generally different versions of the extremal principle.

5.5.18. Solution Concepts in Multiobjective Optimization. The
notion of generalized order optimality from Definition 5.53 goes back to the
early work by Kruger and Mordukhovich (see [707, 719, 897, 901]); it is di-
rectly induced by the concept of local extremal points for systems of sets.
Observe that this abstract optimality notion doesn’t impose any assumptions
on convexity and/or nonempty interiority on the ordering set Θ; compare,
e.g., Gamkrelidge [496], Gorokhovik [516], Neustadt [1001, 1002], Rubinov
[1181], Singer [1214], Warga [1319], and other publications on abstract op-
timality. The particular notions of optimality discussed after Definition 5.53
are essentially classical; they largely go back to the seminal work by Pareto
[1053]. Observe that it is much easier to investigate weak Pareto optimal so-
lutions in comparison with (proper) Pareto ones; the major results in vector
optimization have been actually obtained for weak Pareto solutions.

Definition 5.55 of closed preferences is due to Mordukhovich, Treiman and
Zhu [958], while various abstract preference relations have been long consid-
ered and applied in vector optimization and especially in economic modeling;
see, e.g., Debreu [310], Mas-Colell [854, 855], Pallaschke and Rolewicz [1040],
Zhu [1372], and the references therein. The results of Proposition 5.56 charac-
terizing the almost transitivity property of the generalized Pareto preference
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via the special properties of the ordering cone and then of Example 5.57 show-
ing that it may fail for the lexicographical order on finite-dimensional spaces
are taken from the dissertation by Eisenhart [395] conducted under supervi-
sion of Zhu.

5.5.19. Necessary Conditions for Generalized Order Optimality.
Subsection 5.3.2 presents necessary optimality conditions for general con-
strained multiobjective optimization problems and their specifications, where
the notion of generalized order optimality is understood in the sense of Defin-
ition 5.53. The results obtained are based on the version of the exact extremal
principle given in Lemma 5.58. Its main difference from the version estab-
lished in Subsect. 2.2.3 is that it takes into account the product structure of
the underlying space inherent in multiobjective optimization. In this way more
subtle conditions for the exact extremal principle (involving PSNC but not
SNC properties) are derived in infinite dimensions; see Mordukhovich and B.
Wang [963] for further results in this direction.

Theorem 5.59 and its Corollary 5.60 are new; some particular results under
significantly more restrictive assumptions were given in Kruger [707] and Mor-
dukhovich [897, 901]. The upper subdifferential conditions from Theorem 5.61
are new as well.

Minimax optimization problems have drawn a strong attention of math-
ematicians, applied scientists, and practitioners for many years due to their
particular importance for the theory and applications. Such problems, which
are intrinsically nonsmooth, were among the first classes of nonstandard opti-
mization problems studied by (mostly specific) methods of nonsmooth analy-
sis; see, e.g., Clarke [255], Danskin [307], Demyanov and Malosemov [319],
Dubovitskii and Milyutin [370], Ioffe and Tikhomirov [618], Krasovskii and
Subbotin [702], Neustadt [1002], Pshenichnyi [1106], Rockafellar and Wets
[1165], and the references therein.

One (traditional) approach to deriving necessary optimality conditions
for minimax problems is to employ those for general nonsmooth problems of
scalar optimization and then to use formulas for computing/estimating the
corresponding subdifferentials of maximum functions. Employing in this way
the calculus rules of Subsect. 3.2.1 for basic subgradients of the maximum
function over a finite set, we easily arrive at the necessary optimality con-
ditions of Corollary 5.63. This result was first established in Mordukhovich
[892] by a direct application of the method of metric approximations in finite-
dimensional spaces.

The approach we employ to prove Theorem 5.62, based on the reduction
to generalized order optimality, seems to be more appropriate and convenient
to handle the minimax problem (5.83) involving maximization over a weak∗

compact subset of a dual space. The results obtained in Theorem 5.62 are new
in full generality, while some special cases for the compact set under maxi-
mization were previously considered by Kruger [706] and Mordukhovich [901].



5.5 Commentary to Chap. 5 153

5.5.20. Extended Versions of the Extremal Principle for Set-
Valued Mappings. Subsection 5.3.3 contains extended versions of the ex-
tremal principle particularly needed for applications to necessary optimality
conditions for problems of multiobjective optimization described via closed
preference. Such extensions should be able to deal not with just (linear) trans-
lations of sets but with nonlinear deformations of set-valued mappings. An
appropriate result in the form of the approximate extremal principle for set-
valued mappings is given in Theorem 5.68 that is taken from the paper by
Mordukhovich, Treiman and Zhu [958], where the reader can find the pre-
sented and additional examples illustrating Definition 5.64 of extended ex-
tremal systems.

To establish an exact version of the extremal principle for set-valued map-
pings, the notion of limiting normals to moving (i.e., parameterized) sets is
required. An appropriate definition is given in [958], where we put ε = 0 in
construction (5.95), which doesn’t restrict the generality in the Asplund space
setting under consideration; cf. also Bellaassali and Jourani [93] in finite di-
mensions. The notion of normal semicontinuity for moving sets from (5.96)
was introduced earlier by Mordukhovich [894] motivated by applications to
the covering property of set-valued mappings.

The sufficient conditions for the normal semicontinuity from Proposi-
tion 5.70 are taken from Mordukhovich [894, 901], while in Bellaassali and
Jourani [93] the reader can find an interesting example of violating this prop-
erty for a set-valued mapping S(z) = clL(z) generated by level sets of the
preference determined by a Lipschitz continuous utility function on IR2. Other
sufficient conditions ensuring the normal semicontinuity of uniformly prox-
regular mappings have been recently obtained by Bounkhel and Jofré [171] in
finite dimensions and by Bounkhel and Thibault [173] in Hilbert spaces mo-
tivated by applications to nonconvex economies and to nonconvex sweeping
processes, respectively.

As in the case of fixed sets, we need some amount of normal compactness
to derive results of the exact/pointbased type in infinite dimensions. An ap-
propriate extension of the SNC property for moving sets/set-valued mappings
is formulated in Definition 5.71 under the name of “imagely SNC”. This prop-
erty, together with its partial versions as well as with the construction of the
limiting normal cone from Definition 5.69 and the corresponding subdifferen-
tial and coderivative notions, were investigated in detail by Mordukhovich and
B. Wang [966, 969]; see some discussions after Definition 5.71. It occurs that
the extended limiting constructions for moving sets and mappings satisfy cal-
culus rules similar to their basic counterparts, while the relationships between
the basic and extended SNC properties are more complicated depending on a
properly defined uniformity.

The exact extremal principle for set-valued mappings formulated in Theo-
rem 5.72 was proved in Mordukhovich, Treiman and Zhu [958]. The converse
implication in Theorem 5.72 follows directly from the corresponding result for
extremal systems of closed sets established in Theorem 2.22(ii).
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5.5.21. Necessary Conditions for Multiobjective Problems with
Closed Preference Relations. Subsection 5.3.4 contains necessary opti-
mality conditions for multiobjective optimization problems under various con-
straints (of geometric, operator, and functional types), where “multiobjective
minimization” is defined by closed preference relations. The results obtained in
this subsection are based on applying the extended versions of the extremal
principle from Subsect. 5.3.3 and are given in both approximate/fuzzy and
exact/limiting forms.

The fuzzy optimality condition from Theorem 5.73(i) for problems with
geometric constraints are taken from Mordukhovich, Treiman and Zhu [958],
where the reader can also find necessary conditions in “strong” and “weak”
fuzzy forms for multiobjective problems with finitely many functional con-
straints of equality and inequality types. The limiting optimality conditions
obtained in Theorem 5.73(ii), Corollary 5.75, and Theorem 5.76 are new;
partial results for the mentioned problem with equality and inequality con-
straints were obtained in [958] under the finite dimensionality assumption on
the range space Z for the objective mapping f : X → Z . We refer the reader
to Remark 5.74 for the discussion on comparison between the corresponding
optimality conditions obtained for multiobjective problems with “generalized
order” and “closed preference” concepts of vector optimality.

The material of Subsect. 5.3.4 on multiobjective games is taken from Mor-
dukhovich, Treiman and Zhu [958].

5.5.22. Equilibrium Problems with Equilibrium Constraints. Sub-
section 5.3.5 is devoted to multiobjective optimization problems with equilib-
rium constraints. We treat this class of vector optimization problems as a mul-
tiobjective counterpart/extension of MPECs considered in Sect. 5.2. Indeed,
they involve the same type of (equilibrium) constraints as MPECs, while the
optimization is conducted with respect to the general multiobjective criteria
discussed in Subsect. 5.3.1. As shown therein, the concepts of multiobjective
optimization under consideration include various notions of equilibria, and
thus such problems can be viewed as equilibrium problems with equilibrium
constraints (EPECs).

The EPEC terminology has appeared quite recently; it was coined by
Scholtes in his talk [1193] at the 2002 International Conference on Comple-
mentarity Problems. Practical applications were among the primary moti-
vations to study this class of multiobjective optimization problems; see the
concurrent work by Hu, Ralph, Ralph, Bardsley and Ferris [585] on the com-
petition equilibrium model in deregulated electricity markets. The main at-
tention in [585, 1193] was paid to EPECs, where the behavior of both Leaders
(upper level) and Followers (lower level) were modeled via the noncoopera-
tive Nash (or Cournot-Nash) equilibrium; cf. [995, 1031]. We also refer the
reader to Fukushima and Pang [480] and Outrata [1029] for related develop-
ments. The latter paper contains, in particular, a deep insight into the nature
of various EPECs and presents necessary optimality conditions for a class of
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noncooperative (regarding both levels) EPECs by reducing them to coupled
MPECs and employing our basic generalized differential constructions.

EPECs of the other kind were examined by Mordukhovich [926, 928] from
the viewpoint of multiobjective optimization at the upper hierarchical level
and equilibrium constraints governed by parametric variational systems at the
lower level of hierarchy. Such EPECs can be naturally treated as those where
all the Leaders cooperate with each other seeking a generalized Pareto-type
equilibrium; they cannot be just reduced to systems of MPECs and require
special considerations. Necessary optimality conditions for EPECs obtained
in the afore-mentioned papers [926, 928] were derived, in finite dimensions,
from general results of multiobjective optimization (see the preceding ma-
terial of this section) by using generalized differential calculus for our ba-
sic constructions. More special results of this type were obtained by Ye and
Zhu [1345] for finite-dimensional multiobjective problems with variational in-
equality constraints, where the upper-level optimality was defined by some
“regular” preference relations.

The recent work by Mordukhovich, Outrata and Červinka [940] contained
the development and specification of the approach from [924, 928] to an im-
portant class of finite-dimensional EPECs governed by complementarity con-
straints at the lower level with the classical weak Pareto optimality at the
upper level. Taking into account specific features of the complementarity con-
straints in finite dimensions, the necessary optimality conditions in [940] were
expressed constructively via the initial problem data and were used for build-
ing an efficient numerical algorithm based on the implicit programming ap-
proach developed in the book by Outrata, Kočvara and Zowe [1031] in the
context of MPECs. Furthermore, in [940] the reader can find applications
of the results obtained to the modeling of hierarchical oligopolistic markets
involving many Leaders and Followers.

The results presented in Subsect. 5.3.5 are mostly new developing the
previous optimality conditions obtained by Mordukhovich [926, 928] in fi-
nite dimensions. Note that the infinite-dimensional setting happens to be sig-
nificantly more involved, since it requires employing, besides calculus rules
of generalized differentiation, appropriate results of SNC calculus to express
necessary optimality and qualification conditions via the EPEC initial data.
Observe a crucial role of Theorem 5.59 on generalized order optimality as well
as of the chain rules in second-order subdifferentiation to derive the necessary
optimality conditions for EPECs in Subsect. 5.3.5.

5.5.23. Subextremality and Suboptimality at Linear Rate. The
issues brought up in Sect. 5.4 are non-conventional in optimization theory,
where necessary conditions are usually (except for convex problems and the
like) not sufficient for standard notions of optimality. Observe that all the
major necessary optimality conditions in all the branches of the classical and
modern optimization theory (Lagrange multipliers and Karush-Kuhn-Tucker
conditions in nonlinear programming, Euler-Lagrange equation in the calculus
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of variations, Pontryagin maximum principle in optimal control, etc.) are ex-
pressed in dual forms involving adjoint variables. This is the case of all the
generalized extremality and optimality conditions developed in this book. At
the same time, the very notions of optimality, both scalar and vector, are
formulated of course in primal terms.

A challenging question is to find certain modified notions of extremal-
ity/optimality so that known necessary conditions for the previously recog-
nized notions become necessary and sufficient in the new framework. Such a
study was initiated by Kruger [710, 711], and then it has been continued in
his subsequent publications [713, 714, 715]. The new notions of set extremal-
ity and the associated optimality for vector and scalar optimization problems
were first called “extended extremality/optimality” [710, 711, 712, 713], while
recently [714, 715, 716] Kruger has started to use the name of “weak stationar-
ity” for them. We suggest to use the term linear subextremality/suboptimality
for these notions by the reasons explained below; cf. also the introductory
part of Sect. 5.4.

Indeed, the new notions, being weaker than the conventional ones, actually
concern an extremal/optimal behavior of sets and mappings at points nearby
those in question; thus it makes sense to use the prefix “sub” to identify such
a behavior.

The other crucial feature of the new notions is that, in contrast to the
conventional ones, they involve a linear rate of extremality and optimality,
similarly to the linear openness/covering, metric regularity, and Lipschitz-like
properties comprehensively studied in this book. As seen, the linear rate na-
ture of these fundamental properties, which has been fully recognized just in
the framework of modern variational analysis (even regarding the classical set-
tings), is the key issue allowing us to establish their complete characterizations
in terms of generalized differentiation.

Precisely the same linear rate essence of the (sub)extremality and
(sub)optimality concepts studied in Sect. 5.4 is the driving force ensuring
the possibility to justify the validity of the known extremality and optimality
conditions for the conventional notions as necessary and sufficient conditions
for the new notions under consideration. Moreover, there are direct connec-
tions between covering/metric regularity/Lipschitz-like properties and the lin-
ear subextremality/subotimality notions that reveal via both proofs (see, e.g.,
the proof of Theorem 5.88) as well as the corresponding constant relationships
from the recent papers by Kruger [715, 716].

5.5.24. Linear Set Subextremality and Linear Suboptimality for
Multiobjective Problems. Definition 5.87 of linear set subextremality is
due to Kruger [711] called originally “extended extremality” and then [715]
“weak extremality” of set systems. Necessary and sufficient conditions for
linear subextremality in the form equivalent to (5.106) was first announced
by Kruger [711] in Fréchet smooth spaces and then proved in [712, 713] in the
Asplund space setting. Note that the proof of assertion (ii) is similar to those of
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Lemma 2.32(ii) and Theorem 2.51(i) taken, respectively, from Mordukhovich
and Shao [948] and Mordukhovich [920]. Theorem 5.89 on characterizing this
notion via the exact extremal principle is new.

The notion of linear suboptimality for multiobjective problems from Defi-
nition 5.91 was introduced by Kruger in [710] under the name of “extended
( f,Ω,Θ)-extremality.” A fuzzy characterization of this notion in the form
equivalent to (5.112) of Theorem 5.92 was first announced in [710] for Fréchet
smooth spaces and then was proved in [712] in Asplund spaces. All the other
results of this subsection regarding exact/pointbased characterizations of linear
suboptimality for multiobjective problems are new.

To derive these pointbased characterizations, we involve our basic normals,
coderivatives (both mixed and normal), as well as first-order and second-order
subgradients at the points in question. This allows us to employ the well-
developed generalized differential calculus for these constructions, together
with the associated SNC calculus in infinite dimensions. It is important to
emphasize that to obtain in this way necessary and sufficient conditions for
linear suboptimality of structured multiobjective problems (including those
for EPECs), we have to use calculus results of not just the “right” inclusion
type as in the vast majority of applications of generalized differentiation, but
of the equality type—which are more restrictive but still well developed in the
book—at all the calculus levels. Likewise, we need to employ SNC calculus
results ensuring the equivalence between the corresponding SNC properties
under various operations in infinite dimensions.

5.5.25. Linear Subminimality in Constrained Optimization. The
last subsection of Chap. 5 concerns the notion of linear subminimality for
optimization problems involving scalar (extended-real-valued) functions. This
notion was introduced by Kruger [712] under the name of “almost minimal-
ity,” and then it was studied in [713] as “extended minimality” and in [714]
as “weak inf-stationarity.” Although one can always treat the linear submin-
imality from Definition 5.101 as a particular case of the linear suboptimality
concept formulated in Definition 5.91 for mappings to generalized ordering
spaces, there are certain specific features of the scalar case that should be
taken into account in the study and applications. As illustrated by the simple
functions from Example 5.102, which is due to Kruger [712], the behavior of
linearly subminimal points may be dramatically different from that of points of
local minimum. On the other hand, it has been observed in [712] that linearly
subminimal points are stable with respect to perturbations by smooth func-
tions with vanishing derivatives, in contrast to local minimizers. This implies
that for smooth functions the notion of linear subminimality is equivalent to
the classical stationarity, which is not however the case in nonsmooth settings.

Another Kruger’s observation made later in [713] is that, in the general
case of l.s.c. functions on Banach spaces, the linear subminimality from De-
finition 5.101 is equivalent to the notion introduced by Kummer [728] un-
der the name of “stationarity points with respect to minimization,” which is
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formulated in part (b) of Theorem 5.103. The latter theorem also establishes
an efficient description of linear suboptimality via the powerful construction of
strong slope introduced by De Giorgi, Marina and Tosques [312] in the theory
of evolution equations and then efficiently employed by Azé, Corvellec and
Lucchetti [70] and by Ioffe [608] to variational stability and metric regularity;
see discussions in Subsect. 4.5.2.

The fuzzy subdifferential criterion for linear subminimality from assertion
(i) of Theorem 5.106 is due to Kruger [712] following directly from Theo-
rem 5.92. Assertion (ii) of Theorem 5.106 is new. It provides a “condensed”
pointbased characterization of linear subminimality via basic subgradients of
the restricted function ϕΩ = ϕ + δ(·;Ω) and then allows us to get the con-
venient “separated” criterion (5.114) under each of the assumptions (a)–(c)
of Corollary 5.107, which ensure the subdifferential sum rule as equality; see
also the discussion after this corollary. The latter result implies more specific
criteria for linear subminimality of structured constrained minimization prob-
lems (in particular, for MPECs) similarly to the derivation of Subsect. 5.4.2
based on the equality type first-order and second-order calculus rules of our
basic generalized differentiation.

Finally, Theorem 5.108 gives new necessary conditions for linear submini-
mality in problems with inequality constraints. In contrast to all the previous
results on linear suboptimality and subminimality, it establishes conditions of
the upper subdifferential type, which again can be developed for other struc-
tured problems of constrained optimization similarly to the necessary condi-
tions for conventional optimality studied in detail in Sects. 5.1 and 5.2.



6

Optimal Control of Evolution Systems
in Banach Spaces

The next two chapters are on optimal control, which is among the most impor-
tant motivations and fruitful applications of modern methods of variational
analysis and generalized differentiation. It is not accidental that the very con-
cepts of basic normals, subgradients, and coderivatives used in this book were
introduced and applied by the author in connection with problems of optimal
control. In fact, already the simplest and historically first problems of optimal
control are intrinsically nonsmooth, even in the case of smooth functional data
describing dynamics and constraints on feasible arcs. The crux of the mat-
ter is that a characteristic feature of optimal control problems, in contrast to
the classical calculus of variations, is the presence of pointwise constraints on
control functions, which may be (and often are) defined by highly irregular
sets consisting, e.g., of finitely many points. In particular, this is the case of
typical problems in automatic control that provided the primary motivation
for developing optimal control theory.

The principal goal of the following developments is to derive necessary op-
timality conditions in a range of optimal control problems for evolution sys-
tems by using methods of variational analysis and generalized differentiation.
This chapter concerns dynamical systems governed by ordinary differential
equations and inclusions in Banach spaces; control problems for systems with
distributed parameters governed by functional-differential and partial differ-
ential relations will be mostly considered in Chap. 7.

The main attention is paid in this chapter to optimal control/dynamic
optimization problems of the Bolza and Mayer types governed by infinite-
dimensional evolution inclusions and control systems with both discrete-time
and continuous-time dynamics in the presence of endpoint constraints. Along
with the variational principles in infinite dimensions and tools of general-
ized differentiation developed above, we employ special techniques of dy-
namic optimization and optimal control. The basic approach developed below
is the method of discrete approximations, which allows us to approximate
continuous-time control problems by those involving discrete dynamics. The
relationship between continuous-time and discrete-time control systems is one
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of the central topics of this chapter. The results obtained in this direction shed
new light upon both qualitative and numerical aspects of optimal control from
the viewpoint of the theory and applications.

6.1 Optimal Control of Discrete-Time
and Continuous-time Evolution Inclusions

This section concerns optimal control problems for dynamic/evolution sys-
tems governed by differential inclusions and their finite-difference approx-
imations in appropriate (quite general) Banach spaces. The models under
consideration capture more conventional problems of optimal control de-
scribed by parameterized differential equations. Our primary method to study
continuous-time control systems is to construct well-posed discrete approxi-
mations and to establish their variational stability with respect to the value
convergence as well as a suitable strong convergence of their optimal solutions.
Then we derive necessary optimality conditions for discrete-time optimal con-
trol problems governed by finite-difference inclusions. The latter problems can
be reduced to non-dynamic optimization problems considered in the previous
chapter in the presence of many geometric constraints. On the other hand,
they have specific structural features exploited in what follows. In this way,
applying generalized differential and SNC calculi from Chap. 3, we obtain
necessary optimality conditions for discrete approximations in both fuzzy and
exact forms under fairly general assumptions on the initial data. Passing to
the limit with the use of coderivative characterizations of Lipschitzian sta-
bility from Chap. 4 allows us to derive necessary optimality conditions for
intermediate local minimizers (that provide a local minimum lying between
the classical weak and strong ones) in the extended Euler-Lagrange form for
continuous-time systems under certain relaxation/convexification with respect
to velocity variables. To avoid such a relaxation under appropriate assump-
tions, we develop an additional approximation procedure in the next section.

6.1.1 Differential Inclusions and Their Discrete Approximations

Let X be a Banach space (called the state space in what follows), and let
T := [a, b] be a time interval of the real line. Consider a set-valued mapping
F : X × T →→ X and define the differential/evolution inclusion

ẋ(t) ∈ F(x(t), t) a.e. t ∈ [a, b] (6.1)

generated by F , where ẋ(t) stands for the time derivative of x(t), and where
a.e. (almost everywhere) means as usual that the relation holds up to the
Lebesgue measure zero on IR. Let us give the precise definition of solutions to
the differential inclusion (6.1), which is used in this chapter.
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Definition 6.1 (solutions to differential inclusions). By a solution to
inclusion (6.1) we understand a mapping x : T → X , which is Fréchet differen-
tiable for a.e. t ∈ T and satisfies (6.1) and the Newton-Leibniz formula

x(t) = x(a) +
∫ t

a
ẋ(s) ds for all t ∈ T ,

where the integral in taken in the Bochner sense.

It is well known that for X = IRn, x(t) is a.e. differentiable on T and
satisfies the Newton-Leibniz formula if and only if it is absolutely continuous
on T in the standard sense, i.e., for any ε > 0 there is δ such that

l∑
j=1

‖x(t j+1) − x(t j )‖ ≤ ε whenever
l∑

j=1

|t j+1 − t j | ≤ δ

for the disjoint intervals (t j , t j+1] ⊂ T . However, for infinite-dimensional
spaces X even the Lipschitz continuity may not imply the a.e. differentia-
bility. On the other hand, there is a complete characterization of Banach
spaces X , where the absolute continuity of every x : T → X is equivalent to its
a.e. differentiability and the fulfillment of the Newton-Leibniz formula. This
is the class of spaces with the so-called Radon-Nikodým property (RNP).

Definition 6.2 (Radon-Nikodým property). A Banach space X has the
Radon-Nikodým property if for every finite measure space (Ξ,Σ,µ) and
for each µ-continuous vector measure m:Σ → X of bounded variation there
is g ∈ L1(µ;Ξ) such that

m(E) =
∫

E
g dµ for E ∈ Σ .

This fundamental property is well investigated in the general vector mea-
sure theorem and the geometric theory of Banach spaces; we refer the reader to
the classical texts by Diestel and Uhl [334] and Bourgin [169] for the compre-
hensive study of the RNP and its applications. In particular, in [334, pp. 217–
219] one can find the summary of equivalent formulations/charactetizations
of the RNP and the list of specific Banach spaces for which the RNP auto-
matically holds. It is important to observe that the latter list contains every
reflexive space and every weakly compactly generated dual space, hence all sep-
arable duals. On the other hand, the classical spaces c0, c, l∞, L1[0, 1], and
L∞[0, 1] don’t have the RNP. Let us mention a nice relationship between the
RNP and Asplund spaces used in what follows: given a Banach space X , the
dual space X∗ has the RNP if and only if X is Asplund.

Thus for Banach spaces with the RNP (and only for such spaces) the
solution concept of Definition 6.1 agrees with the standard definition of
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Carathéodory solutions dealing with absolutely continuous mappings. In gen-
eral, Definition 6.1 postulates what we actually need for our purposes without
appealing to Carathéodory solutions and the RNP. However, the RNP along
with the Asplund property of X are essentially used for deriving major results
in this chapter (but not all of them) from somewhat different prospectives not
directly related to the adopted concept of solutions to differential inclusions.

It has been well recognized that differential inclusions, which are certainly
of their own interest, provide a useful generalization of control systems gov-
erned by differential/evolution equations with control parameters:

ẋ = f (x, u, t), u ∈ U(t) , (6.2)

where the control sets U(·) may also depend on the state variable x via
F(x, t) = f (x,U(x, t), t). In some cases, especially when the sets F(x, t) are
convex, the differential inclusions (6.1) admit parametric representations of
type (6.2), but in general they cannot be reduced to parametric control sys-
tems and should be studied for their own sake. Note also that the ODE form
(6.2) in Banach spaces is strongly related to various control problems for evo-
lution partial differential equations of parabolic and hyperbolic types, where
solutions may be understood in some other appropriate senses; see, e.g., the
books by Fattorini [432] and by Li and Yong [789] as well as the results and
discussions presented in Remark 6.26 and Chap. 7 below.

Our principal method to study differential inclusions involves finite-diff-
erence replacements of the derivative

ẋ(t) ≈ x(t + h) − x(t)
h

, h → 0 ,

where the uniform Euler scheme is considered for simplicity. To formalize
this process, we take any natural number N ∈ IN and consider the discrete
grid/mesh on T defined by

TN :=
{

a, a + hN , . . . , b − hN , b
}
, hN := (b − a)/N ,

with the stepsize of discretization hN and the mesh points t j := a + jhN as
j = 0, . . . , N , where t0 = a and tN = b. Then the differential inclusion (6.1)
is replaced by a sequence of its finite-difference/discrete approximations

xN (t j+1) ∈ xN (t j ) + hN F(xN (t j ), t j ), j = 0, . . . , N − 1 . (6.3)

Given a discrete trajectory xN (t j ) satisfying (6.3), we consider its piecewise
linear extension xN (t) to the continuous-time interval T , i.e., the Euler broken
lines. We also define the piecewise constant extension to T of the corresponding
discrete velocity by

vN (t) :=
xN (t j+1) − xN (t j )

hN
, t ∈ [t j , t j+1), j = 0, . . . , N − 1 .
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It follows from the very definition of the Bochner integral that

xN (t) = xN (a) +
∫ t

a
vN (s) ds for t ∈ T .

Our first goal is to show that every solution to the differential inclusion
(6.1) can be strongly approximated, under reasonable assumptions, by ex-
tended trajectories to the discrete inclusions (6.3). By strong approximation
we understand the convergence in the norm topology of the classical Sobolev
space W 1,2

(
[a, b]; X

)
with the norm

‖x(·)‖W1,2 := max
t∈[a,b]

‖x(t)‖ +
(∫ b

a
‖ẋ(t)‖2 dt

)1/2

,

where the norm on the right-hand side is taken in the space X . Note that
the convergence in W 1,2

(
[a, b]; X

)
implies the (uniform) convergence of the

trajectories on [a, b] and the pointwise (a.e. t ∈ [a, b]) convergence of (some
subsequence of) their derivatives. The latter is crucial for our purposes, espe-
cially in the case of nonconvex values F(x, t).

Let us formulate the basic assumptions for our study that apply not only to
the next theorem but also to the subsequent results on differential inclusions
via discrete approximations. Nevertheless, these assumptions can be relaxed
in some settings; see the remarks and discussions below. Roughly speaking,
we assume that the set-valued mapping F : X × [a, b] →→ X is compact-valued,
locally Lipschitzian in x , and Hausdorff continuous in t a.e. on [a, b]. More
precisely, the following hypotheses are imposed along a given trajectory x̄(·)
to (6.1), which is arbitrary in the next theorem but then will be a reference
optimal solution to the variational problem under consideration.

(H1) There are an open set U ⊂ X and positive numbers mF and 	F such
that x̄(t) ∈ U for all t ∈ [a, b], the sets F(x, t) are nonempty and compact for
all (x, t) ∈ U × [a, b], and one has the inclusions

F(x, t) ⊂ mF IB for all (x, t) ∈ U × [a, b] , (6.4)

F(x1, t) ⊂ F(x2, t) + 	F‖x1 − x2‖IB for all x1, x2 ∈ U, t ∈ [a, b] . (6.5)

(H2) F(x, ·) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly in x ∈ U .

Note that inclusion (6.5) is equivalent to the uniform Lipschitz continuity

haus
(

F(x, t), F(u, t)
)
≤ 	F‖x − u‖, x, u ∈ U ,

of F(·, t) with respect to the Pompieu-Hausdorff metric haus(·, ·) on the space
of nonempty and compact subsets of X ; see Subsect. 1.2.2.
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To handle efficiently the Hausdorff continuity of F(x, ·) for a.e. t ∈ [a, b],
define the averaged modulus of continuity for F in t ∈ [a, b] while x ∈ U by

τ (F ; h) :=
∫ b

a
σ (F ; t, h) dt, (6.6)

where σ (F ; t, h) := sup
{
ω(F ; x, t, h)

∣∣ x ∈ U
}

with

ω(F ; x, t, h) := sup
{

haus
(

F(x, t1), F(x, t2)
)∣∣∣ t1, t2 ∈

[
t − h

2 , t + h
2

]
∩ [a, b]

}
.

The following observation is easily implied by the definitions.

Proposition 6.3 (averaged modulus of continuity). Property (H2) holds
if and only if τ (F ; h) → 0 as h → 0.

Note that for single-valued mapping f : [a, b] → X the property τ ( f ; h) →
0 as h → 0 is equivalent to the Riemann integrability of f on [a, b]; see Sendov
and Popov [1201]. The latter holds, as well known, if and only if f is continuous
at almost all t ∈ [a, b].

The following strong approximation theorem plays a crucial role in further
results based on discrete approximations.

Theorem 6.4 (strong approximation by discrete trajectories). Let
x̄(·) be a solution to the differential inclusion (6.1) under assumptions (H1)
and (H2), where X is an arbitrary Banach space. Then there is a sequence of
solutions x̂N (t j ) to the discrete inclusions (6.3) such that

x̂N (a) = x̄(a) for all N ∈ IN

and the extensions x̂N (t), a ≤ t ≤ b, converge to x̄(t) strongly in the space
W 1,2

(
[a, b]; X

)
as N → ∞.

Proof. By Definition 6.1 involving the Bochner integral, the derivative map-
ping ˙̄x(·) is strongly measurable on [a, b], and hence we can find (rearranging
the mesh points t j if necessary) a sequence of simple/step mappings wN (·)
on T such that wN (t) are constant on [t j , t j+1) for every j = 0, . . . , N − 1
and wN (·) converge to ˙̄x(·) in the norm topology of L1

(
[a, b]; X

)
as N → ∞.

Combining this convergence with (6.1) and (6.4), we get

∫ b

a
‖wN (t)‖ dt =

N−1∑
j=0

‖wN (t j )‖ (t j+1 − t j ) ≤ (m F + 1)(b − a) (6.7)

for all large N . In the estimates below we use the numerical sequence

ξN :=
∫ b

a
‖ ˙̄x(t) − wN (t)‖ dt → 0 as N → ∞ .

Let us define the discrete functions uN (t j ) by
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uN (t j+1) = uN (t j ) + hNwN (t j ), j = 0, . . . , N − 1, uN (t0) := x̄(a)

and observe that the functions

uN (t) := x̄(a) +
∫ t

a
wN (s) ds, a ≤ t ≤ b ,

are piecewise linear extensions of uN (t j ) to the interval [a, b] and that

‖uN (t) − x̄(t)‖ ≤
∫ t

a
‖wN (s) − ˙̄x(s)‖ ds ≤ ξN for t ∈ [a, b] . (6.8)

Therefore uN (t) ∈ U for all t ∈ [a, b] whenever N is sufficiently large.
Taking the distance function dist(·;Ω) to a set in X , one can check that

the Lipschitz condition (6.5) is equivalent to

dist
(
w; F(x1, t)

)
≤ dist

(
w; F(x2, t)

)
+ 	F‖x1 − x2‖

whenever w ∈ X , x1, x2 ∈ U , and t ∈ [a, b]; cf. the proof of Theorem 1.41. By
the construction of τ (F ; h) in (6.6) and the obvious relation

dist
(
w; F(x, t1)

)
≤ dist

(
w; F(x, t2)

)
+ haus

(
F(x, t1), F(x, t2)

)
one has the estimate

ζN : =
N−1∑
j=0

hN dist
(
wN (t j ); F(uN (t j ), t j )

)
=
∑N−1

j=0

∫ t j+1

t j
dist

(
wN (t j ); F(uN (t j ), t)

)
dt

≤
N−1∑
j=0

∫ t j+1

t j

dist
(
wN (t j ); F(uN (t), t)

)
dt + τ (F ; hN ) .

The Lipschitz property of F and the construction of wN (·) imply

dist
(
wN (t j ); F(uN (t j ), t)

)
≤ dist

(
wN (t); F(uN (t j ), t)

)
+ 	FwN (t j )(t − t j )

whenever t ∈ [t j , t j+1), and then

dist
(
wN (t); F(uN (t), t)

)
≤ dist

(
wN (t); F(x̄(t), t)

)
+ 	F‖uN (t) − x̄(t)‖

≤ ‖wN (t) − ˙̄x(t)‖ + 	FξN a.e. t ∈ [a, b] .

Employing further (6.7) and (6.8), we arrive at the estimate

ζN ≤ γN :=
(
1 + 	F(b − a)

)
ξN + 	F(b − a)(m F + 1)/2 + τ (F ; hN ) . (6.9)

Observe that the functions uN (t j ) built above are not trajectories for the
discrete inclusions (6.3), since one doesn’t have wN (t j ) ∈ F(uN (t j ), t j ). Now
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we use wN (t j ) to construct actual trajectories x̂N (t j ) for (6.3) that are close
to uN (t j ) and enjoy the convergence property stated in the theorem.

Let us define x̂N (t j ) recurrently by the following proximal algorithm, which
is realized due to the compactness assumption on the values of F :⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x̂N (t0) = x̄(a), x̂N (t j+1) = x̂N (t j ) + hNvN (t j ), j = 0, . . . , N − 1 ,

where vN (t j ) ∈ F(x̂N (t j ), t j ) with

‖vN (t j ) − wN (t j )‖ = dist
(
wN (t j ); F(x̂N (t j ), t j )

)
.

(6.10)

First we prove that algorithm (6.10) keeps x̂N (t j ) inside the neighborhood
U from (H1) whenever N is sufficiently large. Indeed, let us consider any
number N ∈ IN satisfying x̄(t) + ηN IB ⊂ U for all t ∈ [a, b], where

ηN := γN exp
(
	F(b − a)

)
+ ξN

with ξN and γN defined above. We have ηN → 0 as N → ∞, since ξN → 0 by
the construction of ξN and since γN → 0 due to assumption (H2) is equivalent
to τ (F ; hN ) → 0 by Proposition 6.3. Arguing by induction, we suppose that
x̂N (ti ) ∈ U for all i = 0, . . . , j and show that this also holds for i = j + 1.
Using (6.5), (6.9), and (6.10), one gets

‖x̂N (t j+1) − uN (t j+1)‖ ≤ ‖x̂N (t j ) − uN (t j )‖ + hN‖vN (t j ) − wN (t j )‖

≤ ‖x̂N (t j ) − uN (t j )‖ + hN dist
(
wN (t j ); F(uN (t j ), t j )

)
+	F‖x̂N (t j ) − uN (t j )‖ ≤ . . .

≤ hN

j∑
i=0

(1 + 	F hN ) j−idist
(
wN (ti ); F(uN (ti ), ti )

)

≤ hN exp
[
	F(b − a)

] j∑
i=0

dist
(
wN (ti ); F(uN (ti ), ti )

)

≤ γN exp
(
	F(b − a)

)
.

Due to (6.8) the latter implies that

‖x̂N (t j+1) − x̄N (t j+1)‖ ≤ γN exp
(
	F(b − a)

)
+ ξN =: ηN , (6.11)

which proves that x̂N (t j ) ∈ U for all j = 0, . . . , N . Taking this into account,
we have by the previous arguments that

N∑
j=0

‖x̂N (t j )−uN (t j )‖≤(b − a) exp
(
	F(b − a)

) N−1∑
j=0

dist
(
wN (t j ); F(uN (t j ), t j )

)
.
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Now let us estimate the quantity

ϑN :=
∫ b

a
‖ ˙̂x N (t) − wN (t)‖ dt as N → ∞ .

Using the last estimate above together with (6.9) and (6.11), we have

ϑN =
N−1∑
j=0

hN‖ ˙̂x N (t j ) − wN (t j )‖ =
N−1∑
j=0

hN dist
(
wN (t j ); F(x̂N (t j ), t j )

)

≤
N−1∑
j=0

hN dist
(
wN (t j ); F(uN (t j ), t j )

)
+ 	F

N−1∑
j=0

hN‖x̂N (t j ) − uN (t j )‖

≤ γN
(
1 + 	F(b − a) exp

(
	F(b − a)

))
.

Thus one finally gets∫ b

a
‖ ˙̂x N (t) − ˙̄x(t)‖ dt ≤

∫ b

a
‖ ˙̂x N (t) − ˙̄x(t)‖ dt +

∫ b

a
‖wN (t) − ˙̄x(t)‖ dt

≤ γN
(
1 + 	F(b − a) exp

(
	F(b − a)

))
+ ξN := αN .

(6.12)

Since αN → 0 as N → ∞, this obviously implies the desired convergence
x̂N (·) → x̄(·) in the norm of W 1,2

(
[a, b]; X

)
due to the Newton-Leibniz formula

for x̂N (t) and x̄(t) and due to the boundedness assumption (6.4). �
Remark 6.5 (numerical efficiency of discrete approximations). It fol-
lows from (6.12) by the Newton-Leibniz formula that

‖x̂N (t) − x̄(t)‖ ≤
∫ b

a
‖ ˙̂x N (s) − ˙̄x(s)‖ ds ≤ αN for all t ∈ [a, b] .

Thus the error estimate and numerical efficiency of the discrete approxima-
tion in Theorem 6.4 depend on the evaluation of the averaged modulus of
continuity τ (F ; h) from (6.6) and the approximating quantity ξN defined in
the proof of Theorem 6.4. Denoting

v(F) :=sup
k

{ k−1∑
i=1

sup
x

[
haus

(
F(x, ti+1), F(x, ti )

)
, x ∈ U

]
, a ≤ t1≤ . . .≤ tk ≤ b

}
,

it is not hard to check that

τ (F ; h) ≤ v(F)h = O(h)

whenever F(x, ·) has a bounded variation v(F) < ∞ uniformly in x ∈ U ; see
Dontchev and Farkhi [354]. Furthermore, one has the estimate
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ξN ≤ 2τ ( ˙̄x ; hN )

by taking wN (t) = ˙̂x N (t) = ˙̄x(t j ) for t ∈ [t j , t j + hN ) if ˙̄x(·) is Riemann
integrable on [a, b].

Remark 6.6 (discrete approximations of one-sided Lipschitzian dif-
ferential inclusions). The Lipschitz continuity and compact-valuedness as-
sumptions on F in Theorem 6.4 can be relaxed under additional require-
ments on the state space X in question. In particular, some counterparts of
the C

(
[a, b]; X

)
-approximation and W 1,2

(
[a, b]; X

)
-approximation results in

the above theorem are obtained by Donchev and Mordukhovich [346] for the
Hilbert pace setting with replacing the classical Lipschitz continuity in (H1)
by the following one-sided Lipschitzian property of F in x : there is a constant
	 ∈ IR (not necessarily positive) such that

σ
(
x1 − x2; F(x1, t)

)
≤ 	‖x1 − x2‖2 whenever x1, x2 ∈ U, a.e. t ∈ [a, b] ,

where σ (x ; Q) := supq∈Q〈x, q〉 stands for the support function of Q ⊂ X .
Moreover, the compact-valuedness assumption on the mapping F(·, t) may
be replaced by imposing its boundedness on bounded sets: see the mentioned
paper for more details and discussions.

6.1.2 Bolza Problem for Differential Inclusions
and Relaxation Stability

In this subsection we start considering the following problem of dynamic opti-
mization over solutions (in the sense of Definition 6.1) to differential inclusions
in Banach spaces: minimize the Bolza functional

J [x ] := ϕ
(
x(a), x(b)

)
+
∫ b

a
ϑ
(
x(t), ẋ(t), t

)
dt (6.13)

over trajectories x : [a, b] → X for the differential inclusion (6.1) such that
ϑ
(
x(t), ẋ(t), t

)
is Bochner integrable on the fixed time interval T := [a, b]

subject to the endpoint constraints(
x(a), x(b)

)
∈ Ω ⊂ X2 . (6.14)

This problem is labeled by (P) and called the (generalized) Bolza problems for
differential inclusions. We use the term arc for any solution x = x(·) to (6.1)
with J [x ] < ∞ and the term feasible arc for arcs x(·) satisfying the endpoint
constraints (6.14). Since the dynamic (6.1) and endpoint (6.14) constraints
are given explicitly, we may assume that both functions ϕ and ϑ in the cost
functional (6.13) take finite values.

The formulated problem (P) covers a broad range of various problems of
dynamic optimization in finite-dimensional and infinite-dimensional spaces. In
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particular, it contains both standard and nonstandard models in optimal con-
trol for parameterized control systems (6.2) with possibly closed-loop control
sets U(x, t). Note also that problems with free time (non-fixed time inter-
vals), with integral constraints on (x, ẋ), and with some other types of state
constraints can be reduced to the form of (P).

Aiming to derive necessary conditions for optimal solutions to (P) that
would apply not only to global but also to local minimizers, we first introduce
appropriate concepts of local minima. Our basic notion is as follows.

Definition 6.7 (intermediate local minima). A feasible arc x̄ is an in-
termediate local minimizer (i.l.m.) of rank p ∈ [1,∞) for (P) if there
are numbers ε > 0 and α ≥ 0 such that J [x̄ ] ≤ J [x ] for any feasible arcs to
(P) satisfying

‖x(t) − x̄(t)‖ < ε for all t ∈ [a, b] and (6.15)

α

∫ b

a
‖ẋ(t) − ˙̄x(t)‖p dt < ε . (6.16)

Relationships (6.15) and (6.16) actually mean that we consider a neigh-
borhood of x̄ in the Sobolev space W 1,p

(
[a, b]; X

)
. If there is only requirement

(6.15) in Definition 6.7, i.e., α = 0 in (6.16), that one gets the classical strong
local minimum corresponding to a neighborhood of x̄ in the norm topology of
C
(
[a, b]; X

)
. If instead of (6.16) one puts the more restrictive requirement

‖ẋ(t) − ˙̄x(t)‖ < ε a.e. t ∈ [a, b] ,

then we have the classical weak local minimum in the framework of Defini-
tion 6.7. This corresponds to considering a neighborhood of x̄ in the topol-
ogy of W 1,∞(

[a, b]; X
)
. Thus the introduced notion of i.l.m. takes, for any

p ∈ [1,∞), an intermediate position between the classical concepts of strong
(α = 0) and weak (p = ∞) local minima. Clearly all the necessary conditions
for i.l.m. automatically hold for strong (and hence for global) minimizers. Let
us consider some examples that illustrate relationships between weak, inter-
mediate, and strong local minimizers in variational problems.

The first example is standard showing that the notions of weak and strong
minimizers are distinct in the simplest problems of the classical calculus of
variations with endpoint constraints.

Example 6.8 (weak but not strong minimizers). There is a problem of
the classical calculus of variations for which a weak local minimizer is not a
strong local minimizer.

Proof. Consider the variational problem:

minimize J [x ] :=
∫ π

0

x2(t)[1 − ẋ2(t)] dt
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over absolutely continuous functions x : [0, π ] → IR satisfying the endpoint
constraints x(0) = x(π) = 0. Let us first show that x̄(·) ≡ 0 is a weak local
minimizer. Indeed, taking any ε ∈ (0, 1) and any feasible arc x �= x̄ satisfying

|x(t) − x̄(t)| ≤ ε, t ∈ [0, π ], and |ẋ(t) − ˙̄x(t)| ≤ ε a.e. t ∈ [0, π ] ,

one has 0 < 1−ε2 ≤ 1− ẋ2(t) for almost all t ∈ [0, π ]. Thus x2(t)[1− ẋ2(t)] > 0
a.e. t ∈ [0, π ] with J [x ] > 0 = J [x̄ ], i.e., x̄ is a weak local minimizer. On the
other hand, x̄ is not a strong local minimizer, which can be justified as follows.
Take feasible arcs xk(t) := (1/

√
k) sin(kt) for any k ∈ IN and observe that

J [xk ] =
π

2

(1
k
− 1

4

)
< 0 for k ≥ 5

while |xk(t)− x̄(t)| ≤ 1/
√

k for all t ∈ [0, π ] and k ∈ IN . Thus, given any ε > 0,
we can always find a feasible arc xk that belongs to the ε-neighborhood of x̄
in C([0, π ]; IR) with J [xk ] < J [x̄ ]. �

Next let us consider a less standard situation when a weak local minimizer
may not be an intermediate local minimizer in the sense of Definition 6.7 for
any rank p ∈ [1,∞). Again it happens in the one-dimensional framework of
the classical calculus of variations.

Example 6.9 (weak but not intermediate minimizers). There is a one-
dimensional problem of the calculus of variations for which a weak local min-
imizer is not an intermediate local minimizer of any rank p ≥ 1.

Proof. Consider the variational problem:

minimize J [x ] :=
∫ 1

0

[
ẋ3(t) + 3ẋ2(t)

]
dt

over absolutely continuous function x : [0, 1] → IR satisfying the endpoint con-
straints x(0) = x(1) = 0. To show that x̄(·) ≡ 0 is a weak local minimizer,
we observe that the integrand is non-negative whenever ẋ(t) ≥ −3, and hence
J [x ] > 0 for every feasible arc x with

0 < |ẋ(t) − ˙̄x(t)| ≤ ε < 3 a.e. t ∈ [0, 1] .

Given any p ≥ 1, let us now prove that x̄ is not an intermediate local minimizer
of rank p. To proceed, we consider the family of feasible arcs

xk(t) :=

⎧⎪⎪⎨
⎪⎪⎩

−k
1
2p t if 0 ≤ t ≤ 1

k ,

−k
1
2p (1 − t)
k − 1

if 1
k < t ≤ 1
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for natural numbers k ≥ 34p. One can check that

J [xk ] = − k
1
p

(k − 1)2
[
(k

1
2p − 3)(k − 2) − 3

]
< 0 and

∫ 1

0

|ẋk(t) − ˙̄x(t)|p =
1√
k

p

(
1 +

1
(k − 1)p−1

)p
≤
( 2√

k

)p
.

Thus for any ε > 0 and any p ≥ 1 we have∫ 1

0

|ẋk(t) − ˙̄x(t)|p ≤ ε p with J [xk ] < 0 whenever k ≥ max
{
ε−2p, 34p

}
,

which shows that x̄ cannot be an intermediate minimizer of rank p.
Considering the simplified version

minimize J [x ] :=
∫ 1

0

ẋ3(t) dt subject to x(0) = 0, x(1) = 1

of the above problem, observe that the arc x̄(t) = t is a weak local minimizer
while not an intermediate local minimizer of any rank p ≥ 2 (but not of
p ≥ 1). To show the latter, we take the functions xk(t) = x̄(t) + yk(t) with
yk(0) = yk(1) = 0 and

ẏk(t) =

⎧⎨
⎩

−
√

k if 0 ≤ t ≤ 1
k ,

√
k(k − 1)−1 if 1

k < t ≤ 1

and check directly that

J [xk ] = −
√

k + O(1) → −∞ while
∫ 1

0

|ẋk(t) − ˙̄x(t)|p dt → 0 as k → ∞

for each p ∈ [2,∞), which completes the discussion. �

The previous examples concerned problems of the calculus of varia-
tions with no differential inclusion/dynamic constraints. The next example
deals with autonomous, convex-valued, Lipschitzian differential inclusions and
demonstrates that the concepts of strong and intermediate local minimizers
may be different in this case.

Example 6.10 (intermediate but not strong minimizers for bounded,
convex-valued, and Lipschitzian differential inclusions). There is an
optimal control problem of minimizing a linear cost function over trajectories
of an autonomous, uniformly bounded, and Lipschitzian differential inclusion
with compact and convex values for which an intermediate local minimizer of
any rank p ∈ [1,∞) is not a strong local minimizer.
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Proof. Let x = (x1, x2, x3, x4) ∈ IR4, and let

ψ(x1, x2) :=

⎧⎨
⎩

x2
2 cos

(
πx1
x2

)
for x2 �= 0 ,

0 for x2 = 0 .

It is easy to check that ψ is continuously differentiable on IR4. Consider the
following problem:

minimize J [x ] := −x2(1)

over absolutely continuous trajectories for the differential inclusion⎛
⎜⎜⎝

ẋ1

ẋ2

ẋ3

ẋ4

⎞
⎟⎟⎠ ∈

⎧⎪⎪⎨
⎪⎪⎩
⎡
⎢⎢⎣

1
0
v

|ψ(x1, x2) − x2x3|

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣ v ∈ [−4, 4]

⎫⎪⎪⎬
⎪⎪⎭ a.e. t ∈ [0, 1]

with the endpoint constraints

x1(0) = x4(0) = x4(1) = 0, x1(1) = 1 .

Take a feasible arc x̄(t) = (t, 0, 0, 0) and show first that it is not a strong
local minimizer. Indeed, for any ε ∈ (0, 2

√
2) the function

x(t) =
(

t,
ε√
2
,

ε√
2

cos
(√2π t

ε

)
, 0

)
is a feasible arc from the ε-neighborhood of x̄ in the space C

(
[0, 1]; IR4

)
with

the cost J [x ] = −ε/
√

2 < 0 = J [x̄ ].
Next let us show that x̄ is an intermediate local minimizer of rank p = 1,

and hence of any rank p ∈ [1,∞), for the problem under consideration. Choose
any ε ∈ (0, 1/2) and assume on the contrary that there is a feasible arc
x(·) satisfying the relations (6.15) and (6.16) in Definition 6.7 and such that
J [x ] < J [x̄ ]. Then

x1(t) = t, x2(t) ≡ c, and |ψ(t, c) − cx3(t)| ≡ 0

on [0, 1] for some c ∈ (0, 1/2). This gives

x3(t) = ψ(t, c) = c cos
(π t

c

)
, and hence ẋ3 = π sin

(π t
c

)
.

Therefore one has∫ 1

0

‖ẋ(t) − ˙̄x(t)‖ dt = π

∫ 1

0

∣∣∣ sin(π t
c

)∣∣∣ dt = πc
∫ c−1

0

∣∣ sin(πs)
∣∣ ds

≥ πc
∫ [c−1]

0

∣∣ sin(πs)
∣∣ ds = 2c

[1
c

]
≥ 2

3
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due to c ∈ (0, 1/2), where [a] stands as usual for the greatest integer less than
or equal to a ∈ IR. The latter clearly contradicts the choice of ε < 1/2, which
proves that x̄ is an intermediate local minimizer of rank p = 1. �

In what follows, along with the original problem (P), we consider its re-
laxed counterpart that, roughly speaking, is obtained from (P) by the convex-
ification procedure with respect to the velocity variable. Taking the integrand
ϑ(x, v, t) in (6.13), we consider its restriction

ϑF(x, v, t) := ϑ(x, v, t) + δ
(
v; F(x, t)

)
to the sets F(x, t) in (6.1) and denote by ϑ̂F(x, v, t) the biconjugate (bypolar)
function to ϑF(x, ·, t), i.e.,

ϑ̂F(x, v, t) =
(
ϑF

)∗∗
v

(x, v, t) for all (x, v, t) ∈ X × X × [a, b] .

It is well known that ϑ̂F(x, v, t) is the greatest proper, convex, l.s.c. function
with respect to v, which is majorized by ϑF . Moreover, ϑF = ϑ̂F if and only
if ϑF is proper, convex, and l.s.c. with respect to v.

Given the original variational problem (P), we define the relaxed problem
(R), or the relaxation of (P), as follows:

minimize Ĵ [x ] := ϕ
(
x(a), x(b)

)
+
∫ b

a
ϑ̂F

(
x(t), ẋ(t), t

)
dt (6.17)

over a.e. differentiable arcs x : [a, b] → X that are Bochner integrable on [a, b]
together with ϑF

(
x(t), (̇x)(t), t

)
, satisfy the Newton-Leibniz formula on [a, b]

and the endpoint constraints (6.14). Note that, in contrast to (6.13), the inte-
grand in (6.17) is extended-real-valued. Furthermore, the natural requirement
Ĵ [x ] < ∞ yields that x(·) is a solution (in the sense of Definition 6.1) to the
convexified differential inclusion

ẋ(t) ∈ clco F
(
x(t), ẋ(t), t

)
a.e. t ∈ [a, b] . (6.18)

Thus the relaxed problem (R) can be considered under explicit dynamic con-
strained given by the convexified differential inclusion (6.18). Any trajectory
for (6.18) is called a relaxed trajectory for (6.1), in contrast to original trajec-
tories/arcs for the latter inclusion.

There are deep relationships between relaxed and original trajectories for
differential inclusion, which reflect hidden convexity inherent in continuous-
time (nonatomic measure) dynamic systems defined by differential operators.
We’ll see various realizations of this phenomenon in the subsequent material
of this chapter. In particular, any relaxed trajectory of compact-valued and
Lipschitz in x differential inclusion in Banach spaces may be uniformly ap-
proximated (in the space C

(
[a, b]; X

)
by original trajectories starting with the

same initial state x(a) = x0; see, e.g., Theorem 2.2.1 in Tolstonogov [1258]
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with the references therein. We need a version of this approximation/density
property involving not only differential inclusions but also minimizing func-
tionals. The following result, which holds when the underlying Banach space
is separable, is proved by De Blasi, Pianigiani and Tolstonogov [308]. Results
of this type go back to the classical theorems of Bogolyubov [121] and Young
[1350] in the calculus of variations.

Theorem 6.11 (approximation property for relaxed trajectories).
Let x(·) be a relaxed trajectory for the differential inclusion (6.1), where X
is separable, and where F : X × [a, b] →→ X is compact-valued and uniformly
bounded by a summable function, locally Lipschitzian in x, and measurable in
t. Assume also that the integrand ϑ in (6.13) is continuous in (x, v), measur-
able in t, and uniformly bounded by a summable function near x(·). Then there
is sequence of the original trajectories xk(·) for (6.1) satisfying the relations

xk(a) = x(a), xk(·) → x(·) in C
(
[a, b]; X

)
, and

lim inf
k→∞

∫ b

a
ϑ
(
xk(t), ẋk(t), t

)
dt ≤

∫ b

a
ϑ̂F

(
x(t), ẋ(t), t

)
dt .

Note that Theorem 6.11 doesn’t assert that the approximating trajectories
xk(·) satisfy the endpoint constraints (6.14). Indeed, there are examples show-
ing that the latter may not be possible. If they do, then problem (P) has the
property of relaxation stability:

inf(P) = inf(R) , (6.19)

where the infima of the cost functionals (6.13) and (6.17) are taken over all
the feasible arcs in (P) and (R), respectively.

An obvious sufficient condition for the relaxation stability is the convex-
ity of the sets F(x, t) and of the integrand ϑ in v. However, the relaxation
stability goes far beyond the standard convexity due to the hidden convexity
property of continuous-time differential systems. In particular, Theorem 6.11
ensures the relaxation stability of nonconvex problems (P) with no constraints
on x(b). There are other efficient conditions for the relaxation stability of non-
convex problems discussed, e.g., in Ioffe and Tikhomirov [617], Mordukhovich
[888, 915], and Tolstonogov [1258]. Let us mention the classical Bogolyubov
theorem ensuring the relaxation stability in variational problems of minimiz-
ing (6.13) with endpoint constraint (6.14) but with no dynamic constraints
(6.1); relaxation stability of control systems linear in state variables via the
fundamental Lyapunov theorem on the range convexity of nonatomic vector
measures that largely justifies the hidden convexity; the calmness condition
by Clarke [246, 255] for differential inclusion problems with endpoint con-
straints of the inequality type; the normality condition by Warga [1315, 1321]
involving parameterized control systems (6.2), etc.
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An essential part of our study relates to local minima that are stable with
respect to relaxation. The corresponding counterpart of Definition 6.7 is for-
mulated as follows.

Definition 6.12 (relaxed intermediate local minima). The arc x̄ is a
relaxed intermediate local minimizer (r.i.l.m.) of rank p ∈ [1,∞) for
the original problem (P) if x̄ is a feasible solution to (P) and provides an
intermediate local minimum of this rank to the relaxed problem (R) with the
same cost J [x̄ ] = Ĵ [x̄ ].

The notions of relaxed weak and relaxed strong local minima are defined
similarly, with the same relationships between them as discussed above. Of
course, there is no difference between the corresponding relaxed and usual
(non-relaxed) notions of local minima for problems (P) with convex sets
F(x, t) and integrands ϑ convex with respect to velocity. It is also clear that
any relaxed intermediate (weak, strong) minimizer for (P) provides the cor-
responding non-relaxed local minimum to the original problem. The opposite
requires a kind of local relaxation stability. Note that any necessary condition
for r.i.l.m. holds for relaxed strong local minima, and hence for optimal so-
lutions to (P) (global or absolute minimizers) under the relaxation stability
(6.19) of this problem.

Our primary goal is to derive general necessary optimality conditions for
r.i.l.m. in the Bolza problem (P) under consideration; some results will be
later obtained without any relaxation as well. To proceed, we employ the
method of discrete approximations, which relates variational/optimal control
problems for continuous-time systems to their finite-difference counterparts.
The first step in this direction is to build well-posed discrete approximations
of a given r.i.l.m. x̄(·) in problem (P) such that optimal solutions to discrete-
time problems strongly converge to x̄(·) in the space W 1,2

(
[a, b]; X

)
. This will

be accomplished in the next subsection.

6.1.3 Well-Posed Discrete Approximations of the Bolza Problem

Considering differential inclusions and their finite-difference counterparts in
Subsect. 6.1.1, we established there that every trajectory for a differen-
tial inclusion in a general Banach space can be strongly approximated by
extended trajectories for finite-difference inclusions under the natural as-
sumptions made. This result doesn’t directly relate to optimization problems
involving differential inclusions, but we are going to employ it now in the opti-
mization framework. The primary objective of this subsection is as
follows.

Given a trajectory x̄(·) for the differential inclusion (6.1), which provides
a relaxed intermediate local minimum (r.i.l.m.) to the optimization problem
(P) defined above, construct a well-posed family of approximating optimiza-
tion problems (PN ) for finite-difference inclusions (6.3) such that (extended)
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optimal solutions x̄N (·) to (PN ) strongly converge to x̄(·) in the norm topology
of W 1,2

(
[a, b]; X

)
.

Imposing the standing hypotheses (H1) and (H2) formulated in Sub-
sect. 6.1.1, we observe that the boundedness assumption (6.4) implies that
the notion of r.i.l.m. from Definition 6.12 doesn’t depend on rank p from the
interval [1,∞). This means that x̄(·) is an r.i.l.m. of some rank p ∈ [1,∞),
then it is also an r.i.l.m. of any other rank p ≥ 1. In what follows we take
p = 2 and α = 1 in (6.16) for simplicity.

To proceed, one needs to impose proper assumptions on the other data ϑ ,
ϕ, and Ω of problem (P) in addition to those imposed on F . Dealing with the
Bochner integral, we always identify measurability of mappings f : [a, b] → X
with strong measurability. Recall that f is strongly measurable if it can be a.e.
approximated by a sequence of step X -valued functions on measurable subsets
of [a, b]. Given a neighborhood U of x̄(·) and a constant mF from (H1), we
further assume that:

(H3) ϑ(·, ·, t) is continuous on U × (m F IB) uniformly in t ∈ [a, b], while
ϑ(x, v, ·) is measurable on [a, b] and its norm is majorized by a summable
function uniformly in (x, v) ∈ U × (m F IB).

(H4) ϕ is continuous on U × U ; Ω ⊂ X × X is locally closed around
(x̄(a), x̄(b)

)
and such that the set proj 1Ω ∩

(
x̄(a) + ε IB

)
is compact for some

ε > 0, where proj 1Ω stands for the projection of Ω on the first space X in
the product space X × X .

Note that symmetrically we may assume the local compactness of the
second projection of Ω ⊂ X × X ; the first one is selected in (H4) just for
definiteness.

Now taking the r.i.l.m. x̄(·) under consideration, let us apply to this feasible
arc Theorem 6.4 on the strong approximation by discrete trajectories. Thus
we find a sequence of the extended discrete trajectories x̂N (·) approximating
x̄(·) and compute the numbers ηN in (6.11). Having ε > 0 from relations (6.15)
and (6.16) of the intermediate minimizer x̄(·) with p = 1 and α = 1, we always
suppose that x̄(t) + ε/2 ∈ U for all t ∈ [a, b]. Let us construct the sequence
of discrete approximation problems (PN ), N ∈ IN , as follows: minimize the
discrete-time Bolza functional

JN [xN ] : = ϕ
(
xN (t0), xN (tN )

)
+ ‖xN (t0) − x̄(a)‖2

+
N−1∑
j=0

∫ t j+1

t j

ϑ
(

xN (t j ),
xN (t j+1) − xN (t j )

hN
, t
)

dt

+
N−1∑
j=0

∫ t j+1

t j

∥∥∥ xN (t j+1) − xN (t j )
hN

− ˙̄x(t)
∥∥∥2

dt

(6.20)
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over discrete trajectories xN = xN (·) = (xN (t0), . . . , xN (tN )
)

for the difference
inclusions (6.3) subject to the constraints(

x(t0), xN (tN )
)
∈ Ω + ηN IB, (6.21)

‖xN (t j ) − x̄(t j )‖ ≤ ε

2
for j = 1, . . . , N , and (6.22)

N−1∑
j=0

∫ t j+1

t j

∥∥∥ xN (t j+1) − xN (t j )
hN

− ˙̄x(t)
∥∥∥2

dt ≤ ε

2
. (6.23)

As in Subsect. 6.1.1, we consider (without mentioning any more) piecewise
linear extensions of xN (·) to the whole interval [a, b] with piecewise constant
derivatives for which one has⎧⎪⎪⎨

⎪⎪⎩
xN (t) = xN (a) +

∫ t

a
ẋN (s) ds for all t ∈ [a, b] and

ẋN (t) = ẋN (t j ) ∈ F(xN (t j ), t j ), t ∈ [t j , t j+1), j = 0, . . . , N − 1 .

(6.24)

The next theorem establishes that the given local minimizer x̄(·) to (P)
can be approximated by optimal solutions to (PN ) strongly in W 1,2

(
[a, b]; X

)
,

which implies the a.e. pointwise convergence of the derivatives essential in
what follows. To justify such an approximation, we need to impose both the
Asplund structure and the Radon-Nikodým property (RNP) on the space X
in question, which ensure the validity of the classical Dunford theorem on the
weak compactness in L1

(
[a, b]; X

)
. It is worth noting that every reflexive space

is Asplund and has the RNP simultaneously. Furthermore, the second dual
space X∗∗ enjoys the RNP (and hence so does X ⊂ X∗∗) if X∗ is Asplund. Thus
the class of Banach spaces X for which both X and X∗ are Asplund satisfies
the properties needed in the next theorem. As discussed in the beginning of
Subsect. 3.2.5, there are nonreflexive (even separable) spaces that fall into this
category.

Theorem 6.13 (strong convergence of discrete optimal solutions).
Let x̄(·) be an r.i.l.m. for the Bolza problem (P) under assumptions (H1)–
(H4), and let (PN ), N ∈ IN , be a sequence of discrete approximation problems
built above. The following hold:

(i) Each (PN ) admits an optimal solution.
(ii) If in addition X is Asplund and has the RNP, then any sequence

{x̄N (·)} of optimal solutions to (PN ) converges to x̄(·) strongly
in W 1,2

(
[a, b]; X).

Proof. To justify (i), we observe that the set of feasible trajectories to each
problem (PN ) is nonempty for all large N , since the extended functions x̂N (·)
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from Theorem 6.4 satisfy (6.3) and the constraints (6.21)–(6.23) by construc-
tion. This follows immediately from (6.11) in the case of (6.21) and (6.22). In
the case of (6.23) we get from (6.4) and (6.12) that

N−1∑
j=0

∫ t j+1

t j

∥∥∥ x̂N (t j+1) − x̂N (t j )
hN

− ˙̄x(t)
∥∥∥2

dt =
∫ b

a
‖ ˙̂x N (t) − ˙̄x(t)‖2 dt

≤ 2m FαN ≤ ε

2

for large N by the formula for αN in (6.12). The existence of optimal solu-
tions to (PN ) follows now from the classical Weierstrass theorem due to the
compactness and continuity assumptions made in (H1), (H3), and (H4).

It remains to prove the convergence assertion (ii). Check first that

JN [x̂N ] → J [x̄ ] as N → ∞ (6.25)

along some sequence of N ∈ IN . Considering the expression (6.20) for JN [x̂N ],
we deduce from Theorem 6.4 that the second terms therein vanishes, the
forth term tends to zero due to (6.4) and (6.12), and the first term tends
to ϕ(x̄(a), x̄(b)

)
due to the continuity assumption on ϕ in (H4). It is thus

sufficient to show that

σN :=
N−1∑
j=0

∫ t j+1

t j

ϑ
(

x̂N (t j ),
x̂N (t j+1) − x̂N (t j )

hN
, t
)

dt →
∫ b

a
ϑ(x̄(t), ˙̄x(t), t) dt

as N → ∞. Using the sign “∼” for expressions that are equivalent as N → ∞,
we get the relationships

σN =
N−1∑
j=0

∫ t j+1

t j

ϑ
(
x̂N (t j ), ˙̂x N (t), t

)
dt ∼

∫ b

a
ϑ
(
x̂N (t), ˙̂x N (t), t

)
dt

∼
∫ b

a
ϑ
(
x̄(t), ˙̂x N (t), t

)
dt ∼

∫ b

a
ϑ
(
x̄(t), ˙̄x(t), t

)
dt

by Theorem 6.4 ensuring the a.e. convergence ˙̂x N (t) → ˙̄x(t) along a subse-
quence of N → ∞ and by the Lebesgue dominated convergence theorem for
the Bochner integral that is valid under (H3).

Note that we have justified (6.25) for any intermediate (not relaxed) local
minimizer x̄(·) for the original problem (P) in an arbitrary Banach space X .
Next let us show that (6.25) implies that

lim
N→∞

[
βN := ‖x̄N (a) − x̄(a)‖2 +

∫ b

a
‖ ˙̄x N (t) − ˙̄x(t)‖2 dt

]
= 0 (6.26)

for every sequence of optimal solutions x̄N (·) to (PN ) provided that x̄(·) is a
relaxed intermediate local minimizer for the original problem, where the state
space X is assumed to be Asplund and to satisfy the RNP.
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Suppose that (6.26) is not true. Take a limiting point β > 0 of the sequence
{βN} in (6.26) and let for simplicity that βN → β for all N → ∞. We are going
to apply the Dunford theorem on the relative weak compactness in the space
L1
(
[a, b]; X

)
(see, e.g., Diestel and Uhl [334, Theorem IV.1]) to the sequence

{ ˙̄x N (·)}, N ∈ IN . Due to (6.24) and (H1) this sequence satisfies the assump-
tions of the Dunford theorem. Furthermore, both spaces X and X∗ have the
RNP, since the latter property for X∗ is equivalent to the Asplund structure
on X , as mentioned above. Hence we suppose without loss of generality that
there is v ∈ L1

(
[a, b]; X

)
such that

˙̄x N (·) → v(·) weakly in L1
(
[a, b]; X

)
as N → ∞ .

Since the Bochner integral is a linear continuous operator from L1
(
[a, b]; X

)
to X , it remains continuous if the spaces L1

(
[a, b]; X

)
and X are endowed with

the weak topologies. Due to (6.21) and the assumptions on Ω in (H4), the set
{x̄N (a)| N ∈ IN} is relatively compact in X . Using (6.24) and the compactness
property of solution sets for differential inclusions under the assumptions made
in (H1) and (H2) (see, e.g., Tolstonogov [1258, Theorem 3.4.2]), we conclude
that the sequence {x̄N (·)} contains a subsequence that converges to some x̃(·)
in the norm topology of the space C

(
[a, b]; X

)
. Now passing to the limit in the

Newton-Leibniz formula for x̄N (·) in (6.24) and taking into account the above
convergences, one has

x̃(t) = x̃(a) +
∫ t

a
v(s) ds for all t ∈ [a, b] ,

which implies the absolute continuity and a.e. differentiability of x̃(·) on [a, b]
with v(t) = ˙̃x(t) for a.e. t ∈ [a, b]. Observe that x̃(·) is a solution to the
convexified differential inclusion (6.18). Indeed, since a subsequence of {x̄N (·)}
converges to x̃(·) weakly in L1

(
[a, b]; X

)
, some convex combinations of x̄N (·)

converge to ˙̃x(·) in the norm topology of L1
(
[a, b]; X

)
, and hence pointwisely

for a.e. t ∈ [a, b]. Passing to the limit in the differential inclusions for x̄N (·)
in (6.24), we conclude that x̃(·) satisfies (6.18). By passing to the limit in
(6.21) and (6.22), we also conclude that x̃(·) satisfies the endpoint constraints
in (6.14) as well as

‖x̃(t) − x̄(t)‖ ≤ ε/2 for all t ∈ [a, b] .

Furthermore, the integral functional

I [v] :=
∫ b

a
‖v(t) − ˙̄x(t)‖2 dt

is lower semicontinuous in the weak topology of L2
(
[a, b]; X

)
due to the con-

vexity of the integrand in v. Since the weak convergence of ˙̄x N (·) → ˙̃x(·) in
L1
(
[a, b]; X

)
implies the one in L2

(
[a, b]; X

)
by the boundedness assumption

(6.4), and since
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∫ b

a
‖ ˙̄x N (t) − ˙̄x(t)‖2 dt =

N−1∑
j=0

∫ t j+1

t j

∥∥∥ x̄N (t j+1) − x̄N (t j )
hN

− ˙̄x(t)
∥∥∥2

dt ,

the above lower semicontinuity and relation (6.23) imply that

∫ b

a
‖ ˙̃x(t) − ˙̄x(t)‖2 dt ≤ lim inf

N→∞

N−1∑
j=0

∫ t j+1

t j

∥∥∥ x̄N (t j+1) − x̄N (t j )
hN

− ˙̄x(t)
∥∥∥2

dt ≤ ε

2
.

Thus the arc x̃(·) belongs to the ε-neighborhood of x̄(·) in the space
W 1,2

(
[a, b]; X

)
.

Let us finally show that the arc x̃(·) gives a smaller value to cost functional
(6.17) than x̄(·). One always has

JN [x̄N ] ≤ JN [x̂N ] for all large N ∈ IN ,

since each x̂N (·) is feasible to (PN ). Now passing to the limit as N → ∞ and
taking into account the previous discussions as well as the construction of the
convexified integrand ϑ̂F in (6.17), we get from (6.25) that

ϕ(x̃(a), x̃(b)
)

+
∫ b

a
ϑ̂F(x̃(t), ˙̃x(t), t) dt + β ≤ J [x̄ ] ,

which yields by β > 0 that Ĵ [x̃ ] < J [x̄ ] = Ĵ [x̄ ]. The latter is impossible,
since x̄(·) is an r.i.l.m. for (P). Thus (6.26) holds, which obviously implies
the desired convergence x̄N (·) → x̄(·) in the norm topology of the space
W 1,2

(
[a, b]; X

)
and completes the proof of the theorem. �

The arguments developed in the proof of Theorem 6.13 allow us to estab-
lish efficient conditions for the value convergence of discrete approximations,
which means that the optimal/infimal values of the cost functionals in the
discrete approximation problems converge to the one in the original problem
(P). Moreover, using the approximation property for relaxed trajectories from
Theorem 6.11, we obtain in fact a necessary and sufficient condition for the
value convergence in terms of an intrinsic property of the original problems.

Observe that the cost functional (6.20) as well as the constraints (6.22)
and (6.23) in the discrete approximation problems (PN ) explicitly contain the
given local minimizer x̄(·) to (P). Considering below the value convergence
of discrete approximations, we are not going to involve any local minimizer
in the construction of discrete approximations and/or even to assume the
existence of optimal solutions to the original problem. To furnish this, we
consider a sequence of new discrete approximation problems (P̃N ) built as
follows: minimize

J̃N [xN ] := ϕ
(
xN (t0), xN (tN )

)
+

N−1∑
j=0

∫ t j+1

t j

ϑ
(

xN (t j ),
xN (t j+1) − xN (t j )

hN
, t
)

dt
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subject to the discrete inclusions (6.3) and the perturbed endpoint constraints
(6.21), where the sequence ηN is not yet specified. Note that problems (P̃N )
are constructively built upon the initial data of the original continuous-time
problem. In the next theorem the notation J̃ 0

N := inf(P̃N ), inf(P), and inf(R)
stands for the optimal value of the cost functional in problems (P̃N ), (P), and
(R), respectively. Observe that optimal solutions to the discrete-time problems
(P̃N ) always exist due to the assumptions (H1)–(H4) made in Theorem 6.13
under proper perturbations ηN of the endpoint constraints; see its proof.

Theorem 6.14 (value convergence of discrete approximations). Let
U ⊂ X be an open subset of a Banach space X such that xk(t) ∈ U as t ∈ [a, b]
and k ∈ IN for a minimizing sequence of feasible solutions to (P). Assume that
hypotheses (H1)–(H4) are fulfilled with this set U , where x̄(a)+ε IB is replaced
by cl U in (H4). The following assertions hold:

(i) There is a sequence of the endpoint constraint perturbations ηN ↓ 0 in
(6.21) such that

inf(R) ≤ lim inf
N→∞

J̃ 0
N ≤ lim sup

N→∞
J̃ 0

N ≤ inf(P) , (6.27)

where the left-hand side inequality requires that X is Asplund and has the
RNP. Therefore the relaxation stability (6.19) of (P) is sufficient for the value
convergence of discrete approximations

inf(P̃N ) → inf(P) as N → ∞

provided that X is Asplund and has the RNP.
(ii) Conversely, the relaxation stability of (P) is also a necessary condition

for the value convergence inf(P̃N ) → inf(P) of the discrete approximations
with arbitrary perturbations ηN ↓ 0 of the endpoint constraints provided that
X is reflexive and separable.

Proof. Let us first prove that the right-hand side inequality in (6.27) holds
in any Banach space X . Taking the minimizing sequence of feasible arcs xk(·)
to (P) specified in the theorem, we apply to each xk(·) Theorem 6.4 on the
strong approximation by discrete trajectories. Involving the diagonal process,
we build the extended discrete trajectories x̂N (·) for (6.3) such that

ηN := ‖
(
x̂N (a), x̂N (b)

)
−
(
xkN (a), xkN (b)

)
‖ → 0 as N → ∞

and consider the sequence of discrete approximation problems (P̃N ) with these
constraint perturbations ηN in (6.21). Similarly to the proof of the first part
of Theorem 6.13, we show that each (P̃N ) admits an optimal solution and,
arguing by contradiction, one has the right-hand side inequality in (6.27). To
justify the left-hand side inequality in (6.27), we follow the proof of the second
part of Theorem 6.13 assuming that X is Asplund and enjoys the RNP. This
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automatically implies the value convergence of inf(P̃N ) → inf(P) under the
relaxation stability of (P).

To prove the converse assertion (ii) in the theorem, we first observe that
the relaxed problem (R) admits an optimal solution under the assumptions
made; see Tolstonogov [1258, Theorem A.1.3]. It follows from the arguments
in the second part of Theorem 6.13 that actually justify, under the assump-
tions made, the compactness of feasible solutions to the relaxed problem and
the lower semicontinuity of the minimizing functional (6.17) in the topology
on the set of feasible solutions x(·) induced by the weak convergence of the
derivatives ẋ(·) ∈ L1

(
[a, b]; X

)
provided that X is Asplund and has the RNP.

Assume now that X is reflexive and separable and, employing Theorem 6.11,
approximate a certain relaxed optimal trajectory x̄(·) by a sequence of the
original trajectories xk(·) converging to x̄(·) as established in that theorem. In
turn, each xk(·) can be strongly approximated in W 1,2

(
[a, b]; X

)
by discrete

trajectories x̂kN (·) due to Theorem 6.4. Using the diagonal process, we get a
sequence of the discrete trajectories x̂N (·) approximating x̄(·) and put

ηN := ‖
(
x̂N (a), x̂N (b)

)
−
(
x̄(a), x̄(b)

)
‖ → ∞ as N → ∞ .

Now assume that problem (P) is not stable with respect to relaxation, i.e.,
inf(R) < inf(P), and show that

lim inf
N→∞

J̃ 0
N < inf(P)

for a sequence of discrete approximation problems (P̃N ) with some perturba-
tions ηN of the endpoint constraints (6.21). Indeed, having

inf(R) = ϕ(x̄(a), x̄(b)
)

+
∫ b

a
ϑ̂F(x̄(t), ˙̄x(t), t) dt < inf(P)

for the relaxed optimal trajectory x̄(·), we build ηN as above and consider
problems (P̃N ) with these perturbations of the endpoint constraints. Taking
into account the approximation of x̄(·) by xk(·) due to Theorem 6.11, the
strong approximation of xk(·) by the discrete trajectories x̂N (·) in Theorem 6.4,
and the relations

J̃ 0
N ≤ ϕ

(
x̂N (t0), x̂N (tN )

)
+

N−1∑
j=0

∫ t j+1

t j

ϑ
(

x̂N (t j ),
x̂N (t j+1) − x̂N (t j )

hN
, t
)

dt

= ϕ
(
x̂N (a), x̂N (b)

)
+

N−1∑
j=0

∫ t j+1

t j

ϑ
(
x̂N (t j ), ˙̂x N (t), t

)
dt,

we get by the absence of the relaxation stability that
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lim inf
N→∞

Ĵ 0
N ≤ lim inf

N→∞

[
ϕ
(
x̂N (a), x̂N (b)

)
+
∫ b

a
ϑ
(
x̂N (t), ˙̂x N (t), t

)
dt
]

≤ ϕ
(
x̄(a), x̄(b)

)
+
∫ b

a
ϑ̂F

(
x̄(t), ˙̄x(t), t

)
dt < inf(P) .

Therefore we don’t have the value convergence of discrete approximations for
problems (P̃N ) corresponding to the above perturbations of the endpoint con-
straints. This justifies (ii) and completes the proof of the theorem. �

Thus the relaxation stability of (P), which is an intrinsic and natural prop-
erty of continuous-time dynamic optimization problems, is actually a criterion
for the value convergence of discrete approximations under appropriate per-
turbations of the endpoint constraints in (6.21). It follows from the proof of
Theorem 6.14 that one can express the corresponding perturbations ηN via
the averaged modulus of continuity (6.6) by

ηN = τ ( ˙̄x ; hN ) → ∞ as N → ∞

provided that (P) admits an optimal solution x̄(·) with the Riemann integrable
derivative ˙̄x(·) on [a, b]. Moreover, ηN = O(hN ) if ˙̄x(t) is of bounded variation
on this interval; see Subsect. 6.1.1.

Remark 6.15 (simplified form of discrete approximations). Observe
that if ϑ(x, v, ·) is a.e. continuous on [a, b] uniformly in (x, v) in some neigh-
borhood of the optimal solution x̄(·), then the cost functional in (6.20) in
problem (PN ) can be replaced in Theorem 6.13 by

JN [xN ] : = ϕ
(
xN (t0), xN (tN )

)
+ ‖xN (t0) − x̄(a)‖2

+hN

N−1∑
j=0

ϑ
(

xN (t j ),
xN (t j+1) − xN (t j )

hN
, t j

)

+
N−1∑
j=0

∫ t j+1

t j

∥∥∥ xN (t j+1) − xN (t j )
hN

− ˙̄x(t)
∥∥∥2

dt ;

(6.28)

and similarly for the cost functional in problem (P̃N ) used in Theorem 6.14.
Indeed, this is an easy consequence of the fact that τ (ϑ ; hN ) → 0 as N → ∞
for the averaged modulus of continuity (6.6) when ϑ(x, v, ·) is a.e. continuous.
Denote by (P N ) the discrete approximation problem that differs from (PN )
of that the cost functional (6.20) is replaced by the simplified one (6.28). In
what follows we consider both problems (PN ) and (P N ) using them to derive
necessary optimality conditions for the original problem. The results obtained
in these ways are distinguished by the assumptions on the initial data that
allow us to justify the desired necessary optimality conditions. Namely, while
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the use of the simplified problems (P N ) as N → ∞ requires the a.e. continuity
assumption on ϑ with respect of t (versus the measurability), it relaxes the
requirements on the state space X needed in the case of (PN ); see below.

6.1.4 Necessary Optimality Conditions
for Discrete-Time Inclusions

Theorem 6.13 on the strong convergence of discrete approximations makes a
bridge between optimal solutions to the discrete-time problems (PN ), as well
as their simplified versions (P N ) from Remark 6.15, and the given relaxed
intermediate local minimizer x̄(·) for the original continuous-time problem
(P). Our further strategy is as follows: first to establish necessary optimality
conditions in the sequences of discrete approximation problems (PN ) and (P N )
and then to obtain, by passing to the limit as N → ∞, necessary conditions
for the given local minimizer to the original optimal control problem (P)
governed by differential inclusions.

This subsection is devoted to the derivation of necessary optimality con-
ditions in general discrete-time Bolza problems and their special counterparts
for the discrete approximations problems (PN ) and (P N ). We explore two
approaches to these issues. The first one involves reducing general dynamic
optimization problems for discrete-time inclusions to non-dynamic problems
of mathematical programming with operator constraints and then employing
necessary optimality conditions for such problems obtained in Subsect. 5.1.2.
The second approach is based on the specific features of the discrete approx-
imation problems (PN ) and (P N ) and the use of fuzzy calculus results from
Chaps. 2–4. The results derived by using these two approaches are not reduced
to each other, and they require different assumptions. It happens, however,
that the approximate necessary optimality conditions obtained via the sec-
ond approach are more suitable for deriving the corresponding results for the
continuous-time problem (P) in the next subsection, while those obtained via
the first one are definitely of independent interest.

Let us start with the first approach and consider the following (non-
dynamic) problem of mathematical programming (M P) with operator, in-
equality, and geometric constraints to which we can reduce our discrete-time
problems of dynamic optimization:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0(z) subject to

ϕ j (z) ≤ 0, j = 1, . . . , s ,

f (z) = 0 ,

z ∈ Ξ j ⊂ Z , j = 1, . . . , l ,

(6.29)
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where ϕ j are real-valued functions on Z , where f : Z → E is a mapping between
Banach spaces, and where Ξ j ⊂ Z . This is a problem with operator constraints
of the type considered in the end of Subsect. 5.1.2 with the only difference
that now we have many geometric constraints given by the sets Ξ j . As we see
below, the geometric constraints in (6.29) arise from the discretized differential
inclusions (6.3), and the number l of them is increasing as N → ∞. Note that
problem (M P) is intrinsically nonsmooth, even in the case of the smooth
data f and ϕ j in (6.29) and in the generating dynamic problems. Indeed, the
nonsmoothness comes from the geometric constraints in (6.29), which reflect
the dynamics governed by differential and finite-difference inclusions in the
original problem (P) and its discrete approximations.

To derive necessary optimality conditions in problem (M P), one may apply
Corollary 5.18 that concerns the problem like (6.29) but with many geometric
constraints. Denote

Ξ := Ξ1 ∩ . . . ∩Ξl

and replace the geometric constraints in (6.29) by z ∈ Ξ . Employing now the
result of Corollary 5.18, we need to present necessary optimality conditions
for problem (M P) via its initial data. This can be done by using calculus rules
for generalized normals and the SNC property of set intersections developed
in Chap. 3.

Proposition 6.16 (necessary conditions for mathematical program-
ming with many geometric constraints). Let z̄ be a local optimal solution
to problem (6.29), where the spaces Z and E are Asplund and where the sets
Ξ j are locally closed around z̄. Assume also that all ϕi are Lipschitz continu-
ous around z̄, that f is generalized Fredholm at z̄, and that each Ξ j is SNC
at this point. Then there are real numbers {µ j ∈ IR| j = 0, . . . , s} as well as
linear functionals e∗ ∈ E∗ and {z∗j ∈ Z∗| j = 1, . . . , l}, not all zero, such that
µ j ≥ 0 for j = 0, . . . , s and

µ jϕ j (z̄) = 0 for j = 1, . . . , s , (6.30)

z∗j ∈ N(z̄;Ξ j ) for j = 1, . . . , l , (6.31)

−
l∑

j=1

z∗j ∈ ∂
( s∑

j=0

µ jϕ j

)
(z̄) + D∗

N f (z̄)(e∗) . (6.32)

Proof. Apply Corollary 5.18 to problem (6.29) with the condensed geometric
constraint z ∈ Ξ given by the intersection of the sets Ξ j . Then we find
{µ j ≥ 0| j = 0, . . . , s} and e∗ ∈ E∗, not all zero, such that µ j satisfy the
complementary slackness conditions in (6.30) and
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0 ∈ ∂
( s∑

j=0

µ jϕ j

)
(z̄) + D∗

N f (z̄)(e∗) + N(z̄;Ξ) (6.33)

provided that the intersection set Ξ is SNC at z̄. The latter holds, by Corol-
lary 3.81, if each Ξ j is SNC at this point and the qualification condition[

z∗1 + . . . + z∗l = 0, z∗j ∈ N(z̄;Ξ j )
]

=⇒
[
z∗j = 0, j = 1, . . . , s

]
is fulfilled. Furthermore, the same qualification condition ensures, by Corol-
lary 3.37, the intersection formula

N(z̄;Ξ) ⊂ N(z̄;Ξ1) + . . . + N(z̄;Ξl)

when all but one of Ξ j are SNC at z̄. Substituting this into (6.33), we con-
clude that the fulfillment of the above qualification condition implies (6.32)
with (µ j , e∗) �= 0. At the same time, the violation of the qualification con-
dition means that (6.32) holds with (z∗1, . . . , z∗l ) �= 0 and all zero µ j and e∗.
This completes the proof of the proposition. �

Now let us consider the application of Proposition 6.16 to the following
constrained Bolza problem for discrete-time inclusions labeled as (D P):⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

minimize ϕ(x0, xN ) + h
N−1∑
j=0

ϑ j

(
x j ,

x j+1 − x j

h

)
subject to

x j+1 ∈ x j + hFj (x j ) for j = 0, . . . , N − 1 ,

(x0, xN ) ∈ Ξ ⊂ X2 ,

where Fj : X →→ X , where ϕ and ϑ j are real-valued functions on X2, and where
h > 0 and N ∈ IN are fixed. Observe that problem (D P) incorporates the basic
structure of discrete approximation problems from the preceding subsection,
for any fixed N , without taking into account the terms therein related to
approximating the given intermediate local minimizer x̄(·) for the original
continuous-time problem (P).

Theorem 6.17 (necessary optimality conditions for discrete-time in-
clusions). Let {x̄ j | j = 0, . . . , N} be a local optimal solution to problem
(D P). Assume that X is Asplund, that the sets Ξ and Fj are locally closed
and SNC at (x̄0, x̄N ) and

(
x̄ j , (x̄ j+1 − x̄ j )/h

)
, respectively, and that the func-

tions ϕ and ϑ j are locally Lipschitzian around the corresponding points x̄ j for
all j = 0, . . . , N . Then there are λ ≥ 0 and {p j ∈ X∗| j = 0, . . . , N}, not
simultaneously zero, such that one has the extended Euler-Lagrange inclusion( p j+1 − p j

h
, p j+1

)
∈ λ∂ϑ j

(
x̄ j ,

x̄ j+1 − x̄ j

h

)
+ N

((
x̄ j ,

x̄ j+1 − x̄ j

h

)
; gph Fj

)
for all j = 0, . . . , N − 1 with the transversality inclusion

(p0,−pN ) ∈ λ∂ϕ(x̄0, x̄N ) + N
(
(x̄0, x̄N )

)
;Ξ

)
.
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Proof. It is easy to see that the discrete-time dynamic optimization problem
(D P) can be equivalently written in the non-dynamic form of mathematical
programming given by (6.29) with

z := (x0, . . . , xN , v0, . . . , vN−1) ∈ Z := X2N+1, E := X N , l := N ,

ϕ0(z) := ϕ(x0, xN ) + h
N−1∑
j=0

ϑ j (x j , v j ), ϕ j (z) := 0 as j ≥ 1 ,

f (z) =
(

f0(z), . . . , fN−1(z)
)

with

f j (z) := x j+1 − x j − hv j , j = 0, . . . , N − 1 ,

Ξ j :=
{

z ∈ X2N+1
∣∣ v j ∈ Fj (x j )

}
for j = 0, . . . , N − 1 ,

ΞN :=
{

z ∈ X2N+1
∣∣ (x0, xN ) ∈ Ξ

}
Thus z̄ :=

(
x̄0, . . . , x̄N , (x̄1 − x̄0)/h, . . . , (x̄N − x̄N−1)/h

)
is a local optimal

solution to the (M P) problem (6.29) with the data defined above. The op-
erator constraint mapping f is surely generalized Fredholm at z̄; moreover,
the sets Ξ j , j = 0, . . . , N , are obviously SNC at z̄ under the assumptions
imposed on Fj and Ξ . Since the cost function ϕ0 is locally Lipschitzian
around z̄ and the product spaces Z and E are Asplund, we apply the neces-
sary optimality conditions from Proposition 6.16 to the (M P) problem under
consideration, which give us a number µ0 ≥ 0 as well as linear function-
als z∗j = (x∗

0 j , . . . , x∗
N j , v

∗
0 j , . . . , v

∗
(N−1) j ) ∈ (X∗)2N+1 for j = 0, . . . , N and

e∗ = (e∗0, . . . , e∗N−1) ∈ (X∗)N , not all zero, such that conditions (6.30)–(6.32)
hold with the data defined above. It follows from the structure of Ξ j in (6.37)
that (6.31) is equivalent to⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x∗
i j , v

∗
i j ) ∈ N

((
x̄ j ,

x̄ j+1 − x̄ j

h

)
; gph Fj

)
and

x∗
i j = v∗i j = 0 if i �= j for all j = 0, . . . , N − 1 ;

(x∗
0N , x∗

N N ) ∈ N
(
(x̄0, x̄N );Ξ

)
and x∗

i N = v∗i N = 0 otherwise .

Denoting λ := µ0 and employing the sum rule for basic subgradients of locally
Lipschitzian functions in Theorem 3.36, we get from (6.32) and the structures
of ϕ0 and f that there are

(x∗
0 , x∗

N ) ∈ ∂ϕ(x̄0, x̄N ) and (u∗
j , w

∗
j ) ∈ ∂ϑ j

(
x̄ j ,

x̄ j+1 − x̄ j

h

)
for j = 0, . . . , N − 1 satisfying the relations
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x∗
00 − x∗

0N = λ
(
x∗
0 + hu∗

0

)
− e∗0 ,

−x∗
j j = λhu∗

j + e∗j−1 − e∗j , j = 0, . . . , N − 1 ,

−x∗
N N = λx∗

N + e∗N−1 ,

−v∗j j = h
(
λw∗

j − e∗j
)
, j = 0, . . . , N − 1 .

Denoting finally

p0 := −x∗
0N − λx∗

0 + e∗0 and p j := e∗j−1, j = 1, . . . , N ,

we arrive at the desired Euler-Lagrange and transversality inclusions with
λ ≥ 0 and {p j ∈ X∗| j = 0, . . . , N} not equal to zero simultaneously. This
completes the proof of the theorem. �

Let us return to our discrete approximation problems (PN ) and (P N ). Fixed
any N ∈ IN , observe that problem (P N ) defined in (6.3), (6.21)–(6.23), and
(6.28) reduces to the form of mathematical programming (6.29) that is just
slightly different from the one for (D P). Indeed, letting

z := (x0, . . . , xN , v0, . . . , vN−1) ∈ Z := X2N+1, E := X N , s := N + 2, l := N ,

we rewrite (P N ) as (6.29) with the following data:

ϕ0(z) : = ϕ(x0, xN ) + ‖x0 − x̄(a)‖2 + hN

N−1∑
j=0

ϑ j (x j , v j )

+
N−1∑
j=0

∫ t j+1

t j

‖v j − ˙̄x(t)‖2 dt ,

(6.34)

ϕ j (z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖x j−1 − x̄(t j−1)‖ − ε/2 for j = 1, . . . , N + 1 ,

N−1∑
i=0

∫ ti+1

ti

‖vi − ˙̄x(t)‖2 dt − ε/2 for j = N + 2 ,
(6.35)

f (z) =
(

f0(z), . . . , fN−1(z)
)

with

f j (z) := x j+1 − x j − hNv j , j = 0, . . . , N − 1 ,
(6.36)

Ξ j :=
{

z ∈ X2N+1
∣∣ v j ∈ Fj (x j )

}
for j = 0, . . . , N − 1 ,

ΞN :=
{

z ∈ X2N+1
∣∣ (x0, xN ) ∈ ΩN

}
,

(6.37)
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where ϑ j (x, v) := ϑ(x, v, t j ), Fj (x) := F(x, t j ), and ΩN := Ω + ηN IB. Notice
that the only difference between the (M P) forms for (D P) and (P N ) is re-
flected by the terms in the cost functions and inequality constraints involving
the given intermediate local minimizer x̄(·) for the original continuous-time
problem (P). These terms can be easily treated in deriving necessary optimal-
ity conditions similarly to the proof of Theorem 6.17. Moreover, the impact
of these terms to necessary optimality conditions disappears in the limiting
procedure as N → ∞, i.e., they can be actually ignored from the viewpoint of
necessary optimality conditions in the original problem (P); see below.

Similarly we observe that problem (PN ) defined in (6.3), (6.20)–(6.23)
equivalently reduces to the (M P) form (6.29) with the cost function

ϕ0(z) : = ϕ(x0, xN ) + ‖x0 − x̄(a)‖2

+
N−1∑
j=0

∫ t j+1

t j

[
ϑ(x j , v j , t) + ‖v j − ˙̄x(t)‖2

]
dt

(6.38)

and the same constraints (6.35)–(6.37). The difference between (6.34) and
(6.38) consists of replacing

hN

N−1∑
j=0

ϑ j (x j , v j ) by
N−1∑
j=0

∫ t j+1

t j

ϑ(x j , v j , t) dt ,

where the latter allows us to deal with summable (in Bochner’s sense) inte-
grands ϑ(x, v, ·). In order to derive necessary optimality conditions for prob-
lems involving measurable/summable integrands, we need an auxiliary result
(certainly important for its own sake) ensuring the subdifferentiation under the
integral sign, which can be viewed as an “infinite sum” (continuous measure)
extension of the subdifferential sum rule for finite sums of Lipschitzian func-
tions obtained in Subsect. 3.2.1. However, the validity of the integral result
requires more restrictions on the space in question: we assume its reflexivity
and separability versus the Asplund structure in the finite sum rule used in
Theorem 6.17. Although the following subdifferential formula holds in rather
general measure spaces, we present it only for the case of real intervals, say
T = [0, 1], needed in subsequent applications. Recall that the integral of a
set-valued mapping is always understood as the collection of integrals of its
summable selections.

Lemma 6.18 (basic subgradients of integral functional). Let X be a
reflexive and separable Banach space. Given x̄ ∈ X , assume that ϕ: X ×
[0, 1] → IR is measurable in t for each x near x̄ and locally Lipschitzian
around x̄ with a summable modulus on [0, 1]. Then one has

∂
(∫ 1

0

ϕ(·, t) dt
)
(x̄) ⊂ cl

∫ 1

0

∂ϕ(x̄, t) dt , (6.39)
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where the subdifferential on the right-hand side is taken with respect to x, and
where the closure “cl ” is taken with respect to the norm topology in X∗.

Proof. First we observe that the mapping ∂ϕ(x̄, ·): [0, 1] →→ X∗ is closed-valued
and measurable in the standard sense for set-valued mappings F : T →→ Y , i.e.,
that the inverse image F−1(Θ) is measurable for any open subset Θ ⊂ Y ;
for closed-valued mappings such a measurability admits many other equiva-
lent descriptions; see, e.g., Theorems 14.3 and 14.56 in Rockafellar and Wets
[1165] that hold in infinite dimensions. Note also that, in the case of separable
image spaces, this measurability is equivalent to strong measurability (i.e., the
possibility of the a.e. pointwise approximation by a sequence of step map-
pings) that is specific for the Bochner integral under consideration. By the
well-known theorems on measurable selections (see, e.g., the afore-mentioned
book [1165] as well as the early book by Castaing and Valadier [229]) there
are measurable singe-valued mappings ξ : [0, 1] → X∗ such that ξ(t) ∈ ∂ϕ(x̄, t)
for a.e. t ∈ [0, 1]. Moreover, since X∗ is separable and ∂ϕ(x̄ ; ·) is integrably
bounded by the summable Lipschitz modulus of ϕ(·, t) as easily follows from
the assumptions made (see Corollary 1.81), every measurable selector ξ of
∂ϕ(x̄ ; ·) is Bochner integrable on [0, 1]. Hence the multivalued integral on the
right-hand side of (6.39) is well-defined and nonempty.

It follows from Clarke [255, Theorem 2.7.2] that a counterpart of (6.39)
holds with the replacement of the basic subdifferential by the Clarke gener-
alized gradient of Lipschitz functions on both sides. Using now Theorem 3.57
and the reflexivity of X , we have

∂
(∫ 1

0

ϕ(·, t) dt
)
(x̄) ⊂

∫ 1

0

clco ∂ϕ(x̄, t) dt ,

since the weak closure agrees with the norm closure for convex sets in reflexive
spaces by the Mazur theorem. On the other hand, it is known as an infinite-
dimensional extension of the celebrated Lyapunov-Aumann theorem (see, e.g.,
Sect. 1.1 in Tolstonogov [1258]) that

∫ 1

0

clco F(t) dt = cl
∫ 1

0

F(t) dt

for every compact-valued, strongly measurable, and integrable bounded map-
ping. This gives (6.39) and ends the proof of the lemma. �

Based on Theorem 6.17 and the subsequent discussions, we can similarly
formulate and justify the extended Euler-Lagrange and transversality inclu-
sions for optimal solutions to both discrete approximation problems (PN ) and
(P N ). The differences between the above ones for problem (D P) in Theo-
rem 6.17 and those for problem (P N ) are just in terms converging to zero as
N → ∞. The Euler-Lagrange inclusion for problem (PN ) is parallel to the one
in (P N ) with replacing
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λN∂ϑ
(

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN
, t j

)
by the norm-closure of

λN

hN

∫ t j+1

t j

∂ϑ
(

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN
, t
)

dt

on the right-hand side, which comes from the integration formula of
Lemma 6.18. The latter terms converges to λ∂ϑ(x̄(t), ˙̄x(t), t) as N → ∞ for
a.e. t ∈ [a, b]; see the proof of Theorem 6.21 in the next subsection.

The results obtained by this approach employing the exact/limiting opti-
mality conditions in the general mathematical programming problems from
Theorem 6.16 require the SNC assumptions on the sets gph Fj and ΩN in prob-
lems (PN ) and (P N ). These assumptions may be restrictive for the limiting
procedure to derive necessary optimality conditions in the original continuous-
time problem (P); so we’ll try to avoid or essentially relax them in what fol-
lows. This can be done by starting with approximate/fuzzy necessary optimal-
ity conditions for problems of mathematical programming that strongly take
into account specific features of the discrete-time problems (PN ) and (P N ).
It happens that to realize this approach, we need to impose the Lipschitz-like
property of the set-valued mappings Fj generated the graphical geometric
constraints in problem (D P), and hence in (PN ) and (P N ), which is not as-
sumed in Theorem 6.17. On the other hand, the Lipschitz continuity of the
original mapping F(·, t) in (6.1) is among our standing assumptions (see (H1)
in Subsect. 6.1.1), and thus we don’t have any reservations to employ it in the
context of necessary optimality conditions for discrete approximations.

The next two theorems give approximate necessary optimality conditions
for local minimizers in sequences of discrete-time problem (P N ) and (PN ).
Their proofs involve the use of some fuzzy/neighborhood calculus results from
the prior chapters. In particular, we employ the semi-Lipschitzian sum rule
for Fréchet subgradients from Theorem 2.33 and the fuzzy intersection rule
for Fréchet normals from Lemma 3.1. These results provide representations
of Fréchet subgradients and normals of sums and intersections at the refer-
ence points via those at points that are arbitrarily close to the reference ones.
Just for notational simplicity we suppose in the formulation and proof of the
following theorem that these arbitrarily close points reduce to the reference
points in question. This agreement doesn’t actually restrict the generality
from the viewpoint of our main goal in this section to derive necessary op-
timality conditions in the continuous-time problem (P), which is finalized in
the next subsection. Indeed, the possible difference between the mentioned
points obviously disappears in the limiting procedure. The interested reader
may readily proceed with all the details.

Let us start with approximate necessary optimality conditions for the sim-
plified discrete approximation problems (P N ) as N → ∞ described in Re-
mark 6.15, which are efficient under the a.e. continuity assumption on the
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integrand ϑ(x, v, ·) in the original problem (P). In what follows IB∗ stands
as usual for the dual closed unit ball regardless of the space in question, and
subdifferential of ϑ is taken with respect to the first two variables.

Theorem 6.19 (approximate Euler-Lagrange conditions for simpli-
fied discrete-time problems). Let x̄N (·) = {x̄N (t j )| j = 0, . . . , N} be local
optimal solutions to problems (P N ) as N → ∞. Assume that X is Asplund,
that ΩN is locally closed around

(
x̄N (t0), x̄N (tN )

)
, that Fj is closed-graph and

Lipschitz-like around
(
x̄N (t j ), [x̄N (t j+1)−x̄N (t j )]/hN

)
, and that the functions ϕ

and ϑ(·, ·, t j ) are locally Lipschitzian around x̄N (·) for every j = 0, . . . , N −1.
Consider the quantities

θN j := 2
∫ t j+1

t j

∥∥∥ x̄N (t j+1) − x̄N (t j )
hN

− ˙̄x(t)
∥∥∥ dt, j = 0, . . . , N − 1 .

Then there exists a number γ > 0 independent of N and such that for some
sequences of natural numbers N → ∞ and positive numbers εN ↓ 0 there
are multipliers λN ≥ 0 and adjoint trajectories pN (·) = {pN (t j ) ∈ X∗| j =
0, . . . , N} satisfying the nontriviality condition

λN + ‖pN (tN )‖ ≥ γ as N → ∞ , (6.40)

the approximate Euler-Lagrange inclusion( pN (t j+1) − pN (t j )
hN

, pN (t j+1) − λN
θN j

hN
b∗

N j

)

∈ λN ∂̂ϑ
(

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN
, t j

)

+N̂
((

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN

)
; gph Fj

)
+ εN IB∗

(6.41)

for j = 0, . . . , N − 1, and the approximate transversality inclusion(
pN (t0) − 2λN b∗

N‖x̄(a) − x̄N (t0)‖,−pN (tN )
)

∈ λN ∂̂ϕ
(
x̄N (t0), x̄N (tN )

)
+ N̂

(
(x̄N (t0), x̄N (tN ));ΩN

)
+ εN IB∗

(6.42)

with some b∗
N , b∗

N j ∈ IB∗.

Proof. Fixed N ∈ IN , consider problem (P N ) in the equivalent (M P) form
(6.29) with the data defined in (6.34)–(6.37). Denote

z̄ :=
(
x̄N (t0), . . . , x̄N (tN ), v̄N (t0), . . . , v̄N (tN−1)

)
and take N so large that constraints (6.22) and (6.23) for x̄N (·) hold with
the strict inequality. The latter can be clearly done by the strong convergence
result of Theorem 6.13.
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Suppose first that f in (6.36) is metrically regular at z̄ relative to the
intersection Ξ := Ξ0 ∩ . . . ∩ΞN , where the sets Ξ j are constructed in (6.37).
Since ϕ0 in (6.34) is locally Lipschitzian around z̄ and by the choice of N , we
employ Theorem 5.16 and find µ > 0 such that z̄ is a local optimal solution
to the unconstrained problem:

minimize ϕ0(z) + µ
(
‖ f (z)‖ + dist(z;Ξ)

)
.

Therefore, by the generalized Fermat rule, one has

0 ∈ ∂̂
(
ϕ0(·) + µ ‖ f (·)‖ + µdist(·;Ξ)

)
(z̄) .

Now using the fuzzy sum rule from Theorem 2.33 and remembering our no-
tational agreement, we fix any ε > 0 and get

0 ∈ ∂̂ϕ0(z̄) + µ∂̂‖ f (·)‖(z̄) + µ ∂̂dist(z̄;Ξ) + (ε/3)IB∗ .

By Proposition 1.95 on Fréchet subgradients of the distance function and
by the elementary chain rule for the composition ‖ f (z)‖ = (ψ ◦ f )(z) with
ψ(y) := ‖y‖ and the smooth mapping f from (6.36) one has

0 ∈ ∂̂ϕ0(z̄) +
N−1∑
j=0

∇ f j (z̄)∗e∗j + N̂(z̄;Ξ) + (ε/3)IB∗

with some e∗j ∈ X∗. Observe that

N−1∑
j=0

∇ f j (z̄)∗e∗j =
(
− e∗0, e∗0 − e∗1, . . . , e∗N−2 − e∗N−1, e∗N−1,−hN e∗0, . . . ,−hN e∗N

)

by the structure of f (z) in (6.36). Further, it follows from the fuzzy inter-
section rule in Lemma 3.1 and the discussion right after it that, taking into
account the notational agreement, we get

N̂(z̄;Ξ) ⊂ N̂(z̄;Ξ0) + . . . + N̂(z̄;ΞN ) + (ε/3)IB∗ .

To justify it, one needs to check the fuzzy qualification condition (3.9) for
the sets involved. It obviously holds for the set intersections of Ξ j , with j =
0, . . . , N − 1 by the structure of these sets in (6.37). To verify this condition
at the last step, let us show that there is γ > 0 for which

(
N̂
(

z;
N−1⋂
j=0

Ξ j

)
+ γ IB∗

)⋂(
− N̂

(
zN ;ΞN

)
+ γ IB∗

)⋂
IB∗ ⊂ 1

2
IB∗

whenever z ∈ Ξ j∩(z̄+γ IB), j = 0, . . . , N−1, and zN ∈ ΞN∩(z̄+γ IB). It follows
directly from the set structures in (6.37) that for any z∗j ∈ N̂(z j ;Ξ j ) with z∗j =
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(x∗
0 j , . . . , x∗

N j , v
∗
0 j , . . . , v

∗
N−1 j ) and z j = (x0 j , . . . , xN j , v0 j , . . . , vN−1 j ) close to

z̄ one has the relations

x∗
i j ∈ D̂∗Fj (x j j , v j j )(−v∗j j ), x∗

i j = v∗i j = 0 if i �= j, j = 0, . . . , N − 1;

(x∗
0N , x∗

N N ) ∈ N̂
(
(x0N , xN N );ΩN

)
with x∗

i N = v∗i N = 0 otherwise .

Therefore, by Theorem 1.43 on Fréchet coderivatives of Lipschitzian map-
pings, we get the estimates

‖x∗
j j‖ ≤ 	‖v∗j j‖ for all j = 0, . . . , N − 1

provided that Fj are Lipschitz-like around (x j j , v j j ) with modulus 	. This
easily implies the above fuzzy qualification condition at the last step by taking
into account that it holds at all the previous steps with εN := ε/N .

Next we proceed with estimating Fréchet subgradients of the cost function
ϕ0 in (6.34). It is well known from convex analysis that

∂‖ · ‖2(x) ⊂ 2‖x‖IB∗ for any x ∈ X

in arbitrary Banach spaces. Using this and applying the fuzzy sum rule from
Theorem 2.33 to the specific form of ϕ0 in (6.34), we have

∂̂ϕ0(z̄) ⊂ ∂̂ϕ(x̄N (t0), x̄N (tN )
)

+ 2‖x̄N (t0) − x̄(a)‖IB∗

+hN

N−1∑
j=0

[
∂̂ϑ j

(
x̄N (t j ), v̄N (t j )

)
+
(
0, 2θN j IB∗)] + (ε/3)IB∗

with taking into account our notational agreement and the construction of θN j .
Now combining the above relationships and estimates in generalized Fermat
rule, one gets⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x∗
00 − x∗

0N − x∗
0 − 2b∗

N

∥∥x̄N (t0) − x̄(a)
∥∥− u∗

0 + e∗0 ∈ ε IB∗ ,

−x∗
j j − hN u∗

j − e∗j−1 + e∗j ∈ ε IB∗, j = 0, . . . , N − 1 ,

−x∗
N N − x∗

N − e∗N−1 ∈ ε IB∗ ,

−v∗j j − hNw
∗
j − θN j b∗

N j + hN e∗j ∈ ε IB∗, j = 0, . . . , N − 1

with some b∗
N j , b∗ ∈ IB∗,

(x∗
i j , v

∗
i j ) ∈ N̂

((
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)
; gph Fj

)
, and

(x∗
0 , x∗

N ) ∈ ∂̂ϕ
(
x̄N (t0), x̄N (tN )

)
, (u∗

j , w
∗
j ) ∈ ∂̂ϑ j

(
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)
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for j = 0, . . . , N − 1. Denoting

pN (t0) := −x∗
0N − λN x∗

0 + e∗0 and pN (t j ) := e∗j−1, j = 1, . . . , N ,

we arrive at the approximate Euler-Lagrange and transversality inclusions
(6.41) and (6.42) with λN = 1 for any N ∈ IN sufficiently large and any
ε = εN . Note that the nontriviality condition (6.40) is obviously fulfilled with
γN = 1 in the metric regularity case under consideration.

It remains to consider the case when the mapping f from (6.36) is not
metrically regular at z̄ relative to the set intersection Ξ := Ξ0 ∩ . . . ∩ ΞN . In
this case the extended mapping fΞ (z) := − f (z) + ∆(z;Ξ) is not metrically
regular around z̄ in the sense of Definition 1.47(ii). We now apply the neigh-
borhood characterization of metric regularity in Asplund spaces obtained in
Theorem 4.5. It is not hard to observe that this criterion can be equivalently
written as follows: a closed-graph mapping F : X →→ Y between Asplund spaces
is metrically regular around (x̄, ȳ) ∈ gph F if and only if there is a positive
number ν such that

ker D̂∗F(x, y) ⊂ IB∗ whenever x ∈ x̄ + ν IB, y ∈ F(x) ∩ (ȳ + ν IB) .

Applying this result to the mapping − f (z) + ∆(z;Ξ) that is not metrically
regular around z̄, we have the following assertion as N is fixed: for any η > 0
there are z ∈ z̄ + ηIB and e∗ ∈ ker D̂∗ fΞ (z) with e∗ = (e∗0, . . . , e∗N−1) ∈ (X∗)N

satisfying ‖e∗‖ > 1. Thus

0 ∈ D̂∗ fΞ (z)(e∗) for some ‖e∗‖ > 1 and z ∈ z̄ + ν IB .

Fixed ε > 0, we employ the coderivative sum rule from Theorem 1.62(i) and
then the above intersection rule for Fréchet normals that give

0 ∈
N−1∑
j=0

∇ f j (z)∗e∗j +
N∑

j=0

N̂(z j ;Ξ j ) + ε IB∗

with some z j ∈ Ξ j ∩ (z + ε IB). According to our notation agreement we may
put z j = z = z̄ for simplicity. Thus there are z∗j ∈ N̂(z̄;Ξ j ) satisfying

−
N∑

j=0

z j ∈
N−1∑
j=0

∇ f j (z)∗e∗j + ε IB∗ .

Taking into account the structures of the mapping f in (6.36) and the sets
Ξ j in (6.37), we find as above dual elements

(x∗
i j , v

∗
i j ) ∈ N̂

((
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)
; gph Fj

)
for j = 0, . . . , N − 1 and
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(x∗
0N , x∗

N N ) ∈ N̂
(
(x̄N (t0), x̄N (tN )

)
;ΩN

)
satisfying the relations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x∗
00 − x∗

0N + e∗0 ∈ ε IB∗ ,

−x∗
j j − e∗j−1 + e∗j ∈ ε IB∗, j = 0, . . . , N − 1 ,

−x∗
N N − x∗

N − e∗N−1 ∈ ε IB∗ ,

−v∗j j + hN e∗j ∈ ε IB∗, j = 0, . . . , N − 1 .

Define the adjoint discrete trajectory pN (t j ), j = 0, . . . , N , by

pN (t0) := −x∗
0N + e∗0 and pN (t j ) := e∗j−1, j = 1, . . . , N .

It follows from the above constructions that the pair
(
x̄N (·), pN (·)

)
satisfies

the Euler-Lagrange inclusion (6.41) and the transversality inclusion (6.42)
with λN = 0 and arbitrary εN = ε > 0. Moreover, the adjoint trajectory pN (·)
obeys the following nontriviality condition:

‖pN (t1)‖ + . . . + ‖pN (tN )‖ ≥ 1 for all large N ∈ IN .

Let us finally prove that, by the Lipschitz-like assumption on Fj , the non-
triviality condition in this case can be equivalently written as ‖pN (tN )‖ ≥ 1,
which agrees with (6.40) as λN = 0. The approximate Euler-Lagrange inclu-
sion (6.41) can be now rewritten in the form

pN (t j+1) − pN (t j )
hN

∈ D̂∗Fj

(
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)(
− pN (t j+1) + ε IB∗)

+ε IB∗ for j = 0, . . . , N − 1 .

Then the Lipschitz-like property of Fj assumed in the theorem with modulus
	 = 	F yields by Theorem 1.43 that

‖x∗
j ‖ ≤ 	‖v∗j ‖ whenever x∗

j ∈ D̂∗Fj (x j , v j )(v∗j )

and (x j , v j ) around
(
x̄N (t j ), [x̄N (t j+1) − x̄N (t j )]/hN

)
. Thus

‖pN (tN−1)‖ ≤ ‖pN (tN )‖
(
1 + hN	

)
+ hNε(	 + 1) .

Continuing this process, one has

‖pN (t j )‖ ≤ exp
(
	(b − a)

)
‖pN (tN )‖ + ε(b − a)(1 + 	) for all j = 0, . . . , N .

Suppose that the nontriviality condition (6.40) doesn’t hold along with (6.41)
and (6.42) in the case of λN = 0 under consideration. Take a sequence γk ↓ 0
as k → ∞ and choose numbers Nk and εk such that
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Nk :=
[
1/γk ], εk ≤ γ 2

k , and ‖pN (tN )‖ ≤ γ 2
k , k ∈ IN ,

where [·] stands for the greatest integer less than or equal to the given real
number. By the adjoint trajectory estimate we have

Nk∑
j=1

‖pNk (t j )‖ ≤ Nkγk exp
(
	(b − a)

)
+ εk Nk(b − a)(1 + 	)

≤ γk exp
(
	(b − a)

)
+ γk(b − a)(1 + 	) ↓ 0 as k ∈ IN ,

which contradicts the fact established above. This therefore completes the
proof of the theorem. �

Finally in this subsection, we obtain approximate necessary optimality con-
ditions for the sequence of discrete-time problems (PN ) defined in (6.3), (6.20)–
(6.23). The difference between these problems and the simplified problems
(P N ) is that (PN ) deal with approximating summable integrands ϑ(x, v, ·) in
the original problem (P), which is reflected by the integral term involving ϑ in
the cost function (6.20). The latter term makes the analysis of problems (PN )
to be more complicated in comparison with the one for (P N ). To proceed,
we need to use Lemma 6.18 on the subdifferentiation under the (Bochner)
integral sign, which requires additional assumptions on the space X . The next
theorem incorporates these developments in the framework of the extended
Euler-Lagrange inclusion for (PN ). We keep our notational agreement dis-
cussed before the formulation of Theorem 6.19.

Theorem 6.20 (approximate Euler-Lagrange conditions for discrete
problems involving summable integrands). Let x̄N (·) = {x̄N (t j )| j =
0, . . . , N} be local optimal solutions to problems (PN ) as N → ∞. Assume
that X is reflexive and separable, that ϕ, Fj , ΩN , and θN j are the same as in
Theorem 6.19, and that ϑ satisfies assumption (H3) of Subsect. 6.1.3 with the
replacement of continuity by Lipschitz continuity. Then there exists a number
γ > 0 independent of N and such that for some sequences of natural numbers
N → ∞ and positive numbers εN ↓ 0 there are multipliers λN ≥ 0 and adjoint
trajectories pN (·) = {pN (t j ) ∈ X∗| j = 0, . . . , N} satisfying the nontrivial-
ity condition (6.40), the approximate transversality inclusion (6.42), and the
Euler-Lagrange inclusion in the modified form( pN (t j+1) − pN (t j )

hN
, pN (t j+1) − λN

θN j

hN
b∗

N j

)

∈ λN

hN
cl
∫ t j+1

t j

∂ϑ
(

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN
, t
)

dt

+N̂
((

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN

)
; gph Fj

)
+ εN IB∗

(6.43)

for all j = 0, . . . , N − 1 with some b∗
N j ∈ IB∗.
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Proof. Each problem (PN ) can be equivalently written in the (M P) form
(6.29) with the data defined in (6.35)–(6.38). Now we proceed similarly to
the proof of Theorem 6.19 using additionally Lemma 6.18 to calculate sub-
gradients of integral function. This becomes possible under the additional
assumptions on X made in the theorem and gives the modified form (6.43) of
the approximate Euler-Lagrange inclusion. �

Taking into account the value convergence results of Theorem 6.14, we can
treat the necessary optimality conditions obtained in this subsection for the
discrete approximation problems under consideration as suboptimality condi-
tions for the original problem (P). Moreover, the strong convergence results
presented in Theorem 6.13 and Remark 6.15 allow us to view the above nec-
essary optimality conditions for the discrete-time problems as suboptimality
conditions concerning a given relaxed intermediate local minimizer for the
original problem. Note that the assumptions made in Theorems 6.13 and 6.14
ensure the existence of optimal solutions to the discrete approximations, while
it is not the case for the original continuous-time problem (P) in either finite-
dimensional or infinite-dimensional setting. Necessary optimality conditions
for relaxed local minimizers to problem (P) are considered next.

6.1.5 Euler-Lagrange Conditions for Relaxed Minimizers

The aim of this subsection is to derive necessary conditions for the underlying
r.i.l.m. to the original Bolza problem (P) involving constrained differential
inclusions by passing to the limit from the ones for discrete approximations
obtained in the preceding subsection. This is based on the strong convergence
result for discrete approximations given in Theorem 6.13, on the approximate
necessary optimality conditions for the discrete problems (PN ) and (P N ) from
Theorems 6.19 and 6.20, and on stability properties of the generalized differ-
ential constructions. The major ingredient involved in this limiting procedure
is the possibility to establish an appropriate convergence of adjoint trajecto-
ries, which allows us to pass to the limit in the approximate Euler-Lagrange
inclusions. This is done below by employing the coderivative characterization
of Lipschitzian stability used also in the preceding subsection.

Let us first clarify the assumptions needed for the main results of this
subsection. They involve of course those ensuring the strong convergence of
discrete approximations and the fulfillment of the (approximate) necessary
optimality conditions in discrete-time problems (PN ) and (P N ) used below.
In fact, not too much has to be added for furnishing the limiting process to
derive pointwise necessary optimality conditions in the original Bolza problem
(P) via discrete approximations.
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In what follows we keep assumptions (H1) and (H2) from Subsect. 6.1.1
on the mapping F in (6.1) and consider the Lipschitzian modification of as-
sumptions (H3) and (H4) from Subsect. 6.1.3:

(H3′) ϑ(·, ·, t) is Lipschitz continuous on U × (mF IB) uniformly in t ∈
[a, b], while ϑ(x, v, ·) is measurable on [a, b] and its norm is majorized by a
summable function uniformly in (x, v) ∈ U × (m F IB).

(H4′) ϕ is Lipschitz continuous on U × U ; Ω ⊂ X × X is locally closed
around (x̄(a), x̄(b)

)
and such that the set proj 1Ω ∩

(
x̄(a) + ε IB

)
is compact

for some ε > 0.

Note that (H3′) contains the measurability assumption on ϑ(x, v, ·), which
corresponds to Theorem 6.20. The latter imposes more restrictive requirement
on the state space X in comparison with Theorem 6.19, which however relates
to the a.e. continuity of ϑ(x, v, ·) in the convergence result for problem (P N );
see Remark 6.15. Taking this into account, we consider also another modifi-
cation of (H3) that is an alternative to the above assumption (H3′):

(H3′′) ϑ(x, v, ·) is a.e. continuous on [a, b] and bounded on this interval
uniformly in (x, v) ∈ U × (m F IB), while ϑ(·, ·, t) is Lipschitz continuous on

Θν(t) :=
{
(x, v) ∈ U × (m F + ν)IB

∣∣ ∃τ ∈ (t − ν, t ] with v ∈ F(x, τ )
}

uniformly in t ∈ [a, b] for some ν > 0.

Dealing with the a.e. continuous mappings F(x, ·) and ϑ(x, v, ·) in the
limiting procedures involving t , we use extended normal cone N+ from Defi-
nition 5.69 to the moving sets gph F(·) and the corresponding subdifferential
of ϑ(x, v, t). Although these constructions may be different from the basic
normal cone and subdifferential in the case of non-autonomous objects, they
agree with the latter in general settings ensuring normal semicontinuity; see
the results and discussions after Definition 5.69. Note that we don’t need to
replace the basic subdifferential of the integrand ϑ by the extended one assum-
ing the measurability of ϑ in t as in (H3′). We also don’t need to replace the
basic normal cone to gph F in the next Subsect. 6.1.6 dealing with measurable
set-valued mappings in differential inclusions.

Recall that, given (x̄, v̄, t̄) with v̄ ∈ F(x̄, t̄), the extended normal cone to
the moving set gph F(t) at (x̄, v̄) ∈ gph F(t̄) is, in the case of closed subsets
in Asplund spaces,

N+

(
(x̄, v̄); gph F(t̄)

)
:= Lim sup

(x,v,t)→(x̄,v̄,t̄)
N̂
(
(x, v); gph F(t)

)
.

Correspondingly, the extended subdifferential of ϑ(·, ·, t̄) at (x̄, v̄) is

∂+ϑ(x̄, v̄, t̄) := Lim sup
(x,v,t)→(x̄,v̄,t̄)

∂̂ϑ(x, v, t) ,
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where ∂̂ϑ(·, ·, t) is taken with respect to (x, v) under fixed t . Note that
∂+ϑ(x̄, v̄, t̄) can be equivalently described via the extended normal cone N+ to
the moving epigraphical set epiϑ(t). One can see that these extended objects
reduce to the basic ones N(·; gph F) and ∂ϑ when F and ϑ are independent
of t , as well as in the more general settings discussed above.

Now we are ready to formulate and prove the extended Euler-Lagrange
conditions for relaxed intermediate minimizers in the original Bolza problem
(P). We consider separately the two cases: when the integrand ϑ is a.e. con-
tinuous in t , and when it is summable. Although the second case imposes less
requirements on the integrand and gives a better form of the Euler-Lagrange
inclusion, in the first case we are able to obtain necessary optimality con-
ditions in more general Banach spaces. Let us start with the first one. The
strong PSNC property used below is defined and discussed in Subsect. 3.1.1.

Theorem 6.21 (extended Euler-Lagrange conditions for relaxed lo-
cal minimizers in Bolza problems with a.e. continuous integrands).
Let x̄(·) be a relaxed intermediate local minimizer for the Bolza problem (P)
under assumptions (H1), (H2), (H4′), and (H3′′). Suppose also that both spaces
X and X∗ are Asplund and that the set Ω is strongly PSNC at (x̄(a), x̄(b)

)
with respect to the second component. Then there are λ ≥ 0 and an absolutely
continuous mapping p: [a, b] → X∗, not both zero, satisfying the extended
Euler-Lagrange inclusion

ṗ(t) ∈ clco
{

u ∈ X∗
∣∣∣ (u, p(t)

)
∈ λ∂+ϑ(x̄(t), ˙̄x(t), t)

+N+

(
(x̄(t), ˙̄x(t)); gph F(t)

)} (6.44)

for a.e. t ∈ [a, b] and the transversality inclusion(
p(a),−p(b)

)
∈ λ∂ϕ

(
x̄(a), x̄(b)

)
+ N

(
(x̄(a), x̄(b));Ω

)
. (6.45)

Proof. We derive these conditions by passing to the limit in the necessary op-
timality conditions for discrete-time problems (P N ) from Theorem 6.19 with
taking into account the strong convergence of the simplified discrete approxi-
mations; see Theorem 6.13 and Remark 6.15. Recall that the Asplund property
of X is equivalent to the Radon-Nicodým property of X∗; see Subsect. 6.1.1.
Since X is a closed subspace of X∗∗ and X∗ is assumed to be Asplund, this
yields that X has the Radon-Nicodým property. Thus all the assumptions of
Theorem 6.13 are fulfilled, which allows us to employ the strong convergence
of discrete approximations.

Note that the assumptions made clearly ensure the fulfillment of the ones
in Theorem 6.19. Employing the necessary optimality conditions for (P N ) ob-
tained therein, we find (sub)sequences of numbers λN ≥ 0 and discrete adjoint
trajectories pN (·) = {pN (t j )| j = 0, . . . , N} satisfying inclusions (6.40)–(6.42)
with some εN ↓ 0 as N → ∞. Observe that without loss of generality the
nontriviality condition (6.40) can be equivalently written as
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λN + ‖pN (tN )‖ = 1 for all N ∈ IN ,

because the number γ > 0 is independent of N . Also one can always suppose
that λN → λ ≥ 0 as N → ∞.

In what follows we use the notation x̄N (t) and pN (t) for piecewise linear ex-
tensions of the corresponding discrete trajectories to [a, b] with their piecewise
constant derivatives ˙̄x N (t) and ṗN (t). Having θN j defined in Theorem 6.19, we
consider a sequence of functions θN : [a, b] → IR given by

θN (t) :=
θN j

hN
b∗

N j for t ∈ [t j , t j+1), j = 0, . . . , N − 1 .

Invoking Theorem 6.13, we get

∫ b

a

∥∥θN (t)
∥∥ dt ≤

N−1∑
j=0

θN j ≤ 2
N−1∑
j=0

∫ t j+1

t j

∥∥∥ x̄N (t j+1) − x̄N (t j )
hN

− ˙̄x N (t)
∥∥∥ dt

= 2
∫ b

a
‖ ˙̄x N (t) − ˙̄x(t)‖ dt =: νN → 0 as N → ∞ .

This allows us to suppose without loss of generality that

˙̄x N (t) → ˙̄x(t) and θN (t) → 0 a.e. t ∈ [a, b] as N → ∞ .

Consider the approximate discrete Euler-Lagrange inclusions (6.41) along
the designated sequence of N → ∞, which is identified with the whole set of
natural numbers IN . By (6.41) we find

(x∗
N j , v

∗
N j ) ∈ ∂̂ϑ j

(
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)
, j = 0, . . . , N − 1 ,

and e∗N j
, ẽ∗N j ∈ IB∗ such that the inclusions

( pN (t j+1) − pN (t j )
hN

− λN x∗
N j

)
+ εN e∗N j

∈ D̂∗Fj

(
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)(
λNv

∗
N j + λN

θN j

hN
b∗

N j − pN (t j+1) + εN ẽ∗N j

)
hold for all j = 0, . . . , N −1 and all N ∈ IN . It follows from the local Lipschitz
continuity of ϑ assumed in (H3′) and from Proposition 1.85 that

‖(x∗
N j , y∗N j )‖ ≤ 	ϑ for all j = 0, . . . , N − 1 and N ∈ IN ,

where 	ϑ is a uniform Lipschitz modulus of ϑ(·, ·, t) independent of t ∈ [a, b].
By the Lipschitz continuity of F in (H1) and the coderivative condition of
Theorem 1.43 we get the estimates
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hN

− λN x∗
N j + εN e∗N j

∥∥∥
≤ 	F

∥∥∥λNv
∗
N j + λN

θN j

hN
b∗

N j − pN (t j+1) + εN ẽ∗N j

∥∥∥
for j = 0, . . . , N − 1. Similarly to the proof of Theorem 6.19 with taking
‖pN (tN )‖ ≤ 1 into account, we derive from these estimates that pN (t) is
uniformly bounded on [a, b] and that

‖ ṗN (t)‖ ≤ α + β‖θN (t)‖ a.e. t ∈ [a, b]

with some positive numbers α and β independent of N . Since both spaces
X and X∗ have the RNP, it follows from the Dunford theorem on the weak
compactness in L1

(
[a, b]; X∗) that a subsequence of { ṗN (·)} converges to some

v(·) ∈ L1
(
[a, b]; X∗) weakly in this space. Employing the weak continuity of

the Bochner integral as a linear operator from L1
(
[a, b]; X∗) to X∗ and the

estimate ‖pN (b)‖ ≤ 1, we conclude that there is an absolutely continuous
mapping p: [a, b] → X∗ satisfying

p(t) := p(b) +
∫ b

t
v(s) ds, a ≤ t ≤ b ,

where p(b) is a limiting point of {pN (b)} in the weak∗ topology of X∗, and
such that the values pN (t) converge to p(t) weakly in X∗ (and hence weak∗

in this space) for all t ∈ [a, b]. Furthermore, ṗN (·) → ṗ(·) = v(t) in the weak
topology of L1

(
[a, b]; X∗). Then the classical Mazur theorem ensures that

some sequence of convex combinations of { ṗN (·)} converges to ṗ(·) strongly
in L1

(
[a, b]; X∗) as N → ∞, and hence (passing to a subsequence with no

relabeling) it converges almost everywhere on [a, b].
Given any N ∈ IN , the approximate Euler-Lagrange inclusion (6.41) can

be rewritten as

ṗN (t) ∈
{

u ∈ X∗
∣∣∣ (u, pN (t j+1) − λNθN (t)

)
∈ λN ∂̂ϑ(x̄N (t j ), ˙̄x N (t), t j )

+N̂
(
(x̄N (t j ), ˙̄x N (t)); gph F(t j )

)
+ εN IB∗

}
for t ∈ [t j , t j+1) with j = 0, . . . , N − 1. Now passing to the limit as N → ∞
and using the pointwise convergence results established below, we arrive at
the extended Euler-Lagrange inclusion (6.44).

To derive the transversality inclusion (6.45), we take the limit in the dis-
crete ones (6.42) as N → ∞. The only thing to clarify is the possibility to
pass from Fréchet normals to ΩN = Ω +ηN IB to the basic normals to Ω. The
latter can be easily done by using the sum rule from Theorem 3.7(i) and the
fact that ηN ↓ 0 as N → ∞.

It remains to justify the nontriviality condition
(
λ, p(·)

)
�= 0. Assuming

that λ = 0, one may put λN = 0 for all N ∈ IN without loss of generality.
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We need to show that p(·) is not identically equal to zero on [a, b]. Suppose
the contrary, i.e., p(t) = 0 whenever t ∈ [a, b]. Then it follows from the

above proof that pN (t) w∗
→ 0 for all t ∈ [a, b]; in particular, pN (t0)

w∗
→ 0 and

pN (tN ) w∗
→ 0 as N → ∞. The discrete transversality inclusion (6.42) is written

in this case as(
pN (t0),−pN (tN )

)
∈ N̂

(
(x̄N (t0), x̄N (tN ));Ω + ηN IB

)
+ εN IB∗ . (6.46)

Using again Theorem 3.7(i) for the Fréchet normals cone to the sum in (6.46)
and then employing the strong PSNC property of Ω at (x̄(a), x̄(b)

)
with re-

spect to the second component, we get ‖pN (tN )‖ → 0 as N → ∞, which
contradicts the nontriviality condition (6.42) in Theorem 6.19 and completes
the proof of this theorem. �

The next theorem gives necessary optimality conditions in the extended
Euler-Lagrange form for the original Bolza problem (P) derived by passing to
the limit from the approximate necessary optimality in the discrete-time prob-
lems (PN ). In contrast to Theorem 6.21, this theorem applies to the summable
integrands ϑ(x, v, ·) and gives a better form of the Euler-Lagrange inclusion.
On the other hand, it imposes more restrictive assumptions on the state space
X in question. In the formulations and proof of this theorem we keep the same
notational agreement as for Theorem 6.21 discussed above.

Theorem 6.22 (extended Euler-Lagrange conditions for relaxed lo-
cal minimizers in Bolza problems with summable integrands). Let
x̄(·) be a relaxed intermediate local minimizer for the Bolza problem (P) under
assumptions (H1), (H2), (H3′), and (H4′). Suppose also that the space X is
reflexive and separable and that the set Ω is strongly PSNC at

(
x̄(a), x̄(b)

)
with respect to the second component. Then there are a number λ ≥ 0 and
an absolutely continuous mapping p: [a, b] → X∗, not both zero, satisfying the
extended Euler-Lagrange inclusion

ṗ(t) ∈ co
{

u ∈ X∗
∣∣∣ (

u, p(t)
)
∈ λ∂ϑ(x̄(t), ˙̄x(t), t)

+N+

(
(x̄(t), ˙̄x(t)); gph F(t)

)} (6.47)

for a.e. t ∈ [a, b] and the transversality inclusion (6.45).

Proof. We follow the lines in the proof of Theorem 6.21 using the sequence
of discrete approximation problems (PN ) instead of (P N ). The only differ-
ence is in the justification of the extended Euler-Lagrange inclusion (6.47)
in comparison with (6.44) that are based on generally different discrete-time
counterparts (6.43) and (6.41) under somewhat different assumptions.

To proceed, we suppose for notation convenience that the discrete Euler-
Lagrange inclusions (6.43) hold as N → ∞ without taking the closure of the
set-valued integral therein; this doesn’t restrict the generality as follows from
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the proof below. Then, by (6.43) and the definition of the Fréchet coderivative,
there are dual elements

(x∗
N j , v

∗
N j ) ∈

∫ t j+1

t j

∂ϑ
(

x̄N (t j ),
x̄N (t j+1) − x̄N (t j )

hN
, t
)

dt, j = 0, . . . , N − 1 ,

as well as e∗N j , ẽ∗N j ∈ IB∗ satisfying the inclusions

( pN (t j+1) − pN (t j )
hN

− λN x∗
N j

)
+ εN e∗N j

∈ D̂∗Fj

(
x̄N (t j ),

x̄N (t j+1) − x̄N (t j )
hN

)(
λNv

∗
N j + λN

θN j

hN
b∗

N j − pN (t j+1) + εN ẽ∗N j

)
that are fulfilled for all j = 0, . . . , N − 1 along a sequence of N → ∞; put
below N ∈ IN for simplicity. Following the proof of Theorem 6.21, we find
an absolutely continuous mapping p: [a, b] → X∗ such that pN (t) → p(t)
weakly in X∗ for all t ∈ [a, b] and a sequence of convex combinations of ṗN (t)
converges to ṗ(t) almost everywhere on [a, b] as N → ∞. Then rewrite the
above discrete-time inclusions in the form

ṗN (t) ∈
{

u ∈ X∗
∣∣∣ (u, pN (t j+1) − λNθN (t)

)
∈ λN

hN
(x∗

N j , v
∗
N j )

+N̂
(
(x̄N (t j ), ˙̄x N (t)); gph F(t j )

)
+ εN IB∗

}
for t ∈ [t j , t j+1) with j = 0, . . . , N − 1. By the construction of (x∗

N j , v
∗
N j )

there are summable mappings u∗
N j : [t j , t j+1] → X∗ and w∗

N j : [t j , t j+1] → X∗

satisfying the relations

(
u∗

N j (t), w
∗
N j (t)

)
∈ ∂ϑ

(
x̄N (t j ),

x̄N (t j ) − x̄N (t j+1)
hN

, t
)

a.e. t ∈ [t j , t j+1] ,

(x∗
N j , v

∗
N j )

hN
=

1
hN

∫ t j+1

t j

(
u∗

N j (t), w
∗
N j (t)

)
dt for j = 0, . . . , N − 1 .

Define the sequences of mappings u∗
N : [a, b] → X∗ and w∗

N : [a, b] → X∗ on the
whole interval [a, b] by(

u∗
N (t), w∗

N (t)
)

:=
(
u∗

N j (t), w
∗
N j (t)

)
for t ∈ [t j , t j+1), j = 0, . . . , N − 1 .

Since u∗
N (·) and w∗

N (·) are integrable bounded on [a, b], there are subsequences
of them that converge, by the Dunford theorem, to some u∗(·) and w∗(·) in
the weak topology of L1

(
[a, b]; X∗). Invoking again the Mazur weak closure

theorem and using the strong convergence of x̄N (·) → x̄(·) from Theorem 6.13,
one has the relations
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u∗(t), w∗(t)

)
∈ clco ∂ϑ

(
x̄(t), ˙̄x(t), t) = co ∂ϑ(x̄(t), ˙̄x(t), t) a.e. t ∈ [a, b] ,

where the closure operation can be omitted due to the reflexivity of X and the
compactness of co ∂ϑ(x̄(t), ˙̄x(t), t) in the weak topology of X∗, and hence its
closedness in the strong topology of this space. Employing now the infinite-
dimensional counterpart of the Lyapunov-Aumann theorem mentioned in the
proof of Lemma 6.18, the well-known property

lim
h→0

1
h

∫ t+h

t
f (s) ds = f (t) a.e. t ∈ [a, b]

of the Bochner integral, and also the weak closedness of the basic subdifferen-
tial for locally Lipschitzian functions on reflexive spaces (cf. Theorem 3.59),
we conclude that there are subgradients

(
x∗(t), v∗(t)

)
of ϑ(·, ·, t) such that

λN

hN
(x∗

N j , v
∗
N j )

w∗
→

(
x∗(t), v∗(t)

)
∈ ∂ϑ(x̄(t), ˙̄x(t), t) a.e. t ∈ [a, b] .

Passing finally to the limit in the above inclusions for ṗN (·) as N → ∞, we
arrive at the desired extended Euler-Lagrange inclusion (6.47), where the clo-
sure operation can be dropped in the reflexive case under consideration due to
the uniform boundedness of pN (·) and ṗN (·); see the discussion above. Note
that it is sufficient to use the basic subdifferential in the integrand ϑ(·, ·, t) in
(6.47), but not the extended one as in (6.44), in the case under consideration.
Thus we complete the proof of the theorem. �

The nontriviality condition in both Theorems 6.21 and 6.22 ensures that
the pair

(
λ, p(·)

)
satisfying the Euler-Lagrange and transversality inclusions

is not zero. The next result presents additional assumptions under which we
have the enhanced nontriviality conditions:

(
λ, p(b)

)
�= 0.

Corollary 6.23 (extended Euler-Lagrange conditions with enhanced
nontriviality). Let x̄(·) be an r.i.l.m. for the Bolza problem (P). In addition
to the assumptions in Theorems 6.21 and 6.22, respectively, suppose that

(a) either Ω = Ωa ×Ωb, where Ωb is SNC at x̄(b);
(b) or Ω is strongly PSNC at

(
x̄(a), x̄(b)

)
relative to the second compo-

nent, F(·, t) is strongly coderivatively normal at
(
x̄(t), ˙̄x(t)

)
, and gph F(t) is

normally semicontinuous at this point for a.e. t ∈ [a, b].

Then one has the extended Euler-Lagrange and transversality inclusions (6.44)
and (6.45)

(
respectively, (6.47) and (6.45)

)
with the replacement of

N+

(
(x̄(t), ˙̄x(t)); gph F(t)

)
by N

(
(x̄(t), ˙̄x(t)); gph F(t)

)
in case (b) and with the enhanced nontriviality condition λ + ‖p(b)‖ = 1.

Proof. Following the (same) proof of the nontriviality condition in Theo-
rems 6.21 and 6.22, one has the transversality inclusion (6.46) for the adjoint



206 6 Optimal Control of Evolution Systems in Banach Spaces

trajectories pN (·) in the discrete approximations with λN = 0. Assuming (a),
we arrive at

−pN (tN ) ∈ N̂
(
x̄N (tN );Ωb + ηIB

)
+ εN IB∗ as N → ∞ ,

which implies, by Theorem 3.7(i) and the SNC property of Ωb at x̄(b), that

‖pN (tN )‖ → 0 whenever pN (tN ) w∗
→ 0 as N → ∞. This clearly contradicts the

nontriviality condition for the discrete-time problems (P N ) and (PN ) from
Theorems 6.19 and 6.20, respectively.

It remains to justify the nontriviality condition λ+‖p(b)‖ �= 0 in case (b).
It follows from the fact that, under the assumptions made in (b), p(t) = 0
for all t ∈ [a, b] whenever p(·) satisfies the extended Euler-Lagrange inclusion
(6.44) with λ = 0 and p(b) = 0. Indeed, invoking the normal semicontinuity
of gph F(t) in this case, we write (6.44) as

ṗ(t) ∈ clco
{

u ∈ X∗
∣∣∣ (u, p(t)

)
∈ N

(
(x̄(t), ˙̄x(t)); gph F(t)

)}
a.e. t ∈ [a, b]

that is equivalent, by the strong coderivative normality assumption in (b), to

ṗ(t) ∈ clco D∗
M F

(
x̄(t), ẋ(t)

)(
− p(t)

)
a.e. t ∈ [a, b] .

The latter clearly implies, due to the mixed coderivative condition for the
Lipschitz continuity from Theorem 1.44, that

p(t) ≡ 0 on [a, b] when p(b) = 0 ,

which completes the proof of the corollary. �

If X is finite-dimensional, any set is SNC and any mapping F : X →→ X
is strongly coderivatively normal at every point. Thus we automatically have
the extended Euler-Lagrange conditions in Theorem 6.22 and Corollary 6.23.
Another setting that doesn’t require any SNC/PSNC assumptions on the con-
straint set Ω is the case of endpoint constraints given by a finite number of
equalities and inequalities with locally Lipschitzian functions considered next.

Corollary 6.24 (extended Euler-Lagrange conditions for problems
with functional endpoint constraints). Let the endpoint constraint set Ω
in problem (P) be given by

Ω :=
{

(xa, xb) ∈ X2
∣∣∣ ϕi (xa, xb) ≤ 0, i = 1, . . . ,m ,

ϕi (xa, xb) = 0, i = m + 1, . . . ,m + r
}
,

where each ϕi is locally Lipschitzian around (x̄(a), x̄(b)
)

together with the
cost function ϕ0 := ϕ. Suppose that all the assumptions of Corollary 6.23
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hold except those related to the SNC/PSNC properties of Ω. Then there are
nonnegative multipliers (λ0, . . . , λm+r ) �= 0 with

λiϕi
(
x̄(a), x̄(b)

)
= 0, i = 1, . . . ,m ,

and an absolutely continuous adjoint arc p: [a, b] → X∗ satisfying the ex-
tended Euler-Lagrange inclusions mentioned therein as well as the following
transversality condition:

(
p(a),−p(b)

)
∈

m∑
i=0

λi∂ϕi
(
x̄(a), x̄(b)

)

+
m+r∑

i=m+1

λi

[
∂ϕi

(
x̄(a), x̄(b)

)⋃
∂
(
− ϕi

)(
x̄(a), x̄(b)

)]
.

If, in particular, all ϕi are strictly differentiable at
(
x̄(a), x̄(b)

)
, then there

are (λ0, . . . , λm+r ) �= 0 satisfying the above complementary slackness condition
and the standard sign condition

λi ≥ 0 for i = 0, . . . ,m

and such that the transversality condition

(
p(a),−p(b)

)
=

m+r∑
i=0

λi∇ϕi
(
x̄(a), x̄(b)

)

supplements the corresponding Euler-Lagrange inclusion of Corollary 6.23.

Proof. Suppose first that the locally Lipschitzian functions ϕ1, . . . , ϕm+r

satisfy the nonsmooth counterpart of the Mangasarian-Fromovitz constraint
qualification formulated in Theorem 3.86. Then the constraint set Ω defined in
this corollary is SNC at

(
x̄(a), x̄(b)

)
. Furthermore, it follows from the calculus

rule of Theorem 3.8 specified for F := (ϕ1, . . . , ϕm+r ) and

Θ :=
{

(α1, . . . , αm+r ) ∈ IRm+r
∣∣∣ αi ≤ 0, i = 1, . . . ,m ,

αi = 0, i = m + 1, . . . ,m + r
}

therein that the same constraint qualification ensures the inclusion

N(z̄;Ω) ⊂
{ m∑

i=1

λi∂ϕi (z̄) +
m+r∑

i=m+1

λi

[
∂ϕi (z̄)

⋃
∂
(
− ϕi )(z̄)

]∣∣∣
λi ≥ 0, i = 1, . . . ,m + r ; λiϕi (z̄) = 0, i = 1, . . . ,m

}
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for basic normals to the constraint set Ω at the point z̄ :=
(
x̄(a), x̄(b)

)
. Then

the transversality inclusion formulated at this corollary follows from (6.45)
with λ0 = λ, where the nontriviality condition

(
λ, p(b)

)
�= 0 is equivalent

to (λ0, . . . , λm+r ) �= 0. Assuming finally that the qualification conditions of
Theorem 3.86 don’t hold, we immediately arrive at the desired transversality
inclusion with (λ1, . . . , λm+r ) �= 0 and complete the proof. �

Note that the enhanced nontriviality condition
(
λ0, p(b)

)
�= 0, inspired by

the one in Corollary 6.23, may not hold in the framework of Corollary 6.24
if the constraint set Ω is not SNC (or strongly PSNC); in particular, when
the Mangasarian-Fromovitz type constraint qualification of Theorem 3.86 is
not fulfilled. It may happen, for instance, for a two-point boundary problem
with x(a) = x0 and x(b) = x1 involving smooth parabolic systems of optimal
control; see the well-known examples in Fattorini [432] and Li and Yong [789].
On the other hand, the SNC requirement is met in case (a) of Corollary 6.23
when x(a) = x0 and x(b) ∈ x1 + r IB with r > 0, since the latter ball is always
SNC (it is actually epi-Lipschitzian by Proposition 1.25).

Observe also that, using the smooth variational description of Fréchet sub-
gradients similarly to the proof of Theorem 5.19 for nondifferentiable pro-
gramming and employing the results of Corollary 6.24 in the case of smooth
endpoint functions, we can derive counterparts of Theorems 6.21 and 6.22
with upper subdifferential transversality conditions; see Remark 6.30 for the
exact formulation and more details.

To conclude this section, let us discuss some particular issues mostly re-
lated to the above Euler-Lagrange conditions for differential inclusions with
infinite-dimensional state spaces.

Remark 6.25 (discussion on the Euler-Lagrange conditions).
(i) It follows from the proof of Theorems 6.21 and 6.22 that the strong

PSNC assumption imposed on Ω to ensure the nontriviality condition may
be replaced by the following alternative assumption on F written as: there is
t ∈ [a, b] such that for any sequences tk → t , xk → x̄(t), vk ∈ F(xk, tk), and
(x∗

k , v
∗
k ) ∈ N̂

(
(xk, vk); gph F(tk)

)
one has

(x∗
k , v

∗
k ) w∗

→ (0, 0) =⇒ ‖v∗k ‖ → 0 as k → ∞ .

This property is closely related to the strong PSNC property of F at (x̄(t), t)
with respect to the image component; cf. also its SNC analog for moving sets
in Definition 5.71.

(ii) Recall that the SNC property of convex sets with nonempty relative
interiors is equivalent by Theorem 1.21 to the finite codimension property of
their closed affine hulls. The strong PSNC property may be essentially weaker
than the SNC one; see, e.g., Theorem 1.75.

(iii) If the velocity sets F(x, t) and the integrand ϑ(x, ·, t) are convex
around the given local minimizer, then the Euler-Lagrange inclusion of The-
orem 6.21 easily implies the Weierstrass-Pontryagin maximum condition
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p(t), ˙̄x(t)

〉
− λϑ

(
x̄(t), ˙̄x(t), t

)
= max

v∈F(x̄(t),t)

{〈
p(t), v

〉
− λϑ

(
x̄(t), v, t

)}

for a.e. t ∈ [a, b]. It can be directly derived from the extremal property of
the coderivative of convex-valued mappings in Theorem 1.34. The latter is
the underlying condition of the results unified under the label “(Pontryagin)
maximum principle” in optimal control. It will be shown in the next subsection
that the maximum condition supplements, at least in the case of reflexive
and separable state spaces under some additional assumptions, the extended
Euler-Lagrange inclusion with no convexity requirements. To this end we note
that the SNC (actually strong PSNC) properties required in Theorems 6.21
and 6.22 may be viewed as nonconvex counterparts of finite codimension
requirements in the theory of necessary optimality conditions for controlled
evolution equations of type (6.2) and their PDE specifications known in the
case of smooth velocity mappings f and convex constraint/target sets Ω; cf.
the afore-mentioned books by Fattorini [432] and Li and Yong [789] with the
references and discussions therein.

Remark 6.26 (optimal control of semilinear unbounded differential
inclusions). Many important models involving semilinear partial differential
equations can be appropriately described by C0 semigroups; we again refer to
the books by Fattorini [432] and Li and Yong [789] as well as to the subsequent
material of Sects. 7.2–7.4 in this book. In this way an analog of the optimal
control problem (P) from this section can be considered with the replacement
of the differential inclusion (6.1) by the evolution model

ẋ(t) ∈ Ax(t) + F
(
x(t), t

)
,

where A is an unbounded infinitesimal generator of a compact C0 semigroup
on X , and where continuous solutions x(·) to this inclusion are understood in
the mild sense. The latter means that there is a Bochner integrable mapping
v(·) ∈ L1

(
[a, b]; X

)
such that

v(t) ∈ F
(
x(t), t

)
a.e. t ∈ [a, b] and

x(t) = eA(t−a)x(a) +
∫ t

a
eA(t−s)v(s) ds, t ∈ [a, b] .

Developing the above approach in the case of the Mayer cost functional

minimize ϕ
(
x(a), x(b)

)
with

(
x(a), x(b)

)
∈ Ω ⊂ X2 ,

we derive necessary optimality conditions under the additional convexity as-
sumption of the velocity sets F(x, t) around the optimal solution. Then the
extended Euler-Lagrange inclusion in the case of reflexive and separable state
spaces X and autonomous systems (for simplicity) is formulated as follows:



210 6 Optimal Control of Evolution Systems in Banach Spaces⎧⎪⎪⎨
⎪⎪⎩

p(t) ∈ eA∗(b−t) p(b)

+
∫ t

b

{
eA∗(s−t)D∗

N F
(
x̄(s), v

)(
− p(s)

)∣∣∣ v ∈ M
(
x̄(s), p(s)

)}
ds

for all t ∈ [a, b], where p: [a, b] → X∗ is a continuous mapping satisfying the
transversality and nontriviality conditions(

p(a),−p(b)
)
∈ λ∂ϕ

(
x̄(a), x̄(b)

)
+ N

(
(x̄(a), x̄(b));Ω

)
, λ + ‖p(b)‖ �= 0

with λ ≥ 0, where the argmaximum sets M(x, p) are defined by

M(x, p) :=
{
v ∈ F(x)

∣∣ 〈p, v〉 = H(x, p)
}

with

H(x, p) := max
{
〈p, v〉

∣∣ v ∈ F(x)
}
.

Moreover, the extended Euler-Lagrange inclusion implies in this case the
Weierstrass-Pontryagin maximum condition

〈p(t), v̄(t)〉 = H
(
x̄(t), p(t)

)
a.e. t ∈ [a, b]

with a measurable mapping v̄(t) ∈ F
(
x̄(t)

)
satisfying

p(t) ∈ eA∗(b−t) p(b) +
∫ t

b

{
eA∗(s−t)D∗

N F
(
x̄(s), v̄(s)

)(
− p(s)

)}
ds, t ∈ [a, b];

see Mordukhovich and D. Wang [970, 971] for proofs and more discussions on
these and related results.

6.2 Necessary Optimality Conditions
for Differential Inclusions without Relaxation

This section is mainly devoted to deriving necessary optimality conditions
for nonconvex differential inclusions without any relaxation based on approx-
imating the original constrained problem by a family of nonsmooth Bolza
problems with no differential inclusions and no endpoint constraints. The ex-
tended Euler-Lagrange conditions for the latter class of unconstrained Bolza
problems and the assumptions made allow essential specifications in compar-
ison with the general results established in the preceding section. By passing
to the limit, we obtain necessary optimality conditions of the Euler-Lagrange
type for arbitrary (i.e., non-relaxed) intermediate minimizers for the original
control problems with reflexive and separable state spaces. Moreover, they are
supplemented by the Weierstrass-Pontryagin maximum condition valid in the
general nonconvex setting. If the state space X is finite-dimensional and the
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velocity sets F(x, t) are convex, the above Euler-Lagrange and maximum con-
ditions are equivalent to the extended Hamiltonian inclusion expressed via a
partial convexification of the basic subdifferential of the Hamiltonian function
associated with F(x, t). We also discuss various generalizations of the results
obtained and present some illustrative examples.

6.2.1 Euler-Lagrange and Maximum Conditions for Intermediate
Local Minimizers

The realization of the approach mentioned above requires some additional
assumptions on the initial data in comparison with Theorem 6.22, while the
a.e. continuity assumption on the velocity mapping F(x, ·) can be replaced
by its measurability; see below. Furthermore, it is more convenient in this
section to consider the following Mayer form (PM) of problem (P) studied in
the preceding section, with a fixed left endpoint of feasible arcs:

minimize ϕ
(
x(b)

)
subject to x(b) ∈ Ω ⊂ X

over absolutely continuous trajectories of the differential inclusion

ẋ(t) ∈ F(x(t), t) a.e. t ∈ [a, b], x(a) = x0 . (6.48)

The general case of nonzero integrands f in the Bolza problem can be reduced
to the Mayer one by standard state augmentation techniques. Note also that,
since the state space X is assumed to be reflexive and separable in what
follows, this notion of absolutely continuous solutions to (6.48) agrees with
the one given in Definition 6.1.

We first formulate the assumptions on the set-valued mapping F in (6.48)
that are weaker than those imposed in Theorem 6.22. Keeping assumption
(H1) from Subsect. 6.1.1 on the compactness and Lipschitz continuity of F
in x with possibly summable functions m F(·) and 	F(·) on [a, b] (although
it may also be loosen in some directions by various standard reductions as,
e.g., in [255, 261, 598, 1289]), we replace the a.e. continuity assumption (H2)
by the measurability assumption on F in the time variable t ∈ [a, b]. Note
that all the reasonable notions of measurability are equivalent for set-valued
mappings with closed values in separable spaces (cf. the discussion in the proof
of Lemma 6.18), which is the case in this section.

(H2′) F(x, ·) is measurable on the interval [a, b] uniformly in x on the
open set U ⊂ X taken from (H1).

We also weaken the continuity and Lipschitz continuity assumptions on the
cost function ϕ = ϕ(x) from (H4) and (H4′) observing that this leads to the



212 6 Optimal Control of Evolution Systems in Banach Spaces

modified (more general) transversality condition for the Mayer problem under
consideration. Namely, we replace the latter assumptions by the following one:

(H4′′) ϕ is l.s.c. around x̄(b) relative to Ω, which is suppose to be locally
closed around this point.

On the other hand, the following theorem imposes the additional coderiv-
ative normality and SNC assumptions on F in comparison with Theorem 6.22
and Corollary 6.23. Observe that the coderivative form of the extended Euler-
Lagrange inclusion given below is equivalent to the one from Corollary 6.23 for
ϑ = 0 without imposing the normal semicontinuity assumptions on gph F(t).
In the rest of this subsection we study intermediate local minimizers of rank
one from Definition 6.7. Recall that ϕΩ(·) = ϕ(·) + δ(·;Ω) as usual.

Theorem 6.27 (Euler-Lagrange and Weierstrass-Pontryagin condi-
tions for nonconvex differential inclusions). Let x̄(·) be an intermediate
local minimizer for the Mayer problem (PM) under assumptions (H1), H2′),
and (H4′′). Suppose in addition that:

(a) the Banach space X is reflexive, separable, and admits an equivalent
Kadec norm;

(b) the function ϕΩ is SNEC at x̄(b), and its epigraph is weakly closed;
(c) the mapping F(·, t): X →→ X is SNC at (x̄(t), ˙̄x(t)

)
, strongly coderiv-

atively normal around this point, and its graph is weakly closed for a.e.
t ∈ [a, b].

Then there exist a number λ ≥ 0 and an absolutely continuous adjoint arc
p: [a, b] → X∗, not both zero, satisfying the Euler-Lagrange inclusion

ṗ(t) ∈ co D∗
x F

(
x̄(t), ˙̄x(t), t

)(
− p(t)

)
a.e. t ∈ [a, b] , (6.49)

the Weierstrass-Pontryagin maximum condition〈
p(t), ˙̄x(t)

〉
= max

v∈F(x̄(t),t)

〈
p(t), v

〉
a.e. t ∈ [a, b] , (6.50)

and the transversality inclusion(
− p(b),−λ

)
∈ N

(
(x̄(b), β̄); epi ϕΩ

)
. (6.51)

Moreover, (6.51) always implies

−p(b) ∈ ∂
[
λϕ + δ(·;Ω)

](
x̄(b)

)
(6.52)

being equivalent to the latter condition if ϕ is Lipschitz continuous around
x̄(b) relative to Ω.

Proof. Consider the parametric functional

θβ(x) := dist
(
(x(b), β); epi ϕΩ

)
as β ∈ IR
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over feasible arcs/trajectories to the original differential inclusion (6.1) with no
other constraints. In what follows we fix the open set U ⊂ X from assumption
(H1) regarding x̄(·). For every ε > 0 one obviously has

θβ(x̄) ≤ |β − β̄|

whenever β is sufficiently close to β̄ = ϕ(x̄(b)). Since x̄(·) is an intermediate
local minimizer for (PM) and by the structure of θβ(x), we get

θβ(x) > 0 for any β < β̄

whenever a trajectory x(t) for (6.48) belongs to some W 1,1-neighborhood of
the local minimizer under consideration and such that

x(t) ∈ U for all t ∈ (a, b] .

Form now the space X of all the trajectories x(·) for (6.48) satisfying the
only constraint x(t) ∈ cl U as t ∈ (a, b] with the metric

d(x, y) :=
∫ b

a
‖ẋ(t) − ẏ(t)‖ dt .

It is easy to see, from Definition 6.1 of solutions to the original differential
inclusion and standard properties of the Bochner integral, that the metric
space X is complete and that the function θβ(·) is (Lipschitz) continuous on
X for any β ∈ IR. It follows from the above constructions that for every ε > 0
there is βε < β̄ such that βε → β̄ as ε ↓ 0 and

0 ≤ θε(x̄) < ε ≤ inf
x∈X

θε(x) + ε with θε := θβε
.

Applying the Ekeland variational principle from Theorem 2.26(i), we find an
arc xε(·) ∈ X satisfying

d(xε, x̄) ≤
√
ε and θε(x) +

√
εd(x, xε) ≥ θε(xε)

for all x ∈ X . Note that the distance estimate above yields that xε(t) ∈ U
as t ∈ (a, b] and that xε(·) belongs to the fixed W 1,1-neighborhood of the
intermediate local minimizer x̄(·) for small ε > 0. Hence θε(xε) > 0.

Next, given any α, ε > 0 and the summable Lipschitz constant 	F(·) from
(6.5), we define the Bolza-type functional

Jα
ε [x ] := θε(x) +

√
εd(x, xε) + α

∫ b

a

√
1 + 	2

F(t) dist
(
(x(t), ẋ(t)); gph F(t)

)
dt

on the sets of all absolutely continuous mappings x : [a, b] → X , not necessarily
trajectories for (6.48), satisfying x(t) ∈ U as t ∈ (a, b]. To proceed, we need
the following auxiliary result.
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Claim. There is a number α ≥ 1 such that for every ε ∈ (0, 1/α) the absolutely
continuous mapping xε: [a, b] → X built above provides an intermediate local
minimum for the Bolza functional J α

ε subject to

x(a) = x0 and x(t) ∈ U f or t ∈ (a, b] .

To prove this claim, we first observe that there are positive numbers ν, γ
such that for every arc y(·) satisfying y(a) = x0, y(t) ∈ U as t ∈ (a, b], and∫ b

a
dist

(
ẏ(t); F(y(t), t)

)
dt < ν

there exists a trajectory x(·) for (6.28) with

d(x, y) ≤ γ

∫ b

a

√
1 + 	2

F(t) dist
(
(y(t), ẏ(t)); gph F(t)

)
dt . (6.53)

Indeed, this follows directly from Filippov’s theorem on quasitrajectories of
differential inclusions (see, e.g., Theorem 1 on p. 120 in Aubin and Cellina
[50] whose proof holds true for infinite-dimensional inclusions under the as-
sumptions made in (H1) and (H2′)

)
and from the estimate

dist
(
v, F(u, t)

)
≤
√

1 + 	2
F(t) dist

(
(u, v); gph F(t)

)
that is obviously valid under (H1). Suppose now that the above claim doesn’t
hold. Then for each k ∈ IN there are εk ∈ (0, 1/k) and an arc yi (·) ∈ X
satisfying yk(t) ∈ U as t ∈ (a, b],

max
t∈[a,b]

‖yk(t) − xεk (t)‖ +
∫ b

a
‖ẏk(t) − ẋεk (t)‖ dt <

1
k
,

and J k
εk

[xεk ] > J k
εk

[yk ]. Hence yk(·)→ x̄(·) in the norm topology of W 1,1
(
[a, b]; X

)
and, moreover,

J k
εk

[xεk ] = θεk (xεk ) ↓ 0 as k → ∞ .

Therefore, given any ν > 0, we get∫ b

a
dist

(
ẏk(t); F(yk(t), t)

)
dt < J k

εk
[xεk ] < ν

for large k. This implies, by (6.53), that there are a number γ > 0 independent
of k and trajectories xk(·) for (6.28) as k → ∞ such that

d(xk, yk) ≤ γ

∫ b

a

√
1 + 	2

F(t) dist
(
(yk(t), ẏk(t)); gph F(t)

)
dt . (6.54)
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Since the right-hand side of (6.54) converges to zero and since yk(·) → x̄(·)
strongly in W 1,1

(
[a, b]; X

)
, we get the strong W 1,1-convergence xk(·) → x̄(·) as

k → ∞, which ensures that all the trajectories xk(·) ∈ X belong to the fixed
W 1,1

(
[a, b]; X

)
-neighborhood of the intermediate local minimizer x̄(·) for large

k ∈ IN . This gives

J k
εk

[xk ] ≥ J k
εk

[xεk ] > J k
εk

[yk ] = θεk (yk) +
√
εkd(yk, xεk )

+k
∫ b

a
dist

(
ẏk(t); F(yk(t), t)

)
dt =: kξk .

Now taking into account (6.54) and the construction of θε, we arrive at

kξk <
√
εk

(
d(xk, xεk ) − d(yk, xεk )

)
+ θεk (xk) − θεk (yk) ≤ 3γ ξk

for large k. This is a contradiction, which ends the proof of the claim.
Note that, since U is open in X , the constraint x(t) ∈ U as t ∈ (a, b] can

be ignored from the viewpoint of necessary optimality conditions. Thus we
may treat xε(·) is an intermediate local minimizer for the unconstrained Bolza
problem with finite-valued and Lipschitzian data:

minimize ϕε(x(b)
)

+
∫ b

a
ϑε(x(t), ẋ(t), t) dt (6.55)

over absolutely continuous arcs x : [a, b] → X satisfying x(a) = x0 and lying
in a W 1,1-neighborhood of x̄(·), where the endpoint cost function is given by

ϕε(x) := dist
(
(x, βε); epi ϕΩ

)
, (6.56)

and where the integrand is

ϑε(x, v, t) := α
√

1 + 	2
F(t) dist

(
(x, v); gph F(t)

)
+
√
ε‖v − ẋε(t)‖ . (6.57)

Note that any intermediate local minimizer for the unconstrained prob-
lem (6.55) provides a relaxed intermediate local minimum to this problem. It
can be observed from the relaxation result in Theorem 6.11 and its “inter-
mediate” modification given by Ioffe and Rockafellar in Theorem 4 of [616],
which is valid in infinite dimensions under the assumptions made. Note also
that assumptions (H1), (H2′), and (H3′′) ensure that problem (6.55) with the
data defined in (6.56) and (6.57) satisfies all the assumptions of Theorem 6.22
except for the compactness of the velocity sets in (P), which in fact is not
needed in the unconstrained and W 1,1-bounded framework of (6.55); cf. the
proof of Theorem 6.22 and the preceding results it is based on.

We now apply the necessary optimality conditions from Theorem 6.22
to problem (6.55) for any fixed ε > 0. Using the extended Euler-Lagrange
inclusion (6.47) with the integrand ϑε in (6.57) and then employing the
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sum rule from Theorem 2.33(c), find an absolutely continuous adjoint arc
pε: [a, b] → X∗ satisfying

ṗε(t) ∈ co
{

u ∈ X∗
∣∣∣ (u, pε(t)

)
∈ µ(t)∂dist

(
(xε(t), ẋε(t)); gph F(t)

)
+
√
ε
(
0, IB∗)}

for a.e. t ∈ [a, b] with µ(t) := α
√

1 + 	2
F(t). Fixed t ∈ [a, b], consider the two

cases regarding
(
xε(t), ẋε(t)

)
:

(i) ẋε(t) ∈ F(xε(t), t) and (ii) ẋε(t) /∈ F(xε(t), t) .

In case (i) we use Theorem 1.97 on basic subgradients of the distance function
at set points, which gives the approximate adjoint inclusion

ṗε(t) ∈ co
{

u ∈ X∗
∣∣∣ (u, pε(t)

)
∈ N

(
(xε(t), ẋε(t)); gph F(t)

)
+
√
ε
(
0, IB∗)} .

Considering case (ii) and employing the first projection formula from The-
orem 1.105 for basic subgradients of the distance function at out-of-set points
under the Kadec norm structure of X assumed in (a) (see Corollary 1.106 of
that theorem), we have the inclusion

∂dist
(
(xε(t), ẋε(t)); gph F(t)

)
⊂

⋃
(x,v)∈Π

(
(xε(t),ẋε(t));gphF(t)

) N
(
(x, v); gph F(t)

)
.

Taking now into account the pointwise convergence (xε(t), ẋε(t)
)
→ (x̄(t), ˙̄x(t)

)
as ε ↓ 0, one has

∂dist
(
(xε(t), ẋε(t)); gph F(t)

)
⊂ N

(
(x̃ε, ṽε); gph F(t)

)
for some (x̃ε, ṽε) ∈ gph F(t) converging to (x̄(t), ˙̄x(t)

)
as ε ↓ 0. Thus in case

(ii) we get the approximate adjoint inclusion

ṗε(t) ∈ co
{

u ∈ X∗
∣∣∣ (u, pε(t)

)
∈ N

(
(x̃ε, ṽε); gph F(t)

)
+
√
ε
(
0, IB∗)} .

To derive the extended Euler-Lagrange inclusion (6.49) in problem (PM),
one needs to pass to the limit as ε ↓ 0 in the approximate adjoint inclusions for
pε(·) in both cases (i) and (ii). Since the two approximate adjoint inclusions
are similar, we may consider only the first one for definiteness. Observe that

Lim sup
ε↓0

N
(
(xε(t), ẋε(t)); gph F(t)

)
= N

(
(x̄(t), ˙̄x(t)); gph F(t)

)
by the pointwise convergence of

(
xε(t), ẋε(t)

)
→

(
x̄(t), ˙̄x(t)

)
and the robust-

ness property of the basic normal cone from Theorem 3.60 held due to the SNC



6.2 Optimality Conditions for Differential Inclusions without Relaxation 217

assumption on F . Note also that the approximate adjoint inclusion for pε(·)
can be equivalently rewritten via the normal coderivative of F and hence, by
the strong coderivative normality assumption of the theorem, in terms of the
mixed coderivative D∗

M F . Proceeding similarly to the proof of Theorem 6.21
with the use of the mixed coderivative condition for the Lipschitzian continu-
ity from Theorem 1.44 as well as the classical Dunford and Mazur theorems
as above, we surely arrive at (6.49).

Consider next the transversality inclusion for pε(b) in problem (6.55) with
the cost function ϕε in (6.56). Employing the transversality condition (6.45)
from Theorem 6.22 in this setting, we have just the first terms in (6.45), where
λ = 1 and ϕ(xa, xb) = ϕε(xb). The crucial condition

dist
(
(xε(b), βε); epi ϕΩ

)
> 0

ensures that (xε(b), βε) /∈ epi ϕΩ for all ε > 0 sufficiently small. Employing
again Theorem 1.105/Corollary 1.106, one has

(
− pε(b),−λε

)
∈

⋃
(x,b)∈Π((xε,βε); epiϕΩ)

N
(
(x, β); epi ϕΩ

)

with some λε ≥ 0. Moreover, we can put λε + ‖pε(b)‖ = 1 due to the SNEC
property of ϕΩ at x̄(b) and hence around this point; see Remark 1.27(ii).
Passing to the limit as ε ↓ 0 and taking into account the robustness result
of Theorem 3.60, we arrive at the desired transversality inclusion (6.51) with
λ ≥ 0 by putting ε ↓ 0. The nontriviality condition λ+‖p(b)‖ = 1 follows from
the one for

(
λε, pε(b)

)
due to the SNEC property of ϕΩ that surely holds if Ω

is SNC at x̄(b) and ϕ is Lipschitz continuous around this point. The latter is
an easy consequence of Theorem 3.90, which ensures even the stronger SNC
property of ϕ at x̄(b). The equivalence between the transversality inclusions
(6.51) and (6.52) whenever ϕ is locally Lipschitzian around x̄(b) relative to Ω
follows from Lemma 5.23. Note that inclusion (6.52) further implies

−p(b) ∈ λ∂ϕ(x̄(b)
)

+ N(x̄(b);Ω)

for Lipschitz continuous cost functions.
The above proof justifies the extended Euler-Lagrange and transversality

conditions in the theorem for arbitrary intermediate local minimizers to prob-
lem (PM) with no relaxation. In this general nonconvex setting the extended
Euler-Lagrange inclusion (6.49) doesn’t automatically imply the maximum
condition (6.50). To establish the latter condition supplementing (6.49) and
(6.51), we follow the proof of Theorem 7.4.1 in Vinter [1289] given for a Mayer
problem of the type (PM) involving nonconvex differential inclusions in finite-
dimensional spaces. The proof of the latter theorem is based on reducing the
constrained Mayer problem for nonconvex differential inclusions to an un-
constrained Bolza (finite Lagrangian) problem, which in turn is reduced to a
problem of optimal control with smooth dynamics admitting a direct way to
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derive the maximum principle; cf. also Sect. 6.3. One can check that the tools
of infinite-dimensional variational analysis developed above and the assump-
tions made allow us to extend the given proof to the case of reflexive and
separable spaces under consideration. In this way we establish the maximum
condition (6.50) in addition to the other necessary optimality conditions of
the theorem and complete the proof. �

Remark 6.28 (necessary conditions for nonconvex differential inclu-
sions under weakened assumptions). Some assumptions of Theorem 6.27,
particularly those on the Kadec norm and on the weakly closed graph and
epigraph in (a)–(c), can be relaxed under a certain modification of the proof.
This concerns the application of necessary optimality conditions from The-
orem 6.22 to the unconstrained Bolza problem (6.55). The latter conditions
are expressed in terms of the basic/limiting constructions and then require
the usage of the projection result from Corollary 1.106 to efficiently estimate
basic subgradients of the distance function at out-of-set points under the men-
tioned assumptions. To avoid these extra requirements, one may apply first
a fuzzy discrete approximation version of Theorem 6.27 to the unconstrained
problem (6.55), involving Fréchet normals and subgradients as in the proof of
Theorem 6.21, and then pass to the limit as N → ∞ and ε ↓ 0. In this way,
the realization of which is more involved, we replace the usage of the distance
function result of Corollary 1.106 via basic subgradients by its Fréchet subgra-
dient counterpart from Theorem 1.103 that holds under milder assumptions.

Observe that the SNC and strong coderivative normality properties of F
are automatic when X is finite-dimensional, which also implies the SNEC
property of the extended endpoint function ϕΩ assumed in Theorem 6.27.
Furthermore, the latter property is not needed (actually it holds automati-
cally under qualification conditions of the Mangasarian-Fromovitz type) in
the general infinite-dimensional case of the theorem if the cost function is lo-
cally Lipschitzian and the endpoint constraint set given via a finite number of
equalities and inequalities defined by locally Lipschitzian functions.

Corollary 6.29 (transversality conditions for differential inclusions
with equality and inequality constraints). Let x̄(·) be an intermediate
local minimizer for the Mayer problem (PM) with the endpoint constraint set

Ω :=
{

x ∈ X
∣∣ ϕi (x) ≤ 0, i = 1, . . . ,m; ϕi (x) = 0, i = m + 1, . . . ,m + r

}
,

where each ϕi is locally Lipschitzian around x̄(b) together with the cost func-
tion ϕ0 := ϕ. Suppose that all the assumptions of Theorem 6.27 hold except
the SNEC property of the extended endpoint function ϕΩ . Then there are non-
negative multipliers (λ0, . . . , λm+r ) �= 0 and an absolutely continuous adjoint
arc p: [a, b] → X∗ satisfying the Euler-Lagrange and maximum conditions
(6.49) and (6.50) together with the complementary slackness condition

λiϕi
(
x̄(b)

)
= 0 for i = 1, . . . ,m
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and the transversality inclusion

−p(b) ∈
m∑

i=0

λi∂ϕi
(
x̄(b)

)
+

m+r∑
i=m+1

λi

[
∂ϕi

(
x̄(b)

)⋃
∂
(
− ϕi

)(
x̄(b)

)]
.

If furthermore all ϕi , i = 0, . . . ,m + r , are strictly differentiable at x̄(b), then
there are multipliers (λ0, . . . , λm+r ) �= 0 with λi ≥ 0 as i = 0, . . . ,m and an
adjoint arc p: [a, b] → X∗ satisfying

−p(b) =
m+r∑
i=0

λi∇ϕi
(
x̄(b)

)

together with the above Euler-Lagrange, Weierstrass-Pontryagin, and comple-
mentary slackness conditions.

Proof. It follows from (6.52) with λ := λ0 that

−p(b) ∈ λ0∂ϕ0

(
x̄(b)

)
+ N

(
x̄(b);Ω

)
.

Moreover, ϕΩ is SNEC at x̄(b) provided that Ω is SNC at this point; see
Corollary 3.89. Then we proceed similarly to the proof of Corollary 6.24 and
complete the proof of this corollary. �

6.2.2 Discussion and Examples

In this subsection we consider certain generalizations and variants of the above
results, discuss some interrelations and examples. First note that the compre-
hensive generalized differential and SNC calculi developed in Chap. 3 allow
us to derive various consequences and extensions of Theorem 6.27 in the case
of operator endpoint constraints given by

x(b) ∈ F−1(Θ) ∩Ω

with F : X →→ Y and Θ ⊂ Y ; cf. Sect. 5.1 for problems of mathematical pro-
gramming. Let us discuss in more details some other important issues related
to obtained necessary optimality conditions for differential inclusions.

Remark 6.30 (upper subdifferential transversality conditions). Sup-
pose in addition to the assumptions of Theorem 6.21 that the space X admits
a C1 Lipschitzian bump function; this is automatic under the reflexivity as-
sumption on X in Theorems 6.22 and 6.27. Then employing the results of
Sects. 6.1 and 6.2 together with the smooth variational description of Fréchet
subgradients in Theorem 1.88(ii), we derive necessary optimality conditions
for problems (P) and (PM), as well as for their discrete-time counterparts, with
transversality relations expressed via upper subgradients of functions that de-
scribe the objective and inequality constraints. This can be done by reducing
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them to the case of smooth functions describing the objective and inequality
constraints; cf. the proof of Theorem 5.19 for nondifferentiable programming.
Considering, in particular, the Mayer problem of minimizing ϕ0(x(b)

)
over

absolutely continuous trajectories x : [a, b] → X for the differential inclusion
(6.48) subject to the endpoint constraints

ϕi
(
x(b)

)
≤ 0, i = 1, . . . ,m ,

under the assumptions made on F and X in Theorem 6.27 and no assump-
tions on ϕi , we have the following necessary optimality conditions for an in-
termediate local minimizer x̄(·): given every set of Fréchet upper subgradients
x∗

i ∈ ∂̂+ϕi
(
x̄(b)

)
, i = 0, . . . ,m, there are multipliers

(λ0, . . . , λm) �= 0 with λi ≥ 0 for all i = 0, . . . ,m

and an absolutely continuous mapping p: [a, b] → X∗ satisfying the Euler-
Lagrange and maximum conditions (6.49) and (6.50) together with

λiϕi
(
x̄(b)

)
= 0 for i = 1, . . . ,m and

p(b) +
m∑

i=0

λi x
∗
i = 0 .

To justify these conditions via the above arguments, it remains to check the
SNEC property of the extended endpoint function ϕΩ in Theorem 6.27 with

Ω :=
{

x ∈ X
∣∣ ϕi (x) ≤ 0, i = 1, . . . ,m

}
and the smooth data ϕ, ϕi . It follows from Corollary 3.87 ensuring the SNC
property of the classical constraint set in nonlinear programming; cf. the proof
of Corollaries 6.24 and 6.29.

Remark 6.31 (necessary optimality conditions for multiobjective
control problems). The methods and results developed above can be ex-
tended to multiobjective optimization problems governed by differential inclu-
sions. Given a mapping f : X → Z and a subset Θ ⊂ Z of a Banach space
with 0 ∈ Θ, consider a multiobjective counterpart of the above Mayer prob-
lem (PM), where the generalized order ( f,Θ)-optimality of a trajectory x̄(·) for
(6.48) subject to x(b) ∈ Ω is understood in the sense that there is a sequence
{zk} ⊂ Z with zk → 0 as k → ∞ such that

f
(
x(b)

)
− f

(
x̄(b)

)
/∈ Θ − zk, k ∈ IN ,

for any feasible trajectory x(·) from a W 1,1
(
[a, b]; X

)
-neighborhood of x̄(·); cf.

Definition 5.53 and the related discussions in Subsect. 5.3.1. Let

E( f,Ω,Θ) =
{
(x, z) ∈ X × Z

∣∣ f (x) − z ∈ Θ, x ∈ Ω
}
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be the “generalized epigraph” of the restrictive mapping fΩ = f + ∆(·;Ω)
with respect to the ordering set Θ. Taking a sequence zk → 0 from the above
definition of the ( f,Θ)-optimality for x̄(·), we define the functions

θk(x) := dist
(
(x, f (x̄) − zk); E( f,Ω,Θ)

)
, k ∈ IN .

and proceed similarly to the proof of Theorem 6.27 with the replacement of
θβ(x) therein by the sequence of θk(x). In this way we arrive at necessary
optimality conditions in the multiobjective control problem under considera-
tion that are different from the ones in Theorem 6.27 only in transversality
relations. Namely, suppose in addition to the assumptions on X and F in The-
orem 6.27 that the space Z is WCG and Asplund and that the generalized epi-
graphical set E( f,Ω,Θ) is locally closed around (x̄, z̄) and SNC at this point
with z̄ := f (x̄). Then there are an adjoint arc p: [a, b] → X∗ and an adjoint
vector z∗ ∈ N(0;Θ), not both zero, satisfying the extended Euler-Lagrange
inclusion (6.49), the Weierstrass-Pontryagin maximum condition (6.50), and
the transversality inclusion(

− p(b),−z∗
)
∈ N

(
(x̄(b), z̄); E( f,Ω,Θ)

)
.

The latter inclusion is equivalent, by Lemma 5.23, to

−p(b) ∈ ∂〈z∗, fΩ〉(x̄), z∗ ∈ N(0;Θ)

if the mapping f is Lipschitz continuous around x̄ relative to Ω and strongly
coderivatively normal at this point, and if the sets Ω and Θ are locally closed
around the points x̄ and 0, respectively. Note that multiobjective optimal con-
trol problems of the above type but with respect to closed preference relations
can be treated similarly; cf. Subsect. 5.3.4. In this way we can also derive
necessary optimality conditions for multiobjective (as well as of the Mayer
and Bolza types) optimal control problems governed by differential inclusions
with equilibrium constraints, which are dynamic counterparts of MPEC and
EPEC problems studied in Sect. 5.2 and Subsect. 5.3.5.

Remark 6.32 (Hamiltonian inclusions). When X = IRn, an additional
optimality condition can be obtained for relaxed intermediate local minimizers
to problem (PM) (as well as to (P) and the counterparts of these problems
discussed in the preceding remarks), which is expressed via basic subgradients
to the Hamiltonian function defined by

H(x, p, t) := sup{〈p, v〉
∣∣ v ∈ F(x, t)

}
.

It follows from Rockafellar’s dualization theorem ([1162, Theorem 3.3]) that

co
{

u ∈ IRn
∣∣∣ (u, p) ∈ N

(
(x̄, v̄); gph F

)}
= co

{
u ∈ IRn

∣∣∣ (−u, v̄) ∈ ∂H(x̄, p)
}

if F is convex-valued and satisfies some requirements around (x̄, v̄) that are
automatic under the assumptions made on F in (H1); dependence on t is
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not important and is thus suppressed. The proof of the latter dualization
relationship is essentially finite-dimensional; cf. also the proofs in Ioffe [604,
Theorem 4] and in Vinter [1289, Theorem 7.6.5]. Since the Hamiltonian of the
convexified inclusion (6.18) is obviously agrees with the original one H(x, p, t),
we deduce from the above duality relation that the Euler-Lagrange inclusion
(6.49) in Theorem 6.27 implies the extended Hamiltonian inclusion

ṗ(t) ∈ co
{

u ∈ IRn
∣∣∣ (− u, ˙̄x(t)

)
∈ ∂H

(
x̄(t), p(t), t

)}
a.e t ∈ [a, b] (6.58)

as a necessary optimality condition for relaxed minimizers in the case of finite-
dimensional state spaces. Moreover, the Euler-Lagrange inclusion (6.49) and
the Hamiltonian inclusion (6.58) are equivalent for problems (PM) with the
convex velocity sets F(x, t). Note that (6.58) is a refined Hamiltonian inclusion
involving a partial convexification of the basic subdifferential ∂H(x̄(t), p(t), t),
which clearly supersedes the fully convexified one(

− ṗ(t), ˙̄x(t)
)
∈ co ∂H(x̄(t), p(t), t) a.e. t ∈ [a, b] (6.59)

involving Clarke’s generalized gradient ∂CH(x̄(t), p(t), t) = co ∂H(x̄(t), p(t), t)
of the Hamiltonian with respect to (x, p). It is worth observing that both
Hamiltonian inclusions (6.58) and (6.59) are invariant with respect to the con-
vexification of F(x, t), which is not the case for the extended Euler-Lagrange
inclusion (6.49).

Remark 6.33 (local controllability). The approach developed in the pre-
ceding subsection for necessary optimality conditions allows us to study also
related issues concerning the so-called local controllability of nonconvex dif-
ferential inclusions in the case of finite-dimensional spaces. Given x0 ∈ X , we
denote by R(x0) the reachable set for the differential inclusion (6.48), which
is the set of all z ∈ X such that x(b) = z for some arc x : [a, b] → X admissible
to (6.48). The meaning of local controllability is to derive efficient conditions
for boundary trajectories of the differential inclusion (6.48), in a certain gen-
eralized sense. To be more precise, we consider a mapping g: X → X locally
Lipschitzian mapping around x̄(b) and a trajectory x̄ : [a, b] → X for (6.48)
such that g(x̄(b)

)
∈ bdR(x0). Then assuming that X = IRn in addition to

(H1) and (H2′), we find a vector x∗ ∈ IRn with ‖x∗‖ = 1 and an adjoint arc
p(·) satisfying the extended Euler-Lagrange inclusion (6.49) with the bound-
ary/transversality condition

−p(b) ∈ ∂〈x∗, g〉
(
x̄(b)

)
(6.60)

and the Weierstrass-Pontryagin maximum condition (6.50). Moreover, if the
reachable set R(x0) is locally closed around x̄(b), then the extended Hamil-
tonian inclusion (6.58) is also satisfied.

To justify the Euler-Lagrange and maximum conditions (6.49) and (6.50)
with the new transversality condition (6.60), we follow the proof of Theo-
rem 6.27 and, given any ε > 0, find a vector cε ∈ IRn and a trajectory xε(·)
for (6.48) such that ‖g(xε(b)

)
− cε‖ > 0,
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cε → g(x̄(b)
)
, xε(·) → x̄(·) strongly in W 1,1

(
[a, b]; IRn

)
as ε ↓ 0 ,

and xε(·) is an unconditional strong local minimizer for problem (6.55) with
the same integrand (6.57) and the endpoint function

ϕε(z) := ‖g(z) − cε‖ .

Then we proceed as in the proof of Theorem 6.27 with the only difference
that now we need to compute the basic subdifferential of the new function
ϕε(·) at the point x̄ε(b) with ‖g(xε(b)

)
− cε‖ > 0. Using the subdifferential

chain rule of Corollary 3.43 and then passing to the limit as ε ↓ 0 while tak-
ing into account the compactness of the unit sphere in IRn, we arrive at the
transversality condition (6.60) that supplements (6.49) and (6.50). To justify
the extended Hamiltonian inclusion (6.58), we observe that the assumptions
made ensure the closedness of the reachable set R̃(x0) generated by the con-
vexified differential inclusion

ẋ(t) ∈ co F(x(t), t) a.e. t ∈ [a, b], x(a) = x0

and the density of R(x0) in R̃(x0); cf. Theorem 6.11. Thus the local closedness
assumption on R(x0) yields that x̄(b) is a boundary point of R̃(x0), and so
(6.58) follows from the discussion in Remark 6.32.

Note that the finite dimensionality of the state space X is needed in the
above proof for local controllability to guarantee the compactness of the dual
unit sphere in the weak∗ topology of X∗, which never holds in infinite dimen-
sions due to the fundamental Josefson-Nissenzweig theorem. Such a difference
with the infinite-dimensional setting of Theorem 6.27 is due to the fact that in
the proof of the latter theorem we actually applied the exact extremal principle
to the local extremal system of sets R(x0)×{ϕ(x̄(b)

)
} and epiϕΩ (in the no-

tation of Theorem 6.27) with the SNC assumption imposed on the second set
in the extremal system. In the setting of local controllability we deal with the
local extremal system of sets R(x0) and {x̄(b)}, where the second singleton set
is never SNC in infinite dimensions. Observe however that we didn’t explore
in the proof of Theorem 6.27, as well as in the framework of local controllabil-
ity, the possibility of imposing a SNC requirement on the reachable set R(x0),
which may lead to alternative assumptions ensuring the fulfillment of neces-
sary optimality and local controllability conditions in infinite dimensions; cf.
the result and discussion in Remark 6.25(i).

To conclude this section, we present some examples illustrating the results
obtained and the relationships between them. First let us show that the par-
tial convexification can not be avoided in both extended Euler-Lagrange and
Hamiltonian inclusion (6.49) and (6.58).

Example 6.34 (partial convexification is essential in Euler-Lagrange
and Hamiltonian optimality conditions). There is a two-dimensional



224 6 Optimal Control of Evolution Systems in Banach Spaces

Mayer problem of minimizing a linear function over absolutely continuous tra-
jectories of a convex-valued differential inclusion with no endpoint constraints
such that analogs of the Euler-Lagrange inclusion (6.49) and the Hamiltonian
inclusion (6.58) with no (partial) convexification “co” therein don’t hold as
necessary optimality conditions.

Proof. Consider the following Mayer problem for a convex-valued differential
inclusion with x = (x1, x2) ∈ IR2:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [x ] := x2(1) subject to

ẋ1 ∈ [−ν, ν], x1(0) = 0 ,

ẋ2 = |x1|, x2(0) = 0 ,

for a.e. t ∈ [0, 1] with some ν > 0 .

It is easy to see that x̄(t) ≡ 0 is the only optimal solution to this problem,
and that an analog of the Euler-Lagrange inclusion (6.49) for the adjoint arc
(p(t),−1) ∈ IR2 without “co” therein gives, along this x̄(·), the relation

ṗ(t) ∈
{
− 1, 1

}
a.e. t ∈ [0, 1]

with the transversality condition p(1) = 0. Furthermore, the maximum condi-
tion, implied by the Euler-Lagrange inclusion in this case due to Theorem 1.34,
takes the form

〈p(t), ˙̄x(t)〉 = max
v∈[−ν,ν]

〈p(t), v〉 a.e. t ∈ [0, 1] ,

which yields that p(t) ≡ 0; a contradiction. Since H(p, x) = ν sign p − |x1|,
the Hamiltonian inclusion(

− ṗ(t), ˙̄x(t)
)
∈ ∂H

(
x̄(t), p(t)

)
a.e. t ∈ [0, 1] ,

which is (6.58) with no “co” therein, leads to the same relations as above and
hence doesn’t hold as a necessary optimality condition. �

The next two examples illustrate relationships between the extended
Euler-Lagrange inclusion (6.49) and the extended Hamiltonian inclusion (6.58)
with the (fully) convexified Hamiltonian inclusion (6.59).

Example 6.35 (extended Euler-Lagrange inclusion is strictly better
than convexified Hamiltonian inclusion). There is a compact-valued and
convex-valued multifunction F : IR2 →→ IR2, which is Lipschitz continuous on
IR2 and such that

(−w, v) ∈ co ∂H(x, p) but w /∈ co
{

u ∈ IR2
∣∣ u ∈ D∗F(x, v)(−p)

}
for some points x, v, w, p in the plane.
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Proof. Define F : IR2 →→ IR2 by

F(x1, x2) :=
{
(τ, τ |x1| + ν) ∈ IR2

∣∣ τ ∈ [−1, 1], ν ∈ [0, µ]
}

with some µ > 0 ,

where the sets F(x) are parallelograms in the plane for all x = (x1, x2) ∈ IR2.
The corresponding Hamiltonian is

H(x1, x2, p1, p2) =
∣∣p1 + p2|x1|

∣∣ + max
{

p2, 0
}
.

Considering the points x = (0, 0), v = (0, 0), and p = (0,−1), we see that
the corresponding set F(x) is the rectangle [−1, 1] × [0, µ], and that p is
an outward normal vector to this set at the boundary point v. The crucial
feature of this example is that the hyperplane x2 = 0 supporting the set
F(x) at v intersects this set in more than one point. In other words, the
maximum of 〈p, v〉 over v ∈ F(x) is attained at infinitely many points. The
basic subdifferential of H at the point (0, 0, 0,−1) and its convexification
(Clarke’s generalized gradient) are actually calculated in Example 2.49; thus

co ∂H(0, 0, 0,−1) = [−1, 1] × {0} × [−1, 1] × {0} ⊂ IR4 .

Taking w = (−1, 0), one has (−w, v) ∈ co ∂H(0, 0, 0,−1). Let us show that

(w, p) = (−1, 0, 0,−1) /∈ clco N
(
(x, v); gph F

)
,

which definitely justifies the claim of this example.
To proceed, we note that, up to a permutation of the coordinates, the

graph of F can be represented as

gph F = E × IR with E :=
{
(x1, τ, |x1|τ + ν) ∈ IR3

∣∣ τ ∈ [−1, 1], ν ∈ [0, µ]
}
,

where the set E obviously coincides around the point (0, 0, 0) with the epigraph
of the Lipschitzian function ϕ: IR2 → IR defined by ϕ(y, τ ) := τ |y|. It is easy
to see that

co ∂ϕ(0, 0) = ∂ϕ(0, 0) =
{
(0, 0)

}
.

One therefore calculates

N
((

0, 0, ϕ(0, 0)
)
; epi ϕ

)
=

⋃
λ≥0

λ
[
∂ϕ(0, 0) × {−1}

]
=
{
(0, 0)

}
× (−∞, 0] ,

and hence we deduce that

clco N
(
(0, 0, 0, 0); gph F

)
=
{
(0, 0, 0)

}
× (−∞, 0] .

In particular, the latter cone doesn’t contain the point (w, p) = (−1, 0, 0,−1),
even though (−w, v) ∈ co ∂H(x, p). �

The last example shows that the extended/refined Hamiltonian condition
(6.58) strictly supersedes the fully convexified one (6.59) in both settings of
convex-valued and nonconvex-valued differential inclusions.
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Example 6.36 (partially convexified Hamiltonian condition strictly
improves its fully convexified counterpart). There is a set-valued map-
ping F : IRn →→ IRn in the form F(x) = g(x)S, where S ⊂ IRn is a compact
set and where g(x), for each x, is a linear isomorphism of IRn depending
continuously on x, such that for some (x̄, v̄, p̄) one has

co
{

u ∈ IRn
∣∣ (u, v̄) ∈ ∂H(x̄, p̄)

}
�=
{

u ∈ IRn
∣∣ (u, v̄) ∈ co ∂H(x̄, p̄)

}
.

Proof. If F is given in the above form, then its Hamiltonian is calculated by

H(x, p) = sup
{
〈p, v〉

∣∣ v ∈ g(x)S
}

= sup{〈p, g(x)s〉
∣∣ s ∈ S

}
=: δ∗

(
g∗(x)p; S

)
,

where δ∗(·; S) stands for the standard support function of the set S. Since S
is bounded, its support function is continuous. Denote

ψs(x, p) := 〈s, g∗(x)p〉 = 〈g(x)s, p〉

and suppose that g(·) is Lipschitz continuous. Employing the scalarization
formula and taking into account the structure of ψ , we have

∂H(x̄, p̄) =
⋃

s∈∂δ∗(0;S)

∂ψs(x̄, p̄)

at any given point (x̄, p̄). The linearity of ψ in p yields that

∂ψs(x̄, p̄) =
(
∂xψs(x̄, p̄), g(x̄)s

)
.

Therefore the inclusion (u, 0) ∈ ∂ψs(x̄, p̄) implies that s = 0 and thus u = 0.
Based on the above discussion, we need to find a set S, a Lipschitz contin-

uous family of linear isomorphisms g(x) of IRn, and a point (x̄, p̄) ∈ IRn × IRn

such that 0 ∈ S and co ∂H(x̄, p̄) contains a pair (u, 0) with u �= 0. In particu-
lar, it can be done as follows for n = 2. Let

S :=
{
(y1, y2) ∈ IR2

∣∣ |y1| ≤ 1, y2 = 0
}
, g∗(x) :=

(
1 |x1|
1 1

)
,

x̄ := (0, 0), and p̄ := (0, 1). Then

δ∗
(
(w1, w2); S

)
= w1 and H(x, p) =

∣∣p1 + p2|x1|
∣∣ .

One can directly calculate (cf. Example 2.49) that the set co ∂H(x̄, p̄) is the
convex hull of the following four points: (1, 0, 1, 0), (−1, 0−1, 0), (1, 0,−1, 0),
and (−1, 0, 1, 0). Thus{

u ∈ IR
∣∣ (u, 0) ∈ co ∂H(x̄, p̄)

}
= [−1, 1] ,

which justifies the claim of this example. �
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6.3 Maximum Principle for Continuous-Time Systems
with Smooth Dynamics

In this section we study optimal control problems governed by ordinary dif-
ferential equations in infinite-dimensional spaces that explicitly involve con-
strained control inputs u(·) as follows:

ẋ = f (x, u, t), u(t) ∈ U a.e. t ∈ [a, b] , (6.61)

where f : X ×U × [a, b] → X with a Banach state space X and a metric control
space U . Although control systems of this type can be reduced to differential
inclusions ẋ ∈ F(x, t) with F(x, t) := f (x,U, t), the explicit control input in
(6.61) with the control region U independent of x (it may depend on t) allows
us to develop efficient methods of studying such dynamic systems that take
into account their specific features.

Throughout the section we assume that system (6.61) is of smooth dynam-
ics, which means that the velocity mapping f is continuously differentiable
(C1) with respect to the state variable x around an optimal solution to be
considered. Despite this assumption, the control system (6.61) and optimiza-
tion problems over its feasible controls and trajectories intrinsically involve
nonsmoothness due to the control geometric constraints u(t) ∈ U a.e. t ∈ [a, b]
defined by control sets U of a general nature. For instance, it is the case of
the simplest/classical optimal control problems with U = {0, 1}.

In this section the main attention is paid to the Mayer-type control prob-
lem for systems (6.61) of smooth dynamics subject to finitely many endpoint
constraints given by equalities and inequalities with functions merely Fréchet
differentiable (possibly not strictly) at points of minima. Our goal is to derive
necessary optimality conditions in the form of the Pontryagin maximum prin-
ciple (PMP) for such problems in general Banach spaces, with no additional
assumptions on the reflexivity and separability of X as well as on the sequential
normal compactness and strong coderivative normality of F(x, t) = f (x,U, t)
imposed in Theorem 6.27 of the preceding section. The technique used for this
purpose is different from those employed in Sects. 6.1 and 6.2; it goes back
to the classical approach in optimal control theory involving needle variations
of optimal controls. We also derive enhanced results of the maximum prin-
ciple type with upper subdifferential transversality conditions in the case of
nondifferentiable cost and inequality constraint functions. Such conditions are
obtained without imposing any smoothness assumptions on the state space in
question needed for the corresponding necessary optimality conditions derived
above in both mathematical programming and dynamic optimization settings;
cf. Theorem 5.19 and Remark 6.30. Thus the results of this section, which es-
sentially exploit the specific structure of smooth control systems (6.61) and
the imposed endpoint constraints, are generally independent of those obtained
in Sects. 6.1 and 6.2.

This section is organized as follows. Subsect. 6.3.1 contains the formu-
lation of the main assumptions and results as well as the derivation of the
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maximum principle with upper subdifferential transversality conditions from
the one with Fréchet differentiable endpoint functions. We also discuss pos-
sible extensions of the maximum principle to control problems with inter-
mediate state constraints as well as to some classes of time-delay systems.
Subsection 6.3.2 is devoted to the proof of the PMP for free-endpoint con-
trol problems in Banach spaces, which is substantially simpler than that for
problems with endpoint constraints. Subsection 6.3.3 deals with optimal con-
trol problems involving endpoint constraints of the inequality type. Finally,
in Subsect. 6.3.4 we derive, with the use of the Brouwer fixed-point theorem,
transversality conditions in the case of equality constraints given by continu-
ous functions that are just differentiable at optimal endpoints.

6.3.1 Formulation and Discussion of Main Results

It is more simple and convenient (and in fact does’t much restrict the gener-
ality) to formulate and then to prove the main results of this section for the
case of control systems (6.61) with a fixed left endpoint x(a) = x0; we discuss
various extensions of the main results in the end of this subsection.

Denote by A the collection of admissible control-trajectory pairs {u(·), x(·)}
generated by measurable controls u(·) satisfying the pointwise constraints
u(t) ∈ U for a.e. t ∈ [a, b] and the corresponding solutions x(·) to (6.61)
with x(a) = x0 defined by

x(t) = x0 +
∫ t

a
f (x(s), u(s), s) ds for all t ∈ [a, b] , (6.62)

where the integral is understood in the Bochner sense; cf. Definition 6.1. As is
well known, any solution to (6.62) is absolutely continuous on [a, b]. Moreover,
it is a.e. differentiable on [a, b] and satisfies the differential equation (6.61)
for a.e. t ∈ [a, b] provided that X has the Radon-Nikodým property (see
Subsect. 6.1.1), which is not assumed here. What we need in this section is
the integral representation (6.62), which is taken as the definition of admissible
solutions/arcs to the differential equation (6.61) in Banach spaces.

Given real-valued functions ϕi , i = 0, . . . ,m + r , on the state space X , we
now formulate the optimal control problem studied below:

minimize J [u, x ] = ϕ0

(
x(b)

)
over (u, x) ∈ A (6.63)

subject to the endpoint constraints

ϕi
(
x(b)

)
≤ 0 for i = 1, . . . ,m , (6.64)

ϕi
(
x(b)

)
= 0 for i = m + 1, . . . ,m + r . (6.65)

Admissible solutions (u, x) ∈ A satisfying the endpoint constraints (6.64)
and (6.65) are called feasible solutions to problem (6.63)–(6.65). So we don’t
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distinguish between admissible and feasible solutions for problems with free
endpoints, i.e., with no endpoint constraints (6.64) and (6.65). We always
assume that the set of feasible solutions to (6.63)–(6.65) is not empty.

A feasible solution {ū(·), x̄(·)} is optimal to (6.63)–(6.65) if

J [ū, x̄ ] ≤ J [u, x ] for all (u, x) ∈ A

satisfying the endpoint constraints (6.64) and (6.65). Our goal is to derive
necessary conditions of the PMP type for a given optimal solution {ū(·), x̄(·)}
to the problem under consideration. Although we present necessary conditions
for (global) optimal solutions, one can observe from the proofs provided below
that the results obtained hold true for local minimizers {ū(·), x̄(·)} in the
sense that J [ū, x̄ ] ≤ J [x, u] whenever (u, x) is feasible to (6.63)–(6.65) and
‖x(t)− x̄(t)‖ < ε for all t ∈ [a, b] with some ε > 0. This corresponds to strong
local minimizers in Subsect. 6.1.2 for F(x, t) = f (x,U, t).

Given an optimal solution {ū(·), x̄(·)} to (6.63)–(6.65), we impose the fol-
lowing standing assumptions throughout the whole section:

—–the state space X is Banach;

—–the control set U is a Souslin subset (i.e., a continuous image of a Borel
subset) in a complete and separable metric space;

—–there is an open set O ⊂ X containing x̄(t) such that f is Fréchet
differentiable in x with both f (x, u, t) and ∇x f (x, u, t) continuous in (x, u),
measurable in t , and norm-bounded by a summable function for all x ∈ O,
u ∈ U , and a.e. t ∈ [a, b];

—–the functions ϕi are continuous around x̄(b) and Fréchet differentiable
at this point for i = m + 1, . . . ,m + r .

Note that the control set U may depend on t in a general measurable way,
which allows one to use standard measurable selection results; see, e.g., the
books [54, 229, 1165] with the references therein.

Appropriate assumptions on the functions ϕi , i = 0, . . . ,m, describing the
objective and inequality constraints will be presented in the main theorems
stated below. Note that the basic assumptions on them require their Fréchet
differentiability at x̄(b) (not even their continuity around this point), while
upper subdifferential conditions hold for a broader class of nondifferentiable
functions on arbitrary Banach spaces.

To formulate the relations of the maximum principle, let us define the
Hamilton-Pontryagin function for system (6.61) by

H(x, p, u, t) :=
〈

p, f (x, u, t)
〉

with p ∈ X∗ .

Observe that the Hamiltonian defined in Sect. 6.2 for F(x, t) = f (x,U, t)
corresponds to the maximization of the function H(x, p, u, t) with respect to
u over the whole the control region:
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H(x, p, t) = max
{

H(x, p, u, t)
∣∣ u ∈ U

}
.

Note also that H is smooth with respect to the state and adjoint variables
(x, p), which of course is not the case for H.

Theorem 6.37 (maximum principle for smooth control systems). Let
{ū(·), x̄(·)} be an optimal solution to problem (6.63)–(6.65) under the stand-
ing assumptions made. Suppose also that the functions ϕi , i = 0, . . . ,m, are
Fréchet differentiable at the optimal endpoint x̄(b). Then there are multipliers
(λ0, . . . , λm+r ) �= 0 satisfying

λi ≥ 0 for i = 0, . . . ,m ,

λiϕi
(
x̄(b)

)
= 0 for i = 1, . . . ,m ,

and such that the following maximum condition holds:

H
(
x̄(t), p(t), ū(t), t

)
= max

u∈U
H
(
x̄(t), p(t), u, t

)
a.e. t ∈ [a, b] , (6.66)

where an absolutely continuous mapping p: [a, b] → X∗ is a trajectory for the
adjoint system

ṗ = −∇x H(x̄, p, ū, t) a.e. t ∈ [a, b] (6.67)

with the transversality condition

p(b) = −
m+r∑
i=0

λi∇ϕi
(
x̄(b)

)
. (6.68)

Note that a solution (adjoint arc) to system (6.67) is understood in the
integral/mild sense similarly to (6.61), i.e.,

p(t) = p(b) +
∫ b

t
∇x H

(
x̄(s), p(s), ū(t), s

)
ds, t ∈ [a, b] ,

with ∇x H(x̄, p, ū.t) = 〈p,∇x f (x̄, ū, t)〉. Observe also that the transversality
condition (6.66) agrees with the one in Corollary 6.29. However, now the
endpoint functions is not assumed to be strictly differentiable at x̄(b).

The proof of Theorem 6.37 will be given in Subsects. 6.3.2–6.3.4. Meantime
let us formulate and prove an upper subdifferential counterpart of this theorem,
which gives on one hand an extension of the transversality condition (6.68)
to the case of nondifferentiable functions ϕi , i = 0, . . . ,m, while on the other
hand follows from Theorem 6.37 and the smooth variational description of
Fréchet subgradients.
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Theorem 6.38 (maximum principle with transversality conditions
via Fréchet upper subgradients). Let {ū(·), x̄(·)} be an optimal solution
to the control problem (6.63)–(6.65) under the standing assumptions made.
Then for every collection of Fréchet upper subgradients x∗

i ∈ ∂̂+ϕi
(
x̄(b)

)
,

i = 0, . . . ,m, there are multipliers (λ0, . . . , λm+r ) �= 0 satisfying the sign
and complementary slackness conditions of Theorem 6.37 and such that the
maximum condition (6.66) holds with the corresponding trajectory p(·) of the
adjoint system (6.67) satisfying the transversality condition

p(b) +
m+r∑
i=0

λi x
∗
i = 0 . (6.69)

Proof. Take an arbitrary set of Fréchet upper subgradients x∗
i ∈ ∂̂+ϕi

(
x̄(b)

)
,

i = 0, . . . ,m, and employ the smooth variational description of −x∗
i from

assertion (i) of Theorem 1.88 held in any Banach space. In this way we find
functions si : X → IR for i = 0, . . . ,m satisfying the relations

si
(
x̄(b)

)
= ϕi

(
x̄(b)

)
, si (x) ≥ ϕi (x) around x̄(b) ,

and such that each si (·) is Fréchet differentiable at x̄(b) with ∇si
(
x̄(b)

)
= x∗

i ,
i = 0, . . . ,m. From the construction of these functions we easily deduce that
the process {ū(·), x̄(·)} is an optimal solution to the following control problem:

minimize J̃ [u, x ] = s0(x(b)
)

over (u, x) ∈ A

subject to the inequality and equality endpoint constraints

si
(
x(b)

)
≤ 0 for i = 1, . . . ,m

and (6.65), where A is the collection of admissible control-trajectory pairs de-
fined in the beginning of this subsection. The initial data of the latter optimal
control problem satisfy all the assumptions of Theorem 6.37. Thus applying
the above maximum principle to this problem and taking into account that
∇si

(
x̄(b)

)
= x∗

i for i = 0, . . . ,m, we complete the proof of the theorem. �

One can observe the difference between the formulations and proofs of
Theorem 6.38, in the part related to upper subdifferential transversality con-
ditions, and of Theorem 5.19 on upper subdifferential optimality conditions
in mathematical programming. Both results reduce to their smooth (in differ-
ence senses) counterparts based on smooth variational descriptions of Fréchet
subgradients. In the case of Theorem 5.19 we need to require the continuous
differentiability (more precisely, strict differentiability) of the cost and con-
straint functions to be able to apply the corresponding necessary conditions
in smooth nonlinear programming. In this way an additional assumption on
the geometry of Banach spaces comes into play to ensure the C1 description of
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Fréchet subgradients by Theorem 1.88(ii). On the other hand, Theorem 6.38
relies, by a milder smooth variational description from Theorem 1.88(i), on
the preceding Theorem 6.37 that requires only the Fréchet differentiability of
the endpoint functions at the optimal point. Note that Theorems 6.37 and
6.38 concerning optimal control problems obviously imply, by putting f = 0
in (6.61), the corresponding improvements of the results in Subsect. 5.1.3 for
mathematical programming problems with equality and inequality constraints.

Remark 6.39 (control problems with constraints at both endpoints
and at intermediate points of trajectories). One can see from the proof
of Theorem 6.37 given in Subsects. 6.3.2–6.3.4 that a minor modification of
this proof allows us to derive similar necessary optimality conditions (includ-
ing those of the upper subdifferential type) for optimal control problems with
endpoint constraints of form (6.64) and (6.65) at both t = a and t = b and
with the cost function ϕ0 depending on both x(a) and x(b) under the same
assumptions on the initial data. In this case the transversality condition (6.68)
on the absolutely continuous adjoint arc p: [a, b] → X∗ is replaced by

(
p(a),−p(b)

)
=

m+r∑
i=0

λi∇ϕi
(
x̄(a), x̄(b)

)
.

Furthermore, we may similarly derive necessary optimality conditions for con-
trol problems involving intermediate state constraints, i.e., with constraints on
trajectories given at intermediate points τi ∈ [a, b] of the time interval. For
example, consider the modified problem (6.63)–(6.65) with

ϕi = ϕi
(
x(a), x(τ ), x(b)

)
, i = 0, . . . ,m + r ,

where τ ∈ (a, b) is an intermediate moment of the time interval. Then the
difference between the necessary optimality conditions of Theorem 6.37 and
the ones for the modified state-constrained problem is that we now have a
discontinuous adjoint arc p(·) with the jump condition at the intermediate
point t = τ incorporated into the transversality conditions as follows:

(
p(a), p(τ + 0) − p(τ − 0),−p(b)

)
=

m+r∑
i=0

λi∇ϕi
(
x̄(a), x̄(τ ), x̄(b)

)
.

We can similarly modify the upper subdifferential conditions of Theorem 6.38
in the case of control problems with intermediate state constraints.

Remark 6.40 (maximum principle in time-delay control systems).
The results of Theorems 6.37 and 6.38 can be extended to various systems
with time delays in state and control variables. For example, let us consider
the standard system with a constant time delay θ > 0 in the state variable:
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⎪⎪⎪⎪⎩

ẋ(t) = f
(
x(t), x(t − θ), u(t), t

)
a.e. t ∈ [a, b] ,

x(t) = c(t), t ∈ [a − θ, a] ,

u(t) ∈ U a.e. t ∈ [a, b]

over measurable controls and absolutely continuous trajectories with a Banach
state space X and the initial “tail” mapping c: [a−θ, a] → X that is necessary
to start the time-delay process. Denote by A the collection of admissible pairs
{u(·), x(·)} satisfying the above delay system and define the corresponding
Hamilton-Pontryagin function

H(x, y, p, u, t) :=
〈

p, f (x, y, u, t)
〉
, p ∈ X∗ ,

where y stands for the delay variable x(t − θ). Considering now problem
(6.63)–(6.65) with A signifying the collection of admissible pairs for the delay
system, we get counterparts of Theorems 6.37 and Theorem 6.38 with the
adjoint system given by

− ṗ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇x H
(
x(t), x(t − θ), p(t), u(t), t

)
+∇y H

(
x(t + θ), x(t), p(t + θ), u(t + θ), t

)
a.e. t ∈ [a, b − θ ] ;

∇x H
(
x(t), x(t − θ), p(t), u(t), t

)
a.e. t ∈ [b − θ, b] .

These results can be actually proved by reducing the time-delay control system
in X to the one with no delay in the state space X N , for some natural number
N sufficiently large. Furthermore, the methods developed in the proofs of
Theorems 6.37 and 6.38 allow us to derive similar results for control problems
with more general delays depending on both time and state variables, as well
as with time-distributed delays.

Remark 6.41 (functional-differential control systems of neutral
type). The dynamics of such control systems is described by differential equa-
tions with time delays not only in state variables but in velocity variables as
well. A typical model is given by

ẋ(t) = f
(
x(t), x(t − θ), ẋ(t − θ), u(t), t

)
, u(t) ∈ U, a.e. t ∈ [a, b]

with proper initial conditions on [a−θ, a]. Systems of this type are fundamen-
tally different from the standard ODE control systems and time-delay systems
considered in the preceding remark. They are substantially more difficult for
variational analysis and exhibit a number of phenomena that are not inherent
in the control systems considered above; the reader may find more discus-
sions in Commentary to Chap. 7, where we consider such systems and their
extensions in more details. Now observe that, although necessary optimality
conditions in the form of Theorems 6.37 and 6.38 can be derived by similar
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methods in the case of convex velocity sets f (x, y, z,U, t) with a Banach state
space, a proper analog of the Pontryagin maximum principle doesn’t generally
hold for neutral control systems even with no endpoint constraints in finite
dimensions. It happens, in particular, for the optimal control

ū(t) = 0 as t ∈ [0, 1) and ū(t) = 1 as t ∈ [1, 2]

to the following two-dimensional control problem:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

minimize J [u, x ] = x2(2) subject to

ẋ1(t) = u(t), ẋ2(t) = ẋ2
1(t − 1) − u2(t), t ∈ [0, 2] ,

x1(t) = x2(t) = 0, t ∈ [−1, 0]; |u(t)| ≤ 1, t ∈ [0, 2] .

The reader can find complete calculations for this example in the book by
Gabasov and Kirillova [485, Sect. 3.6]; see also Example 6.70 in Subsect. 6.4.6
below for similar calculations in a finite-difference analog of this control prob-
lem.

6.3.2 Maximum Principle for Free-Endpoint Problems

In this subsection we study problem (6.63), where A is the collection of ad-
missible pairs {u(·), x(·)} for the control system (6.61) with the fixed left
endpoint x(a) = x0; see the beginning of the preceding subsection for the ex-
act formulation. This problem is labeled as a free-endpoint problem of optimal
control despite the left endpoint is always fixed; we have in mind the absence
of the constraints (6.64) and (6.65) on the right endpoint of admissible trajec-
tories. As follows from the proofs below, the free-endpoint problem (6.63) is
significantly different from the constrained problem (6.63)–(6.65); moreover,
the problems with inequality and equality endpoint constraints are essentially
different from each other as well. The principal difference between the un-
constrained and constrained problems is that in case of (6.63) all admissible
trajectories are feasible, and one doesn’t need to care about satisfying the
endpoint constraints while varying admissible controls u(·) ∈ U . Note that
the control constraints of the above (arbitrary) geometric type are always
present in the problems under consideration, they distinguish optimal con-
trol problems from the classical calculus of variations and signify intrinsic
nonsmoothness inherent in optimal control.

This subsection is devoted to the proof of the maximum principle from
Theorem 6.37 for problem (6.63) under the assumptions made in the theorem
on the given data (U, X, f, ϕ0). Note that the transversality condition (6.68)
reduces in this case to

p(b) = −∇ϕ0

(
x̄(b)

)
, (6.70)
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i.e., with λ0 = 1 and λi = 0, i = 1, . . . ,m + r , in (6.68). Indeed, if λ0 = 0
and p(b) = 0 in (6.68), then p(t) ≡ 0 for all t ∈ [a, b] due to the linearity
of the adjoint system (6.67) with respect to p, which would contradict the
nontriviality condition

(
p(·), λ0

)
�= 0 in Theorem 6.37.

The proof of Theorem 6.37 for the free-endpoint problem (6.63) is purely
analytic, in the sense that it doesn’t invoke any geometric facts and arguments
in the vein of the convex separation theorem and the like. This is significantly
different from the proofs of Theorem 6.37 in the case of inequality and equality
endpoint constraints given in Subsect. 5.3.3 and 5.3.4. The basic ingredients
in the proof of Theorem 6.37 for problem (6.63) are the increment formula
for the cost functional in (6.63) and the use of the so-called needle variations
(sometimes called “McShane variations”) of the optimal control.

Let us start with the increment formula. Given two admissible controls
ū(t), u(t) ∈ U (observe that ū(·) may not be optimal before resuming it in the
sequel) and the corresponding solutions x̄(·), x(·) in (6.62), we denote

∆ū(t) := u(t) − ū(t), ∆x̄(t) := x(t) − x̄(t), ∆J [ū] := ϕ0

(
x(b)

)
− ϕ0

(
x̄(b)

)
.

Our intention is to obtain a convenient representation of the cost functional in-
crement ∆J [ū] in terms of the Hamilton-Pontryagin function evaluated along
the admissible pair {ū(·), x̄(·)} and the corresponding trajectory p(·) of the
adjoint system (6.67) with the boundary condition (6.70). Recall that we use
the same standard symbol o(·) for all expressions of this category.

Lemma 6.42 (increment formula for the cost functional). Let

∆u H
(
x̄(t), p(t), ū(t), t

)
:= H

(
x̄(t), p(t), u(t), t

)
− H

(
x̄(t), p(t), ū(t), t

)
in the notation above. Then one has

∆J [ū] = −
∫ b

a
∆u H

(
x̄(t), p(t), ū(t), t

)
dt + η ,

where the remainder η is given by η = η1 + η2 + η3 with

η1 := o
(
‖∆x̄(b)‖

)
, η2 := −

∫ b

a
o
(
‖∆x̄(t)‖

)
dt, and

η3 := −
∫ b

a

〈∂∆u H
(
x̄(t), p(t), ū(t), t

)
∂x

,∆x̄(t)
〉

dt .

Proof. Since ϕ0 is assumed to be Fréchet differentiable at x̄(b), we have the
representation

∆J [ū] = ϕ0

(
x(b)

)
− ϕ0

(
x̄(b)

)
=
〈
∇ϕ0

(
x̄(b)

)
,∆x̄(b)

〉
+ o

(
‖∆x̄(b)‖

)
.

Taking into account that solutions to the state and adjoint equations satisfy
(by definition) the Newton-Leibniz formula and using integration by parts held
for the Bochner integral, one gets the identity
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〈
p(b),∆x̄(b)

〉
=
∫ b

a

〈
ṗ(t),∆x̄(t)

〉
dt +

∫ b

a

〈
p(t),∆ ˙̄x(t)

〉
dt ,

where p: [a, b] → X∗ is an arbitrary absolutely continuous mapping from the
solution class. Imposing the boundary condition (6.70) on p(b), we arrive at

∆J [ū] = −
∫ b

a

〈
ṗ(t),∆x̄(t)

〉
dt −

∫ b

a

〈
p(t),∆ ˙̄x(t)

〉
dt + o

(
‖∆x̄(b)‖

)
.

Let us transform the second integral above. Using the equation

∆ ˙̄x(t) = f
(
x̄(t) + ∆x̄(t), ū(t) + ∆ū(t), t

)
− f

(
x̄(t), ū(t), t

)
,

the definition of the Hamilton-Pontryagin function H(x, p, u, t), and the
smoothness of f in x , we have∫ b

a

〈
p(t),∆ ˙̄x(t)

〉
dt

=
∫ b

a

[
H
(
x̄(t) + ∆x̄(t), p(t), ū(t) + ∆ū(t), t

)
− H

(
x̄(t), p(t), ū(t), t

)]
dt

=
∫ b

a

[
H
(
x̄(t), p(t), ū(t) + ∆ū(t), t

)
− H

(
x̄(t), p(t), ū(t), t

)]
dt

+
∫ b

a

〈∂H
(
x̄(t), p(t), ū(t), t

)
∂x

,∆x̄(t)
〉

dt +
∫ b

a
o
(
‖∆x̄(t)‖

)
dt .

Remembering finally that p(·) is a solution to the adjoint system (6.67) gen-
erated by {ū(·), x̄(·)}, we complete the proof of the lemma. �

In the above increment formula both controls ū(·) and u(·) are arbitrary
measurable mappings satisfying the pointwise control constraints. Now we
build u(·) as a special perturbation of the reference control ū(·) that is called
a needle variation, or sometimes a single needle variation, of this control.
Namely, fix arbitrary numbers τ ∈ [a, b) and ε > 0 with τ + ε < b, take an
arbitrary point v ∈ U , and construct an admissible control u(t), t ∈ [a, b], in
the following form

u(t) :=

⎧⎨
⎩

v, t ∈ [τ, τ + ε) ,

ū(t), t /∈ [τ, τ + ε) .
(6.71)

The obtained perturbed control differs from the reference one only on the
small time interval [τ, τ + ε), where its value is arbitrary in the control set U ;
the name “needle variation” comes from this. For the corresponding trajectory
increment ∆x̄(t), depending on the parameters (τ, ε, v), one clearly has
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∆x̄(t) = 0 for all t ∈ [a, τ ] .

Let us estimate ∆x̄(t) for t ∈ (τ, b], which is given in the next lemma. In what
follows we denote by 	 the uniform Lipschitz constant for f (·, v, t) whose
existence is guaranteed by the standing assumptions. For simplicity we sup-
pose that 	 is independent of t although the assumptions made allow it to be
summable on [a, b] with no change of the result.

Lemma 6.43 (increment of trajectories under needle variations). Let
∆x̄(·) be the increment of x̄(·) corresponding to the needle variation (6.71) of
ū(·) with parameters (τ, ε, v). Then there is a constant K > 0 independent of
(τ, ε) (it may depend on v) such that

‖∆x̄(t)‖ ≤ K ε for all t ∈ [a, b] .

Proof. Since ∆x̄(τ ) = 0, one has by (6.62) that

∆x̄(t) =
∫ t

τ

[
f
(
x̄(s) + ∆x̄(s), v, s

)
− f

(
x̄(s), ū(s), s

)]
ds, τ ≤ t ≤ τ + ε .

Taking into account the uniform Lipschitz continuity of f in x with the con-
stant 	 and denoting ∆v f

(
x̄(s), ū(s), s

)
:= f

(
x̄(s), v, s) − f (x̄, ū(s), s

)
, we

have

‖∆x̄(t)‖ =
∫ t

τ

∥∥ f
(
x̄(s) + ∆x̄(s), v, s

)
− f

(
x̄(s), ū(s), s

)∥∥ ds

≤
∫ t

τ

∥∥∆v f
(
x̄(s), ū(s), s

)∥∥ ds + 	

∫ t

τ

‖∆x̄(s)‖ ds .

Using the notation

α(t) :=
∫ t

τ

∥∥∆v f
(
x̄(s), ū(s), s

)∥∥ ds and β(t) := ‖∆x̄(t)‖ ,

the above estimate can be rewritten as

β(t) ≤ α(t) + 	

∫ t

τ

β(s) ds, τ ≤ t ≤ τ + ε ,

which yields by the classical Gronwall lemma that

‖∆x̄(t)‖ ≤
(∫ t

τ

∥∥∆v f
(
x̄(s), ū(s), s

)∥∥ ds
)

exp
(
	(t − τ )

)
≤ K ε

for t ∈ [τ, τ + ε], where K = K (v) is independent of ε and τ .
It remains to estimate ∆x̄(t) on the last interval [τ +ε, b], where it satisfies

the equation
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∆ ˙̄x(t) = f
(
x̄(t) + ∆x̄(t), ū(t), t

)
− f

(
x̄(t), ū(t), t

)
with ‖∆x̄(τ + ε)‖ ≤ K ε

the solution of which is understood in the integral sense (6.62). Since

‖∆x̄(t)‖ ≤ ‖∆x̄(τ + ε)‖+
∫ t

τ+ε

∥∥ f
(
x̄(s)+∆x̄(s), ū(s), s

)
− f

(
x̄(s), ū(s), s

)∥∥ ds

≤ K ε + 	

∫ t

τ+ε

‖∆x̄(s)‖ ds, τ + ε ≤ t ≤ b ,

we again apply the Gronwall lemma and arrive, by increasing K if necessary,
at the desired estimate of ‖∆x̄(t)‖ on the whole interval [a, b]. �

Now we are ready to justify the maximum principle of Theorem 6.37 for
the free-endpoint control problem under consideration.

Proof of Theorem 6.37 for the free-endpoint problem. Let {ū(·), x̄(·)}
be an optimal solution to problem (6.63), and let p(·) be the corresponding
solution to the adjoint system (6.67) with the boundary/transversality condi-
tion (6.70). We are going to show that the maximum condition (6.66) holds
for a.e. t ∈ [a, b]. Assume on the contrary that there is a set T ⊂ [a, b] of a
positive measure such that

H
(
x̄(t), p(t), ū(t), t

)
< sup

u∈U
H
(
x̄(t), p(t), u, t

)
for t ∈ T .

Then using standard results on measurable selections under the assumptions
made, we find a measurable mapping v: T → U satisfying

∆v H(t) := H
(
x̄(t), p(t), v(t), t

)
− H

(
x̄(t), p(t), ū(t), t

)
> 0, t ∈ T .

Let T0 ⊂ [a, b] be a set of Lebesgue regular points (or points of approximate
continuity) for the function H(t) on the interval [a, b], which is of full measure
on [a, b] due to the classical Denjoy theorem. Given τ ∈ T0 and ε > 0, consider
a needle variation of the optimal control built by

u(t) :=

⎧⎨
⎩

v(t), t ∈ Tε := [τ, τ + ε) ∩ T0 ,

ū(t), t ∈ [a, b] \ Tε ,

and apply to ū(·) and u(·) the increment formula for the cost functional from
Lemma 6.42. By this formula we have the relation

∆J [ū] = −
∫ τ+ε

τ

∆v H(t) dt + η1 + η2 + η3

with the above positive increment of the Hamilton-Pontryagin function ∆v H(t)
and the remainders ηi , i = 1, 2, 3, defined in Lemma 6.42 along the trajectory
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increment ∆x̄(·) corresponding to the needle variation u(·) under considera-
tion. It follows from the proof of Lemma 6.43, with an easy modification to
take into account the variable perturbation v(·) on Tε instead of the constant
one in (6.71), that ‖∆x̄(t)‖ = O(ε) for t ∈ [a, b]. Hence

η1 = o
(
‖∆x̄(b)‖

)
= o(ε), η2 =

∫ b

a
o
(
‖∆x̄(t)‖

)
dt = o(ε), and

η3 ≤
∫ τ+ε

τ

∣∣∣〈∂∆Hv

(
x̄(t), p(t), ū(t), t

)
∂x

,∆x̄(t)
〉∣∣∣ dt

≤ K ε

∫ τ+ε

τ

∥∥∥∂∆Hv

(
x̄(t), p(t), ū(t), t

)
∂x

∥∥∥ dt = o(ε) .

The choice of τ ∈ T0 as a Lebesgue regular point of the function ∆v H(t) and
the construction of the Bochner integral yield∫ τ+ε

τ

∆v H(t) dt = ε
[

H
(
x̄(τ ), p(τ ), v(τ ), τ

)
− H

(
x̄(τ ), p(τ ), ū(τ ), τ

)]
+ o(ε) .

Thus we get the representation

∆J [ū] = −ε
[

H
(
x̄(τ ), p(τ ), v(τ ), τ

)
− H

(
x̄(τ ), p(τ ), ū(τ ), τ

)]
+ o(ε) ,

which implies that ∆J [ū] < 0 along the above needle variation of the optimal
control ū(·) for all ε > 0 sufficiently small. This clearly contradicts the opti-
mality of ū(·) in problem (6.63) and completes the proof of Theorem 6.37 for
the free-endpoint optimal control problem. �

6.3.3 Transversality Conditions for Problems
with Inequality Constraints

One can see from the preceding subsection that the analytic proof of the
maximum principle given there for the free-endpoint optimal control problem
doesn’t hold in the case of endpoint constraints of types (6.64) and/or (6.65).
Indeed, in that proof we didn’t care about the feasibility with respect to these
constraints of trajectories corresponding to needle control variations. Dealing
with endpoint constraint problems requires a more sophisticated technique
that involves the geometry of the reachable set for system (6.61) and its in-
teraction with the cost functional and endpoint constraints. The crux of the
matter is to show that there is a convex set generated by feasible endpoint
variations of the given optimal trajectory that doesn’t intersect some convex
set “forbidden” by optimality, which allows us to employ the convex sepa-
ration. This can be achieved by using multineedle variations of the optimal
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control in question. The latter is realized by the continuity of time in [a, b] and
actually reflects the hidden convexity of continuous-time control problems.

In this subsection we consider optimal control problems that involve only
endpoint constraints of the inequality type (6.64). Control problems with the
equality constraints (6.65) are somewhat different (more complicated); they
will be studied in the next subsection. Our main goal is to derive the transver-
sality condition (6.68) in the relations of the maximum principle from Theo-
rem 6.37 in the case of inequality constraints given by differentiable functions.
As discussed in Subsect. 6.3.1, transversality conditions in more general con-
trol problems and under less restrictive assumptions can be either reduced to
the one in (6.68) or derived similarly.

Let us emphasize that, although we study optimal control problems with
a Banach state space X , they involve only finitely many endpoint constraints
on system trajectories. The method we develop allows us to take an advantage
of this setting (which is somehow related to the finite codimension property
of the constraint set; cf. Corollaries 6.29, 6.24 and Remark 6.25) and to deal
with finite-dimensional images of endpoint variations under the derivative
operators for the cost and constraint functions, employing thus the convex
separation theorem in finite dimensions.

In the rest of this subsection we consider the optimal control problem
(6.63) with the inequality endpoint constraints (6.64) and fix an optimal so-
lution {ū(·), x̄(·)} to this problem. Assume without loss of generality that
ϕi
(
x̄(b)

)
= 0 for all i = 1, . . . ,m. It is easy to see from the proof (as

usually with inequality constraints) that λi = 0 if ϕi
(
x̄(b)

)
< 0 for some

i ∈ {1, . . . ,m}, i.e., the corresponding function ϕi can be excluded from con-
sideration. In this setting the complementary slackness conditions of Theo-
rem 6.37 hold automatically, and we need to establish relations (6.66)–(6.68)
with r = 0 and 0 �= (λ0, . . . , λm) ∈ IRm

+.
Along with (single) needle variations introduced in the preceding subsec-

tion we now invoke “multineedle variations” built as follows. Fix a natural
number M ≥ 1 and M points τ j ∈ [a, b] of the original time interval with
a ≤ τ1 < τ2 ≤ . . . < τM < b. Consider also arbitrary numbers N j ∈ IN for
j = 1, . . . , M and αi j ∈ [0, 1] for i = 1, . . . , N j satisfying the relations

τ j + ε0

N j∑
i=1

αi j < τ j+1, j = 1, . . . , M − 1, and τM + ε0

NM∑
i=1

αi M < b

with some ε0 > 0. We are going to construct a perturbation u(·) of the refer-
ence control ū(·) that is different from ū(·) on N1+ . . .+ NM time intervals of a
small total length, while the difference between u(·) and ū(·) on these intervals
is up to any element from the feasible control region U . To proceed, let us
take arbitrary vi j ∈ U and ε ∈ (0, ε0] and define a multineedle variation u(·)
of the reference control ū(·) by
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u(t) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

vi j , t ∈
[
τ j +

i−1∑
ν=0

αν jε, τ j +
i∑

ν=1

αν jε
)
, α0 j := 0, i = 1, . . . , N j ,

ū(t), t /∈
[
τ j , τ j +

N j∑
i=1

αi jε
)
, j = 1, . . . , M .

(6.72)

Note that, although there are M basic points τ j , the multineedle variation
(6.72) involves N1 + . . . + NM points of needle-type perturbations; this is
different from a single needle variation (6.71) even in the case of M = 1.
Actually the multineedle variation (6.72) is a collection of N1 + . . .+ NM single
needle variations of type (6.71) with the given parameters (τ j , vi j , αi j , ε).

Let ∆x̄τ j ,vi j ,αi j ,ε(b) be the endpoint increment of the trajectory x̄(·) cor-
responding to the single needle variation of type (6.71) with the parameters
(τ j , vi j , αi j , ε). Dealing with the differential equation (6.61) of smooth dynam-
ics and its linearization in x along the process {ū(·), x̄(·)} as in the proof of
Lemma 6.42, we can check the relationship

∆x̄τ j ,vi j ,αi j ,ε(b) =
[
αi jΛx̄τ j ,vi j ,1(b)

]
ε + o(ε) (6.73)

between ∆x̄τ j ,vi j ,αi j ,ε(b) and the corresponding linearized endpoint increment
Λx̄τ j ,vi j ,αi j (b) computed by

Λx̄τ j ,vi j ,αi j (b) = αi j R(b, τ j )∆vi j f
(
x̄(τ j ), ū(τ j ), τ j

)
=: αi jΛx̄τ j ,vi j ,1

via the resolvent (Green function) R(t, τ ) of the linearized homogeneous equa-
tion for (6.61) with respect to x along {ū(·), x̄(·)} given as

ẋ = ∇x f
(
x̄(t), ū(t), t

)
x .

Furthermore, the endpoint increment ∆x̄(b) generated by the multineedle vari-
ation (6.72) is represented by

∆x̄(b) =
[ M∑

j=1

N j∑
i=1

αi jΛτ j ,vi j ,1 x̄(b)
]
ε + o(ε) .

Now we form the following finite-dimensional linearized image set gener-
ated by inner products involving derivatives of the cost and constraint func-
tions and the linearized endpoint increments corresponding to all the multi-
needle variations (6.72) of the reference optimal control ū(·):

S :=
{

(y0, . . . , ym) ∈ IRm+1
∣∣∣ y0 =

M∑
j=1

N j∑
i=1

〈
∇ϕ0

(
x̄(b)

)
,Λτ j ,vi j ,αi j x̄(b)

〉
, . . . ,

ym =
M∑

j=1

N j∑
i=1

〈
∇ϕm

(
x̄(b)

)
,Λτ j ,vi j ,αi j x̄(b)

〉}(6.74)
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with arbitrary τ j ∈ [a, b), vi j ∈ U , αi j ∈ [0, 1], i = 1, . . . , N j , N j ∈ IN ,
j = 1, . . . , M , and M ∈ IN .

There are two crucial facts regarding the set S in (6.74). First of all, it
happens to be convex, which is mainly due to the possibility of using arbitrary
αi j ∈ [0, 1] in multineedle variations (6.72). The latter is based on the time
continuity of [a, b] and, as mentioned above, reflects the hidden convexity of
continuous-time control systems. The second fact is due to the optimality
of ū(·) in the constrained control problem (6.63), (6.64): it ensures that the
linearized image set (6.74) doesn’t intersect the convex set of forbidden points
(from the viewpoint of optimality and inequality constraints in the problem
under consideration) given by

IRm+1
< :=

{
(y0, . . . , ym) ∈ IRm+1

∣∣ yi < 0 for all i = 0, . . . ,m
}
.

Both of these facts are proved in the following lemma.

Lemma 6.44 (hidden convexity and primal optimality condition in
control problems with inequality constraints). Let {ū(·), x̄(·)} be an
optimal solution to the inequality constrained problem (6.63) and (6.64), where
all the functions ϕi are supposed to be Fréchet differentiable at x̄(b) in addition
to the standing assumptions of Subsect. 6.3.1. Then the linearized image set
S in (6.74) is convex and doesn’t intersect the set of forbidden points IRm+1

< .

Proof. Let us fix a collection of parameters (τi , vi j , N j , M) and show that the
set (6.74), still denoted by S, is convex while the numbers αi j are arbitrarily
taken from [0, 1]. This clearly implies the convexity of the “full” set S. Indeed,
taking two different collections of (τi , vi j , N j , M), we may always unify them,
which again gives an admissible multineedle variation (6.72). It is therefore
sufficient to justify the convexity of S only in the case when parameters αi j

take values on the interval [0, 1].
To proceed, we fix (τi , vi j , N j , M) and take two collections {α(1)

i j } and

{α(2)
i j } such that the corresponding points y(1) and y(2) in (6.74) belong to

the linearized image set S. Then considering the point λy(1) + (1 − λ)y(2) for
any λ ∈ [0, 1] and taking into account the linear dependence of Λx̄τ j ,vi j ,αi j (b)
on αi j , we conclude that λy(1) + (1 − λ)y(2) is an element of S corresponding
to {λα(1)

i j + (1 − λ)α(2)
i j }, which justifies the convexity of S.

It remains to show that S ∩ IRm1
< = ∅, where S stands for the “full” im-

age set in (6.74) corresponding to all the admissible multineedle variations
(6.72). Assuming the contrary, we find a multineedle variation (6.72) with
some admissible parameters (τi , vi j , αi j , N j , M) such that
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M∑
j=1

N j∑
i=1

〈
∇ϕ0

(
x̄(b)

)
,Λτ j ,vi j ,αi j x̄(b)

〉
< 0, . . . ,

M∑
j=1

N j∑
i=1

〈
∇ϕm

(
x̄(b)

)
,Λτ j ,vi j ,αi j x̄(b)

〉
< 0 .

Then using the Fréchet differentiability of the functions ϕ0, . . . , ϕm at x̄(b)
and the above relationship between the endpoint increment ∆x̄(b) generated
by (6.72) and the linearized ones Λτ j ,vi j ,αi j corresponding to each collection
(τ j , vi j , αi j , N j , M), we get

ϕk
(
x(b)

)
− ϕk

(
x̄(b)

)
=
〈
∇ϕk

(
x̄(b)

)
,∆x̄(b)

〉
+ o(ε)

=
[ M∑

j=1

N j∑
i=1

〈
∇ϕk

(
x̄(b)

)
,Λτ j ,vi j ,αi j x̄(b)

〉]
ε + o(ε) < 0

for all k = 0, . . . ,m and all ε > 0 sufficiently small. The latter means that
there is a multineedle control variation (6.72) such that the corresponding
trajectory x(·) satisfies all the inequality constraints (6.64), being therefore
feasible for the problem under consideration, and gives a smaller value to the
cost functional in (6.63) in comparison with x̄(·). This contradicts the opti-
mality of the process {ū(·), x̄(·)} in problem (6.63), (6.64) and thus completes
the proof of the lemma. �

The obtained relation S ∩ IRm+1
< = ∅ can be viewed as a primal necessary

optimality condition, which is of course not efficient, since it depends on con-
trol variations and is not expressed in terms of the initial data of the problem
under consideration. To proceed further, we pass to its dual form employing
the convex separation theorem and then invoking the Hamilton-Pontryagin
function by the constructions of the increment method in Lemma 6.42; see
the arguments below.

Proof of Theorem 6.37 for problems with inequality constraints. Ap-
plying the classical separation theorem to the convex sets S and IRm+1

< from
Lemma 6.44, we find a nonzero vector (λ0, . . . , λm) ∈ IRm+1 such that

m∑
i=0

λi yi ≥
m∑

i=0

λi zi for all (y0, . . . , ym) ∈ S and (z0, . . . , zm) ∈ IRm+1
< .

This easily implies that λi ≥ 0 for all i = 0, . . . ,m and that
m∑

i=0

λi yi ≥ 0 whenever (y0, . . . , ym) ∈ S . (6.75)

Note that the vector (λ0, . . . , λm) doesn’t depend on a specific multineedle
variation (6.72); it separates the set of all such variations from 0 ∈ IRm+1. In
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particular, employing (6.75) just for vectors (y0, . . . , ym) generated by single
needle variations (6.71) with parameters (τ, v, ε) and taking into account the
relationship (6.73) between the full and linearized increments of the optimal
trajectory along (single) needle variations, one has

m∑
i=0

λi

〈
∇ϕi

(
x̄(b)

)
,∆τ,v,ε x̄(b)

〉
+ o(ε) ≥ 0

for all τ ∈ [a, b), v ∈ U , and ε > 0 sufficiently small. Putting now

p(b) := −
m∑

i=0

λi∇ϕi
(
x̄(b)

)
and proceeding as in the proof of Lemma 6.42 and Theorem 6.37 for the
free-endpoint control problem in Subsect. 6.3.2 with the replacement of the
boundary condition (6.70) by the latter one, we end the proof of Theorem 6.37
for problems with inequality endpoint constraints. �

6.3.4 Transversality Conditions for Problems
with Equality Constraints

To complete the proof of Theorem 6.37, it remains to justify it for the case
of equality endpoint constraints in the problem under consideration. Without
loss of generality we focus here on the optimal control problem given by (6.63)
and (6.65), i.e., with no inequality constraints considered in the preceding
subsection. For convenience, suppose that the equality constraints are given
by the first m functions ϕi as

ϕi
(
x(b)

)
= 0, i = 1, . . . ,m . (6.76)

Having this in mind, form again the linearized image set S in (6.74) gener-
ated now by the images of multineedle variations under the gradient mappings
for the cost and equality constraint functions. The set of forbidden points in
the equality constrained problem is given by

S< :=
{
(y0, . . . , ym) ∈ IRm+1

∣∣ y0 < 0, y1 = 0, . . . , ym = 0
}
.

Our goal is to investigate all the possible relationships between the image set
S and the above set of forbidden points that are allowed by the optimality
of {ū(·), x̄(·)}. The most difficult case is considered in the next lemma, which
establishes that the origin cannot be an interior point of the intersection S∩S<.
The proof given below involves the Brouwer fixed-point theorem. Note that,
although this fundamental topological result is heavily finite-dimensional, it
allows us to deal with the optimal control problems described by evolution
equations in infinite dimensions. The crux of the matter is, as mentioned, that
the control problem has finitely many endpoint constraints, which ensures the
finite codimension property of the constraint set.
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Lemma 6.45 (endpoint variations under equality constraints). Let
{ū(·), x̄(·)} be an optimal solution to the control problem (6.63), (6.76) under
the standing assumptions on X , U , and f . Assume also that the functions
ϕ0, . . . , ϕm are Fréchet differentiable at x̄(b) and that ϕ1, . . . , ϕm are in addi-
tion continuous around this point. Then one has

0 /∈ int
(
projIRm S

)
,

where the linearized image set S is generated in (6.74) by the endpoint equality
constraints (6.76).

Proof. Assume the contrary and denote by Bη a closed ball in IRm of radius
η > 0 centered at the origin. Let T be a regular “tetrahedron” with the
vertices q(s), s = 1, . . . ,m + 1, inscribed into T . If η is sufficiently small, then
for each s = 1, . . . ,m +1 there are numbers {α(s)

i j } in the multineedle variation
(6.72) and ν < 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M∑
j=1

N j∑
i=1

〈
∇ϕ0

(
x̄(b)

)
,Λ

τ j ,vi j ,α
(s)
i j

x̄(b)
〉
< ν < 0 and

q(s)
k =

M∑
j=1

N j∑
i=1

〈
∇ϕk

(
x̄(b)

)
,Λ

τ j ,vi j ,α
(s)
i j

x̄(b)
〉

for all k = 1, . . . ,m, where q(s)
k stands for the kth component of the vertex

q(s). Each point q = q(β) ∈ T can be represented as a convex combination of
the tetrahedron vertices by

q(γ ) =
m+1∑
s=1

γsq(s) with γ = (γ1, . . . , γm+1) ∈ P ,

where P connotes the m-dimensional simplex. Let uγ,ε(·) be a multineedle
variation (6.72) with the parameters (τ j , vi j , αi j (γ ), ε), where

αi j (γ ) :=
m+1∑
s=1

γsα
(s)
i j , γ = (γ1, . . . , γm) ∈ P .

Consider now an ε-parametric family of mappings g(·, ε): P → IRm defined by

g(γ, ε) :=
(ϕ1

(
xγ,ε(b)

)
− ϕ1

(
x̄(b)

)
ε

, . . . ,
ϕm

(
xγ,ε(b)

)
− ϕm

(
x̄(b)

)
ε

)
,

where xγ,ε(·) signifies a trajectory for (6.61) corresponding to the multineedle
control variation uγ,ε(·). Putting also
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g(γ, 0) :=
( M∑

j=1

N j∑
i=1

〈
∇ϕ1

(
x̄(b)

)
, αi j (γ )Λτ j ,vi j ,1 x̄(b)

〉
, . . . ,

M∑
j=1

N j∑
i=1

〈
∇ϕm

(
x̄(b)

)
, αi j (γ )Λτ j ,vi j ,1 x̄(b)

〉)
,

we conclude that the mapping g(·, ·) is continuous on P × [0, ε0] with ε0
sufficiently small. This is due to the standing assumptions on the Fréchet
differentiability of ϕ1, . . . , ϕm at x̄(b) and the continuity of these functions
around this point. It follows from the above constructions that

g(γ, 0) =
m+1∑
s=1

γsq(s) and G(P, 0) = T ;

thus the set g(P, 0) contains the origin as an interior point. Let us show that
there is ε̂ > 0 such that

0 ∈ int g(P, ε) for all ε < ε̂ .

To proceed, we observe that the mapping g(·, 0) is one-to-one and continuous
from P into T . Hence its inverse mapping is single-valued and continuous; let
us denote it by p(y) and put

h(y, ε) := g
(

p(y), ε
)

for all y ∈ T and ε ∈ [0, ε0] .

Take η > 0 so small that the ball Bη of radius η centered at the origin belongs
to the tetrahedron T . Then the continuity of the mapping h(·, ·) yields the
existence of ε̂ > 0 such that

‖h(y, 0) − h(y, ε)‖ < η whenever ε < ε̂ .

Thus, given any ε ∈ (0, ε̂), the continuous mapping h(y, 0)−h(y, ε) transforms
the ball Bη into itself. Employing the Brouwer fixed-point theorem, we find a
point yε ∈ Bη satisfying

h(yε, 0) − h(yε, ε) = yε for all ε ∈ (0, ε̂) .

This implies by h(y, 0) ≡ y that

h(yε, ε) = g
(

p(yε), ε
)

= g(γ ε, ε) for some γ ε ∈ P with g(γ ε, 0) = yε .

Taking into account the construction of g(·, ·), we conclude that the trajecto-
ries xγ ε,ε(·) generated by the multineedle variations uγ ε,ε(·) under considera-
tion satisfy the equality constraints (6.76) for all ε ∈ (0, ε̂). Moreover, for the
variations along the cost functional one has
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M∑
j=1

N j∑
i=1

〈
∇ϕ0

(
x̄(b)

)
,Λτ j ,vi j ,αi j (γ ε) x̄(b)

〉

=
m+1∑
s=1

γ ε
s

( M∑
j=1

N j∑
i=1

〈
∇ϕ0

(
x̄(b)

)
,Λ

τ j ,vi j ,α
(s)
i j

x̄(b)
〉)

<

m+1∑
s=1

γ ε
s ν < ν whenever ε ∈ (0, ε̂) .

The latter implies, similarly to the case of inequality constraints, that

ϕ0

(
xγ ε,ε(b)

)
< ϕ0

(
x̄(b)

)
along some feasible solutions to the equality constrained problem (6.63),
(6.65). This contradicts the optimality of the process {ū(·), x̄(·)} in this prob-
lem and completes the proof of the lemma. �

Based on Lemma 6.45 and the arguments developed in Subsects. 6.3.2 and
6.3.3, we finally justify Theorem 6.37 in the remaining case of equality con-
straints and thus complete the whole proof of this theorem.

Proof of Theorem 6.37 for problems with equality constraints. Tak-
ing into account Lemma 6.45, there are the following two possible relation-
ships between the linearized image set S in (6.72) corresponding the equality
constraints (6.76) and the set of forbidden points S<:

(a) S ∩ S< = ∅;
(b) S ∩ S< �= ∅ and 0 ∈ bd

(
proj IRm S

)
.

Consider first case (a). Since both sets S and S< are convex, we employ
the classical separation theorem for convex sets and find a nonzero vector
(λ0, . . . , λm) ∈ IRm+1 such that

m∑
i=0

λi yi ≥
m∑

i=0

λi zi for all (y0, . . . , ym) ∈ S and (z0, . . . , zm) ∈ S< .

It easily implies, by the structure of the forbidden set S<, that λ0 ≥ 0 and
that the relation (6.75) holds. To complete the proof of the theorem in this
case, we now proceed exactly as in the case of inequality constraints at the
very end of Subsect. 6.3.3.

It remains to examine case (b). Denote Ω := proj IRm S and observe that
this set is closed and convex in IRm . Since 0 ∈ bdΩ, we apply the supporting
hyperplane theorem for convex sets and find a nonzero m-vector (λ1, . . . , λm)
supporting Ω at the origin. Then we again arrive at the basic relation (6.75)
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with the nontrivial (m + 1)-vector (0, λ1, . . . , λm) and complete the proof of
the theorem similarly to the case of inequality constraints. �

Note that the continuity assumption on the equality constraint functions
ϕi around x̄(b), an addition to their Fréchet differentiability at this point, is
essential for the validity of Theorem 6.37 even in the case of finite-dimensional
state space X with the trivial dynamics f = 0; see Example 5.12.

6.4 Approximate Maximum Principle
in Optimal Control

This section is devoted to optimal control problems for a parametric family
of dynamical systems governed by discrete approximations of control systems
with continuous time. Discrete/finite-difference approximations play a promi-
nent role in both qualitative and numerical aspects of optimal control. While
considered as a process with a decreasing step of discretization, they occupy an
intermediate position between continuous-time control systems and discrete-
time control systems with fixed steps. Recall that discrete approximations
of general control problems for differential inclusions have been studied in
Sect. 6.1, but the attitude there was different from that in this section. Our
previous direction was from discrete to continuous: to establish necessary opti-
mality conditions for discrete-time systems with fixed discretization steps and
then to use well-posed discrete approximations as a vehicle in deriving opti-
mality conditions for continuous-time control systems. The results obtained
in this way in Sect. 6.1 provide necessary conditions of a maximum principle
type only under some convexity/relaxation assumptions imposed a priori on
the system dynamics.

Now we are going to explore the other direction in the relationship be-
tween discrete-time and continuous-time control systems: from continuous to
discrete. Having in mind that the Pontryagin maximum principle (PMP) and
its extensions to nonsmooth problems and differential inclusions hold without
any convexity/relaxation assumptions on the continuous-time dynamics, it is
challenging to clarify the possibility to establish necessary optimality condi-
tions of the maximum principle type for discrete approximations. The results
obtained in this direction are rather surprising; see below.

6.4.1 Exact and Approximate Maximum Principles
for Discrete-Time Control Systems

As seen in Sects. 6.2 and 6.3, the relations of the maximum principle involv-
ing the Weierstrass-Pontryagin maximum condition hold for continuous-time
control systems with no a priori convexity assumptions. This happens due to
specific features of the continuous-time dynamics that generates some hid-
den convexity property inherent in such control systems. Probably the most
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striking and deep manifestation of the hidden convexity for continuous-time
systems is given by the fundamental Lyapunov theorem on the range con-
vexity of nonatomic/continuous vector measures, which is equivalent to the
Aumann convexity theorem for set-valued integrals; see, e.g., the discussion in
the proof of Lemma 6.18 and the references therein. In the proof of the maxi-
mum principle for control systems with smooth dynamics given in Sect. 6.3 we
didn’t invoke these results while exploiting directly the time continuity in the
construction of needle (and multineedle) variations generating the automatic
convexity of the linearized image set as in Lemma 6.44. One cannot expect
such properties for discrete-time systems described by the general discrete
inclusions of the type

x(t + 1) ∈ F(x(t), t), t = 0, . . . , K − 1 ,

or by their parameterized control representations

x(t + 1) = f
(
x(t), u(t), t

)
, u(t) ∈ U, t = 0, . . . , K − 1 ,

where K ∈ IN signifies the number of steps (final discrete time) for the dis-
crete dynamic process. However, the discrete maximum principle holds if the
sets of “discrete velocities” F(x, t), or their counterparts f (x,U, t) for the
parameterized control systems, are assumed to be convex. In this case the
maximum condition is actually a direct consequence of the Euler-Lagrange
inclusion as discussed above. Indeed, it follows from the extremal property
of the coderivative to convex-valued mappings from Theorem 1.34 due to a
special representation of the normal cone to convex sets.

As well known, the discrete maximum principle may not hold, even for
simple control systems with smooth dynamics, if the above velocity sets are
not convex. We now present an example of the failure of the discrete maxi-
mum principle (as a natural analog of the Pontryagin maximum principle for
discrete-time control systems) for a family of simple free-endpoint problems
with smooth dynamics. In this example the Hamilton-Pontryagin function
achieves its global minimum (instead of maximum) along any feasible control.
As always in this chapter, a “free-endpoint” problem means that there are
no constraints on the right endpoint of the system trajectories, while the left
endpoint may be fixed.

Example 6.46 (failure of the discrete maximum principle). There is
a family of optimal control problems of minimizing a linear function over
two-dimensional discrete-time control systems with smooth dynamics and no
endpoint constraints such that any feasible control for these problems doesn’t
satisfy the discrete maximum principle.

Proof. Consider the following family of optimal control problems with a two-
dimensional state vector x = (x1, x2) ∈ IR2:
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [u, x ] = ϕ
(
x(K )

)
:= x2(3) subject to

x1(t + 1) = ϑ(u(t), t), x1(0) = 0 ,

x2(t + 1) = γ
(
x1(t)

)2 + ηx2(t) −
(
γ /η)

(
ϑ(u(t), t)

)2
, x2(0) = 0 ,

u(t) ∈ U, t = 0, 1, 2 ,

where the scalar function ϑ(·, ·), the numbers γ, η, and the control set U are
arbitrary. Then (a natural discrete counterpart of) the Hamilton-Pontryagin
function for this system is

H
(
x(t), p(t + 1), u, t

)
: =

〈
p(t + 1), f

(
x(t), u, t

)〉
= p1(t + 1)ϑ(u, t) + γ p2(t + 1)

(
x1(t)

)2
+ηp2(t + 1)x2(t) −

(
γ /η)

(
ϑ(u, t)

)2
,

where the adjoint trajectory p(·) satisfies the corresponding discrete analog
of the system (6.67) given by

p(t) = ∇x H
(
x(t), p(t + 1), u(t), t

)
, t ∈

{
0, . . . , K − 1

}
=
{
0, 1, 2} ,

with the boundary/transversality condition

p(K ) = −∇ϕ
(
x(K )

)
= (0,−1) at K = 3 .

For the problem under consideration one has

p2(3) = −1, p2(2) = −η, p2(1) = −η2 ,

p1(3) = 0, p1(2) = −γ x1(2) = −2γϑ
(
u(1), 1

)
,

p1(1) = −2γ ηx1(1) = −2γ ηϑ
(
u(0), 0

)
.

Then considering only the terms depending on u in the Hamilton-Pontryagin
function, we get

H(u, 0) = −γ η
[
2ϑ

(
u(0), 0

)
ϑ(u, 0) −

(
ϑ(u, 0)

)2]
,

H(u, 1) = −γ
[
2ϑ

(
u(1), 1

)
ϑ(u, 1) −

(
ϑ(u, 1)

)2]
.

This shows that, given an arbitrary ϑ(·, ·) and U , the functions H(u, 0) and
H(u, 1) attain their global minimum at any u(0) and u(1) whenever γ > 0 and
γ η > 0, respectively. Thus the above relationships of the discrete maximum
principle are not necessary for optimality in the family of optimal control
problems under consideration. �

It is worth mentioning that the Hamilton-Pontryagin function in the above
example does attain its global maximum over u ∈ U for optimal controls when
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t = K − 1 = 2. This can be shown by using the increment formula applied
to concave cost functionals along needle variations of optimal controls; cf. the
arguments below in Subsect. 6.4.2. Moreover, the discrete maximum principle
holds true in the family of problems from Example 6.46 for all t , i.e., it provides
necessary optimality conditions along optimal controls at every time moment,
if and only if

γ ≤ 0 and η ≥ 0 .

This follows from the above consideration and the results of Sect. 17 in Mor-
dukhovich’s book [901], where some individual conditions for the validity of
the discrete maximum principle are given. Thus the simultaneous fulfillment
of the conditions γ ≤ 0 and η ≥ 0 fully describes the relationships between the
initial data of the problems from Example 6.46, which ensure the fulfillment
of the discrete maximum principle. Note that overall the results in this di-
rection obtained in the afore-mentioned book [901] strongly take into account
interconnections between the initial data of nonconvex discrete-time control
systems; see more discussions and examples therein.

The main attention in this section is paid not to optimal control prob-
lems governed by dynamical systems with fixed discrete time but to finite-
difference/discrete approximations of continuous-time problems studied in the
preceding section. This means that instead of the continuous-time control sys-
tem (6.61) we consider a sequence of its finite-difference analogs given by⎧⎨

⎩
xN (t + hN ) = xN (t) + hN f

(
xN (t), uN (t), t

)
, xN (a) = x0 ∈ X ,

u(t) ∈ U, t ∈ TN :=
{

a, a + hN , . . . , b − hN
}
,

(6.77)

with N ∈ IN and hN := (b − a)/N . Recall that discrete approximations of
differential/evolution inclusions have been studied in Sect. 6.1 being used
there as a vehicle to derive necessary optimality conditions for continuous-time
control problems. Now our goal is quite opposite: to look at optimal control
problems for discrete approximations from the viewpoint of their continuous-
time counterparts. The key question is:

Would it be possible to obtain a certain natural analog of the Pontryagin
maximum principle for optimal control problems governed by nonconvex finite-
difference systems of type (6.77) as N → ∞?

If the answer is no, then such a potential instability of the PMP may pose
serious challenges to its implementation in any numerical algorithm involving
finite-difference approximations of time derivatives.

To begin with, for each N ∈ IN we consider the problem of minimizing a
smooth endpoint function ϕ0

(
x(b)

)
over discrete-time process {uN (·), xN (·)}

satisfying (6.77). The exact PMP analog for each of these problems, the
discrete maximum principle, is written as follows: given an optimal process
{ūN (·), x̄N (·)}, there is an adjoint arc pN (·), t ∈ TN ∪ {b}, satisfying
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pN (t) = pN (t + hN ) + hN∇x H
(
x̄N (t), pN (t + hN ), ūN (t), t

)
(6.78)

as t ∈ TN with the transversality condition

pN (b) = −∇ϕ0

(
x̄N (b)

)
(6.79)

and such that the exact maximum condition

H
(
x̄N (t), pN (t + hN ), ūN (t), t

)
= max

u∈U
H
(
x̄N (t), pN (t + hN ), u, t

)
, t ∈ TN .

is valid whenever N ∈ IN , with the usual Hamilton-Pontryagin function

H(x, p, u, t) :=
〈

p, f (x, u, t)
〉
.

It follows from Example 6.46 (via standard rescaling) and the discussion
above that this (exact) discrete maximum principle may be generally violated
even for simple classes of optimal control problems governed by discrete ap-
proximation systems of type (6.77) whenever N ∈ IN . This may signify a
possible instability of the PMP under discrete approximations. Note, how-
ever, that to require the fulfillment of such an exact counterpart of the PMP
for discrete approximation systems is too much to ensure the PMP stability
under discretization of continuous-time control systems.

What we really need for this purpose is the validity, along every sequence of
optimal solutions {ūN (·), x̄N (·)} to the discrete approximation problems while
N ∈ IN becomes sufficiently large, of the approximate maximum condition

H
(
x̄N (t), pN (t + hN ), ūN (t), t

)
= max

u∈U
H
(
x̄N (t), pN (t + hN ), u, t

)
+ ε(t, hN )

for all t ∈ TN with some εN (t, hN ) → 0 as N → ∞ uniformly in t ∈ TN , where
pN (·) are the corresponding adjoint trajectories satisfying (6.78) and (6.79). In
this case we say that the approximate maximum principle (AMP) holds for the
discrete approximation problems under consideration. Such an approximate
analog of the PMP ensures the discretization stability of the latter and thus
justifies the possibility to employ the PMP in computer calculations and sim-
ulations of nonconvex continuous-time control systems. Furthermore, giving
necessary optimality conditions for sequences of discrete approximation prob-
lems, the AMP plays essentially the same role as the (exact) discrete maxi-
mum principle in solving discrete-time control problems with sufficiently small
steps; see particularly Example 6.68. However, in the case of large stepsizes
h the approximate maximum condition, still being necessary for optimality,
may be far removed from the exact maximum.

It is proved in Subsect. 6.4.3 that the AMP holds, with ε(hN , t) = O(hN ) in
arbitrary Banach state spaces X , for smooth free-endpoint problems of optimal
control, i.e., for problems of minimizing smooth (continuously differentiable)
cost functions over discrete approximation systems (6.77) with smooth dy-
namics and no endpoint constraints. The proof is purely analytic based on
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using (single) needle control variations and a discrete counterpart of the in-
crement formula from Subsect. 6.3.2.

The crucial difference between the PMP for continuous-time systems and
the AMP for discrete approximations is that the latter result doesn’t have an
expected (lower) subdifferential analog for optimal control problems involv-
ing the simplest nonsmooth (even convex) cost functions! The corresponding
counterexample is presented in Subsect. 6.4.3, together with those showing
the violation of the AMP for optimal control problems with Fréchet differen-
tiable (but not continuously differentiable) cost functions as well as for control
problems with nonsmooth dynamics.

Thus the AMP happens to be very sensitive to nonsmoothness. On the
other hand, in Subsect. 6.4.3 we derive an upper subdifferential version of the
AMP, parallel to that in Subsect. 6.3.1 for continuous-time systems, which
holds however for a more restrictive class of cost functions in comparison with
the one for continuous-time systems. This class of uniformly upper subdiffer-
entiable functions is introduced and studied in Subsect. 6.4.2.

The case of optimal control problems for discrete approximation systems
(6.77) with endpoint constraints is much more involved. Considering control
systems with smooth inequality constraints of the type

ϕi
(
xN (b)

)
≤ 0, i = 1, . . . ,m ,

we formulate in Subsect. 6.4.4 the AMP with perturbed complementary slack-
ness conditions under some properness assumption on the sequence of optimal
controls, which can be treated as a discrete counterpart of piecewise continu-
ity. The latter assumption happens to be essential for the validity of the AMP
for nonconvex constrained systems as demonstrated by an example. The proof
of the AMP given in Subsect. 6.4.5 reveals an approximate counterpart of the
hidden convexity property for finite-difference control problems under consid-
eration; see below for more details and discussions. We also derive the upper
subdifferential form of the AMP for inequality constrained problems with uni-
formly upper subdifferentiable endpoint functions ϕi , i = 0, . . . ,m.

A proper setup for discrete approximations of continuous-time control
problems with endpoint constraints of the equality type

ϕi
(
x(b)

)
= 0, i = m + 1, . . . ,m + r ,

involves the constraint perturbations∣∣ϕi
(
xN (b)

)∣∣ ≤ ξi N , i = m + 1, . . . ,m + r ,

with ξi N ↓ 0 as N → ∞. It is proved in Subsect. 6.4.5 that the AMP holds
for discrete approximation problems with perturbed equality constraints de-
scribed by smooth functions provided that the following consistency
condition
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lim sup
N→∞

hN

ξi N
= 0 for all i = m + 1, . . . ,m + r . (6.80)

is imposed. This means that the equality constraint perturbations ξi N should
tend to zero slower than the discretization stepsize hN , which particularly
requires that ξi N �= 0. We give an example showing the consistency condition
(6.80) is essential for the fulfillment of the AMP, which may be violated even
when ξi N = O(hN ).

The results obtained admit an extension to discrete approximations of
systems with time delays in state variables, which relates to the case of in-
commensurability between the length b − a of the time interval and the ap-
proximation stepsize hN ; see Subsect. 6.4.6. On the other hand, we present an
example showing the AMP doesn’t hold for discrete approximations of neutral
systems, even in the case of smooth free-endpoint control problems.

Before deriving the mentioned results on the AMP, let us describe and
study the class of uniformly upper subdifferentiable functions on Banach spaces
for which the upper subdifferential form of the AMP will be developed. This
class particularly includes every continuously differentiable function as well as
every concave continuous function that are of special interest for applications.

6.4.2 Uniformly Upper Subdifferentiable Functions

The main object of this subsection is the class of functions defined as follows.

Definition 6.47 (uniform upper subdifferentiability). A real-valued
function defined on a Banach space X is uniformly upper subdifferen-
tiable around a point x̄ if for every x from some neighborhood V of x̄ there
exists a nonempty set D+ϕ(x) ⊂ X∗ described by: for any given ε > 0 there
is ν > 0 such that x∗ ∈ D+ϕ(x) if and only if

ϕ(v) − ϕ(x) − 〈x∗, v − x〉 ≤ ε‖v − x‖ (6.81)

whenever v ∈ V with ‖v − x‖ ≤ ν and x∗ ∈ D+ϕ(x).

It is easy to see that this class contains every smooth (i.e., C1 around x̄) )
function with D+ϕ(x) =

{
∇ϕ(x)} and also every concave continuous function

with D+ϕ(x) = ∂+ϕ(x) as x is around x̄ in any Banach space. Furthermore,
one can derive from the definition that the above class is closed with respect
to taking the minimum over compact sets. Note that even if ϕ is Lipschitz
continuous around x̄ and Fréchet differentiable at x̄ , it may not be uniformly
upper subdifferentiable around this point. A simple example is provided by
the standard function ϕ: IR → IR defined by ϕ(x) := x2 sin(1/x) for x �= 0 and
ϕ(0) := 0 with x̄ = 0.

Before formulating the main result of this subsection, we consider an ar-
bitrary function ϕ: X → IR finite at x̄ and describe relationships between the
Fréchet upper subdifferential of ϕ at x̄ defined in (1.52) by
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∂̂+ϕ(x̄) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

x→x̄

ϕ(x) − ϕ(x̄) − 〈x∗, x − x̄〉
‖x − x̄‖ ≤ 0

}
and the two modifications of the so-called Dini (or Dini-Hadamard) upper
directional derivative of ϕ at x̄ defined by

d+(x̄ ; z) := lim sup
y→z
t↓0

ϕ(x̄ + t y) − ϕ(x̄)
t

for the standard (strong) version and by

d+
w (x̄ ; z) := lim sup

y
w→z

t↓0

ϕ(x̄ + t y) − ϕ(x̄)
t

for its weak counterpart, where y
w→ z signifies the weak convergence in X . The

next proposition used below is definitely interesting for its own sake; it reveals
the duality between the subgradient and directional derivative constructions
under consideration that generally holds in reflexive spaces for the weak di-
rectional derivative and in finite dimensions for the strong one. We formulate
it for the case of upper constructions needed in this section; it readily implies
the lower counterpart.

Proposition 6.48 (relationships between Fréchet subgradients and
Dini directional derivatives). One always has

∂̂+ϕ(x̄) ⊂
{

x∗ ∈ X∗∣∣ 〈x∗, z〉 ≥ d+
w ϕ(x̄ ; z) for all z ∈ X

}
⊂
{

x∗ ∈ X∗∣∣ 〈x∗, z〉 ≥ d+ϕ(x̄ ; z) for all z ∈ X
}
,

where the equality holds in the first inclusion when X is reflexive, while it
holds in the second one when dim X < ∞. Moreover,

d+ϕ(x̄ ; z) = lim sup
t↓0

ϕ(x̄ + t z) − ϕ(x̄)
t

(6.82)

if ϕ is locally Lipschitzian around x̄.

Proof. To prove the final inclusion in the proposition, it is sufficient to observe
that for every x∗ ∈ ∂̂+ϕ(x̄) and z ∈ X one has

d+ϕ(x̄ ; z) − 〈x∗, z〉 = ‖z‖ · lim sup
y→z
t↓0

ϕ(x̄ + t y) − ϕ(x̄) − t〈x∗, y〉
t

≤ 0 ;

the other is similar. Let us prove that the first inclusion holds as equality if X
is reflexive. To proceed, we pick x∗ /∈ ∂̂+ϕ(x̄) and take any γ > 0. Then there
is a sequence xk → x̄ such that
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ϕ(xk) − ϕ(x̄) − 〈x∗, xk − x̄〉 − γ ‖xk − x̄‖ > 0 for all k ∈ IN .

Since X is reflexive, we suppose without loss of generality that the sequence
(xk − x̄)/‖xk − x̄‖ weakly converges to some z ∈ X . Then

d+ϕ(x̄ ; z) ≥ lim sup
k→∞

ϕ(xk) − ϕ(x̄)
‖xk − x̄‖ ≥ 〈x∗, z〉 + γ ,

which ensures the required equality, since γ was chosen arbitrarily.
It remains to justify representation (6.82) if ϕ is locally Lipschitzian around

x̄ with some modulus 	 > 0. Then we get

|ϕ(x̄ + t y) − ϕ(x̄ + t z)| ≤ t	‖y − z‖ for any y, z ∈ X

when t > 0 is sufficiently small. Thus one has

d+ϕ(x̄ ; z) = lim sup
y→z
t↓0

[ϕ(x̄ + t z) − ϕ(x̄)
t

+
ϕ(x̄ + t y) − ϕ(x̄ + t z)

t

]

= lim sup
t↓0

ϕ(x̄ + t z) − ϕ(x̄)
t

whenever z ∈ X ,

which justifies (6.82) and completes the proof of the proposition. �

Now we are ready to establish important properties of uniformly upper
subdifferentiable functions that are employed in what follows being certainly
of independent interest. It shows, in particular, that such functions enjoy the
upper regularity property formulated right after Definition 1.91.

Theorem 6.49 (properties of uniformly upper subdifferentiable func-
tions). Let X be reflexive, and let ϕ be continuous at x̄ and uniformly upper
subdifferentiable around this point with the subgradient sets D+ϕ(x) from De-
finition 6.47. Then there is a neighborhood of x̄ in which ϕ is Lipschitz con-
tinuous and one can choose

D+ϕ(x) = ∂̂+ϕ(x) = ∂+ϕ(x) .

Proof. The subgradient sets D+ϕ(x) are obviously convex. Moreover, it is
easy to check that each of these sets is norm-closed in X∗ and hence also
weakly closed due to its convexity and the assumed reflexivity of X . Let us
show that D+ϕ(x) is uniformly bounded in X∗ around x̄ . Assume the contrary
and select some sequences xk → x̄ and x∗

k ∈ D+ϕ(xk) with ‖x∗
k ‖ → ∞ as

k → ∞. Then employing the Hahn-Banach theorem and taking into account
the reflexivity of X , we find uk ∈ X satisfying the relations

〈x∗
k , uk〉 = ‖x∗

k ‖1/2 and ‖uk‖ = ‖x∗
k ‖−1/2 for all k ∈ IN .

Setting now vk := xk + uk , one has from (6.81) that
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ϕ(vk) − ϕ(xk) ≤ −〈x∗
k , uk〉 + ε‖uk‖

with ‖uk‖ → 0 and 〈x∗
k , uk〉 → ∞ by the construction above. This yields that

ϕ(vk) − ϕ(xk) → −∞ while xk, vk → x̄ as k → ∞, which contradicts the
required continuity of ϕ at x̄ and thus justifies the uniform boundedness of
D+ϕ(x) around this point.

Next we show that ϕ is locally Lipschitzian around x̄ . It can be done
similarly to the proof of Theorem 3.52 based on the mean value inequality
from Theorem 3.49 that holds for D+ϕ(·). However, we may easier proceed
directly invoking the uniform boundedness of the sets D+ϕ(x) around x̄ and
property (6.81). Indeed, assume the contrary and find sequences xk → x̄ and
vk → x̄ satisfying

|ϕ(vk) − ϕ(xk)| > k‖vk − xk‖ as k → ∞ .

Suppose for definiteness that ϕ(vk) − ϕ(xk) > k‖vk − xk‖; the other case is
symmetric. Now using the uniform upper subdifferentiability of ϕ, we find a
sequence of x∗

k ∈ D+ϕ(xk) satisfying

k‖vk − xk‖ < ϕ(vk) − ϕ(xk) ≤ 〈x∗
k , vk − xk〉 + ε‖vk − xk‖

≤
(
‖x∗

k ‖ + ε
)
‖vk − xk‖

for any given ε > 0 when k is sufficiently large. This yields that ‖x∗
k ‖ → ∞

as k → ∞, which contradicts the uniform boundedness of the sets D+ϕ(x)
around x̄ and thus justifies the local Lipschitzian property of ϕ.

It follows from the definition of Fréchet upper subgradients in (1.52) and
the construction of D+ϕ(x) in (6.81) that one always has D+ϕ(x) ⊂ ∂̂+ϕ(x).
Let us show in fact that D+ϕ(x) = ∂̂+ϕ(x) around x̄ . First observe that
the set-valued mapping D+ϕ: V →→ X∗ is closed-graph in the norm×weak
topology of X × X∗ on any closed subset of V . Using this fact and the local
Lipschitz continuity of ϕ around x̄ , we derive from (6.81) that ϕ is directionally
differentiable in the classical sense

ϕ′(x ; z) := lim
t↓0

ϕ(x̄ + t z) − ϕ(x̄)
t

, z ∈ X ,

whenever x is sufficiently close to x̄ ; moreover, we have the representation

ϕ′(x ; z) = min
{
〈x∗, z〉

∣∣ x∗ ∈ D+ϕ(x)
}
, (6.83)

where the minimum is attained due to the weak closedness of D+ϕ(x) in X∗.
Since D+ϕ(x) is also convex, one gets from (6.83) and the results of Propo-
sition 6.48 that ∂̂+ϕ(x) ⊂ D+ϕ(x). Indeed, assuming the opposite and then
separating x∗ /∈ D+ϕ(x) from the convex and norm-closed set D+ϕ(x) ⊂ X∗,
we arrive at a contradiction with (6.82) and (6.83). Finally, the equality
D+ϕ(x) = ∂+ϕ(x) and the upper regularity of ϕ around x̄ follows from the
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mention closed-graph property of D+ϕ(·) by the upper subdifferential version
of Theorem 2.34 on the limiting representation of basic subgradients. This
completes the proof of the theorem. �

As mentioned above, properties of uniformly upper subdifferentiable func-
tions allow us to derive the AMP in optimal control problems for discrete
approximations with upper subdifferential transversality conditions; see the
following subsections. This requires more from the functions and spaces un-
der consideration in comparison with the assumptions needed to justify upper
subdifferential transversality conditions in the PMP for continuous-time sys-
tems as well as upper subdifferential optimality conditions in problems of
mathematical programming; cf. Sects. 5.1, 5.2, and 6.3. These significantly
more restrictive requirements needed for the AMP are due to the parametric
nature of finite-difference systems treated as a process as N → ∞. We’ll see
in the next subsection that, even in the case of differentiable cost functions in
free-endpoint control problems with finite-dimensional state spaces, the con-
tinuity of the derivatives is essential for the validity of the AMP in sequences
of discrete approximations.

6.4.3 Approximate Maximum Principle
for Free-Endpoint Control Systems

This subsection is devoted to optimal control problems for sequences of finite-
difference systems (6.77) with no endpoint constraints on the right-hand end of
trajectories. As in the case of continuous-time systems, free-endpoint problems
for discrete approximations are essentially different from their constrained
counterparts. The main positive result of this subsection is the approximate
maximum principle for free-endpoint problems in Banach spaces with up-
per subdifferential transversality conditions valid for uniformly upper subd-
ifferentiable cost functions. In particular, this justifies the AMP for control
problems with continuously differentiable cost functions, where the bound-
ary/transversality condition for the adjoint system (6.78) is written in the
classical form (6.79). On the other hand, we present an example showing that
the AMP doesn’t hold when the cost function is differentiable at the point of
interest but not C1 around it. Other examples show that the AMP is very
sensitive to nonsmoothness: it doesn’t hold for control problems with non-
smooth dynamics and—which is even more striking—for nice systems with
convex nonsmooth cost functions.

Consider the sequence of optimal control problems (P0
N ) for discrete-time

systems studied in this subsection:

minimize JN [uN , xN ] := ϕ0

(
xN (b)

)
(6.84)
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over control-trajectory pairs {uN (·), xN (·)} satisfying the control system (6.77)
as N → ∞. Given a sequence of optimal solutions {ūN (·), x̄N (·)} to problems
(P0

N ), we impose the following standing assumptions:

—–the control space U is metric, the state space X is Banach;

—–there is an open set O containing x̄N (t) for all t ∈ TN ∪ {b} such that
f is Fréchet differentiable in x with both f (x, u, t) and its state derivative
∇x f (x, u, t) continuous in (x, u, t) and uniformly norm-bounded whenever
x ∈ O, u ∈ U , and t ∈ TN ∪ {b} as N → ∞;

—–the sequence {x̄N (b)} belongs to a compact subset of X .

The latter assumption is not restrictive at all in finite dimensions: it follows
from standard conditions ensuring the uniform boundedness of admissible
trajectories for continuous-time control systems. In infinite dimensions it can
be derived from the conditions imposed in (H1) of Subsect. 6.1.1; cf. the proof
of Theorem 6.13 and the references therein.

Here is the main positive result of this subsection.

Theorem 6.50 (AMP for free-endpoint control problems with upper
subdifferential transversality conditions). Let the pairs {ūN (·), x̄N (·)}
be optimal to problems (P0

N ) under the standing assumptions made. Sup-
pose in addition that the cost function ϕ0 is uniformly upper subdifferentiable
around the limiting point(s) of the sequence {x̄N (b)} with the correspond-
ing subgradient sets D+(x). Then for every sequence of upper subgradients
x∗

N ∈ D+ϕ0

(
x̄(b)

)
there is ε(t, hN ) → 0 as N → ∞ uniformly in t ∈ TN such

that one has the approximate maximum condition

H
(
x̄N (t), pN (t + hN ), ūN (t), t

)
= max

u∈U
H
(
x̄N (t), pN (t + hN ), u, t

)
+ε(t, hN ), t ∈ TN ,

(6.85)

where each pN (·) is the corresponding trajectory for the adjoint system (6.78)
with the boundary/transversality condition

pN (b) = −x∗
N for all N ∈ IN . (6.86)

Furthermore, this result holds with any x∗
N ∈ ∂̂+ϕ

(
x̄N (b)

)
in (6.86) if in addi-

tion X is reflexive and ϕ0 is continuous at the optimal points.

Proof. Considering a sequence of optimal solutions {ūN (·), x̄N (·)} to (P0
N ),

we suppose that the trajectories x̄N (t) belong to the uniform neighborhoods
fixed in the assumptions made for all N ∈ IN . It follows from Definition 6.47 of
the uniform upper subdifferentiability for ϕ0 that D+ϕ0

(
x̄N (b)

)
�= ∅ and that

inequality (6.81) holds for any x∗
N ∈ D+ϕ0

(
x̄N (b)

)
as N → ∞. Now taking an

arbitrary sequence of x∗
N ∈ D+ϕ0

(
x̄N (b)

)
, we get

ϕ0(x) − ϕ0

(
x̄N (b)

)
≤ 〈x∗

N , x − x̄N (b)〉 + o
(
‖x − x̄N (b)‖

)
(6.87)
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with
o
(
‖x − x̄N (b)‖

)
‖x − x̄N (b)‖ → 0 as x → xN (b) uniformly in N .

Letting pN (b) := −x∗
N as in (6.86), we derive from (6.87) that

J [uN , xN ] − J [ūN , x̄N ] ≤ −
〈

pN (b),∆xN (b)
〉

+ o
(
‖∆xN (b)‖

)
,

with ∆xN (t) := xN (t) − x̄N (t), for all admissible processes in (P0
N ) whenever

xN (b) is sufficiently close to x̄N (b). Taking into account the identity

〈
pN (b),∆xN (b)〉 =

∑
t∈TN

〈
pN (t + hN ) − pN (t),∆xN (t)

〉

+
∑
t∈TN

〈
pN (t + hN ),∆xN (t + hN ) −∆xN (t)

〉

and using the smoothness of f in x , we get from the above inequality that

0 ≤ J [uN , xN ) − J [ūN , x̄N ] ≤ −
∑
t∈TN

〈
pN (t + hN ) − pN (t),∆xN (t)

〉

−hN

∑
t∈TN

〈
pN (t + hN ),∇x f

(
x̄N (t), ūN (t), t

)
∆xN (t)

〉

−hN

∑
t∈TN

∆u H(x̄N (t), pN (t + hN ), ūN (t), t
)

−hN

∑
t∈TN

ηN (t) + o
(
‖∆xN (b)‖

)
,

(6.88)

where the remainder ηN (t) is computed by

ηN (t) =
〈
∇x H

(
x̄N (t), pN (t + hN ), uN (t), t

)
−∇x H

(
x̄N (t), pN (t + hN ), ūN (t), t

)
,∆xN (t)

〉
+ o

(
‖∆xN (t)‖

)
with the quantity o(‖∆xN (t)‖) being uniform in N due to the assumptions
on ∇x f , and where the increment ∆u H is defined similarly to the one in
Subsect. 6.3.2 for continuous-time systems.

Now we consider (single) needle variations of the optimal controls ūN (·) in
the following form:

uN (t) =

⎧⎨
⎩

v if t = τ ,

ūN (t) if t ∈ TN \ {τ} ,
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where v ∈ U and τ = τ (N) ∈ TN as N ∈ IN . All these controls are obvi-
ously feasible for the discrete approximation problems under consideration,
which are not subject to endpoint constraints. The trajectory increments cor-
responding to the needle variations satisfy the relations

∆xN (t) = 0 for t = a, . . . , τ ; ‖∆xN (t)‖ = O(hN ) for t = τ + hN , . . . , b .

Taking this into account and substituting the needle variations uN (·) into the
increment inequality (6.88), one gets

0 ≤ J [uN , xN ] − J [ūN , x̄N ] ≤ −hN∆u H
(
x̄N (τ ), pN (τ + hN ), ūN (τ ), τ

)
+ o(hN ) .

Arguing by contradiction, we directly derive from the latter inequality the
approximative maximum condition (6.85).

To complete the proof of the theorem, it remains to apply Theorem 6.49 on
uniform upper subdifferentiability to the cost function ϕ0. This ensures that
x∗

N may be taken from the whole Fréchet upper subgradient sets ∂̂+ϕ0(
(
x̄(b)

)
in the transversality conditions (6.86) as N → ∞ provided that X is reflexive
and that ϕ0 is assumed to be continuous a priori. �

Remark 6.51 (discrete approximations versus continuous-time sys-
tems.) Observe that the proof of Theorem 6.50 is similar to the one for
continuous-time systems with free endpoints; cf. the proofs of Theorem 6.37
in Subsect. 6.3.2 and of its upper subdifferential version (Theorem 6.38) in
Subsect. 6.3.1. The given proofs in both continuous-time and discrete-time
settings are based on using the increment formulas for cost functionals and
(single) needle variations of optimal controls. In a sense, the proof for discrete
approximations problems is a simplified version of that given for systems with
continuous time (which is definitely not the case when endpoint constraints
are involved; see the next subsection). On the other hand, there are two signif-
icant differences between the results and proofs for continuous-time systems
and those for discrete approximations.

Firstly, in the case of continuous-time systems there is a possibility of
using a small parameter ε as the length of needle variations, which ensures the
smallness of trajectory increments ∆x(t) = O(ε) and happens to be crucial for
establishing the exact maximum principle in continuous-time optimal control.
In systems of discrete approximations the smallness of trajectory increments
is provided by the decreasing stepsize hN , which is a parameter of the problem
but not of variations. This leads to the approximate maximum condition with
the error as small as the step of discretization. Of course, such a device is not
possible when hN �→ 0.

The second difference concerns the parametric nature of discrete approxi-
mation problems in contrast to problems with continuous time. This requires
the more restrictive uniformity assumptions imposed on cost functions in com-
parison with the case of continuous-time systems.
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The following two consequences of Theorem 6.50 and its proof deal with
important classes of cost functions that are automatically uniformly upper
subdifferentiable and admit more precise versions of the AMP. Note that these
results don’t require the reflexivity assumption on the state space X as in the
second part of Theorem 6.50; they are valid in arbitrary Banach spaces.

Corollary 6.52 (AMP for free-endpoint control problems with
smooth cost functions). Let the pairs {ūN (·), x̄N (·)} be optimal to prob-
lems (P0

N ) under the standing assumptions made. Suppose in addition that
the cost function ϕ0 is continuously differentiable around the limiting point(s)
of {x̄N (b)}. Then the approximate maximum principle of Theorem 6.50 holds
with the transversality condition (6.79) for the corresponding adjoint trajectory
pN (·) whenever N ∈ IN . Moreover, we can take ε(t, hN ) = O(hN ) in the max-
imum condition (6.85) if both ∇x f (·, u, t) and ∇ϕ0(·) are locally Lipschitzian
around x̄N (·) uniformly in u ∈ U , t ∈ TN , and N → ∞.

Proof. As mentioned above, in any Banach space X we have D+ϕ(x) =
{∇ϕ(x)} in a neighborhood of x̄ if ϕ is C1 around this point. It can be easily
shown that (6.87) holds as equality for smooth functions ϕ0; moreover, one
has |o(η)| ≤ 	η2 therein if ∇ϕ0 is locally Lipschitzian. Note further that the
Lipschitzian assumption imposed on ∇x f (·, u, t) in the corollary implies that

o
(
‖∆xN (t)‖

)
= O

(
‖∆xN (t)‖2

)
uniformly in N for the “o” term in the remainder ηN (·) in the proof of the
theorem. This yields that ε(t, hN ) = O(hN ) in the approximate maximum
condition (6.85) under the assumptions made. �

Corollary 6.53 (AMP for free-endpoint control problems with con-
cave cost functions). Let the pairs {ūN (·), x̄N (·)} be optimal to problems
(P0

N ) under the standing assumptions made. Suppose in addition that the cost
function ϕ0 is concave on some open set containing all x̄N (b). Then the ap-
proximate maximum principle of Theorem 6.50 holds along every sequence of
subgradients x∗

N ∈ ∂+ϕ0

(
x̄N (b)

)
. Moreover, one can take ε(t, hN ) = O(hN ) in

(6.85) if ∇x f (·, u, t) is locally Lipschitzian around x̄N (·) uniformly in u ∈ U ,
t ∈ TN , and N → ∞.

Proof. Recall that D+ϕ(x) = ∂+ϕ(x) for concave continuous functions in
arbitrary Banach spaces. Furthermore, o

(
‖x − x̄N (b)‖

)
≡ 0 in the inequal-

ity (6.87) under the concavity assumption of the corollary. Combining this
with the estimate of ηN (·) in the proof of Corollary 6.52, we conclude that
ε(t, hN ) = O(hN ) in (6.85) under the assumptions made. �

Now we proceed with counterexamples, i.e., examples showing that the
AMP may be violated if some of the assumptions in Theorem 6.50 are not
satisfied. All the examples below are given for finite-dimensional control sys-
tems with nonconvex velocity sets. Our first example demonstrates that the
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AMP doesn’t hold in the expected lower subdifferential form (as the maximum
principle for continuous-time control systems) even in the simplest nonsmooth
case of minimizing convex functions over systems with linear dynamics.

Example 6.54 (AMP may not hold for linear control systems with
nonsmooth and convex minimizing functions). There is a one-
dimensional control problem of minimizing a nonsmooth and convex cost func-
tion over a linear system with no endpoint constraints for which the AMP is
violated.

Proof. Consider the following sequence of one-dimensional optimal control
problem (P0

N ), N ∈ IN , for discrete-time systems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ(xN (1)
)

:= |xN (1) − ϑ |

subject to

xN (t + hN ) = xN (t) + hN uN (t), xN (0) = 0 ,

uN (t) ∈ U :=
{
0, 1

}
, t ∈ TN :=

{
0, hN , . . . , 1 − hN

}
,

(6.89)

where ϑ is a positive irrational number less than 1 whose choice will be spec-
ified below. The dynamics in (6.89) is a discretization of the simplest ODE
control system ẋ = u. Observe that, since ϑ is irrational and hN is rational, we
have x̄N (1) �= ϑ for the endpoint of an optimal trajectory to (6.89) as N ∈ IN ,
while obviously x̄(1) = ϑ for optimal solutions to the continuous-time coun-
terpart. It is also clear that for all sufficiently small stepsizes hN an optimal
control to (6.89) is neither uN (t) ≡ 0 nor uN (t) ≡ 1, but it has at least one
point of control switch.

Suppose that for some subsequence Nk → ∞ one has x̄Nk (1) > ϑ ; put
{Nk} = IN without loss of generality. Let us show that in this case the approx-
imate maximum condition doesn’t hold at points t ∈ TN for which ūN (t) = 1.
Indeed, we have

H
(
x̄N (t), pN (t + hN ), u

)
= pN (t + hN )u and pN (t) ≡ −1

for the Hamilton-Pontryagin function and the adjoint trajectory for this prob-
lems, since x̄N (1) > ϑ along the optimal solution to (6.89). Thus

max
u∈U

H
(
x̄N (t), pN (t + hN ), u

)
= 0, t ∈ TN ,

while H
(
x̄N (s), pN (s + hN ), ūN (s)

)
= −1

at the points s ∈ TN of control switch, where ūN (s) = 1 regardless of hN .
Let us specify the choice of ϑ in (6.89) ensuring that x̄N (1) > ϑ along some

subsequence of natural numbers. We claim that x̄N (1) > ϑ if ϑ ∈ (0, 1) is an
irrational number whose decimal representation contains infinitely many digits



264 6 Optimal Control of Evolution Systems in Banach Spaces

from the set {5, 6, 7, 8, 9}; e.g., ϑ = 0.676676667 . . .. Indeed, put hN := 10−N ,
which is a subsequence of hN = N−1 as required in (6.89). It is easy to
see that in this case the set of all reachable points at t = 1 is the set of
rational numbers between 0 and 1 with exactly N digits in the fractional
part of their decimal representations. In particular, for N = 3 this set is
{0, 0.001, 0.002, . . . , 0.999, 1}. Therefore, by the construction of ϑ , the closest
point to ϑ from the reachable set is greater than ϑ , and this point must be
the endpoint of the optimal trajectory x̄N (1). �

The next example, complemented to Example 6.54, shows that the AMP
fails even for problems with differentiable but not continuously differentiable
cost functions.

Example 6.55 (AMP may not hold for linear systems with differ-
entiable but not C1 cost functions). There is a one-dimensional control
problem of minimizing a Fréchet differentiable but not continuously differen-
tiable cost function over a linear system with no endpoint constraints for which
the AMP is violated.

Proof. Consider the same control system as in (6.89) and construct a mini-
mizing function ϕ(x) that satisfies the requirements listed above. Let ψ(x) be
a C1 function with the properties:

ψ(x) ≥ 0, ψ(x) = ψ(−x), ψ(x) ≡ 0 if |x | > 2 ,

|∇ψ(x)| ≤ 1 for all x, and ∇ψ(−1) = ϑ > 0 .

Define the cost function ϕ(x) by

ϕ(x) :=
(

x − 1
9

)2

+
∞∑

n=1

10−2n−3ψ
(
102n+3

(
x −

n∑
k=1

10−k
)
− 1

)
,

which is continuously differentiable around every point but x = 1
9 , where it is

differentiable and attains its absolute minimum. As in Example 6.54, we put
hN := 10−N , and then the point x = 1

9 cannot be reached by discretization.
It is not hard to check that the endpoint of the optimal trajectory x̄N (·) for
each N is computed by

x̄N (1) =
N∑

k=1

10−k with ∇ϕ(x̄N (1)
)

= ϑ + εN ,

where εN ↓ 0 as N → ∞. Proceeding as in Example 6.54 with the same
sequence of optimal controls, we have

H
(
x̄N (t), pN (t + hN ), u

)
≡ −ϑu + O(εN ) ,
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and the approximate maximum condition (6.85) doesn’t hold at the points of
control switch, where ūN (t) = 1. �

The last example in this subsection concerns systems with nonsmooth dy-
namics. We actually consider a finite-difference analog of minimizing an inte-
gral functional subject to a one-dimensional control system, which is equiv-
alent to a two-dimensional optimal control problem of the Mayer type. The
discrete “integrand” in this problem is nonsmooth with respect to the state
variable x ; it happens to be continuously differentiable with respect to x along
the optimal process {ūN (·), x̄N (·)} under consideration but not uniformly in
N . Thus the example below demonstrates that the uniform smoothness as-
sumption on f over an open set containing all the optimal trajectories x̄N (·)
is essential for the validity of the AMP.

Example 6.56 (violation of AMP for control problems with non-
smooth dynamics). The AMP doesn’t hold in discrete approximations of a
minimization problem for an integral functional over a one-dimensional linear
control system with no endpoint constraints such that the integrand is linear
with respect to the control variable while convex and nonsmooth with respect
to the state one. Moreover, the integrand in this problem happens to be C1

with respect to the state variable along the sequence of optimal solutions to
the discrete approximations (P0

N ) for all N ∈ IN but not uniformly in N .

Proof. First we consider the following continuous-time optimal control prob-
lem of the Bolza type:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [u, x ] :=
∫ b

0

(
u(t) + |x(t) − t2/2|

)
dt

subject to

ẋ = tu, x(0) = 0 ,

u(t) ∈ U :=
{
1, c

}
, 0 ≤ t ≤ b ,

where the terminal time b and the number c > 1 will be specified below.
It is obvious that the optimal control to this problem is ū(t) ≡ 1 and the
corresponding optimal trajectory is x̄(t) = t2/2.

By discretization we get the sequence of finite-difference control problems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [uN , xN ] := hN

∑
t∈TN

(
uN (t) + |xN (t) − t2/2|

)

subject to

xN (t + hN ) = xN (t) + hN tuN (t), xN (0) = 0 ,

uN (t) ∈ U =
{
1, c

}
, t ∈ TN :=

{
0, . . . , (N − 1)hN} .

(6.90)
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We first show that ūN (t) ≡ 1 remains to be the (unique) optimal control
to (6.90) if the stepsize hN is sufficiently small and the numbers (b, c) are
chosen appropriately. It is easy to check that the corresponding trajectory
x̄(·) is computed by

x̄N (t) =
t2

2
− thN

2
for all N ∈ IN .

Then the value J̄N of the cost functional at ūN (·) equals

J̄N = b + h2
N

∑
t∈TN

t
2

= b +
b2hN

4
+ o(hN ) .

If we replace uN (t) = 1 by uN (t) = c at some point t ∈ TN , then the increment
of the summation hN

∑
t∈TN

uN (t) equals (c − 1)hN . Hence the corresponding
value of the cost functional is

J [uN , xN ] = hN

∑
t∈TN

uN (t) + hN

∑
t∈TN

|xN (t) − t2/2|

> hN

∑
t∈TN

uN (t) ≥ b + (c − 1)hN

for any feasible control uN (t) to (6.90) different from ūN (t) ≡ 1. Comparing
the latter with J̄N , we conclude that the control ūN (t) ≡ 1 is indeed optimal
to (6.90) if b2/4 < c − 1 and N is sufficiently large.

We finally show that for b > 2 and c > b2/4+1 (e.g., for b = 3 and c = 4)
the sequence of optimal controls ūN (t) ≡ 1 doesn’t satisfy the approximate
maximum condition (6.85) at all points t ∈ TN sufficiently close to t = b/2.
Compute the Hamilton-Pontryagin function as a function of t ∈ TN and of
u ∈ U at the optimal trajectory x̄N (t) corresponding to the optimal control
under consideration with the adjoint trajectory pN (t) for (6.78). Reducing
(6.90) to the standard Mayer form and taking into account that x̄N (t) < t2/2
for all t ∈ TN due to above formula for x̄N (t), we get

H
(
x̄N (t), pN (t + hN ), u, t

)
= tpN (t + hN )u − u − |x̄N (t) − t2/2|

=
(
tpN (t + hN ) − 1

)
u +

(
x̄N (t) − t2/2

)
,

where pN (t) satisfies the equation

pN (t) = pN (t + hN ) + hN , pN (b) = 0 ,

whose solution is pN (t) = b − t . Therefore one has

H
(
x̄N (t), pN (t + hN ), u, t

)
=
(
t(b − t + hN ) − 1

)
u + O(hN )

=
(
− t2 + bt − 1

)
u + O(hN ) .
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The multiplier −t2 + bt − 1 is positive in the neighborhood of t = b/2 if
its discriminant b2 − 4 is positive. Thus u = c, but not u = 1, provides
the maximum to the Hamilton-Pontryagin function around t = b/2 if hN is
sufficiently small, which justifies the claim of this example. �

Finally in this subsection, we give a modification of Theorem 6.50 in the
general case of possible incommensurability of the time interval b − a and
the stepsize hN ; note that b − a = NhN as N ∈ IN in Theorem 6.50. This
is particularly important for the extension of the AMP to finite-difference
approximations of time-delay systems in Subsect. 6.4.5. For simplicity we use
the notation

f (xN , uN , t) := f
(
xN (t), uN (t), t

)
.

Given the time interval [a, b], define the grid TN on [a, b] by

TN :=
{

a, a + hN , . . . , b − h̃N − hN
}

with hN :=
b − a

N
and h̃N := b − a − hN

[b − a
hN

]
,

where [z] stands for the greatest integer less than or equal to the real number
z. The modified discrete approximation problems (P̃0

N ) are written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [uN , xN ] := ϕ0

(
xN (b)

)
subject to

xN (t + hN ) = xN (t) + hN f (xN , uN , t), t ∈ TN , xN (a) = x0 ∈ X ,

xN (b) = xN (b − h̃N ) + h̃N f (xN , uN , b − h̃N ) ,

uN (t) ∈ U, t ∈ TN .

Theorem 6.57 (AMP for problems with incommensurability). Let
the pairs {ūN (·), x̄N (·)} be optimal to problems (P̃0

N ). In addition to the stand-
ing assumptions, suppose that ϕ0 is uniformly upper subdifferentiable around
the limiting point(s) of the sequence {x̄N (b)}, N ∈ IN . Then for every se-
quence of upper subgradients x∗

N ∈ D+ϕ0

(
x̄N (b)

)
there is ε(t, hN ) → 0 as

N → ∞ uniformly in t ∈ TN such that the approximate maximum condition

H(x̄N , pN , ūN , t) = max
u∈U

H(x̄N , pN , u, t) + ε(t, hN )

holds for all t ∈ T̃N := TN ∪{b− h̃N}, where the Hamilton-Pontryagin function
is defined by

H(x̄N , pN , u, t) :=

⎧⎨
⎩
〈

pN (t + hN ), f (x̄N , u, t)
〉

if t ∈ TN ,

〈
pN (t), f (x̄N , u, t − h̃N )

〉
if t = b − h̃N ,
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and where each pN (·) satisfies the adjoint system⎧⎨
⎩

pN (t) = pN (t + hN ) + hN∇x f (x̄N , ūN , t)∗ pN (t + hN ), t ∈ TN ,

pN (b − h̃N ) = pN (b) + h̃N∇x f (b − h̃N , x̄N , ūN , t)∗ pN (b)

with the transversality condition pN (b) = −x∗
N . Furthermore, specifications

similar to the second part of Theorem 6.50 as well as Corollaries 6.52 and
6.53 are also fulfilled.

Proof. It is similar to the proof of Theorem 6.50 and its corollaries with the
following modification of the increment formula for the minimizing functional:

0 ≤ J [uN , xN ] − J [ūN , x̄N ] ≤ −
〈

pN (b),∆xN (b)
〉

+ o
(
‖∆xN (b)‖

)
= −

∑
t∈TN

〈
pN (t + hN ) − pN (t),∆xN (t)

〉

−
〈

pN (b) − pN (b − h̃N ),∆xN (b − h̃N )
〉

−hN

∑
t∈TN

〈
pN (t + hN ),∇ fx(x̄N , ūN , t)∆xN (t)

〉

−h̃N
〈

pN (b),∇x f (x̄N , ūN , b − h̃N )∆xN (b − h̃N )
〉

−hN

∑
t∈T̃N

∆u H(x̄N , pN , ūN ) + hN

∑
t∈T̃N

ηN (t) + o
(
‖∆xN (b)‖

)
,

where ∆u H and ηN (t) are defined similarly to the non-delay problems. Sub-
stituting the adjoint trajectory into this formula and using needle variations
of the optimal control, we arrive at the conclusions of the theorem. �

6.4.4 Approximate Maximum Principle under Endpoint
Constraints: Positive and Negative Statements

This subsection concerns discrete approximations of optimal control problems
with endpoint constraints. Our primary goal here is to formulate the approx-
imate maximum principle for discrete approximation problems under appro-
priate assumptions and to clarify whether these assumptions are essential for
its validity; the proof of the AMP is given in the next subsection.

Constructing discrete approximations, it is natural to perturb endpoint
constraints and to consider the following sequence of optimal control problems
(PN ) for discrete-time systems:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [uN , xN ] := ϕ0

(
xN (b)

)
subject to

xN (t + hN ) = xN (t) + hN f
(
xN (t), uN (t), t

)
, xN (a) = x0 ∈ X ,

uN (t) ∈ U, t ∈ TN :=
{

a, a + hN , . . . , b − hN
}
,

ϕi (xN (t1)
)
≤ γi N , i = 1, . . . ,m ,

|ϕi (xN (t1)
)
| ≤ ξi N , i = m + 1, . . . ,m + r ,

hN :=
b − a

N
, N = 1, 2, . . . ,

where γi N → 0 and ξi N ↓ 0 as N → ∞ for all i . The main result of this
subsection shows that, under standard smoothness assumptions on the initial
data, the AMP holds for proper sequences of optimal controls to problems
(PN ) with arbitrary perturbations of inequality constraints (in particular, one
can put γi N = 0) while with consistent perturbations of equality constraints
matched the step of discretization. Then we demonstrate that the mentioned
properness and consistency requirements are essential for the validity of the
AMP, and we also derive an appropriate upper subdifferential analog of the
AMP for problems with nonsmooth cost and inequality constraint functions.

Throughout this subsection we keep the standing assumptions on the initial
data listed in Subsect. 6.4.3 supposing in addition that the state space X
is finite-dimensional, which is needed in the proofs below. Along with the
conventional notation for the matrix product, we use the agreement

k=i∏
j

Ak :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ai Ai−1 · · · A j if i ≥ j ,

I if i = j − 1 ,

0 if i < j − 1 ,

where i, j are any integers and where I stands as usual for the identity matrix.
As in the case of continuous-time systems, the proof of the AMP for

problems (PN ) with endpoint constraints is essentially different and more in-
volved in comparison with free-endpoint problems. Recalling the proof of The-
orem 6.37 for continuous-time systems with inequality endpoint constraints
in Subsect. 6.3.3, we observe that a crucial part of this proof is Lemma 6.44,
which verifies that the linearized image set S in (6.74) is convex and doesn’t
intersect the set of forbidden points. These facts are definitely due to the time
continuity reflecting the hidden convexity of continuous-time control systems.
Note that the mentioned image set S in (6.74) is generated by multineedle
variations of the optimal control the very construction of which in (6.82) is
essentially based on the time continuity.

In what follows we establish a certain finite-difference analog of the hid-
den convexity property for control systems in (PN ) involving convex hulls of
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some linearized image sets SN generated by single needle variations of opti-
mal controls. We show that small shifts (up to o(hN )) of these convex hulls
don’t intersect the set of forbidden points as N → ∞. This basically leads,
via the convex separation theorem, to the approximate maximum principle
for problems (PN ) under endpoint constraints of the inequality type, with
appropriately perturbed complementary slackness conditions.

Such a device (as well as any finite-difference counterparts of the con-
struction in Subsect. 6.3.4) doesn’t apply to problems (PN ) with arbitrarily
perturbed equality constraints (in particular, when ξN = 0) for which the
AMP is generally violated. Nevertheless, the complementary slackness condi-
tions mentioned above allow us to derive a natural version of the AMP for
problems (PN ) with appropriately perturbed equality constraints by reducing
them to the case of inequalities.

Before formulating the main result of this subsection, we introduce an
important notion specific for sequences of finite-difference control problems.

Definition 6.58 (control properness in discrete approximations). Let
d(·, ·) stand for the distance in the control space U is problems (PN ). We say
that the sequence of discrete-time controls {uN (·)} in (PN ) is proper if for
every increasing subsequence {N} of natural numbers and every sequence of
mesh points τθ(N) ∈ TN satisfying

τθ(N) = a + θ(N)hN as θ(N) = 0, . . . , N − 1 and τθ(N) → t ∈ [t0, t1]

one of the following properties holds:

either d
(
uN (τθ(N)), uN (τθ(N)+q)

)
→ 0 or d

(
uN (τθ(N)), uN (τθ(N)−q)

)
→ 0

as N → ∞ with any natural constant q.

The notion of properness for sequences of feasible controls in discrete
approximation problems is a finite-difference counterpart of the piecewise
continuity for continuous-time systems. It turns out that the situation when
sequences of optimal controls are not proper in discrete approximations of
constrained systems with nonconvex velocities is not unusual, and this leads
to the violation of the AMP for standard problems with inequality constraints.
Note that the properness assumption is not needed for the validity of the AMP
in free-endpoint problems; see Theorem 6.50.

Now we are ready to formulate the AMP for constrained control problems
(PN ) with endpoint constraints described by smooth functions.

Theorem 6.59 (AMP for control problems with smooth endpoint
constraints). Let the pairs {ūN (·), x̄N (·)} be optimal to (PN ) for all N ∈ IN
under the standing assumptions made. Suppose in addition that all the func-
tions ϕi , i = 0, . . . ,m + r , are continuously differentiable around the limiting
point(s) of {x̄N (b)} and that:
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(a) the sequence of optimal controls {ūN (·)} is proper;
(b) the consistency condition (6.80) holds for the perturbations ξi N of all

the equality constraints.

Then there are numbers {λi N

∣∣ i = 0, . . . ,m + r} satisfying

λi N
(
ϕi (x̄N (b)

)
− γi N

)
= O(hN ), i = 1, . . . ,m , (6.91)

λi N ≥ 0, i = 0, . . . ,m,

m+r∑
i=0

λ2
i N = 1 , (6.92)

and such that the approximate maximum condition (6.85) is fulfilled with
εN (t, hN ) → 0 uniformly in t ∈ TN as N → ∞, where each pN (t), t ∈ TN ∪{b},
is the corresponding trajectory of the adjoint system (6.78) with the endpoint
transversality condition

pN (b) = −
m+r∑
i=0

λi N∇ϕi
(
x̄N (b)

)
. (6.93)

We postpone the proof of this major theorem till the next subsection
and now present two counterexamples showing the properness and consis-
tency conditions are essential for the validity of the AMP under the other
assumptions held. Our first example concerns the properness condition from
Definition 6.58.

Example 6.60 (AMP may not hold in smooth control problems with
no properness condition). There is a two-dimensional linear control prob-
lem with an inequality constraint such that optimal controls in the sequence of
its discrete approximations are not proper and don’t satisfy the approximate
maximum principle.

Proof. Consider a linear continuous-time optimal control problem (P) with
a two-dimensional state x = (x1, x2) ∈ IR2 in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ
(
x(1)

)
:= −x1(1) subject to

ẋ1 = u, ẋ2 = x1 − ct, x1(0) = x2(0) = 0 ,

u(t) ∈ U := {0, 1}, 0 ≤ t ≤ 1 ,

x2(1) ≤ −c − 1
2

,

where c > 1 is a given constant. Observe that the only “unpleasant” feature
of this problem is that the control set U = {0, 1} is nonconvex, and hence the
feasible velocity sets f (x,U, t) are nonconvex as well. It is clear that ū(t) ≡ 1
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is the unique optimal solution to problem (P) and that the corresponding

optimal trajectory is x̄1(t) = t , x̄2(t) = −c − 1
2

t2. Moreover, the inequality

constraint is active, since x̄2(1) = −c − 1
2

.

Let us now discretize this problem with the stepsize hN := 1
2N , N ∈ IN .

For the notation convenience we omit the index N in what follows. Thus the
discrete approximation problems (PN ) corresponding to the above problem
(P) are written as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ
(
x(1)

)
= −x1(1) subject to

x1(t + h) = x1(t) + hu(t), x1(0) = 0 ,

x2(t + h) = x2(t) + h
(
x1(t) − ct

)
, x2(0) = 0 ,

u(t) ∈
{
0, 1

}
, t ∈

{
0, h, . . . , 1 − h

}
,

x2(1) ≤ −c − 1
2

+ h2 ,

i.e., we put γN := h2
N in the constraint perturbation for (PN ).

To proceed, we compute the trajectories in (PN ) corresponding to u(t) ≡ 1.
It is easy to see that x1(t) = t for this u(·). To compute x2(t), observe that

[
x(t + h) = y(t) + ht, x(0) = 0

]
=⇒ x(t) =

t2

2
− th

2
.

Indeed, one has by the direct calculation that

x(t) = h
t−h∑
τ=0

=
[
put τ = kh

]
= h2

t
h −1∑
k=0

k = h2
t
h

(
t
h − 1

)
2

=
t2

2
− th

2
.

Therefore for x2(t) corresponding to u(t) ≡ 1 in (PN ) we have

x2(t) = h
t−h∑
τ=0

(
τ − cτ ) = −c − 1

2
t2 +

c − 1
2

ht .

By this calculation we see that, for h sufficiently small, x2(t1) no longer satisfies
the endpoint constraint, and thus u(t) ≡ 1 is not a feasible control to problem
(PN ) for all h close to zero. This implies that an optimal control to (PN ) for
small h, which obviously exists, must have at least one switching point s such
that u(s) = 0, and hence the maximum value of the corresponding endpoint
x1(1) will be less than or equal to 1 − h. Put

u(t) :=

⎧⎨
⎩

1 if t �= s ,

0 if t = s
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and justify the formula

x2(t) =

⎧⎪⎪⎨
⎪⎪⎩

−c − 1
2

t2 +
c − 1

2
ht, t ≤ s ,

−c − 1
2

t2 +
c − 1

2
ht − h(t − s) + h2, t ≥ s + h ,

for the corresponding trajectories in (PN ) depending on h and s. We only
need to justify the second part of this formula. To compute x2(t) for t ≥ s +h,
substitute x1(t) = t − h into the discrete system in (PN ). It is easy to see that
the increment ∆x2(t) compared to the case when u(t) ≡ 1 is

h
t−h∑

τ=s+h

(−h) = −h(t − h − s) = −h(t − s) + h2 ,

which justifies the above formula for x2(t).
Now we specify the parameters of the above control putting c = 2 and

s = 0.5 for all N , i.e., considering the discrete-time function

ū(t) :=

⎧⎨
⎩

1 if t �= 0.5 ,

0 if t = 0.5 .

Note that the point t = 0.5 belongs to the grid TN for all N due to hN :=
1

2N . Observe further that the sequence of these controls doesn’t satisfy the
properness property in Definition 6.58. It follows from the above formula for
x2(t) that the corresponding trajectories obey the endpoint constraint in (PN )
whenever N ∈ IN , since x̄2(1) = − 1

2 t2+h2. Moreover, it is clear from the given
calculations that the control ū(t) is optimal to problem (PN ) for any N .

Let us show that this sequence of optimal controls ū(·) doesn’t satisfy the
approximate maximum condition (6.85) at the point of switch. Indeed, the
adjoint system (6.78) for the problems (PN ) under consideration is

p(t) = p(t + h) + h∇x f (x̄1, x̄2, ū, t)∗ p(t + h) ,

where the Jacobian matrix ∇x f and its adjoint/transposed one are equal to

∇x f =
(

0 0
1 0

)
, ∇x f ∗ =

(
0 1
0 0

)
.

Thus we have the adjoint trajectories

p1(t) = p1(t + h) + hp2(t + h) and p2(t) ≡ const,

where the pair (p1, p2) satisfies the transversality condition (6.93) with the
corresponding sign and nontriviality conditions (6.92) written as
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p1(1) = λ0, p2(1) = −λ1; λ0 ≥ 0, λ1 ≥ 0, λ2
0 + λ2

1 = 1 .

This implies that p1(t) is a linear nondecreasing function. The corresponding
Hamilton-Pontryagin function is equal to

H
(
x(t), p(t + h), u(t)

)
= p1(t + h)u(t) + terms not depending on u .

Examining the latter expression and taking into account that the optimal
controls are equal to ū(t) = 1 for all t but t = 0.5, we conclude that the ap-
proximate maximum condition (6.85) holds only if p1(t) is either nonnegative
or tends to zero everywhere except t = 0.5. Observe that p1(t) ≡ 0 yields
λ1 = λ2 = 0, which contradicts the nontriviality condition. Hence p1(t) must
be positive away from t = 0. Therefore a sequence of controls having a point
of switch not tending to zero as h ↓ 0 cannot satisfy the approximate maxi-
mum condition at this point. This shows that the AMP doesn’t hold for the
sequence of optimal controls to the problems (PN ) built above. �

Many examples of this type can be constructed based on the above idea,
which essentially means the following. Take a continuous-time problem with
active inequality constraints and nonconvex admissible velocity sets f (x,U, t).
It often happens that after the discretization the “former” optimal control be-
comes not feasible in discrete approximations, and the “new” optimal control
in the sequence of discrete-time problems has a singular point of switch (thus
making the sequence of optimal controls not proper), where the approximate
maximum condition is not satisfied.

The next example shows that the AMP may be violated for proper se-
quences of optimal controls to discrete approximation problems for continuous-
time systems with equality endpoint constraints if such constraints are not
perturbed consistently with the step of discretization.

Example 6.61 (AMP may not hold with no consistent perturbations
of equality constraints). There is a two-dimensional linear control prob-
lem with a linear endpoint constraint of the equality type such that a proper
sequence of optimal controls to its discrete approximations doesn’t satisfy the
AMP without consistent constraint perturbations.

Proof. Consider first the following optimal control problem for a two-
dimensional system with an endpoint constraint of the equality type:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0

(
x(1)

)
:= x2(1) subject to

ẋ = u, t ∈ T := [0, 1], x(0) = 0 ,

u(t) ∈ U :=
{

(0, 0), (0,−1), (1,−
√

2), (−
√

2,−3)
}
,

ϕ1

(
x(1)

)
:= x1(1) = 0 ,
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where x = (x1, x2) ∈ IR2 and u = (u2, u2) ∈ IR2. One can see that this
linear problem is as standard and simple as possible with the only exception
regarding the nonconvexity of the control region U .

Construct a sequence of discrete approximation problems (PN ) in the stan-
dard way of Theorem 6.59 by taking zero perturbation of the endpoint con-
straint, i.e., with ξN = 0. Thus we have:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0

(
xN (1)

)
= x2N (1) subject to

xN (t + hN ) = xN (t) + hN uN (t), xN (0) = 0 ∈ IR2 ,

u(t) ∈ U, t ∈ TN :=
{
0, hN , . . . , 1 − hN

}
,

ϕ1

(
xN (1)

)
= x1N (1) = 0 with hN = N−1, N ∈ IN .

It is easy to check that the only optimal solutions to problems (PN ) are

ūN (t) = (0,−1), x̄N (t) = (0,−t) for all t ∈ TN , N ∈ IN ,

which give the minimal value of the cost functional J̄N = −1. Note that
the sequence ūN (·)} is obviously proper in the sense of Definition 6.58. The
corresponding trajectories pN (·) of the adjoint system (6.78) satisfying the
transversality condition (6.93) are

pN (t) = (−λ1N ,−λ0N ) for all t ∈ TN ∪ {1} ,

where the sign and nontriviality conditions (6.92) for the multipliers (λ0N , λ1N )
are written as

λ0N ≥ 0, λ2
0N + λ2

1N = 1 whenever N ∈ IN .

Furthermore, for each N ∈ IN the Hamilton-Pontryagin function in the
discrete-time system computed along x̄N (·) and the corresponding adjoint tra-
jectory pN (·) reduces to

HN (u, t) = −λ1N u1 − λ0N u2, t ∈ TN ,

that gives HN (ūN ) = λ0N for the optimal control.
Let us justify the estimate

δN := max
{

HN (u)
∣∣ u ∈ U

}
− H(ūN ) ≥ 1 for all N ∈ IN ,

which shows that the approximate maximum condition (6.85) is violated in
the above sequence of problems (PN ). To proceed, consider the two possible
cases for the multipliers (λ0N , λ1N ):

(a) λ0N ≥ 0, λ1N ≥ 0, λ2
0N + λ2

1N = 1;

(b) λ0N ≥ 0, λ1N < 0, λ2
0N + λ2

1N = 1.
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In case (a) we have that

δN = λ1N

√
2 + 3λ0N − λ0N ≥

√
2
(
λ1N + λ0N

)
≥

√
2 ,

while case (b) allows the estimate

δN ≥ |λ1N | + 2λ0N − λ0N ≥ 1 .

Thus the AMP doesn’t hold in the sequence of discrete approximation prob-
lems under consideration. �

We can observe from the above discussion that the failure of the AMP in
Example 6.61 is due to the fact that the equality constraint is not perturbed
(or not sufficiently perturbed) in the process of discrete approximation, while
the optimal value of the cost functional is not stable with respect to such per-
turbations. Indeed, any control uN (t) equal to either (1,−2) or (−

√
2,−3) at

some t ∈ TN and giving the value JN [uN ] < −1 to the cost functional is not
feasible for the constraint x1N (1) = 0, being however feasible for appropriate
perturbations of this constraint. On the other hand, these very points of U
provide the maximum to the Hamilton-Pontryagin function. Such a situation
occurs in the discrete-time systems of Example 6.61 due to the incommensu-
rability of irrational numbers in the control set U and just the rational mesh
TN for all N ∈ N . Of course, this is not possible in continuous-time systems
by the completeness of real numbers.

6.4.5 Approximate Maximum Principle
under Endpoint Constraints: Proofs and Applications

After all the discussions above, let us start proving Theorem 6.59. We split
the proof into three major steps including two lemmas of independent inter-
est, which contribute to our understanding of an appropriate counterpart of
the hidden convexity for discrete approximations. Then we derive an upper
subdifferential extension of the AMP to constrained problems with inequality
constraint described by uniformly upper subdifferential functions. Finally, we
present some typical applications of the AMP to discrete-time (with small
stepsize) and continuous-time systems.

Let uN (t) ∈ U for all t ∈ TN as N ∈ IN . Given an integer number r with
1 ≤ r ≤ N −1, we define needle-type variations of the control uN (·) as follows.
Consider a set of parameters {θ j (N), v j (N)}r

j=1, where v j (N) ∈ U and where
θ j (N) are integers satisfying

0 ≤ θ j (N) ≤ N − 1 with θ j (N) �= θi (N) if j �= i .

Denoting τθ j (N) := a + θ j (N)hN , we call

ũN (t) :=

⎧⎨
⎩

v j (N), t = τθ j (N) ,

uN (t), t ∈ TN , t �= τθ j (N), j = 1, . . . , r ,
(6.94)



6.4 Approximate Maximum Principle in Optimal Control 277

the r -needle variation of the control uN (·) with the parameters {θ j (N), v j (N)}.
When r = 1, control (6.94) is a (single) needle variation of uN (·), while it is
a multineedle variation of uN (·) for r > 1. The variations introduced are
discrete-time counterparts of the corresponding needle-type variations (6.71)
and (6.72) of continuous-time controls, being however essentially different from
the latter especially in the multineedle case.

Let x̃N (·) be the trajectory of the finite-difference system

xN (t + hN ) = xN (t) + hN f
(
xN (t), uN (t), t

)
, xN (a) = x0 , (6.95)

corresponding to the control variation ũN (·) with the parameters {θ j (N),
v j (N)}; in what follows we usually skip indicating their dependence on N .
Then the difference x̃N (·)− xN (·) is denoted by ∆r

{θ j ,v j}xN (·) for r > 1 and by
∆θ,v xN (·) for r = 1; it is called for convenience the multineedle (or r -needle)
and the (single) needle trajectory increment, respectively. We speak about the
corresponding endpoint increments when t = b.

Our first intention is to establish relationships between integer combina-
tions of endpoint trajectory increments generated by single needle variations
of the reference controls uN (·) as N → ∞ and some multineedle endpoint tra-
jectory increments. The result derived below can be essentially viewed as an
approximate finite-difference analog of the hidden convexity property crucial
for continuous-time systems.

Let {uN (t)}, t ∈ TN , be the reference control sequence, and let (θ j (N),
v j (N)) be parameters of single needle variations of uN (·) for each j = 1, . . . , p,
where p is a natural number independent of N . Given nonnegative integers
m j as j = 1, . . . , p also independent of N , consider the corresponding needle
trajectory increments ∆θ j ,v j xN (b) and denote them by ∆θ,v, j x(b) for simplicity.
Form the integer combination

∆N (p,m j ) :=
p∑

j=1

m j∆θ,v, j xN (b)

of the (single) needle trajectory increments for each N = p, p + 1, . . . and
show that it can be represented, up to a small quantity of order o(hN ), as a
multineedle variation of the reference control.

Lemma 6.62 (integer combinations of needle trajectory increments).
Let {uN (·)}, N ∈ IN , be a proper sequence of reference controls, let p ∈ IN and
m j ∈ IN ∪ {0} for j = 1, . . . , p be independent of N , and let

(
θ j (N), v j (N)

)
,

j = 1, . . . , p, be parameters of (single) needle variations. Then there are
r ∈ IN independent of N and parameters {θ̃ j (N), ṽ j (N)}r

j=1, of r-needle vari-
ations of type (6.94) such that

∆N (p,m j ) = ∆r
{θ̃ j ,̃v j}xN (b) + o(hN ) as N → ∞ .

for the corresponding endpoint trajectory increments.
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Proof. First we obtain convenient representation of endpoint trajectory incre-
ments generated by needle and multineedle variations of the reference controls,
which are not required to form a proper sequence in this setting. Recall the
above notation for matrix products and denote by K > 0 a common uniform
norm bound of f and ∇x f along {uN (·), xN (·)}, which exists due to the stand-
ing assumptions formulated in Subsect. 6.4.3. Note that, for applications to
the main theorems, below but not in this lemma, we actually need the uniform
boundedness along the reference sequence of optimal solutions to (PN ).

We start with single needle variations generated by parameters(
θ(N), v(N)

)
. It immediately follows from (6.95) and the smoothness of f

in x that

∆θ,v xN (τi ) = 0, i = 0, . . . , θ ,

∆θ,v xN (τθ+1) = hN
[

f
(
xN (τθ ), v, τθ

)
− f

(
xN (τθ ), uN (τθ ), τθ

)]
=: hN y ,

∆θ,v xN (τθ+2) = hN
[
I + hN∇x f

(
xN (τθ+1), uN (τθ+1), τth+1

)]
y

+hN o
(
‖∆θ,v xN (τθ+1)‖

)
.

Then we easily have by induction that

∆θ,v xN (b) = hN

{ i=N−1∏
θ+1

[
I + hN∇x f

(
xN (τi ), uN (τi ), τi

)]}
y

+hN

N−1∑
k=θ+2

{ i=N−1∏
k

[
I + hN∇x f

(
xN (τi ), uN (τi ), τi

)]}
o
(
‖∆θ,v xN (τk−1‖

)

+hN o
(
‖∆θ,v xN (τN−1)‖

)
.

Observe from (6.95) and the assumptions made that ∆θ,v xN (t) = O(hN ) for
all t ∈ TN uniformly in N . Thus given any ε > 0, there is Nε ∈ IN such that∥∥o

(
‖∆θ,v xN (τk)‖

)∥∥ ≤ εhN , k = θ + 2, . . . , N − 1, N ≥ Nε ,

which implies the estimate

∥∥∥ N−1∑
k=θ+2

{ i=N−1∏
k

(
I + hN∇x f

(
xN (τi ), uN (τi ), τi

))}
o
(
‖∆θ,v xN (τk−1)‖

)∥∥∥

≤ εhN

N−1∑
k=θ+2

i=N−1∏
k

(1 + hN K ) ≤ ε

K
exp

(
K (b − a)

)
.
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Combining this with the above formula for ∆θ,v xN (b), we arrive at the efficient
representation

∆θ,v xN (b) = hN

{ i=N−1∏
θ+1

[
I + hN∇x f

(
xN (τi ), uN (τi ), τi

)]}
y

+o(hN ) as N → ∞

(6.96)

for the endpoint trajectory increments generated by single needle variations
of the reference controls, where o(hN )/hN → 0 independently of the needle
parameters θ = θ(N) and v = v(N) as N → ∞.

Consider now endpoint trajectory increments generated by multineedle
variations (6.74) with parameters {θ j (N), v j (N)}r

j=1. Similarly to (6.96) we
derive the following representation:

∆r
{θ j ,v j}xN (b) = hN

{ r∑
j=1

[ i=N−1∏
θ j +1

(
I + ∇x f

(
xN (τi ), uN (τi ), τi

))]
y j

}

+o(hN ) as N → ∞ ,

(6.97)

where o(hN ) is independent of {θ j (N), v j (N)} but depends on the number r
of varying points, and where

y j := f
(
xN (τθ j ), v j , τθ j

)
− f

(
xN (τθ j ), uN (τθ j ), τθ j

)
for j = 1, . . . , r .

Next we assume that the control sequence {uN (·)} is proper and justify
the main relationship formulated in this lemma. Without loss of generality,
suppose that the mesh points

τθ j (N) := a + θ j (N)hN , j = 1, . . . , p ,

converge to some numbers τ̄ j ∈ [a, b], j = 1, . . . , p, as N → ∞. First we
examine the case of

τ̄i �= τ̄ j for i �= j, and τ̄ j �= b whenever i, j ∈ {1, . . . , p} . (6.98)

Given the parameters of the integer combination ∆N (p,m j ), for each N ≥ p,
we take the number r := m1 + . . . + m p independent of N and consider the
endpoint trajectory increment ∆r

{θ̃ jq ,̃v jq}
xN (b) generated by the multineedle

control variation

ũN (t) :=

⎧⎨
⎩

v j (N) if t = τθ j +q(N) ,

uN (t) if t �= τθ j +q(N), t ∈ TN ,
(6.99)

whenever j = 1, . . . , p and q = 0, . . . ,m j − 1 with
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θ̃ jq(N) := θ j (N) + q and ṽ jq(N) := v j (N) for all j, q .

By assumptions (6.98) these multineedle control variations are well defined for
all large N . Employing representation (6.97) of the corresponding endpoint
increments, we have

∆r
{θ̃iq ,̃v jq}

xN (b)=hN

{ p∑
j=1

m j∑
q=1

[ i=N−1∏
θ j +q

(
I + hN∇x f

(
xN (τi ), uN (τi ), τi

))]
y jq−1

}

+o(hN ) as N → ∞

with a uniform estimate of o(hN ) and with

y jq := f
(
xN (τθ j +q), v j , τθ j +q

)
− f

(
xN (τθ j +q), uN (τθ j +q), τθ j +q

)
.

By the properness of {uN (·)} and the continuity of f with respect to all its
variables we get yi j − y j0 → 0 as N → ∞, which implies the representation

∆r{
θ̃ jq ,̃v jq}

xN (b) =
{ p∑

j=1

m j

i=N−1∏
θ j +1

[
I + ∇x f

(
xN (τi ), uN (τi ), τi

)]
y j

}

+o(hN ) as N → ∞ ,

where y j are defined in (6.97). Comparing the latter representation with for-
mula (6.96) for the endpoint trajectory increment generated by single needle
variations with the parameters

(
θ j (N), v j (N)

)
as j = 1, . . . , p and taking

into account the expression for ∆N (p,m j ), we arrive at the conclusion of the
lemma under the above requirements (6.98) on the limiting point τ̄ j .

Suppose now that these requirements are not fulfilled. It is sufficient to
examine the following two extreme cases:

(a) τ̄1 = τ̄2 = . . . = τ̄p �= b,

(b) τ̄1 = τ̄2 = . . . = τ̄p = b,

which being combined with (6.98) cover all the possible locations of the lim-
iting points τ̄ j in [a, b]. Let us present the corresponding modifications of the
multineedle variations (6.99) in both cases (a) and (b), which lead to the
conclusion of the lemma similarly to the arguments above.

To proceed in case (a), reorder
(
θ j (N), v j (N)

)
as j = 1, . . . , p in such a

way that θ1 < . . . < θp (assuming that all θ j are different without loss of
generality) and identify for convenience the indexes θ j with the correspond-
ing mesh points τθ j . Then construct the variations of uN (·) at the points θ1,
θ1 +1,. . . ,θ1 + m1 −1 as in (6.99). Assuming that the control variations corre-
sponding to the parameters (θi , vi ) as 1 ≤ i ≤ p − 1 have been already built,
construct them for (θi+1, vi+1). Denote by θ0 the greatest point among those
of {θ j} at which we have built the control variations. If θ0 < θi+1, construct
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variations of uN (·) at θi+1, θi+1 + 1, . . . , θi+1 + mi+1 as in (6.99). If θ0 ≥ θi+1,
construct variations of the same type at θ0 + 1, . . . , θ0 + mi+1. One can check
the multineedle variations built in this way ensure the fulfillment of the lemma
conclusion in case (a).

In case (b) we proceed by reordering
(
θ j (N), v j (N)

)
as j = 1, . . . , p so

that θ1 > θ2 > . . . > θp and then construct the corresponding multineedle
variations of uN (·) symmetrically to case (a), i.e., from the right to the left.
In this way we complete the proof of the lemma. �

The next result gives a sequential finite-difference analog of Lemma 6.44
and may be treated as a certain approximate (not exact/limiting) manifes-
tation of the hidden convexity in discrete approximation problems, with no
using the abstraction of time continuity. To proceed, we need to distinguish
between essential and inessential inequality constraints in the process of dis-
crete approximation important in what follows.

Definition 6.63 (essential and inessential inequality constraints for
finite-difference systems). The inequality endpoint constraint

ϕi
(
xN (b)

)
≤ γi N with some i ∈ {1, . . . ,m}

is essential for a sequence of feasible solutions {uN (·), xN (·)} to problems
(PN ) along a subsequence of natural numbers M ⊂ IN if

ϕi
(
xN (b)

)
− γi N = O(hN ) as hN → ∞ ,

i.e., there is a real number Ki ≥ 0 such that

−Ki hN ≤ ϕi
(
xN (b)

)
− γi N ≤ 0 as N → ∞, N ∈ M .

This constraint is inessential for the sequence {uN (·), xN (·)} along M if
whenever K > 0 there is N0 ∈ IN such that

ϕi
(
xN (b)

)
− γi N ≤ −K hN for all N ≥ N0, N ∈ M .

The notion of essential constraints in sequences of discrete approximations
corresponds to the notion of active constraints in nonparametric optimization
problems. Without loss of generality, suppose that for the sequence of optimal
solutions {ūN (·), x̄N (·)} to the parametric problems (PN ) under consideration
the first l ∈ {1, . . . ,m} inequality constraints are essential while the other
m − l constraints are inessential along all natural numbers, i.e., with M = IN .

Given optimal solutions {ūN (·), x̄N (·)} to problems (PN ) as N ∈ IN , we
form the linearized image set

SN :=
{
(y0, . . . , yl) ∈ IRl+1

∣∣ yi =
〈
∇ϕi

(
x̄N (b)

)
,∆θ,v x̄N (b)

〉}
(6.100)

generated by inner products involving the gradients of the cost and essential
inequality constraint functions and the endpoint trajectory increments corre-
sponding to all the single needle variations of the optimal controls. Our goal
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is to show that the sequence {co SN} of the convex hulls of sets (6.100) can
be shifted by some quantities of order o(hN ) as hN → 0 so that the resulting
sets don’t intersect the convex set of forbidden points in Rl+1 given by

IRl+1
< :=

{
(y0, . . . , yl) ∈ IRl+1

∣∣ yi < 0 for all i = 0, . . . , l
}
.

Lemma 6.64 (hidden convexity and primal optimality conditions in
discrete approximation problems with inequality constraints). Let
{ūN (·), x̄N (·)} be a sequence of optimal solutions to problems (PN ) with ϕi = 0
as i = m + 1, . . . ,m + r (no perturbed equality constraints). In addition to the
standing assumptions, suppose that the endpoint functions ϕi are continuously
differentiable around the limiting point(s) of {x̄N (·)} for all i = 0, . . . ,m.
Assume also that the control sequence {ūN (·)} is proper and that the first
l ∈ {1, . . . ,m} inequality constraints are essential for {ūN (·), x̄N (·)} while the
other are inessential for these solutions. Then there is a sequence of (l + 1)-
dimensional quantities of order o(hN ) as hN → 0 such that(

co SN + o(hN )
)
∩ IRl+1

< = ∅ for all large N ∈ IN . (6.101)

Proof. For each N and fixed r ∈ IN independent of N , consider an endpoint
trajectory increment ∆r

{θ j ,v j} x̄N (b) generated by a multineedle variation of the
optimal control ūN (·), where {θ j (N), v j (N)}r

j+1 are the variation parameters
in (6.94). Form a sequence of the vectors

yN = (yN0, . . . , yNl) ∈ IRl+1 with yNi :=
〈
∇ϕi

(
x̄N (b)

)
,∆r

{θ j ,v j} x̄N (b)
〉

and show that there is a sequence of (l + 1)-dimensional quantities of order
o(hN ) as hN → 0 such that

yN + o(hN ) /∈ IRl+1
< as N → ∞ . (6.102)

Indeed, it follows from representation (6.97) and the assumptions made that∥∥∆r
{θ j ,v j} x̄N (b)

∥∥ ≤ µhN for all t ∈ TN and N ∈ IN ,

where µ > 0 depends on r but not on {θ j (N), v j (N)}r
j=1. By optimality

of x̄N (·) in problems (PN ) with no perturbed equality constraints, for each
N ∈ IN there is an index i0(N) ∈ {0, . . . ,m} such that

ϕi0

(
x̄N (b) + ∆r

{θ j ,v j} x̄N (b)
)
− ϕi0

(
x̄N (b)

)
≥ 0 .

Since only the first l inequality constraints are essential for {ūN (·), x̄N (·)},
the latter inequality holds for some i0 ∈ {0, . . . , l} whenever N is sufficiently
large. Consider the numbers

δN := max
0≤i≤l

sup
{ ∣∣ϕi

(
x̄N (b) + ∆x

)
− ϕi

(
x̄N (b)

)

−
〈
∇ϕi

(
x̄N (b)

)
,∆x

〉∣∣ ∣∣∣ ‖∆x‖ ≤ µhN

}
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for which δN/hN → 0 as N → ∞ uniformly with respect to variations due to
the smoothness of ϕi assumed. This implies that

yNi0 + δN ≥ 0 as N → ∞ ,

which justifies (6.102) with the quantities o(hN ) := (0, . . . , δN , . . . , 0) ∈ IRl+1,
where δN appears at the i0(N)-th position.

Our next goal is to obtain an analog of estimate (6.102) for convex com-
binations of endpoint trajectory increments generated by single needle vari-
ations of the optimal controls. In the case of such integer combinations, the
corresponding analog of (6.102) follows directly from this estimate due to the
preceding Lemma 6.62. Let us show that the case of convex combinations can
be actually reduced to the integer one.

Consider a sequence of parameters
(
θ j (N), v j (N)

)
, j = 1, . . . , p, generat-

ing single needle variations of the optimal controls {ūN (·)} with some p ∈ IN
and then define the convex combinations

yNi (p, α) :=
p∑

j=1

α j (N)
〈
∇ϕ j

(
x̄N (b)

)
,∆θ,v, j x̄N (b)

〉
,

as α j (N) ≥ 0, α1(N) + . . . + αp(N) = 1, i = 1, . . . , l .

(6.103)

Fixing (p, α) in the above combinations and taking yN (p, α) ∈ IRl+1 with the
components yNi (p, α), suppose that there is a number N0 ∈ IN such that

yN (p, α) ∈ IRl+1
< whenever N ≥ N0 .

Let us now show that for each natural number N ≥ N0 there is an index
i0 = i0(N) ∈ {0, . . . , l} for which

0 > yNi0(p, α) = o(hN ) as hN → ∞ . (6.104)

Assuming the contrary, we find a subsequence M ⊂ IN such that

lim
N→∞

yNi (p, α)
hN

:= βi < 0 as N ∈ M for all i = 0, . . . , l .

Suppose without loss of generality that M = {p, . . . , p + 1, . . .}, that βi >
−∞, and that the sequence {α j (N)} converges to some α0

j ∈ IR as N → ∞
for each j = 1, . . . , p. Given ν > 0, define p integers k j by

k j = k j (ν) :=
[α0

j

ν

]
for all j = 1, . . . , p

and form the integer combinations yNi (p, k) by
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yNi (p, k) :=
yNi (p, α0)

ν
+

p∑
j=1

(
k j −

α0
j

ν

)〈
∇ϕi

(
x̄N (b)

)
,∆θ,v, j x̄N (b)

〉

as i = 0, . . . , l, where k := (k1, . . . , kp) and α0 := (α0
1, . . . α

0
l ).

Let µ > 0 be the constant selected (with r = 1) in the proof of (6.102),
and let κ > 0 be a uniform norm bound for all ϕi

(
x̄N (b)

)
and ∇ϕi

(
x̄N (b)

)
as

i = 0, . . . , l. Choose i1 ∈ {0, . . . , l} and define ν > 0 so that

|βi1 | = min
0≤i≤k

|βi | and ν :=
βi1

βi1 − pκµ
.

Then we have the estimates

lim
N→∞

yNi (p, k)
hN

≤ βi −
βiµκp
βi1

+ µκp ≤ βi < 0 whenever i = 0, . . . , l ,

which clearly contradicts (6.102) by Lemma 6.62 on the representation of
integer combinations of endpoint trajectory increments generated by (single)
control variations. This proves (6.104).

Finally, we justify the required relationships (6.101). There is nothing to
prove when co SN ∩ IRl+1

< = ∅ for all large N ∈ IN . Suppose that co SN ∩ IRl+1
< �=

∅ along a subsequence {N}, which we put equal to the whole set IN of natural
numbers without loss of generality. For each N ∈ IN define

σN := − inf
{

max
0≤i≤l

yi

∣∣∣ y = (y0, . . . , yl) ∈ co SN ∩ IRl+1
−

}
,

where the infimum is achieved at some yN ∈ IRl+1
< under the assumptions

made. Invoking the classical Carathéodory theorem, represent yN in the con-
vex combination form (6.103) with p = l +2. Employing now (6.104), we find
an index i0 = i0(N) such that

σN = −max
{

yNi

∣∣ i = 0, . . . , l
}
≤ yNi0 = o(hN ) as N → ∞ ,

which implies (6.101) with the (l +1)-dimensional shift o(hN ) := (σN , . . . , σN )
and thus ends the proof of the lemma. �
Completing the proof of Theorem 6.59. Now we have all the major in-
gredients to complete the proof of the theorem. Let us start with the case
when only the perturbed inequality constraints are present in problems (PN ),
i.e., ϕi = 0 for i = m+1, . . . ,m+r . Since we suppose without loss of generality
that the first l ≤ m inequality constraints are essential for the sequence of op-
timal solutions {ūN (·), x̄N (·)}, while the remaining m−l inequality constraints
are inessential for this sequence, it gives by Definition 6.63 that

ϕi
(
x̄N (b)

)
− γi N = O(hN ) as N → ∞ for i = 1, . . . , l .

Employing Lemma 6.64 and the classical separation theorem for the convex
sets in (6.101), we find a sequence of unit vectors (λ0N , . . . , λl N ) ∈ IRl+1 that
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separate these sets. Taking into account the structures of the sets in (6.101),
one easily has that

λi N ≥ 0 for all i = 0, . . . , l, λ2
0N + . . . + λ2

l N = 1, and

l∑
i=0

λi N

〈
∇ϕi

(
x̄N (b)

)
,∆θ,v x̄N (b)

〉
+ o(hN ) ≥ 0 as N → ∞

for any (single) needle variations of the optimal controls with parameters(
θ(N), v(N)

)
. Putting now

λi N := 0 for i = l + 1, . . . ,m as N → ∞

and proceeding similarly to the proof of Theorem 6.50 for free-endpoint prob-
lems, we get as N becomes sufficiently large that

hN

[
H
(
x̄N (t), p(t + hN ), v, t

)
− H

(
x̄N (t), pN (t + hN ), ūN (t), t

)]
+ o(hN ) ≤ 0

for all v ∈ U and t ∈ TN , where each pN (·) satisfies the adjoint system
(6.86) with the transversality condition (6.93) and where λ0N , . . . , λm N obvi-
ously obey conditions (6.91) and (6.92) for the inequality constrained problems
(PN ) under consideration. The above Hamiltonian inequality directly implies,
arguing by contradiction as in the proof of Theorem 6.50, the approximate
maximum condition (6.85). This completes the proof of the theorem in the
case of problems (PN ) with inequality constraints.

Consider now the general case of (PN ) when the perturbed equality con-
straints are present as well. Each of the constraints

∣∣ϕi N
(
xN (b)

)∣∣ ≤ ξi N can be
obviously split into the two inequality constraints

ϕ+
i N

(
xN (b)

)
:= ϕi

(
xN (b)

)
− ξi N ≤ 0 ,

ϕ−
i N

(
xN (b)

)
:= −ϕi

(
xN (b)

)
− ξi N ≤ 0

for i = m + 1, . . . ,m + r . Let us show that if one of these constraints is
essential for {ūN (·), x̄N (·)} along some subsequence M ⊂ IN , then the other
is inessential along the same subsequence under the consistency condition
(6.80). Indeed, suppose for definiteness that the constraint ϕ+

i N

(
x̄N (b)

)
≤ 0 is

essential for some i ∈ {m + 1, . . . ,m + r} along M. Then by (6.80) we have

ϕ−
i N

(
x̄N (b)

)
= −ϕi (x̄N (b)

)
+ ξi N − 2ξi N = −ϕ+

i N (x̄N (b)
)
− 2ξi N ≤ K hN

as N ∈ M for any K > 0, which means that the constraint ϕ−
i N

(
x̄N (t1)

)
≤ 0

is inessential. Applying in this way the inequality case of the theorem proved
above, we find multipliers λ+

i N and λ−i N satisfying

λ+
i N · λ−i N = 0 for i = m + 1, . . . ,m + r as N → ∞ .
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Putting finally

λi N := λ+
i N − λ−i N , i = m + 1, . . . ,m + r ,

we complete the proof of the theorem. �

Remark 6.65 (AMP for control problem with constraints at both
endpoints and at intermediate points of trajectories). The approach
developed above allows us to derive necessary optimality conditions in the
AMP form for more general discrete approximation problems of the type (PN )
with the cost function ϕ0

(
xN (a), xN (b)

)
and the constraints

ϕi
(
xN (a), xN (b)

)
≤ γi N , i = 1, . . . ,m ,

∣∣ϕi
(
xN (a), xN (b)

)∣∣ ≤ ξi N , i = m + 1, . . . ,m + r ,

imposed at both endpoints of feasible trajectories. The AMP holds for such
problems, under the same assumptions on the initial data as in Theorems 6.50
and 6.59, with the additional approximate transversality condition at the left
endpoints of optimal trajectories given by

lim
N→∞

[
pN (a) −

m+r∑
i=0

λi N∇xaϕi
(
x̄N (a), x̄N (b)

)]
= 0 ,

where ∇xaϕi stands for the partial derivatives of the functions ϕi (xa, xb) at
the optimal endpoints.

Similar results can be derived for analogs of problems (PN ) with the ob-
jective ϕ0 = ϕ(xa, xτ , xb) and intermediate state constraints of the type

ϕi
(
xN (a), xN (τ ), xN (b)

)
≤ γi N , i = 1, . . . ,m ,

∣∣ϕi
(
xN (a), xN (τN ), xN (b)

)∣∣ ≤ ξi N , i = m + 1, . . . ,m + r ,

where τN ∈ TN is an intermediate point of the mesh. The AMP obtained for
such problems involves the additional exact condition of the jump type:

pN (τN + hN ) − pN (τN ) =
m+r∑
i=0

λi N∇xτ ϕi
(
x̄N (a), x̄N (τN ), x̄N (b)

)

−hN∇x H
(
x̄N (τN ), pN (τN + hN ), ūN (τN ), τN

)
.

Note that in this case the adjoint system (6.86) is required to hold for pN (·)
at points t ∈ TN \ τN .

Next we present an extension of Theorem 6.59 to nonsmooth problems
(PN ), where the cost and inequality constraint functions ϕi , i = 0, . . . ,m, are
assumed to be uniformly upper subdifferentiable. In this case the transversality
conditions are obtained in the upper subdifferential form.
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Theorem 6.66 (AMP for constrained nonsmooth problems with up-
per subdifferential transversality conditions). Let {ūN (·), x̄N (·)

}
be op-

timal solutions to problems (PN ) for N ∈ IN under all the assumptions of
Theorem 6.59 except for the smoothness of ϕi for i = 0, . . . ,m. Instead we
assume that these functions are uniformly upper subdifferentiable around the
limiting point(s) of {x̄N (b)}. Then for any sequences of upper subgradients
x∗

i N ∈ ∂̂+ϕi
(
x̄N (b)

)
, i = 0, . . . ,m, there are numbers

{
λi N

∣∣ i = 0, . . . ,m + r
}

such that all the conditions (6.85), (6.86), (6.91), and (6.92) hold with

pN (b) = −
m∑

i=0

λi N x∗
i N −

m+r∑
i=m+1

λi N∇ϕi
(
x̄N (b)

)
.

Proof. Given x∗
i N ∈ ∂̂+ϕi

(
x̄N (b)

)
for i = 0, . . . ,m and N ∈ IN , construct a

nonsmooth counterpart of the set SN in (6.100) by

SN :=
{
(y0, . . . , yl) ∈ IRl+1

∣∣ yi =
〈

x∗
i N ,∆θ,v x̄N (b)

〉}
.

Then we get an analog of Lemma 6.64 with a similar proof. The only difference
is that instead of the equalities

ϕi
(
x̄N (b) + ∆x

)
− ϕi

(
x̄N (b)

)
−
〈
∇ϕi

(
x̄N (b)

)
,∆x

〉
+ o

(
‖∆x‖

)
= 0

used in the proof of Lemma 6.64 in the smooth case, we now arrive at the
same conclusion based on the inequalities

ϕi
(
x̄N (b) + ∆x

)
− ϕi

(
x̄N (b)

)
−
〈
x∗

i N ,∆x
〉

+ o
(
‖∆x‖

)
≤ 0

that are due to the uniform upper subdifferentiability of ϕi for i = 0, . . . , l.
The separation theorem applied to the above convex sets gives

l∑
i=0

〈
x∗

i N ,∆θ,v x̄N (b)
〉

+ o(hN ) ≥ 0 ,

which leads to the approximate maximum principle with the upper subdiffer-
ential transversality conditions similarly to the proof of Theorem 6.59. �

Remark 6.67 (suboptimality conditions for continuous-time systems
via discrete approximations). The results on the fulfillment of the AMP
in discrete approximation problems obtained above allow us to derive sub-
optimality conditions for continuous-time systems in the form of a certain
ε-maximum principle. We have discussed in Subsect. 5.1.4 the importance of
suboptimality conditions for the theory and applications of optimization prob-
lems, especially in the framework of infinite-dimensional spaces. The results
and discussions of Subsect. 5.1.4 mostly concern problems of mathematical
programming with functional constraints. In optimal control of continuous-
time systems (even with finite-dimensional state spaces) suboptimality condi-
tions are of great demand due to the well-known fact that optimal solutions
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often fail to exist in systems with nonconvex velocities. In such cases “almost
necessary conditions” for “almost optimal” (suboptimal) solutions provide a
substantial information about optimization problems that is crucial from both
qualitative and quantitative/numerical viewpoints.

It follows from the above results on the value stability of discrete approxi-
mations (see Theorem 6.14 in Subsect. 6.1.4) that, given any ε > 0, optimal
solutions {ūN (·), x̄N (·)} to the discrete approximation problems (PN ) consid-
ered in this subsection allow us to construct ε-optimal solutions {uε(·), xε(·)}
to the corresponding continuous-time counterpart (P) satisfying

ϕ0

(
xε(b)

)
≤ inf J [x, u] + ε with

ϕi
(
xε(b)

)
≤ ε, i = 1, . . . ,m,

∣∣ϕi
(
xε(b)

)∣∣ ≤ ε, i = m + 1, . . . ,m + r .

Moreover, ε-optimal controls to the continuous-time problem (P) may always
be chosen to be piecewise constant on [a, b].

Using now the necessary optimality conditions for the discrete approxima-
tion problems (PN ) provided by Theorem 6.59 in the AMP form, we arrive at
the following ε-maximum principle for suboptimal solutions to (P): there are
multipliers (λ0, . . . , λm+r ) ∈ IRm+r satisfying

λi ≥ 0 for i = 0, . . . ,m, λ2
0 + . . . + λ2

m+r = 1 ,

∣∣λiϕi
(
xε(b)

)∣∣ ≤ ε for i = 1, . . . ,m ,

and such that, whenever u ∈ U and t ∈ [a, b], one has

H
(
xε(t), pε(t), uε(t), t

)
≥ H

(
xε(t), pε(t), u, t

)
− ε ,

where pε(·) is the corresponding trajectory of the adjoint system

ṗ = −∇H
(
xε(t), p, uε(t), t

)
, t ∈ [a, b] ,

with the transversality condition

pε(b) = −
m+r∑
i=0

∇ϕi
(
xε(b)

)
.

Similar results hold for continuous-time problems with intermediate state con-
straints imposed at some points τ j ∈ (a, b) and also for problems with end-
point constraints at both t = a and t = b; cf. Remark 6.65. In the latter case
we get an ε-transversality condition at t = a given by∣∣∣pε(a) −

m+r∑
i=0

λi∇xaϕi
(
xε(a), xε(b)

)∣∣∣ ≤ ε .

Note, however, that the upper subdifferential form of the AMP in Theorem 6.66
is not suitable to induce a similar suboptimality result for continuous-time
systems, since the Fréchet upper subdifferential ∂̂+ϕ(·) doesn’t generally have
the required continuity property for nonsmooth functions.
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To conclude this subsection, we illustrate the application of the AMP
to optimizing constrained discrete-time systems with small stepsizes of dis-
cretization. First observe from the proof of Theorem 6.50 (and the one for
Theorem 6.59) that the difference in values of the cost and constraint func-
tions between optimal controls ūN (·) to problems (PN ) and controls uN (·) max-
imizing the Hamilton-Pontryagin function H

(
x̄N (t), pN (t), ·, t

)
over u ∈ U is

of order o(hN ) as N → ∞. This means in fact that the application of the ap-
proximate maximum principle to optimization of discrete-time systems with
small stepsizes hN leads to practically the same effects as in the case of its
exact counterpart, the discrete maximum principle. Taking this into account,
we now use the AMP to solve discrete approximation problems arising in
optimization of some chemical processes.

Example 6.68 (application of the AMP to optimization of catalyst
replacement). Consider the following optimal control problem (P) for a two-
dimensional continuous-time system that appears in the catalyst replacement
modeling; see, e.g., Fan and Wang [426]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [u, x ] = ϕ0

(
x(1)

)
:= x1(1) subject to

ẋ1 = −u1(u1 + u2), ẋ2 = u1, x1(0) = x2(0) = 0, t ∈ T := [0, 1] ,

u(t) =
(
u1(t), u2(t)

)
∈ U :=

{
(u1, u2) ∈ IR2

∣∣ 0 ≤ u1, u2 ≤ 2
}
,

ϕ1

(
x(1)

)
:= x2(1) ≤ 0 .

To solve this problem numerically, construct a sequence of its discrete approx-
imation problems (PN ):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize JN [uN , xN ] := ϕ0

(
xN (1)

)
= x1N (1) subject to

x1N (t + hN ) = x1N (t) − hN u1N (t)
[
u1N (t) + u2N (t)

]
, x1N (0) = 0 ,

x2N (t + hN ) = x2N (t) + hN u1N (t), x2N (0) = 0, hN := N−1 ,

0 ≤ u1N (t) ≤ 2, 0 ≤ u2N (t) ≤ 2, t ∈ TN := {0, hN , . . . , 1 − hN
}
,

ϕ2

(
xN (1)

)
= x2N (1) ≤ 0 as N → ∞ .

Since the sets of “admissible velocities” f (x,U, t) in (PN ) are not convex, the
(exact) discrete maximum principle cannot be applied to find optimal controls
for these problems. Let us use for this purpose the approximate maximum
principle justified in Theorem 6.59.

For each N ∈ IN the corresponding trajectory pN (t) =
(

p1N (t), p2N (t)
)

of
the adjoint system (6.86) with the transversality condition (6.93) is

p1N (t) = −λ0N , p2N (t) = −λ1N whenever t ∈ TN ,
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while the Hamilton-Pontryagin function along this trajectory is given by

HN (u, t) = u1

(
λ0N u1 + λ0N u2 − λ1N

)
, t ∈ TN .

Let us determine controls ûN (t) = (û1N (t), û2N (t)) that maximize the
Hamilton-Pontryagin function over the control region U . One can easily see by
the normalization condition in (6.92) that such controls maximize the function

Hλ(u1, u2) := u1

(
λu1 + λu2 −

√
1 − λ2

)
over (u1, u2) ∈ U

as λ ∈ (0, 1). It is not hard to compute, taking into account the structure of
the control set U , that the maximizing controls ûN (·) are as follows depending
on the values of the parameter λ ∈ (0, 1):

(a) if λ > 1/
√

17, then û1N (t) = 2, û2N (t) = 2 for all t ∈ TN ;

(b) if λ < 1/
√

17, then û1N (t) = 0, û2N (t) ∈ [0, 2] for all t ∈ TN ;

(c) if λ = 1/
√

17, then for each t ∈ TN one has either û1N (t) = û2N (t) = 2,
or û1N (t) = 0 and û2N (t) ∈ [0, 2].

We can directly check that the controls ûN (·) in case (a) are not feasible
for (PN ), since the corresponding trajectories x̂N (·) don’t satisfy the end-
point constraint. In case (b) the controls ûN (·) are far from optimality, since
JN [ûN , x̂N ] = 0 while inf J [uN , xN ] ≤ −1. In case (c) the controls ûN (·) are fea-
sible for (PN ) provided that the number of points t ∈ TN at which û1N (t) = 2
and û2N (t) = 2 is not greater than [N/2] as N ∈ IN . By Theorem 6.59 and
the discussion right before this example we conclude that optimal controls
ūN (·) to (PN ) (which always exist) may be either feasible ones ûN (·) in case
(c) satisfying the properness condition, or those for which the values of the
cost and constraint functions are different from ϕ0

(
x̂N (b)

)
and ϕ1

(
x̂N (b)

)
by

quantities of order o(hN ) as N → ∞.
Thus the AMP allows us to efficiently describe the collection of all feasible

controls to (PN ) that are suspicious to optimality. Based on this information,
we can finally determine from the structure of problems (PN ) that optimal
solutions to the sequence of these problems are given by the controls⎧⎨

⎩
ū1N (t) = ū2N (t) = 2 if t is the [N/2]-th point of TN ,

ū1N (t) = 0, ū2N (t) ∈ [0, 2] for all other t ∈ TN .

This completely solves the problems under consideration.

6.4.6 Control Systems with Delays and of Neutral Type

The last subsection of this section is devoted to the extension of the AMP in
the upper subdifferential form to finite-difference approximations of time-delay
controls systems with smooth dynamics. For brevity we present results only
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for free-endpoint problems. The main theorem of this subsection provides a
generalization of Theorem 6.50 in the case of delay problems; the correspond-
ing extension of Theorems 6.59 and 6.66 can be derived similarly. On the
other hand, we show at the end of this subsection that the AMP may not
hold for discrete approximations of smooth functional-differential systems of
neutral type that contain time-delays not only in state variables but in velocity
variables as well.

We begin with the following continuous-time problem (D) with a single
time delay in the state variable:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [u, x ] := ϕ
(
x(b)

)
subject to

ẋ(t) = f
(
x(t), x(t − θ), u(t), t

)
a.e. t ∈ [a, b] ,

x(t) = c(t), t ∈ [a − θ, a] ,

u(t) ∈ U a.e. t ∈ [a, b]

over measurable controls u: [a, b] → U and the corresponding absolutely con-
tinuous trajectories x : [a, b] → X of the delay system, where θ > 0 is a constant
time-delay, and where c: [t0− θ, t0] → X is a given function defining the initial
“tail” condition that is needed to start the delay system; see Remark 6.40,
where the results on the maximum principle for such problems have been
discussed. Now our goal is to derive an appropriate version of the AMP for
discrete approximation of the delay problem (D).

Let us build discrete approximations of (D) based on the Euler finite-
difference replacement of the derivative. In the case of time-delay systems we
need to ensure that the point t−θ belongs to the discrete grid whenever t does.

It can be achieved by defining the discretization step as hN :=
θ

N
in contrast

to hN =
b − a

N
for the non-delay problems (P0

N ) considered in Subsect. 6.4.3.
In such a scheme the length of the time interval b − a is generally no longer
commensurable with the discretization step hN . Define the grid TN on the
main time interval [a, b] by

TN :=
{

a, a + hN , . . . , b − h̃N − hN
}

with

hN :=
θ

N
and h̃N := b − a − hN

[b − a
hN

]
and consider the following sequence of finite-difference approximation prob-
lems (DN ) with discrete time delays:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [uN , xN ] := ϕ
(
xN (b)

)
subject to

xN (t + hN ) = xN (t) + hN f
(
xN (t), xN (t − NhN ), uN (t), t

)
, t ∈ TN ,

xN (b) = xN (b − h̃N ) + h̃N f
(
xN (b − h̃N ), uN (b − h̃N ), b − h̃N

)
,

xN (t) = c(t), t ∈ T0N :=
{

a − θ, a − θ + hN , . . . , a
}
,

uN (t) ∈ U, t ∈ TN .

To derive the AMP for the sequence of problems (DN ), we reduce these
problems to those without delays and employ the results of Theorem 6.57,
where the standing assumptions are similar to the ones formulated in Sub-
sect. 6.4.3 involving now the additional state variable y in f (x, y, u, t) together
with x . For convenience we introduce the following notation:

zN (t) :=
(
xN (t), xN (t − θ)

)
, z̄N (t) :=

(
x̄N (t), x̄N (t − θ)

)
,

f (zN , uN , t) := f
(
xN (t), xN (t − θ), uN (t), t

)
,

f (t, z̄N , uN ) := f
(
x̄N (t), x̄N (t − θ), uN (t), t

)
in which terms the adjoint system to (DN ) is written as

pN (t) = pN (t + hN ) + hN∇x f (z̄N , ūN , t)∗ pN (t + hN )

+hN∇y f (z̄N , ūN , t + θ)∗ pN (t + θ + hN ) for t ∈ TN ,

pN (b − h̃N ) = pN (t1) + h̃N∇x f (z̄N , ūN , b − h̃N )∗ pN (b)

along the optimal processes
{

ūN (·), x̄N (·)} to the delay problems (DN ) for
each N ∈ IN . Introducing the corresponding Hamilton-Pontryagin function

H(xN , yN , pN , u, t) :=

⎧⎨
⎩
〈

pN (t + hN ), f (xN , yN , u, t)
〉

if t ∈ TN ,

〈
pN (t), f (xN , yN , u, t − h̃N )

〉
if t = b − h̃N

with yN (t) := xN (t − θ), we rewrite the adjoint system as

pN (t) = pN (t + hN ) + hN

[
∇x H(z̄N , pN , ūN , t) + ∇y H(z̄N , pN , ūN , t + θ)

]
when t ∈ TN and

pN (b − h̃N ) = pN (b) + h̃N∇x H(z̄N , pN , ūN , b − h̃N )

at the “incommensurable” point. Then we have the following result on the
fulfillment of the AMP for time-delay discrete approximations.
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Theorem 6.69 (AMP for delay systems). Let the pairs
{

ūN (·), x̄N (·)
}

be
optimal to problems (DN ). In addition to the standing assumptions, suppose
that the cost function ϕ is uniformly upper subdifferentiable around the limiting
point(s) of the sequence {x̄N (b)}, N ∈ IN . Then for every sequence of upper
subgradients x∗

N ∈ D+ϕ
(
x̄N (b)

)
the approximate maximum condition

H(z̄N , pN , ūN , t)=max
u∈U

H(z̄N , pN , u, t) + ε(t, hN ), t ∈ T̃N := TN ∪ {b − h̃N},

is fulfilled, where ε(t, hN ) → 0 as hN → 0 uniformly in t ∈ T̃N , and where
pN (·) satisfies and the transversality relations

pN (b) = −x∗
N , pN (t) = 0 as t > b . (6.105)

Furthermore, we can take any x∗ ∈ ∂̂+ϕ
(
x̄N (b)

)
in (6.105) if X is reflexive

and ϕ is continuous around the limiting point(s) of {x̄N (b)}.

Proof. We reduce the delay discrete approximation problems to those with
no delay (but with the incommensurability between b − a and hN ) by the
following multistep procedure. Denote

y1N (t) := xN (t − hN ), t ∈ {a + 2hN , . . . , b − h̃N} ,

y1N (t) := cN (t − hN ), t ∈ {a − θ + hN , . . . , a + hN} ,

y2N (t) := y1N (t − hN ), t ∈ {a − θ + 2hN , . . . , b − h̃N} ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

yN N (t) := yN−1,N (t − hN ), t ∈ {a, . . . , b − h̃N} ,

and observe that the values of y1N (b), . . . , yN N (b) can be defined arbitrarily,
since they don’t enter either the adjoint system or the cost function. To match
the setup of Theorem 6.57, define

y1N (b) := xN (b − h̃N ), y2N (b) := y1N (b − h̃N ), . . . , yN N (b) := yN−1,N (b − h̃N ) .

After the change of variables we have

yN N (t) =

⎧⎨
⎩

xN (t − θ), t ∈ {a + θ + hN , . . . , b − h̃N} ,

c(t − θ), t ∈ {a, . . . , a + θ} .

The original system in (DN ) is thereby reduced, for each N ∈ IN , to the
following non-delay system of dimension IR(N+1)n:⎧⎨

⎩
sN (t + hN ) = sN (t) + hN g(sN , uN , t), t ∈ TN ,

sN (b) = sN (b − h̃N ) + h̃N g(sN , uN , b − h̃N )
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with the state vector sN (t) := (xN (t), y1N (t), . . . , yN N (t)
)

and the “velocity”
mapping g(sN , uN , t) given by

g
(
sN (t), uN (t), t

)
:=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
(
xN (t), yN N (t), uN (t), t

)
xN (t) − y1N (t)

hN

. . . . . .
yN−1,N (t) − yN N (t)

hN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where hN should be replaced by h̃N for t = b − h̃N in the last formula.
Let us apply Theorem 6.57 to the problem of minimizing the same func-

tional as in (DN ) over the feasible pairs {uN (·), sN (·)} of the obtained non-
delay system. The adjoint system in this problem, with respect to the new
adjoint variable q ∈ IR(N+1)n, has the form⎧⎨

⎩
qN (t) = qN (t + hN ) + hN∇s g(z̄N , ūN , t)∗ q(t + hN ), t ∈ TN ,

qN (b − h̃N ) = qN (b) + h̃N∇s g(s̄N , ūN , b − h̃N )∗ qN (b)

with the transversality condition

qN (b) = −(x∗
N , 0, . . . , 0) for x∗

N ∈ D+ϕ
(
x̄N (b)

)
,

which reduces to x∗
N ∈ ∂̂+ϕ

(
x̄N (b)

)
when X is reflexive and ϕ is continuous.

Taking into account the above relationship between g and f and performing
elementary calculations, we express the operator ∇s g∗ via ∇x f ∗ and ∇y f ∗

and arrive at the transversality relations (6.105) for the first component pN (·)
of the adjoint trajectory qN (·). Furthermore, one gets the relationship

H̃(s̄N , qN , u, t) =
〈
qN (t + hN ), g(s̄N , u, t)

〉
=
〈

pN (t + hN ), f (z̄N , u, t)
〉

+ r(s̄N , qN , hN , t)

= H(z̄N , pN , u, t) + r(s̄N , qN , hN , t), t ∈ TN ,

and similarly for t = b−h̃N , between the Hamilton-Pontryagin functions of the
non-delay and original delay systems considered above, where the remainder
r(s̄N , qN , hN , t) doesn’t depend on u. Applying now the approximate maxi-
mum condition from Theorem 6.57 to the non-delay system, we complete the
proof of the theorem. �

To conclude this section, we consider optimal control problems for finite-
difference approximations of the so-called functional-differential systems of
neutral type (cf. also Sect. 7.1) given by
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ẋ(t) = f
(
x(t), x(t − θ), ẋ(t − θ), u(t), t

)
, u(t) ∈ U, a.e. t ∈ [a, b] ,

which contain time-delays not only in state but also in velocity variables. A
finite-difference counterpart of such systems with the stepsize h and with the
grid T := {a, a + h, . . . , b − h} is

x(t + h) = x(t) + h f
(
x(t), x(t − θ),

x(t − θ + h) − x(t − θ)
h

, u(t), t
)

as u(t) ∈ U for t ∈ T , and the adjoint system is given by

p(t) = p(t + h) + h∇x f (v̄ , ū, t)∗ p(t + h) + h∇y f (v̄ , ū, t + θ)∗ p(t + θ + h)

+h∇z f (v̄ , ū, t + θ − h)∗ p(t + θ) − h∇z f (v̄ , ū, t + θ)∗ p(t + θ + h)

for t ∈ T , where {ū(·), x̄(·)} is an optimal solution to the neutral analog of
problem (DN ), and where

v̄(t) :=
(

x̄(t), x̄(t − θ),
x̄(t − θ + h) − x̄(t − θ)

h

)
, t ∈ T .

The following example shows that the AMP is not generally fulfilled for finite-
difference neutral systems, in contrast to ordinary and delay ones, even in the
case of smooth cost functions.

Example 6.70 (AMP may not hold for neutral systems). There is
a two-dimensional control problem of minimizing a linear function over a
smooth neutral system with no endpoint constraints such that some sequence
of optimal controls to discrete approximations doesn’t satisfy the approximative
maximum principle regardless of the stepsize and a mesh point.

Proof. Consider the following parametric family of discrete optimal control
problems for neutral systems with the parameter h > 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize J [u, x1, x2] := x2(2) subject to

x1(t + h) = x1(t) + hu(t), t ∈ T :=
{
0, h, . . . , 2 − h

}
,

x2(t + h) = x2(t) + h
( x1(t − 1 + h) − x1(t − 1)

h

)2

− hu2(t), t ∈ T ,

x1(t) ≡ x2(t) ≡ 0, t ∈ T0 := {−1, . . . , 0} ,

|u(t)| ≤ 1, t ∈ T .

It is easy to see that

x2(1) = −h
1−h∑
t=0

u2(t) and
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x2(2) = x2(1) + h
2−h∑
t=1

( x1(t − 1 + h) − x1(t − 1)
h

)2

− h
2−h∑
t=1

u2(t)

= −h
1−h∑
t=0

u2(t) + h
1−h∑
t=0

u2(t) − h
2−h∑
t=1

u2(t) = −h
2−h∑
t=1

u2(t) .

Thus the control

ū(t) =

⎧⎨
⎩

0, t ∈ {0, . . . , 1 − h} ,

1, t ∈ {1, . . . , 2 − h} ,

is an optimal control to the problems under consideration for any h. The
corresponding trajectory is

x̄1(t) =

⎧⎨
⎩

0, t ∈ {0, . . . , 1 − h} ,

t − 1, t ∈ {1, . . . , 2 − h};
x̄2(t) =

⎧⎨
⎩

0, t ∈ {0, . . . , 1 − h} ,

−t + 1, t ∈ {1, . . . , 2 − h} .

Computing the partial derivatives of the “velocity” mapping f in the above
system, we get

∇x f =
(

0 0
0 0

)
, ∇y f =

(
0 0
0 0

)
, and

∇z f (t + 1) =
1
h

(
0 0

2(x1(t + h) − x1(t)
)

0

)
.

Hence the adjoint system reduces to

p1(t) = p1(t + h) + 2
(
x̄1(t) − x̄1(t − h)

)
p2(t + 1)

−2
(
x̄1(t + h) − x̄1(t)

)
p2(t + 1 + h), t ∈ {0, . . . , 2 − h} ,

with p2(t) ≡ const and with the transversality conditions

p1(2) = 0, p2(2) = −1; p1(t) = p2(t) = 0 for t > 2 .

The solution of this system is

p1(t) ≡ 0, p2(t) ≡ −1 for all t ∈ {0, . . . , 2 − h} .

Thus the Hamilton-Pontryagin function along the optimal solution is

H(t, x̄1, x̄2, p1, p2, u) = p2(t + h)
{( x1(t − 1 + h) − x1(t − 1)

h

)2

− u2
}

+p1(t + h)u = u2, t ∈ {0, . . . , 1 − h} .
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This shows that the optimal control ū(t) = 0 doesn’t provide the approx-
imate maximum to the Hamilton-Pontryagin function regardless of h and
mesh points t ∈ {0, . . . , 1 − h}. Note at the same time that another sequence
of optimal controls with ū(t) = 1 for all t ∈ {0, . . . , 2 − h} does satisfy the
exact discrete maximum principle regardless of h. �

6.5 Commentary to Chap. 6

6.5.1. Calculus of Variations and Optimal Control. Chapter 6
is devoted to problems of dynamic optimization. This name conventionally
reflects the fact that some initial data of a given optimization problem evolve
in time. The origin of such problems goes back to the classical calculus of
variations, which was in the beginning of all infinite-dimensional analysis;
we refer the reader to the seminal contributions by Euler [411], Lagrange
[737], Hamilton [548], Jacobi [625], Mayer [859], Weierstrass [1326], Bolza
[130], Tonelli [1260], Carathéodory [222], and Bliss [119] (with his famous
Chicago school) among other developments the most influential for the topics
considered in this book.

The theory of optimal control for ordinary differential equations (ODE),
which has been well recognized as a modern counterpart of the classical calcu-
lus of variations, distinguishes from its predecessor by, first of all, the presence
of hard/pointwise constraints on control functions generating system trajec-
tories (often called admissible arcs) via the evolution ODE systems

ẋ = f (x, u, t), u(t) ∈ U, t ∈ [a, b], x ∈ IRn . (6.106)

Such control constraints given by sets U of a rather irregular nature, which
appeared already in the very first problems of optimal control arisen from
practical applications, have been a permanent source of intrinsic nonsmooth-
ness in optimal control theory and have eventually motivated the development
of many crucial aspects of modern variational analysis and generalized differ-
entiation.

As mentioned in Subsect. 1.4.1, the fundamental result of optimal control
theory widely known as the Pontryagin maximum principle (PMP) [1102],
which was formulated by Pontryagin and then was proved by Gamkrelidze
[494] for linear systems and by Boltyanskii [124] for problems with nonlinear
smooth dynamics, has played a major role in developing modern variational
analysis. It is interesting to observe that the first attempt [129] in formulating
the maximum principle—as a sufficient condition for local optimality—was
wrong; see the papers by Boltyanskii [128] and Gamkrelidge [498] for (rather
different) historical accounts in the discovery of the maximum principle. In
these papers and also in the book by Hestenes [565] and in the survey paper
by McShane [865], the reader can find various discussions on the relationships
between the maximum principle and the preceding results obtained in the
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Chicago school on the calculus of variations and in the theory and applications
of automatic control; see also the excellent survey by Gabasov and Kirillova
[487]. Probably the closest predecessors to optimal control theory were non-
standard variational problems and results developed for optimal systems of
linear automatic control, in particular, the so-called “theorem on n-intervals”
by Feldbaum [440] and the “bang-bang principle” by Bellman, Glicksberg and
Gross [95].

Although analogs of many elements in both formulation and proof of the
PMP can be found in the calculus of variations (particularly needle variations
employed by McShane [860], which actually go back to Weierstrass [1326]
and his necessary optimality condition for strong minimizers; tangential con-
vex approximations and the usage of convex separation as in McShane [860];
canonical variables and a modified Hamiltonian function, etc.), the discovery
of the PMP and its proof came as a surprise (“sensation” in Pshenichnyi’s
wording [1106]). It is difficult to overestimate the impact and role of the PMP
in the development of modern variational analysis. We refer the reader to
[7, 32, 105, 124, 218, 235, 255, 370, 485, 486, 497, 504, 539, 565, 618, 801, 863,
865, 877, 1002, 1106, 1239, 1289, 1315, 1351] for more results and discussions
on the relationships between optimal control, the calculus of variations, and
mathematical programming.

It seems that among the most significant new contributions of the PMP
in comparison with the classical calculus of variations was the discovery (by
Pontryagin) of the adjoint system to (6.106) given by

ṗ = −∂ f (x̄, ū, t)
∂x

∗
p = −∇x H(x̄, p, ū, t) , (6.107)

via the Hamilton-Pontryagin function

H(x, p, u, t) :=
〈

p, f (x, u, t)
〉
, p ∈ IRn , (6.108)

computed along the optimal process (x̄, ū), in which terms the crucial point-
wise maximum condition was written as

H
(
x̄(t), p(t), ū(t), t

)
= max

u∈U
H
(
x̄(t), p(t), u, t

)
a.e. (6.109)

It has been recognized, after the discovery of the PMP, that the maximum
condition (6.109) is an optimal control counterpart of the Weierstrass’s excess
function condition for strong minimizers in the calculus of variations.

6.5.2. Differential Inclusions. A notable disadvantage of the original
optimal control model (6.106) is that it doesn’t cover problems with state-
dependent control sets U = U(x) important for both the theory and applica-
tions. Problems of this class, as well as of other significant classes in control
and dynamic optimization, can be naturally written in the form of differential
inclusions
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ẋ ∈ F(x, t), x ∈ IRn , (6.110)

which actually go back to the classes of set-valued differential equations stud-
ies (not from the control viewpoint) in the 1930s as “contingent equations”
by Marchaud [850] and “paratingent equations” by Zaremba [1355]; see also
Nagumo [990] and Wȧzewski [1325] for early developments. Control systems
(6.106) equivalently reduce to the differential inclusion form (6.110) by the
so-called “Filippov implicit function lemma” [449], which is in fact a result on
measurable selections of set-valued mappings; see, e.g., Castaing and Valadier
[229] and Rockafellar and Wets [1165] for more references and discussions.

Observe that control systems governed by differential inclusions (6.110) are
significantly more complicated in comparison with the classical ones (6.106)
due to, e.g., the impossibility of employing standard needle variations to derive
optimality conditions. Moreover, systems (6.110) explicitly reveal the intrin-
sic nonsmoothness inherent even in classical optimal control via, first of all,
hard control constraints of the type u(t) ∈ U , particularly given by finite
sets like U = {0, 1} that are typical in automatic control applications. This
phenomenon is somehow hidden in the PMP for systems (6.106) of smooth dy-
namics due to using the Hamilton-Pontryagin function (6.108) differentiable
in the state-costate variables (x, p). Another manifestation of nonsmoothness
in optimal control is provided by the Hamiltonian function

H(x, p, t) := sup
{
〈p, v〉

∣∣ v ∈ F(x, t)
}

(6.111)

for the differential inclusion (6.110), which corresponds to the “true” Hamil-
tonian

H(x, p, t) := sup
{

H(x, p, u, t)
∣∣ u ∈ U

}
for the standard/parameterized control systems (6.106). These generalized
Hamiltonians can be viewed as control counterparts of the classical Hamil-
tonian in problems of the calculus of variations and mechanics associated (via
the Legendre transform if the latter is well-defined) with the Lagrangian, i.e.,
integrand under minimization.

6.5.3. Optimality Conditions for Smooth or Graph-Convex Dif-
ferential Inclusions. Nonsmoothness is a characteristic feature of the Hamil-
tonian (6.111) and its above implementation for control systems (6.106); a
smooth behavior occurs only under some quite restrictive assumptions. How-
ever, the first necessary optimality conditions for control problems governed by
differential inclusions were obtained (under the name of “support principle”)
by Boltyanskii [125] assuming the smoothness of (6.111) in the state variable;
see also the related papers by Fedorenko [438, 439], Boltyanskii [127], Blago-
datskikh [117], Blagodatskikh and Filippov [118] with other (mostly Russian)
references therein.
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In [1143, 1144, 1145], Rockafellar derived necessary (and sufficient) opti-
mality condition applied to differential inclusions (6.110) under more reason-
able assumptions of the graph-convexity for F(·, t). In fact, Rockafellar con-
sidered a more general framework of the (fully) convex generalized problem of
Bolza:

minimize ϕ
(
x(a), x(b)

)
+
∫ b

a
ϑ
(
x(t), ẋ(t), t

)
dt , (6.112)

where, in contrast to the classical Bolza problem [130] and the preceding
Mayer problem [859] with ϑ = 0, the functions ϕ and ϑ may be extended-
real-valued, i.e., (6.112) particularly incorporates the differential inclusion
model (6.110) via the indicator function ϑ(x, v, t) := δ

(
(x, v); gph F(·, t)

)
.

The convexity assumption on ϑ(x, v, t) in both variables (x, v) made in
[1143, 1144, 1145] implies that the Hamiltonian (6.111) associated with the
differential inclusion (6.110) is convex in p and concave in x , so it is subd-
ifferentiable as a saddle function with respect to (x, p) in the sense of con-
vex analysis. Using the machinery of convex analysis in infinite-dimensional
spaces, Rockafellar obtained necessary and sufficient conditions for optimal
solutions x̄(·) to the convex generalized problem of Bolza and thus for convex-
graph differential inclusions via the generalized Hamiltonian equation [1145]
called also the Hamiltonian condition/inclusion(

− ṗ(t), ˙̄x(t)
)
∈ ∂H

(
x̄(t), p(t), t

)
a.e. , (6.113)

where ∂H stands for the subdifferential of the Hamiltonian function H(x, p, t)
with respect to (x, p). If H(x, p, t) happens to be differentiable with respect
to x and p, inclusion (6.113) reduces to the classical Hamiltonian system

˙̄x(t) = ∇pH
(
x̄(t), p(t), t

)
and − ṗ(t) = ∇xH

(
x̄(t), p(t), t

)
.

Somewhat different (while mostly equivalent) results for optimization
problems governed by convex-graph differential inclusions were later obtained
by Halkin [542], Berliocchi and Lasry [107], and Pshenichnyi [1107, 1109].

6.5.4. Clarke’s Euler-Lagrange Condition. Observe that although the
graph-convexity assumption on F(·, t) is more reasonable in comparison with
the smoothness requirement on the Hamiltonian, it is still rather restrictive.
In particular, for standard control systems (6.106) this assumption actually
reduces to the linearity of f (·, ·, t) and the convexity of U ; see Rockafellar
[1143]. A crucial step from fully convex, or “biconvex” in Halkin’s terminology,
problems (i.e., those for which the integrand in (6.112) in convex in both (x, v)
variables) to problems involving the convexity only in the velocity variable
v, which corresponds to the convex-valuedness of F(x, t) in the differential
inclusion framework (6.110), was made by Clarke in his pioneering work in
the 1970s starting with his dissertation [243].
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The initial point for Clarke [243, 245] was the Bolza-type problem (6.112)
with finite (moreover Lipschitzian) integrand/Lagrangian ϑ(·, ·, t) considered
without any smoothness and convexity assumptions on the integrand ϑ as
well as on the l.s.c. endpoint function ϕ, which was allowed to be extended-
real-valued. The main necessary optimality condition was obtained in the
Euler-Lagrange form(

ṗ(t), p(t)
)
∈ ∂Cϑ

(
x̄(t), ˙̄x(t), t

)
a.e. (6.114)

via Clarke’s generalized gradient of ϑ(·, ·, t) in (6.114). Inclusion (6.114) gets
back the classical Euler-Lagrange equation if ϑ(x, v, t) is smooth in (x, v); it
reduces to the Euler-Lagrange inclusion obtained by Rockafellar [1143] if ϑ is
convex in both x and v variables. Furthermore, Clarke’s proof of (6.114) in
[243, 245] was based on reducing the nonconvex Bolza problem under consid-
eration to the fully convex problem comprehensively studied by Rockafellar.
The convex-valuedness of Clarke’s generalized gradient and its duality rela-
tionship with his generalized directional derivative played a major role in the
possibility to accomplish the latter reduction and thus in the whole proof of
(6.114).

Based on the Euler-Lagrange condition (6.114) for finite Lagrangians,
Clarke obtained [247] its counterpart(

ṗ(t), p(t)
)
∈ NC

(
(x̄(t), ˙̄x(t)); gph F(t)

)
a.e. (6.115)

for Lipschitzian and bounded differential inclusions (6.110) via his normal cone
to the graph of F = F(·, t). Then he derived [248] the Euler-Lagrange inclu-
sion (6.114) for the generalized Bolza problem (6.112), where ϑ was assumed
to be extended-real-valued and epi-Lipschitzian in (x, v). The most notable
and restrictive assumption imposed in [247, 248] was the calmness condition
similar to that discussed in Subsect. 5.5.16 for problems of mathematical pro-
gramming. This is a kind of constraint qualification/regularity requirement,
which ensures the normal form of necessary optimality conditions and holds,
in particular, when the endpoint function ϕ is locally Lipschitzian in either
variable; the latter however excludes the corresponding endpoint constraints.
Note that the calmness requirement allowed Clarke to avoid formally the con-
vexity assumption on ϑ even in v, while the convexity property was actually
present in [247, 248] due to the “admissible relaxation” provided by calmness;
see also [246] for a detailed study of these relationships. Moreover, as men-
tioned in [248, p. 683], “. . . the [bi]convex case [developed by Rockafellar] lies
at the heart of the proof of our result.”

The most serious drawback of the Euler-Lagrange inclusion in form (6.115),
fully recognized only later, is that it involves the Clarke normal cone to the
graph of F(·, t) from (6.110), which happens to be a linear subspace of dimen-
sion d ≥ n whenever F is graphically Lipschitzian near the optimal solution;
see Subsect. 1.4.4 for more discussions. Due to this property, the set on the
right-hand side of (6.115) may be too large to provide an adequate information
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on adjoint arcs p(·) in many situations important for the theory and applica-
tions.

6.5.5. Clarke’s Hamiltonian Condition. Besides the Euler-Lagrange
condition (6.115), Clarke also established necessary optimality conditions for
the generalized Bolza problem and thus for Lipschitzian differential inclusions
in the following Hamiltonian form:(

− ṗ(t), ˙̄x(t)
)
∈ ∂CH

(
x̄(t), p(t), t

)
a.e. (6.116)

involving his generalized gradient of the Hamiltonian function in both (x, p)
variables. The first Hamiltonian results were obtained under the calmness
assumption [253, 255] and then without this and other constraint qualifications
[256].

Note that, in the absence of regularity/normality assumptions, the validity
of the Hamiltonian condition (6.116) was established only for convex-valued
differential inclusions (which corresponds to the convexity in v of the La-
grangian in the generalized Bolza form); the derivation of (6.116) without
convexity originally presented in [251] was incorrect in the proof of Claim
on p. 262 therein related to the convexification procedure. Similar approach
based on employing the Ekeland variational principle worked nevertheless for
proving Clarke’s extension [250] of the Pontryagin maximum principle for
nonsmooth optimal control systems of type (6.106). A long-standing conjec-
ture about the validity of the Hamiltonian necessary optimality condition
(6.116) without the above convexity assumption, which resisted the efforts of
several authors, has been recently resolved by Clarke [261] for Lipschitzian
and bounded differential inclusions by applying Stegall’s variational principle
[1224] instead of Ekeland’s one in the framework of his proof. Observe that,
in contrast to the classical smooth case and to the fully convex case of Rock-
afellar, Clarke’s Euler-Lagrange condition (6.115) and Hamiltonian condition
(6.116) are not equivalent even in simple situations. Moreover, they don’t fol-
low from each other being truly independent; see examples and discussions in
Kaśkosz and Lojasiewicz [667] and in Loewen and Rockafellar [805].

It was not even clear till the work by Loewen and Rockafellar [804] whether
one could find a common adjoint arc p(·) satisfying both Euler-Lagrange con-
dition (6.115) and Hamiltonian condition (6.116) simultaneously. The affir-
mative answer was given in [804] for convex-valued and Lipschitzian differen-
tial inclusions with no assumption of calmness or normality. Note that in this
case both conditions (6.115) and (6.116) automatically imply the Weierstrass-
Pontryagin maximum condition〈

p(t), ˙̄x(t)
〉

= H
(
x̄(t), p(t), t

)
a.e. (6.117)

We refer the reader to [254, 255, 256, 267, 268, 272, 273, 274, 276, 595, 666, 667,
803, 804, 808, 1178, 1291, 1292] and the bibliographies therein for extensions
and modifications of necessary optimality conditions of the Euler-Lagrange
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and Hamiltonian types obtained in terms of Clarke’s generalized differential
constructions for various problems of dynamic optimization and optimal con-
trol.

6.5.6. Transversality Conditions. Necessary optimality conditions in
problems of dynamic optimization include, besides dynamic relations of the
type discussed above (Euler-Lagrange, Hamiltonian, Weierstrass-Pontryagin),
also endpoint relations on adjoint trajectories called transversality conditions.
They are expressed via appropriate (generalized) differential constructions for
cost and constraint functions depending on endpoints of state trajectories.
Note that endpoint constraints on (x(a), x(b)) can be implicitly included in
the endpoint cost function ϕ if it is assumed to be extended-real-valued as in
the generalized problem of Bolza (6.112). However, typically such constraints
are given explicitly in the form(

x(a), x(b)
)
∈ Ω ⊂ IRn , (6.118)

where the constraint/target set Ω may be specified in some functional form by,
e.g., equalities and inequalities with real-valued (often Lipschitzian) functions.

In the afore-mentioned publications by Clarke and his followers concerning
minimization of Lipschitzian cost functions ϕ as in (6.112) subject to endpoint
constraints of type (6.118), the transversality conditions were derived in the
form (

p(a),−p(b)
)
∈ λ∂Cϕ

(
x̄(a), x̄(b)

)
+ NC

(
(x̄(a), x̄(b));Ω

)
(6.119)

with λ ≥ 0 via Clarke’s generalized gradient of ϕ and his normal cone to Ω
at the optimal endpoints (x̄(a), x̄(b)). When ϕ and Ω happen to be convex,
the transversality inclusion (6.119) reduces to that obtained earlier by Rock-
afellar [1143]. Note that the normal form λ = 1 holds under the calmness
assumption and that a proper counterpart of (6.119) is expressed in terms of
Clarke’s normal cone to the epigraph of ϕ + δ(·;Ω) if ϕ is merely l.s.c. around
(x̄(a), x̄(b)).

Transversality conditions in the significantly more advanced form(
p(a),−p(b)

)
∈ λ∂ϕ

(
x̄(a), x̄(b)

)
+ N

(
(x̄(a), x̄(b));Ω

)
(6.120)

were first established by Mordukhovich in the mid-1970s via his basic/limiting
normal cone and subdifferential: in [887] for time optimal control problems
and in [889, 892] for other classes of problems in optimal control and dynamic
optimization involving ODE control systems (6.106) and differential inclusions
(6.110); see also [717, 897, 900, 901, 902, 904]. These results were obtained
by the method of metric approximations, which was actually the driving force
to introduce the nonconvex-valued normal cone and subdifferential in [887];
more comments and discussions were given in Subsects. 1.4.5 and 2.6.1.

It seems that the transversality conditions in form (6.120) didn’t get a
proper attention in the Western literature before Mordukhovich’s talk at the
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Montreal workshop (February 1989) and the publication of Clarke’s second
book [257], where these conditions were mentioned in footnotes with the ref-
erence to Mordukhovich; see Subsect. 1.4.8. However, even after that many
papers (see, e.g., those listed in Subsect. 1.4.8) still continued using transver-
sality conditions in form (6.119) instead of the advanced one (6.120).

Nevertheless, it has been eventually recognized the possibility to justify
the advanced transversality conditions (6.120) in any investigated setting of
dynamic optimization. We particularly refer the reader to the publications
[33, 40, 93, 113, 258, 260, 261, 264, 265, 275, 443, 444, 506, 605, 611, 616, 801,
805, 806, 807, 845, 847, 878, 880, 914, 915, 916, 921, 932, 955, 959, 970, 971,
973, 974, 976, 1021, 1022, 1074, 1075, 1076, 1077, 1078, 1079, 1080, 1118, 1161,
1162, 1176, 1179, 1211, 1215, 1216, 1233, 1289, 1293, 1294, 1295, 1372], which
clearly demonstrated this for various problems of the calculus of variations
and optimal control of ordinary differential systems and their distributed-
parameter counterparts.

6.5.7. Extended Euler-Lagrange Conditions for Convex-Valued
Differential Inclusions. The usage of the nonconvex normal cone from [887]
in the framework of dynamic optimality conditions for differential inclusions
was initiated in the 1980 paper by Mordukhovich [892] for the problem of min-
imizing the cost function ϕ(x(a), x(b)) over absolutely continuous trajectories
for the convex-valued, bounded, and Lipschitzian (in x) differential inclusion
(6.110) subject to the endpoint constraints (6.118). Given an optimal solution
x̄(·) to this problem, a dynamic necessary optimality condition was obtained
in [892] in the form(

ṗ(t), ˙̄x(t)
)
∈ co

{
(u, v) ∈ IR2n

∣∣∣(u, p(t)
)
∈ N

(
(x̄(t), v); gph F(t)

)
,

v ∈ M
(
x̄(t), p(t), t

)}
a.e. t ∈ [a, b]

(6.121)

with the argmaximum sets M(x, p, t) defined by

M(x, p, t) :=
{
v ∈ F(x, t)

∣∣ 〈p, v〉 = H(x, p, t)
}

and the transversality inclusion (6.120) held when ϕ is locally Lipschitzian.
If the argmaximum set M(x̄(t), p(t), t) is a singleton for a.e. t ∈ [a, b] (it
happens, in particular, when the velocity set F(x̄(t), t) is strictly convex almost
everywhere), condition (6.121) reduces to(

ṗ(t), ˙̄x(t)
)
∈ co

{
(u, v)

∣∣∣ (u, p(t)
)
∈ N

(
(x̄(t), ˙̄x(t)); gph F(t)

)}
a.e. (6.122)

It is worth mentioning that these results were derived in [892] with no calmness
and/or any other qualification conditions by using the method of discrete
approximations; see Subsect. 6.5.12 for more discussions on this technique.

Observe that in contrast to Clarke’s Euler-Lagrange condition (6.115) re-
quiring the full convexification of the basic normal cone (since NC = clco N),
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both conditions (6.121) and (6.122) involve only a partial convexification,
which allows us to avoid troubles with the subspace property of the Clarke
normal cone to graphical sets.

Condition (6.122) obviously implies the Euler-Lagrange condition in
Clarke’s form (6.115); it is easy to find examples when (6.122) is strictly bet-
ter. This is however not the case regarding the comparison between (6.115)
and (6.121) when the velocity sets F(x, t) are not strictly convex. Indeed,
there are examples in Loewen and Rockafellar [805] showing that these two
necessary optimality conditions are generally independent. Moreover, it has
been subsequently proved by Ioffe [603] and Rockafellar [1162] (as the two
complementary implications) that Mordukhovich’s initial version of the Euler-
Lagrange condition (6.121) for convex-valued differential inclusions happens
to be equivalent to Clarke’s Hamiltonian condition (6.116).

We refer the reader to other publications by Mordukhovich [901, 902, 908]
containing the developments of condition (6.121), and thus of (6.122) in
the case of strictly convex velocity sets, for various dynamic optimization
problems involving convex-valued (or relaxed) differential inclusions; in par-
ticular, for problems with free time, intermediate state constraints, Bolza-
type functionals, etc. Developing then the discrete approximation techniques
of [892, 901, 902, 908], Smirnov [1215] established the validity of the re-
fined Euler-Lagrange condition (6.122) for (not strictly) convex-valued, Lip-
schitzian, bounded, and autonomous differential inclusions by reduction them
in fact to the strictly convex case.

Further results in this direction were obtained by Loewen and Rockafellar
[805] for convex-valued and unbounded differential inclusions of type (6.110),
with the replacement of the standard Lipschitzian property of F(·, t) for
bounded inclusions by its “integrable sub-Lipschitzian” counterpart in the
unbounded case. They derived the Euler-Lagrange condition in the advanced
form (6.122) emphasizing that “two simple themes underlie our approach:
truncation and strict convexity.” The latter means that they developed an
efficient technique allowing them to reduce the general case under consid-
eration to bounded and Lipschitzian differential inclusions, for which con-
dition (6.121) held and agreed with the refined one (6.122). Note that the
convexity assumption on the sets F(x, t) played a crucial role in the technique
developed in [805]. The two subsequent papers by Loewen and Rockafellar
[806, 807] contained extensions of these results to the generalized problem of
Bolza with state constraints and free time. It is worth mentioning that in [806]
the general Bolza case with an extended-real-valued integrand/Lagrangian
in (6.112) was reduced under mild “epi-continuity” and growth assumptions
to a Mayer problem for an unbounded differential inclusion satisfying the “in-
tegrable sub-Lipschitzian” property of [805]; moreover, the coderivative crite-
rion for Lipschitz-like behavior established by Mordukhovich [909] (see The-
orem 4.10) served as a key technical ingredient in justifying the possibility of
such a reduction.
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At this point we observe that the Euler-Lagrange inclusion (6.122) can be
equivalently written in the coderivative form

ṗ(t) ∈ coD∗
x F

(
x̄(t), ˙̄x(t), t

)(
− p(t)

)
a.e. , (6.123)

which was actually the original motivation for introducing the coderivative
construction in [892] (as the adjoint mapping to F) to describe adjoint sys-
tems in optimal control problems governed by discrete-time and differential
inclusions. Since the coderivative reduces to the adjoint Jacobian for smooth
single-valued mappings, relation (6.123) can be viewed as an appropriate ex-
tension of the adjoint system (6.107) to generalized control processes gov-
erned by differential inclusions. Note that the Hamiltonian form of necessary
optimality conditions as in (6.113) doesn’t offer such an extension in the non-
smooth setting. Besides an intrinsic esthetic value, form (6.123) carries a pow-
erful technical component allowing us to employ comprehensive coderivative
calculus and dual characterizations of Lipschitzian and related properties to
the study of many issues in control theory for differential inclusions, partic-
ularly those concerning limiting processes; see, e.g., the above proofs of the
major results presented in Sects. 6.1 and 6.2 of this book.

6.5.8. Extended Euler-Lagrange and Weierstrass-Pontryagin Con-
ditions for Nonconvex-Valued Differential Inclusions. As mentioned,
the results discussed in Subsect. 6.5.7 (as well as the previous versions re-
viewed in Subsect. 6.5.6) were derived under the convexity hypothesis imposed
on the velocity sets F(x, t) of differential inclusions in the absence of calmness-
like assumptions. Necessary optimality conditions for nonconvex-valued (while
Lipschitzian and bounded) differential inclusions with endpoint constraints in-
volving the extended Euler-Lagrange condition (6.123) were first established by
Mordukhovich [915] without any constraint qualifications. Observe that the
Euler-Lagrange condition in Clarke’s fully convexified form (6.115) was pre-
viously obtained by Kaśkosz and Lojasiewicz [667] for boundary trajectories
of nonconvex, bounded, and Lipschitzian differential inclusions. In [915], the
reader can find the corresponding version of the extended Euler-Lagrange con-
dition (6.123) for the Bolza problem (6.112) with a finite nonconvex integrand
over nonconvex differential inclusions, while another paper by Mordukhovich
[916] concerned problems with free time.

The Weierstrass-Pontryagin maximum condition (6.117) doesn’t play an
independent role for convex-valued differential inclusions, since it follows auto-
matically from any version of the Euler-Lagrange conditions discussed above.
This is no longer true in the nonconvex setting for which the maximum condi-
tion was not established in the afore-mentioned papers [667, 915]. Neverthe-
less, it was asserted in [915, Remark 7.6] that the methods developed therein
would allow us to prove (6.117) accompanying the refined Euler-Lagrange
condition (6.123) if the classical Weierstrass necessary condition would be es-
tablished for strong minimizers of the Bolza problem with finite Lagrangian
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and free endpoints without imposing any smoothness and/or convexity as-
sumptions. The latter task was first accomplished by Ioffe and Rockafellar
[616] who derived the counterpart

ṗ(t) ∈ co
{

u ∈ IRn
∣∣ (u, p(t)

)
∈ ∂ϑ

(
x̄(t), ˙̄x(t), t

)}
a.e. (6.124)

of the extended Euler-Lagrange condition (6.123) accompanied by the classical
Weierstrass condition, valid for all v ∈ IRn and a.e. t ,

ϑ
(
x̄(t), v, t

)
≥ ϑ

(
x̄(t), ˙̄x(t), t

)
+ 〈p(t), v − ˙̄x(t)〉 (6.125)

for the nonconvex Bolza problem (6.112) with the finite (real-valued)
integrand ϑ .

Based on Ioffe-Rockafellar’s result and the techniques of [915], Mor-
dukhovich derived in [914] the Euler-Lagrange condition (6.123) accompanied
by the Weierstrass-Pontryagin maximum condition (6.117) for nonconvex dif-
ferential inclusions under the boundedness and Lipschitzian assumptions on F
with respect to x . More general results of this type were then obtained in the
concurrent papers by Ioffe [604] and Vinter and Zheng [1294] who derived, by
different techniques, the extended Euler-Lagrange (6.123) and Weierstrass-
Pontryagin (6.117) necessary optimality conditions for nonconvex and un-
bounded differential inclusions under the integrable sub-Lipschitzian assump-
tion by Loewen and Rockafellar [805]. It is interesting to observe that Vinter
and Zheng [1294] gave another proof of Ioffe-Rockafellar’s results (6.124) and
(6.125) for problems with finite Lagrangians based on their reduction to op-
timal control problems for systems with smooth dynamics and nonsmooth
endpoint constraints employing to them the version of the maximum principle
with transversality conditions (6.120) originally obtained in the 1976 paper
by Mordukhovich [916]. We also refer the reader to the subsequent papers by
Vinter and Zheng [1295, 1296, 1297] for appropriate versions of the extended
Euler-Lagrange and Weierstrass-Pontryagin conditions to problems with state
constraints and free time, and also to their applications. Furthermore, Ram-
pazzo and Vinter [1118] generalized these results for nonconvex differential
inclusions with the so-called degenerated state constraints providing nonde-
generate necessary optimality conditions for problems in which endpoints may
belong to the boundary of state constraints, and so the standard necessary
conditions convey no useful information. See also Arutyunov and Aseev [33],
Ferreira, Fontes and Vinter [443] with the references therein for previous re-
sults concerning degenerate control problems.

Quite recently, Clarke [260, 261] derived necessary optimality conditions in
the extended Euler-Lagrange form (6.123) accompanied by the Weierstrass-
Pontryagin maximum condition (6.117) for nonconvex and unbounded dif-
ferential inclusions under fairly weak (probably minimal) assumptions on the
initial data. In the process of proof, he developed a delicate and powerful tech-
nique involving smooth variational principles and decoupling machinery that
allowed him to reduce these conditions under the weak assumptions made
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to the settings already known and discussed above. The conditions derived
in [260, 261] also incorporated a novel stratified feature in which both the
assumptions and conclusions were formulated relative to a prescribed radius
function. They also gave rise to new forms of the so-called “hybrid maximum
principle” for optimal control problems with cost integrands of a very general
nature while with the smooth underlying dynamics.

Note that in certain special situations potentially stronger versions of the
extended Euler-Lagrange condition can be obtained for minimizing nonconvex
and nonsmooth integral functionals of the calculus of variations and related
problems. To this end we refer the reader to the papers by Ambrosio, Ascenzi
and Buttazzo [17], Marcelli [845, 846], and Marcelli, Outkine and Sytchev
[847], where some versions of the Euler-Lagrange conditions via the subdif-
ferential of convex analysis were derived for nonconvex problems with some
special structures. The results of this type are heavily based on relaxation
techniques particularly involving the Lyapunov convexity theorem [822] and
its various extensions and modifications.

6.5.9. Dualization and Extended Hamiltonian Formalism. In Sub-
sects. 6.5.5 and 6.5.7 we have discussed some relationships between the previ-
ous versions of the Euler-Lagrange and Hamiltonian optimality conditions for
differential inclusions and for the generalized problem of Bolza. Recall that, in
contrast to the classical smooth and fully convex cases, Clarke’s versions of the
Euler-Lagrange (6.115) and Hamiltonian (6.116) conditions are not equivalent
even in simple settings, while his Hamiltonian condition happens to be equiv-
alent to the early Mordukhovich’s version of the Euler-Lagrange condition
(6.121) for convex-valued differential inclusions. What about an appropriate
Hamiltonian counterpart of the extended Euler-Lagrange condition written as
(6.122), or equivalently as (6.123), for differential inclusions and as (6.124)
and the problem of Bolza in the absence of strict convexity?

This question was first investigated by Rockafellar [1162] in the general
framework of the Legendre-Fenchel transform (or the conjugacy correspon-
dence) of convex analysis defined by the classical formula

ϑ∗(x, p) = sup
v∈IRn

{
〈p, v〉 − ϑ(x, v)

}
. (6.126)

It is well known from convex analysis [1142] that for any proper, convex, and
l.s.c. function ϑ(x, ·): IRn → IR the conjugate function ϑ∗(x, ·) enjoys the same
properties on IRn satisfying moreover the symmetric biconjugacy relationship

ϑ(x, v) = sup
p∈IRn

{
〈p, v〉 − ϑ∗(x, p)

}
.

The question stated and resolved by Rockafellar [1162] was about relationships
between basic subgradients of the functions ϑ(x, v) and ϑ∗(x, p) with respect
to their both variables. Under a certain “epi-continuity” assumption, which
automatically holds when either ϑ or ϑ∗ is locally Lipschitzian around the
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reference point, it was established in [1162] the following relationship for the
convex hulls:

co
{

u ∈ IRn
∣∣ (u, p) ∈ ∂ϑ(x, v)

}
= −co

{
u ∈ IRn

∣∣ (u, v) ∈ ∂ϑ∗(x, p)
}
. (6.127)

For the case corresponding to differential inclusions, with ϑ(x, v) = δ((x, v);
gph F), the relationships (6.127) reduces to

co
{

u ∈ Rn
∣∣ (u, p) ∈ N

(
(x, v); gph F

)}
= co

{
u ∈ IRn

∣∣ (−u, v) ∈ ∂H(x, p)
}

by taking into account (6.126) and the Hamiltonian construction (6.111). The
proof of the Rockafellar dualization theorem (6.127) given in [1162] was rather
involved based on advanced tools of convex analysis in finite dimensions in-
cluding Moreau-Yosida’s approximation techniques, Wijsman’s epi-continuity
theorem, Attouch’s theorem on convergence of subgradients, etc.

In view of (6.127), the advanced/extended Hamiltonian form equivalent to
the extended Euler-Lagrange condition (6.123) for convex-valued differential
inclusions reads as follows:

ṗ(t) ∈ co
{

u ∈ IRn
∣∣ (− u, ˙̄x(t)

)
∈ ∂H

(
x̄(t), p(t), t

)}
a.e. (6.128)

The same form of the extended Hamiltonian condition holds true for the gen-
eralized Bolza problem (6.112), with the Hamiltonian defined accordingly as
the conjugate of the Lagrangian integrand ϑ(x, p, t) in the velocity variable v.
The elaboration of the assumptions needed for the fulfillment of the associated
Euler-Lagrange condition (6.124) together with the equivalent Hamiltonian
form (6.128) in the framework of the generalized problem of Bolza with the
integrand ϑ(x, v, t) convex in v was given by Loewen and Rockafellar [806];
see the corresponding discussions on the extended Euler-Lagrange condition
in Subsect. 6.5.7, presented right before (6.123), which can now be equally
relate to the Hamiltonian condition (6.128) due to Rockafellar’s dualization
result (6.127).

In [604], Ioffe established the inclusion “⊂” in (6.127) under significantly
weaker assumptions in comparison with those in Rockafellar [1162], while
still under the convexity of ϑ(x, ·). Employing this result, he justified neces-
sary optimality conditions in both Euler-Lagrange (6.123) and Hamiltonian
(6.128) forms for convex-valued and unbounded differential inclusions with
the replacement of the “integrable sub-Lipschitzian” property as in Loewen
and Rockafellar [806] by the more general Lipschitz-like (Aubin’s “pseudo-
Lipschitzian”) property of F(·, t). Observe that Ioffe’s proof clearly reveals
the pivoting role of the Euler-Lagrange condition (6.123) in nonsmooth opti-
mal control, which holds with no convexity assumptions (see Subsect. 6.5.8)
and directly implies the extended Hamiltonian condition (6.128) for convex-
valued problems. Note to this end that the validity of the latter Hamiltonian
inclusion (6.128) for nonconvex problems is still an open question, even for
bounded and Lipschitzian differential inclusions.
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Another proof of the inclusion “⊂” in Rockafellar’s dualization theorem
(6.127) under about the same hypotheses as in [1162] was later given by Bessis,
Ledyaev and Vinter [113] (see also Sect. 7.6 in Vinter’s book [1289]). The proof
of [113, 1289] employed not Moreau-Yosida’s approximations as in [604, 1162]
but more direct and conventional (while rather involved) techniques of proxi-
mal analysis.

6.5.10. Other Techniques and Results in Nonsmooth Optimal
Control. It is worth mentioning that, as shown by Ioffe [604], the advanced
Euler-Lagrange formalism for nonconvex differential inclusions discussed in
Subsect. 6.5.8 easily implies a nonsmooth version of the Pontryagin maximum
principle for parameterized control systems of type (6.106) with the adjoint
equation

− ṗ(t) ∈
[

Jx f
(
x̄(t), ˙̄x(t), t

)]∗
p(t) a.e. (6.129)

written via Clarke’s generalized Jacobian Jx f of f with respect to x . Recall
that the generalized Jacobian [252, 255] of a Lipschitzian mapping f : IRn →
IRm is defined as the convex hull of the classical Jacobian m × n matrices
at points xk → x̄ ; the latter set is nonempty and compact by the funda-
mental Rademacher’s theorem [1114]. Such a nonsmooth maximum principle
involving the adjoint equation (6.129) was first obtained by Clarke [250, 255]
directly for control systems (6.106) based on approximation procedures via
Ekeland’s variational principle. Note also that Ioffe [604] deduced the max-
imum principle in the somewhat more advanced form suggested by Kaśkosz
and Lojasiewicz [666] for parameterized families of vector fields from the ex-
tended Euler-Lagrange formalism for differential inclusions.

Probably the very first extension of the Pontryagin maximum principle to
nonsmooth control systems was published by Kugushev [722] who employed
a certain constructive technique to approximate the given nonsmooth system
by a sequence of smooth ones. However, he didn’t described efficiently the
resulting set of “subgradients” that appeared in this procedure. Other early
results on the nonsmooth maximum principle for systems (6.106) were inde-
pendently obtained by Warga [1316, 1317, 1321] (starting with the end of
1973) using some smooth approximation technique of the mollifier type and
his derivate containers for mappings f : IRn → IRm . The latter objects, which
are not uniquely defined, give more precise results than Clarke’s generalized
Jacobian in some settings of variational analysis, optimization, and control.
However, the convex hull of any derivate container provides no more informa-
tion than the generalized Jacobian (as shown in [1320]), and thus the adjoint
system in form (6.129) subsumes that of Warga [1316].

Warga’s approach to derive necessary optimality and controllability con-
ditions was extended by Zhu [1370] to nonconvex differential inclusions satis-
fying, besides the standard assumptions of boundedness and Lipschitz conti-
nuity, also requirements on the existence of some local selections, which were
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incorporated in the optimality conditions obtained in [1370]. An obvious draw-
back of such and related conditions (see, e.g., Tuan [1273]) is the absence of
any analytic mechanism for obtaining required selections, even in the case of
convex-valued inclusions. Similar remarks on the possibility to constructively
verify assumptions and conclusions explicitly involving certain auxiliary ob-
jects of approximation and linearization types can be equally addressed to
some other necessary optimality conditions for nonsmooth optimal control
and variational problems obtained particularly by Frankowska [464, 465, 468]
and by Polovinkin and Smirnov [1094, 1095]; cf. also Ahmed and Xiang [6] for
problems involving infinite-dimensional differential inclusions.

Note that there is another direction in the theory of necessary optimality
conditions for differential inclusions, developed mostly in the Russian school,
that aims to derive results for differential inclusions by limiting procedures
from the Pontryagin maximum principle for smooth optimal control prob-
lems involving systems of type (6.106). In this way, using different kinds of
smooth approximations, some interesting results mainly related to those al-
ready known in the theory of convex-valued differential inclusions were ob-
tained by Arutyunov, Aseev and Blagodatskikh [34], Aseev [39, 40, 41], and
Milyutin [875, 876]; the latter paper was the last work by Alexei Alexeevich
Milyutin submitted and published after his death.

On the other way of development, new results for nonsmooth control sys-
tems (6.106) different from Clarke’s version of the nonsmooth maximum prin-
ciple with the adjoint equation (6.129) were obtained by de Pinho, Vinter,
and their collaborators using an appropriate approximation of control sys-
tems by differential inclusions with the help of Ekeland’s variational principle.
These results are described via joint subgradients of the Hamilton-Pontryagin
function (6.108), called sometimes the unmaximized indexunmaximized Hamil-
tonian Hamiltonian, in the (x, p, u) variables. The first result of this type
was derived by de Pinho and Vinter [1078] for standard optimal control prob-
lems with endpoint constraints under the name of “Euler-Lagrange inclusion,”
which didn’t seem to be in accordance with the real essence of this condition.
Then the name has been appropriately changed, and the results of this type
were labeled as necessary optimality conditions for nonsmooth control sys-
tems involving the unmaximized Hamiltonian inclusion (UHI); see [1076] for
more discussions. The subsequent papers of these authors and their collab-
orators [1074, 1075, 1076, 1077, 1079, 1080] contained various extensions of
the UHI type results to optimal control problems with state constraints, with
mixed constraints on control and state variables, with algebraic-differential
constraints, etc. The results of this type are particularly efficient for weak
minimizers; cf. also the related paper by Páles and Zeidan [1036]. One of the
strongest advantages (as well as the original motivation) of the UHI formal-
ism in comparison with Clarke’s version of the nonsmooth maximum principle
is that the possibility to get necessary and sufficient conditions for optimal-
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ity in nonsmooth convex control problems, which is not the case for Clarke’s
formalism (6.129).

6.5.11. Dual versus Primal Methods in Optimal Control. Observe
that the majority of techniques developed for optimization of differential in-
clusions don’t employ the method of variations and its modifications that lie
at the heart of the classical calculus of variations and optimal control dealing
with parameterized control systems of type (6.106). Perhaps the most signif-
icant technical reason for this in the context of differential inclusions (6.110)
relates to the fact that the method of variations based on the comparison
between the given optimal solution and its small (in some sense) local varia-
tions doesn’t fit well to the very nature of the dynamic constraints ẋ ∈ F(x)
and also of control constraints of the type u ∈ U(x) with the state-dependent
control region U(x).

Alternative approaches to developing necessary optimality conditions for
differential inclusions, as well as for constrained control systems of type
(6.106), are based on certain approximation/pertubation procedures concern-
ing the whole problem under consideration, not only its optimal solution. This
may involve various approximations of dynamic optimization problems by
those with no right-endpoint constraints (which are much easier to handle),
exact penalization, decoupling, discrete approximations, etc.; see more details
and discussions in Clarke [250, 255], Ioffe [604, 611], Mordukhovich [887, 915],
Vinter [1289] with their references.

The techniques and results of the latter type lead to subgradient-oriented
theories of necessary conditions in nonsmooth optimization and optimal con-
trol involving generalized differential constructions in dual spaces (normal
cones, subdifferential, coderivatives). It seems that the strongest general
results of this type are expressed in terms of our basic/limiting dual-space
constructions, which cannot be generated by derivative-like objects in primal
spaces (as tangent cones and directional derivatives) due to their intrinsic
nonconvexity. This allows us to unify the results obtained in this direction
under the name of dual-space theory.

On the other line of developments, approaches and results related to the
method of variations and its modifications deal with variations and perturba-
tions of optimal solutions in primal spaces involving various tangential approx-
imations, particularly of reachable sets for control systems; see, e.g., the proof
of the Pontryagin maximum principle in [1102] and the subsequent develop-
ments by Dubovitskii and Milyutin [370, 877], Halkin [539, 545], Neustadt
[1001, 1002], Warga [1315, 1316], and others. We refer to results of this type
as to primal-space theory. Note that this terminology is not in accordance with
the one adopted by Vinter [1289, pp. 228–231].

Necessary optimality conditions for nonsmooth optimal control obtained
in the dual-space and primal-space theories are generally independent from
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the viewpoints of treated local minimizers, employed analytic machineries,
and imposed assumptions on the initial data. In more detail:

—–Types of local minima investigated by primal-space methods depend
on the variations used, while dual-space methods deal with local minimizers
defined regardless of variations.

—–Realizations and implementations of primal-space methods heavily de-
pend on using powerful tools of nonlinear analysis (including open mapping
and implicit function theorems and/or fixed-point results), while dual-space
methods are free of this machinery employing instead more simple penalty-
type techniques in finite dimensions as well as modern variational principles
in infinite-dimensional settings.

—–Assumptions needed for approximation/perturbation techniques in
dual-space theory require good behavior around points of minima (e.g., Lip-
schitzian properties and metric regularity), while primal-space techniques may
produce results under at-point assumptions.

—–Primal-space methods for (smooth and nonsmooth) constrained opti-
mization (including constrained optimal control) require finally the usage of
convex separation for obtaining efficient results in eventually dual terms (La-
grange multipliers, adjoint trajectories, etc.), while dual-space methods don’t
appeal as a rule to convex separation theorems.

In Sect. 6.3, the reader can find some advanced results in the primal-
space direction derived in the conventional PMP form and its upper subdif-
ferential extension. The obtained results concern parameterized control sys-
tems of type (6.106) with smooth dynamics in infinite-dimensional spaces
and endpoint equality and inequality constraints described by finitely many
real-valued functions. However, these functions may be merely Fréchet differ-
entiable at the reference optimal point, not even being continuous around it
(the latter applies only to the functions describing the endpoint objective as
well as inequality constraints); see more comments to the material of Sect. 6.3
presented below.

The most general results of the primal type in nonsmooth optimal control
for finite-dimensional systems have been developed by Sussmann during the
last decade; see [1235, 1236, 1237, 1238] and the references therein. He started
[1235] with the remarkable result called the Lojasiewicz refinement of the
maximum principle that came out of Lojasiewicz’s idea formulated in the
unpublished (and probably unfinished) paper [810]. This refinement consists
of justifying a version of the PMP by assuming that the velocity mapping
f (x, u, t) in (6.106) is not C1 with respect to x for all u ∈ U a.e. in t as in the
classical PMP and not locally Lipschitzian in x for all u ∈ U and a.e. t as in
Clarke’s nonsmooth version of the PMP under “minimal hypotheses” [250] but
merely locally Lipschitzian in x along the given optimal control u = ū(t) for
a.e. t . A “weak differentiable” version of this result justifies the validity of the
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PMP when f (·, ū(t), t) is differentiable (possibly not strictly differentiable) at
one point x̄(t) along the optimal control u = ū(t) for a.e. t .

Sussmann proved these results and their far-going generalizations in non-
smooth optimal control developing certain abstract versions of needle varia-
tions (crucial in the proof of the classical PMP) and primal-space construc-
tions of generalized differentials. In the recent paper [38], Arutyunov and
Vinter provided a simplified proof of the “weak differentiable” version in the
Lojasiewicz refinement of the PMP based on the so-called “inner finite ap-
proximations” involving special needle-type variations of the reference opti-
mal control ū(·) that don’t violate endpoint constraints on trajectories. The
idea of this finite approximation scheme goes back to Tikhomirov being pub-
lished in [7], where it was applied to the classical PMP in smooth optimal
control. Further results in this direction were derived by Shvartsman [1209]
for nonsmooth control systems with state constraints.

6.5.12. The Method of Discrete Approximations. Section 6.1 is
devoted to a thorough study of dynamic optimization problems in infinite-
dimensional spaces by using the method of discrete approximations. Although
our primary goal is to develop this method as a vehicle to derive necessary
optimality conditions of the extended Euler-Lagrange type (6.123) for dy-
namic processes governed by nonconvex differential/evolution inclusions, we
also present some results of numerical value for such processes that concern
well-posedness and convergence issues for discrete approximations of evolu-
tion inclusions with and without optimization involved. It seems that neither
necessary optimality conditions for infinite-dimensional evolution inclusions
nor discrete approximations of such processes have been previously considered
in the literature besides the author’s recent paper [932], where some of the
results obtained in this book were announced. They follow however a series
of finite-dimensional developments; see below.

The method of discrete approximations for the study of continuous-time
systems goes back to Euler [411] who developed it to establish the famous
first-order necessary condition (known now as the Euler or Euler-Lagrange
equation) for minimizing integral functionals in the one-dimensional calcu-
lus of variations. It is significant to note that Euler regarded the integral
under minimization as an infinite sum and didn’t employ limiting processes
interpreting instead (via a geometric diagram) the differentials along the min-
imizing curve as infinitesimal changes in comparison with “broken lines,” i.e.,
finite differences. Euler’s derivation of the necessary optimality condition in
one equational form for a “general” (at that time) problem of the calculus of
variations signified a major theoretical achievement providing the synthesis of
many special cases and examples appeared in the work of earlier researchers.
It is worth mentioning that an approximation idea based on replacing a curve
by broken lines was partly (and rather vaguely) used by Leibniz [757] in his
solution of the brachistochrone problem in the very beginning of the calculus
of variations.
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Since that time, Euler’s finite-difference method and its modifications have
been widely employed in various areas of dynamic optimization and numeri-
cal analysis of differential systems, with mostly numerical emphasis that has
become more significant in the computer era. There is an abundant literature
devoted to different aspects of discrete approximations and their numerous
applications; we refer the reader to [28, 98, 184, 185, 220, 221, 298, 299, 302,
303, 338, 343, 344, 345, 346, 347, 348, 349, 353, 354, 357, 358, 359, 367, 407,
425, 488, 520, 535, 542, 702, 721, 760, 761, 828, 831, 832, 890, 892, 900, 901,
902, 908, 915, 916, 941, 959, 973, 974, 976, 1012, 1061, 1062, 1086, 1107, 1109,
1215, 1175, 1216, 1280, 1282, 1283, 1284, 1301, 1333, 1379] and the bibliogra-
phies therein for representative publications related to dynamic optimization
and control systems.

In Sect. 6.1 we extend to the general infinite-dimensional setting of non-
convex evolution/differential inclusions the basic constructions and results
of the method of discrete approximations developed previously by Mor-
dukhovich [915] for differential inclusions in finite-dimensional spaces; see also
[890, 892, 901, 902, 908, 1107, 1109, 1215, 1216] and the comments below for
the preceding work in this direction concerning convex-graph and convex-
valued differential inclusions in finite dimensions.

The underlying idea and the basic scheme of the method of discrete approx-
imations to derive necessary optimality conditions for variational problems
involving differential inclusions contain the following three major components:

(i) to replace/approximate the original continuous-time variational prob-
lem by a well-posed sequence of discrete-time optimization problems whose
optimal solutions converge, in a certain suitable sense, to some (or to the
given) optimal solution for the original problem;

(ii) to derive necessary optimality conditions in discrete-time problems of
dynamic optimization by reducing them to constrained problems of mathe-
matical programming, which occur to be intrinsically nonsmooth, and then by
employing appropriate tools of generalized differentiation with good calculus;

(iii) to establish robust/pointbased necessary optimality conditions for the
original continuous-time dynamic optimization problem by passing to the limit
from necessary conditions for its discrete approximations and by using the
convergence/stability results obtained for the discrete approximation proce-
dure together with the corresponding properties of the generalized differential
constructions that ensure the required convergence of adjoint trajectories.

In Mordukhovich’s paper [915], the described discrete approximation
scheme was implemented for the general Bolza problem governed by noncon-
vex differential inclusions in finite-dimensional spaces; the extended Euler-
Lagrange condition of the advanced type (6.123) was first established there
in this way for nonconvex problems. The realization of each of the three steps
(i)–(iii) listed above for evolution inclusions in infinite dimensions requires
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certain additional developments most of which happen to be significantly dif-
ferent from the finite-dimensional setting.

6.5.13. Discrete Approximations of Evolution Inclusions. The
main aspects of the theory of differential inclusions of type (6.1) in infinite-
dimensional spaces, called often evolution inclusions, are presented in the
books by Deimling [314] and by Tolstonogov [1258], while much more is avail-
able for differential inclusions in finite dimensions; see, e.g., the books by
Aubin and Cellina [50] and by Filippov [450] with the references therein. We
follow Deimling [314] in Definition 6.1 of solutions to differential/evolution in-
clusions in Banach spaces. Note that it differs from Carathéodory solutions in
finite dimensions (which go back to [222] in the case of differential equations)
by the additional requirement on the validity of the Newton-Leibniz formula
in terms of the Bochner integral; the latter is not automatic for absolutely
continuous mappings with infinite-dimensional values. On the other hand,
there is a precise characterization of Banach spaces, where the fulfillment of
the Newton-Leibniz formula is equivalent to the absolute continuity: these are
spaces with the Radon-Nikodým property (RNP) for which more details are
available in the classical monographs by Bourgin [169] and by Diestel and Uhl
[334]. The latter property is fundamental in functional analysis; in particular,
its validity for the dual space X∗ is equivalent to the Asplund property of X .
This justifies another line of using the remarkable class of Asplund spaces in
the book.

The principal result of Subsect. 6.1.1, Theorem 6.4, justifies a construc-
tive algorithm to strongly approximate (in the norm of the Sobolev space
W 1,2([a, b]; X) ensuring particularly the a.e. pointwise convergence with re-
spect to velocities) of any given feasible trajectory for the Lipschitzian differ-
ential inclusion (6.1) in arbitrary Banach space X by extended trajectories of
its finite-difference counterparts (6.3) obtained by using the standard Euler
scheme. This result is an infinite-dimensional version of that by Mordukhovich
[915, Theorem 3.1] (with just a little change in the proof) extending his previ-
ous constructions and results from [901, 902] and those from Smirnov’s paper
[1215]; see also [1216]. This theorem, besides its independent interest and nu-
merical value to justify an efficient procedure for approximating the set of
feasible solutions to a general differential inclusion regardless of optimization,
provides the foundation for constructing well-posed discrete approximations
of variational problems for continuous-time evolution systems.

Observe that we don’t impose in Theorem 6.4 any convexity assumptions
on the velocity sets F(x, t) and realize the proximal algorithm based on the
projection of velocities in (6.10). This distinguishes the velocity approach from
more conventional results on discrete approximations of (convex-graph or
convex-valued) differential inclusions involving projections of state vectors and
ensuring merely the C([a, b]; IRn)-norm convergence of trajectories; see, e.g.,
Pshenichnyi [1107, 1109] and the survey papers by Dontchev and Lempio [359]
and by Lempio and Veliov [761]. We emphasize that the latter convergence
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doesn’t allow us to deal with nonconvex inclusions (since the uniform conver-
gence of trajectories corresponds to the weak convergence of derivatives and
eventually requires the subsequent convexification by the Mazur weak closure
theorem) and that the achievement of the a.e. pointwise convergence of deriv-
atives/velocities plays a crucial role in the possibility to establish necessary
optimality conditions for nonconvex problems.

Let us mention two recent developments on the convergence of discrete
approximations in direction (i) listed in Subsect. 6.5.12. In [343], Donchev
derived some extensions of the approximation and convergence results from
the afore-mentioned paper [915] to finite-dimensional differential inclusions
whose right-hand side mappings F(x, t) satisfy the so-called Kamke condition
with respect to x , where the standard Lipschitz modulus is replaced by a
Kamke-type function. The latter property happens to be generic (in Baire’s
sense) in the class of all continuous multifunctions F(·, t). The other work is
due to Mordukhovich and Pennanen [941] who established the epi-convergence
of discrete approximations in the generalized Bolza framework under certain
convexity and Lipschitzian assumptions.

6.5.14. Intermediate Local Minima. In Subsect. 6.2.2 we start study-
ing the Bolza problem for constrained differential/evolution inclusions in Ba-
nach spaces following mainly the procedure developed by Mordukhovich [915]
in finite dimensions, with some significant infinite-dimensional changes on
which we comment below. Note that, in contrast to the generalized Bolza
problem in form (6.13) with extended-real-valued functions ϕ and ϑ implic-
itly incorporating endpoint and dynamic constraints, we deal with such con-
straints explicitly, since the continuity and Lipschitzian assumptions imposed
on ϕ and ϑ in the results obtained in Sect. 6.1 exclude in fact the infinite
values of these functions.

The main attention in our study is paid to the notions of intermediate local
minima of rank p ∈ [0,∞) (i.l.m.; see Definition 6.7) and its relaxed version
(r.i.l.m.; see Definition 6.12). Both notions were introduced by Mordukhovich
[915] and were later studied by Ioffe and Rockafellar [616], Ioffe [604], Vinter
and Woodford [1293], Woodford [1331], Vinter and Zheng [1294, 1295, 1289],
Vinter [1289], and Clarke [260, 261] for various dynamic optimization prob-
lems, mostly in the case of p = 1, referred to as W 1,1 local minimizers.

Intermediate local minimizers occupy an intermediate position between the
classical weak and strong minimizers for variational problems; that is where
this name came from in [915]. Examples 6.8–6.10 show that these three major
types of local minimizers may be different even in relatively simple prob-
lems of dynamic optimization problems involving particularly convex-valued,
bounded, and Lipschitzian differential inclusions. Example 6.8 on the differ-
ence between weak and strong minimizers is classical going back to Weierstrass
[1326]. The simplified version of Example 6.9 on the difference between weak
and intermediate minimizers was presented in [915], while the full version of
this example as well as of Example 6.10 are taken from Vinter and Woodford
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[1293]. The latter paper and Woodford’s dissertation [1331] contain also other
examples illustrating the difference between these notions of local minima,
particularly the difference between intermediate minimizers of various ranks
for convex and unbounded differential inclusions in finite dimensions.

6.5.15. Relaxation Stability and Hidden Convexity. The remainder
of Subsect. 6.1.2 presents the construction of the relaxed Bolza problem for
differential inclusions together with the associated definition and discussions
on relaxation stability. The idea of proper relaxation (or extension, generaliza-
tion, regularization) plays a remarkable role in modern variational theory. In
general terms, it goes back to Hilbert [567] stating in his famous 20th Problem
that “every problem in the calculus of variations has a solution provided that
the word solution is suitably understood.”

It was fully realized in the 1930s, independently by Bogolyubov [121] and
by Young [1349, 1350] for one-dimensional problems of the calculus of vari-
ations who showed that adequate extensions of variational problems, which
automatically ensure the existence of generalized optimal solutions and their
approximations by “ordinary curves,” could be achieved by a certain con-
vexification with respect to velocities. In optimal control, this idea was inde-
pendently developed by Gamkrelidge [495] and by Warga [1313]; in the lat-
ter paper the term “relaxation” was first introduced. Another term broadly
used now for similar issues is “Young measures.” We refer the reader to
[3, 4, 25, 31, 50, 75, 212, 213, 231, 232, 235, 237, 246, 255, 308, 362, 401,
432, 450, 497, 527, 617, 618, 682, 704, 821, 823, 863, 886, 888, 901, 915, 1020,
1049, 1082, 1173, 1174, 1176, 1177, 1258, 1259, 1277, 1315, 1323, 1351] and
the bibliographies therein for various relaxation results and their applications
to problems of the calculus of variations, optimal control, and related topics.

In this book we follow the constructions developed in [915] for the Bolza
problem involving finite-dimensional differential inclusions and employ the re-
laxation procedure not to ensure the existence of generalized solutions but to
describe limiting points of optimal solutions to discrete approximation prob-
lems together with the minimizing functional values. To proceed in this way,
the notion of relaxation stability formulated in (6.19) plays a crucial role. This
property is typically inherent in continuous-time control systems and differ-
ential inclusions relating to their hidden convexity; see more discussions and
sufficient conditions for relaxation stability presented in Subsect. 6.1.2 and the
references therein. We specifically note the approximation property of Theo-
rem 6.11 taken from the recent paper by De Blasi, Pianigiani and Tolstonogov
[308], which is a manifestation of the hidden convexity in the framework of the
general Bolza problem for infinite-dimensional differential inclusions. Observe
also that, in a deep sense, the hidden convexity may be traced to the classi-
cal Lyapunov theorem on the range convexity of nonatomic vector measures
[822] and to its Aumann’s version [55] on set-valued integration; see Arkin and
Levin [25] and Diestel and Uhl [334] for infinite-dimensional counterparts of
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such results. We also refer the reader to some other remarkable manifestations
of the hidden convexity:

—–Estimates of the “duality gap” in nonconvex programming discovered
by Ekeland [398] and then developed by Aubin and Ekeland [51]. These de-
velopments are strongly related to the classical Shapley-Folkman theorem in
mathematical economics; see the book by Ekeland and Temam [401] for more
details and discussions.

—–Convexity of the “nonlinear image of a small ball” recently discovered
by Polyak [1098, 1100] who obtained various applications of this phenomenon
to optimization, control, and related areas; see also Bobylev, Emel’yanov and
Korovin [120] for further developments.

6.5.16. Convergence of Discrete Approximations. While the main
attention in Subsect. 6.1.1 was paid to finite-difference approximations of dif-
ferential/evolution inclusions with no optimization involved, the results of
Subsect. 6.1.3 concern approximation issues for the whole variational prob-
lem of Bolza under consideration. This means that we aim to construct well-
posed discrete approximations of the original Bolza problem (P) by sequences
of discrete-time dynamic optimization problems in such a way that opti-
mal solutions for discrete approximations converge, in a certain prescribed
sense, to those for the continuous-time problem. In fact, we present well-
posedness/stability results that justify the convergence of discrete approxima-
tions of the following two types:

(I) Value convergence ensuring the convergence of optimal values of the
cost functionals in constructively built discrete approximation problems to
the optimal value (infimum) of the cost functional in the original problem for
which the existence of optimal solutions is not assumed.

(II) Strong convergence of optimal solutions for discrete-time problems to
the given optimal solution for the original problem; the strong convergence is
understood in the W 1,2-norm for piecewise linearly extended discrete trajec-
tories.

Observe that the results of type (II) explicitly involve the given optimal so-
lution (actually an intermediate minimizer) to the original problem. They are
not constructive any more (from the numerical viewpoint) while justifying the
way to derive necessary optimality conditions for continuous-time problems
by using their discrete approximations (instead of, say, the method of varia-
tions, which is not applicable in this framework). The convergence results of
type (II) obtained in Subsect. 6.1.3 are of the main interest for deriving neces-
sary optimality conditions in Sect. 6.1 of this book (cf. also Sect. 7.1 for their
counterparts concerning functional-differential control systems); they gener-
ally impose milder assumptions in comparison with those needed to prove the
value convergence in (I).
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Results of type (I) traditionally relate to computational methods in optimal
control; they justify “direct” numerical techniques based on approximations
of continuous-time control problems by sequences of finite-difference ones,
which reduce to problems of mathematical programming in finite dimensions
provided that state vectors in control systems are finite-dimensional. We
are not familiar with any results in this directions for infinite-dimensional
differential inclusions, even in the parameterized control form (6.106), besides
those presented in Subsect. 6.1.3.

First results on value convergence for standard control systems (6.106)
were probably obtained by Budak, Berkovich and Solovieva [184] and Cul-
lum [302] in the late 1960s under rather restrictive assumptions; see also
[185, 303, 407] for earlier developments. Then Mordukhovich [890] established
the equivalence between the value convergence of discrete approximations
and the relaxation stability for general control problems involving parame-
terized systems (6.106) provided appropriate perturbations of state/endpoint
constraints consistent with the stepsize of discretization. These results were
extended in [899, 901, 902] to Lipschitzian differential inclusions; cf. also re-
lated results in Dontchev [349] and Dontchev and Zolezzi [367]. Efficient es-
timates of convergence rates, not only with respect to cost functions but also
with respect to controls and trajectories, were derived for systems of special
structures by Hager [535], Malanowski [831], Dontchev [347], Dontchev and
Hager [355], Veliov [1284], and others; see the surveys in [352, 359, 761] for
more details and references.

Theorem 6.14 seems to be new even for finite-dimensional differential inclu-
sions developing the corresponding methods and results from Mordukhovich
[890, 899, 901]. Observe that the proof of this theorem and the related
Theorem 6.13 are more technically involved in comparison with the finite-
dimensional case based, besides other things, on the fundamental Dunford
theorem ensuring the sequential weak compactness in L1([a, b]; X) provided
that both spaces X and X∗ satisfy the Radon-Nikodým property, which is the
case when both X and X∗ are Asplund. As we remember, the Asplund struc-
ture plays a crucial role in the generalized differentiation theory developed in
this book from the viewpoint not related to the RNP!

Theorem 6.13, which is what we actually need to implement the method of
discrete approximations as a vehicle for deriving necessary optimality condi-
tions for continuous-time systems (i.e., for “theoretical” vs. numerical applica-
tions) is an infinite-dimensional extension and a modification of Theorem 3.3
from Mordukhovich [915]. The difference between these two results (even in
finite dimensions) concerns the way of approximating the original integral
functional: we now adopt construction (6.20) instead of the simplified one
(6.28) as in [915]. This modification allows us to deal with measurable inte-
grands with respect to t that is important for applications in Sect. 6.2, where
the integrand must be measurable.

Observe the importance of the last term in (6.20) and (6.28) approximat-
ing the derivative of the given intermediate minimizer x̄(·). The presence of
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this term and the usage of the approximation result from Theorem 6.4 al-
low us to establish the strong (in the norm of W 1,2([a, b]; X)) convergence of
optimal solutions for the discrete approximation problems to the given local
minimizer for the original one, which further leads to deriving necessary con-
ditions of type (6.123) for continuous-time problems by passing to the limit
from those for their discrete-time counterparts. Besides [915], this approxi-
mating term was previously used by Smirnov [1215] (see also his book [1216])
for the Mayer problem involving convex-valued, bounded, and autonomous
differential inclusions in finite dimensions. The previous attempts to employ
discrete approximations for deriving necessary optimality conditions in the
Mayer framework of convex-valued or even convex-graph differential inclu-
sions were able to ensure merely the uniform convergence of extended discrete
trajectories to x̄(·) by using an approximating term of the “state type”

N−1∑
j=0

‖xN (t j ) − x̄(t j )‖2

with no derivative ˙̄x(·) involved; cf. Halkin [542], Pshenichnyi [1107, 1109],
and Mordukhovich [892, 901, 902].

6.5.17. Necessary Optimality Conditions for Discrete Approxi-
mations. After establishing the required strong convergence/stability of dis-
crete approximations discussed above, the second step in realizing the strategy
of this method to establish necessary optimality conditions for constrained dif-
ferential inclusions is to derive necessary conditions for discrete-time problems
formulated in Subsect. 6.1.3. We consider two forms of the discrete approxi-
mation problems:

—–the “integral” form (PN ) involving the minimization of the cost func-
tional (6.20) subject to the constraints (6.3), (6.21)–(6.23), and

—–the “simplified” form (P N ) in which the other cost functional (6.28) is
minimized under the same constraints.

As discussed, the only distinction between the two functionals (6.20) and
(6.28) relates to different ways of approximating the integral functional in the
original continuous-time Bolza problem (P): the integral type of (6.20) allows
us to consider measurable integrands ϑ(x, v, ·) in (6.13), while the summa-
tion/simplified type of (6.28) requires the a.e. continuity assumption impos-
ing on ϑ(x, v, ·). The reason to consider the latter simplified approximation is
that the summation form in (6.28) makes it possible to obtain necessary op-
timality conditions for discrete-time and then for continuous-time problems
in more general settings of Asplund state spaces X in comparison with the
reflexivity and separability requirements needed in the case of the integral ap-
proximation as in (6.20). This is due to the more developed subdifferential
calculus for finite sums vs. that for integral functionals; see below.
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In Subsect. 6.1.4 we derived necessary optimality conditions for discrete-
time dynamic optimization problems (PN ) and (P N ) as well as for their less
structured counterpart (D P) called the Bolza problem for discrete-time in-
clusions in infinite dimensions. These problems are certainly of independent
interest for discrete systems with fixed steps being important for many appli-
cations, particularly to models of economic dynamics; see, e.g., Dyukalov [379]
and Dzalilov, Ivanov and Rubinov [380]. Furthermore, necessary optimality
conditions for them provide, due to the convergence results of Subsect. 6.1.3,
suboptimality conditions for the continuous-time Bolza problem under con-
sideration. However, our main interest is to derive such necessary optimality
conditions for (PN ) and (P N ), which are more convenient for passing to the
limit in order to establish necessary optimality conditions for the Bolza prob-
lem involving infinite-dimensional differential inclusions.

The discrete-time dynamic optimization problems under consideration in
Subsect. 6.1.4 can be reduced to the form of constrained mathematical pro-
gramming (M P) given in (6.29). Problems (M P) appeared in this way have
two characteristic features that distinguish them from other classes of con-
strained problems in mathematical programming:

(a) They involve finitely many geometric constraints the number of which
tends to infinity when the stepsize of discrete approximations is decreasing
to zero. It is worth mentioning that these geometric constraints are of the
graphical type, which are generated by the discretized inclusions. The presence
of such constraints makes the (M P) problem (6.29) intrinsically nonsmooth
even for smooth functional data in (6.29) and in the generating problems (PN ),
(P N ), and (P).

(b) If the original state space X is infinite-dimensional, the (M P) problem
(6.29) unavoidably contains operator constraints of the equality type f (x) = 0,
where the range space for f cannot be finite-dimensional. We know that such
constraints are among the most difficult in optimization, even for smooth
mappings f , which is actually the case for applications to the discrete-time
problems under consideration.

The theory of necessary optimality conditions for mathematical program-
ming problems of type (6.29) is available from Chap. 5, where we established
necessary conditions in terms of the basic/limiting generalized differential con-
structions. The main conditions for problems of this type involving extended
Lagrange multipliers are summarized in Proposition 6.16, where finitely many
geometric constraints in (6.29) are incorporated via the intersection rule for
the basic normal cone and the corresponding SNC calculus result in the frame-
work of Asplund spaces. Employing these optimality conditions for (M P) to-
gether with exact/pointwise calculus rules developed for basic normals and
subgradients, we arrive at necessary optimality conditions for the discrete
Bolza problem (D P) governed by difference inclusions in the extended Euler-
Lagrange form of Theorem 6.17. Note that the latter result doesn’t impose any
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convexity and/or Lipschitzian assumptions on the discrete velocity sets Fj (x).
The conditions obtained in Theorem 6.17 give an Asplund space version of
the finite-dimensional conditions from Mordukhovich [915, Theorem 5.2] un-
der certain SNC requirements needed in infinite dimensions.

The pointbased necessary optimality conditions for the discrete Bolza
problem (D P) obtained in Theorem 6.17 are important for its own sake and,
furthermore, provide a sufficient ground for deriving necessary optimality con-
ditions of the extended Euler-Lagrange type (6.123) for continuous-time prob-
lems in finite dimensions; see [915] for more details. However, it is not precisely
the case in infinite dimensions, where the realization of this scheme requires
extra SNC assumptions ensuring the fulfillment of the pointbased necessary
optimality conditions in discrete approximations and then the passage to the
limit from them as N → ∞. These extra assumptions can be avoided by
deriving approximate/fuzzy necessary conditions for discrete-time problems,
instead of the pointbased ones as in Theorem 6.17. Such approximate opti-
mality conditions are obtained in Theorems 6.19 and 6.20 for the discrete
approximation problems (P N ) and (PN ), respectively.

The proofs of the afore-mentioned approximate optimality conditions are
rather involved requiring, among other things, the usage of fuzzy calculus
rules as well as neighborhood coderivative characterizations of metric regularity
established by Mordukhovich and Shao [946]. Observe also a significant role of
Lemma 6.18 extending to the case of basic subgradients the classical Leibniz
rule on (sub)differentiation under integral sign. This is an auxiliary result for
the proof of Theorem 6.20 allowing us to deal with summable integrands in (P)
under discrete approximations of type (PN ), while the rule itself is certainly
of independent interest. Its proof employs an infinite-dimensional extension
of the Lyapunov-Aumann convexity theorem and the corresponding rule for
Clarke’s subgradients [255, Theorem 2.7.2], which is strongly based in turn on
the generalized version of Leibniz’s rule established by Ioffe and Levin [612]
for subgradients of convex analysis.

6.5.18. Passing to the Limit from Discrete Approximations. In
Subsect. 6.1.5 we accomplish the third step (labeled as (iii) in Subsect. 6.5.12)
in the method of discrete approximations to derive necessary optimality condi-
tions in the original Bolza problem (P) for differential inclusions. The primary
goal at this step is to justify the passage to the limit from the obtained neces-
sary conditions in the well-posed discrete approximation problems (PN ) and
(P N ) and to describe efficiently the resulting necessary optimality conditions
for the continuous-time problems that come out of this procedure. As we see,
the resulting conditions occur to be those of the extended Euler-Lagrange type
for relaxed intermediate local minimizers in (P) established in Theorems 6.21
and 6.22.

These major results of Subsect. 6.1.5 are somewhat different from each
other, in both aspects of the assumptions made and of formulating the ex-
tended Euler-Lagrange inclusions in (6.44) and (6.47). The differences came
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from the corresponding results of Subsect. 6.1.4 for the two types of discrete
approximation problems, (P N ) and (PN ), as well as from additional require-
ments needed for passing to the limit in the necessary optimality conditions
for these problems.

Theorem 6.21, based on the limiting procedure from the simplified dis-
crete approximations (P N ), is an infinite-dimensional generalization of that
in Mordukhovich [915, Theorem 6.1] with involving the extended normal cone
in (6.44). The usage of the basic normal cone in a similar setting of [915] was
supported by certain technical hypotheses ensuring the normal semicontinuity
formulated in Definition 5.69 and discussed after it. Theorem 6.22 is new even
in finite dimensions.

One of the main concerns in passing to the limit from the discrete-time
necessary optimality conditions in the proofs of both Theorem 6.21 and Theo-
rem 6.22 is to justify appropriate convergences of adjoint trajectories and their
derivatives. To establish the required convergence, we employ a dual coderiva-
tive characterization of Lipschitzian behavior for set-valued mappings used so
often in this book; such criteria play a crucial role in accomplishing limiting
procedures for adjoint systems associated with discrete-time and continuous-
time inclusions in dynamic optimization problems described by Lipschitzian
mappings.

The principal issue that distinguishes the necessary optimality condi-
tions obtained for infinite-dimensional differential inclusions from their finite-
dimensional counterparts is the presence of the SNC (actually strong PSNC)
assumption on the constraint/target set Ω imposed in Theorems 6.21 and
6.22. Assumptions of this type are crucial for optimal control problems for
infinite-dimensional evolution systems. In particular, it is well known that no
analog of the Pontryagin maximum principle holds even for simple optimal
control problems governed by the one-dimensional heat equation with a sin-
gleton target set Ω = {x1} in Hilbert spaces, which is never PSNC in infinite
dimensions. The first example of this type was given by Y. Egorov [393]. The
reader can also consult with the books by Fattorini [432] and by Li and Yong
[789] for more discussions involving the finite codimension property equiva-
lent to the SNC one for convex sets; see Remark 6.25. Let us emphasize to
this end the result of Corollary 6.24 justifying the extended Euler-Lagrange
conditions for the Bolza problem (P) governed by evolution inclusions with
no explicit (while hidden) SNC/PSNC assumptions on the constraint set Ω
given by finitely many equalities and inequalities via Lipschitzian functions.

Lastly, we refer the reader to the recent papers by Mordukhovich and D.
Wang [970, 971], where some counterparts of the above results are derived
for optimal control problems governed by semilinear unbounded evolution in-
clusions that are particularly convenient for modeling parabolic PDEs; see
Remark 6.26.

6.5.19. Euler-Lagrange and Maximum Conditions with No Re-
laxation. As seen, the extended Euler-Lagrange conditions established in
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Sect. 6.1 by the method of discrete approximations apply to relaxed interme-
diate local minimizers for the Bolza problem governed by infinite-dimensional
differential inclusions. The primary goal of Sect. 6.2 is to derive, based on
the conditions obtained in Sect. 6.1 and involving additional variational tech-
niques, refined results of the Euler-Lagrange type accompanied furthermore
by the Weierstrass-Pontryagin maximum condition for nonconvex differential
inclusions without any relaxation. The main result, for simplicity formulated
in Theorem 6.27 in the case of the Mayer-type problem (PM) with a fixed
left endpoint and arbitrary geometric constraints imposed on right endpoints
of trajectories, is new in infinite dimensions; its preceding finite-dimensional
versions were discussed in Subsect. 6.5.8.

As in Sect. 6.1, the principal distinction between necessary conditions ob-
tained in finite-dimensional and infinite-dimensional settings relates to the
presence of SNC requirements unavoidable in infinite dimensions. On the
other hand, the technical assumptions made in Theorem 6.27 are different
from those imposed in Theorems 6.21 and 6.22. Observe also the more gen-
eral forms (6.51) and (6.52) of the transversality conditions in Theorem 6.27
in comparison with the major results of Sect. 6.1 involving only Lipschitzian
cost and constraint functions.

The proof of the pivoting Euler-Lagrange condition (6.49) for intermediate
local minimizers to nonconvex problems with no relaxation is based, besides
applying rather delicate calculus and convergence results of variational analy-
sis, on two perturbation/approximation procedures allowing us to reduce the
original problem (PM) to the unconstrained (while nonsmooth and nonconvex)
Bolza problem (6.55) with finite-valued data that are Lipschitzian in the state
and velocity variables and measurable in t . Since any intermediate local min-
imizer for the latter problem is automatically a relaxed one, it can be treated
by the necessary optimality conditions obtained in Theorem 6.22 via discrete
approximations.

The first of the afore-mentioned perturbation techniques can be recognized
as the method of metric approximations originally developed by Mordukhovich
[887] to prove the maximum principle for finite-dimensional control problems
with smooth dynamics and nonsmooth endpoint constraints by reducing them
to free-endpoint problems. The second perturbation technique, involving the
Ekeland variational principle and penalization of dynamic constraints, goes
back to Clarke [251] in connections with his results on Hamiltonian and maxi-
mum conditions for nonsmooth control systems in finite dimensions. The claim
in the proof of Theorem 6.27 is an infinite-dimensional extension of the corre-
sponding result by Kaśkosz and Lojasiewicz [667] established there for strong
minimizers (or boundary trajectories). Note the importance of the generalized
differential results from Subsect. 1.3.3 for the distance function at in-set and
out-of-set points to deal with approximating problems and also a crucial role
of the coderivative criterion for Lipschitzian behavior that allows us to ac-
complish the convergence procedure in deriving the extended Euler-Lagrange
and transversality inclusions of Theorem 6.27.
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The proof of the maximum condition (6.50) supplementing the extended
Euler-Lagrange condition (6.49) in the nonconvex case is outlined but not
fully presented in Subsect. 6.2.1, since it is technically involved while closely
follows the line developed by Vinter and Zheng [1294] (see also Vinter’s book
[1289, Theorem 7.4.1]) for finite-dimensional differential inclusions; the reader
can check all the details. Note that this proof is based on reducing the gen-
eral Mayer problem for differential inclusions to an optimal control problem
with smooth dynamics and nonsmooth endpoint constraints first treated by
Mordukhovich [887] via his nonconvex/limiting normal cone; see Sect. 6.3 for
related control problems and techniques in infinite-dimensional settings. It
seems that the other available proofs of the maximum condition (6.50) in the
Euler-Lagrange framework (6.49) given by Ioffe [598] and by Clarke [261] are
restricted to the case of finite-dimensional state spaces.

6.5.20. Related Topics and Results in Optimal Control of Dif-
ferential Inclusions. The variational methods developed in this book allow
us to obtain extensions and counterparts of Theorem 6.27 in various settings
partly discussed in Subsect. 6.2.2, which particularly include upper subdif-
ferential conditions and multiobjective control problems; cf. also Zhu [1372],
Bellaassali and Jourani [93], and Eisenhart [395] for related developments
in multiobjective dynamic optimization concerning finite-dimensional control
systems. It seems however that necessary optimality conditions of the Hamil-
tonian type as well as results on local controllability for differential inclusions
require the finite dimensionality of state spaces; see more details and discus-
sions in Remarks 6.32 and 6.33.

The examples given at the end of Subsect. 6.2.2 illustrate some charac-
teristic features of the results obtained for differential inclusions and the re-
lationships between them. Example 6.34 confirming that the partial convexi-
fication is essential for the validity of both Euler-Lagrange and Hamiltonian
optimality conditions of the established extended type is due to Shvartsman
(personal communication). Example 6.35 taken from Loewen and Rockafel-
lar [805] shows that the extended Euler-Lagrange condition involving only
the partial convexification is strictly better than the Hamiltonian condition
in Clarke’s fully convexified form even for Lipschitzian control systems with
convex velocities. Finally, Example 6.36 given by Ioffe [604] demonstrates that
the partially convexified Hamiltonian condition, which may not be equivalent
to its Euler-Lagrange counterpart, also strictly improves the fully convexified
Hamiltonian formalism in rather general settings.

6.5.21. Primal-Space Approach via the Increment Method. Sec-
tion 6.3 concerns optimal control problems in the more traditional para-
meterized framework (6.61), involving however the infinite-dimensional dy-
namics. Even more, we impose in this section the continuous differentiabil-
ity/smoothness assumption on the velocity function f with respect to the
state variable x . Nevertheless, the results presented in Sect. 6.3 are different
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from those obtained in Sects. 6.1 and 6.2 for dynamic optimization problems
governed by nonsmooth evolution inclusions at least in the following major
aspects:

—–there are no additional geometric assumptions of the state space in
question, which is an arbitrary Banach space;

—–the objective and (equality and inequality) endpoint constraint func-
tions may not be locally Lipschitzian, even not continuous around the reference
point in the case of those functions describing the objective and inequality con-
straints, while the resulting necessary optimality conditions are obtained in
the conventional PMP form, whenever the functions are Fréchet differentiable
at the point in question, and in its upper subdifferential extension for special
classes of nonsmooth functions.

In contrast to the approximation/perturbation methods employed in
Sects. 6.1 and 6.2, we now rely on the more conventional primal-space ap-
proach that goes back to the classical proof of the Pontryagin maximum prin-
ciple [124, 1102] with subsequent significant developments in the route paved
by Rozonoér [1180] for finite-dimensional control systems. There are two ma-
jor ingredients of the employed primal-space techniques, the traces of which
could be found in McShane’s paper [860] on the calculus of variations: the
usage of needle variations and the employment of convex separation. Both of
these ingredients were crucial in the original proof of the maximum princi-
ple [124, 1102], while their clarifications and important modifications came
later starting—in different directions—with the papers by Rozonoér [1180]
and Dubovitskii and Milyutin [369, 370]; see also other references and discus-
sions in Subsects. 1.4.1 and 6.5.1.

In the proof of the maximum principle formulated in Theorem 6.37 we
mainly follow the line initiated in the three-part paper by Rozonoér [1180],
who was probably the first to fully recognize a major variational role of the
free-endpoint “terminal control” (i.e., Mayer) problem in the maximum prin-
ciple and to develop the so-called increment method in proving the PMP for
problems of this type employing needle variations. Endpoint constraints were
then treated as in finite-dimensional nonlinear programming by using con-
vex separation techniques related to the so-called image space analysis; cf.
Plotnikov [1083], Gabasov and Kirillova [485], and the recent book by Gian-
nessi [504]. A delicate derivation of the transversality conditions for control
problems with equality endpoint constraints given by merely differentiable
functions was developed by Halkin [545] based on the Brouwer fixed-point
theorem.

The upper subdifferential conditions of the PMP obtained in Theorem 6.38
seems to be new even for finite-dimensional control systems. The closest con-
ditions were derived in the recent book by Cannarsa and Sinestrari [217, Theo-
rem 7.3.1] for free-endpoint control problems in finite dimensions under more
restrictive assumptions, while somewhat related results were established by
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Mordukhovich and Shvartsman [955, 956] for discrete-time systems and dis-
crete approximations; see Section 6.4. Note that Fréchet upper subgradients
(or “supergradients”) of the value function were used in optimal control for
synthesis problems via Hamilton-Jacobi equations; see, e.g., Subbotina [1231],
Zhou [1366], Cannarsa and Frankowska [216], Cannarsa and Sinestrari [217],
Frankowska [472], and their references.

6.5.22. Multineedle Variations and Convex Separation in Image
Spaces. In the proof of Theorem 6.37 given in Subsects. 6.3.2–6.3.4 we mainly
develop the scheme implemented by Gabasov and Kirillova [485] for finite-
dimensional control systems under substantially more restrictive assumptions.
As mentioned, the basic idea of the proof for the free-endpoint problem in Sub-
sect. 6.3.2 goes back to Rozonoér [1180], while needle variations of measurable
controls via the increment formula are treated as in Mordukhovich [887, 901].
The reader can find more recent developments on needle variations including
their usage for higher-order necessary optimality conditions in the publica-
tions by Agrachev and Sachkov [2], Bianchini and Kawski [114], Krener [703],
Ledzewicz and Schättler [756], Sussmann [1236, 1238], and in the references
therein.

The proof of Theorem 6.37 in the presence of endpoint constraints is signif-
icantly more involved in comparison with that for the free-endpoint problem.
Now it requires taking into account the geometry of reachable sets for dynamic
control systems. The usage of multineedle variations occurs to be crucial in
the constraint framework. It allows us to construct a convex tangential ap-
proximation of the reachable set in the image space, the dimension of which
is equal to the number of endpoint constraints plus one of the cost function.
Thus, although the control problem under consideration involves the infinite-
dimensional dynamics/state space, the proof of the maximum principle relies
on the finite-dimensional convex separation.

Observe that no SNC-type property is involved in Sect. 6.3 to obtain the
required pointbased results as in the general settings of Sects. 6.1 and 6.2. In
fact, the latter is in accordance with the results obtained in the preceding
sections, where we observed that the SNC property of the constraint/target
set was actually automatic in the case of finitely many endpoint constraints.
This phenomenon relates to the finite codimension property of the constraint
set, which readily yields the sequential normal compactness unavoidable in
infinite dimensions. Note also that, as one can see from the proofs in Sub-
sects. 6.3.3 and 6.3.4, the convexity of the underlying approximation set in
the image space was reached due to the continuity of the time interval; this is
yet another manifestation of the hidden convexity inherent in continuous-time
control systems.

6.5.23. The Discrete Maximum Principle. Section 6.4 again con-
cerns optimal control problems with discrete time as well as discrete approxi-
mations of continuous-time systems. However, now our agenda is completely
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different from that in Sect. 6.1, where discrete approximations were mostly
used as the driving force to derive necessary optimality conditions for dif-
ferential inclusions, although the results obtained therein for discrete inclu-
sions are certainly of independent interest. Recall that in Subsect. 6.1.4 we
established necessary optimality conditions of the Euler-Lagrange type for gen-
eral (nonconvex and non-Lipschitzian) discrete inclusions by reducing them
to nonsmooth mathematical programming with many geometric constraints.
When the “discrete velocity” sets Fj (x) are convex, the results obtained au-
tomatically imply the maximum-type conditions by the extremal property of
coderivatives for convex-valued mappings from Theorem 1.34, which is actu-
ally due to the extremal form of the normal cone to convex sets. It is clear
from the general viewpoint of nonsmooth analysis that a certain convexity
is undoubtedly needed for such extremal-type representations. On the other
hand, the Pontryagin maximum principle and its nonsmooth extensions hold
for continuous-time control systems with no explicit convexity assumptions.
As seen from the results and discussions of Sects. 6.1–6.3, this is due to the
hidden convexity strongly inherent in the continuous-time dynamics.

Considering optimal control problems for discrete systems with fixed step-
sizes, we don’t have grounds to expect such maximum-type results in the
absence of some convexity. Nevertheless, the exact analog of the Pontrya-
gin maximum principle for discrete control problems was first obtained by
Rozonoér [1180], under the name of the discrete maximum principle, for min-
imizing a linear function of the right endpoint x(K ) without any constraints
on x(K ) over the discrete-time system⎧⎨

⎩
x(t + 1) = Ax(t) + b

(
u(t), t

)
, x(0) = x0 ,

u(t) ∈ U, t = 0, . . . , K − 1 ,
(6.130)

with no convexity assumptions imposed. The proof of this result was based on
the increment formula over needle variations of the reference optimal control at
one point t = θ , similarly to the continuous-time case but without involving
of course a (nonexistent) interval of “small length.” The latter result and
its proof given by Rozonoér heavily depended on the specific structure of
system (6.130) while probably creating a false impression that the discrete
maximum principle might be valid for general nonlinear systems, at least for
free-endpoint problems. Note that doubts about such a possibility were clearly
expressed in [1180].

A number of papers, mostly in the Western literature, and the book by
Fan and Wang [426] were published with incorrect proofs “justifying” that of
the discrete maximum principle was necessary for optimality. The first explicit
(rather involved) example on violating the discrete maximum principle was
given by Butkovsky [208]. Many other examples in this direction, much simpler
than the one from [208], can be found in the book by Gabasov and Kirillova
[486]; see also the references therein.
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Example 6.46 is taken from Mordukhovich [901]. Note that it describes a
class of discrete control systems, where the global minimum (instead of max-
imum) condition holds under certain relationships between the initial data.
Other examples from [901] show that the discrete maximum principle can
be violated even for systems of type (6.130), linear in both state and con-
trol variables, with a nonlinear minimizing function and a nonconvex control
set U . In this way we get counterexamples to the conjecture by Gabasov and
Kirillova [486, Commentary to Chap. 5] (repeated later by several authors)
on the relationship between the validity of the discrete maximum principle
in discrete-time systems with sufficiently small stepsizes and the existence
of optimal solutions for continuous-time systems. More striking counterex-
amples in this direction, showing that the existence of optimal controls in
continuous-time systems doesn’t imply the fulfillment of even an approximate
analog of the maximum principle for discrete approximations, are given in
Subsects. 6.4.3 and 6.4.4.

The first correct result on the validity of the discrete maximum principle
for nonlinear control systems of the type⎧⎨

⎩
x(t + 1) = f

(
x(t), u(t), t

)
, x(0) = x0 ,

u(t) ∈ U, t = 0, . . . , K − 1 ,
(6.131)

was probably due to Halkin [540] who established it under the convexity of the
admissible “velocity sets” f (x,U, t); see also the books by Cannon, Cullum
and Polak [218], Boltyanskii [127], and Propoi [1105] for further results and
discussions in this direction. On the other hand, Gabasov and Kirillova [486]
and Mordukhovich [901] singled out special classes of nonlinear free-endpoint
control problems for which the discrete maximum principle holds with no
convexity assumptions. Furthermore, Mordukhovich’s book [901] contains the
so-called individual conditions for the fulfillment of the discrete maximum
principle that allow us to describe relationships between the initial data of
nonconvex systems ensuring either validity or violation of the discrete maxi-
mum principle. In particular, these conditions comprehensively treat the sit-
uation in Example 6.46: the discrete maximum principle holds therein if and
only if γ ≤ 0 and η ≥ 0.

6.5.24. Necessary Conditions for Free-Endpoint Discrete Para-
metric Systems. The previous discussions clearly illustrate the gap be-
tween the Pontryagin maximum principle for continuous-time systems and
its discrete-time counterpart in the classical framework of optimal control,
even for free-endpoint problems. Besides the striking theoretical value of this
phenomenon, it may have a serious numerical impact signifying a possible in-
stability of the PMP under computing, which inevitably requires the time dis-
cretization. Observe however that computer calculations deal not with fixed-
step discrete systems of type (6.131) but with parametric discrete approxima-
tion systems of the type
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x(t + h) = x(t) + h f
(
x(t), u(t), t

)
as h ↓ 0 , (6.132)

where the stepsize h is a discretization parameter. Thus it is natural to con-
sider necessary optimality conditions for control problems involving paramet-
ric systems (6.132) that themselves depend on the parameter h.

The first result in this direction was obtained by Gabasov and Kirillova
[484, 486] who derived, under the name of “quasimaximum principle,” neces-
sary optimality conditions for free-endpoint parametric control problems gov-
erned by general discrete-time systems of the type

x(t + 1) = f
(
x(t), u(t), t, h), x ∈ IRn, h ∈ IRm ,

imposing rather standard smoothness while no convexity assumptions. Their
result asserts, for any given ε > 0, the fulfillment of a certain ε-maximum
condition over a part of the control region that depends on ε and h. Being
specified to the discrete approximation systems (6.132), the ε-maximum con-
dition is as close to the one in the Pontryagin maximum principle as smaller
ε and h are. Similar results were subsequently derived for discrete approxi-
mations of nonconvex free-endpoint control problems in the books by Moi-
seev [884, 885] and by Ermoliev, Gulenko and Tzarenko [407]; see the afore-
mentioned books and also those by Propoi [1105] and Evtushenko [412] for
various discussions and applications of such results to numerical methods in
optimal control for continuous-time and discrete-time systems.

The proof of the quasimaximum principle and the related results for free-
endpoint problems of discrete approximation given in [484, 486, 884, 885, 407]
were similar to each other being, in fact, similar to Rozonoér’s proof of the
PMP for continuous-time systems with no constraints on trajectories; com-
pare, e.g., the proof of Theorem 6.37 in the unconstrained case of Subsect. 6.3.2
with the one for Theorem 6.50 in the smooth unconstrained case of Sub-
sect. 6.4.3. All these proofs strongly exploited the unconstrained nature of the
control problems under consideration involving cost increment formulas on
single needle variations of optimal controls. The only difference between the
continuous-time and finite-difference cases concerned the usage of a small dis-
cretization stepsize in the parametric family of discrete-time problems instead
of a small length of needle variations in continuous-time systems. These proofs
didn’t provide any hint of the possibility to obtain an appropriate counter-
part of the PMP for discrete approximations of optimal control problems with
endpoint constraints, where some finite-difference counterpart of the hidden
convexity and the geometry of reachable sets must play a crucial role.

6.5.25. The Approximate Maximum Principle for Constrained
Discrete Approximations. Necessary optimality conditions in the form of
the approximate maximum principle (AMP) for optimal control problems of
discrete approximation (6.132) with smooth dynamics and smooth endpoint
constraints were first announced by Mordukhovich in [891] and then were de-
veloped in the subsequent publications [942, 899, 900, 901, 903]. The final
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version for smooth control problems presented in Theorem 6.59 was estab-
lished in [901, 903]; see also [906]. The proof of this major theorem given in
Subsect. 6.4.5 goes along the primal-space direction, being however signifi-
cantly different in crucial aspects from its continuous-time counterpart con-
sidered in Subsects. 6.3.3 and 6.3.4. There are three key assumptions under
which we justify the AMP in Theorem 6.59:

—–the consistence of perturbations of the equality constraints;

—–the properness of the sequence of optimal controls;

—–the smoothness of the initial data with respect to the state variables.

Each of these assumptions occurs to be essential for the validity of the
AMP in discrete approximations of nonconvex constrained problems as demon-
strated by counterexamples of Subsect. 6.4.4.

The crucial role of consistent perturbations of endpoint constraints for
achieving the stability of discrete approximations, from both viewpoints of
the value convergence and the validity of the AMP, has been realized by Mor-
dukhovich since the very beginning of his study; see [890, 891]. Example 6.61
showing that the AMP may be violated if the endpoint equality constraints
are not appropriately perturbed (must decrease slower than the discretization
stepsize) is taken from Mordukhovich and Raketskii [942]; see also [901, 903].

Example 6.60, which is taken from Mordukhovich and Shvartsman [956],
demonstrates the significance of the properness property along the reference
optimal control sequence for the validity of the AMP in constrained noncon-
vex problems. This property is specific for discrete approximations, although
it may be viewed as some analog of the piecewise continuity, or generally
Lebesgue points of measurable controls, that are not of any restriction for
continuous-time systems. Note that we don’t need to impose the properness
assumption to ensure the AMP in free-endpoint problems; see Theorem 6.50
and its proof.

6.5.26. Nonsmooth Versions of the Approximate Maximum Prin-
ciple. One of the most striking features of the approximate maximum prin-
ciple is its sensitivity to nonsmoothness. This is probably the only result on
optimality conditions and related topics of variational analysis we are famil-
iar with that doesn’t have any conventional lower subdifferential (regarding
minimization) extension to nonsmooth (even convex) settings. This is demon-
strated by examples from the paper of Mordukhovich and Shvartsman [956]
presented in Subsect. 6.4.3 for free-endpoint control problems.

On the other hand, the afore-mentioned paper [956] justifies a new form of
the approximate maximum principle involving upper subdifferential transver-
sality conditions for free-endpoint problems with nonsmooth cost functions
(Theorem 6.50) and for constrained problems whose inequality-type endpoint
constraints are described by nonsmooth functions (Theorem 6.66). The re-
sults obtained in this direction apply to a special class of nonsmooth functions
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called uniformly upper subdifferentiable in [956]. This class contains, besides
smooth and concave functions, also semiconcave functions (see Subsect. 5.5.4)
being actually closely connected with a localized version of “weakly concave”
functions in the sense of Nurminskii [1017] who efficiently used them in nu-
merical optimization. Theorem 6.49 seems to be new in reflexive spaces; some
of its conclusions and related properties were established in [956, 1017] with
different proofs in finite dimensions.

Theorem 6.50 on the AMP for free-endpoint problems gives an infinite-
dimensional extension of the upper subdifferential result from Mordukhovich
and Shvartsman [956], which smooth version [901] is actually equivalent to the
“quasimaximum principle” by Gabasov and Kirillova [484, 486] established
under somewhat more restrictive assumptions.

Observe that the free-endpoint version of the AMP in Theorem 6.50
doesn’t fully follow from the constrained versions of Subsect. 6.4.4 in both
smooth and nonsmooth settings. Besides the infinite dimensionality and the
absence of the properness property for free-endpoint problems, there are er-
ror estimates of the rate ε(t, hN ) = O(hN ) for the maximum condition (6.85)
in Corollaries 6.52 and 6.53 valid for smooth and concave cost functions in
arbitrary Banach spaces.

6.5.27. Applications of the Approximate Maximum Principle. At
the end of Subsect. 6.4.5 we present two typical applications of the approx-
imate maximum principle. The first one, described in Remark 6.67, follows
the route from the paper by Gabasov, Kirillova and Mordukhovich [488] to
derive suboptimality conditions for continuous-time systems by using the value
convergence and necessary optimality conditions for discrete approximations.

Secondly, we consider a more practical application of using the approximate
maximum principle to solve optimal control problems governed by discrete-
time systems with sufficiently small stepsizes. Example 6.68 taken from Mor-
dukhovich [901] concerns a (simplified) practical problem of chemical engi-
neering described in the book by Fan and Wang [426]. The discrete maximum
principle cannot be applied to find optimal solutions to this constrained non-
convex problem, although the authors of [426] mistakenly did it throughout
their book and related papers. On the other hand, the application of the
approximate maximum principle justified in Theorem 6.59 allows us to find
optimal controls.

Other applications of the AMP for constrained discrete approximation
problems were developed by Nitka-Styczen [1013, 1014, 1014] who consid-
ered the framework of optimal periodic control involving equality endpoint
constraints. Based on the AMP machinery, she designed efficient numerical
methods of solving such problems and applied them to practical problems
arising in optimization of chemical, biotechnological, and ecological processes.
Some of the models considered in [1015] are described by hereditary/delay
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control systems that require certain modifications of the formulation of the
AMP given in [1015] and in Subsect. 6.4.6 of this book.

6.5.28. The Approximate Maximum Principle in Systems with
Delays. The results presented in Subsect. 6.4.6 are taken from the paper
by Mordukhovich and Shvartsman [956], with their direct extension to delay
systems in infinite-dimensional spaces. Considering for simplicity only free-
endpoint problems, we derive the AMP with upper subdifferential transversal-
ity conditions for nonlinear systems with time-delays in state variables. The
proof of this result for delay systems is based on their reduction, following the
approach by Warga [1315], to ordinary discrete-time systems with possible
incommensurability between the length of the underlying time interval b − a
and the discretization stepsize hN .

The final Example 6.70 of Subsect. 6.4.6 draws the reader’s attention to
a very interesting class of hereditary systems, called functional-differential
systems of neutral type, that are significantly different from ordinary control
systems and their extensions systems with delays only in state variables. Such
systems, admitting time-delays in velocity variables, are considered in more
details in Sect. 7.1; see also Commentary to Chap. 7. Example 6.70, which is
a finite-difference adaptation of the continuous-time example from the book
by Gabasov and Kirillova [485, Section 3.6], shows that there is no natural
analog of the AMP held for smooth free-endpoint control problems governed
by finite-difference systems of neutral type.
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Optimal Control of Distributed Systems

In this chapter we continue our study of optimal control problems from the
viewpoint of advanced methods of variational analysis and generalized dif-
ferentiation. In contrast to the preceding chapter where the main attention
was paid to control problems governed by ordinary differential equations and
inclusions as well as their discrete-time counterparts, we now focus on con-
trol systems with distributed parameters governed by functional-differential
and partial differential relations. We particularly study optimal control prob-
lems for delayed differential-algebraic inclusions that cover several important
classes of control systems essentially different from ordinary ones, and for
partial differential equations of hyperbolic and parabolic types that involve
boundary controls of both Dirichlet and Neumann types as well as pointwise
state constraints. All the mentioned problems have not been sufficiently stud-
ied in the literature; most of the material presented in this chapter is based
on recent results developed by the author and his collaborators.

We start this chapter with studying optimal control problems for the so-
called differential-algebraic systems with time delays, which describe control
processes by interconnected delay-differential inclusions and algebraic equa-
tions combining some properties of continuous-time and discrete-time control
systems. They include, in particular, functional-differential control systems of
neutral type briefly discussed in Chap. 6. Then we consider boundary con-
trol problems for hyperbolic systems with pointwise state constraints. Such
problems are essentially more difficult than the ones with distributed controls
(due to the lack of regularity) and also different from each other depending on
the type of boundary conditions (Neumann or Dirichlet). The final section is
devoted to minimax control problems for parabolic systems in uncertainty con-
ditions with Dirichlet boundary controls and pointwise state constraints. Our
main results include necessary optimality and suboptimality conditions and
related convergence/stability issues for a number of approximation techniques
developed in this chapter in the framework of variational analysis.
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7.1 Optimization of Differential-Algebraic Inclusions
with Delays

This section deals with dynamic optimization problems for differential-
algebraic control systems, which belong to the important while not well-
developed area in optimal control. Mathematically differential-algebraic
systems provide descriptions of control processes via combinations of inter-
connected differential and algebraic relations. There are many applications of
such dynamic models especially in process systems engineering, robotics, me-
chanical systems with holonomic and nonholonomic constraints, etc.; see the
references in Commentary to this chapter. Despite the significance of dynamic
optimization problems governed by differential-algebraic systems, not much
has been done for variational analysis of such optimal control problems, in
particular, for the derivation of necessary optimality and suboptimality con-
ditions. The most advanced previous results are obtained for control processes
described by differential-algebraic equations under a rather restrictive “index
one” assumption on the dynamics, which doesn’t hold in many important
applications. An interesting feature of differential-algebraic systems is that
optimal processes in such systems don’t satisfy a natural analog of the Pon-
tryagin maximum principle in the absence of convexity assumptions on the
velocity sets, even for index one problems.

In this section we study differential-algebraic systems that involve differ-
ential inclusions vs. equations considered in previous developments. On the
other hand, our algebraic equations are assumed to be linear with no impos-
ing the index one assumption. A principal innovation is introducing a time
delay in both differential and algebraic relations, which happens to be a reg-
ularization factor allowing us to separate the index one and higher terms in
the algebraic equation. The main problem of our study is labeled (D A) and
defined as follows: minimize⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J [x, z] := ϕ
(
x(a), x(b)

)
+
∫ b

a
ϑ
(
x(t), x(t − θ), z(t), ż(t), t

)
dt subject to

ż(t) ∈ F
(
x(t), x(t − θ), z(t), t

)
a.e. t ∈ [a, b] ,

z(t) = x(t) + Ax(t − θ), t ∈ [a, b] ,

x(t) = c(t), t ∈ [a − θ, a) ,

(
x(a), x(b)

)
∈ Ω ,

where x : [a − θ, b] → X is continuous on [a − θ, a) and [a, b] (with a possible
jump at t = a) and where z(·) is absolutely continuous on [a, b]. For sim-
plicity we suppose in this section that X = IRn, i.e., the state space is finite-
dimensional. Based on the methods developed in Sect. 6.1, one can derive ex-
tensions of the results obtained below to the case of infinite-dimensional state
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spaces X under appropriate assumptions parallel to those required in Sect. 6.1
for ordinary evolution inclusions. Note that, even in the case of X = IRn

under consideration, problem (D A) is an object of infinite-dimensional op-
timization for functional-differential control systems, which are significantly
different from their ordinary counterparts.

When F doesn’t depend on z, the dynamic system in (D A) reduces to the
functional-differential system of neutral type

d
dt

[
x(t) + Ax(t − θ)

]
∈ F

(
x(t), x(t − θ), t

)
a.e. t ∈ [a, b]

written in the so-called Hale form. Thus the Bolza problem (D A) formulated
above can be viewed as an extended optimal control problem for neutral sys-
tems that corresponds to the case of integrands ϑ independent of (z, ż). Let
us emphasize that dynamic optimization problems for neutral systems (and,
more generally, for the differential-algebraic systems under consideration) are
essentially more difficult and exhibit new phenomena in comparison with those
for ordinary and delay-differential systems when A = 0; see below.

In what follows we always assume that F : IRn × IRn × IRn × [a, b] →→ IRn

is a set-valued mapping of closed graph, that Ω is a closed set, that θ > 0
is a constant delay, and that A is a constant n × n matrix. Note that the
methods used in this section allow us to consider the cases of multiple delays
θ1 ≥ θ2 ≥ . . . ≥ θm > 0 as well as variable delays θ(·) with |θ̇(t)| < α ∈ (0, 1)
for a.e. t ∈ [a, b].

As in Sect. 6.1 for ordinary differential inclusions, our approach to study-
ing problem (D A) is based on the method of discrete approximations, which
is of undoubted interest from both qualitative/numerical and quantitative
aspects of differential-algebraic inclusions. The realization of this method
in the case of problem (D A) is different in several aspects (more involved)
from the constructions of Sect. 6.1; it particularly exploits the presence of the
nonzero delay θ . As before, a crucial issue is to establish variational stability
of discrete approximations that ensures an appropriate strong convergence of
optimal solutions.

Subsection 7.1.1 is devoted to the construction of well-posed discrete ap-
proximations of the differential-algebraic dynamics in (D A), with no taking
into account the cost functional and endpoint constraints. The primary goal is
to strongly approximate any admissible solution {x(·), z(·)} to the differential-
algebraic inclusion in (D A) by admissible pairs to its finite-difference counter-
parts. Such a strong approximation allows us to conduct in Subsect. 7.1.2 the
convergence analysis of optimal solutions for discrete approximations of (D A),
with appropriate perturbations of endpoint constraints, to the given optimal
solution for the original problem. As in the case of ordinary evolution inclu-
sions, the relaxation stability plays an essential role in justifying the required
strong variational convergence.

In Subsect. 7.1.3 we derive, employing generalized differential tools of vari-
ational analysis, necessary optimality conditions for the difference-algebraic
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systems with discrete-time obtained via the well-posed discrete approxima-
tion. The assumed finite dimensionality of the state space essentially simplifies
the process of deriving these conditions, although the developed SNC calculus
and corresponding “fuzzy” results allow us to eventually extend this device to
the case of infinite-dimensional state spaces like in Subsect. 6.1.4 for ordinary
evolution systems. Finally, Subsect. 7.1.4 presents the main necessary opti-
mality conditions in extended forms of the Euler-Lagrange and Hamiltonian
inclusions for differential-algebraic systems (D A) derived by passing to the
limit from discrete approximations.

7.1.1 Discrete Approximations of Differential-Algebraic Inclusions

This subsection deals with discrete approximations of an arbitrary admissible
pair for the delayed differential-algebraic system in (D A) without taking into
account the cost functionals and endpoint constraints. We show that, under
fairly general assumptions, any admissible pair to the differential-algebraic
system can be strongly approximated in the sense indicated below by the cor-
responding admissible pairs to finite-difference inclusions obtained from it by
the classical Euler scheme. This result is constructive providing efficient es-
timates of the approximation rate, and hence it is certainly of independent
interest for numerical analysis of delayed differential-algebraic inclusions.

Let {x̄(·), z̄(·)} be an admissible pair for the dynamic system in (D A). This
means that x̄(·) is continuous on [a − θ, a) and [a, b] (with a possible jump
at t = a), z̄(·) is absolutely continuous on [a, b], and the dynamic relations in
(D A) are satisfied. Note that the endpoint constraints in (D A) may not hold
for {x̄(·), z̄(·)}; if they do hold, this pair is feasible for (D A). The following
standing assumptions are imposed throughout the whole section:

(D1) There are two open sets U ⊂ IRn, V ⊂ IRn and two positive numbers
	F , m F such that x̄(t) ∈ U for all t ∈ [a − θ, b] and z̄(t) ∈ V for all t ∈ [a, b],
that the sets F(x, y, z, t) are closed, and that one has

F(x, y, z, t) ⊂ mF IB for all (x, y, z, t) ∈ U × U × V × [a, b] ,

F(x1, y1, z1, t) ⊂ F(x2, y2, z2, t) + 	F
(
‖x1 − x2‖ + ‖y1 − y2‖ + ‖z1 − z2‖

)
IB

whenever (x1, y1, z1), (x2, y2, z2) ∈ U × U × V and t ∈ [a, b].

(D2) F(x, y, z, t) is Hausdorff continuous for a.e. t ∈ [a, b] uniformly in
(x, y, z) ∈ U × U × V .

(D3) The function c(·) is continuous on [a − θ, a].

Similarly to (6.6) in Subsect. 6.1.1, define the averaged modulus of conti-
nuity τ (F ; h) for F in t ∈ [a, b] while (x, y, z) ∈ U × U × V in which terms
assumption (D2) is equivalent to τ (F ; h) → 0 as h → 0 by Proposition 6.3.

Construct a sequence of discrete approximations of the delayed differential-
algebraic inclusion replacing the derivative by the Euler finite difference
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ż(t) ≈ z(t + h) − z(t)
h

.

For any N ∈ IN we consider the step of discretization hN := θ/N and define
the discrete mesh on [a, b] by

t j := a + jhN as j = −N , . . . , k and tk+1 := b ,

where k is a natural number determined from a + khN ≤ b < a + (k + 1)hN .
Then the corresponding delayed difference-algebraic inclusions associated with
the dynamics in (D A) are described by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zN (t j+1) ∈ zN (t j ) + hN F
(
xN (t j ), xN (t j − θ), zN (t j ), t j

)
, j = 0, . . . , k ,

zN (t j ) = xN (t j ) + AxN (t j − θ), j = 0, . . . , k + 1 ,

xN (t j ) = c(t j ) j = −N , . . . ,−1 .

(7.1)

Given a pair {xN (t j ), zN (t j )} satisfying (7.1), consider an extension of
xN (t j ) to the continuous-time intervals [a − θ, b] such that xN (t) are defined
piecewise linearly on [a, b] and piecewise constantly, continuously from the
right on [a − θ, a). We also define piecewise constant extensions of discrete
velocities on [a, b] by

vN (t) :=
zN (t j+1) − zN (t j )

hN
, t ∈ [t j , t j+1), j = 0, . . . , k .

Denoting zN (t) := xN (t) + AxN (t − θ), one easily has

zN (t) = zN (a) +
∫ t

a
vN (r) dr for t ∈ [a, b] .

The following differential-algebraic counterpart of Theorem 6.4 ensures
the strong approximation of an arbitrary admissible solution to the dynamic
system in (D A) by extended pairs {xN (t), zN (t)} satisfying (7.1). The notation
W 1,2[a, b] stands for the Sobolev space W 1,2

(
[a, b]; IRn).

Theorem 7.1 (strong approximation for differential-algebraic sys-
tems). Let {x̄(·), z̄(·)} be an admissible pair to the dynamic system in (D A)
under the assumptions (D1)–(D3). Then there is a sequence {x̂N (t j ), ẑN (t j )}
of solutions to difference-algebraic inclusions (7.1) with

x̂N (t0) = x̄(a) for all N ∈ IN

such that the extensions x̂N (t), a − θ ≤ t ≤ b, converge uniformly to x̄(·) on
[a − θ, b] while ẑN (t), a ≤ t ≤ b, converge to z̄(t) in the strong W 1,2 topology
on [a, b] as N → ∞.
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Proof. Using the density of step-functions in L1[a, b] := L1
(
[a, b]; IRn

)
, first

select a sequence {wN (·)}, N ∈ IN , such that each wN (t) is constant on the
interval [t j , t j+1) for j = 0, . . . , k and that wN (·) converge to ˙̄z(·) as N → ∞ in
the norm topology of L1[a, b]. Similarly to the proof of Theorem 6.4 we have
estimate (6.7) for the L1[a, b]-norm of wN (·), which is sufficient to proceed
in the proof of this theorem as in the case of ordinary evolution inclusions in
Subsect. 6.1.1. For simplicity of the calculations below, suppose that

‖wN (t)‖ ≤ 1 + m F whenever t ∈ [a, b] and N ∈ IN .

Define the numerical sequence

ξN :=
∫ b

a
‖wN (t) − ˙̄z(t)‖ dt → 0 as N → ∞ .

Denote wN j := wN (t j ) and define {uN (t j ), sN (t j )} recurrently by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

uN (t j ) := x̄(t j ) for j = −N , . . . , 0 ,

sN (t j ) := uN (t j ) + AuN (t j − θ) for j = 0, . . . , k + 1 ,

sN (t j+1) := sN (t j ) + hNwN j for j = 0, . . . , k .

Then the extended discrete pairs {uN (t), sN (t)} satisfy⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

uN (t) = x̄(t j ) for t ∈ [t j , t j+1), j = −N , . . . ,−1 ,

sN (t) = uN (t) + AuN (t − θ) for t ∈ [a, b] ,

sN (t) = z̄(a) +
∫ t

a
wN (r) dr for t ∈ [a, b] .

Next we want to prove that uN (·) converge uniformly to x̄(·) on [a, b].
Denote yN (t) := uN (t) − x̄(t) and αN (t) := ‖yN (t) + AyN (t − θ)‖. For any
t ∈ [a, b] one has

αN (t) = ‖sN (t) − z̄(t)‖ ≤
∫ t

a
‖wN (r) − ˙̄z(r)‖ dr ≤ ξN ,

which implies the estimates

‖yN (t)‖ ≤ αN (t) + ‖A‖ · ‖yN (t − θ)‖

≤ αN (t) + ‖A‖αN (t − θ) + ‖A‖2 · ‖yN (t − 2θ)‖ ≤ . . .

≤ αN (t) + ‖A‖αN (t − θ) + . . . + ‖A‖mαN (t − mθ)

+‖A‖m+1 · ‖yN (t − (m + 1)θ)‖ .



7.1 Optimization of Differential-Algebraic Inclusions with Delays 341

Observe that c(·) is uniformly continuous on [a−θ, a] due to assumption (D3).
Picking an arbitrary sequence βN ↓ 0 as N → ∞, we therefore have

‖c(t ′) − c(t ′′)‖ ≤ βN whenever t ′, t ′′ ∈ [t j , t j+1], j = −N , . . . ,−1 .

Choose an integer number m such that a − θ ≤ b − (m + 1)θ < a. Then
t − (m + 1)θ ∈ [t j , t j+1) for some j ∈ {−N , . . . ,−1}, which implies that

‖yN (t − (m + 1)θ)‖ ≤ ‖c(t j ) − c(t − (m + 1)θ)‖ ≤ βN .

Since m ∈ IN doesn’t depend on N , this gives

‖yN (t)‖ ≤ ξN (1 + ‖A‖ + . . . + ‖A‖m) + ‖A‖m+1βN := !N → 0 as N → ∞ .

Now consider a sequence {ζN} defined by

ζN := hN

k∑
j=0

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)
and show that ζN ↓ 0 as N → ∞. By construction of ζN and of the averaged
modulus of continuity τ (F ; h) we get the following estimates:

ζN =
k∑

j=0

∫ t j+1

t j

dist
(
wN j ; F(uN (t j ), uN (t j − θ) ,

sN (t j ), t j )
)

dt

=
k∑

j=0

∫ t j+1

t j

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t)

)
dt

+
k∑

j=0

∫ t j+1

t j

[
dist

(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)

−dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t)

)]
dt

≤
k∑

j=0

∫ t j+1

t j

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t)

)
dt + τ (F ; hN ) .

Further, by (D1) one has for any t ∈ [t j , t j+1) with j = 0, . . . , k that

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t)

)
− dist

(
wN j ; F(uN (t),

uN (t − θ), sN (t), t)
)

≤ dist
(

F(uN (t j ), uN (t j − θ), sN (t j ), t); F(uN (t), uN (t − θ), sN (t), t)
)

≤ 	F
(
‖uN (t j ) − uN (t)‖ + ‖uN (t j − θ) − uN (t − θ)‖ + ‖sN (t j ) − sN (t)‖

)
.
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Taking into account that

‖sN (t j ) − sN (t)‖ =
∥∥∥∫ t

t j

wN (r) dr
∥∥∥ ≤ (1 + m F)(t j+1 − t j )

= (1 + m F)hN := ηN ↓ 0 ,

we arrive at the estimates

‖uN (t) − uN (t j )‖ ≤ ηN + ‖A‖ · ‖uN (t − θ) − uN (t j − θ)‖

≤ ηN
(
1 + ‖A‖ + . . . + ‖A‖m

)
+ ‖A‖m+1 · ‖uN (t − (m + 1)θ)

−uN (t j − (m + 1)θ)‖

≤ ηN
(
1 + ‖A‖ + . . . + ‖A‖m

)
+ ‖A‖m+1βN := δN ↓ 0 as N → ∞

and hence ensure that

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t)

)
− dist

(
wN j ; F(uN (t),

uN (t − θ), sN (t), t)
)

≤ (ηN + 2δN )	F .

It follows from (D1) and the above estimates that for any ∈ [t j , t j+1) and
j = 0, . . . , k one has

dist
(
wN j ; F(uN (t), uN (t − θ), sN (t), t)

)
−dist

(
wN (t); F(x̄(t), x̄(t−θ), z̄(t), t)

)
≤ dist

(
F(uN (t), uN (t − θ), sN (t), t); F(x̄(t), x̄(t − θ), z̄(t), t)

)
≤ 	F

(
‖uN (t) − x̄(t)‖ + ‖uN (t − θ) − x̄(t − θ)‖ + ‖sN (t) − z̄(t)‖

)
≤ (2!N + ξN )	F .

Denoting µN := ηN + 2δN + 2!N + ξN , we arrive at

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t)

)
≤ 	FµN + dist

(
wN j ; F(x̄(t), x̄(t − θ), z̄(t), t)

)
≤ 	FµN + ‖wN j − ˙̄z(t)‖

and finally conclude that

ζN ≤
k∑

j=0

∫ t j+1

t j

(
‖wN j − ˙̄z(t)‖ + 	FµN

)
dt + τ (F ; hN )

= ξN + 	FµN (b − a) + τ (F ; hN ) := γN ↓ 0 as N → ∞ .

(7.2)
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Note that the discrete pair {uN (t j ), sN (t j )} may not be admissible for (7.1).
Using the proximal algorithm, we construct⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂N (t j ) = c(t j ), j = −N , . . . ,−1, x̂N (t0) = x̄(a) ,

ẑN (t j+1) = ẑN (t j ) + hNvN j , j = 0, . . . , k ,

ẑN (t j ) = x̂N (t j ) + Ax̂N (t j − θ), j = 0, . . . , k + 1 ,

vN j ∈ F
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), t j

)
, j = 0, . . . , k ,

‖vN j − wN j‖ = dist
(
wN j ; F

(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), t j )

)
, j = 0, . . . , k .

(7.3)

It follows from the construction in (7.3) that {x̂N (t j ), ẑN (t j )} is a feasible pair
to the discrete inclusion (7.1) for each N ∈ IN . Note that

‖x̂N (t) − x̄(t)‖ = ‖x̂N (t j ) − x̄(t)‖ = ‖c(t j ) − c(t)‖ < βN ,

for t ∈ [t j , t j+1) as j = −N , . . . ,−1, which implies that the extensions of x̂N (·)
converge to x̄(t) uniformly on [a − θ, a).

Let us analyze the situation on [a, b]. First we claim that x̂N (t j ) ∈ U and
ẑN (t j ) ∈ V for j = 0, . . . , k + 1. Arguing by induction, we obviously have
x̂N (t0) ∈ U and ẑN (t0) ∈ V . Assume that x̂N (t j ) ∈ U and ẑN (t j ) ∈ U for all
j = 1, . . . ,m with some fixed number m ∈ {1, . . . , k}. Then

‖x̂N (tm+1) − uN (tm+1)‖

= ‖ẑN (tm+1) − Ax̂N (tm+1 − θ) − sN (tm+1) + AuN (tm+1 − θ)‖

≤ ‖A‖ · ‖x̂N (tm+1 − θ) − uN (tm+1 − θ)‖ + ‖ẑN (tm+1) − sN (tm+1)‖

≤ ‖A‖ · ‖x̂N (tm+1 − θ) − uN (tm+1 − θ)‖ + ‖A‖ · ‖x̂N (tm − θ) − uN (tm − θ)‖

+‖x̂N (tm) − uN (tm)‖ + hN dist
(
wNm ; F(x̂N (tm), x̂N (tm − θ), ẑN (tm), tm)

)
.

Taking into account the estimates

‖x̂N (tm) − uN (tm)‖ ≤ ‖A‖ · ‖x̂N (tm−N ) − uN (tm−N )‖

+‖A‖ · ‖x̂N (tm−1−N ) − uN (tm−1−N )‖ + ‖x̂N (tm−1) − uN (tm−1)‖

+hN dist
(
wNm−1 ; F(x̂N (tm−1), x̂N (tm−1−N ), ẑN (tm−1), tm−1)

)
,
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⎪⎪⎪⎪⎪⎪⎪⎪⎩

dist
(
wNm−1 ; F(x̂N (tm−1), x̂N (tm−1−N ), ẑN (tm−1), tm−1)

)
≤ dist

(
wNm−1 ; F(uN (tm−1), uN (tm−1−N ), sN (tm−1), tm−1)

)
+	F

(
‖x̂N (tm−1) − uN (tm−1)‖ + ‖ẑN (tm−1) − sN (tm−1)‖

+‖x̂N (tm−1−N ) − uN (tm−1−N )‖
)
,

‖ẑN (tm) − sN (tm)‖ ≤ ‖x̂N (tm) − uN (tm)‖ + ‖A‖ · ‖x̂N (tm−N ) − uN (tm−N )‖ ,

and that ‖x̂N (t j ) − uN (t j )‖ = 0 for j ≤ 0, we get

‖x̂N (tm+1) − uN (tm+1)‖

≤ M1hN

m∑
j=0

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)
≤ M1γN

(7.4)

with some constant M1 > 0, where the numbers γN are defined in (7.2) for
each N ∈ IN . Now invoking the above estimate for ‖yN (t)‖ = ‖uN (t) − x̄(t)‖
and increasing M1 if necessary, we arrive at

‖x̂N (tm+1) − x̄(tm+1)‖ ≤ ξN + M1γN → 0 as N → ∞ ,

which implies that x̂N (t j ) ∈ U for all j = 0, . . . , k + 1.
Observing further that

‖ẑN (tm+1) − sN (tm+1)‖ ≤ ‖ẑN (tm) − sN (tm)‖ + hN‖vNm − wNm‖

≤ ‖ẑN (tm) − sN (tm)‖ + hN dist
(
wNm ; F(x̂N (tm), x̂N (tm − θ), ẑN (tm), tm)

)
,

we derive from the above estimate that

‖ẑN (tm+1) − sN (tm+1)‖

≤ M2hN

m∑
j=0

dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)
≤ M2γN

(7.5)

with some constant M2 > 0. Note also that

‖ẑN (tm+1) − z̄N (tm+1)‖

≤ ‖ẑN (tm+1) − sN (tm+1)‖ + ‖sN (tm+1) − z̄N (tm+1)‖ ≤ M2γN + ξN ,

which ensures the inclusion ẑN (t j ) ∈ V for all j = 0, . . . , k + 1.
It remains to prove that the sequence {ẑN (·)} converges to z̄(·) in the W 1,2

norm topology on [a, b], i.e., one has
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max
t∈[a,b]

‖ẑN (t) − z̄(t)‖ +
∫ b

a
‖ ˙̂zN (t) − ˙̄z(t)‖2 dt → 0 as N → ∞ . (7.6)

To furnish this, we use (7.4) and (7.5) to derive

k+1∑
j=0

‖x̂N (t j ) − uN (t j )‖ ≤
k+1∑
j=0

M1

j−1∑
m=0

hN dist
(
wNm ; F(uN (tm), uN (tm − θ),

sN (tm), tm)
)

≤ M1(b − a)
k∑

j=0

dist
(
wN j ; F(uN (t j ), uN (t j − θ),

sN (t j ), t j )
)
,

k+1∑
j=0

‖ẑN (t j ) − sN (t j )‖ ≤
k+1∑
j=0

M2

j−1∑
m=0

hN

dist
(
wNm ; F(uN (tm), uN (tm − θ), sN (tm), tm)

)

≤ M2(b − a)
k∑

j=0

dist
(
wN j ; F(uN (t j ), uN (t j − θ),

sN (t j ), t j )
)
,

which imply by (D1) and (7.2)–(7.5) that

∫ b

a

∥∥ ˙̂zN (t) − wN (t)
∥∥ dt =

k∑
j=0

∫ t j+1

t j

‖ ˙̂zN (t) − wN (t)‖ dt

=
k∑

j=0

hN dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)

+
k∑

j=0

hN

[
dist

(
wN j ; F(x̂N (t j ), x̂N (t j − θ), ẑN (t j ), t j )

)

−dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)]
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≤
k∑

j=0

hN dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)

+
k∑

j=0

	F hN

[
‖x̂N (t j ) − uN (t j )‖+‖x̂N (t j −θ) − uN (t j − θ)‖+‖ẑN (t j )−sN (t j )‖

]

≤ γN +2(M1 + M2)(b−a)	F

k∑
j=0

hN dist
(
wN j ; F(uN (t j ), uN (t j − θ), sN (t j ), t j )

)

≤ γN + 2(M1 + M2)	F(b − a)γN .

The latter ensures the estimates∫ b

a
‖ ˙̂zN (t) − ˙̄z(t)‖ dt ≤

∫ b

a
‖ ˙̂zN (t) − wN (t)‖ dt +

∫ b

a
‖wN (t) − ˙̄z(t)‖ dt

≤ γN
(
1 + 2(M1 + M2)(b − a)	F

)
+ ξN ,

which yield by (D1) and (7.3) that ‖ ˙̂zN (t)‖ ≤ m F and ‖ ˙̄z(t)‖ ≤ m F . Hence

∫ b

a
‖ ˙̂zN (t) − ˙̄z(t)‖2 dt =

∫ b

a
‖ ˙̂zN (t) − ˙̄z(t)‖ · ‖ ˙̂zN (t) + ˙̄z(t)

∥∥ dt

≤ 2mF
[
γN (1 + 2(M1 + M2)(b − a)	F) + ξN

]
↓ 0 as N → ∞ .

Observing finally that

max
t∈[a,b]

‖ẑN (t) − z̄(t)‖2 ≤ (b − a)
∫ b

a
‖ ˙̂zN (t) − ˙̄z(t)‖2 dt ,

we arrive at (7.6) and complete the proof of the theorem. �

7.1.2 Strong Convergence of Discrete Approximations

The goal of this subsection is to construct a sequence of well-posed discrete
approximations of the dynamic optimization problem (D A) such that opti-
mal solutions for discrete approximation problems strongly converge, in the
sense described below, to a given optimal solution for the original optimization
problem governed by delayed differential-algebraic inclusions. The following
construction, similar to the one in Subsect. 6.1.3 in the case of ordinary evo-
lution inclusions, explicitly involves the optimal solution {x̄(·), z̄(·)} to the
problem (D A) under consideration for which we aim to derive necessary op-
timality conditions in the subsequent subsections. As one can see from the
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proofs, the results obtained hold also for relaxed intermediate local minimiz-
ers (cf. Subsects. 6.1.2 and 6.1.3), while we restrict ourself to the setting of
global solutions/absolute (actually strong) minimizers for simplicity.

For any natural number N , consider the following discrete-time dynamic
optimization problem (D AN ):

minimize JN [xN , zN ] := ϕ
(
xN (t0), xN (tk+1)

)
+ ‖xN (t0) − x̄(a)‖2

+hN

k∑
j=0

ϑ
(

xN (t j ), xN (t j − θ), zN (t j ),
zN (t j+1) − zN (t j )

hN
, t j

)

+
k∑

j=0

∫ t j+1

t j

∥∥∥ zN (t j+1) − zN (t j )
hN

− ˙̄z(t)
∥∥∥2

dt

(7.7)

subject to the dynamic constraints governed by delayed difference-algebraic
inclusions (7.1), the perturbed endpoint constraints(

xN (t0), xN (tk+1)
)
∈ ΩN := Ω + ηN IB, (7.8)

where ηN := ‖x̂N (tk+1) − x̄(b)‖ with the approximation x̂N (·) of x̄(·) from
Theorem 7.1, and the auxiliary constraints

‖xN (t j ) − x̄(t j )‖ ≤ ε, ‖zN (t j ) − z̄(t j )‖ ≤ ε, j = 1, . . . , k + 1 , (7.9)

with some ε > 0. The latter auxiliary constraints are needed to guarantee the
existence of optimal solutions in (D AN ) and can be ignored in the derivation
of necessary optimality conditions; see below.

In what follows we select ε > 0 in (7.9) such that x̄(t) + ε IB ⊂ U for all
t ∈ [a − θ, b] and z̄(t) + ε IB ⊂ V for all t ∈ [a, b]. Take sufficiently large
N ensuring that ηN < ε. Note that problems (D AN ) have feasible solutions,
since the pair {x̂N (·), ẑN (·)} from Theorem 7.1 satisfies all the constraints
(7.1), (7.8), and (7.9). Therefore, by the classical Weierstrass theorem, each
(D AN ) admits an optimal pair {x̄N (·), z̄N (·)} under the following assumption
imposed in addition to (D1)–(D3):

(D4) ϕ is continuous on U×U , ϑ(x, y, z, v, ·) is continuous for a.e. t ∈ [a, b]
uniformly in (x, y, z, v) ∈ U × U × V × m F IB, ϑ(·, ·, ·, ·, t) is continuous on
U × U × V × m F IB uniformly in t ∈ [a, b], and Ω is locally closed around(

x̄(a), x̄(b)
)
.

We are going to justify the strong convergence of {x̄N (·), z̄N (·)} to
{x̄(·), z̄(·)} in the sense of Theorem 7.1. To proceed, we need to involve an
important intrinsic property of the original problem (D A) called relaxation
stability; cf. Subsect. 6.1.2. Let us consider, along with the original delayed
differential-algebraic system in (D A), the convexified one
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ż(t) ∈ co F
(
x(t), x(t − θ), z(t), t

)
a.e. t ∈ [a, b] ,

z(t) = x(t) + Ax(t − θ), t ∈ [a, b] .
(7.10)

Further, given the integrand ϑ in (D A), we take its restriction

ϑF(x, y, z, v, t) := ϑ(x, y, z, v, t) + δ
(
v; F(x, y, z, t)

)
to the set F(x, y, z, t) for each (x, y, z, t). Denote by ϑ̂F(x, y, z, v, t) the con-
vexification of ϑF in the v variable and define the relaxed generalized Bolza
problem (D A) for delayed differential-algebraic systems as follows: minimize

Ĵ [x, z] := ϕ
(
x(a), x(b)

)
+
∫ b

a
ϑ̂F

(
x(t), x(t − θ), z(t), ż(t), t

)
dt (7.11)

over feasible pairs {x(·), z(·)} subject to the same tail and endpoint constraints
as in (D A). Every feasible pair for (D A) is called a relaxed pair for (D A).

One clearly has inf(D A) ≤ inf(D A) for the optimal values of the cost
functionals in the relaxed and original problems. We say that the original
problem (D A) is stable with respect to relaxation if

inf(D A) = inf(D A) .

This property, which obviously holds under the convexity assumptions on the
sets F(x, y, z, t) and the integrand ϑ in v, goes far beyond the convexity; cf.
the discussion in Subsect. 6.1.2 for ordinary evolution inclusions. There are
no difference in fact, from the viewpoint of relaxation stability, between ordi-
nary differential systems and those with time delays only in state variables.
However, it is not the case for neutral and differential-algebraic systems. We
refer the reader to the book by Kisielewicz [682] for general conditions en-
suring the relaxation stability of neutral functional-differential systems with
nonconvex velocity sets; similar results hold for differential-algebraic systems
under consideration.

Now we are ready to establish the following strong convergence theorem
for optimal solutions to discrete approximations, which makes a bridge be-
tween optimal control problems governed by delayed differential-algebraic and
difference-algebraic systems.

Theorem 7.2 (strong convergence of optimal solutions for difference-
algebraic approximations). Let {x̄(·), z̄(·)} be an optimal pair for problem
(D A), which is assumed to be stable with respect to relaxation. Suppose also
that hypotheses (D1)–(D4) hold. Then any sequence {x̄N (·), z̄N (·)}, N ∈ IN ,
of optimal pairs for (D AN ) extended to the continuous interval [a − θ, b] and
[a, b] respectively, strongly converges to {x̄(·), z̄(·)} as N → ∞ in the sense
that x̄N (·) converge to x̄(·) uniformly on [a − θ, b] and z̄N (·) converge to z̄(·)
in the W 1,2 norm topology on [a, b].
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Proof. We know from the above discussion that (D AN ) has an optimal pair
{x̄N (·), z̄N (·)} for all N sufficiently large; suppose that it happens for all N ∈ IN
without loss of generality. Consider the sequence {x̂N (·), ẑN (·)} from the strong
approximation result of Theorem 7.1 applied to the given optimal solution
{x̄(·), z̄(·)}. Since each {x̂N (·), ẑN (·)} is feasible for (D AN ), we have

JN [x̄N , z̄N ] ≤ JN [x̂N , ẑN ] whenever N ∈ IN .

For convenience we represent JN [x̂N , ẑN ] as the sum of three terms:

JN [x̂N , ẑN ] = I1 + I2 + I2 := ϕ
(
x̂N (t0), x̂N (tk+1)

)

+hN

k∑
j=0

ϑ
(

x̂N (t j ), x̂N (t j − θ), ẑN (t j ),
ẑN (t j+1) − ẑN (t j )

hN
, t j

)

+
k∑

j=0

∫ t j+1

t j

∥∥∥ ẑN (t j+1) − ẑN (t j )
hN

− ˙̄z(t)
∥∥∥2

dt .

It follows from Theorem 7.1 and the assumption on ϕ in (D4) that

I1 → ϕ
(
x̄(a), x̄(b)

)
as N → ∞ .

Our goal is to show that

lim sup
N→∞

JN [x̄N , z̄N ] ≤ J [x̄, z̄], (7.12)

which clearly follows from the limiting relation

JN [x̂N , ẑN ] → J [x̄, z̄] as N → ∞ .

To justify this, we need to compute the limits of the terms I2 and I3 in the
above representation for JN [x̂N , ẑN ]. Using the sign “∼” for expressions that
are equivalent as N → ∞ and the notation

v̂N (t) :=
ẑN (t j+1) − ẑN (t j )

hN
, t ∈ [t j , t j+1), j = 0, . . . , k ,

we have the relations:
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I2 = hN

k∑
j=0

ϑ
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), v̂N (t j ), t j

)

=
k∑

j=0

∫ t j+1

t j

ϑ
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), v̂N (t), t

)
dt

+
k∑

j=0

∫ t j+1

t j

[
ϑ
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), v̂N (t), t j

)

−ϑ
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), v̂N (t), t

)]
dt

=
k∑

j=0

∫ t j+1

t j

ϑ
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), v̂N (t), t) dt + τ (ϑ ; hN )

∼
k∑

j=0

∫ t j+1

t j

ϑ
(
x̂N (t j ), x̂N (t j − θ), ẑN (t j ), v̂N (t), t

)
dt

→
∫ b

a
ϑ
(
x̄(t), x̄(t − θ), z̄(t), ˙̄z(t), t

)
dt as N → ∞, and

I3 =
k∑

j=0

∫ t j+1

t j

∥∥v̂N (t) − ˙̄z(t)
∥∥2

dt =
∫ b

a

∥∥v̂N (t) − ˙̄z(t)
∥∥2

dt

=
∫ b

a

∥∥ ˙̂zN (t) − ˙̄z(t)
∥∥2

dt → 0 as N → ∞ ,

which finally imply the required inequality (7.12).
Further, it is easy to observe that the strong convergence asserted in the

theorem follows from

βN := ‖x̄N (a) − x̄(a)‖2 +
∫ b

a
‖ ˙̄zN (t) − ˙̄z(t)‖2dt → 0 as N → ∞ .

On the contrary, suppose that the latter doesn’t hold. Then there are β > 0
and a sequence {Nm} ⊂ IN for which βNm → β as m → ∞. Employing the stan-
dard compactness arguments based on (7.1) and the boundedness assumption
in (D1) in the framework of finite-dimensional state spaces, we find an ab-
solutely continuous mapping z̃: [a, b] → IRn and another mapping x̃ : [a − θ, b]
continuous on [a − θ, a) and [a, b] such that

˙̄zN (t) → ˙̃z(t) weakly in L2[a, b] ,
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that x̄N (t) → x̃(t) uniformly on [a − θ, b] as N → ∞ (without loss of gener-
ality), and that z̃(t) = x̃(t) + Ax̃(t − θ) for t ∈ [a, b]. By the classical Mazur
theorem there is a sequence of convex combinations of ˙̄zN (t) that converges to
˙̃z(t) in the norm topology of L2[a, b] and hence pointwisely for a.e. t ∈ [a, b]
along some subsequence. Therefore⎧⎨

⎩
˙̃z(t) ∈ co F

(
x̃(t), x̃(t − θ), z̃(t), t

)
a.e. t ∈ [a, b] ,

z̃(t) = x̃(t) + Ax̃(t − θ), t ∈ [a, b] .

Since x̃(·) obviously satisfies the initial tail condition and the endpoint con-
straints in (D A), it is feasible for the relaxed problem (D A). Note that

hN

k∑
j=0

ϑ
(

x̄N (t j ), x̄N (t j − θ), z̄N (t j ),
z̄N (t j+1) − z̄N (t j )

hN
, t j

)

=
k∑

j=0

∫ t j+1

t j

ϑ
(
x̄N (t j ), x̄N (t j − θ), z̄N (t j ), ˙̄zN (t), t j

)
dt

→
∫ b

a
ϑ
(
x̃(t), x̃(t − θ), z̃(t), ˙̃z(t), t

)
dt as N → ∞

due to the assumptions made. Observe also that the integral functional

I [v] :=
∫ b

a

∥∥v(t) − ˙̄z(t)
∥∥2

dt

is lower semicontinuous in the weak topology of L2[a, b] by the convexity of
the integrand in v. Since

k∑
j=0

∫ t j+1

t j

∥∥∥ z̄N (t j+1) − z̄N (t j )
hN

− ˙̄z(t)
∥∥∥2

dt =
∫ b

a

∥∥ ˙̄zN (t) − ˙̄z(t)
∥∥2

dt ,

the latter implies that

∫ b

a

∥∥ ˙̃z(t) − ˙̄z(t)
∥∥2

dt ≤ lim inf
N→∞

k∑
j=0

∫ t j+1

t j

∥∥∥ z̄N (t j+1) − z̄N (t j )
hN

− ˙̄z(t)
∥∥∥2

dt .

Using the above relationships and passing to the limit in the cost functional
form (7.7) for JN [x̄N , z̄N ] as N → ∞, we arrive at the inequality

J [x̃, z̃] + β ≤ lim
N→∞

JN [x̄N , z̄N ] .

By (7.12) one therefore has
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J [x̃, z̃] ≤ J [x̄, z̄] − β < J [x̄, z̄] if β > 0 .

This clearly contradicts the optimality of the pair {x̄(·), z̄(·)} in the relaxed
problem (D A) due to the assumption on relaxation stability. Thus β = 0,
which completes the proof of the theorem. �

Note that similarly to Subsect. 6.1.3 we can modify Theorem 7.2 in the
case of problems with mappings F measurable in t ∈ [a, b] and also to derive an
analog of Theorem 6.14 on the value convergence of discrete approximations
for differential-algebraic systems.

7.1.3 Necessary Optimality Conditions
for Difference-Algebraic Systems

In this subsection we derive necessary optimality conditions for the discrete
approximation problems (D AN ) by reducing them to nonsmooth mathemat-
ical programming problems with many geometric constraints. The finite di-
mensionality of the state space X = IRn allows us to proceed without using
the SNC calculus and/or “fuzzy” results as in Subsect. 6.1.4. Denote

w := (x0, . . . , xk+1, z0, . . . , zk+1, v0, . . . , vk) ∈ IRn(3k+5)

and define the following mappings and sets built upon the initial data of the
approximating problems (D AN ) and eventually of the original problem (D A):

ϕ0(w) : = ϕ(x0, xk+1) + ‖x0 − x̄(a)‖2 + hN

k∑
j=0

ϑ
(
x j , x j−N , z j , v j , t j

)

+
k∑

j=0

∫ t j+1

t j

∥∥v j − ˙̄z(t)
∥∥2

dt ,

ϕ j (w) :=

⎧⎨
⎩

‖x j − x̄(t j )‖ − ε, j = 1, . . . , k + 1 ,

‖z j−k−1 − z̄(t j−k−1)‖ − ε, j = k + 2, . . . , 2k + 2 ,

Λ j :=
{
(x0, . . . , vk)

∣∣ v j ∈ F(x j , x j−N , z j , t j )
}
, j = 0, . . . , k ,

Λk+1 :=
{
(x0, . . . , vk)

∣∣ (x0, xk+1) ∈ ΩN
}
,

g j (w) := z j+1 − z j − hNv j , j = 0, . . . , k ,

s j (w) := z j − x j − Ax j−N , j = 0, . . . , k + 1 ,
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where x j := c(t j ) for j < 0. Then each problem (D AN ) equivalently reduces
to the following problem (M P) of nonsmooth mathematical programming in
Rn(3k+5) with finitely (k + 2) many geometric constraints:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize ϕ0(w) subject to

ϕ j (w) ≤ 0, j = 1, . . . , r ,

f (w) = 0 ,

w ∈ Λ j , j = 0, . . . , l ,

where r = 2k + 2, l = k + 1, and f : IRn(3k+5) → IR2k+3 is given by

f (w) :=
(
g0(w), . . . , gk(w), s0(w), . . . , sk+1(w)

)
, w ∈ IRn(3k+5) .

For simplicity we skip indicating the dependence of solutions to (D AN ) and
the corresponding dual elements on the approximation number N .

Let w̄ be an optimal solution to problem (M P) corresponding to those (as
N ∈ IN) for discrete approximations under consideration. In what follows we
assume the local Lipschitz continuity of the functions ϕ0 and ϑ(·, t). Applying
now the necessary optimality conditions for (M P) from Proposition 6.16 in
the case of finite-dimensional spaces and separating (vector) multipliers for the
equality constraint components g j and s j of the mapping f , we find µ j ∈ IR
as j = 0, . . . , 2k + 2, e∗j ∈ IRn as j = 0, . . . , k, d∗

j ∈ IRn as j = 0, . . . , k + 1,
and w∗

j ∈ IRn(3k+5) as j = 0, . . . , k + 1 satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ j ≥ 0 for j = 0, . . . , 2k + 2 ,

µ jϕ j (w̄) = 0 for j = 1, . . . , 2k + 2 ,

w∗
j ∈ N(w̄;Λ j ) for j = 0, . . . , k + 1 ,

−
k+1∑
j=0

w∗
j ∈ ∂

( 2k+2∑
j=0

µ jϕ j

)
(w̄) +

k∑
j=0

∇g j (w̄)∗e∗j +
k+1∑
j=0

∇s j (w̄)∗d∗
j .

(7.13)

Representing w∗
j = (x∗

0 j , . . . , x∗
k+1 j , z∗0 j , . . . , z∗k+1 j , v

∗
0 j , . . . , v

∗
k j ), note that all

but one components of each w∗
j are zero and the remaining component satisfies

(x∗
j j , x∗

j−N j , z∗j j , v
∗
j j ) ∈ N

(
(x̄ j , x̄ j−N , z̄ j , v̄ j ); gph F(t j )

)
for j = 0, . . . , k .

Similarly observe that the condition w∗
k+1 ∈ N(z̄N ;Λk+1) is equivalent to

(x∗
0 k+1, x∗

k+1 k+1) ∈ N
(
(x̄0, x̄k+1);ΩN

)
with all the other components of w∗

k+1 equal to zero. It follows from the
construction of ϕ j for j = 1, . . . , 2k + 2 and the strong convergence of the
discrete optimal solutions in Theorem 7.2 that
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ϕ j (w̄) < 0 whenever j = 1, . . . , 2k + 2 as N → ∞ .

Thus µ j = 0 for all these indexes due to the complementary slackness con-
ditions in (7.13), and we let λ := µ0 for the remaining one. Observe further
from the structures of g j and s j in problem (M P) that

k∑
j=0

∇g j (w̄)∗e∗j =
(
0, . . . , 0, e∗0, e∗0 − e∗1, e∗k−1 − e∗k , e∗k ,−hN e∗0, . . . ,−hN e∗k

)
and

k+1∑
j=0

∇s j (w̄)∗d∗
j =

(
− d∗

0 + A∗d∗
N ,−d∗

1 + A∗d∗
N+1, . . . ,−d∗

k−N+1

+A∗d∗
k+1,−d∗

k−N+2, . . . ,−d∗
k+1, d∗

0 , . . . , d∗
k+1, 0, . . . , 0

)
.

From the subdifferential sum rule of Theorem 2.33(c) applied to the Lip-
schitzian sum ϕ0 in (M P) one has

∂ϕ0(w̄) ⊂ ∂ϕ(x̄0, x̄k+1) + 2
(
x̄0 − x̄(a)

)
+ hN

k∑
j=0

∂ϑ(x̄ j , x̄ j−N , z̄ j , v̄ j , t j )

+
k∑

j=0

∫ t j+1

t j

2
(
v̄ j − ˙̄z(t)

)
dt

with ∂ϑ standing here and in what follows for the basic subdifferential of ϑ
with respect to the first four variables. Thus we get from (7.13) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−x∗
00 − x∗

0N − x∗
0 k+1 = λx∗

0 + λhN u∗
0 + λhN y∗0

+2λ
(
x̄0 − x̄(a)

)
− d∗

0 − A∗d∗
N ,

−x∗
j j − x∗

j j+N = λhN u∗
j + λhN y∗j − d∗

j − A∗d∗
j+N , j = 1, . . . , k − N + 1 ,

−x∗
j j = λhN u∗

j − d∗
j , j = k − N + 2, . . . , k ,

−x∗
k+1 k+1 = λx∗

k+1 − d∗
k+1 ,

−z∗j j = λhN z∗j + d∗
j + e∗j−1 − e∗j , j = 0, . . . , k ,

−v∗j j = λhNv
∗
j + λξ j − hN e∗j , j = 0, . . . , k ,

(7.14)

with the notation

(x∗
0 , x∗

k+1) ∈ ∂ϕ(x̄ N
0 , x̄ N

k+1), (u∗
j , y∗j−N , z∗j , v

∗
j ) ∈ ∂ϑ(x̄ j , x̄ j−N , z̄ j , v̄

N
j , t j ) ,

ξ j := 2
∫ t j+1

t j

(
v̄ j − ˙̄z(t)

)
dt ,
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where we don’t distinguish between primal and dual vectors in the finite-
dimensional spaces under consideration.

Based on the above relationships, we arrive at the following necessary
optimality conditions for discrete-time problems (D AN ), where

ϑ j (·, ·, ·, ·) := ϑ(·, ·, ·, ·, t j ) and Fj (·, ·, ·) := F(·, ·, ·, t j ) .

These conditions hold under milder assumptions on F in comparison with
(D1) and (D2), while the continuity requirements on ϕ and ϑ in (D4) are
replaced by their Lipschitz continuity.

Theorem 7.3 (necessary optimality conditions for difference-
algebraic inclusions). Let w̄ be an optimal solution to problem (D AN ).
Assume that the sets Ω and gph Fj are locally closed and that the func-
tions ϕ and ϑ j are Lipschitz continuous around the points (x̄0, x̄k+1) and
(x̄ j , x̄ j−N , z̄ j , v̄ j ), respectively, for all j = 0, . . . , k. Then there exist λ ≥ 0,
p j ∈ IRn as j = 0, . . . , k + N +1, q j ∈ IRn as j = −N , . . . , k +1, and r j ∈ IRn

as j = 0, . . . , k + 1, not all zero, satisfying the conditions

p j = 0, j = k + 2, . . . , k + N + 1, (7.15)

q j = 0, j = k − N + 1, . . . , k + 1, (7.16)

(p0 + q0,−pk+1) ∈ λ∂ϕ(x̄0, x̄k+1) + N
(
(x̄0, x̄k+1

)
;ΩN ), (7.17)

and the following difference-algebraic analog of the Euler-Lagrange inclusion:

( p̃ j+1 − p̃ j

hN
,

q̃ j−N+1 − q̃ j−N

hN
,

r j+1 − r j

hN
, −λξ j

hN
+ p j+1 + q j+1 + r j+1

)

∈ λ∂ϑ j (x̄ j , x̄ j−N , z̄ j , v̄ j ) + N
(
(x̄ j , x̄ j−N , z̄ j , v̄ j ); gph Fj

)
for j = 1, . . . , k with the notation

p̃ j := p j + A∗ p j+N and q̃ j := q j + A∗q j+N ,

Proof. Most of the proof has been actually done above, where we transformed
the necessary optimality conditions for (M P) into the ones for (D AN ) written
in the form of nonsmooth mathematical programming. What we need to do
is to change the notation in the relationships of (7.14). Let us first denote

d̃∗
j :=

⎧⎨
⎩

d∗
j for j = 1, . . . , k + 1 ,

0 for j = k + 2, . . . , k + N ,
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ỹ∗j :=

⎧⎪⎪⎨
⎪⎪⎩

λy∗j +
x∗

j j+N

hN
for j = 1, . . . , k − N + 1,

0 for j = k − N + 2, . . . , k ,

and r̃ j := e∗j−1 for j = 1, . . . , k + 1. From (7.14) we have the relationships⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̃∗
j + A∗d̃∗

j+N − ỹ∗j = λu∗
j +

x∗
j j

hN
,

ỹ∗j−N = λy∗j−N +
x∗

j−N j

hN
,

r̃ j+1 − r̃ j

hN
− d̃∗

j = λz∗j +
z∗j j

hN
,

−λ
ξ j

hN
+ r̃ j+1 = λv∗j +

v∗j j

hN

(7.18)

for j = 1, . . . , k. Define p̂ j and q̂ j recurrently by

p̂ j := p̂ j+1 − hN d̃∗
j with p̂ j = 0 for j = k + 2, . . . , k + N + 1 ,

q̂ j := q̃ j+1 − hN ỹ j with q̂ j = 0 for j = k − N + 1, . . . , k + N + 1 .

Putting now q j := q̂ j + A∗q̂ j+N , we rewrite (7.18) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( p̂ j+1 − q j+1) − ( p̃ j − q j )
hN

+ A∗ ( p̂ j+N+1 − q j+N+1) − ( p̂ j+N − q j+N )
hN

= λu∗
j +

x∗
j j

hN
, j = 1, . . . , k ,

(q j−N+1 + A∗q j+1) − (q j−N + A∗q j )
hN

= λy∗j−N +
x∗

j−N j

hN
, j = 1, . . . , k ,

r̃ j+1 − r̃ j

hN
− p̂ j+1 − p̂ j

hN
= λz∗j +

z∗j j

hN
, j = 1, . . . , k ,

−λ
ξ j

hN
+ r̃ j+1 = λv∗j +

v∗j j

hN
, j = 1, . . . , k .

Letting finally

p0 := λx∗
0 + x∗

0 k+1 − q0 ,

p j := p̂ j − q j for j = 1, . . . , k + N + 1, and

r j := r̃ j − p̂ j for j = 1, . . . , k + 1 ,

we arrive at the necessary optimality conditions of the theorem. �
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The following corollary justifies, under additional assumptions, necessary
conditions of Theorem 7.3 with some enhanced nontriviality used in the next
subsection in the proof of optimality conditions for the continuous-time prob-
lem (D A) by passing to the limit from discrete approximations.

Corollary 7.4 (necessary conditions for difference-algebraic inclu-
sions with enhanced nontriviality). In addition to the assumptions of
Theorem 7.3, suppose that the mapping Fj is locally bounded and Lipschitz
continuous around (x̄ j , x̄ j−N , z̄ j ) for each j = 0, . . . , k. Then the necessary
conditions of the theorem hold with (λ, pk+1, rk+1) �= 0, i.e., one can let

λ2 + ‖pk+1‖2 + ‖rk+1‖2 = 1 . (7.19)

Proof. If λ = 0, then the Euler-Lagrange inclusion of the theorem implies,
together with conditions (7.15) and (7.16), that( pk+1 − pk

hN
,
−qk−N

hN
,

rk+1 − rk

hN

)
∈ D∗Fk(x̄k, x̄k−N , z̄k, v̄k)

(
− pk+1 − rk+1

)
.

Assuming now that pk+1 = 0 and rk+1 = 0, we get(−pk

hN
,
−qk−N

hN
,
−rk

hN

)
∈ D∗Fk(x̄k, x̄k−N , z̄k, v̄k)(0) ,

which yields pk = 0, qk−N = 0, and rk = 0 by the coderivative criterion of
Corollary 4.11 for the local Lipschitzian property of set-valued mappings in
finite dimensions. Repeating this process, we arrive at the contradiction with
the nontriviality assertion of Theorem 7.3. �

7.1.4 Euler-Lagrange and Hamiltonian Conditions
for Differential-Algebraic Systems

In the final subsection of this section we derive necessary optimality conditions
in the extended Euler-Lagrange and Hamiltonian forms for the optimal con-
trol problem (D A) governed by differential-algebraic inclusions. Let us start
with the Euler-Lagrange conditions, which give the main result of this sec-
tion under the assumption on relaxation stability. The notation N+ and ∂+
in the following theorem stand for the extended normal cone and subdiffer-
ential of moving object described in Subsect. 6.1.5. Note that, similarly to
the case of ordinary evolution inclusions studied in that subsection, we may
consider problems (D A) with summable integrands and replace the extended
subdifferential ∂+ϑ in the Euler-Lagrange inclusion by the basic one ∂ϑ .

Theorem 7.5 (Euler-Lagrange conditions for differential-algebraic
inclusions). Let {x̄(·), z̄(·)} be an optimal solution to problem (D A) under
the standing assumptions (H1)–(H4), where the continuity of the functions
ϕ and ϑ(·, ·, ·, ·, t) is replaced with the corresponding local Lipschitz continu-
ity. Suppose also that (D A) is stable with respect to relaxation. Then there
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exist a number λ ≥ 0, piecewise continuous arcs p: [a, b + θ ] → IRn and
q: [a − θ, b] → IRn (whose points of discontinuity are confined to multiples of
the delay time θ), and an absolutely continuous arc r : [a, b] → IRn such that
p(t) + A∗ p(t + θ) and q(t − θ) + A∗q(t) are absolutely continuous on [a, b]
satisfying the relationships

λ + ‖p(b)‖ + ‖r(b)‖ = 1 , (7.20)

p(t) = 0 for t ∈ (b, b + θ ], q(t) = 0 for t ∈ (b − θ, b], (7.21)

(
p(a) + q(a),−p(b)

)
∈ λ∂ϕ

(
x̄(a), x̄(b)

)
+ N

(
(x̄(a), x̄(b));Ω

)
(7.22)

and the extended Euler-Lagrange inclusion( d
dt

[
p(t) + A∗ p(t + θ)

]
,

d
dt

[
q(t − θ) + A∗q(t)

]
, ṙ(t)

)

∈ co
{

(u, v, w)
∣∣ (u, v, w, p(t) + q(t)+r(t)

)
∈ λ∂̃ϑ

(
x̄(t), x̄(t − θ), z̄(t), ˙̄z(t), t

)
+N+

(
(x̄(t), x̄(t − θ), z̄(t), ˙̄z(t)); gph F(t)

)}
a.e. t ∈ [a, b] .

Proof. We prove this theorem by using the method of discrete approximations
and the previous results ensuring the strong convergence of discrete optimal
solutions and necessary optimality conditions in the approximating problems
(D AN ). For notational convenience we use in this subsection the upper index
N to indicate the dependence on this parameter of optimal solutions (x̄ N , z̄N )
to discrete-time problems and the corresponding elements (λN , pN , q N , r N ) in
the necessary optimality conditions from Corollary 7.4 used in what follows.
Denote by x̄ N (t), pN (t), q N (t − θ), and r N (t) the piecewise linear extensions
of these discrete arcs to the continuous-time interval [a, b] with their cor-
responding linear combinations z̄N (t), p̃N (t), and q̃ N (t − θ). It follows from
Theorem 7.1 that

∫ b

a
‖ξ N (t)‖ dt =

k∑
j=0

‖ξ N
j ‖ ≤ 2

k∑
j=0

∫ t j+1

t j

∥∥ ˙̄z(t) − v̄N
j

∥∥ dt

= 2
∫ b

a

∥∥ ˙̄z(t) − ˙̄zN (t)
∥∥ dt := νN → 0 as N → ∞

for ξ N (t) := ξ N
j /hN as t ∈ [t j , t j+1), j = 0, . . . , k, with ξ N

j = ξ j from Theo-
rem 7.3. Assume without loss of generality that λN → λ ≥ 0,
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v̄N (t) := ˙̄zN (t) → ˙̄z(t), and ξ N (t) → 0 a.e. t ∈ [a, b] as N → ∞ .

Let us estimate
(

pN (t), q N (t − θ), r N (t)
)

for large N . Using (7.15) and
(7.16), we derive from the Euler-Lagrange inclusion of Theorem 7.3 that

( pN
j+1 − pN

j

hN
− λN u∗

j ,
q N

j−N+1 − q N
j−N

hN
− λN y∗j−N ,

r N
j+1 − r N

j

hN
− λN z∗j ,

−
λN ξ N

j

hN
+ pN

j+1 + r N
j+1 − λNv∗j

)
∈ N

(
(x̄ N

j , x̄ N
j−N , z̄N

j , v̄
N
j ); gph Fj

)
with some (u∗

j , y∗j−N , z∗j , v
∗
j ) ∈ ∂ϑ j (x̄ N

j , x̄ N
j−N , z̄N

j , v̄
N
j ) for all j = k − N +

2, . . . , k + 1. This means, by definition of the coderivative, that

( pN
j+1 − pN

j

hN
− λN u∗

j ,
q N

j−N+1 − q N
j−N

hN
− λN y∗j−N ,

r N
j+1 − r N

j

hN
− λN z∗j

)

∈ D∗Fj (x̄ N
j , x̄ N

j−N , z̄N
j , v̄

N
j )
(
λNv∗j +

λN ξ N
j

hN
− pN

j+1 − r N
j+1

)
for such j . The coderivative criterion of Corollary 4.11 for the local Lip-
schitzian property of Fj with modulus 	F ensures the estimate

∥∥∥( pN
j+1 − pN

j

hN
− λN u∗

j ,
q N

j−N+1 − q N
j−N

hN
− λN y∗j−N ,

r N
j+1 − r N

j

hN
− λN z∗j

)∥∥∥
≤ 	F

∥∥∥λNv∗j +
λN ξ N

j

hN
− pN

j+1 − r N
j+1

∥∥∥ whenever j = k − N + 2, . . . , k + 1 .

Since ‖(u∗
j , y∗j−N , z∗j , v

∗
j )‖ ≤ 	ϑ due to the Lipschitz continuity of ϑ with mod-

ulus 	ϑ , we derive from the above that

‖(pN
j , q N

j−N , r N
j )‖ ≤ 	F‖ξ N

j ‖ + (	F + 1)hN	ϑ

+(	F hN + 1)‖(pN
j+1, q N

j−N+1, r N
j+1)‖ ≤ 	F‖ξ N

j ‖ + (	F hN + 1)	F‖ξ N
j+1‖

+(	F + 1)hN	ϑ + (	F hN + 1)(	F + 1)hN	ϑ

+(	F hN + 1)2‖(pN
j+2, q N

j−N+2, r N
j+2)‖ ≤ . . .

≤ exp
(
	F(b − a)

)(
1 +

	ϑ
	F

(	F + 1) + 	FνN

)
, j = k − N + 2, . . . , k + 1 ,

which implies the uniform boundedness of {(pN
j , q N

j−N , r N
j )| j = k − N +

2, . . . , k + 1} and hence that of
(

pN (t), q N (t − θ), r N (t)
)

on [b − θ, b].
Next consider indexes j = k − 2N + 2, . . . , k − N + 1 and derive from the

discrete Euler-Lagrange inclusion that
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∥∥∥( pN
j+1 − pN

j

hN
− λN u∗

j ,
q N

j−N+1 − q N
j−N

hN
− λN y∗j−N ,

r N
j+1 − r N

j

hN
− λN z∗j

)∥∥∥
≤ 	F

∥∥∥λNv∗j +
λN ξ N

j

hN
− pN

j+1 − q N
j+1 − r N

j+1

∥∥∥
+
∥∥∥( A∗ pN

j+N+1 − A∗ pN
j+N

hN
,

A∗q N
j+1 − A∗q N

j

hN
, 0

)∥∥∥ .

This implies, due to the mentioned coderivative criterion and the uniform
boundedness of pN

j and q N
j from above (by some constant α > 0), that

∥∥∥( pN
j+1 − pN

j

hN
− λN u∗

j ,
q N

j−N+1 − q N
j−N

hN
− λN y∗j−N ,

r N
j+1 − r N

j

hN
− λN z∗j

)∥∥∥
≤ 	F

∥∥∥λNv∗j +
λN ξ N

j

hN
− pN

j+1 − q N
j+1 − r N

j+1

∥∥∥ +
α

hN

for j = k − 2N + 2, . . . , k − N + 1. Therefore we have the estimates

‖(pN
j , q N

j−N , r N
j )‖ ≤ 	F‖ξ N

j ‖ + (	F + 1)hN	ϑ

+(	F hN + 1)‖(pN
j+1, q N

j−N+1, r N
j+1)‖

+(	F hN + 1)α ≤ 	F‖ξ N
j ‖ + (	F hN + 1)	F‖ξ N

j+1‖

+(	F + 1)hN	ϑ

+(	F hN + 1)(	F + 1)hN	ϑ + (	F hN + 1)(	F + 1)α + (	F hN + 1)2

‖(pN
j+2, q N

j−N+2, r N
j+2)‖

≤ . . . ≤ exp
(
	F(b − a

)(
1 +

(	ϑ + α)(	F + 1)
	F

+ 	FνN

)
whenever j = k−2N +2, . . . , k−N +1. This shows that pN

j , q N
j−N , and r N

j are
uniformly bounded for j = k − 2N +2, . . . , k − N +1, and hence the sequence
{pN (t), q N (t−θ), r N (t)} is uniformly bounded on [b−2θ, b−θ ]. Repeating the
above procedure, we conclude that both sequences {pN (t), q N (t − θ), r N (t)}
and { p̃N (t), q̃ N (t − θ)} are uniformly bounded on the whole interval [a, b].

Next we estimate
( ˙̃p

N
(t), ˙̃q

N
(t − θ), ṙ N (t)

)
on [a, b] using the discrete

Euler-Lagrange inclusion and the coderivative characterization of the local
Lipschitzian property. This yields, for t j ≤ t < t j+1 with j = 0, . . . , k, that
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‖( ˙̃p
N
(t), ˙̃q

N
(t − θ), ṙ N (t))‖ =

∥∥∥( p̃ j+1 − p̃ j

hN
,

q̃ j−N+1 − q̃ j−N

hN
,

r N
j+1 − r N

j

hN

)∥∥∥
≤ 	F

∥∥∥λNv∗j +
λN ξ N

j

hN
− pN

j+1 − q N
j+1 − r N

j+1

∥∥∥ + 	ϑ

≤ 	F‖ξ N‖ + 	F‖pN
j+1‖ + 	F‖q N

j+1‖ + 	F‖r N
j+1‖ + (	F + 1)	ϑ .

Thus the sequence { ˙̃p
N
(t), ˙̃q

N
(t − θ), ṙ N (t)} is weakly compact in L1[a, b].

Taking the whole sequence of N ∈ IN without loss of generality, we find three
absolutely continuous mappings p̃(·), q̃(· − θ), and r(·) on [a, b] such that

˙̃p
N
(t) → ˙̃p(t), ˙̃q

N
(t − θ) → ˙̃q(t − θ), ṙ N (t) → ṙ(t) weakly in L1[a, b]

and p̃N (t) → p̃(t), q̃ N (t − θ) → q̃(t − θ), r N (t) → r(t) uniformly on [a, b] as
N → ∞. Since pN (t) and q N (t − θ) are uniformly bounded on [a, b + θ ], they
surely converge to some arcs p(t) and q(t − θ) weakly in L1[a, b + θ ]. Taking
into account the above convergence of p̃N (t) and q̃ N (t −θ), we get from (7.16)
that p(·) and q(·) satisfy (7.21), that

p̃(t) = p(t) + A∗ p(t + θ), q̃(t − θ) = q(t − θ) + A∗q(t), t ∈ [a, b] ,

and that p(t) and q(t) are piecewise continuous on [a, b + θ ] and [a − θ, b],
respectively, with possible discontinuity (from the right) at the points b − iθ
at i = 0, 1, . . .. Conditions (7.20) and (7.22) follow by passing to the limit
from (7.19) and (7.17), respectively, by taking into account the robustness of
the basic normal cone and subdifferential in finite dimensions.

It remains to justify the extended Euler-Lagrange inclusion in this theo-
rem. To proceed, we rewrite the discrete Euler-Lagrange inclusion of Theo-
rem 7.3 in the form

( ˙̃p
N
(t), ˙̃q

N
(t − θ), ṙ N (t))

∈
{

(u, v, w)
∣∣∣ (u, v, w, pN (t j+1) + q N (t j+1) + r N (t j+1) −

λN ξ N
j

hN

)

∈ λN∂ϑ
(
x̄ N (t j ), x̄ N (t j − θ), z̄N (t j ), v̄N

j

)
+N

(
(x̄ N (t j ), x̄ N (t j − θ), z̄N (t j ), v̄N

j ); gph F(t j )
)}

(7.23)

for t ∈ [t j , t j+1] with j = 0, . . . , k. By the classical Mazur theorem there is a

sequence of convex combinations of ( ˙̃p
N
(t), ˙̃q

N
(t −θ), ṙ N (t)) that converges to

( ˙̃p(t), ˙̃q(t −θ), ṙ(t)) for a.e. t ∈ [a, b]. Passing to the limit in (7.23) and taking
into account the pointwise convergence of ξ N (t) and v̄N (t) established above
as well as the constructions of the extended normal cone and subdifferential
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and their robustness property with respect to all variables and parameters, we
arrive at the required Euler-Lagrange inclusion for problem (D A) and com-
plete the proof of the theorem. �

Observe that for the Mayer problem (D AM), which is (D A) with ϑ = 0, the
generalized Euler-Lagrange inclusion of Theorem 7.5 is equivalently expressed
in terms of the extended coderivative for moving (in t ∈ T ) set-valued mapping
S: X × T →→ Y at (x̄, ȳ, t̄) with ȳ ∈ S(x̄, t̄) defined by

D∗
+S(x̄, ȳ, t̄)(y∗) :=

{
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N+

(
(x̄, ȳ); gph S(·, t̄)

)}
, y∗ ∈ Y ∗ .

Indeed, it can be written in the form( d
dt

[
p(t) + A∗ p(t + θ)

]
,

d
dt

[
q(t − θ) + A∗q(t)

]
, ṙ(t)

)
∈ co D∗

+F
(
x̄(t), x̄(t − θ), z̄(t), ˙̄z(t)

)(
− p(t) − q(t) − r(t)

)
a.e. t ∈ [a, b] .

via the extended coderivative of F with respect to the variables (x, y, z), where
t ∈ [a, b] is considered as a moving parameter.

It turns out that the extended Euler-Lagrange inclusion obtained above
implies, under the relaxation stability of the original problems, two other prin-
cipal optimality conditions expressed in terms of the Hamiltonian function
built upon the velocity mapping F . The first condition called the extended
Hamiltonian inclusion is given below in terms of a partial convexification of
the basic subdifferential for the Hamiltonian function. The second one is an
analog of the classical Weierstrass-Pontryagin maximum condition for the
differential-algebraic inclusions under consideration. Recall that an analog of
the maximum principle (centered around the maximum condition) doesn’t
generally hold for differential-algebraic systems, even in the case of optimal
control problems governed by smooth functional-differential equations of neu-
tral type that are a special case of (D A).

As in the case of ordinary differential inclusions in finite-dimensions
(cf. Remark 6.32), the following relationships between the extended Euler-
Lagrange and Hamiltonian inclusions are based on Rockafellar’s dualization
theorem that concerns subgradients of abstract Lagrangian and Hamiltonian
associated with set-valued mappings regardless of the dynamics. For simplicity
we consider the Mayer problem (D AM) for autonomous differential-algebraic
systems. Then the Hamiltonian function for the mapping F is

H(x, y, z, p) := sup
{
〈p, v〉

∣∣ v ∈ F(x, y, z)
}
.

Corollary 7.6 (extended Hamiltonian inclusion and maximum con-
dition for differential-algebraic inclusions). Let {x̄(·), z̄(·)} be an optimal
solution to the Mayer problem (D AM) for autonomous delayed differential-
algebraic systems under the assumptions of Theorem 7.5. Then there ex-
ist a number λ ≥ 0, piecewise continuous arcs p: [a, b + θ ] → IRn and
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q: [a − θ, b] → IRn (whose points of discontinuity are confined to multiples
of the delay time θ), and an absolutely continuous arc r : [a, b] → IRn such
that p(t) + A∗ p(t + θ) and q(t − θ) + A∗q(t) are absolutely continuous on
[a, b] and, besides (7.20)–(7.22), one has the extended Hamiltonian inclusion

( d
dt

[
p(t) + A∗ p(t + θ)

]
,

d
dt

[
q(t − θ) + A∗q(t)

]
, ṙ(t)

)
∈ co

{
(u, v, w)

∣∣∣
(
− u,−v,−w, ˙̄z(t)

)
∈ ∂H

(
x̄(t), x̄(t − θ), z̄(t), p(t) + q(t) + r(t)

)} (7.24)

and the maximum condition〈
p(t) + q(t) + r(t), ˙̄z(t)

〉
= H

(
x̄(t), x̄(t − θ), z̄(t), p(t) + q(t) + r(t)

)
(7.25)

for a.e. t ∈ [a, b]. If moreover F is convex-valued around
(
x̄(t), x̄(t − θ), z̄(t)

)
,

then (7.24) is equivalent to the Euler-Lagrange inclusion

( d
dt

[
p(t) + A∗ p(t + θ)

]
,

d
dt

[
q(t − θ) + A∗q(t)

]
, ṙ(t)

)
∈ co D∗F

(
x̄(t), x̄(t − θ), z̄(t), ˙̄z(t)

)(
− p(t) − q(t) − r(t)

) (7.26)

for a.e. t ∈ [a, b], which automatically implies the maximum condition (7.25)
in the case under consideration.

Proof. Since (D AM) is stable with respect to relaxation, the pair {x̄(·), z̄(·)} is
an optimal solution to the relaxed problem (D AM) whose only difference from
(D AM) is that the original delayed differential-algebraic inclusion is replaced
by its convexification (7.10). By Theorem 7.5 the optimal solution {x̄(·), z̄(·)}
satisfies conditions (7.20)–(7.22) and the relaxed counterpart of the Euler-
Lagrange inclusion (7.26) with the replacement of F by its convex hull co F .
According to Rockafellar’s dualization theorem we have

co
{

(u, v, w)
∣∣∣ (u, v, w, p) ∈ N

(
(x, y, z, q); gph(co F)

)}

= co
{

(u, v, w)
∣∣∣ (−u,−v,−w, q) ∈ ∂H(x, y, z, p)

}
,

where H stands for the Hamiltonian of the relaxed system, i.e., with F replaced
by co F . It is easy to check that H = H. Thus the extended Euler-Lagrange
inclusion for the relaxed system implies the extended Hamiltonian inclusion
(7.24), which surely yields the maximum condition (7.25). When F is convex-
valued, (7.24) and (7.26) are equivalent due to the above dualization equality.
Note that, by Theorem 1.34, the Euler-Lagrange inclusion (7.26) implies the
maximum condition (7.25) when F is convex-valued. This also happens in the
case of relaxation stability with adjoint arcs

(
p(·), q(·), r(·)

)
satisfying the

Euler-Lagrange inclusion in the relaxed problem. �
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Remark 7.7 (optimal control of delay-differential inclusions). The
results obtained can be specified and simplified in the case of optimal control
problems governed by delay-differential inclusions of the type

ẋ(t) ∈ F
(
x((t), x(t − θ), t

)
a.e. t ∈ [a, b]

containing time delays only in state variables. Such systems are actually
closer to ordinary differential inclusions than to the differential-algebraic and
neutral systems considered in this section. A remarkable specific feature of
delay-differential inclusions in comparison with both ordinary and differential-
algebraic/neutral ones is that they admit valuable results in the case of set-
valued tail constraints

x(t) ∈ C(t) a.e. t ∈ [a − θ, a)

given on the initial time interval that provide an additional source for opti-
mization; see Mordukhovich and L. Wang [973] for more details. Furthermore,
the approximation procedure and necessary optimality conditions developed
in Sect. 6.2 with no relaxation assumptions can be extended to the case of
delay-differential systems without substantial changes in comparison with or-
dinary evolution inclusions.

It seems however that similar optimality conditions cannot be generally de-
rived for differential-algebraic and neutral inclusions, i.e., when A �= 0 in (D A).
The major reason is that the approximation procedure developed in Sect. 6.3
and the results obtained therein are essentially based on the automatic relax-
ation stability of free-endpoint Bolza problems with finite integrands, which
is not the case for problems containing delays in velocity variables and/or
algebraic relations between state variables.

7.2 Neumann Boundary Control
of Semilinear Constrained Hyperbolic Equations

In this section we study optimal control problems for a class of semilinear
hyperbolic equations with controls acting in Neumann boundary conditions
in the presence of pointwise constraints on control and state functions. It
is well known that state-constrained control problems are among the most
challenging and difficult in dynamic optimization. While such problems have
been extensively studied for ordinary and time-delay control systems as well
for partial differential equations of the elliptic and parabolic types, it is not the
case for hyperbolic equations. In addition, boundary control problems happen
to be substantially more involved in comparison with those containing control
parameters in the body of differential equations, i.e., with problems involving
the so-called distributed controls.

This section concerns Neumann boundary control problems for hyperbolic
systems with state constraints; the corresponding problems with controls in
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Dirichlet boundary conditions (which are substantially different from the Neu-
mann ones) are studied in the next section. The main goal here is to establish
necessary optimality conditions for a state-constrained Neumann boundary
control problem governed by the semilinear wave equation that will be estab-
lished in the pointwise maximum principle form under rather mild and natural
assumptions. Our approach to derive necessary optimality conditions for this
problem is based on perturbation methods of variational analysis involving
some penalization of state constraints and then the passage to the limit from
necessary conditions in unconstrained approximating problems; cf. Sect. 6.2
for the case of evolution inclusions. The analysis of approximating control
problems for unconstrained hyperbolic equations in this section is however
different from the one in Sect. 6.2: it is based on needle-type variations as in
Sect. 6.3 for ordinary control systems. Details follow.

7.2.1 Problem Formulation and Necessary Optimality Conditions
for Neumann Boundary Controls

Given an open bounded set (domain) Ω ⊂ IRn with a boundary Γ of class
C2 and given a positive number (time) T , we mainly concern the following
optimal control problem governed by the semilinear wave equation: minimize

J (y, u) =
∫
Ω

f
(
x, y(T )

)
dx +

∫
Q

g(x, t, y) dxdt +
∫
Σ

h(s, t, u) dsdt

over admissible pairs {y(·), u(·)} satisfying⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ytt −∆y + ϑ( · , y) = 0 in Q : = Ω × (0, T ) ,

∂ν y = u in Σ : = Γ × (0, T ) ,

y(0) = y0, yt(0) = y1 in Ω

(7.27)

under the pointwise constraints on control and state functions

u(·) ∈ Uad ⊂ L2(Σ), y(·) ∈ Θ ⊂ C
(
[0, T ]; L2(Ω)

)
,

where the operator ∆ stands for the classical Laplacian, and where ∂ν stands
for the usual normal derivative at the boundary. Denote this problem by (N P)
and shortly write it as follows:

inf
{

J (y, u)
∣∣∣ {y(·), u(·)} satisfies (7.27), u(·) ∈ Uad , y(·) ∈ Θ

}
.

Assumptions on the nonlinear function ϑ as well as on the integrands f , g,
and h are presented and discussed below. The initial state (y0, y1) ∈ H1(Ω)×
L2(Ω) is fixed. Note that the main constructions and results of this section can
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be extended to hyperbolic equations governed by more general strongly elliptic
operators in (7.27)—not just by the Laplacian ∆—with time-independent and
regular (in the usual PDE sense) coefficients.

Throughout this and the next sections we use standard notation conven-
tional in the PDE control literature. For the reader’s convenience, recall that
M

(
[0, T ]; L2(Ω)

)
is the space of measures on [0, T ] with values in L2(Ω),

which is the topological dual of C
(
[0, T ]; L2(Ω)

)
. The topological dual of

C0

(
]0, T ]; L2(Ω)

)
:=

{
y ∈ C

(
[0, T ]; L2(Ω)

) ∣∣ y(0) = 0
}

is denoted by Mb
(
]0, T ]; L2(Ω)

)
and, similarly, the topological dual of

C0(]0, T [; L2(Ω)) :=
{

y ∈ C
(
[0, T ]; L2(Ω)

) ∣∣ y(0) = 0, y(T ) = 0
}

is denoted by Mb
(
]0, T [; L2(Ω)

)
. Observe that the spaces C0

(
]0, T ]; L2(Ω)

)
and C0

(
]0, T [; L2(Ω)

)
consist of continuous mappings on the closed interval

[0, T ] with the prescribed one or both endpoints. In what follows we identify
]0, T ] and ]0, T [ with (0, T ] and (0, T ), respectively.

It is well known that every measure µ ∈ Mb
(
]0, T ]; L2(Ω)

)
can be iden-

tified with a measure µ̃ ∈ M
(
[0, T ]; L2(Ω)

)
such that µ̃({0}) = 0 and

µ̃|]0,T ] = µ, where µ̃|]0,T ] denotes the restriction of µ̃ to ]0, T ]. Therefore,
if y ∈ C

(
[0, T ]; L2(Ω)

)
and µ ∈ Mb

(
]0, T ]; L2(Ω)

)
, we still use the notation

〈y, µ〉C([0,T ];L2(Ω)),Mb(]0,T ];L2(Ω)) for 〈y, µ̃〉C([0,T ];L2(Ω)),M([0,T ];L2(Ω)) .

Since we have to deal with equations satisfied in the sense of distributions
in Q, it is also convenient to identify Mb

(
]0, T ]; L2(Ω)

)
with a subspace

of Mb
(
Ω×]0, T ]

)
; this identification follows from the continuous and dense

imbedding C0

(
Ω×]0, T ]

)
↪→C0

(
]0, T ]; L2(Ω)

)
. Thus for µ ∈ Mb

(
]0, T ]; L2(Ω)

)
the notation µ|Q —the restriction of µ to Q—is meaningful if µ is consid-
ered as a bounded measure on Ω×]0, T ] = Ω × (0, T ], and so µ|Ω×{T} stands
for µ({T }). The same kind of notation is used below in similar settings. For
z ∈ L2(Q) we denote by zt (respectively by ztt) the derivative (respectively
the second derivative) of z in t in the sense of distributions in Q.

Given a Banach space Z , the duality pairing between Z and Z∗ is denoted
by 〈·, ·〉Z ,Z∗ . When there is no ambiguity, we sometimes write 〈·, ·〉 instead
of 〈·, ·〉Z ,Z∗ . To emphasize a specific kind of regularity of solutions to the
hyperbolic equations under considerations, we may write, e.g., that (y, yt) ∈
C
(
[0, T ]; X)×C

(
[0, T ]; Y ) is a solution to (7.27) instead of just indicating that

y is a solution to this system.
If p(·) belongs to BV

(
[0, T ]; H1(Ω)∗

)
, the space of functions of bounded

variation on [0, T ] with values in H1(Ω)∗, one can define p(t−) and p(t+)
for every t ∈ (0, T ) and also p(0+) and p(T −), while the values p(0) and
p(T ) may be generally different from p(0+) and p(T −). There is a unique
Radon measure on [0, T ] with values in H1(Ω)∗, denoted by dt p, such that
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the restriction of dt p to (0, T ) is the vector-valued distributional derivative
of p in (0, T ) with dt p({0}) = p(0+) − p(0) and dt p({T }) = p(T ) − p(T −).
Moreover, identifying p with its representative right-hand side continuous in
(0, T ), we have

p(0+) = p(0) + dt p({0}) and p(t) = p(0) + dt p
(
[0, t ]) for every t ∈]0, T ] .

Recall that if {pk} is a bounded sequence in BV
(
[0, T ]; H1(Ω)∗

)
, then there

is a subsequence {pkm} and a function p ∈ BV
(
[0, T ]; H1(Ω)∗

)
such that

pkm (t) → p(t) weakly in H1(Ω)∗ for almost every t ∈ [0, T ] .

Note that this convergence may hold for every t ∈ [0, T ] if the above repre-
sentative right-hand side continuous in (0, T ) is not specified; see, e.g., Barbu
and Precupanu [84] for more details. In particular,

pkm (T ) → p(T ) weakly in H1(Ω)∗ as m → ∞ .

Now let us formulate the standing assumptions on the initial data of prob-
lem (N P) that are needed throughout this paper.

(H1) For every y ∈ IR the function ϑ(·, ·, y) is measurable in Q; for a.e.
pairs (x, t) ∈ Q the function ϑ(x, t, ·) is of class C1. Moreover, one has

ϑ(·, 0) ∈ L1
(
0, T ; L2(Ω)

)
, |ϑ ′

y(x, t, y)| ≤ M in Q × IR with M > 0 ,

where ϑ ′
y stands for the partial derivative.

(H2) For every y ∈ IR the function f (·, y) is measurable on Ω with
f (·, 0) belonging to L1(Ω). For a.e. x ∈ Ω the function f (x, ·) is of class C1.
Moreover, there is a constant C > 0 such that

| f ′y(x, y)| ≤ C
(
1 + |y|

)
whenever (x, y) ∈ Ω × IR .

(H3) For every y ∈ IR the function g(·, ·, y) is measurable on Q with
g(·, 0) belonging to L1(Q). For a.e. (x, t) ∈ Q the function g(x, t, ·) is of class
C1. Moreover, there is a constant C > 0 such that

|g′
y(x, t, y)| ≤ C

(
1 + |y|

)
whenever (x, t, y) ∈ Q × IR .

(H4) For every u ∈ IR the function h(·, ·, u) is measurable on Σ with h(·, 0)
belonging to L1(Σ). For a.e. (s, t) ∈ Σ , h(s, t, ·) is of class C1. Moreover, there
is a constant C > 0 such that

|h′
u(s, t, u)| ≤ C

(
1 + |u|

)
whenever (s, t, u) ∈ Σ × IR .

(H5) The state constraint set Θ ⊂ C
(
[0, T ]; L2(Ω)

)
is closed and con-

vex with intΘ �= ∅. Furthermore, we suppose that the initial state function
ŷ0(x, t) := y0(x) belongs to the interior of Θ.

(H6) The control set Uad is given in the form
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Uad :=
{

u ∈ L2(Σ)
∣∣ u(s, t) ∈ K (s, t) a.e. (s, t) ∈ Σ} ,

where K (·) is a measurable multifunction whose values are nonempty and
closed subsets of IR.

Of course, we suppose as usual that the set of feasible pairs {y(·), u(·)}
to (P) is nonempty, i.e., there is u(·) ∈ Uad such that J (y, u) < ∞, where
y(·) ∈ Θ is a weak solution of system (7.27) corresponding to u; see the next
subsection for the precise definition.

Observe that the above basic assumptions don’t impose any convexity re-
quirements on the integrands in the cost functional with respect to either state
or control variables, as well as on the control set Uad . This is different from the
Dirichlet boundary control setting considered in Sect. 7.3. The reason is that
the Neumann boundary value problem offers more regularity in comparison
with the Dirichlet one and allows us to employ powerful variational methods
to prove necessary optimality conditions that don’t rely on weak convergences;
see more discussion in Sect. 7.3.

To formulate the main result of this section, let us define the (analog of)
Hamilton-Pontryagin function

H(s, t, u, p, λ) := pu + λh(s, t, u)

for the control problem (N P). The following theorem gives necessary condi-
tions for optimal solutions to (N P), which provide a version of the Pontrya-
gin maximum principle in pointwise form for the Neumann boundary control
problem under consideration. It is more convenient for us to formulate this
result with the minimum (but not maximum) condition.

Theorem 7.8 (pointwise necessary optimality conditions for Neu-
mann boundary controls). Let {ȳ(·), ū(·)} be an optimal solution to prob-
lem (N P) satisfying assumptions (H1)–(H6). Then there exist λ ≥ 0, µ ∈
Mb

(
]0, T ]; L2(Ω)

)
, and a measurable subset Σ̃ ⊂ Σ such that Ln(Σ \ Σ̃) = 0,

(λ,µ) �= 0, 〈µ, z − ȳ〉 ≤ 0 for all z ∈ Θ, and (7.28)

H
(
s, t, ū(s, t), p(s, t), λ

)
= min

u∈K (s,t)
H
(
s, t, u, p(s, t), λ

)
(7.29)

for all (s, t) ∈ Σ̃, where Ln denotes the n-dimensional Lebesgue measure, and
where p(·) is the corresponding solution to the adjoint system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ptt −∆p + ϑ ′
y(·, ȳ)p = λg′

y(x, t, ȳ) + µ|Q in Q ,

∂ν p = 0 in Σ ,

p(T ) = y0, pt(T ) = −λ f ′y(x, ȳ(T )
)
− µ|Ω×{T} in Ω .

(7.30)

The proof of Theorem 7.8 is given in Subsect. 7.2.4. The definitions of
solutions to the state and adjoint systems in this theorem are formulated and
discussed in the next subsection.
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7.2.2 Analysis of State and Adjoint Systems
in the Neumann Problem

Let us start with the classical nonhomogeneous Neumann boundary value
problem for the linear wave equation⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ytt −∆y = φ in Q ,

∂ν y = u in Σ ,

y(0) = y0, yt(0) = y1 in Ω .

(7.31)

The following fundamental regularity result is established by Lasiecka and
Triggiani [744, 745]; we refer the reader to the original papers for the (hard)
proof, discussions, and PDE applications. Our goal is to incorporate this result
in the framework of variational analysis of the Neumann boundary control
problem under consideration. A significant part of our analysis, provided in
this subsection, concerns the study of the hyperbolic state system (7.27) with
Neumann boundary controls and the corresponding adjoint system.

Lemma 7.9 (basic regularity for the hyperbolic linear Neumann
problem). Assume that (φ, u, y0, y1) ∈ L1

(
0, T ; L2(Ω)

)
× L2(Σ)× H1(Ω)×

L2(Ω), and let y(φ, u, y0, y1) ∈ C
(
[0, T ]; L2(Ω)

)
∩ C1

(
[0, T ]; H1(Ω)∗

)
be

the unique weak solution to the linear Neumann boundary value problem
(7.31). Then the mapping u �→ y(0, u, 0, 0) is bounded from L2(Σ) to
C
(
[0, T ]; H1/2(Ω)

)
∩ C1

(
[0, T ]; H1/2(Ω)∗

)
, and it is also bounded from L2(Σ)

to H3/5−ε(Q) for all ε > 0. Furthermore, the mapping (φ, y0, y1) �→ y(φ, 0,
y0, y1) is bounded from L1

(
0, T ; L2(Ω)

)
×H1(Ω)×L2(Ω) to C

(
[0, T ]; H1(Ω)

)
∩

C1
(
[0, T ]; L2(Ω)

)
.

Next consider the nonhomogeneous Neumann boundary value problem for
the linear wave equation with possibly nonsmooth data:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ytt −∆y + θy = φ in Q ,

∂ν y = u in Σ ,

y(0) = y0, yt(0) = y1 in Ω ,

(7.32)

where the nonsmooth coefficient θ(x, t) belongs to L∞(Q). The following es-
timate of weak solutions to the homogeneous linear Neumann boundary value
problem in (7.32) is needed in the sequel.

Lemma 7.10 (solution estimate for the nonsmooth linear Neumann
problem in the homogeneous case). Assume that u = 0 and that the
initial data (φ, y0, y1) belong to L1

(
0, T ; L2(Ω)

)
× H1(Ω)× L2(Ω). Then the

homogeneous Neumann problem in (7.32) admits a unique weak solution in
C
(
[0, T ]; L2(Ω)

)
∩ C1

(
[0, T ]; H1(Ω)

)
. This solution satisfies the estimate
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‖y‖C([0,T ];H1(Ω)) + ‖yt‖C([0,T ];L2(Ω)) ≤ C
(
‖φ‖L1(0,T ;L2(Ω))

+‖y0‖H1(Ω) + ‖y1‖L2(Ω)

)
,

where the constant C > 0 may depend on ‖θ‖L∞(Q) and ‖φ‖L1(0,T ;L2(Ω)), but
it is invariant with respect to all θ(x, t) having the same L∞(Q)-norm.

Proof. The proof is standard. It is sufficient to multiply the first equation in
(7.32) by yt , to integrate it over Ω, and then to use the classical Gronwall
lemma; see, e.g., Lions’ book [791] for more details. �

The next lemma establishes an important compactness property of the
control–weak solution operator in the nonsmooth and nonhomogeneous linear
Neumann problem formulated in (7.32).

Lemma 7.11 (compactness of weak solutions to the nonsmooth lin-
ear Neumann problem in the nonhomogeneous case). Assume that
(φ, y0, y1) = (0, 0, 0) and that u ∈ L2(Σ). Then the nonhomogeneous Neu-
mann problem in (7.32) admits a unique weak solution y(u) belonging to
C
(
[0, T ]; L2(Ω)

)
∩ C1

(
[0, T ]; H1(Ω)∗

)
and such that the solution mapping

u �→ (y(u), yt (u)) is a bounded operator from L2(Σ) into the product space
C
(
[0, T ]; H1/2(Ω)

)
× C

(
[0, T ]; H1/2(Ω)

)
. Furthermore, the mapping u �→ y(u)

is a compact operator from L2(Σ) into C
(
[0, T ]; L2(Ω)

)
.

Proof. The existence and uniqueness of the weak solution to (7.32) can be
deduced from the well-known result for the linear system (7.31) by using the
standard fixed-point method in L2

(
0, t̄ ; L2(Ω)

)
as t̄ is sufficiently small and

then by iterating the process m times with mt̄ > T . In this way we get

‖y‖C([0,T ];H1/2(Ω)) + ‖yt‖C([0,T ];H1/2(Ω)) ≤ C‖u‖L2(Σ) ,

where the constant C > 0 depends on an upper bound of the norm ‖θ‖L∞(Q)

but not on the function θ(·) itself. Now the compactness statement follows
directly from the result by Simon [1212, Corollary 5]. �

Our next goal is to study the Neumann boundary value problem (7.27)
for the original semilinear wave equation, which is labeled as the state system
for convenience. First recall the notion of weak solutions to the nonlinear
Neumann problem in (7.27) that is suitable to our study.

Definition 7.12 (weak solutions to the Neumann state system). A
function y(·) with (y, yt) ∈ C

(
[0, T ]; L2(Ω)

)
× C

(
[0, T ]; H1(Ω)∗

)
is a weak

solution to the state system (7.27) if∫
Q
−ϑ( · , y) z dxdt =

∫
Q

y ϕ dxdt − 〈yt(0), z(0)〉H1(Ω)∗,H1(Ω)

+
∫
Ω

y(0)zt(0) dx +
∫
Σ

z u dsdt
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for all ϕ ∈ L1
(
0, T ; L2(Ω)

)
, where z(·) solves the homogeneous Neumann

boundary value problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ztt −∆z = ϕ in Q ,

∂νz = 0 in Σ ,

z(T ) = 0, zt(T ) = 0 in Ω .

The advantage of the above definition is that it allows to establish the
existence, uniqueness, and regularity of weak solutions to the original state
system under the standing assumptions made in Subsect. 7.2.1.

Theorem 7.13 (existence, uniqueness, and regularity of weak solu-
tions to the Neumann state system). For every initial triple (u, y0, y1) ∈
L2(Σ)×H1(Ω)×L2(Ω) the state system (7.27) admits a unique weak solution
y(·) with (y, yt) ∈ C

(
[0, T ]; L2(Ω)

)
× C

(
[0, T ]; H1(Ω)∗

)
such that (y, yt) also

belongs to C
(
[0, T ]; H1/2(Ω)

)
× C

(
[0, T ]; H1/2(Ω)∗

)
and satisfies the estimate

‖y‖C([0,T ];H1/2(Ω)) + ‖yt‖C([0,T ];H1/2(Ω)∗) ≤ C
(
‖u‖L2(Σ)

+‖y0‖H1(Ω) + ‖y1‖L2(Ω) + 1
)

with some constant C > 0. Furthermore, the mapping (u, y0, y1) �→ y is con-
tinuous from (u, y0, y1) ∈ L2(Σ)× H1(Ω)× L2(Ω) into C

(
[0, T ]; H1/2(Ω)

)
∩

C1
(
[0, T ]; H1/2(Ω)∗

)
.

Proof. The existence of weak solutions to the state system (7.27) in the
space intersection C

(
[0, t̄ ]; L2(Ω)

)
∩C1

(
[0, t̄ ]; H1(Ω)∗

)
with t̄ sufficiently small

can be obtained by the standard fixed-point method. Then assumption (H1)
and the estimates in Lemmas 7.10 and 7.11 allow us to ensure the exis-
tence of solutions in the functional space stated in the theorem. The proof
of uniqueness is also standard and is omitted for brevity. The estimate of
(y, yt) in C

(
[0, T ]; H1/2(Ω)

)
∩ C1

(
[0, T ]; H1/2(Ω)∗

)
follows from the estimate

of y in C
(
[0, T ]; L2(Ω)

)
due to the basic regularity of Lemma 7.9. To jus-

tify finally the continuity of the mapping (u, y0, y1) �→ y from (u, y0, y1) ∈
L2(Σ) × H1(Ω) × L2(Ω) into C

(
[0, T ]; H1/2(Ω)

)
∩ C1

(
[0, T ]; H1/2(Ω)∗

)
, we

use again assumption (H1) and the corresponding estimates for the linearized
system (7.32) given in Lemmas 7.10 and 7.11. �

Next we consider the (linearized) adjoint system to (7.27) given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ptt −∆p + θp = µ|Q in Q ,

∂ν p = 0 in Σ ,

p(T ) = 0, pt(T ) = −µ|Ω×{T} in Ω ,

(7.33)
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where µ ∈ Mb
(
]0, T ]; L2(Ω)

)
, where µ|Q and µ|Ω×{T} denote the restriction

of µ to Q and to Ω × {T }, respectively, and where θ(x, t) ∈ L∞(Q) as in
(7.32). In order to introduce and justify an appropriate definition of weak
solutions to the adjoint system (7.33) with required well-posedness properties,
we need the following lemma that is certainly of independent interest.

Lemma 7.14 (divergence formula). The functional space

W :=
{
V ∈ (L2(Q)

)n+1 ∣∣ div(V) ∈ Mb
(
]0, T [; L2(Ω)

)}
endowed with the norm

‖V‖W := ‖V‖(L2(Q))n+1 + ‖div(V)‖Mb(]0,T [;L2(Ω))

is a Banach space. Furthermore, there exists a unique continuous operator γνQ

from W into H−1/2(∂Q) satisfying

γνQ (V) = γ0(V) · νQ whenever V ∈
(
C1(Q)

)n+1

and such that the divergence formula∫
Q
V · ∇φ +

〈
φ,div(V)

〉
C([0,T ];L2(Ω)),Mb(]0,T [;L2(Ω))

=
〈
γνQ (V), γ0(φ)

〉
H−1/2(∂Q),H1/2(∂Q)

holds for all φ ∈ H1(Q), where ∂Q conventionally denotes the boundary of Q.

Proof. It is easy to check that the space W with the endowed norm is Banach.
Let Λ be a continuous extension operator from H1/2(∂Q) into H1(Q) that is
a bounded linear operator from H1/2(∂Q) into H1(Q) satisfying

γ0Λϕ = ϕ for all ϕ ∈ H1/2(∂Q) .

Taking V ∈
(
C1(Q)

)n+1, observe that the functional

ϕ �−→
∫

Q
V · ∇Λϕ +

〈
Λϕ,div(V)

〉
C([0,T ];L2(Ω)),Mb(]0,T [;L2(Ω))

is linear and bounded on H1/2(∂Q). Denoting this functional by γνQ (V), we
directly verify that

γνQ (V) = γ0(V) · νQ

and that the divergence formula of the theorem is satisfied. This means that
γνQ (V) doesn’t depend on the extension operator Λ. Furthermore, one has∣∣∣ ∫

Q
V · ∇Λϕ+

〈
Λϕ,div(V)

〉
C([0,T ];L2(Ω)),Mb(]0,T [;L2(Ω))

∣∣∣≤C‖ϕ‖H1/2(∂Q)‖V‖W ,
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which implies the estimate

‖γνQ (V)‖H−1/2(∂Q) ≤ C‖V‖W for all V ∈
(
C1(Q)

)n+1
.

Since
(
C1(Q)

)n+1 is dense in W , the proof is complete. �

Next take (p, pt) ∈ L2(0, T ; H1(Ω)
)
× L2(0, T ; L2(Ω)

)
and assume that

the combination ptt−∆p, calculated in the sense of distributions on Q, belongs
to Mb(]0, T [; L2(Ω)

)
. Employing Lemma 7.14, we define the normal trace on

∂Q of the vectorfield (−∇p, pt) as an element of H−1/2(∂Q). Then

‖γνQ (−∇p, pt)‖H−1/2(∂Q) ≤ C
(
‖p‖L2(0,T ;H1(Ω)) + ‖pt‖L2(Q)

+‖ptt −∆p‖Mb(]0,T [;L2(Ω))

)
,

where the constant C > 0 is independent of p. Since Ω×{0} is an open subset
of ∂Q, the restriction of the operator γνQ (−∇p, pt) to Ω ×{0} belongs to the
space H−1/2(Ω). Thus we get

γνQ (−∇p, pt)|Ω×{0} = pt(0) ∈ H−1/2(Ω) .

Note that this results can be improved. We are going to show in Theorem 7.16
that a properly defined solution p(·) to the adjoint system (3.3) actually has
the property of pt(0) ∈ L2(Ω).

Now we are ready to introduce an appropriate notion of weak solutions to
the adjoint system (7.33) and justify their basic properties.

Definition 7.15 (weak solutions to the Neumann adjoint system). A
function p ∈ L∞(0, T ; L2(Ω)

)
is a weak solution to (7.33) if

〈
y(ϕ), µ

〉
C([0,T ];L2(Ω))×Mb(]0,T ];L2(Ω))

−
∫

Q
pϕ dxdt = 0 (7.34)

for all ϕ ∈ L1(0, T ; L2(Ω)
)
, where y(ϕ) is the solution to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ytt −∆y + ϑy = ϕ in Q ,

∂ν y = 0 in Σ ,

y(0) = 0, yt(0) = 0 in Ω .

(7.35)

The next theorem establishes the existence, uniqueness, and regularity
of weak solutions to the adjoint system (7.33) under the imposed standing
assumptions. Note that Cw

(
[0, T ]; H1(Ω)

)
signifies the space of continuous

functions from [0, T ] into H1(Ω) endowed with the weak topology.
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Theorem 7.16 (existence, uniqueness, and regularity of weak solu-
tions to the Neumann adjoint system). The adjoint system (7.33) admits,
under the standing assumptions made, a unique weak solution p(·) such that
(p, pt) ∈ L∞(

0, T ; H1(Ω)
)
× L∞(

0, T ; L2(Ω)
)
,

pt ∈ BV
(
[0, T ]; H1(Ω)∗

)
, p ∈ Cw

(
[0, T ]; H1(Ω)

)
, and

pt(τ ) ∈ L2(Ω) whenever τ ∈
{

t ∈ [0, T ]
∣∣ µ({t}) = 0

}
,

which imply that pt(0) ∈ L2(Ω). Furthermore, one has the estimate

‖p‖
L∞(0,T ;H1(Ω)

) + ‖pt‖L∞(0,T ;L2(Ω)) ≤ C‖µ‖Mb(]0,T ];L2(Ω)) ,

where C depends on ‖ϑ‖L∞(Q) but is invariant with respect to functions ϑ(x, t)
having the same norm in the space L∞(Q).

Proof. Observe that p = 0 when the pair (p, pt) ∈ L∞(
0, T ; H1(Ω)

)
×

L∞(
0, T ; L2(Ω)

)
satisfies (7.34) with µ = 0. This implies that the adjoint

system (7.33) cannot admit more than one weak solution. To prove the exis-
tence of a weak solution, we develop an approximation procedure. First build
a sequence {µk} ⊂ L1

(
0, T ; L2(Ω)

)
satisfying the properties⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖µk‖L1(0,T ;L2(Ω)) = ‖µ‖Mb(]0,T [;L2(Ω)) and

lim
k→∞

∫
Q

yµk dxdt =
〈

y, µ|]0,T [

〉
C([0,T ];L2(Ω)),Mb(]0,T [;L2(Ω))

whenever y ∈ C
(
[0, T ]; L2(Ω)

)
.

To define µk , we use the following construction. Let µ̄ be the extension of
µ|]0,T [ by zero to IR, let {ρk} be a sequence of nonnegative symmetric mollifiers
on IR with their supports in (−1/k, 1/k), and let ψ0 and ψT be the functions
on IR defined by ψ0(t) := −t and ψT (t) := 2T − t . Given k ≥ 2, we put

µ̄k(A) :=
(
µ̄ ∗ ρk

)
(S) +

(
µ̄ ∗ ρk

)(
ψ0(S)

)
+
(
µ̄ ∗ ρk

)(
ψT (S)

)
for every Borel subset S in IR, where the sign ∗ stands for the convolution
product between µ̄ and the regularizing kernel ρk . Since both distributions
are with compact supports, the above convolutions are well defined. Then
construct the desired measure by

µk :=
‖µ‖Mb(]0,T [;L2(Ω))

‖µ̄k |]0,T [‖Mb(]0,T [;L2(Ω))
µ̄k |]0,T [ .

One can verify that this sequence {µk} ⊂ L1
(
0, T ; L2(Ω)

)
satisfies both rela-

tions listed above.
Considering now the unique solution pk to the system
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⎪⎪⎪⎪⎩

ptt −∆p + ϑp = µk in Q ,

∂ν p = 0 in Σ ,

p(T ) = 0, pt(T ) = −µ|Ω×{T} in Ω

(7.36)

and applying Lemma 7.10, we get the estimate

‖pk‖L∞(0,T ;H1(Ω)) + ‖pkt‖L∞(0,T ;L2(Ω)) + ‖pk(0)‖H1(Ω)

+‖pkt(0)‖L2(Ω) ≤ C‖µ‖Mb(]0,T ];L2(Ω))

(7.37)

with a constant C > 0 independent of k, where pkt stands for the derivative
of pk with respect to t ∈ (0, T ) in the sense of vector-valued distributions.
Denoting by pktt the corresponding derivative of pkt with respect to t ∈ (0, T )
and using (7.36), we arrive at

pktt = πk + µk ∈ L∞(
0, t ; H1(Ω)∗

)
+ Mb

(
]0, T [; L2(Ω)

)
⊂ Mb

(
]0, T [; H1(Ω)∗

)
,

where the operator πk is defined by〈
πk, y

〉
L∞(0,T ;H1(Ω)∗),L1(0,T ;H1(Ω))

:=
∫

Q

(
∇pk · ∇y − ϑpk y

)
dxdt .

Therefore, in addition to (7.37), the sequences {pktt} and {pkt} are bounded
in the spaces Mb

(
]0, T [; H1(Ω)∗

)
and BV

(
[0, T ]; H1(Ω)∗

)
, respectively. Ob-

serving that Mb
(
]0, T [; H1(Ω)∗

)
is the dual of a separable Banach space, we

select weak∗ convergent subsequences of the above sequences. The same weak∗

sequential compactness property holds for the space BV
(
[0, T ]; H1(Ω)∗

)
. Thus

we find p ∈ L∞(0, T ; H1(Ω)
)

with pt ∈ L∞(
0, T ; L2(Ω)

)
∩BV

(
[0, T ]; H1(Ω)∗

)
and a subsequence {pk} converging to p weak∗ in L∞(

0, T ; H1(Ω)
)

and such
that {pkt} converges weak∗ in L∞(

0, T ; L2(Ω)
)

to pt . Furthermore, since
γνQ (−∇pk, pkt) is bounded in L2(∂Q), we can also deduce that the sequence
of γνQ (−∇pk, pkt) converges to γνQ (−∇p, pt) in the weak topology of L2(∂Q).
Taking into account the relations

γνQ (−∇pk, pkt)|Ω×{T} = µ|Ω×{T} and γνQ (−∇pk, pkt)|Σ = 0 ,

one gets that γνQ (−∇p, pt)|Σ = −∂ν p = 0 and that

γνQ (−∇pk, pkt)|Ω×{0} = pkt(0) w→ γνQ (−∇p, pt)|Ω×{0} = pt(0)

in the weak topology of L2(Ω). Finally, by passing to the limit in the equality

〈
y(ϕ), µk

〉
C([0,T ];L2(Ω)),Mb(]0,T ];L2(Ω))

−
∫

Q
pkϕ dxdt = 0 ,
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where y(ϕ) is the solution to (7.35), we conclude that p(·) is the desired weak
solution to (7.33) and thus complete the proof of the theorem. �

In conclusion of this subsection, let us present a useful Green-type relation-
ship between the corresponding solutions to the (linearized) state and adjoint
systems in the Neumann problem under consideration.

Theorem 7.17 (Green formula for the hyperbolic Neumann prob-
lem). Given (φ, y0, y1) = (0, 0, 0) and u ∈ L2(Σ), consider the corresponding
weak solution y(·) to system (7.32). Given µ ∈ Mb

(
]0, T ]; L2(Ω)

)
, let p

satisfy the adjoint system (7.33). Then one has

〈
y, µ

〉
C([0,T ];L2(Ω)),Mb(]0,T ];L2(Ω))

−
∫

Q
p ϕ dxdt =

∫
Σ

pu dsdt .

Proof. It follows from the proof of Theorem 7.16 that an approximate analog
of the Green formula holds for the pairs (y, pk), where pk is the corresponding
weak solution to the approximating adjoint system (7.36) for each k ∈ IN .
Passing there to the limit as k → ∞, we obtain the desired Green formula for
the Neumann problem as stated in the theorem. �

7.2.3 Needle-Type Variations and Increment Formula

As mentioned above, our approach to deriving necessary optimality condi-
tions in the original state-constrained Neumann problem (N P) includes an
approximation procedure to penalize state constraints. In this way we arrive
at a family of Neumann boundary control problems for hyperbolic equations
with pointwise/hard constraints on controls but with no state constraints.
Although the latter approximating problems are significantly easier than the
initial state-constrained problem (N P), they still require a delicate variational
analysis. As well known in optimal control theory for ordinary differential sys-
tems, a key element in deriving maximum-type conditions for problems with
hard constraints on control in the absence of state variables is an increment
formula for minimizing objectives over needle variations of optimal controls;
cf. Sect. 6.3. In this subsection we obtain some counterparts of such results
for the hyperbolic control problems under consideration by using multidi-
mensional analogs of needle variations known in the PDE control literature
as “diffuse perturbations” and also as “(multi)spike/patch perturbations” of
the reference control. We adopt the “diffuse” terminology in what follows.

Given a reference control ū(·) ∈ Uad , an admissible control u(·) ∈ Uad , and
a number ρ ∈ (0, 1), a diffuse perturbation/variation of ū is defined by

uρ(s, t) :=

⎧⎨
⎩

ū(s, t) in Σ \ Eρ ,

u(s, t) in Eρ ,
(7.38)
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where Eρ is a measurable subset of Σ . The next theorem can be viewed as
an increment formula for the cost functional J (y, u) with respect to diffuse
perturbations of the reference control. Note that it also contains the corre-
sponding Taylor expansion for state trajectory of (7.27), which is an essential
ingredient of the increment formula. In what follows we denote the increment
of the cost functional J by ∆̂J to distinguish it from the Laplacian ∆.

Theorem 7.18 (increment formula in the Neumann problem). Given
arbitrary controls ū, u ∈ Uad and a number ρ ∈ (0, 1), consider the diffuse
perturbation (7.38) and the weak solutions ȳ and yρ of system (7.27) corre-
sponding to ū and uρ, respectively. Then there is a measurable subset Eρ ⊂ Σ
such that the following hold:

Ln(Eρ) = ρLn(Σ) ,

∫
Eρ

(
h(s, t, ū) − h(s, t, u)

)
dsdt = ρ

∫
Σ

(
h(s, t, ū) − h(s, t, u)

)
dsdt ,

yρ = ȳ + ρz + ρrρ with lim
ρ→0

‖rρ‖C
(
[0,T ];L2(Ω)

) = 0, and (7.39)

J (yρ, uρ) = J (ȳ, ū) + ρ∆̂J + o(ρ) with

∆̂J := J ′
y(ȳ, ū)z + J (ȳ, u) − J (ȳ, ū) ,

(7.40)

where z(·) is the weak solution to the system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ztt −∆z + ϑ ′
y(·, ȳ)z = 0 in Q

∂νz = ū − u in Σ ,

z(0) = 0, zt(0) = 0 in Ω .

(7.41)

The proof of this theorem given below relies on the following technical
lemma established as Lemma 4.2 in the paper by Raymond and Zidani [1121],
where the reader can find all the details. Recall that the notation χE stands
for the characteristic function of the set E equal to 1 on E and to 0 outside.

Lemma 7.19 (properties of diffuse perturbations). Let ū, u ∈ Uad . For
every ρ ∈ (0, 1) there is a sequence of measurable subsets Ek

ρ ⊂ Σ such that:

Ln(Ek
ρ) = ρLn(Σ) ,

∫
Ek
ρ

(
h(s, t, ū) − h(s, t, u)

)
dsdt = ρ

∫
Σ

(h(s, t, ū) − h(s, t, u)
)

dsdt, and

1
ρ
χEk

ρ

w∗
→ 1 in L∞(Σ) as k → ∞ .
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Proof of Theorem 7.18. The existence of the subsets Eρ satisfying the con-
ditions of the theorem is an easy consequence of Lemma 7.19. The main issue
is to justify the Taylor expansion (7.39), which clearly implies the increment
formula (7.40) due to the construction of diffuse perturbations.

To prove (7.39), we pick a number ρ ∈ (0, 1), take the sets Ek
ρ from

Lemma 7.19, and build the diffuse control perturbations by

uk
ρ(s, t) :=

⎧⎨
⎩

ū(s, t) in Σ \ Ek
ρ ,

u(s, t) in Ek
ρ .

Let yk
ρ be the solution of (7.27) corresponding to uk

ρ , and let z be the (unique)
weak solution of (7.41). It is easy to see that for each ρ ∈ (0, 1) and k ∈ IN
the function ξ k

ρ := 1
ρ
(yk

ρ − ȳ) − z is the unique weak solution to the system

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ξt t −∆ξ + θ k
ρξ = f k

ρ in Q ,

∂νξ = wk
ρ in Σ ,

ξ(0) = 0, ξt(0) = 0 in Ω

with the following data: f k
ρ :=

(
ϑ ′

y(·, ȳ) − θ k
ρ

)
z,

θ k
ρ :=

∫ 1

0

ϑ ′
y

(
·, ȳ + τ (yk

ρ − ȳ)
)

dτ, and wk
ρ :=

(
1 − 1

ρ
χEk

ρ

)
(u − ū) .

Denote by ξ k,1
ρ the solution to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξt t −∆ξ + θ k
ρ ξ = f k

ρ in Q ,

∂νξ = 0 in Σ ,

ξ(0) = 0, ξt(0) = 0 in Ω ,

by ξ nk,2
ρ the solution to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ξt t −∆ξ + θ k
ρ ξ = 0 in Q ,

∂νξ = wk
ρ in Σ ,

ξ(0) = 0, ξt(0) = 0 in Ω ,

and by ζ k
ρ the solution to
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⎪⎪⎪⎪⎩

ζt t −∆ζ + θζ = 0 in Q ,

∂νζ = wk
ρ in Σ ,

ζ (0) = 0, ζt(0) = 0 in Ω ,

where θ(x, t) := ϑ ′
y

(
x, t, ȳ(x, t)

)
. One clearly has

(ξ k,2
ρ − ζ k

ρ )t t −∆(ξ k,2
ρ − ζ k

ρ ) + θ k
ρ (ξ k,2

ρ − ζ k
ρ ) = (θ − θ k

ρ )ζ k
ρ in Q ,

∂ν(ξ k,2
ρ − ζ k

ρ ) = 0 in Σ ,

(ξ nk,2
ρ − ζ k

ρ )(0) = 0, (ξ k,2
ρ − ζ k

ρ )t(0) = 0 in Ω .

By Lemma 7.10 we find a constant C > 0 independent of k and ρ such that
the estimates

‖ξ k,2
ρ − ζ k

ρ ‖C([0,T ];L2(Ω)) ≤ C‖θ − θ k
ρ‖L1(0,T ;L2n(Ω)) · ‖ζ k

ρ ‖L∞(0,T ;L2n/(n−1)(Ω)) ,

≤ C‖θ − θ k
ρ‖L1(0,T ;L2n(Ω)) · ‖ζ k

ρ ‖L∞(0,T ;H1/2(Ω)) and

‖ξ k,1
ρ ‖C([0,T ];L2(Ω)) ≤ C‖ f k

ρ ‖L1(0,T ;L2(Ω))

hold for all k ∈ IN and 0 < ρ < 1, where the functions ‖ζ nk
ρ ‖L∞(0,T ;L2n/(n−1)(Ω))

are uniformly bounded due to Lemma 7.9. Employing now the weak∗ con-
vergence in Lemma 7.19, we conclude that the sequence of wk

ρ converges to
zero in the weak topology of L2(Σ) and, by Lemma 7.11, the sequence of ζ k

ρ

converges to zero strongly in C
(
[0, T ]; L2(Ω)

)
as k → ∞ for all 0 < ρ < 1.

Thus there is an integer k(ρ) such that

‖ζ k(ρ)
ρ ‖C([0,T ];L2(Ω)) ≤ ρ whenever 0 < ρ < 1 .

Observe further that the functions uk(ρ)
ρ converge to ū strongly in L2(Σ)

as ρ ↓ 0. Then it follows from Theorem 7.13 that the functions yk(ρ)
ρ converge

to ȳ strongly in C
(
[0, T ]; L2(Ω)

)
as ρ ↓ 0. Invoking assumption (H1), one

has that the functions f k(ρ)
ρ converge to zero strongly in L1

(
0, T ; L2(Ω)

)
and

that the functions (θ − θ
k(ρ)
ρ ) converge to zero strongly in L1

(
0, T ; L2n(Ω)

)
as

ρ ↓ 0. Taking into account the above estimates, this implies the relations

lim
ρ→0

‖ξ k(ρ)
ρ ‖C([0,T ];L2(Ω)) ≤ lim

ρ→0

(
‖ξ k(ρ),1

ρ ‖C([0,T ];L2(Ω))

+‖ξ k(ρ),2
ρ − ζ

k(ρ)
ρ ‖C([0,T ];L2(Ω)) + ‖ζ k(ρ)

ρ ‖C([0,T ];L2(Ω))

)
= 0 .

Setting finally Eρ := Enk(ρ)
ρ , uρ := uk(ρ)

ρ , and 1
ρ

rρ := ξ
k(ρ)
ρ , we complete the

proof of the theorem. �
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7.2.4 Proof of Necessary Optimality Conditions

This subsection is devoted to the proof of the necessary optimality conditions
for the state-constrained Neumann boundary control problem (N P) formu-
lated in Theorem 7.8. The proof involves a strong approximation procedure to
penalize the state constraints, which is based on applying the Ekeland varia-
tional principle presented in Theorem 2.26. To accomplish this procedure, we
first describe a complete metric space and a lower semicontinuous function,
which are suitable for the application of Ekeland’s principle to our problem.

Given ū(·) ∈ Uad and a fixed positive number m, define the set

Uad(ū,m) :=
{

u ∈ Uad

∣∣ |u(s, t) − ū(s, t)| ≤ m for a.e. (s, t) ∈ Σ
}

and endow this set with the metric d(·, ·) defined by

d(v, u) := LN
({

(s, t)
∣∣ v(s, t) �= u(s, t)

})
,

where Ln(Ω) denotes as before the n-dimensional Lebesgue measure of the set
Ω ⊂ IRn. Observe that if {uk} ⊂ Uad(ū,m) and u ∈ Uad(ū,m) are such that
limk→∞ d(uk, u) = 0, then the sequence {uk} strongly converges to u in the
norm of L2(Σ). The next result provides more information about this space
and about the cost functional of (N P) on it, where yu stands for the weak
solution of (7.27) corresponding to u.

Lemma 7.20 (proper setting for Ekeland’s principle). The metric
space

(
Uad(ū,m), d

)
is complete, and the mapping u �→

(
yu, J (yu, u)

)
is con-

tinuous from
(
Uad(ū,m), d

)
into C

(
[0, T ]; L2(Ω)

)
× IR.

Proof. The completeness of the space
(
Uad(ū,m), d

)
is a well-known fact,

which goes back to the original paper by Ekeland [397]. Let us prove the
continuity statement of the lemma based on the regularity of weak solutions
to the state system (7.27) established in Subsect. 7.2.2.

To proceed, pick {uk} ⊂ Uad(ū,m) and u ∈ Uad(ū,m) such that the control
sequence {uk} converges to u in the above d-metric as k → ∞. Denote by y
and by yk the weak solutions of (7.27) corresponding to u and to uk , respec-
tively. Since uk → u strongly in L2(Σ), the trajectories yk strongly converge to
y in the space C

(
[0, T ]; L2(Ω)

)
by Theorem 7.13. Furthermore, it follows from

the estimates in assumptions (H2)–(H4) that the sequence of values J (yk, uk)
converges to J (y, u) as k → ∞. This ensures the desired continuity and com-
pletes the proof of the lemma. �

Now using the classical results in the geometry of Banach spaces collected,
e.g., in the book by Li and Yong [789, Chap. 2], we conclude by the separability
of C

(
[0, T ]; L2(Ω)

)
that there exists an equivalent norm | · |C([0,T ];L2(Ω)) on this

space such that is Gâteaux differentiable at any nonzero point and its dual
norm on M

(
[0, T ]; L2(Ω)

)
—denoted by | · |M([0,T ];L2(Ω))—is strictly convex.
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Given the constraint set Θ ⊂ C
(
[0, T ]; L2(Ω)

)
in the original problem (N P),

we consider the corresponding distance function

dΘ(x) := inf
z∈Θ

|x − z|C
(
[0,T ];L2(Ω)

)
defined via the new norm | · |C([0,T ];L2(Ω)) on C

(
[0, T ]; L2(Ω)

)
. This function is

globally Lipschitzian with modulus 	 = 1 and convex on C
(
[0, T ]; L2(Ω)

)
by

the convexity of Θ. Furthermore, one has⎧⎪⎨
⎪⎩

|ξ |M
(
[0,T ];L2(Ω)

) ≤ 1 if x∗ ∈ ∂dΘ(x) and x ∈ Θ,

|x∗|M([0,T ];L2(Ω)) = 1 if x∗ ∈ ∂dΘ(x) and x �∈ Θ;

cf. Subsect. 1.3.3. Taking into account that the dual norm | · |M([0,T ];L2(Ω)) is
also strictly convex, we conclude that the subdifferential ∂dΘ(x) is a singleton,
and hence dΘ is Gâteaux differentiable at x for every x /∈ Θ.

Let {ȳ(·), ū(·)} be an optimal solution to the original problem (P). Using
the above distance function dΘ , we define the penalized functional by

Jm(y, u) :=
[(

J (y, u) − J (ȳ, ū) +
1

m2

)+]2
+ d2

Θ(y), m ∈ IN ,

where J is the cost functional in (N P). Since Jm(ȳ, ū) = m−4, one has that

Jm(ȳ, ū) < inf
{

Jm(y, u)
∣∣∣ u ∈ Uad(ū,m1/3), (y, u) satisfies (7.27)

}
+

1
m2

,

for all m ∈ IN , i.e., {ȳ(·), ū(·)} is an approximate 1
m2 -optimal solution to the

penalized problem.
Observe that the functional Jm is smooth at points where it doesn’t vanish,

in the sense that it is Gâteaux differentiable at such points; cf. the smoothing
procedures in the metric approximation proofs of Theorems 2.8 and 2.10 for
the extremal principle. This follows from the construction of Jm , assumptions
(H2)–(H4), and the above property of dΘ . Ekeland’s principle allows us to
strongly approximate the reference pair {ȳ(·), ū(·)} by a pair {ym(·), um(·)}
satisfying (7.27) in such a way that {ym(·), um(·)} is an exact solution to some
perturbed optimal control problem for system (7.27) with the same control
constraints and with no state constraints. After all these discussions and pre-
liminary results we are ready to prove the main theorem.

Proof of Theorem 7.8. Divide the proof of this theorem into the following
three major steps.

Step 1: Approximating problems via Ekeland’s principle. Given an
optimal solution {ȳ(·), ū(·)} to the original problem (N P), we fix a nat-
ural number m ∈ IN and conclude from Lemma 7.20 that the metric space(
Uad(ū,m1/3), d

)
is complete and that the function u �−→ Jm(yu, u) is lower
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semicontinuous (even continuous) on this space. By the Ekeland variational
principle we find an admissible control um satisfying

um ∈ Uad(ū,m1/3), d(um, ū) ≤ 1
m
, and

Jm(ym, um) ≤ Jm(yu, u) +
1
m

d(um, u)

(7.42)

for all u ∈ Uad(ū,m1/3), where ym and yu are the weak solutions of (7.27)
corresponding to um and u, respectively. The latter means that, for all natural
numbers m ∈ IN , the control um is an optimal solution to the perturbed problem
(N Pm) defined by:

inf
{

Jm(y, u) +
1
m

∣∣∣ u ∈ Uad(ū,m1/3), (y, u) satisfies (7.27)
}
.

Step 2: Necessary conditions in approximating problems. First take
an arbitrary control u0 ∈ Uad and construct the following modification of the
optimal control ū to (N P) by

u0m(s, t) :=

⎧⎨
⎩

u0(s, t) if |u0(s, t) − ū(s, t)| ≤ m1/3 ,

ū(s, t) otherwise .

Note that the control u0m is feasible for the approximating problem (N Pm)
whenever m ∈ IN . Given any 0 < ρ < 1, define then diffuse perturbations of
the optimal control um to (N Pm) by

um
ρ (s, t) :=

⎧⎨
⎩

um(s, t) in Σ \ Em
ρ ,

u0m(s, t) in Em
ρ .

Theorem 7.18 ensures the existence of measurable sets Em
ρ ⊂ Σ for which one

has the relations

Ln(Em
ρ ) = ρLn(Σ), ym

ρ = ym + ρzm + ρrm
ρ ,

lim
ρ→0

‖rm
ρ ‖C([0,T ];L2(Ω)) = 0, and

J (ym
ρ , um

ρ ) = J (ym, um) + ρ∆̂J m + o(ρ) ,

(7.43)

where ym
ρ is the weak solution of (7.27) corresponding to um

ρ , where zm is the
weak solution to ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ztt −∆z + ϑ ′
y(·, ym)z = 0 in Q,

∂νz = um − u0m in Σ,

z(0) = 0, zt(0) = 0 in Ω ,
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and where ∆̂J m is defined by

∆̂J m : =
∫

Q
g′

y(·, ym)zm dxdt +
∫
Ω

f ′y
(
·, ym(T )

)
zm dx

+
∫
Σ

(
h(·, u0m) − h(·, um)

)
dsdt .

Since each um
ρ is feasible for (N Pm), it follows from (7.42) and the construction

of the metric d(·, ·) therein that

lim
ρ→0

Jm(ym, um) − Jm(ym
ρ , um

ρ )
ρ

≤ 1
m
Ln(Σ) . (7.44)

Observe that Jm(ym, um) �= 0 for all m ∈ IN due the optimality of um in (N Pm)
and the structure of Jm . Hence Jm is Gâteaux differentiable at (ym, um) by the
discussion above. Then it easily follows from (7.43) and (7.44) that one has
the optimality condition

−λm∆̂J m −
〈
µm, zm

〉
≤ 1

m
Ln(Σ) , (7.45)

where the multipliers λm and µm are computed by

λm :=

(
J (ym, um) − J (ȳ, ū) +

1
m2

)+

Jm(ym, um)
,

µm :=

⎧⎪⎪⎨
⎪⎪⎩

dΘ(ym)∇dΘ(ym)
Jm(ym, um)

if ym �∈ Θ ,

0 otherwise .

Noting that µm ∈ M
(
[0, T ]; L2(Ω)

)
, consider the (unique) weak solution pm

to the adjoint system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ptt −∆p + ϑ ′
y(·, ym)p = λm g′

y(·, ym) + µm |Q in Q ,

∂ν p = 0 in Σ ,

p(T ) = 0, pt(T ) = −λm f ′y
(
·, ym(T )

)
− µm |Ω×{T} in Ω ,

where µm |Q and µm |Ω×{T} are the restrictions of µm to Q and Ω × {T },
respectively. Employing the Green formula from Theorem 7.17, we have
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λm

∫
Q

g′
y(x, t, ym)zm dxdt + λ

∫
Ω

f ′y
(
x, ym(T )

)
zm(T ) dx +

〈
µm, zm

〉

=
∫

Q
pm

(
zktt −∆zm + ϑ ′

y(·, ym)zm

)
dxdt +

∫
Σ

pm ∂νzm dsdt

=
∫
Σ

pm(um − u0m) dsdt .

The latter implies, by (7.45) and the definition of ∆̂J m , that∫
Σ

(
λmh(s, t, um) + pmum

)
dsdt ≤

∫
Σ

(
λmh(s, t, u0m) + pmu0m

)
dsdt

+
1
m
Ln(Σ) for all m ∈ IN ,

(7.46)

which gives the desired necessary optimality conditions for the solutions um

to the approximating problems (N Pm).

Step 3: Passing to the limit. To conclude the proof of the theorem, we
need to pass to the limit in the above relationships for the optimal solutions
um to (N Pm) as m → ∞. First observe that

λ2
m + |µm |2M([0,T ];L2(Ω)) = 1 for all m ∈ IN .

Invoking basic functional analysis, we find (λ, µ̄) ∈ IR × M
(
[0, T ]; L2(Ω)

)
with λ ≥ 0 and a subsequence of (λm, µm), still indexed by m, such that

λm → λ in IR and µm
w∗
→ µ̄ weak∗ in M

(
[0, T ]; L2(Ω)

)
.

Furthermore, Theorem 7.16 ensures the estimate

‖pm‖L∞(0,T ;H1(Ω)) + ‖pkt‖L∞(0,T ;L2(Ω))

≤ C
(
‖µ‖M([0,T ];L2(Ω)) + ‖g′

y(·, ym)‖L1(0,T ;L2(Ω)) + ‖ f ′y
(
·, ym(T )

)
‖L2(Ω)

)
.

Since the sequences {λm} ⊂ IR,

{µm} ⊂ M
(
[0, T ]; L2(Ω)

)
, {ym} ⊂ C

(
[0, T ]; L2(Ω)

)
,

and {um} ⊂ L2(Σ) are bounded, the sequence {(pm, pmt)} is bounded in
L∞(

0, T ; H1(Ω)
)
× L∞(

0, T ; L2(Ω)
)
. Then there are

(pm, pmt)
w∗
→ (p, pt) ∈ L∞(

0, T ; H1(Ω)
)
× L∞(

0, T ; L2(Ω)
)

and

ym
w∗
→ ȳ ∈ L∞(

0, T ; L2(Ω)
)

as m → ∞
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in the weak∗ topologies of the underlying spaces. We know that um → ū
strongly in L2(Σ). Employing the standard arguments as above, it is easy to
conclude that ȳ is the solution of (7.27) corresponding to ū and that p is the
(unique) weak solution of (7.30) corresponding to ȳ.

Let us show that the limiting multipliers (λ,µ) = (λ, µ̄|]0,T ]) are those
whose existence is claimed in Theorem 7.8. First justify that (λ,µ) �= 0 due
to requirement (H5) on the convexity and nonempty interiority of the set Θ.
Suppose the contrary, which yields

lim
m→∞ |µm |2M([0,T ];L2(Ω)) = 1 . (7.47)

By assumption (H5) we have ŷ0 ∈ intΘ. Thus there exists a closed ball
Bρ(ŷ0) ⊂ C

(
[0, T ]; L2(Ω)

)
entirely contained in Θ. Employing (7.47) and

picking any m ∈ IN , we find zm ∈ ρ IB satisfying〈
zm, µm

〉
C([0,T ];L2(Ω)),M([0,T ];L2(Ω))

=
ρ

2
|µm |M([0,T ];L2(Ω)) .

Since ŷ0 + zm ∈ Θ, observe from the definition of µm that〈
ŷ0 + zm − ym, µm

〉
C([0,T ];L2(Ω)),M([0,T ];L2(Ω))

≤ 0, m ∈ IN .

Passing to the limit as m → ∞, we get
ρ

2
+
〈

ŷ0 − ȳ, µ̄
〉
C([0,T ];L2(Ω)),M([0,T ];L2(Ω))

≤ 0 .

Remember that ȳ(x, 0) = ŷ0(x, 0) and that µ = µ̄|]0,T ]; therefore〈
ŷ0 − ȳ, µ̄

〉
C([0,T ];L2(Ω)),M([0,T ];L2(Ω))

=
〈

ŷ0 − ȳ, µ
〉
C([0,T ];L2(Ω)),Mb(]0,T ];L2(Ω))

,

which clearly implies that〈
ŷ0 − ȳ, µ

〉
C([0,T ];L2(Ω)),Mb(]0,T ];L2(Ω))

≤ −ρ

2
< 0 .

The latter contradicts the assumption on (λ,µ) = 0 and thus justifies the
nontriviality condition in (7.28). The second condition therein easily follows
from the above arguments due to the convexity of the constraint set Θ. Note
that overall relationships (7.28) are in accordance with general results of con-
strained optimization, which particularly ensure nontriviality under SNC as-
sumptions on constraint sets; cf. Proposition 1.25 and also Remark 7.30 below.

It remains to verify the minimum condition (7.29). To do this, recall that
um → ū strongly in L2(Σ). Passing to the limit as m → ∞ in (7.46), we get∫

Σ

(
λh(s, t, ū) + pū

)
dsdt ≤

∫
Σ

(
λh(s, t, u0) + pu0

)
dsdt (7.48)

for every u0 ∈ Uad . Finally, taking into account the structure of the admissible
control set Uad in (H6) and employing the standard arguments (as those in
Sect. 7.4 for parabolic equations with no change required), we derive the
pointwise condition (7.29) from the integral one in (7.48). This completes the
proof of the theorem. �
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Remark 7.21 (existence of optimal solutions to the hyperbolic Neu-
mann problem). For brevity we don’t address in this section the existence
issue for optimal solutions to the Neumann boundary control problem under
consideration. However, a general existence theorem for this problem can be
derived from the regularity results presented in Subsect. 7.2.2 via the appli-
cation of the classical Weierstrass theorem on the existence of optimal solu-
tions to abstract problems of minimizing l.s.c. functions over compact sets
in suitable topologies; cf. Sects. 7.3 and 7.4 below for similar arguments and
results. What we need, however, is to impose additional convexity assump-
tions on the integrand h with respect to the control variable, as well as the
convexity of the control sets K (s, t) in (H6). Such a convexity, which is not
needed for deriving the pointwise necessary optimality conditions, is required
for the existence theorem in order to ensure the lower semicontinuity of the
cost functional and the closedness of the feasible control set with respect to
the corresponding weak convergence of controls that implies, by regularity, the
strong convergence of trajectories. Note that we have to impose significantly
more restrictive assumptions to handle the Dirichlet boundary control problem
in the next section, where the convexity in both control and state variables is
needed not only for the existence of optimal solutions but also for deriving
necessary optimality conditions. The main reason is that Dirichlet boundary
control problems, for hyperbolic as well for parabolic systems, exhibit much
less regularity in comparison for their Neumann counterparts, and thus they
require different methods of variational analysis; see Sects. 7.3 and 7.4.

7.3 Dirichlet Boundary Control
of Linear Constrained Hyperbolic Equations

In this section we study a Dirichlet counterpart of the Neumann boundary
control problem for hyperbolic equations with pointwise state constraints con-
sidered in Sect. 7.2. As mentioned, there are significant differences between
Neumann and Dirichlet boundary conditions for hyperbolic equations; so the
methods and results developed in this section are considerably distinguished
from those in the preceding one. Roughly speaking, the requirements imposed
on the initial data in the Dirichlet problem are stronger, while the results we
are able to obtain are weaker in comparison with the above case of Neumann
boundary controls. This is due to the lack of regularity in the Dirichlet case,
which forces us to develop a different approach to the variational analysis of
the state-constrained Dirichlet boundary control problem in what follows. In
particular, necessary optimality conditions are derived in this approach by
reducing the Dirichlet control problem of dynamic optimization to a prob-
lem of mathematical programming in infinite dimensions with geometric and
operator constraints of special types.
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7.3.1 Problem Formulation and Main Results
for Dirichlet Controls

In what follows we keep the standard notation from Sect. 7.2. The Dirichlet
problem under consideration is as follows. Given an open bounded domain
Ω ⊂ IRn with the boundary Γ of class C2, consider the problem of minimizing
the integral functional

J (y, u) :=
∫
Ω

f
(
x, y(T )

)
dx +

∫
Q

g(x, t, y)dxdt +
∫
Σ

h(s, t, u)dsdt

for a fixed time T > 0 over admissible pairs {y(·), u(·)} satisfying the multidi-
mensional linear wave equation with control functions acting in the Dirichlet
boundary conditions⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ytt −∆y = ϑ in Q : = Ω × (0, T ) ,

y = u in Σ : = Γ × (0, T ) ,

y(0) = y0, yt(0) = y1 in Ω

(7.49)

subject to the pointwise control and state constraints

u(·) ∈ Uad ⊂ L2(Σ), y(·) ∈ Θ ⊂ C
(
[0, T ]; L2(Ω)

)
,

where ϑ ∈ L1
(
0, T ; H−1(Ω)

)
, y0 ∈ L2(Ω), and y1 ∈ H−1(Ω) are given

functions. Label this problem by (D P) and shortly write it as

inf
{

J (y, u)
∣∣∣ {y(·), u(·)} satisfies (7.49), u(·) ∈ Uad , y(·) ∈ Θ

}
.

Our primary goal in this section is to derive necessary optimality conditions
for the Dirichlet state-constrained problem (D P) under consideration; the
same goal as for the Neumann problem (N P) studied in Sect. 7.2. However,
we have to impose significantly more restrictive assumptions on the initial data
of (D P), in comparison with those for (N P), to achieve even weaker results;
see below. Observe that the hyperbolic dynamics in (D P) is described by
the linear wave equation with ϑ independent of y, in comparison with the
semilinear one in (N P). On the other hand, we impose milder requirements
on the initial state (y0, y1) ∈ L2(Ω) × H−1(Ω) for the Dirichlet problem in
comparison with (y0, y1) ∈ H1(Ω)×L2(Ω) for the Neumann case. In fact, the
results obtained for (D P) can be extended to more general linear hyperbolic
equations with a strongly elliptic operator instead of the Laplacian ∆.

Let us now formulate the standing assumptions on the initial data in (D P)
required for the necessary optimality conditions derived below; only the first
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four assumptions, with no intΘ �= ∅ in (H4), are required for the existence
theorem in what follows.

(H1) For every y ∈ IR the function f (·, y) ≥ 0 is measurable in Ω with
f (·, 0) ∈ L1(Ω). For a.e. x ∈ Ω the function f (x, ·) is convex and continuous
on the whole line IR.

(H2) For every y ∈ IR the function g(·, ·, y) ≥ 0 is measurable in Q with
g(·, ·, 0) ∈ L1(Q). For a.e. (x, t) ∈ Q the function g(x, t, ·) is convex and
continuous on IR.

(H3) For every u ∈ IR the function h(·, u) is measurable in Σ with h(·, 0) ∈
L1(Σ). For a.e. (s, t) ∈ Σ the function h(s, t, ·) is convex and continuous on
IR. Moreover, h satisfies the following growth condition

|u|2 ≤ h(s, t, u) whenever (s, t) ∈ Σ and u ∈ IR .

(H4) The state constraint set Θ ∈ C
(
[0, T ]; L2(Ω)

)
is a closed and convex

with intΩ �= ∅. The control set Uad ∈ L2(Σ) is also closed and convex.
Furthermore, y0(·) ∈ intΘ for the initial function (x, t) �→ y0(x), and there
is u ∈ Uad satisfying yu ∈ Θ and J (y, u) < ∞ for the corresponding solution
y(·) to the Dirichlet system (7.49).

(H5) For a.e. x ∈ Ω the function f (x, ·) is of class C1 satisfying

| f ′y(x, y)| ≤ C
(
1 + |y|

)
with some constant C > 0 .

(H6) For a.e. (x, t) ∈ Q the function g(x, t, ·) is of class C1 satisfying

|g′
y(x, t, y)| ≤ C

(
1 + |y|

)
with some constant C > 0 .

(H7) For a.e. (s, t) ∈ Σ the function h(s, t, ·) is of class C1 satisfying

|h′
u(s, t, u)| ≤ C

(
1 + |u|

)
with some constant C > 0 .

The main difference between the assumptions made for (D P) in compari-
son with for (N P) is that we now impose the full convexity of the integrands
f, g, h with respect to the state and control variables, together with the con-
vexity of the control set Uad , while no convexity is required for the Neumann
problem. As mentioned, it is due to the lack of regularity for the Dirichlet
system (7.49) in comparison with the Neumann one; see Subsect. 7.3.2 for
more details and discussions.

Actually the extra convexity assumptions allow us to compensate, in a
sense, the lack of regularity. Based on the full convexity and the available
regularity, we reduce the Dirichlet control problem under consideration to
a special problem of mathematical programming with geometric and operator
constraints in Banach spaces and then deduce necessary optimality conditions
for (D P) from an appropriate version of the (abstract) Lagrange multiplier
rule for mathematical programming in the line of Subsect. 5.1.2. The necessary
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optimality conditions for the Dirichlet problem derived in this way are given
in the integral form of the Pontryagin maximum principle, in contrast to
the pointwise form for the Neumann problem in Sect. 7.2. Furthermore, the
assumptions made allow us to establish a general existence theorem for optimal
controls in problem (D P).

Now we are ready to formulate the main results of this section. Note that
the appropriate notions of (weak) solutions to the state and adjoint equa-
tions needed for these results will be rigorously clarified in Subsect. 7.3.3 and
Subsect. 7.3.4, respectively.

Theorem 7.22 (existence of Dirichlet optimal controls). Suppose that
assumptions (H1)–(H4), with no intΘ �= ∅ in (H4), are satisfied. Then the
Dirichlet optimal control problem (D P) admits an optimal solution.

The proof of Theorem 7.22 is given in Subsect. 7.3.3.

Theorem 7.23 (necessary optimality conditions for the hyperbolic
Dirichlet problem). Suppose that assumptions (H1)–(H7) are satisfied.
Then for every optimal solution {ȳ(·), ū(·)} to problem (D P) the following
conditions hold: there are λ ≥ 0 and µ ∈ Mb

(
]0, T ]; L2(Ω)

)
such that

(λ,µ) �= 0,
〈
µ, y − ȳ

〉
≤ 0 for all y ∈ Θ and (7.50)

∫
Σ

(∂p
∂ν

+ λh′
u(s, t, ū)

)
(u − ū) dsdt ≥ 0 for all u ∈ Uad , (7.51)

where p is the corresponding solution to the adjoint system⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ptt −∆p = λg′
y(x, t, ȳ) + µ|Q in Q ,

p = 0 in Σ ,

p(T ) = y0, pt(T ) = −λ f ′y
(
x, ȳ(T )

)
− µ|Ω×{T} in Ω .

(7.52)

Moreover, if there exists {y(·), u(·)} ∈ Y × (Uad − ū) satisfying⎧⎨
⎩

ytt −∆y = 0 in Q, y = u in Σ ,

y(0) = 0, yt(0) = 0 in Ω, ȳ + y ∈ intΘ
(7.53)

with the state space Y defined in (7.54), then one can take λ = 1 in the above
optimality conditions.

Note that the integral condition (7.51) is formulated as a part of the min-
imum (not maximum) principle, which is more convenient in our framework.
The proof of Theorem 7.23 is given in Subsect. 7.3.5 with the preliminary
analysis of the adjoint system conducted in Subsect. 7.3.4.
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7.3.2 Existence of Dirichlet Optimal Controls

Let us first recall an appropriate notion of solutions to the nonhomogeneous
Dirichlet state system (7.49) needed for the purposes of this study. The fol-
lowing notion of weak solutions meets our requirements.

Definition 7.24 (weak solutions to the Dirichlet state hyperbolic
system). A function y(·) with (y, yt) ∈ C

(
[0, T ]; L2(Ω)

)
×C

(
[0, T ]; H−1(Ω)

)
is a weak solution to (7.49) if one has∫

Q
f z dxdt =

∫
Q

yϕ dxdt +
〈

yt(T ), z0
〉

H−1(Ω)×H1
0 (Ω)

−
〈

yt(0), z(0)
〉

H−1(Ω)×H1
0 (Ω)

−
∫
Ω

y(T )z1 dx +
∫
Ω

y(0)zt(0) dx +
∫
Σ

∂z
∂νu

dsdt

for all (ϕ, z0, z1) ∈ L1
(
0, T ; L2(Ω)

)
× H1

0 (Ω) × L2(Ω), where z solves the
homogeneous Dirichlet problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ztt −∆z = ϕ in Q ,

z = 0 in Σ ,

z(T ) = z0, zt(T ) = z1 in Ω .

The importance of the defined notion of weak solutions to the hyperbolic
system (7.49) is due to the following fundamental regularity result established
by Lasiecka, Lions and Triggiani [740], which ensures the existence, unique-
ness, and continuous dependence of weak solutions to (7.49) on the initial and
boundary conditions in appropriate Banach spaces. We refer the reader to the
afore-mentioned paper for the proof of this result and various applications.

Theorem 7.25 (basic regularity for the Dirichlet hyperbolic prob-
lem). For every (ϑ, u, y0, y1) ∈ L1

(
0, T ; H−1(Ω)

)
× L2(Σ) × L2(Ω) ×

H−1(Ω) the Dirichlet system (7.49) admits a unique weak solution y(·) with
(y, yt) ∈ C

(
[0, T ]; L2(Ω)

)
× C

(
[0, T ]; H−1(Ω)

)
. Furthermore, the mapping

(ϑ, u, y0, y1) �→ (y, yt) is linear and continuous from L1
(
0, T ; H−1(Ω)

)
×

L2(Σ) × L2(Ω) × H−1(Ω) into C
(
[0, T ]; L2(Ω)

)
× C

(
[0, T ]; H−1(Ω)

)
.

Theorem 7.25 plays a crucial role in further considerations. This theorem
suggests us to introduce the space of admissible state functions, i.e., the space
of solutions to system (7.49) when (ϑ, u, y0, y1) ∈ L1

(
0, T ; H−1(Ω)

)
×L2(Σ)×

L2(Ω) × H−1(Ω), as follows

Y :=
{

y ∈ C
(
[0, T ]; L2(Ω)

)∣∣∣ yt ∈ C
(
[0, T ]; H−1(Ω)

)
,

ytt −∆y ∈ L1
(
0, T ; H−1(Ω)

)
, y|Σ ∈ L2(Σ)

}
.

(7.54)
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It is easy to see that the space Y is Banach with the norm ‖ · ‖ defined by∥∥y
∥∥
C([0,T ];L2(Ω))

+
∥∥yt

∥∥
C([0,T ];H−1(Ω))

+
∥∥ytt −∆y

∥∥
L1(0,T ;H−1(Ω))

+
∥∥y|Σ

∥∥
L2(Σ)

.

Now based on Theorem 7.25 and standard results on the lower semiconti-
nuity of integral functionals in appropriate weak topologies under the assump-
tions made, we justify the existence of optimal solutions to (D P) by reducing
it to the classical Weierstrass theorem in the underlying topological spaces.

Proof of Theorem 7.22. By the existence and uniqueness statements in The-
orem 7.25, there is a minimizing sequence {(yk, uk)} ⊂ C

(
[0, T ]; L2(Ω)

)
×Uad

in problem (D P), where yk is the (unique) solution of (7.49) corresponding
to uk . Due to the growth condition in (H3), the sequence {uk} is bounded in
L2(Σ). Thus we suppose without loss of generality that {uk} converges to u
in the weak topology of L2(Σ). Since Uad is assumed to be closed and con-
vex in (H4), one has u(·) ∈ Uad . It follows from the continuity statement in
Theorem 7.25 that the sequence {(yk, ykt)} is bounded in L∞(

0, T ; L2(Ω)
)
×

L∞(
0, T ; H−1(Ω)

)
, where ykt stands for the distributive derivative of yk . Em-

ploying the above continuity, we conclude that {(yk, ykt)} converges to (y, yt)
in the weak∗ topology of L∞(

0, T ; L2(Ω)
)
×L∞(

0, T ; H−1(Ω)
)
, where y is the

solution of (7.49) corresponding to u. Invoking the closedness and convexity
of Θ in (H4), one gets that y(·) ∈ Θ.

It remains to justify the lower semicontinuity of the cost functional, i.e.,
the limiting relation

J (y, u) ≤ lim inf
k→∞

J (yk, uk) .

The latter follows directly from the classical results on the lower semicontinu-
ity of integral functionals with respect to the weak topologies under consid-
eration due to the crucial convexity assumptions in (H1)–(H3). Thus (y, u) is
an optimal solution to the Dirichlet optimal control problem (D P). �

7.3.3 Adjoint System in the Dirichlet Problem

Our primal goal is to prove the necessary optimality conditions formulated
in Theorem 7.23. To proceed, we first need to clarify an appropriate notion
of solutions to the adjoint system in this theorem and then to establish some
properties of adjoint trajectories allowing us to deduce the desired necessary
optimality conditions for the hyperbolic control problem from abstract neces-
sary optimality conditions for the auxiliary optimization problem in Banach
spaces. Given µ ∈ Mb

(
]0, T ]; L2(Ω)

)
, consider the system⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ptt −∆p = µ|Q in Q ,

p = 0 in Σ ,

p(T ) = 0, pt(T ) = −µ|Ω×{T} in Ω ,

(7.55)
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corresponding to the adjoint system (7.52) in Theorem 7.23 with (λ, y0) = 0,
where µ|Q (respectively µ|Ω×{T}) is the restriction of µ to Q (respectively to
Ω × {T }). Observe that these restrictions satisfy µ|Q ∈ Mb

(
]0, T [; L2(Ω)

)
and µ|Ω×{T} ∈ L2(Ω).

To define an appropriate notion of solutions to the adjoint system (7.55),
suppose for a moment that (p, pt) ∈ L2

(
0, T ; H1

0 (Ω)
)
× L2

(
0, T ; L2(Ω)

)
and that ptt − ∆p ∈ Mb

(
]0, T [; L2(Ω)

)
, where the derivatives are calcu-

lated in the sense of distributions in Q. Then, following the corresponding
proof for the Neumann problem in Subsect. 7.2.2 based on the divergence for-
mula from Lemma 7.14, we define the normal trace on ∂Q for the vectorfield
(−∇p, pt) as an element of H−1/2(∂Q). Moreover, denoting this normal trace
by γνQ (−∇p, pt), we have the estimate

‖γνQ (−∇p, pt)‖H−1/2(∂Q) ≤ C
(
‖p‖L2(0,T ;H1

0 (Ω)) + ‖pt‖L2(Q)

+‖ptt −∆p‖Mb(]0,T [;L2(Ω))

)
,

where C is independent of p. This allows us to define pt(0) as the restriction
of this normal trace to Ω × {0}, i.e., as

γνQ (−∇p, pt)|Ω×{0} = pt(0) ∈ H−1/2(Ω) .

Thus we arrive at the following definition of weak solutions for the adjoint
system given in (7.55).

Definition 7.26 (weak solutions to the Dirichlet adjoint system). A
function p with (p, pt) ∈ L∞(

0, T ; H1
0 (Ω)

)
×L∞(0, T ; L2(Ω)) and ptt −∆p ∈

Mb
(
]0, T [; L2(Ω)

)
is a weak solution to the Dirichlet adjoint system (7.55)

if one has the equality

−
∫
Ω

p(0)y1 dx +
〈

pt(0), y0

〉
H−1(Ω)×H1

0 (Ω)

+
〈

y(ϑ, y0, y1), µ
〉
C([0,T ];L2(Ω))×Mb(]0,T ];L2(Ω))

−
∫

Q
pϑ dxdt = 0

for all (ϑ, y0, y1) ∈ L2(Q) × H1
0 (Ω) × L2(Ω), where y(ϑ, y0, y1) denotes the

unique solution to the homogeneous Dirichlet problem in (7.49), i.e., to⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ytt −∆y = ϑ in Q ,

y = 0 in Σ ,

y(0) = y0, yt(0) = y1 in Ω .

Let us observe that, since (p, pt) ∈ L∞(0, T ; H1
0 (Ω)) × L∞(0, T ; L2(Ω)),

we have p ∈ C
(
[0, T ]; L2(Ω)), and thus the term

∫
Ω

p(0)y1 dx is mean-
ingful. Furthermore, ptt − ∆p ∈ Mb(]0, T [; L2(Ω)), and hence pt(0) =
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γνQ (−∇p, pt)|Ω×{0} is well defined in H−1/2(Ω) due to the discussion right
before the definition.

The next important result justifies the existence and uniqueness of weak
solutions to the adjoint system (7.55) in the sense of Definition 7.26. Moreover,
it provides additional regularity properties that are significant for the proof
of the main theorem.

Theorem 7.27 (properties of adjoint arcs in the Dirichlet problem).
The adjoint system (7.55) admits a unique weak solution p(·) such that

(p, pt) ∈ L∞(
0, T ; H1

0 (Ω)
)
× L∞(

0, T ; L2(Ω)
)
.

Furthermore, pt ∈ BV
(
[0, T ]; H−1(Ω)

)
,

∂p
∂ν

= γνQ (∇p,−pt)|Σ belongs to L2(Σ) ,

p ∈ Cw
(
[0, T ]; H1

0 (Ω)
)
, and

pt(τ ) ∈ L2(Ω) for all τ ∈
{

t ∈ [0, T ]
∣∣ µ(Ω × {t}) = 0

}
.

In particular, we have pt(0) ∈ L2(Ω).

Proof. First observe that the fulfillment of the equality in the theorem for
(p, pt) ∈ L∞(

0, T ; H1
0 (Ω)

)
× L∞(

0, T ; L2(Ω)
)

with µ = 0 obviously implies
that p = 0. Thus system (7.55) admits at most one solution in the sense of
Definition 7.26. We therefore need to justify the existence of weak solutions
with the additional regularity properties listed in the theorem.

Let {µk} be a sequence in L1
(
0, T ; L2(Ω)

)
satisfying the relations∥∥µk

∥∥
L1(0,T ;L2(Ω))

=
∥∥µ|]0,T [

∥∥
Mb(]0,T [;L2(Ω))

and

lim
k→∞

∫
Q

yµk dxdt =
〈

y, µ|]0,T [

〉
C([0,T ];L2(Ω))×Mb(]0,T [;L2(Ω))

if y ∈ C
(
[0, T ]; L2(Ω)

)
. Denote by pk the (unique) solution to⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ptt −∆p = µk in Q ,

p = 0 in Σ ,

p(T ) = 0, pt(T ) = −µ|Ω×{T} in Ω .

(7.56)

Employing the result of Theorem 2.1 from the afore-mentioned paper by
Lasiecka, Lions and Triggiani [740], we have the estimate
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∥∥pk

∥∥
L∞(0,T ;H1

0 (Ω))
+
∥∥pkt

∥∥
L∞(0,T ;L2(Ω))

+
∥∥∥∂pk

∂ν

∥∥∥
L2(Σ)

+ ‖pk(0)‖H1(Ω)

+‖pkt(0)‖L2(Ω) ≤ C
∥∥µ∥∥Mb(]0,T ];L2(Ω))

with a constant C independent of k. It follows from (7.56) that the distribution
derivative of pkt with respect to t can be represented in the form

pktt = πk + µk ∈ L∞(
0, T ; H−1(Ω)

)
+ Mb

(
]0, T [; L2(Ω)

)
⊂ Mb

(
]0, T [; H−1(Ω)

)
,

where πk is defined by

〈
πk, y

〉
L∞(0,T ;H−1(Ω))×L1(0,T ;H1

0 (Ω))
:= −

∫
Q
∇pk∇y dxdt .

Therefore the sequence {pktt} is bounded in Mb
(
]0, T [; H−1(Ω)

)
, and hence

the corresponding one {pkt} is bounded in BV
(
[0, T ]; H−1(Ω)

)
. Then there

are p ∈ L∞(
0, T ; H1

0 (Ω)
)

with pt ∈ BV
(
[0, T ]; H−1(Ω)

)
and a subsequence

of {pk} such that pk → p in the weak∗ topology of L∞(
0, T ; H1

0 (Ω)
)

and
that pkt → pt in the weak∗ topology of L∞(

0, T ; L2(Ω)
)

as k → ∞. Since the
sequence {γνQ (−∇pk, pkt)} is bounded in L2(∂Q), we may also suppose the
weak convergence

γνQ (−∇pk, pkt) → γνQ (−∇p, pt) weakly in L2(∂Q) .

On the other hand, γνQ (−∇pk, pkt)|Ω×{T} = µ|Ω×{T} and the sequence of

γνQ (∇pk,−pkt)|Σ =
∂pk

∂ν

is bounded in L2(Σ). Thus

γνQ (∇pk,−pkt)|Σ → γνQ (∇p,−pt)|Σ =
∂p
∂ν

and

γνQ (−∇pn, pnt)|Ω×{0} = pnt(0) → γνQ (−∇p, pt)|Ω×{0} = pt(0)

in the weak topology of L2(Σ) and L2(Ω), respectively. Now passing to the
limit as k → ∞ in the equality

−
〈

pk(0), y1

〉
L2(Ω)

+
〈

pkt(0), y0

〉
H−1(Ω)×H1

0 (Ω)

+
〈

y(ϑ, y0, y1), µk
〉
C([0,T ];L2(Ω))×Mb(]0,T ];L2(Ω))

−
〈

pk, ϑ
〉

L2(Q)
= 0 ,

we conclude that p(·) is the desired weak solution to the adjoint system (7.55)
satisfying all but the last displayed relations in the theorem.
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To prove the remaining property, suppose that µ(Ω × {t}) = 0 for some
t ∈ [0, T ]. Then considering the normal trace of (−∇p, pt) on ∂(Ω×]0, t [) as
above, we derive the equality

γνΩ×]0,t[(−∇p, pt)|Ω×{t} = pt(0) ∈ L2(Ω) ,

which completes the proof of the theorem. �

Finally in this section, let us present a useful limiting consequence of The-
orem 7.27 that ensures a Green-type relationship between solutions of the
adjoint system (7.55) and the original arcs belonging to the space Y of admis-
sible state functions (7.54).

Theorem 7.28 (Green formula for the Dirichlet hyperbolic prob-
lem). Given a measure µ ∈ Mb

(
]0, T ]; L2(Ω)

)
, consider the unique solution

p(·) to the adjoint system (7.55). Then for every admissible state function
y ∈ Y , the adjoint arc p(·) satisfies the following Green formula〈

y, µ
〉
C([0,T ];L2(Ω))×Mb(]0,T ];L2(Ω))

−
〈

p, ytt −∆y
〉

L∞(0,T ;H1
0 (Ω))×L1(0,T ;H−1(Ω))

= −
∫
Ω

y(0)pt(0) dx +
〈

yt(0), p(0)
〉

H−1(Ω)×H1
0 (Ω)

−
∫
Σ

y
∂p
∂ν

dsdt .

Proof. As established in Theorem 7.27, the above Green formula holds for
the solutions pk to the approximating adjoint system (7.56). Passing there to
the limit as k → ∞, we arrive at the required result. �

7.3.4 Proof of Optimality Conditions

This subsection is devoted to the proof of the main result of Sect. 7.3 formu-
lated in Theorem 7.23. We employ the following strategy:

(a) reduce (D P) to a general optimization/mathematical programming
problem in Banach spaces in the presence of geometric and operator con-
straints, for which necessary optimality conditions of a generalized Lagrange
multiplier type are known, and then

(b) express the latter optimality conditions and the assumptions under
which they hold in terms of the initial data of the original Dirichlet control
problem (D P).

Besides the general optimization theory of Chap. 5, the proof is essentially
based on the specific results obtained in the preceding subsection for hyper-
bolic systems under consideration that employ in turn the regularity results of
Theorem 7.25. The general optimization problem in Banach spaces, to which
we reduce (D P), is called for convenience the abstract control problem and is
written as follows: minimize
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ϕ(z, w) subject to z ∈ Z , w ∈ Wad , f1(z, w) = 0, f2(w) ∈ Ξ, (7.57)

where ϕ: Z × W → IR, f1: Z × W → Z1, f2: Z → Z2, where the sets Wad ⊂ W
and Ξ ⊂ Z2 are closed and convex, and where the spaces Z , Z1, Z2, W are
Banach with W being separable.

Observe that the “abstract control” problem (7.57) is of a mathematical
programming type with geometric and operator constraints studied in Sub-
sect. 5.1.2. Assume in what follows the Fréchet differentiability of the cost
functional and the strict differentiability of the operator constraints with the
surjective of the strict derivative operator. Taking also into account the special
structure of problem (7.57) and the convexity of the sets describing the geo-
metric constraints, we can derive necessary optimality conditions for (7.57)
as an elaboration of Theorem 5.11(ii), where the domain space is arbitrarily
Banach due to the smoothness and convexity assumptions made. A direct
derivation of the next theorem from the viewpoint of convex optimization
with smooth operator constraints was given by Alibert and Raymond [9].

Theorem 7.29 (necessary conditions for abstract control problems).
Let (z̄, w̄) be an optimal solution to problem (7.57). Assume that ϕ is Fréchet
differentiable at (z̄, w̄) while f1 and f2 are strictly differentiable at z̄ and
(z̄, w̄), respectively, with the surjective partial derivative f ′1z(z̄, w̄): Z → Z1,
and that intΞ �= ∅. Then there are adjoint elements (p, µ, λ) ∈ Z∗

1 × Z∗
2 × IR+

such that (λ,µ) �= 0 and the following conditions hold:

λϕ′
z(z̄, w̄)z +

〈
p, f ′1z(z̄, w̄)z

〉
+
〈
µ, f ′2(z̄)z

〉
= 0 for every z ∈ Z ,

〈
µ, z − f2(z̄)

〉
≤ 0 for every z ∈ Ξ, and

λϕ′
w(z̄, w̄)(w − w̄) +

〈
p, f ′1w(z̄, w̄)(w − w̄)

〉
≥ 0 for every w ∈ Wad .

If in addition

f ′1z(z̄, w̄)z0 + f ′1w(ȳ, w̄)w0 = 0 and f2(z̄) + f ′2(z̄)z0 ∈ intΞ

for some w0 ∈ (Wad − w̄) and z0 ∈ Z , then the above conditions are fulfilled
in the normal form, i.e., with λ = 1.

Now we complete this section by proving the formulated necessary opti-
mality conditions for the original Dirichlet control problem (D P).

Proof of Theorem 7.23. Let (ȳ, ū) ∈ Y ×Uad be the reference optimal solu-
tion to (D P). We are going to reduce (D P) to the mathematical programming
problem (7.57) considering in Theorem 7.29. To proceed, put:

Z := Y, (z, w) := (y, u), W := L2(Σ), Wad := Uad , Ξ := Θ ,
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Z1 := L1
(
0, T ; H−1(Ω)

)
×L2(Σ)× L2(Ω)× H−1(Ω), Z2 := C

(
[0, T ]; L2(Ω)

)
,

ϕ(y, u) := J (y, u), f1(y, u) :=
(

ytt −∆y − ϑ, y|Σ − u, y(0) − y0, yt(0) − y1

)
,

and f2(y) := y. By assumptions (H5)–(H7) the cost functional ϕ is Fréchet
differentiable at (ȳ, ū), the mapping f1 is strictly differentiable at (ȳ, ū), and

ϕ′(ȳ, ū)(y, u) =
∫
Ω

f ′y
(
x, ȳ(T )

)
y(T ) dx +

∫
Q

g′
y(x, t, ȳ)y dxdt

+
∫
Σ

h′
u(s, t, ū)u dsdt ,

f ′1(ȳ, ū)(y, u) = f ′1y(ȳ, ū)y + f ′1u(ȳ, ū)u ,

f ′1y(ȳ, ū)y =
(

ytt −∆y, y|Σ, y(0), yt (0)
)
,

f ′1u(ȳ, ū)u =
(
0,−u, 0, 0

)
for every (y, u) ∈ Y × L2(Σ) .

Furthermore, it follows from Theorem 7.25 that the linear continuous operator
f ′1y(ȳ, ū) is surjective from Y to L1

(
0, T ; H−1(Ω)

)
×L2(Σ)×L2(Ω)×H−1(Ω).

Thus all the assumptions of Theorem 7.29 are satisfied.
Applying the latter theorem, find λ ∈ IR+, ( p̄, p̃, p̂, p̆) ∈ L∞(

0, T ;
H1

0 (Ω)
)
×L2(Σ)×L2(Ω)×H1

0 (Ω), and µ ∈ M
(
[0, T ]; L2(Ω)

)
with (λ,µ) �= 0

satisfying the following conditions:∫
Ω

λ f ′y
(
x, ȳ(T )

)
y(T ) dx +

∫
Q
λg′

y(x, t, ȳ)y dxdt +
〈

p̄, ytt −∆y
〉

+
∫
Σ

p̃y dsdt +
〈

p̂, y(0)
〉

+
〈

p̆, yt(0)
〉

+
〈
µ, y

〉
M([0,T ];L2(Ω))×C([0,T ];L2(Ω))

= 0

(7.58)

for every y from the space of admissible state functions Y defined in (7.54),〈
µ, z − ȳ

〉
M([0,T ];L2(Ω))×C([0,T ];L2(Ω))

≤ 0 for every z ∈ Θ, (7.59)

∫
Σ

(
λh′

u(x, ȳ, ū) + p̃
)
(u − ū)dx ≥ 0 for every u ∈ Uad . (7.60)

It follows from (7.59) and (H4) that µ|Ω×{0} = 0, and thus µ can be identified
with a measure belonging to Mb

(
]0, T ]; L2(Ω)

)
. Furthermore, Theorem 7.27
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ensures the existence of the unique weak solution p(·) to the adjoint system
(7.55) with (p, pt) ∈ L∞(

0, T ; H1(Ω)
)
× L∞(

0, T ; L2(Ω)
)
. Then the Green

formula of Theorem 7.28 and the optimality condition (7.58) yield that〈
p + p̄, ytt −∆y

〉
+
∫
Σ

(
p̃ − ∂p

∂ν

)
y dsdt

+
∫
Ω

(
p̂ − pt(0)

)
y(0)dx +

∫
Ω

(
p̆ + p(0)

)
yt(0)dx = 0

for every y ∈ Y . Since the mapping y −→
(

ytt − ∆y, y|Σ, y(0), yt (0)
)

is

surjective from Y to L1
(
0, T ; H−1(Ω)

)
×L2(Σ)×L2(Ω)×H−1(Ω), the above

variational condition gives

p = − p̄ ∈ L∞(
0, T ; H1

0 (Ω)
)
,

∂p
∂ν

= p̃ ∈ L2(Σ) ,

pt(0) = p̂ ∈ L2(Ω), and p(0) = − p̆ ∈ H1
0 (Ω) .

Thus the necessary optimality conditions (7.58)–(7.60) of Theorem 7.29 imply
the desired optimality condition (7.50)–(7.52) of Theorem 7.23. Observe finally
that the qualification condition (7.53) of Theorem 7.23 reduces to the one in
Theorem 7.29, which ensures the normality λ = 1 and completes the proof of
the main theorem. �
Remark 7.30 (SNC state constraints). It follows from the above proof
that the assumption on intΘ �= ∅ may be substantially relaxed by replacing
it with the SNC property of the convex state constraint set Θ; cf. Theo-
rem 5.11(ii) and also the proof of Theorem 2.51(ii), which shows that merely
sequential (vs. topological) normal compactness conditions are needed to jus-
tify nontriviality via limiting procedures in the general Banach space setting.
The same relaxation of the interiority assumption is possible for the Neu-
mann boundary control problems from Sect. 7.2. Note that, in the case of
convex subsets of Banach spaces, the SNC property automatically holds for
finite-codimensional sets with nonempty relative interiors; see Theorem 1.21.
Moreover, the SNC property is generally weaker that the above requirements,
which are actually equivalent to the CEL (topological) property of convex
sets; see Remark 1.27 and Example 3.6. Observe finally that the usage of
Theorem 5.11(ii) in the above proof makes it possible to relax the differentia-
bility assumptions on the integrands in the Dirichlet boundary control problem
(D P) under consideration.

7.4 Minimax Control of Parabolic Systems
with Pointwise State Constraints

The last section of this chapter concerns parabolic control systems with the
Dirichlet boundary conditions subject to pointwise state constraints. We focus



7.4 Minimax Control of Parabolic Systemswith Pointwise State Constraints 399

on Dirichlet boundary controls for the following two major reasons. First, the
Dirichlet case for parabolic systems is much more challenging and involved in
comparison with the Neumann one; this is substantially different from hyper-
bolic systems, where the Neumann case is considerable more difficult providing
nevertheless more regularity; see the preceding two sections with the subse-
quent comments to them. The second reason is that the author’s original inter-
est to studying control problems for parabolic systems was primary motivated
by practical applications to some environmental problems related to automatic
regulating the soil water regime; see Mordukhovich [898, 905]. The physical
phenomena and engineering constructions in these practical problems lead to
mathematical models involving parabolic equations with Dirichlet boundary
controls. Furthermore, control processes in the afore-mentioned systems are
unavoidably conducted under uncertain perturbations, and the most natural
optimization criterion is minimax. Taking this into account, we consider in
this section a minimax optimal control problem for linear parabolic systems
with controls acting in the Dirichlet boundary conditions in the presence of
uncertain distributed perturbations and hard/poitwise constraints on the state
and control functions. Our primal goal is to establish an existence theorem for
minimax solutions and to derive necessary optimality (as well as suboptimal-
ity) conditions for open-loop controls under the worst perturbations. Finally,
we briefly discuss (and refer the reader to the corresponding publications for
more details) some issues related to minimax design of closed-loop parabolic
control systems, which involve feedback controls in the Dirichlet boundary
conditions. Including this material is beyond the scope of the present book.

The minimax control problem under consideration is essentially nonsmooth
and requires special methods for its variational analysis. To conduct such an
analysis, we systematically use smooth approximation procedures. Actually we
split the original minimax problem into two interrelated optimal control prob-
lems for distributed perturbations and boundary controls with moving state
constraints. Then we approximate state constraints in each of these problems
by effective penalizations involving C∞-approximations of maximal monotone
operators. We establish strong convergence results for such processes and ob-
tain characterizations of optimal solutions to the approximating problems.
Finally imposing proper constraint qualifications, we arrive at necessary op-
timality conditions for the worst perturbations and optimal controls in the
original state-constrained minimax problem.

The most involved part of our variational analysis concerns a state-
constrained Dirichlet boundary control problem under the worst disturbances.
The main complications arise in this case from the presence of pointwise state
constraints simultaneously with hard constraints on L∞ controls acting in the
Dirichlet boundary conditions. It is well known that the latter conditions pro-
vide the lowest regularity properties of solutions and are related to unbounded
operators in the framework of variational inequalities. We develop an efficient
analysis based an smooth approximation procedures and properties of mild
solutions to the Dirichlet boundary control problem for parabolic equations.
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7.4.1 Problem Formulation and Splitting

Consider the following parabolic system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂y
∂t

+ Ay = Bw + ϑ a.e. in Q := (0, T ) ×Ω ,

y(x, 0) = y0(x), x ∈ Ω ,

y(s, t) = u(s, t), (s, t) ∈ Σ := (0, T ] × Γ ,

(7.61)

with pointwise/hard constraints on state trajectories y(·), uncertain perturba-
tions/disturbances w(·), and Dirichlet boundary controls u(·) given by:

a ≤ y(x, t) ≤ b a.e. (x, t) ∈ Q , (7.62)

c ≤ w(x, t) ≤ d a.e. (x, t) ∈ Q , (7.63)

µ ≤ u(s, t) ≤ ν a.e. (s, t) ∈ Σ , (7.64)

where Ω ⊂ Rn is a bounded open set with sufficiently smooth boundary Γ
and where each of the intervals [a, b], [c, d], and [µ, ν] contains 0.

Let X := L2(Ω; IR), U := L2(Γ ; IR), and W := L2(Ω; R) be, respectively,
spaces of states, controls, and disturbances. In what follows we remove IR
from the latter and similar space notation for real-valued functions. Denote

Uad :=
{

u ∈ L p(0, T ; U)
∣∣ µ ≤ u(s, t) ≤ ν a.e. (s, t) ∈ Σ

}
the set of admissible controls, where L p(0, T ; U) is the space of U -valued
functions u(·) = u(s, ·) on [0, T ] with the norm

‖u‖L p(0,T ;U) :=
(∫ T

0

‖u(t)‖p
U dt

)1/p
=
(∫ T

0

(∫
Γ

|u(s, t)|2ds)p/2dt
)1/p

.

Similarly we define the set of admissible disturbances

Wad :=
{
w ∈ L2(0, T ; W )

∣∣ c ≤ w(x, t) ≤ d a.e. (x, t) ∈ Q
}
.

A pair (u, w) ∈ Uad × Wad is called a feasible solution to system (7.61) if the
corresponding trajectory y(·) satisfies the state constraints (7.62). We always
assume that problem (7.61)–(7.64) admits at least one feasible pair (u, w).

Although the constraint sets Wad and Uad are essentially bounded, i.e.,
Wad ⊂ L∞(Q) and Uad ⊂ L∞(Σ), we prefer considering them as subsets
of the larger spaces L2(0, T ; W ) and L p(0, T ; U), respectively, with finite p
sufficiently big. The reason is that it allows us to take advantages of the
reflexivity of the latter spaces and of the differentiability of their norms away
from the origin to efficiently perform our variational analysis.
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Throughout this section paper we impose the following standing assump-
tions on the parabolic system under consideration:

(H1) The linear operator

A := −
n∑

i, j=1

∂

∂xi

(
ai j (x)

∂

∂x j

)
+

n∑
i=1

ai (x)
∂

∂xi
+ a0(x)

is strongly uniformly elliptic on Ω with real-valued smooth coefficients; i.e.,
there is β0 > 0 such that

n∑
i, j=1

ai j (x)viv j ≥ β0

n∑
i=1

v2
i for all x ∈ Ω and (v1, . . . , vn) ∈ IRn .

(H2) ϑ ∈ L∞(Q) and y0(x) ∈ H1
0 (Ω) ∩ H2(Ω) with

a ≤ y0(x) ≤ b a.e. x ∈ Ω.

(H3) B: L2(0, T ; W ) → L2(0, T ; X) is a bounded linear operator.

We may always assume that the operator −A generates a strongly contin-
uous analytic semigroup S(·) on X satisfying the exponential estimate

‖S(t)‖ ≤ M1e−ωt (7.65)

with some constants ω > 0 and M1 > 0, where ‖ · ‖ denotes the standard
operator norm from X to X . Otherwise, it is a standard procedure to construct
a stable translation of the form Ã := A + ω̃I that possesses such properties.

Note that since w ∈ L2(0, T ; W ) and u ∈ L p(0, T ; U), the parabolic system
(7.61) may not have strong or classical solutions for some (u, w) ∈ Uad × Wad .
In this case, principal difficulties come from discontinuous controls in the
Dirichlet boundary conditions. Taking advantages of the semigroup approach
to parabolic equations, we are going to use for our analysis a concept of mild
solutions to Dirichlet boundary problems.

Consider the so-called Dirichlet map D defined by y = Du, where y(·)
satisfies the homogeneous elliptic equation⎧⎨

⎩
−Ay = 0 in Q ,

y(s, t) = u(s, t), (s, t) ∈ Σ .

It is well known (see, e.g., Lions and Magenes [794]) that the Dirichlet operator

D: L2(Γ ) → D(A1/4−δ) = H1/2−2δ(Ω), 0 < δ ≤ 1/4 , (7.66)

is linear and continuous, where D stands for the domain as usual.
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Definition 7.31 (mild solutions to Dirichlet parabolic systems). A
continuous mapping y : [0, T ] → X is a mild solution to system (7.61)
corresponding to (u, w) ∈ L p(0, T ; U) × L2(0, T ; W ) if for all t ∈ [0, T ] one
has the representation

y(t) = S(t)y0 +
∫ t

0

S(t − τ )
(

Bw(τ ) + ϑ(τ )
)

dτ +
∫ t

0

AS(t − τ )Du(τ )dτ

+S(t)y0 +
∫ t

0

S(t − τ )
(

Bw(τ ) + ϑ(τ )
)

dτ

+
∫ t

0

A3/4+δS(t − τ )A1/4−δ Du(τ )dτ ,

where D is the Dirichlet operator defined in (7.66) with some δ ∈ (0, 1/4].

The reader can find more information about mild solutions to Dirichlet
parabolic systems in the paper by Lasiecka and Triggiani [743] and the refer-
ences therein. Note, in particular, that the assumptions made above ensure the
existence and uniqueness of mild solutions to (7.61) for any w ∈ L2(0, T ; W )
and u ∈ L p(0, T ; U) provided that p > 0 is sufficiently large. Observe also
that while the X -valued function y(t) from Definition 7.31 is continuous by
definition, the real-valued function y(x, t) of two variables is merely mea-
surable, since X = L2(Ω). This significantly distinguishes mild solutions from
other concepts of solutions to parabolic equations. The mild solution approach
allows us to deal with irregular (measurable) data of parabolic systems involv-
ing the Dirichlet boundary conditions considered in this section. On the other
hand, the absence of continuity creates substantial difficulties that we are
going to overcome in what follows.

Note that δ in Definition 7.31 may be any fixed number from the interval
(0, 1/4]. Although the first representation of y(t) in Definition 7.31 doesn’t
depend on δ at all, this number explicitly appears in some estimates below
that are the better the closer δ is to zero.

Now we introduce the cost functional

J (u, w) : =
∫

Q
g
(
x, t, y(x, t)

)
dxdt +

∫
Q

f
(
x, t, w(x, t)

)
dxdt

+
∫
Σ

h
(
s, t, u(s, t)

)
dsdt ,

(7.67)

where y(·) is a trajectory (mild solution) to system (7.61) generated by u(·)
and w(·). We always suppose that functional (7.67) is well defined and finite
for all admissible processes in (7.61)–(7.64). Some additional assumptions on
integrands g, f , and h are imposed in Subsects. 7.4.2–7.4.4. The minimax
control problem under consideration in this section as follow:
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(P) find an admissible control ū ∈ Uad and a disturbance w̄ ∈ Wad such that
(ū, w̄) is a saddle point for the functional J (u, w) subject to
system (7.61) and state constraints (7.62).

This means, by the definition of saddle points, that

J (ū, w) ≤ J (ū, w̄) ≤ J (u, w̄) for all u ∈ Uad and w ∈ Wad (7.68)

under conditions (7.61) and (7.62). Such a pair (ū, w̄) is called an optimal
solution to the minimax problem (P).

For studying optimal solutions to problem (P) we employ the following
splitting procedure, which significantly exploits the linearity of system (7.61).
Namely, split the original system (7.61) into two subsystems with separated
disturbances and boundary controls. The first system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ y1

∂t
+ Ay1 = Bw + ϑ a.e. in Q ,

y1(x, 0) = y0(x), x ∈ Ω ,

y1(s, t) = 0, (s, t) ∈ Σ ,

(7.69)

has zero (homogeneous) boundary conditions and depends only on distur-
bances. The second one⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ y2

∂t
+ Ay2 = 0 a.e. in Q ,

y2(x, 0) = 0, x ∈ Ω ,

y2(s, t) = u(s, t), (s, t) ∈ Σ ,

(7.70)

is generated by boundary controls and doesn’t involve disturbances. It is easy
to see that for any (u, w) ∈ Uad × Wad one has

y(x, t) = y1(x, t) + y2(x, t) whenever (x, t) ∈ Q

for the corresponding trajectories of systems (7.61), (7.69), and (7.70).
Let ȳ1 and ȳ2 be the (unique) trajectories of systems (7.69) and (7.70),

respectively, corresponding to w̄ and ū. Consider the cost functionals

J1(w, y1) :=
∫

Q

[
g
(
x, t, y1(x, t) + ȳ2(x, t)

)
+ f

(
x, t, w(x, t)

)]
dxdt

for disturbances w(·) and

J2(u, y2) :=
∫

Q
g
(
x, t, ȳ1(x, t) + y2(x, t)

)
dxdt +

∫
Σ

h
(
s, t, u(s, t)

)
dsdt
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for boundary controls u(·). Now define two optimization problems correspond-
ing to the cost functionals introduced. The first one is:

(P1) maximize J1(w, y1) over w ∈ Wad subject to (7.69) and

a − ȳ2(x, t) ≤ y1(x, t) ≤ b − ȳ2(x, t) a.e. (x, t) ∈ Q .

The second problem is:

(P2) minimize J2(u, y2) over u ∈ Uad subject to (7.70) and

a − ȳ1(x, t) ≤ y2(x, t) ≤ b − ȳ1(x, t) a.e. (x, t) ∈ Q .

The next assertion shows that the original minimax problem (P) can be
split into the two state-constrained dynamic optimization problems (P1) and
(P2) separated on disturbances and controls.

Proposition 7.32 (splitting the minimax problem). Let (ū, w̄) be an
optimal solution to problem (P), and let ȳ1 and ȳ2 be the corresponding tra-
jectories to systems (7.69) and (7.70), respectively. Then w̄ solves problem
(P1) and ū solves problem (P2).

Proof. From the above relationship y(·) = y1(·) + y2(·) we immediately con-
clude that w̄ is a feasible solution to (P1), i.e., the corresponding trajectory
ȳ1 to (7.69) satisfies the state constraints in (P1). Now the left-hand side of
(7.68) implies, due to the structures of the cost functionals J and J1 in the
problems under consideration, that w̄ is an optimal solution to (P1). Argu-
ments for ū are similar, which completes the proof. �

Thus to obtain necessary conditions for a given optimal solution (ū, w̄) to
the minimax problem (P), we consider the two separate problems, (P1) for
w̄ and (P2) for ū, with the connecting state constraints in these problems.
Note that these constraints depend on (x, t), i.e., they are moving. The lat-
ter property is essential for studying the original minimax control problem
for parabolic systems with uncertain perturbations and irregular boundary
controls acting in the Dirichlet boundary conditions.

7.4.2 Properties of Mild Solutions
and Minimax Existence Theorem

In this subsection we establish important regularity and convergence properties
of mild solutions to the parabolic system (7.61) needed in what follows, and
then we justify the existence of minimax optimal solutions.

Let S(t) be an analytic semigroup on X generated by the operator −A and
satisfying the exponential estimate (7.65), and let D be the Dirichlet operator
with the continuity property (7.66). In what follows we use the estimates
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‖Aδ D‖ ≤ M2, ‖A3/4+δS(t)‖ ≤ M3

t3/4+δ
for any δ ∈ (0, 1/4], (7.71)

where ‖ · ‖ stands for the corresponding operator norm; see Lasiecka and
Triggiani [743] with the references therein. It is clear from Definition 7.31
that the main complications for the study of mild solutions are related to
the term involving the Dirichlet map. Consider this term separately via the
operator L from L p(0, T ; U) into Lr

(
0, T ; H1/2−ε(Ω)

)
defined by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Lu = (Lu)(t) : = A

∫ t

0

S(t − τ )Du(τ ) dτ

=
∫ t

0

A3/4+δS(t − τ )A1/4−δ Du(τ ) dτ ,

(7.72)

where p, r ∈ [1,∞], δ ∈ (0, 1/4], and ε ∈ (0, 1/2]. Here the Sobolev space
H1/2−ε(Ω) ⊂ L2(Ω) = X is equipped with the norm∥∥y

∥∥
1/2−ε

:=
∥∥A1/4−ε/2y

∥∥
X
.

Note that H0(Ω) = L2(Ω) and that the above norm ‖y‖1/2−ε is stronger than
‖y‖X . In the sequel we always take δ = ε/4 in (7.72) and call L the mild so-
lution operator. Note that this operator is generally unbounded. Nevertheless,
it enjoys nice regularity/continuity properties established next provided that
the number p is sufficiently large.

Theorem 7.33 (regularity of mild solutions to parabolic Dirichlet
systems). Let p > 4/ε with some ε∈(0, 1/2]. Then Lu∈C

(
[0, T ]; H1/2−ε(Ω)

)
for any u ∈ L p(0, T ; U). Furthermore, the operator

L: L p(0, T ; U) → C([0, T ]; H1/2−ε(Ω)
)

is linear and continuous.

Proof. Obviously L is linear. To show that L is continuous, we justify its
boundedness; i.e., the estimate∥∥Lu

∥∥
C([0,T ];H1/2−ε(Ω))

≤ K
∥∥u
∥∥

L p(0,T ;U)
with some K > 0 .

It follows from (7.71) and (7.72) that, whenever t ∈ [0, T ], one has∥∥(Lu)(t)
∥∥

1/2−ε
=
∥∥∥ ∫ t

0

A1/4−ε/2 AS(t − τ )Du(τ ) dτ
∥∥∥

X

=
∥∥∥ ∫ t

0

A1−ε/4S(t − τ )A1/4−ε/4Du(τ ) dτ
∥∥∥

X

≤ M2M3

∫ t

0

(
t − τ

)−(1−ε/4)∥∥u
∥∥

U
dτ

≤ M2M3

(∫ t

0

(
t − τ

)−(1−ε/4)q
dτ

)1/q∥∥u
∥∥

L p(0,T ;U)
,
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where 1/p + 1/q = 1. Since p > 4/ε yields q < 4/(4 − ε), we get

∥∥(Lu
)
(t)

∥∥
1/2−ε

≤ M2M3

( 1
1 − (1 − ε/4)q

)1/q
t(1−(1−ε/4)q)/q

∥∥u
∥∥

L p(0,T ;U)
.

Prove next that Lu ∈ C
(
[0, T ]; H1/2−ε(Ω)

)
, i.e., the operator

(
Lu

)
(t) is con-

tinuous at any point t0 ∈ [0, T ] in the norm of H1/2−ε(Ω). Indeed, taking
t ≥ t0 for definiteness, we have

(
Lu

)
(t) −

(
Lu

)
(t0) =

∫ t

t0

AS(t − τ )Du(τ ) dτ

+
(

S(t − t0) − I
) ∫ t0

0

AS(t − τ )Du(t) dτ .

The latter implies that∥∥(Lu
)
(t) −

(
Lu

)
(t0)

∥∥
1/2−ε

→ 0 as t → t0

due to the above estimate for ‖(Lu)(t)‖1/2−ε and the strong continuity of
S(·). Furthermore, from this estimate and the norm definition in C

(
[0, T ];

H1/2−ε(Ω)
)

we immediately get the required boundedness inequality with

K := M2M3

( 1
1 − (1 − ε/4)q

)1/q
T (1−(1−ε/4)q)/q .

This completes the proof of the theorem. �

Corollary 7.34 (weak continuity of the solution operator). Let ε and
p be chosen as in Theorem 7.33. Then the mild solution operator L acting
from L p(0, T ; U) into C

(
[0, T ]; H1/2−ε(Ω)

)
is weakly continuous. This implies

that for any weak convergent sequence uk → u in L p(0, T ; U) one has

Luk → Lu weakly in C
(
[0, T ]; H1/2−ε(Ω)

)
as k → ∞ .

Proof. It follows from Theorem 7.33 by the standard fact on weak continuity
of any linear continuous operator between normed spaces. �

As has been already mentioned, the operator L from (7.72) plays the key
role in the structure of mild solutions from Definition 7.31; for this reason
we call it the mild solution operator. It easily follows from the above results
that the strong (resp. weak) convergence of boundary controls in L p(0, T ; U)
implies the strong (resp. weak) convergence of the corresponding trajectories
for system (7.61) in the space C

(
[0, T ]; H1/2−ε(Ω)

)
whenever p is sufficiently

large. Observe that if the term with L disappears in Definition 7.31, i.e.,
in the case of u = 0 in (7.61), mild solutions for (7.61) reduce to standard
(strong) solutions in the usual sense. In particular, the weak convergence of
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disturbances wk → w in L p(0, T ; W ) implies in the latter case the strong
convergence of the corresponding trajectories yk → y in C([0, T ]; X) as k → ∞
for any p ≥ 1.

A specific feature of the original problem (P) and its splitting counter-
parts is that all the constraints are given in the hard/pointwise form via dis-
continuous real functions of two (space and time) variables imposed almost
everywhere. At the same time, the semigroup approach applied to the study
of these problems operates with continuous time-dependent mappings taking
values in functional spaces. To proceed further, we need to establish an ap-
propriate operator convergence that implies the required a.e. convergence of
state trajectories. The next result, crucial in this direction, gives us what we
need for the further variational analysis.

Theorem 7.35 (pointwise convergence of mild solutions). Let ε and p
be chosen as in Theorem 7.33. Then the weak convergence of Dirichlet controls
uk → u in L p(0, T ; U) implies the strong convergence in values of the mild
solution operator L for the original parabolic system, i.e.,

Luk → Lu strongly in L2(Q) as k → ∞ .

Furthermore, there is a real-valued subsequence of {(Luk)(x, t)} that converges
to (Lu)(x, t) a.e. pointwisely in Q as k → ∞.

Proof. It follows from the weak convergence result of Corollary 7.34 that(
Luk

)
(·, t) →

(
Lu

)
(·, t) weakly in H1/2−ε(Ω) for each t ∈ [0, T ]

and also that the sequence {Luk} is bounded in C
(
[0, T ]; H1/2−ε(Ω)

)
. More-

over, the classical embedding result ensures that the embedding of H1/2−ε(Ω)
into X is compact; see, e.g., Lions and Magenes [794, Theorem 16.1]. This
yields the strong convergence(

Luk
)
(t, ·) →

(
Lu

)
(t, ·) in X for each t ∈ [0, T ] .

Thus we get the following conclusions:

(i) The sequence {(Luk)(t, ·)} is bounded in X , i.e., there is M ≥ 0 pro-
viding the estimate

‖
(
Luk

)
(t)‖X ≤ M for all t ∈ [0, T ] and k ∈ IN .

(ii) One has the strong convergence∥∥(Luk
)
(t) −

(
Lu

)
(t)

∥∥
X
→ 0 for every t ∈ [0, T ] as k → ∞ .

Consider now a sequence of real-valued nonnegative functions ϕk on [0, T ]
defined by the integral
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ϕk(t) :=
∫
Ω

∣∣∣(Luk
)
(x, t) −

(
Lu

)
(x, t)

∣∣∣2 dx whenever t ∈ [0, T ] .

Then (i) and (ii) imply, respectively, that the functions ϕk are uniformly
bounded on [0, T ] and ϕk(t) → 0 pointwisely in [0, T ] as k → ∞. Employ-
ing the Lebesgue dominated convergence theorem, we arrive at∫ T

0

ϕk(t) dt → 0 as k → ∞ ,

which ensures the strong operator convergence of this theorem. The lat-
ter finally implies that {(Luk)(x, t)} contains a subsequence converging to
(Lu)(x, t) for a.e. (x, t) ∈ Q. �

The convergence/continuity results derived above are fundamental for the
upcoming variational analysis of the problems (P), (P1), and (P2) under con-
sideration, which heavily involves the passage to the limit in various approxi-
mation procedures. In what follows we always assume (without mentioning this
explicitly) that the number p is sufficiently large to support the convergence
results of Theorem 7.35.

To proceed, we impose next the following assumptions on the integrands
in the cost functional (7.67) that ensure the appropriate lower and upper
semicontinuity properties of this integral functional with respect to the u and
w variables in the corresponding weak topologies.

(H4a) g(x, t, y) satisfies the Carathéodory condition, i.e., it is measurable
in (x, t) ∈ Q for all y ∈ IR and continuous in y ∈ IR for a.e. (x, t) ∈ Q.
Moreover, there exist a nonnegative function η(·) ∈ L1(Q) and a constant
ζ ≥ 0 such that

|g(x, t, y)| ≤ η(x, t) + ζ |y|2 a.e. (x, t) ∈ Q whenever y ∈ IR .

(H5a) f (x, t, w) is measurable in (x, t) ∈ Q, continuous and concave in
w ∈ [c, d], and for some function κ(·) ∈ L1(Q) one has

f (x, t, w) ≤ κ(x, t) a.e. (x, t) ∈ Q whenever w ∈ [c, d] .

(H6a) h(s, t, u) is measurable in (s, t) ∈ Σ , continuous and convex in
u ∈ [µ, ν], and for some function γ (·) ∈ L1(Σ) one has

h(s, t, u) ≥ γ (s, t) a.e. (s, t) ∈ Σ whenever u ∈ [µ, ν] .

Now we are ready to establish the existence theorem for minimax optimal
solutions to the parabolic system under consideration.

Theorem 7.36 (existence of minimax solutions). Let the assumptions
(H1)–(H3) and (H4a)–(H6a) be fulfilled, and let in addition the integrand g
be linear in y. Then the cost functional J (u, w) in (7.67) has a saddle point
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(ū, w̄) on Uad × Wad subject to the parabolic system (7.61). Moreover, if the
corresponding trajectory to (7.61) satisfies the state constraints (7.62), then
(ū, w̄) is an optimal solution to the original minimax problem (P).

Proof. Consider the functional J (u, w) defined on the set Uad × Wad ⊂
L p(0, T ; U) × L2(0, T ; W ) with p sufficiently large. Observe that both sets
Uad and Wad are convex and sequentially weakly compact in the reflexive
spaces L p(0, T ; U) and L2(0, T ; W ). Furthermore, it is easy to see that J is
convex-concave on Uad ×Wad by the assumptions made, where the linearity of
g in y plays a crucial role.

Let us check the appropriate semicontinuity needed for applying the clas-
sical von Neumann saddle-point theorem in the infinite-dimensional spaces
under consideration (see, e.g., Simons [1213]), where the sequential and topo-
logical weak convergences are equivalent. Show first that J is sequentially
weakly lower semicontinuous with respect to u in the space L p(0, T ; U) for
any fixed w ∈ L2(0, T ; W ). To proceed, let a sequence {uk} weakly converge
in L p(0, T ; U) to some ũ as k → ∞. By Mazur’s theorem, find a sequence
of convex combinations of uk converging to ũ strongly in L p(0, T ; U). Since
U = L2(Σ), the latter sequence also converges to ũ strongly in L2(Σ). By
standard arguments based on the convexity of h with respect to u and the
other assumptions in (H6a), we conclude that∫

Σ

h
(
s, t, ũ(s, t)

)
dsdt ≤ lim inf

k→∞

∫
Σ

h
(
s, t, uk(s, t)

)
dsdt .

Consider further the trajectories (mild solutions) yk and ỹ to system (7.61)
generated, respectively, by uk and ũ for any fixed w. Then, by Theorem 7.35,
yk → ỹ strongly in L2(Q) as k → ∞. To get the convergence∫

Q
g
(
x, t, ỹ(x, t)

)
dxdt = lim

k→∞

∫
Q

g
(
x, t, yk(x, t)

)
dxdt ,

we apply Polyak’s result from [1096, Theorem 2], which ensures that the
growth condition in (H4a) is necessary and sufficient for the strong continuity
of the integral functional

I (y) :=
∫

Q
g(x, t, y) dxdt

in L2(Q) provided that g satisfies the Carathéodory condition formulated in
(H4a). Hence the cost functional J (·, w) in (7.67) is sequentially weakly lower
semicontinuous on Uad for any fixed w under the assumptions made.

To prove the sequential weak upper semicontinuity of J (u, ·) on Wad for
any fixed u, we use the same (symmetric) arguments taking into account that
the weak convergence of wk → w̃ in L2(0, T ; W ) directly implies the strong
convergence in C

(
[0, T ]; X) of the corresponding trajectories yk → ỹ; see the

discussion right after Corollary 7.34. Thus the cost functional J (u, w) in (7.67)
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is convex and weakly lower semicontinuous in u on the convex and weakly
compact set Uad ⊂ L p(0, T ; U), and it is concave and weakly upper semicon-
tinuous in w on the convex and weakly compact set Wad ⊂ L2(0, T ; W ). Now
the existence of a saddle point (ū, w̄) for J on Uad × Wad subject to system
(7.61) follows from the classical minimax theorem in infinite dimensions. It is
obvious furthermore that (ū, w̄) is an optimal solution to the original minimax
problem (P) if the corresponding trajectory ȳ satisfies the state constraints
(7.62). This completes the proof of the theorem. �

Remark 7.37 (relaxation of linearity). Assumptions (H4a)–(H6a) on the
integrands in (7.67) are required throughout this section and play a substan-
tial role in the subsequent main results on the stability of approximations and
their variational analysis. On the contrary, a restrictive linearity requirement
on g in y is made just in Theorem 7.36 to ensure the existence of a saddle
point; it is needed in fact only to conclude that the cost functional J (u, w) is
convex-concave. This assumption can be removed by considering saddle points
in the framework of mixed strategies, which is similar to the relaxation proce-
dures developed for optimal control problems in this and preceding chapters.
Observe also that, due to the regularity results obtained in this subsection, the
linearity of g in y is not required to ensure the existence of solutions in optimal
control (not minimax) problems corresponding to either Dirichlet boundary
controls, which provide the most difficult case, or distributed controls as well
as controls in the Neumann boundary conditions, which are easier to handle
for parabolic systems; see Mordukhovich and Zhang [979] for more details.

7.4.3 Suboptimality Conditions for Worst Perturbations

This subsection concerns the first subproblem (P1) formulated in Subsect. 7.4.1.
We treat (P1) as an optimal control problem with distributed controls located
on the right-hand side of the parabolic equation. Thus the worst perturbations
w̄(·) for the minimax problem (P) happen to be optimal solutions (in the sense
of maximizing the cost functional J1) to the distributive optimal control prob-
lem (P1) under consideration in the presence of the moving state constraints
therein. Note that these moving state constraints involve the irregular (mea-
surable) function ȳ2(x, t), a mild solutions to the Dirichlet boundary control
problem (7.70), that creates substantial complications. First we develop an
approximation method for removing the latter constraints with justifying the
appropriate strong convergence of these approximations. Then we provide a
detailed variational analysis of the approximating problems to derive neces-
sary suboptimality conditions for the worst perturbations. The limiting pro-
cedure allowing us to establish necessary optimality conditions for the worst
perturbations will be developed in Subsect. 7.4.5.

To proceed, consider a set-valued maximal monotone operator α: IR →→ IR
given in the form
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α(r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

[0,∞) if r = b ,

(−∞, 0] if r = a ,

0 if a < r < b ,

∅ if either r < a or r > b .

We may construct a parametric family of smooth single-valued approximations
αε: IR → IR of the set-valued operator α(·) using first the classical Moreau-
Yosida approximation and then a C∞

0 -mollifier procedure in IR. The following
realization is convenient for our purposes: construct αε: IR → IR as ε > 0 by

αε(r) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε−1(r − b) − 1/2 if r ≥ b + ε ,

(2ε2)−1(r − b)2 if b ≤ r < b + ε ,

ε−1(r − a) + 1/2 if r ≤ a − ε ,

−(2ε2)−1(r − a)2 if a − ε < r ≤ a ,

0 if a < r < b.

(7.73)

It is easy to check computing the derivative of αε(·) that

εα′
ε(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if r ≥ b + ε ,

ε−1(r − b) if b ≤ r < b + ε ,

1 if r ≤ a − ε ,

−ε−1(r − a) if a − ε < r ≤ a,

0 if a < r < b

with |εα′
ε(r)| ≤ 1 for all r ∈ IR.

Let (ū, w̄) be the given optimal solution to the minimax problem (P), and
let ȳ1 and ȳ2 be the corresponding trajectories of systems (7.69) and (7.70),
respectively. Consider the following ε-parametric family of control problems
with no state constraints that approximate the first subproblem (P1) in Sub-
sect. 7.4.1 and depends on the given trajectory ȳ2 of the Dirichlet system
boundary control (7.70):

(P1ε) maximize the penalized functional

J1ε(w, y1) :=
∫

Q

[
g
(
x, t, y1(x, t) + ȳ2(x, t)

)
+ f

(
x, t, w(x, t)

)]
dxdt
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−
∥∥w − w̄

∥∥2

L2(0,T ;W)
− ε

∥∥αε(y1 + ȳ2)
∥∥2

L2(0,T ;X)

subject to w ∈ Wad and system (7.69) .

Since w ∈ Wad and ϑ ∈ L∞(Q), the classical results ensure that the parabolic
system (7.69) with the homogeneous Dirichlet boundary conditions admits a
unique strong solution y1 ∈ W 1,2

(
[0, T ]; X

)
satisfying the estimate∥∥∥∂ y1

∂t

∥∥∥
L2(0,T ;X)

+ ‖Ay1‖L2(0,T ;X)

≤ C
(
‖y0‖H1

0 (Ω)∩H2(Ω) + ‖Bw + ϑ‖L2(0,T ;X)

)
.

Taking {wk} ⊂ Wad and the corresponding sequence {y1k} of strong solutions
to system (7.69) and employing standard arguments in this setting (cf. Sub-
sect. 7.4.2), we conclude that if wk → w ∈ Wad weakly in L2(0, T ; W ), then
y1k → y1 strongly in C

(
[0, T ]; X

)
as k → ∞ and that y1 is also a strong solution

of (7.69) corresponding to w.
We further proceed with the study of the approximating family (P1ε).

Our first goal is to justify the existence of optimal solutions to (P1ε) for each
ε > 0. This can be done by reducing the existence issue to the classical
Weierstrass theorem ensuring the existence of global maximizers for upper
semicontinuous cost functions over compact sets in appropriate topologies.
The main complications in our case come from the perturbation term in the
cost functional that depends on the irregular mild solution ȳ2 to the Dirichlet
system (7.70). Here is the result and its technically involved proof.

Theorem 7.38 (existence of optimal solutions to approximating
problems for distributed perturbations). Let the initial state y0 in (7.69)
satisfy assumption (H2), and let ε > 0. Then the approximating problem (P1ε)
admits at least one optimal solution with (wε, y1ε) ∈ Wad × W 1,2

(
[0, T ]; X

)
.

Proof. Observe that the set of feasible solutions to problem (P1) is nonempty,
since the pair (w̄, ȳ1) is definitely a feasible solution to (P1ε) for any ε > 0.
We intent to show that the cost functional J1ε in (P1ε) is proper and uniformly
upper bounded, i.e.,

j1ε := sup
w∈Wad

J1ε(w, y1) < ∞ , (7.74)

where y1 ∈ W 1,2
(
[0, T ]; X

)
is the corresponding strong solution to system

(7.69). Indeed, assumptions (H4a) and (H5a) immediately imply the uniform
upper boundedness of∫

Q
g
(
x, t, y1(x, t) + ȳ2(x, t)

)
dxdt +

∫
Q

f
(
x, t, w(x, t)

)
dxdt

over w ∈ Wad . Furthermore, there obviously exists γ > 0 such that
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‖w − w̄‖L2(0,T ;W) < γ whenever w ∈ Wad .

It remains to analyze the last term of J1ε depending on ȳ2. Due to estimates
(7.71) and Definition 7.31 of mild solutions we have

‖ȳ2(t)‖X ≤
4M2M3 max

{
|µ|, ν

}√
mes(Γ )

1 − 4δ
t

1−4δ
4 as δ ∈ (0, 1/4) ,

where mes stands for the standard Lebesgue measure of a set. To estimate
the term ‖αε(y1 + ȳ2)‖L2(0,T ;X), consider the sets

Ω t
1a :=

{
x ∈ Ω

∣∣ a − ε < y1(x, t) + ȳ2(x, t) ≤ a
}
,

Ω t
2a :=

{
x ∈ Ω

∣∣ y1(x, t) + ȳ2(x, t) ≤ a − ε
}
,

Ω t
1b :=

{
x ∈ Ω | b ≤ y1(x, t) + ȳ2(x, t) < b + ε} ,

Ω t
2b :=

{
x ∈ Ω

∣∣ y1(x, t) + ȳ2(x, t) ≥ b + ε
}
,

which are Lebesgue measurable subsets of Ω for a.e. t ∈ [0, T ]. Taking into
account the approximating structure αε(·) in (7.73) and the trivial inequality
2(r2 + s2) ≥ (r + s)2 whenever r, s ∈ IR, we obtain the following estimates:

∥∥αε(y1 + ȳ2)
∥∥

L2(0,T ;X)
=
[ ∫ T

0

∫
Ω

α2
ε

(
y1(x, t) + ȳ2(x, t)

)
dxdt

]1/2

=
[∫ T

0

(∫
Ω t

1a

(2ε2)−2
(

y1(x, t) + ȳ2(x, t) − a
)4

dx

+

∫
Ω t

2a

(
ε−1(y1(x, t) + ȳ2(x, t) − a

)
+

1

2

)2

dx

+

∫
Ω t

1b

(2ε2)−2
(

y1(x, t) + ȳ2(x, t) − b
)4

dx

+

∫
Ω t

2b

(
ε−1(y1(x, t) + ȳ2(x, t) − b) − 1

2

)2

dx
)

dt
]1/2

≤
[∫ T

0

(
1

4
mes(Ω t

1a) +
1

4
mes(Ω t

1b)
)

dt
]1/2

+
[ ∫ T

0

∫
Ω t

2a

(
ε−1

(
y1(x, t) + ȳ2(x, t)

)
− ε−1a +

1

2

)2

dxdt
]1/2

+
[ ∫ T

0

∫
Ω t

2b

(
ε−1

(
y1(x, t) + ȳ2(x, t)

)
− ε−1b − 1

2

)2

dxdt
]1/2

≤ 1

2

√
mes(Q) +

[∫ T

0

∫
Ω t

2a

(
2ε−2

(
y1(x, t) + ȳ2(x, t)

)2
+ 2

(
ε−1|a| + 1

2

)2)
dxdt

]1/2

+
[ ∫ T

0

∫
Ω t

2b

(
2ε−2

(
y1(x, t) + ȳ2(x, t)

)2
+ 2

(
ε−1b +

1

2

)2)
dxdt

]1/2
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≤ 1

2

√
mes(Q) +

[
2ε−2

∫ T

0

∫
Ω t

2a

(
y1(x, t) + ȳ2(x, t)

)2
dxdt

]1/2

+
[
2
(

1

2
+ ε−1|a|

)2
∫ T

0

∫
Ω t

2a

dxdt
]1/2

+
[
2ε−2

∫ T

0

∫
Ω t

2b

(
y1(x, t) + ȳ2(x, t)

)2
dxdt

]1/2

+
[
2
(

1

2
+ ε−1b

)2
∫ T

0

∫
Ω t

2b

dxdt
]1/2

≤ 1

2

√
mes(Q) +

√
2ε−1

∥∥y1 + ȳ2

∥∥
L2(0,T ;X)

+
√

2
(

1

2
+ ε−1|a|

)√
mes(Q)

+
√

2ε−1‖y1 + ȳ2‖L2(0,T ;X) +
√

2
(

1

2
+ ε−1b

)√
mes(Q)

=
(

1

2
+

√
2 + ε−1b

√
2 + ε−1|a|

√
2
)√

mes(Q) + 2
√

2ε−1
∥∥y1 + ȳ2

∥∥
L2(0,T ;X)

.

Combining this with the above estimate of ‖ȳ2(t)‖X and that of the strong
solution y1 ∈ W 1,2

(
[0, T ]; X

)
to (7.69), we justify the uniform boundedness of

‖αε(y1 + ȳ2)‖L2(0,T ;X) as ε > 0 and thus arrive at (7.74).
Further, for every fixed ε > 0 that may be omitted for simplicity, we have

a maximizing sequence of feasible solutions {wk, y1k} to (P1ε) such that

j1ε −
1
k
≤ J1ε(wk, y1k) ≤ j1ε whenever k ∈ IN . (7.75)

Since Wad is bounded, closed, and convex in L2(0, T ; W ), we extract a subse-
quence of {wk} (no relabeling) that converges weakly in L2(0, T ; W ) to some
function w̃ ∈ Wad . Taking the corresponding (strong) solution ỹ1 to system
(7.69) and recalling the discussion above, we have

y1k → ỹ1 strongly in C
(
[0, T ]; X

)
as k → ∞ .

It follows from assumptions (H4a) and (H5a) as well as from the concavity
and continuity of the function −‖ · ‖2

L2(0,T ;W) that

lim sup
k→∞

(∫
Q

[
g
(
x, t, y1k(x, t) + ȳ2(x, t)

)
+ f

(
x, t, wk(x, t)

)]
dxdt

−
∥∥wk − w̄

∥∥2

L2(0,T ;W)

)
≤
∫

Q

[
g
(
x, t, ỹ1(x, t) + ȳ2(x, t)

)
+ f

(
x, t,w̃(x, t)

)]
dxdt

−
∥∥w̃ − w̄

∥∥2

L2(0,T ;W)
;

cf. the proof of Theorem 7.36. Hence

lim
k→∞

α2
ε (y1k + ȳ2) = α2

ε (ỹ1 + ȳ2) a.e. in Q ,

which yields j1ε = J1ε(w̃, ỹ1) by passing to the limit in (7.75) as k → ∞ and
thus completes the proof of the theorem. �
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The next technical lemma is important to justify the preservation of state
constraints in the approximating procedures developed in this section.

Lemma 7.39 (preservation of state constraints). Let yk(x, t), k ∈ IN ,
and y(x, t) be nonnegative functions belonging to the space L1(Q). Given c ≥
0, consider the sets

Qk :=
{

(x, t) ∈ Q
∣∣∣ yk(x, t) > c +

1
k

}
, k ∈ IN .

Assume that yk(x, t) → y(x, t) a.e. in Q and that∫
Qk

yk(x, t) dxdt → 0 as k → ∞ .

Then we have the state constraint inequalities

0 ≤ y(x, t) ≤ c a.e. in Q.

Proof. Proving by contradiction, suppose that the conclusion of the lemma
doesn’t hold. Then for every ρ > 0 sufficiently small there is a measurable set
Qρ ⊂ Q such that mes(Qρ) > 0 and

y(x, t) > c + ρ whenever (x, t) ∈ Qρ . (7.76)

Taking into account the convergence yk(x, t) → y(x, t) a.e. in Q and using the
classical Egorov theorem from the theory of real functions, we conclude that
for each ε > 0 and ρ > 0 there exist a measurable set Qε ⊂ Q and a number
kε ∈ IN , both independent of (x, t), such that

ρ − 1
k
>

ρ

2
> 0, mes(Q \ Qε) < ε, and

|yk(x, t) − y(x, t)| < ρ

2
< ρ − 1

k
whenever k ≥ kε and (x, t) ∈ Qε .

Choose ε > 0 so that mes(Qρ ∩ Qε) �= 0. It follows from (7.76) that

yk(x, t) > y(x, t) − ρ +
1
k
> c + ρ − ρ +

1
k

= c +
1
k

whenever k > kε

for any (x, t) ∈ Qρ ∩ Qε, which gives (Qρ ∩ Qε) ⊂ Qk for all k > kε. Then the
convergence assumption of the lemma implies that∫

Qρ∩Qε

yk(x, t) dxdt → 0 as k → ∞ .

The latter easily yields the condition∫
Qρ∩Qε

y(x, t) dxdt = 0
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due to the uniform convergence yk(x, t) → y(x, t) in Qρ ∩ Qε as k → ∞. Since
y(x, t) ≥ 0, we arrive at the conclusion

y(x, t) = 0 a.e. in Qρ ∩ Qε ,

which contradicts (7.76) and completes the proof of the lemma. �

The next theorem establishes a strong convergence of the approximation
procedure developed in this subsection and thus shows that optimal solutions
to the approximating problem (P1ε), which do exist by Theorem 7.38, happen
to be suboptimal solutions to the state-constrained problem (P1) correspond-
ing to the worst perturbations in the original minimax problem.

Theorem 7.40 (strong convergence of approximating problems for
worst perturbations). Let (w̄, ȳ1) be the given optimal solution to problem
(P1), and let {(wε, y1ε)} be a sequence of optimal solutions to problems (P1ε).
Then there is a subsequence of positive numbers ε such that

wε → w̄ strongly in L2(0, T ; W ) ,

y1ε → ȳ1 strongly in C
(
[0, T ]; X

)
,

J1ε(wε, y1ε) → J1(w̄, ȳ1) as ε ↓ 0 .

Proof. Using the same weak compactness arguments as in the proof of The-
orem 7.38, we find a function w̃ ∈ Wad and a subsequence of {wε} with

wε → w̃ weakly in L2(0, T ; W ) as ε ↓ 0 .

As shown, there is the (unique) strong solution ỹ1 ∈ W 1,2
(
[0, T ]; X

)
to system

(7.69) generated by w̃ such that

y1ε → ỹ1 strongly in C
(
[0, T ]; X

)
as ε ↓ 0 .

We need to prove that the pair (w̃, ỹ1) is a feasible solution to problem (P1).
It actually remains to justify that ỹ1 satisfies the state constraints (7.62), i.e.,

a ≤ ỹ1(x, t) + ȳ2(x, t) ≤ b a.e. in Q .

To proceed, first note that the pair (w̄, ȳ1), optimal to (P1), is feasible to (P1ε)
with αε(ȳ1 + ȳ2) = 0 a.e. in Q for all ε > 0. Due to the optimality of (wε, y1ε)
in the latter problem we have

J1(w̄, ȳ1) = J1ε(w̄, ȳ1) ≤ J1ε(wε, y1ε) for all ε > 0 . (7.77)

Using (7.77) and taking into account the structure of the cost functional in
(P1ε) as well as assumptions (H4a) and (H5a), conclude that the sequence
{ε1/2‖αε(y1ε + ȳ2)‖L2(0,T ;X)} is bounded. The latter yields
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ε
∥∥αε(y1ε + ȳ2)

∥∥
L2(0,T ;X)

→ 0 as ε ↓ 0 ,

which gives, by the above construction of αε(·) and the partition of Ω, that∫ T

0

∫
Ω t

1a

(2ε)−2
(

y1ε(x, t) + ȳ2(x, t) − a
)4

dxdt

+
∫ T

0

∫
Ω t

2a

((
y1ε(x, t) + ȳ2(x, t) − a

)
+

ε

2

)2

dxdt

+
∫ T

0

∫
Ω t

1b

(2ε)−2
(

y1ε(x, t) + ȳ2(x, t) − b
)4

dxdt

+
∫ T

0

∫
Ω t

2b

((
y1ε(x, t) + ȳ2(x, t) − b

)
− ε

2

)2

dxdt → 0

as ε ↓ 0. Note that for a.e. t ∈ [0, T ] we have(
y1ε(x, t) + ȳ2(x, t) − a

)4 ≤ ε4 a.e. in Ω t
1a ,

(
y1ε(x, t) + ȳ2(x, t) − b

)4 ≤ ε4 a.e. in Ω t
1b .

Taking this into account together with Lemma 7.39, we get that the limiting
pair (w̃, ỹ1) satisfies the state constraints (7.62), and hence it is feasible to
(P1). Thus J1(w̃, ỹ1) ≤ J1(w̄, ȳ1).

Using this fact, let us now justify the desired strong convergence results
of the theorem. First rewrite (7.77) in the form

J1(w̄, ȳ1) + ε
∥∥αε(y1ε + ȳ2)

∥∥2

L2(0,T ;X)

+
∥∥wε − w̄

∥∥2

L2(0,T ;W)
≤ J1(wε, y1ε)

and take the upper limit in the both side of this inequality. Remember that
under the assumptions made the functional J1(w, y) is upper semicontinuous
in the weak topology of L2(0, T ; W ) and in the norm topology of C

(
[0, T ]; X

)
;

cf. the proof of Theorem 7.38. Employing this observation together with the
weak convergence of wε → w̃ and the strong convergence of y1ε → ỹ1 estab-
lished above, we derive that

J1(w̄, ȳ1) + lim sup
ε↓0

(
ε
∥∥αε(y1ε + ȳ2)

∥∥2

L2(0,T ;X)
+
∥∥wε − w̄

∥∥2

L2(0,T ;W)

)

≤ lim sup
ετ↓0

J1(wε, y1ε) ≤ J1(w̃, ỹ1) ≤ J1(w̄, ȳ1) .

The latter yields
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lim
ε↓0

ε
∥∥αε(y1ε + ȳ2)

∥∥2

L2(0,T ;X)
= 0 and lim

ε↓0
∥∥wε − w̄

∥∥2

L2(0,T ;W)
= 0 ,

i.e., wε → w̄ strongly in L2(0, T ; W ) and therefore y1ε → ȳ1 strongly in
C
(
[0, T ]; X

)
as ε ↓ 0. Finally, the value convergence in the theorem follows

from the continuity of J1(·) in the strong topology of L2(Q) discussed in the
proof of Theorem 7.36. Thus we complete the proof of this theorem. �

We conclude this subsection with deriving necessary optimality conditions
in the approximation problems (P1ε) for any ε > 0. Due to Theorem 7.40 and
the splitting procedure, the results obtained in this way can be treated as
suboptimality conditions for the worst perturbations in the original minimax
problem. Necessary optimality conditions for problem (P1) will be established
in the final Subsect. 7.4.5 by passing to the limit from those in (P1ε) as ε ↓ 0
with the help of Theorem 7.40.

Taking into account the convexity of the admissible perturbation set Wad

(which is now the control set in the problems (P1ε) under consideration) and
the absence of state constraints in (P1ε), we conduct a variational analysis for
each of these problems by using classical control variations and the regularity
results of Subsect. 7.4.2. To simplify the issue, impose certain smoothness
assumptions on the integrands with respect to both control/perturbation and
state variables. Involving needle variations, as in Sects. 6.4 and 7.2, allows
us to relax the smoothness and convexity assumptions made, but we are not
going to pursue this goal here. Assume the following:

(H4b) g(x, t, y) is continuously differentiable in y for a.e. (x, t) ∈ Q and
(∂g/∂y)(x, t, y) is measurable in (x, t) for any y ∈ IR. Furthermore, there exist
a nonnegative function η1 ∈ L2(Q) and a constant ζ1 ≥ 0 such that∣∣∣∂g

∂y
(x, t, y)

∣∣∣ ≤ η1(x, t) + ζ1|y| a.e. (x, t) ∈ Q, whenever y ∈ IR .

(H5b) f (x, t, w) is continuously differentiable in w for a.e. (x, t) ∈ Q with
(∂ f/∂w)(x, t, w) measurable in (x, t) for all w ∈ [c, d]. Furthermore, there is
a nonnegative function κ1 ∈ L1(Q) such that∣∣∣ ∂ f

∂w
(x, t, w)

∣∣∣ ≤ κ1(x, t) a.e. (x, t) ∈ Q whenever w ∈ [c, d] .

Consider the adjoint parabolic system with the homogeneous Dirichlet
boundary conditions:
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ p1

∂t
− A∗ p1 = −∂g

∂y
(x, t, y1ε + ȳ2)

+2εα′
ε(y1ε + ȳ2)αε(y1ε + ȳ2) a.e. in Q ,

p1(T, x) = 0, x ∈ clΩ ,

p1(s, t) = 0, (s, t) ∈ Σ ,

(7.78)

where clΩ = Ω ∪ Γ . It follows from (H4b) that

∂g
∂y

(
x, t, y1(x, t) + ȳ2(x, t)

)
∈ L2(Q) whenever y1 ∈ C

(
[0, T ]; X

)
.

As well known from the classical parabolic theory, system (7.78) admit a
unique strong solution p1ε ∈ W 1,2

(
[0, T ]; X

)
satisfying

p1ε ∈ C
(
[0, T ]; X

)
∩ L2

(
0, T ; H1

0 (Ω) ∩ H2(Ω)
)
.

The next theorem gives necessary optimality conditions for the approximating
problems (P1ε) in the integral form of the (linearized) maximum principle. It
easily implies the corresponding pointwise result in the bang-bang form due to
the constraint structure of Wad ; see the corollary below. The approximating
parameter ε > 0 is fixed in what follows.

Theorem 7.41 (suboptimality conditions for worst perturbation in
integral form). Let (wε, y1ε) be an optimal solution to problem (P1ε), and
let p1ε be the corresponding strong solution to the adjoint system (7.78). Then
for any w ∈ L2(0, T ; W ) such that wε + θw ∈ Wad whenever θ ∈ [0, θ0] with
some θ0 > 0 we have∫

Q

(
B∗ p1ε +

∂ f
∂w

(x, t, wε) − 2(wε − w̄)
)
w dxdt ≤ 0 .

Proof. Let y1εw be the strong solution of (7.69) corresponding to wε + θw. It
is easy to check that y1εw → y1ε in the norm topology of C

(
[0, T ]; X) as θ ↓ 0

with the representation

y1εw(x, t) − y1ε(x, t)
θ

= z1ε(x, t) a.e. (x, t) ∈ Q as θ > 0 , (7.79)

where z1ε is a strong solution to the system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂z1

∂t
+ Az1 = Bw a.e. in Q ,

z1(x, 0) = 0, x ∈ Ω ,

z1(s, t) = 0, (s, t) ∈ Σ .
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Defining the limits

δ1 := lim sup
θ↓0

∫
Q

g
(

x, t, y1εw(x, t) + ȳ2(x, t)
)
− g

(
x, t, y1ε(x, t) + ȳ2(x, t)

)
θ

dxdt ,

δ2 := lim sup
θ↓0

∫
Q

εα2
ε

(
y1εw(x, t) + ȳ2(x, t)

)
− εα2

ε

(
y1ε(x, t) + ȳ2(x, t)

)
θ

dxdt

and applying the mean value theorem to the integrands therein, we get

δ1 = lim sup
θ↓0

∫
Q

∂g
∂y

(
x, t, y1ε + ȳ2 + θ1(y1εw − y1ε)

) y1εw(x, t) − y1ε(x, t)
θ

dxdt ,

δ2 = ε lim sup
θ↓0

∫
Q

(
αε

(
y1εw + ȳ2) + αε(y1ε + ȳ2)

)
α′
ε

(
y1ε + ȳ2 + θ2(y1εw − y1ε)

)

× y1εw(x, t) − y1ε(x, t)
θ

dxdt ,

where θ1 = θ1(x, t), θ2 = θ2(x, t) ∈ [0, 1] a.e. in Q. Then using (7.79), (H4b),
and the Lebesgue dominated convergence theorem, one has∣∣∣ ∫

Q

(∂g
∂y

(
x, t, y1ε + ȳ2 + θ1(y1εw − y1ε)

) y1εw − y1ε

θ

−∂g
∂y

(
x, t, y1ε + ȳ2

)
z1ε

)
dxdt

∣∣∣ ≤ ∫
Q

∣∣∣∂g
∂y

(
x, t, y1ε + ȳ2 + θ1(y1εw − y1ε)

)

−∂g
∂y

(
x, t, y1ε + ȳ2)

∣∣∣ · |z1ε| dxdt → 0 as θ ↓ 0 ,

which implies the expression

δ1 =
∫

Q

∂g
∂y

(
x, t, y1ε(x, t) + ȳ2(x, t)

)
z1ε(x, t) dxdt .

Noting further that α′
ε(·) is continuous with |εα′

ε(·)| ≤ 1 and that

αε(y1εw + ȳ2) + αε(y1ε + ȳ2) ∈ L2(0, T ; X) ,

we deduce from (7.79) and the calculation above that

δ2 = 2ε
∫

Q
α′
ε

(
y1ε(x, t) + ȳ2(x, t)

)
αε

(
y1ε(x, t) + ȳ2(x, t)

)
z1ε(x, t) dxdt .

Since wε + θw → wε strongly in L2(Q) as θ ↓ 0 for all w satisfying the
conditions of the theorem, we deduce from the assumptions in (H5b) and the
mean value theorem that
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θ

∣∣∣ =
∣∣∣ ∂ f
∂w

(
x, t, wε + θ3θw

)
w
∣∣∣

≤ κ1(x, t) |w(x, t)| ,

∂ f
∂w

(
x, t, wε + θ3θw

)
w → ∂ f

∂w

(
x, t, wε

)
w a.e. in Q as θ ↓ 0 ,

where θ3 = θ3(x, t) ∈ [0, 1] a.e. in Q. Thus the Lebesgue dominated conver-
gence theorem yields∫

Q

∂ f
∂w

(
x, t, wε + θ3θw

)
w dxdt →

∫
Q

∂ f
∂w

(
x, t, wε

)
w dxdt as θ ↓ 0 .

Now employing the optimality of (wε, y1ε) in problem (P1ε), we get

0 ≥ lim sup
θ↓0

J1ε(wε + θw, y1εw) − J1ε(wε, y1ε)
θ

≥ lim sup
θ↓0

∫
Q

[g(x, t, y1εw + ȳ2) − g(x, t, y1ε + ȳ2)
θ

+
f (x, t, wε + θw) − f (x, t, wε)

θ

]
dxdt

− lim sup
θ↓0

∫
Q

(wε + θw − w̄)2 − (wε − w̄)2

θ
dxdt

−ε lim sup
θ↓0

∫
Q

α2
ε (y1εw + ȳ2) − α2

ε (y1ε + ȳ2)
θ

dxdt .

Combining all the above, we arrive at the inequality

0 ≥
∫

Q

(∂g
∂y

(
x, t, y1ε + ȳ2

)
− 2εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)
)

z1ε dxdt

+
∫

Q

( ∂ f
∂w

(
x, t, wε) − 2(wε − w̄

))
w dxdt .

Substituting finally the solution p1ε to (7.70) into the latter inequality and
integrating it by parts, we complete the proof of the theorem. �

Corollary 7.42 (suboptimality conditions for worst perturbations in
pointwise form). For each ε > 0 the maximal perturbation wε in problem
(P1ε) satisfies the following bang-bang relations:
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wε(x, t) = c a.e.

⎧⎪⎨
⎪⎩

(x, t) ∈ Q
∣∣∣ (B∗ p1ε

)
(x, t) +

∂ f
∂w

(
x, t, wε

)
−2

(
wε(x, t) − w̄(x, t)

)
< 0 ,

wε(x, t) = d a.e.

⎧⎪⎨
⎪⎩

(x, t) ∈ Q
∣∣∣ (B∗ p1ε

)
(x, t) +

∂ f
∂w

(
x, t, wε

)
−2

(
wε(x, t) − w̄(x, t)

)
> 0 ,

where p1ε is the corresponding solution to the adjoint system (7.79).

Proof. Taking w̃ := w − wε for any w ∈ Wad , we have wε + θw̃ = (1 −
θ)wε + θw ∈ Wad whenever θ ∈ [0, 1]. Replacing w with w̃ in the optimality
conditions of Theorem 7.41 gives us∫

Q

(
B∗ p1ε +

∂ f
∂w

(
x, t, wε

)
− 2(wε − w̄)

)
(w − wε) dxdt ≤ 0

for all w ∈ Wad , which implies the bang-bang relations. �

7.4.4 Suboptimal Controls under Worst Perturbations

In this subsection we study the boundary optimal control problem (P2) formu-
lated in Subsect. 7.4.1. According to the splitting procedure, optimal solutions
to (P2) allow us to find optimal boundary controls to the original minimax
problem (P) under the worst perturbations.

The problem (P2) under consideration is a boundary optimal control prob-
lem for parabolic systems with pointwise/hard control constraints acting in the
Dirichlet boundary conditions and with the moving state constraints generated
by the splitting procedure. To remove/approximate the latter constraints, we
develop a penalization technique that provides useful suboptimality informa-
tion for the original minimax problem.

Let α(·) be the maximal monotone operator defined in the preceding sub-
section, and let αε(·) be a smooth approximation of α(·) in the form (7.73).
For each ε > 0 consider a parametric family of approximating problems for
(P2) formulated as follows:

(P2ε) minimize J2ε(u, y2) :=
∫

Q
g
(
x, t, ȳ1(x, t) + y2(x, t)

)
dxdt

+
∫
Σ

h
(
s, t, u(s, t)

)
dsdt +

∥∥u − ū
∥∥p

L p(0,T ;U)
+ ε

∥∥αε(ȳ1 + y2)
∥∥2

L2(0,T ;X)

subject to u ∈ Uad and system (7.70) .
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Remember that solutions to system (7.70) are understood in the mild
sense, i.e., as y2 ∈ C

(
[0, T ]; X

)
satisfying

y2(t) = Lu := A
∫ t

0

S(t − τ )Du(τ )dτ for all t ∈ [0, T ] .

The next result justifies the existence of optimal solutions to the approximat-
ing minimization problem (P2ε) for every ε > 0.

Theorem 7.43 (existence of optimal solutions to approximating
Dirichlet problems). For each ε > 0 the approximating problem (P2ε) ad-
mits at least one optimal solution pair (uε, y2ε) ∈ Uad × C

(
[0, T ]; X

)
.

Proof. First note that each problem (P2ε) has a feasible pair (ū, ȳ2) generated
by the given optimal solution (ū, w̄) to the original minimax problem (P). Let
(u, y2) be an arbitrary feasible pair to (P2ε). It follows from assumptions (H4a)
and (H6a) that the integral sum∫

Q
g
(
x, t, ȳ1(x, t) + y2(x, t)

)
dxdt +

∫
Σ

h
(
s, t, u(s, t)

)
dsdt

is uniformly bounded from below over u ∈ Uad and the corresponding trajec-
tories y2 of the Dirichlet system (7.70). To estimate the given trajectory ȳ1 of
the distributed system (7.69), use the exponential semigroup estimate (7.65)
in the mild solution representation of Definition 7.31, which gives

∥∥ȳ1(t)
∥∥

X
≤ M1

(
e−ωt

∥∥y0

∥∥
X
+

(
‖B‖max{|c|, d} + ‖ϑ‖∞

)√
mes(Ω)

ω

(
1 − e−ωt

))
.

Then employing arguments similar to the proof of Theorem 7.38, we deduce
the uniform boundedness of the penalization term ‖αε(ȳ1 + y2)‖L2(0,T ;X). This
yields the uniform lower boundedness of the cost functional J2ε(u, y2) and thus
the finiteness of the infimum inf J2ε(u, y2) in problem (P2ε) for each ε > 0.

Further, taking into account the existence and uniqueness of mild solutions
y2 to system (7.70) corresponding to any given admissible control u ∈ Uad , we
consider the cost functional J2ε in (P2ε) as a function of u ∈ Uad ⊂ L p(0, T ; U),
where the latter space is equipped with the weak topology. Now employing the
regularity/convergence results for mild solutions given in Corollary 7.34 and
Theorem 7.35, as well as the convexity of the integrand h in u, we conclude
that the cost functional in (P2ε) is weakly semicontinuous in L p(0, T ; U) on
the weakly compact set Uad ; cf. the proof of Theorem 7.38. Thus the existence
of optimal solutions to (P2ε) follows from the classical Weierstrass existence
theorem in the topological setting under consideration. �

Next we establish the following strong convergence of optimal solutions for
the approximating problems (P2ε) to the given optimal solution (ū, ȳ2) for the
state-constrained problem (P2).
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Theorem 7.44 (strong convergence of approximating Dirichlet
boundary control problems). Let (ū, ȳ2) be the given optimal solution to
the state-constrained problem (P2), and let {(uε, y2ε)} be a sequence of optimal
solutions to the approximating problems (P2ε). Then there is a subsequence of
positive numbers ε such that

uε → ū strongly in L p(0, T ; U) ,

y2ε → ȳ2 strongly in C
(
[0, T ]; X

)
,

J2ε(uε, y2ε) → J2(ū, ȳ2) as ε ↓ 0 .

Proof. From the optimality of (uε, y2ε) in (P2ε) and the feasibility of (ū, ȳ2)
in this problem we have

J2ε(uε, y2ε) ≤ J2ε(ū, ȳ2) = J2(ū, ȳ2) for all ε > 0 . (7.80)

This implies, in particular, that there is M > 0 independent of ε such that

ε
∥∥αε(ȳ1 + y2ε)

∥∥2

L2(0,T ;X)
≤ M and ε

∥∥αε(ȳ1 + y2ε)
∥∥

L2(0,T ;X)
→ 0 as ε ↓ 0 .

Due to the weak compactness of Uad in L p(0, T ; U), find a function ũ ∈ Uad

and a subsequence of {uε} along which

uε → ũ weakly in L p(0, T ; U) as ε ↓ 0 .

Denote by ỹ2 the (unique) mild solution of (7.70) corresponding to ũ. Using
Theorem 7.35, select a subsequence of ε ↓ 0 such that

y2ε(x, t) → ỹ2(x, t) a.e. in Q

provided that p is sufficiently large. Then following the proof of Theorem 7.40
with the use of Lemma 7.39, we justify the validity of the state constraints

a ≤ ȳ1(x, t) + ỹ2(x, t) ≤ b a.e. in Q .

This ensures that (ũ, ỹ2) is a feasible solution to the state-constrained problem
(P2), and thus

J2(ũ, ỹ2) ≥ J2(ū, ȳ2) .

Now pass to the limit in (7.80) as ε ↓ 0 with taking into account the lower
semicontinuity of the cost functional J2 on the control set Uad in the weak
topology of L p(0, T ; U); cf. the proof of Theorem 7.36. This yields
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lim
ε↓0

∥∥uε − ū
∥∥p

L p(0,T ;U)
= 0 and lim

ε↓0
ε
∥∥αε(ȳ1 + y2ε)

∥∥2

L2(0,T ;X)
= 0 . (7.81)

The first equality in (7.81) means that uε → ū strongly in L p(0, T ; U) as ε ↓ 0.
We know from Theorem 7.33 that, for p sufficiently large, the latter implies
the strong convergence y2ε → ȳ2 in C

(
[0, T ]; X

)
. Finally, the value convergence

in this theorem follows from the second equality in (7.81) due to the penal-
ization structure of J2ε. This completes the proof. �

Next we derive necessary optimality conditions for the approximating
problems under the following assumptions parallel to those in Subsect. 7.4.3;
cf. also the discussions therein.

(H6b) h(s, t, u) is continuously differentiable in u with the derivative mea-
surable in (s, t). Furthermore, there is a nonnegative function γ1 ∈ Lq(Σ),
with 1/p + 1/q = 1, providing the estimate∣∣∣∂h

∂u
(s, t, u)

∣∣∣ ≤ γ1(s, t) a.e. (s, t) ∈ Σ whenever ∈ u ∈ [µ, ν] .

Let (uε, y2ε) be an optimal solution to the approximating (P2ε) with an
arbitrary fixed ε > 0. Consider feasible variations of the control uε in the form
uε + θu ∈ Uad with u ∈ L p(0, T ; U), where θ ∈ [0, θ0] for some θ0 > 0. Denote
by y2εu the mild solution of (7.70) corresponding to uε + θu and consider a
function ϕ: [0, θ0] → IR defined by

ϕ(θ) := J2ε(uε + θu, y2εu) .

This function obviously attains its minimum at θ = 0. Moreover, it follows
from the definition of mild solutions that

y2εu → y2ε strongly in C
(
[0, T ]; H1/2−ε(Ω)

)
as θ ↓ 0, and

y2εu(x, t) − y2ε(x, t)
θ

= Lu a.e. (x, t) ∈ Q whenever θ > 0

provided that p is sufficiently large.
Now we are ready to derive necessary optimality conditions for the ap-

proximating Dirichlet boundary control problems (P2ε). First we establish the
integral form of the result and then deduce its consequence in the (pointwise)
form of the bang-bang principle. As we know from the strong convergence of
Theorem 7.44, these results provide suboptimality conditions for the state-
constrained problem (P2).

Theorem 7.45 (suboptimality conditions for Dirichlet boundary con-
trols under worst perturbations). Let (uε, y2ε) be an optimal solution to
the approximating problem (P2ε) with any fixed ε > 0, and let

L∗: C([0, T ]; X)∗ → Lq(0, T ; U)
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be the adjoint operator to the mild solution mapping L defined in (7.72). Then

0 ≤
∫
Σ

[
L∗

(∂g
∂y

(
x, t, ȳ1 + y2ε

)
+ 2ε α′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)
)

+
∂h
∂u

(
s, t, uε

)]
u dsdt + 2p

∫ T

0

∥∥uε − ū
∥∥p−2

U

(∫
Γ

(
uε − ū

)
u ds

)
dt

for all u ∈ L p(0, T ; U) satisfying

uε + θu ∈ Uad whenever θ ∈ [0, θ0] with some θ0 > 0 .

Proof. Taking into account that the above function ϕ obviously attains its
minimum at θ = 0 and then using the classical mean value theorem, we get
the following relationships:

0 ≤ lim inf
θ↓0

ϕ(θ) − ϕ(0)

θ
+ lim inf

θ↓0
1

θ

[∫
Q

(
g(x, t, ȳ1 + y2εu) − g(x, t, ȳ1 + y2ε)

)
dxdt

+

∫
Σ

(
h(s, t, uε + θu) − h(s, t, uε)

)
dsdt +

(
‖uε + θu − ū‖p

L p(0,T ;U)

−‖uε − ū‖p
L p(0,T ;U)

)
+ ε

(
‖αε(ȳ1 + y2εu)‖2

L2(0,T ;X) − ‖αε(ȳ1 + y2ε)‖2
L2(0,T ;X)

)]

= lim inf
θ↓0

1

θ

[∫
Q

∂g
∂y

(
x, t, ȳ1 + y2ε + θ1(y2εu − y2ε)

) (
y2εu − y2ε

)
dxdt

+

∫
Σ

∂h
∂u

(
s, t, uε + θ2θ u

)
θu dsdt

+

∫ T

0

(
‖uε + θu − ū‖p−2

U + . . . + ‖uε − ū‖p−2
U

)(∫
Γ

θu
(
2uε − 2ū + θu

)
ds
)

dt

+ε

∫
Q

(
αε(ȳ1 + y2εu) + αε(ȳ1 + y2ε)

)
α′
ε

(
ȳ1 + y2ε

+θ3(y2εu − y2ε)
)
(y2εu − y2ε) dxdt

]
,

where θi = θi (x, t) ∈ [0, 1] a.e. in Q for i = 1, 2, 3. Observe that θi (y2εu −
y2ε) → 0 strongly in L2(Q) as θ ↓ 0 for i = 1, 2, 3 and that

αε(ȳ1 + y2εu) + αε(ȳ1 + y2ε) ∈ L2(0, T ; X) .

Then similarly to Subsect. 7.4.3, by using assumptions (H4b), (H6b) and the
Lebesgue dominated convergence theorem, we arrive at the inequality
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0 ≤
∫

Q

(∂g
∂y

(x, t, ȳ1 + y2ε) + 2εα′
ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)

)
Lu dxdt

+
∫
Σ

∂h
∂u

(
s, t, uε

)
u dsdt + 2p

∫ T

0

∥∥uε − ū
∥∥p−2

U

(∫
Γ

(
uε − ū

)
u ds

)
dt ,

which implies the necessary optimality condition stated in the theorem. �

The necessary optimality condition of Theorem 7.45 easily yields the bang-
bang form of optimal controls to the perturbed problems (P2ε). Note that the
bang-bang relations presented below don’t carry any information on optimal
controls at the singular set of points (s, t) from the boundary Σ that vanish
the corresponding integrand in the integral inequality of Theorem 7.45.

Corollary 7.46 (bang-bang suboptimality conditions for Dirichlet
boundary controls). For each ε > 0 the optimal control uε to (P2ε) sat-
isfies the following bang-bang relations:

uε(s, t) = µ a.e.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(s, t) ∈ Σ
∣∣∣ L∗

(∂g
∂y

(
x, t, ȳ1 + y2ε

)

+2εα′
ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)

)
+

∂h
∂u

(
s, t, uε

)
+2p

∥∥uε − ū
∥∥p−2

U

(
uε − ū

)
< 0 ,

uε(s, t) = ν a.e.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(s, t) ∈ Σ
∣∣∣ L∗

(∂g
∂y

(
x, t, ȳ1 + y2ε

)

+2εα′
ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)

)
+

∂h
∂u

(
s, t, uε

)
+2p

∥∥uε − ū
∥∥p−2

U

(
uε − ū

)
> 0 .

Proof. Put u := v − ū in the result of Theorem 7.45 for any v ∈ Uad . Taking
θ0 = 1, we have uε + θu = (1 − θ)uε + θv ∈ Uad for all θ ∈ [0, 1]. Then the
formulated bang-bang relations follow directly from the integral inequality
condition obtained in the theorem. �

7.4.5 Necessary Optimality Conditions under State Constraints

In the concluding part of this section (and of the whole Chap. 7) we de-
velop the limiting procedures to derive necessary optimality conditions for
the original minimax control problem (P). They are based on passing to the
limit in the necessary optimality conditions for the approximating problems
(P1ε) and (P2ε) by taking into account the splitting procedure and the strong
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convergence results proved in the previous subsections. First we summarize
the approximation and suboptimality results obtained for the given optimal
solution (ū, w̄) to the original problem (P).

Theorem 7.47 (suboptimality conditions for minimax solutions). Let
(ū, w̄) be an optimal solution to the minimax control problem (P), and let ȳ be
the corresponding mild trajectory to system (7.61) under all the assumptions
(H1)–(H6) with p > 0 sufficiently large. Then for each ε > 0 there are opti-
mal solutions (wε, y1ε) and (uε, y2ε) to problems (P1ε) and (P2ε), respectively,
which strongly approximate (ū, w̄) in the sense of

(uε, wε, y1ε + y2ε) → (ū, w̄, ȳ) in L p(0, T ; U) × L2(0, T ; W ) × C
(
[0, T ]; X

)
as ε ↓ 0 and which satisfy the corresponding necessary optimality conditions
of Theorems 7.41 and 7.45.

Analyzing the above necessary conditions of Theorems 7.41 and 7.45, ob-
serve that the possibility of passing to the limit therein as ε ↓ 0 requires the
uniform boundedness of the approximating term εα′

ε(·)αε(·). This doesn’t hold
without additional assumptions. Let us impose certain qualification conditions
on the state constraints in the original minimax problem that seem to be the
most appropriate for developing the limiting procedures. It what follows ‖·‖∞
signifies the norm in L∞(Q).

(CQ1) There are w̃ ∈ Wad and η1 > 0 such that for all ζ ∈ L∞(Q) with
‖ζ‖∞ ≤ 1 one has

a ≤ ỹ1(x, t) + ȳ2(x, t) + η1ζ (x, t) ≤ b a.e. in Q ,

where ỹ1 is the (unique) strong solution to system (7.69) generated by w̃.

(CQ2) There are ũ ∈ Uad and η2 > 0 such that for all ζ ∈ L∞(Q) with
‖ζ‖∞ ≤ 1 one has

a ≤ ȳ1(x, t) + ỹ2(x, t) + η2ζ (x, t) ≤ b a.e. in Q ,

where ỹ2 is the (unique) mild solution to system (7.70) generated by ỹ.

Note that the qualification conditions imposed above are different from
infinite-dimensional counterparts of the classical Slater constraint qualifica-
tion for convex programs in the underlying spaces of feasible solutions. In
particular, they don’t imply that the sets of feasible trajectories y1 and y2 to
problems (P1) and (P2) have nonempty interiors in the spaces W 1,2

(
[0, T ]; X

)
and C

(
[0, T ]; X

)
, respectively.

The next lemma provides the desired uniform estimates of the approxima-
tion terms that are crucial for developing the limiting procedures.

Lemma 7.48 (uniform estimates under constraint qualifications).
Let (ū, w̄, ȳ), (wε, y1ε), and (uε, y2ε) satisfy the conditions in Theorem 7.47.
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Assume in addition that the constraint qualifications (CQ1) and (CQ2) are
fulfilled. Then there is a constant C > 0 independent of ε such that for any
ε > 0 we have the estimates∥∥εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)
∥∥

1
≤ C,

∥∥εα′
ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)

∥∥
1
≤ C ,

where ‖ · ‖1 stands for the norm in L1(Q).

Proof. Let w̃ satisfy the constraint qualification condition (CQ1). Consider
the perturbation

w := w̃ − wε whenever ε > 0

and substitute it into the last inequality given in the proof of Theorem 7.41.
Using the monotonicity of αε(·), we have the estimates

0 ≥
∫

Q

∂g
∂y

(
x, t, y1ε + ȳ2

)
(ỹ1 − y1ε) dxdt

+
∫

Q

( ∂ f
∂w

(
x, t, wε

)
− 2(wε − w̄)

)
(w̃ − wε) dxdt

−2
∫

Q
εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2) (ỹ1 − y1ε) dxdt

=
∫

Q

∂g
∂y

(
x, t, y1ε + ȳ2

)
(ỹ1 − y1ε) dxdt

+
∫

Q

( ∂ f
∂w

(
x, t, wε

)
− 2(wε − w̄)

)
(w̃ − wε) dxdt

+
∫

Q
εα′

ε(y1ε + ȳ2)
(
αε(y1ε + ȳ2) − αε(ỹ1 + ȳ2 + η1ζ )

)

×
(

y1ε + ȳ2 − ỹ1 − ȳ2 − η1ζ
)

dxdt + 2
∫

Q
εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2) η1ζ dxdt

≥
∫

Q

∂g
∂y

(
x, t, y1ε + ȳ2

)
(ỹ1 − y1ε) dxdt

+
∫

Q

( ∂ f
∂w

(
x, t, wε

)
− 2(wε − w̄)

)
(w̃ − wε) dxdt

+2
∫

Q
εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2) η1ζ dxdt

whenever ζ ∈ L∞(Q) with ‖ζ‖∞ ≤ 1. Now it easily follows from assumptions
(H4b), (H5b) and Theorem 7.40 that there is a constant C > 0 independent
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of ε ensuring the desired uniform boundedness∫
Q
εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2) ζ dxdt ≤ C

for all ε > 0 and ζ ∈ L∞(Q) with ‖ζ‖∞ ≤ 1. The latter obviously implies the
first estimate in the lemma.

To prove the second estimate claimed in the lemma, we take ũ satisfying
the constraint qualification condition (CQ2) and substitute the control

u := ũ − uε whenever ε > 0

into the last inequality given in the proof of Theorem 7.45. Again using the
monotonicity of αε(·), we have

0 ≤
∫

Q

∂g
∂y

(
x, t, ȳ1 + y2ε

)
L(ũ − uε) dxdt +

∫
Σ

∂h
∂u

(
s, t, uε

)
(ũ − uε) dsdt

+2p
∫ T

0

∥∥uε(t) − ū(t)‖p−2
U

(∫
Γ

(uε − ū)(ũ − uε) ds
)

dt

+2
∫

Q
εα′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε) (Lũ − Luε) dxdt

≤
∫

Q

∂g
∂y

(
x, t, ȳ1 + y2ε

)
(ỹ2 − y2ε) dxdt +

∫
Σ

∂h
∂u

(
s, t, uε

)
(ũ − uε) dsdt

+2p
∫ T

0

∥∥uε(t) − ū(t)
∥∥p−2

U

(∫
Γ

(uε − ū)(ũ − uε) ds
)

dt

−2
∫

Q
εα′

ε(ȳ1 + y2ε)
(
αε(ȳ1 + y2ε) − αε(ȳ1 + ỹ2 + η2ζ )

)

×
(

ȳ1 + y2ε − ȳ1 − ỹ2 − η2 ζ
)

dxdt − 2η2

∫
Q
εα′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε) ζ dxdt

≤
∫

Q

∂g
∂y

(
x, t, ȳ1 + y2ε

)
(ỹ2 − y2ε) dxdt +

∫
Σ

∂h
∂u

(
s, t, uε

)
(ũ − uε) dsdt

+2p
∫ T

0

∥∥uε(t) − ū(t)
∥∥p−2

U

(∫
Γ

(uε − ū)(ũ − uε) ds
)

dt

−2η2

∫
Q
εα′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε) ζ dxdt

for all ζ ∈ L∞(Q) with ‖ζ‖∞ ≤ 1. Then we conclude, using assumptions
(H4b), (H6b) and Theorem 7.45, that there is a constant C > 0 independent
of ε > 0 such that
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Q
εα′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε) ζ dxdt ≤ C

whenever ε > 0 and ζ ∈ L∞(Q) with ‖ζ‖∞ ≤ 1. The latter implies the second
estimate in the lemma and completes the proof. �

Given the optimal trajectory to the minimax problem (P), define the set

Qab :=
{
(x, t) ∈ Q

∣∣ ȳ(x, t) = a or ȳ(x, t) = b
}
,

where the state constraints (7.62) are active. This set plays a significant role in
characterizing topological limits of the functions estimated in Lemma 7.48 that
are considered as elements of the dual space L∞(Q)∗. It is well known that
the space L∞(Q)∗ can be identified with the space ba(Q) of those bounded
additive functions, sometimes called generalized measures, on subsets of Q
that vanish on sets of Lebesgue measure zero. This means that for any Λ ∈
L∞(Q)∗ there is a unique measure λ ∈ ba(Q) such that

Λ(β) =
∫

Q
βλ(dxdt) for all β ∈ L∞(Q) .

It what follows we don’t distinguish between the spaces L∞(Q)∗ and ba(Q),
i.e., we identify Λ and λ in the above relation. For any λ ∈ L∞(Q)∗ consider its
support set, supp λ, on which λ is not zero. Recall that support sets are defined
up to subsets of Lebesgue measure zero on Q. The convergence in L∞(Q)∗ is
always understood in the topological sense as the convergence of nets, which is
substantially different from the sequential weak∗ convergence due to a highly
nonsequential nature of this space. Considering families {Λε}ε>0 from L∞(Q)∗

and extracting weak∗ convergent subnets of them, we speak for convenience
about convergent subnets of {ε}.

Lemma 7.49 (net convergence of penalization terms). Let all the as-
sumptions of Lemma 7.48 be fulfilled. Then there are measures λi ∈ L∞(Q)∗

with suppλi ⊂ Qab, i = 1, 2, and a subnet of ε ↓ 0 along which

2εα′
ε(y1ε + ȳ2)αε(y1ε + ȳ2) → λ1 weak∗ in L∞(Q)∗ ,

2εα′
ε(ȳ1 + y2ε)αε(ȳ1 + y2ε) → λ2 weak∗ in L∞(Q)∗ .

Proof. We justify only the first convergence relationship of the lemma; the
proof of the second one is similar. For any ε > 0 define a linear functional on
the space L∞(Q) by

Λ1ε(β) := 2
∫

Q
εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)β dxdt, β ∈ L∞(Q) .

By Lemma 7.48 we have
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∣∣ ≤ C

∥∥β∥∥∞ for all β ∈ L∞(Q) ,

which ensures the continuity of each Λ1ε on L∞(Q) and, moreover, the unform
boundedness of the set

{
Λ1ε

∣∣ ε > 0
}

in the space L∞(Q)∗. Employing the
classical result on the weak∗ (topological) compactness of the unit ball in
dual Banach spaces, we find Λ1 ∈ L∞(Q)∗ and a subnet of {ε} along which

lim
ε↓0

Λ1ε(β) = lim
ε↓0

2
∫

Q
εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)β dxdt = Λ1(β)

whenever β ∈ L∞(Q). The latter actually justifies the desired convergence for
the limiting measure λ1 ∈ ba(Q), which we identify with Λ1.

It remains to show that suppλ1 ⊂ Qab. Note that due to the state con-
straints (7.62) the set{

(x, t) ∈ Q
∣∣ ȳ(x, t) < a or b ȳ(x, t) > b

}
has measure zero. Thus arguing by contradiction and assuming that the sup-
port of λ1 is not contained in Qab, we find a set Q̃ such that⎧⎨

⎩
mes Q̃ > 0, λ1(Q̃) �= 0, and

Q̃ ⊂
{
(x, t) ∈ Q

∣∣ a < ȳ1(x, t) + ȳ2(x, t) < b
}
.

The latter clearly implies that

Q̃ ⊂
⋃
r>0

Qr with Qr :=
{
(x, t) ∈ Q

∣∣ a + r ≤ ȳ1(x, t) + ȳ2(x, t) ≤ b − r
}
.

Noting that Qr1 ⊂ Qr2 if r1 > r2, we get

mes
(

Q̃ ∩ Qr
)
�= 0 for all small r > 0 .

Furthermore, given δ > 0, there is r̃ > 0 such that

mes
(

Q̃ \ Qr̃
)
≤ mes

(⋃
r>0

Qr \ Qr̃

)
< δ .

Employing the strong convergence y1ε → ȳ from Theorem 7.40 and then using
the classical Egorov theorem, we find Qρ ⊂ Qr̃ ∩ Q̃ with mes

(
(Qr̃ ∩ Q̃)\Qρ

)
<

ρ and a subsequence of {y1ε(x, t)} that converges to ȳ1(x, t) uniformly in Qρ .
When ρ > 0 is sufficiently small, one has mes (Qρ) �= 0 and

a < y1ε(x, t) + ȳ2(x, t) < b in Qρ for all small ε .

By the structure of αε(·) in (7.73) the latter yields

εα′
ε

(
y1ε(x, t) + ȳ2(x, t)

)
αε

(
y1ε(x, t) + ȳ2(x, t)

)
= 0 in Qρ



7.4 Minimax Control of Parabolic Systemswith Pointwise State Constraints 433

whenever ε > 0 is sufficiently small. Observe in addition that

Q̃ = (Q̃ ∩ Qr̃ ) ∪ (Q̃ \ Qr̃ ) = Qρ ∪
(
(Q̃ ∩ Qr̃ ) \ Qρ

)
∪ (Q̃ \ Qr̃ ) .

Considering now any β ∈ L∞(Q) with suppβ ⊂ Q̃ and denoting

γε(x, t) := 2εα′
ε

(
y1ε(x, t) + ȳ2(x, t)

)
αε

(
y1ε(x, t) + ȳ2(x, t)

)
β(x, t) ,

we get the representation

Λ1ε(β) =
∫

Qρ

γε(x, t) dxdt +
∫

(Q̃∩Qr̃ )\Qρ

γε(x, t) dxdt

+
∫

Q̃\Qr̃

γε(x, t) dxdt .

Since γε ∈ L1(Q) and since δ was chosen to be sufficiently small, this implies∣∣∣ ∫
Q̃\Qr̃

γε(x, t) dxdt
∣∣∣ < ε whenever ε > 0 .

Taking the above relations into account and combining them with the first
uniform estimate of Lemma 7.48, we find c(ρ) ↓ 0 as ρ → 0 such that∣∣Λ1(β)

∣∣ ≤ c(ρ) whenever β ∈ L∞(Q) with suppβ ⊂ Q̃

for all ρ sufficiently small. Thus Λ1(β) = 0 for such β, which contradicts our
assumption and completes the proof of the lemma. �

Now we are ready to prove necessary optimality conditions for the original
minimax problem (P) with state constraints. First we obtain results that
characterize the worst perturbations in (P). Given elements ȳ ∈ C

(
[0, T ]; X

)
and λ1 ∈ L∞(Q)∗, consider the adjoint system⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂ p1

∂t
− A∗ p1 = −∂g

∂y

(
x, t, ȳ

)
+ λ1 a.e. in Q,

p1(T, x) = 0, x ∈ clΩ ,

p1(s, t) = 0, (s, t) ∈ Σ ,

(7.82)

and define its solution p1(x, t) in the sense of∫
Q

p1(x, t)
(∂v
∂t

+ Av
)

dxdt =
∫

Q

∂g
∂y

(
x, t, ȳ(x, t)

)
v dtdx

−
∫

Q
vλ1(dxdt) whenever v ∈ W 2,1,∞

0 (Q) .
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The next theorem shows that, along optimal processes to (P), there is a so-
lution to the adjoint system (7.82) belonging to the space BV

(
0, T ; H−1(Ω)

)
of H−1(Ω)-valued functions with bounded variation on [0, T ] and satisfying
some other conditions. To proceed, we need one more assumption.

(H7) The variable coefficients ai (x), i = 0, . . . , n, of the elliptic operator
A satisfy the conditions

a0(x) ≥ 0, a0(x) −
n∑

i=1

∂ai (x)
∂xi

≥ 0 for all x ∈ Ω .

Theorem 7.50 (necessary conditions for worst perturbations). Let
(ū, w̄, ȳ) be an optimal triple for the original minimax problem (P) under
assumptions (H1)–(H5) and (H7). Assume also that the qualification condition
(CQ1) holds. Then there is a measure λ1 ∈ L∞(Q)∗ with supp λ1 ⊂ Qab and
a trajectory p ∈ BV

(
0, T ; H−1(Ω)

)
∩ L2

(
0, T ; H1

0 (Ω)
)
∩ L∞(0, T ; X) to the

adjoint system (7.82) such that∫
Q

[(
B∗ p1 +

∂ f
∂w

(
x, t, w̄)

)(
w − w̄

)]
dxdt ≤ 0 for all w ∈ Wad . (7.83)

Proof. We prove this theorem by passing to the limit in the necessary optimal-
ity conditions of Theorem 7.41 for the approximating problems (P1ε). Let p1ε

be the strong solution to the adjoint system (7.78) corresponding to (uε, y1ε)
in Theorem 7.41. Multiplying both parts of this system by v ∈ W 2,1,∞

0 (Q)
and integrating the latter by parts, we get the integral identity∫

Q
p1ε

(∂v
∂t

+ Av
)

dxdt =
∫

Q

∂g
∂y

(
x, t, y1ε + ȳ2

)
v dxdt

−
∫

Q
2εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2) v dxdt whenever v ∈ W 2,1,∞
0 (Q) .

The strong solution p1ε to (7.78) is represented in the form

p1ε(t) = −
∫ T

t
S∗(τ − t)

(∂g
∂y

(
τ, x, y1ε + ȳ2

)
− 2εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)
)

dτ

for all t ∈ [0, T ], where S∗(·) is the strongly continuous semigroup generated
by the operator −A∗. It follows from the result of Brézis and Strauss [177]
that assumption (H7) ensures the contraction property of S∗(·) in L1(Ω).
Employing the latter property with the first estimate of Lemma 7.48, we find
a constant M > 0 independent of ε and t such that
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‖p1ε(t)‖L1(Ω)

≤
∫ T

t

∥∥∥S∗(τ − t)
(∂g
∂y

(
x, τ, y1ε + ȳ2

)
− 2εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)
)∥∥∥

L1(Ω)
dτ

≤
∫ T

t

∥∥S∗(τ − t)
∥∥ ·

∥∥∥∂g
∂y

(
x, τ, y1ε + ȳ2

)
− 2εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)
∥∥∥

L1(Ω)
dτ

≤
∥∥∥∂g
∂y

∥∥∥
1

+
∥∥2εα′

ε(y1ε + ȳ2)αε(y1ε + ȳ2)
∥∥

1
≤ M < ∞

whenever t ∈ [0, T ] and ε > 0. This means that the family {p1ε} as ε > 0 is
bounded in C

(
[0, T ]; L1(Ω)

)
. Moreover, it follows from (7.78) and Lemma 7.48

that the family {∂p1ε/∂t − A∗ p1ε} with ε > 0 is bounded in L1(Q). Then the
Sobolev imbedding theorem ensures that the family {∂p1ε/∂t} is bounded in
L1
(
0, T ; H−1(Ω)

)
. Furthermore, based on (7.78) and the previous estimates,

one gets the boundedness of {p1ε} in L2
(
0, T ; H1

0 (Ω)
)

and L∞(0, T ; X). Now
involving standard compactness arguments and the fact that L∞(0, T, X) is
dual to a separable Banach space, we find

p1 ∈ BV
(
0, T ; H−1(Ω)

)
∩ L2

(
0, T ; H1

0 (Ω)
)
∩ L∞(0, T ; X)

and a subsequence of {p1ε} (no relabeling) such that

p1ε(t) → p1(t) strongly in H−1(Ω) ,

p1ε → p1 strongly in L2
(
0, T ; H1

0 (Ω)
)
,

p1ε → p1 weak∗ in L∞(0, T ; X)

as ε ↓ 0. Passing to the limit in the above integral identity as ε → 0 and taking
into account (the sequential version of) Lemma 7.49, we conclude that p1

satisfies the adjoint system (7.82). Finally, we arrive at the necessary condition
(7.83) by passing to the limit as ε ↓ 0 in that from Theorem 7.41 with the use
of the convergence results from Theorem 7.40 as well as the strong convergence
p1ε → p1 in L2(0, T ; X). �

Corollary 7.51 (bang-bang relations for worst perturbations). Under
the assumptions of Theorem 7.50 we have

w̄(x, t) = c a.e.
{

(x, t) ∈ Q
∣∣∣ (B∗ p1

)
(x, t) +

∂ f
∂w

(
x, t, w̄(x, t)

)
< 0

}
,

w̄(x, t) = d a.e.
{

(x, t) ∈ Q
∣∣∣ (B∗ p1

)
(x, t) +

∂ f
∂w

(
x, t, w̄(x, t)

)
> 0

}
,

where p1(x, t) is the corresponding solution to the adjoint system (7.82).
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Proof. This easily follows from (7.83). �

Next we derive necessary optimality conditions for Dirichlet boundary con-
trols in the original minimax problem (P) by passing to the limit in the neces-
sary optimality conditions for the approximating problems (P2ε). To perform
the limiting procedure, it is crucial to justify that the mild solution operator
L in (7.72) is continuous from L∞(Σ) into L∞(Ω). The following theorem en-
sures this property and establishes the desired necessary optimality conditions
for Dirichlet boundary controls in the original state-constrained problem.

Theorem 7.52 (necessary optimality conditions for Dirichlet bound-
ary controls). Let (ū, w̄, ȳ) be an optimal triple for the minimax problem (P)
under assumptions (H1)–(H4) and (H6). Assume also that the qualification
condition (CQ2) hold. Then there is a measure λ2 ∈ L∞(Q)∗ with support
supp λ2 ⊂ Qab such that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 ≤

∫
Σ

[
L∗

(∂g
∂y

(
x, t, ȳ

))
+

∂h
∂u

(
s, t, ū

)]
(u − ū) dsdt

+
∫
Σ

(u − ū)
(
L∗λ2

)
(dsdt) whenever u ∈ Uad .

(7.84)

Proof. Let (uε, y2ε) be optimal solutions to problems (Pε) that strongly con-
verge as ε ↓ 0 to the given optimal solution (ū, ȳ2) by Theorem 7.44 and
satisfy necessary optimality conditions of Theorem 7.45 for each ε > 0. It
follows directly from Theorem 7.45 that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤
∫
Σ

[
L∗

(∂g
∂y

(
x, t, ȳ1 + y2ε

)
+ 2εα′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)
)
+

∂h
∂u

(
s, t, uε

)]
(u − uε) dsdt

+2p
∫ T

0

∥∥uε − ū
∥∥p−2

U

(∫
Γ

(uε − ū)(u − uε) ds
)

dt

(7.85)

whenever u ∈ Uad . We need to justify the passage to the limit in (7.85) as
ε ↓ 0 along a subnet. The convergence results of Theorem 7.44 and the con-
tinuity of the operator L∗: L2

(
0, T ; L2(Ω)

)
→ L2

(
0, T ; L2(Γ )

)
(see Lasiecka

and Triggiani [743]) implies that∫
Σ

[
L∗

(∂g
∂y

(
x, t, ȳ1 + y2ε

))
+

∂h
∂u

(
s, t, uε

)]
(u − uε) dsdt

→
∫
Σ

[
L∗

(∂g
∂y

(
x, t, ȳ

))
+

∂h
∂u

(
s, t, ū

)]
(u − ū) dsdt

for all u ∈ Uad , and that the last term in (7.85) converges to zero as ε ↓ 0. To
derive (7.84) from (7.85), it remains to show that
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Σ

(u − uε)L∗
(
2εα′

ε(ȳ1 + y2ε)αε(ȳ1 + y2ε)
)

dsdt

→
∫
Σ

(u − ū)
(
L∗λ2

)
(dsdt) whenever u ∈ Uad

as ε ↓ 0 along a subnet. Taking Lemma 7.49 into account, the latter clearly
follows from the weak∗ continuity of the adjoint operator

L∗: L∞(Q)∗ → L∞(Σ)∗ ,

which is a direct consequence of the strong continuity of the mild solution
operator L in (7.72) considered from L∞(Σ) into L∞(Q). To justify the latter
continuity, we involve some results from the theory of generalized solutions to
parabolic equations along with the previous considerations.

Take a function v ∈ L2(Σ) in the Dirichlet boundary condition for (7.70).
Employing Theorem 9.1 from Lions’ book [791], we know that there is a unique
y(v) ∈ L2(Q), called a generalized solution to (7.70), such that∫

Q
y(v)

(
− ∂z

∂t
+ A∗z

)
dxdt = −

∫
Σ

v
∂v

∂νA
dsdt (7.86)

whenever z ∈ H2,1(Q) with z(s, t) = 0 as (s, t) ∈ Σ and z(T, x) = 0. Take a
mild solution y = Lv of the system (7.70) generated by some v ∈ L∞(Σ) and
show that this y is a generalized solution to (7.70) in the sense of (7.86).

To proceed, consider the given Dirichlet boundary control v as an element
of the space L p(0, T ; U) with p sufficiently large and use the fact that the
domain space D(Σ) is dense in L p(0, T ; U), i.e., there is a control sequence
{vk} ⊂ D(Σ) with

vk → v strongly in L p(0, T ; U) as k → ∞ .

As well known, for each vk ∈ D(Σ) system (7.70) admits a unique classical
solution yk that automatically is a mild solution and a generalized solution to
this system. Thus yk = L(vk) and yk satisfies (7.86) for all k ∈ IN . Furthermore,
it follows from the regularity result of Theorem 7.33 that∥∥Lv − yk

∥∥
C([0,T ];X)

=
∥∥Lv − Lvk

∥∥
C([0,T ];X)

→ 0 as k → ∞ .

Combining all these facts, we get the estimates
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Q
Lv

(
− ∂z

∂t
+ A∗z

)
dxdt +

∫
Σ

v
∂z
∂νA

dsdt
∣∣∣

≤
∣∣∣ ∫

Q

(
Lv − yk

)(
− ∂z

∂t
+ A∗z

)
dxdt

∣∣∣ +
∣∣∣ ∫

Σ

(
v − vk

) ∂z
∂νA

dsdt
∣∣∣

≤
∥∥Lv − yk

∥∥
C([0,T ];X)

·
∥∥∥− ∂z

∂t
+ A∗z

∥∥∥
L2(0,T ;X)

T 1/2

+
∥∥v − vk

∥∥
L p(0,T ;U)

∥∥∥ ∂z
∂νA

∥∥∥
L2(0,T ;U)

T 1/̃q → 0 as k → ∞ ,

where q̃ := 2(p − 1)/p − 2. This gives∫
Q
Lv

(
− ∂z

∂t
+ A∗z

)
dxdt = −

∫
Σ

v
∂z
∂νA

dsdt

whenever z ∈ H2,1(Q) with z(s, t) = 0 as (s, t) ∈ Σ and z(T, x) = 0. The
latter means that the mild solution y = Lv is a generalized solution to (7.70)
for any v ∈ L∞(Σ). Using finally the uniqueness of generalized solutions and
the fact that the generalized solution operator is a continuous mapping from
L∞(Σ) into L∞(Q) (see the afore-mentioned book by Lions), we conclude
that the linear operator L under consideration is continuous from L∞(Σ)
into L∞(Q). This completes the proof of the theorem. �

Summarizing the results obtained, we arrive to the following theorem that
provides necessary conditions for both worst disturbances and Dirichlet opti-
mal control to the original minimax problem.

Theorem 7.53 (characterizing minimax optimal solutions). Let (ū, w̄)
be an optimal solution to the minimax problem (P), and let ȳ be the corre-
sponding trajectory of the parabolic system (7.61). Assume that all the hypothe-
ses (H1)–(H7) and the constraint qualification conditions (CQ1) and (CQ2)
hold. Then there are measures λi ∈ L∞(Q)∗ with suppλi ⊂ Qab for i = 1, 2
and an adjoint trajectory

p1 ∈ BV
(
0, T ; H−1(Ω)

)
∩ L2

(
0, T ; H1

0 (Ω)
)
∩ L∞(0, T ; X)

to (7.82) such that the optimality conditions (7.83) and (7.84) are satisfied.

Remark 7.54 (feedback control design). The results derived in this sec-
tion allow us to determine the structures of worst perturbations and optimal
boundary controls for the open-loop minimax control problem (P). They are
also useful for the minimax design of closed-loop parabolic control systems,
where the purpose is to construct feedback controls depending on state vari-
ables and ensuring satisfactory (at least stable) behavior under arbitrary per-
turbation from the admissible region Wad with the best performance in the
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case of worst perturbations. Such feedback control problems have been con-
sidered in Mordukhovich [905, 918] and Mordukhovich and Shvartsman [957],
where the reader can find more discussions and references. A typical problem
studied in the afore-mentioned papers is as follows:

minimize J (u) := max
w∈Wad

∫ T

0

∣∣u(y(x0, t)
)∣∣ dt

over u ∈ Uad subject to the parabolic system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂y
∂t

+ Ay = w(t) a.e. in Q ,

y(x, 0) = 0, x ∈ Ω ,

y(s, t) = u(t), t ∈ Σ ,

the pointwise state constraints∣∣y(x0, t)
∣∣ ≤ η for all t ∈ [0, T ] ,

and the feedback control law

u(t) = u
(

y(x0, t)
)
,

where x0 ∈ Ω is a given point at which all the information about the system
output is collected, where the admissible perturbation and control regions are
defined in (7.63) and (7.64), respectively, and where A is a self-adjoint and
strongly uniformly elliptic operator given by

A := −
n∑

i, j=1

ai j (x)
∂2

∂xi∂x j
− c

with c ∈ IR and ai j ∈ C∞(clΩ). Besides conducting an efficient open-loop
variational analysis and approximation procedures, we exploit monotonicity
properties of the parabolic dynamics and asymptotic characteristics of trajec-
tories on the infinite horizon, which allow us to develop an efficient minimax
design of feedback suboptimal controls that ensure the required stability in the
large of highly nonlinear closed-loop control systems; see the afore-mentioned
papers for more details, numerical analysis, and open problems.

7.5 Commentary to Chap. 7

7.5.1. Control Systems with Distributed versus Lump Parame-
ters. Chapter 7 is devoted to problems of dynamic optimization and opti-
mal control for some classes of systems with the so-called “distributed pa-
rameters.” There is a traditional division in control theory between systems
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governed by ordinary differential equations (with their discrete-time coun-
terparts) and those systems whose dynamics is described by more compli-
cated equations involving, e.g., various time delays (or, more generally, by
functional-differential equations) as well as systems governed by partial dif-
ferential equations of different types (elliptic, parabolic, hyperbolic, etc.). The
main issue that determined this separation, starting at least from the early
years of optimal control theory, was the dimension (finite or infinite) of the
underlying state space. In particular, the natural state space for the system
governed by ordinary differential equations

ẋ(t) = f
(
x(t), u(t), t

)
, x(t) ∈ IRn as t ∈ [a, b], (7.87)

is finite-dimensional; the current state x(t) of (7.87) as t ∈ [a, b] can be fully
determined, for each given control u(t), if the initial state vector x(a) = x0 ∈
IRn is given. Such finite-dimensional systems are also known as systems with
lump parameters.

In contrast, the natural state space for the simplest delay control system

ẋ(t) = f
(
x(t), x(t − θ), u(t), t

)
, x(t) ∈ IRn as t ∈ [a, b], (7.88)

with a single time delay θ > 0 in state variables is infinite-dimensional, since
we need to know the initial function x(t) on the whole “initial tail” interval t ∈
[a − θ, a] to determine the current state x(t) for t ∈ [a, b]. Similar (often more
involved) situations occur in control processes governed by partial differential
equations, integral equations, etc., which are therefore unified as systems with
distributed parameters.

Roughly speaking, systems with lump parameters are associated with con-
trol processes described by ordinary differential equations of type (7.87) in fi-
nite dimensions (as well as with discrete-time counterparts and more general
differential and discrete inclusion models), while distributed-parameter sys-
tems are related to various descriptions involving infinite-dimensional state
spaces.

It seems that such a broad traditional classification is rather conditional
and doesn’t reflect many specific features of the state dynamics that cannot
be only characterized by the dimension of state spaces. In particular, dynamic
optimization and control problems studied in Chap. 6 in general infinite-
dimensional state settings definitely belong to the distributed-parameter the-
ory according to this classification. On the other hand, the ordinary differential
form of the underlying dynamics plays a crucial role in the methods devel-
oped and results obtained, although the infinite dimensionality of state spaces
indeed requires more involved consideration.

Chapter 7 concerns several classes of evolution control systems with dis-
tributed parameters whose dynamical descriptions are significantly different
from each other as well as from their ordinary counterparts studied in Chap. 6.
Besides general techniques and structures of variational analysis (which are
largely in common for the major developments in Chaps. 6 and 7), the meth-
ods and results established for the classes of distributed control systems in
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Chap. 7 are essentially based on specific features of the systems under con-
sideration.

7.5.2. Systems with Time Delays in State Variables. Section 7.1
is devoted to the study of dynamic optimization problems for systems with
time delays. Dynamical processes in such systems (known also as time-lag,
hereditary, retarded, differential-difference, functional-differential systems as
well as systems with aftereffect, with deviating arguments, etc.) depend on
the “prehistoty,” which makes them infinite-dimensional even in the case of
finite-dimensional state vector x ∈ IRn. The qualitative theory of hereditary
systems (with no control) began by Volterra (see his book [1298]), while the
intensive development has started in 1950s with the publication of the pi-
oneering book by Myshkis [989]; see the subsequent books by Bellman and
Cooke [94], Élsgolts and Norkin [404], Hale [538], Kolmanovskii and Myshkis
[694], and the references therein.

First results on optimal control of delay systems were obtained by
Kharatishvili [678] who derived an analog of the Pontryagin maximum princi-
ple for delay-differential equations of type (7.88) involving a single time delay
in state variables. Then these results were extended to systems with variable
and distributed time delays in state and control variables, with various con-
straints including those of essentially infinite-dimensional types, etc. Among
early contributions to optimal control theory for delay-differential systems we
mention the research by Banks [78], Friedman [476], Gabasov and Churakova
[483], Gabasov and Kirillova [486], Halanay [537], Krasovskii [700], Oğuztöreli
[1018], and Warga [1315]. More advanced results in this and related directions
for controlled hereditary systems with various time delays in state and con-
trol variables and more general constraints were subsequently developed in
numerous publications; see, e.g., [81, 101, 275, 281, 485, 486, 506, 679, 694,
696, 701, 867, 901, 1015, 1019, 1173, 1174, 1321, 1323] among others.

7.5.3. Hereditary Systems of Neutral Type. A very interesting class
of hereditary control systems substantially different from both ODE systems
(7.87) and their delay-differential counterparts (7.88) is described by

ẋ(t) = f
(
x(t), x(t − θ), ẋ(t − θ), u(t), t

)
(7.89)

and is known as the class of functional-differential systems of neutral type,
or simply as neutral control systems. Such systems (with no control) under
this name of “differential equations with deviating arguments of neutral type”
were first considered by Élsgolts [403] in the qualitative theory of differential
equations with aftereffect; see also Bellman and Cooke [94] and Hale [538]. The
main difference between systems (7.88) and (7.89) is that the latter contain
time delays in velocity variables, not only in state and/or control ones. This
makes control problems for neutral systems (7.89) significantly more compli-
cated in comparison with those for (7.87) and (7.88). In particular, there is
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no analog of the Pontryagin maximum principle held for neutral control sys-
tems in general nonconvex setting; see more discussion in Remark 6.41 and
the example therein, which is taken from Gabasov and Kirillova [485].

Probably first results on necessary optimality conditions for neutral varia-
tional and control systems were independently obtained by Hughes [586] and
by Kamenskii and Hvilon [663]; see also the early papers by Sabbagh [1185]
and Kent [668]. Various subsequent developments can be found in Angell and
Kirsch [19], Banks and Kent [79], Banks and Manitius [81], Chukwu [241],
Élsgolts and Norkin [404], Gabasov and Kirillova [485], Gorelik and Mor-
dukhovich [513, 514], Gusakova [529], Jacobs and Langenhop [626], Kisielewicz
[682], Kharatishvili and Tadumadze [679], Kolmanovskii and Nosov [695], Kol-
manovskii and Shaikhet [696], Mansimov [843], Melikov [868], Mordukhovich
[895, 896, 901], Mordukhovich and Sasonkin [945], Salamon [1187], Tadumadze
and Alkhazishvili [1242], and in the references therein.

Besides the afore-mentioned nonvalidity of the Pontryagin maximum prin-
ciple for nonconvex neutral control systems, there are other important issues
for which the presence of time delays in velocity variables significantly distin-
guish neutral systems from their ordinary and delay-differential counterparts.
Let us particularly recall a variety of the adjoint systems in first-order nec-
essary optimality conditions and related topics [81, 485, 513, 529, 663, 668,
679, 868, 901]; the unavoidable presence of jumps in optimality conditions;
more restrictive conditions ensuring the relaxation stability [682]; the essen-
tial dependence of various results on the time behavior of system components
involving delays in velocities [81, 485, 695, 901, 945]; the influence of dis-
continuous initial conditions on the form of major results on controllability,
observability, optimality, and duality aspects [895, 896, 901, 1242]; occurring
specific intermediate (between the first and second order) necessary optimality
conditions in neutral systems nonlinear with respect to ẋ(t−θ) [513, 901]; new
second-order conditions of the Legendre-Clebsch type for nonlinear neutral
systems with no constraints on control variables [514, 901]; a variety of neces-
sary optimality conditions for singular controls [514, 843, 901], etc. Note also
that, in contrast to ordinary and delay-differential systems, the approximative
maximum principle is not generally valid for finite-difference approximations
of smooth neutral systems with no endpoint constraints; see Example 6.70
from Chap. 6.

Observe that neutral systems exhibit a lot of similarities with discrete-
time systems of optimal control. In a sense, it is not surprising, since (7.89)
may be viewed as a discrete system with respect to velocities ẋ(t), where the
time delay θ > 0 plays a role of the discrete stepsize. On the other hand,
certain results obtained for neutral systems have their counterparts in control
theory for partial differential equations of the hyperbolic type, particularly
for the so-called systems of Goursat-Darboux; cf. Ashchepkov and Vasiliev
[42], Cernea [233], Gavrilov and M. Sumin [500], Mahmudov [827], Mansimov
[844], Plotnikov and V. Sumin [1085], Srochko [1221], and Vasiliev [1281]. At
the same time, there are some classes of hyperbolic systems (e.g., those gov-
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erned by telegraph equations and the like) that can be equivalently reduced to
neutral systems; see Kolmanovskii and Nosov [695] and the references therein.

7.5.4. Delay-Differential Inclusions. A variety of problems in dynamic
optimizations for delay systems more involved than (7.88) are described by
delay-differential inclusions of the type

ẋ(t) ∈ F
(
x(t), x(t − θ), t

)
a.e. t ∈ [a, b] (7.90)

with the initial and endpoint conditions

x(t) = c(t), t ∈ [a − θ, a),
(
x(a), x(b)

)
∈ Ω ,

which were first considered by Clarke and Watkins [274] under the name of
“differential-difference inclusions.” Assuming the compactness and convexity
of the sets F(x, y, t) together with the Lipschitz continuity of F(·, ·, t), the
authors derived necessary optimality conditions for the Mayer problem of
minimizing ϕ(x(b)) on absolutely continuous trajectories of (7.90). The results
obtained in [274] were expressed in Clarke’s Hamiltonian form extending that
in [255] with the corresponding transversality conditions given in terms of his
constructions ∂Cϕ and NC(·;Ω). Besides necessary optimality conditions, the
paper [274] contained related results on computing generalized gradients of the
value function depending on endpoint perturbations, with their applications
to local controllability.

The Hamiltonian conditions of [274] were extended by Clarke and Wolen-
ski [276] to the Bolza problem involving more general hereditary inclusions
written as

ẋ(t) ∈ F(xt , t) a.e. t ∈ [a, b] ,

with xt : [−r, 0] → IRn given by xt(s) := x(t + s). The necessary optimality
conditions of [276] were derived by using perturbation techniques of proximal
analysis in infinite-dimensional spaces.

Another approach to optimization of delay-differential inclusions in form
(7.90) was developed by Minchenko [878] who extended the primal-space con-
structions by Polovinkin and Smirnov [1094] and Frankowska [465] to the case
of delay systems. The necessary optimality conditions obtained in [878] were
expressed in terms of tangential approximations being generally independent
of those in [274]. Further results in this direction can be found in Minchenko
and Volosevich [881]. We also refer the reader to the recent paper by Cernea
[234], where tangential techniques and directional derivatives were used for de-
riving second-order necessary optimality conditions for some delay-differential
inclusions.

The papers by Mordukhovich [921] and by Mordukhovich and Trubnik
[959] developed the method of discrete approximations to the study of opti-
mization problems governed by delay-differential inclusions (7.90). The results
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obtained in the vein of [915] justified well-posedness and strong convergence
procedures for discrete approximations of (7.90) and established necessary op-
timality conditions in both extended Euler-Lagrange and Hamiltonian forms
(the latter only for convex-valued inclusions) using a partial convexification of
basic normals and subgradients, in contrast to the full convexification in the
Hamiltonian inclusions given in [274, 276]. Further results in this direction
were derived by Mordukhovich and L. Wang [973] for the Bolza problem over
trajectories of delay-differential inclusions (7.90) satisfying the multivalued
“initial tail” condition

x(t) ∈ C(t) a.e. t ∈ [a − θ, a) .

The latter is specific for time-delay systems and provides an additional source
for control and optimization.

7.5.5. Neutral-Differential Inclusions. First necessary conditions for
optimization problems governed by neutral functional-differential inclusions

d
dt

[
x(t) − Ax(t − θ)

]
∈ F

(
x(t), x(t − θ), t

)
a.e. t ∈ [a, b] (7.91)

were established by Mordukhovich and L. Wang: the Mayer problems was
considered in [972], and a comprehensive treatment for the Bolza problem
with endpoint constraints was given in [974]; see also [977] for a more general
and complicated case of nonautonomous systems with the time-dependent
matrix A = A(t) in (7.91).

Note that the neutral-type operator on the left-hand side of (7.91) is given
in the so-called Hale form [538], which is essential for the techniques and re-
sults developed in [972, 974, 977]. The approach of these papers followed that
by Mordukhovich [915] based on discrete approximations. As expected, the
case of neutral systems happened to be significantly more involved and, in
contrast to ordinary and delay-differential inclusions, did not allow us to ob-
tain any results without relaxation stability. The latter property may be rather
restrictive for nonconvex neutral systems; see Kisielewicz [682] for some suf-
ficient conditions for its validity. The main necessary optimality conditions
of [972, 974, 977] were derived in the extended Euler-Lagrange form, which
implied the corresponding analog of the Weierstrass-Pontryagin maximum
condition and also (by applying Rockafellar’s dualization theorem [1162]) the
refined Hamiltonian condition under the assumed relaxation stability, partic-
ularly for convex-valued functional-differential inclusions of neutral type.

The recent paper by Ortiz [1021] concerned necessary conditions for the
generalized Bolza problem for neutral systems with varying delays θ = θ(t)
written as:

minimize ϕ
(
x(a), x(b)

)
+
∫ b

a
ϑ
(
x(t), x(t − θ), ẋ(t), ẋ(t − θ), t

)
dt, (7.92)
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where both functions ϕ and ϑ may be extended-real-valued. This paper was
an extension of that by Ortiz and Wolenski [1022] devoted to the delay-in-
state (not neutral) generalized Bolza problem, where the integrand ϑ in (7.92)
didn’t depend on the delay velocity term ẋ(t − θ) while depending on the de-
lay state variable x(t − θ). The main assumption made in [1021] was the joint
convexity of the integrand ϑ with respect to both velocity variables correspond-
ing to ẋ(t) and ẋ(t − θ). The approach of [1021] was based on the decoupling
technique proposed by Clarke [258] for the non-delay Bolza problem and then
developed by Ortiz and Wolenski [1022] for systems with time delays. Observe
that the main results of [1021], as well as of [258] and of [1022], were given
in terms of fully convexified Euler-Lagrange and Hamiltonian inclusions of
Clarke’s type, but not in their significantly more refined forms involving par-
tially convexified sets of basic normals and subgradients as in Mordukhovich
and L. Wang [974], which extended the corresponding forms of Mordukhovich
and Rockafellar for non-delay systems; cf. Chap. 6.

7.5.6. Differential-Algebraic Systems. Section 7.1 is devoted to the
study of dynamic optimization problems whose dynamic constrains are de-
scribed by interrelated delay-differential inclusions and linear delay-algebraic
equations of the type⎧⎨

⎩
ż(t) ∈ F

(
x(t), x(t − θ), z(t), t) a.e. t ∈ [a, b] ,

z(t) = x(t) + Ax(t − θ), t ∈ [a, b] .
(7.93)

This is a new class of optimal control problems with distributed parameters
that, on one hand, may be treated as variational problems for extended neutral
inclusions while, on the other hand, it is related to a special class of delay
differential-algebraic systems governed by general delay-differential inclusions
with linear delay-algebraic links between “slow” and “fast” variables. Observe
that the integrand ϑ in the Bolza functional of problem (D A) considered
in Sect. 7.1 depends on both slow and fast variables (denoted by z and x ,
respectively) as well as on the time derivative of slow variables, while fast
variables may not be differentiable in time.

Note that system (7.93) can be written in the form

d
dt

[
x(t) + Ax(t − θ)

]
∈ F

(
x(t), x(t − θ), x(t) + Ax(t − θ), t

)
a.e. t ∈ [a, b] ,

which is an extension of (7.91) and may be reduced to the general neutral
inclusion

ẋ(t) ∈ G
(
x(t), x(t − θ), ẋ(t − θ), t

)
a.e. t ∈ [a, b] (7.94)

provided that x(t) is absolutely continuous on [a, b]. We never suppose the
latter assuming instead that the combination x(t) + Ax(t − θ) is absolutely
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continuous. Similarly, the cost functional in (D A) transfers under this substi-
tution into the neutral Bolza form (7.92). Thus problem (D A) can be treated
as a special case of Bolza-type variational problems for general neutral inclu-
sions. However, in this way we loose the principal feature of (D A), which is
crucial for the methods applied and the results obtained in Sect. 7.1. This
specific feature of (D A) is as follows: both the dynamic constraint (7.94) and
the cost functional (7.92) depend in fact not on ẋ(t) and ẋ(t − θ) but on the
derivative of the same linear combination x(t) + Ax(t − θ). That is why we
treat this linear combination as a new state variable in (7.93) and consider
(D A) in its natural form, which emphasizes both delay-differential and linear
algebraic constraints on the system dynamics.

In the non-delay case of θ = 0, system (7.93) is an inclusion extension of
the so-called controlled differential-algebraic equations (known as DAEs, for
short) that arise in many practical applications, particularly to process system
engineering, robotics, mechanical systems with holonomic and nonholonomic
constraints, etc.; see, e.g., the book by Brennan, Campbell and Pretzold [174]
with many examples, discussions, and references. Generally DAE control sys-
tems are given by⎧⎨

⎩
ż = f

(
z(t), x(t), u(t), t

)
a.e. t ∈ [a, b] ,

0 = g
(
z(t), x(t), u(t), t

)
a.e. t ∈ [a, b] .

(7.95)

They are closely related to other special classes of control systems known
under different names: implicit systems, singular systems, descriptors, etc.;
see, e.g., Dai [305], Devdariani and Ledyaev [327], and their references. In
the early Russian literature such systems were studied under the long name
of “control systems that are not solved with respect to the derivative;” see
Vasiliev [1279], Gabasov and Kirillova [485], Gusakova [528], Kurina [730], and
Mordukhovich [901] among other publications on optimal control for systems
of this type. Note that the DAEs in (7.95) can be viewed as the limiting case
of the singularly perturbed control systems⎧⎨

⎩
ż = f

(
z(t), x(t), u(t), t

)
a.e. t ∈ [a, b] ,

εẋ(t) = g
(
z(t), x(t), u(t), t

)
a.e. t ∈ [a, b]

(7.96)

as ε ↓ 0. However, it is well known that the realization of convergence pro-
cedures for optimal solutions to (7.96) as ε ↓ 0 requires fairly restrictive as-
sumptions; cf. Artstein and Gaitsgory [30], Bensoussan [100], Dontchev and
Zolezzi [367], Kokotović, Khalil and O’Reilly [693], and the references therein.

To the best of our knowledge, the most advanced results on necessary op-
timality conditions for control systems with the DAE dynamics (7.95) were
derived by de Pinho and Vinter [1079] under the so-called index one assump-
tion. They demonstrated the violation of the (strong) Pontryagin maximum
principle for such systems, justified it under some convexity assumptions, and
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established necessary conditions in the new weak maximum principle form for
systems with nonsmooth differential (not algebraic) dynamics and also with
nonsmooth cost and endpoint constraint functions. However, the critical in-
dex one assumption made in [1079] seems to be quite restrictive and doesn’t
hold in many differential-algebraic control systems of practical significance;
see, e.g., [174, 1048].

7.5.7. Regularization Role of Time Delay. The results presented in
Sect. 7.1 are mostly based on the recent papers by Mordukhovich and L.
Wang [975, 976]. To obtain necessary optimality conditions for the class of
differential-algebraic control systems under consideration, we use a version
of the method of discrete approximations that takes into account the pres-
ence of the time delay θ > 0; the latter happens to be a regularization factor
allowing us to fully avoid the index one assumption. Following mainly the pro-
cedure developed in Sect. 6.1 for ordinary evolution systems, we establish the
well-posedness and strong convergence of discrete approximations, derive nec-
essary optimality conditions for approximating difference-algebraic systems,
and then justify the passage to the limit from the obtained necessary con-
ditions in discrete approximation. This leads us to new necessary optimality
conditions of the extended Euler-Lagrange and Hamiltonian types for the orig-
inal Bolza problem governed by delay differential-algebraic systems subject to
endpoint constraints under relaxation stability.

The realization of the method of discrete approximations for differential-
algebraic systems with delays is rather different from the case of ordinary
systems and technically much more involved. On the other hand, in Sect. 7.1
we assume for simplicity that the state vectors (x, z) are finite-dimensional,
which allows us to avoid complications with the usage of SNC calculus in
infinite dimensions. Moreover, at each stage we apply more convenient cal-
culi of basic/limiting normals, subgradients and coderivatives instead of fuzzy
calculus rules as in Sect. 6.1. The open question remains about the possibility
of passing to the limit from the obtained necessary optimality conditions for
the delay systems under consideration as θ ↓ 0 to derive valuable results for
differential-algebraic control systems with no delay.

7.5.8. PDE Control Systems. The remaining three sections of Chap. 7
concern some optimal control problems for distributed-parameter systems gov-
erned by partial differential equations (PDEs). The literature on PDE optimal
control is enormous; so we mention only (a number of) those publications,
which are largely related to the topics discussed in this book. The reader
can find more information in the books by Ahmed and Teo [4], Balakrishnan
[74], Banks and Kunisch [80], Barbu [82], Bensoussan, Da Prato, Delfour and
Mitter [101], Butkovsky [209], Cherkaev [237], Denkowski, Migórski and Pa-
pageorgiou [323], A. Egorov [392], Fattorini [432], Friedman [478], Fursikov
[481], Lagnese [736], Lasiecka and Triggiani [746], Li and Yong [789], Lions
[791, 792], Lurie [821], Lyashko [823], Neittaaanmäki and Tiba [997], Tiba
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[1255], Tröltzsch [1271], Vasiliev [1281] and in their numerous references de-
voted to various aspects of the theory and applications of PDE control; see
also the recent survey paper by Burns [206].

Probably the first paper on PDE optimal control was published in 1960
by Butkovsky and Lerner [211]; it was devoted to optimal control of the one-
dimensional heat equation. After a while, it was realized that many PDE
control problems could be written in the form of abstract evolution systems in
infinite-dimensional spaces, but the original ODE approach developed by Pon-
tryagin et al. [1102] didn’t generally apply to establish the maximum principle
in PDE optimal control. The major technical limitation for this was that the
convex separation theorem used in [1102] couldn’t be employed in infinite di-
mensions without additional assumptions. The first example on the violation
of the maximum principle for a singleton target set in PDE control systems
was constructed by Y. Egorov who also derived an appropriate analog of the
Pontryagin maximum principle in infinite-dimensional control problems under
rather restrictive interiority assumptions; see [393, 394]. On the other hand,
A. Egorov [391] proved the maximum principle for parabolic and hyperbolic
systems with target/constraint sets described by finitely many equalities and
inequalities with no interiority assumptions. It hasn’t been realized for a long
time that such sets enjoy the finite codimension property; cf. Chap. 6. We
refer the reader to the survey paper by Butkovsky, A. Egorov and Lurie [210]
for other early developments in PDE optimal control, mostly in the Russian
literature.

In the West, the pioneering work on infinite-dimensional optimal control
was done by Fattorini [427] and Balakrishnan [73] who first applied the theory
of strongly continuous semigroups to linear control systems. Among other
significant early contributions we particularly mention the publications by
Conti [284], Friedman [477], Lions [791], Russel [1184], Malanowski [830], and
Wang [1302].

The crucial importance of the finite codimension property of reachable
and/or target sets for the fulfillment of the maximum principle in infinite-
dimensional control systems was first observed by Li and Yao [786] and then
developed in their paper [787]. Further developments in this direction were
accomplished by Fattorini [429] and by Li and Yong [788]; see also the book by
the latter authors [789] for more results, discussions, and references concern-
ing optimal control problems for various classes of semilinear and quasilinear
partial differential equations and other infinite-dimensional control systems.

7.5.9. Boundary Control of PDE Systems. The previous discussions
and the afore-mentioned publications mostly relate to PDE control problems
with distributed controls acting in state equations, similarly to ordinary dy-
namic systems. A specific feature of PDE problems, important from both view-
points of the theory and applications, is the possibility to consider boundary
controls, i.e., the presence of control functions in boundary conditions. It has
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been well recognized that boundary control problems are significantly more
involved in comparison with their distributed control counterparts.

There are two major types of boundary conditions: Dirichlet and Neu-
mann, which are significantly different from each other. Usually Dirichlet
boundary conditions offer less regularity of the corresponding solution opera-
tors as we have seen, in particular, in Sects. 7.2–7.4 of this book. The mixed
(or Robin) type of boundary conditions resembles, as a rule, basic properties
of the Neumann one.

Historically boundary controls in PDE systems were first considered in
the paper by Fattorini [428] of 1968, which was mainly motivated by appli-
cations to approximate controllability and employed the semigroup operator
approach. A significant progress for Dirichlet boundary control problems for
linear parabolic equations was achieved by Washburn in his paper [1324] based
on the earlier Ph.D. thesis under supervision by Balakrishnan who first con-
sidered a motivating example for a rectangle; see [74]. Among further signif-
icant achievements in the study of boundary control and related problems
for various PDE systems we mention the contributions by Arada and Ray-
mond [23, 24] Barbu [82], Barbu, Lasiecka and Triggiani [83], Bonnans and
Casas [131], Bucci [183], Cârjă [223], Casas [225], Casas, Raymond and Zi-
dani [226], Fattorini [433], Fattorini and Murphy [435, 436], Lasiecka [739],
Lasiecka and Triggiani [742, 743, 746], Lions [791, 792], Mordukhovich and
Raymond [943, 944], Mordukhovich and Zhang [978, 979], Nowakowski and
Nowakowska [1016], Osipov, Pandolfi and Maksimov [1023], Raymond [1120],
Raymond and Zidani [1121], Tröltzsch [1271], and Zuazua [1379]; see also the
bibliographies therein. More references and comments on specific results ob-
tained in some of the afore-mentioned publications can be found above in
Sects. 7.2–7.4 and below in the corresponding comments to these sections.

7.5.10. Neumann Boundary Control of Hyperbolic Equations. We
start presenting the PDE material of this chapter with the Neumann boundary
control problem for the semilinear wave equation considered in Sect. 7.3. This
choice is made not because of the problem under consideration is the easiest
one among those studied in the book—just the opposite: boundary control
problems for hyperbolic equations are among the most challenging and not
sufficiently investigated in PDE control theory. It seems that the first results
for such problems in the presence of pointwise state constraints have been
obtained only quite recently in the paper by Mordukhovich and Raymond
[944] on which the material of Sect. 7.2 is based. Some results on necessary
optimality conditions for boundary control problems with no state constraints
and also for distributed control problems governed by hyperbolic equations
can be found, e.g., in Bucci [183], Fattorini [431, 432], Lasiecka and Trig-
giani [746], Lions [792], Malanowski [830], White [1328] and the references
therein. However, hyperbolic optimal control problems have not been suffi-
ciently studied in the literature—definitely much less that their elliptic and
parabolic counterparts. One of the significant technical reasons for this, from
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the semigroup viewpoint for evolution equations in infinite dimensions, is that
hyperbolic systems are associated with non-compact semigroups generated by
the underlying unbounded operator of the corresponding semilinear equation.

Our choice for the material arrangement in Chap. 7 is mainly motivated by
the possibility to efficiently employ powerful techniques of modern variational
analysis (variational principles, approximations by unconstrained problems,
needle-type variations, etc.) to the Neumann boundary control problem under
consideration, rather similarly to the case of ODE systems in Chap. 6. Another
reason to place hyperbolic systems right after functional-differential systems
of neutral type is that there are certain similarities between some classes of
these distributed-parameter systems (see Subsect. 7.5.3), which however have
not been much exploited. Recall that the approach in Sect. 7.1 involves the
discrete approximation technique that is significantly different from the other
methods of Chap. 7.

Let us emphasize that the study in Sect. 7.2 is based on modern tech-
niques of variational analysis married with the deep PDE regularity theory
for hyperbolic Neumann boundary value problems developed by Lasiecka and
Triggiani in the late 1980s—early 1990s; see [744, 745]. This regularity the-
ory and the related PDE developments of Subsect. 7.2.2 provide the required
basis, which supports the subsequent applications of variational techniques to
establish necessary optimality conditions for Neumann boundary controls to
state-constrained hyperbolic systems.

7.5.11. Pointwise State Constraints via Ekeland’s Variational
Principle. Problems with pointwise state constraints are among the most dif-
ficult in optimal control theory. It is worse mentioning that the derivation of
satisfactory conditions for the maximum principle in state-constrained control
problems governed by nonlinear ordinary differential equations was probably
the primary motivation for developing a general theory of extremal problems
by Dubovitskii–Milyutin [370]; see also the books by Ioffe and Tikhomirov
[618] and by Warga [1315] with their treatments and references related to
state-constrained problems for ordinary and functional-differential (in [1315])
control systems.

State-constrained problems for control systems governed by elliptic and
parabolic equations were originally treated by their reduction to infinite-
dimensional problems of mathematical programming; this was called the
“method of Lagrange multipliers” in the PDE control literature; see, e.g.,
Mackenroth [825], Tröltzsch [1271], and the bibliographies therein.

A powerful approach to derive necessary optimality conditions for endpoint-
constrained and (pointwise) state-constrained ODE control problems via ap-
proximation procedures based on Ekeland’s variational principle was initiated
by Ekeland himself [397] (see also his excellent survey [399]) and then was
strongly developed by Clarke [250, 251, 255] to nonsmooth systems and dif-
ferential inclusions.
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First applications of the Ekeland principle to optimal control problems
governed by partial differential equations were done probably by Li and Yao
[786, 787] and by Plotnikov and M. Sumin [1084]. Then this approach to derive
necessary optimality conditions of the maximum principle type in various
PDE control problems governed by nonlinear (mostly semilinear) elliptic and
parabolic equations was developed by Arada and Raymond [23, 24], Bonnans
and Casas [131], Casas [225], Casas, Raymond and Zidani [226], Casas and
Yong [227], Fattorini [429, 430, 431, 432, 433], Fattorini and Frankowska [434],
Fattorini and Murphy [435, 436], Li and Yong [788, 789], Raymond [1120],
Raymond and Zidani [1121], and by other researchers. As mentioned, the
first results for Neumann boundary control of state-constrained semilinear
hyperbolic equations were obtained in Mordukhovich and Raymond [944] by
using Ekeland’s variational principle as one of the basic ingredients of their
analysis.

Note that the implementation of approximating procedures based on Eke-
land’s variational principle is much more involved for control problems gov-
erned by partial differential equations in comparison with the case of ODE
systems. In particular, there is a significant difference between bounded and
unbounded controls in deriving necessary optimality conditions for PDE prob-
lems via Ekeland’s principle. The main reason relates to the fact that it is
not easy to create a complete metric space and to ensure the lower semiconti-
nuity of the corresponding penalized functional needed for the application of
Ekeland’s principle in the framework of unbounded controls for PDE systems.
First results for unbounded controls were obtained by Fattorini [431] and inde-
pendently by Raymond and Zidani [1121] for parabolic systems. The approach
developed by Mordukhovich and Raymond [944] and reproduced in Sect. 7.2
is an extension of the one from [1121] to the case of state-constrained hyper-
bolic systems with unbounded controls in the Neumann boundary conditions.
The realization of this approach is strongly based on the regularity theory by
Lasiecka and Triggiani [744, 745] and for hyperbolic Neumann boundary value
problems and the corresponding developments presented in Subsect. 7.2.2.

7.5.12. Needle-Type Diffuse Control Perturbations. A significant
part of the perturbation technique developed in Sect. 7.2 for the derivation
of necessary optimality conditions in the state-constrained Neumann prob-
lem governed by the semilinear wave equation is the variational analysis of
the approximating problems with no state constraints, which appear in the
penalization procedure. Such an analysis is conducted in Subsect. 7.2.3 by de-
veloping a technique that can be viewed as a multidimensional (hyperbolic in
this case) counterpart of the increment method involving needle-type control
variations used in Subsect. 6.3.2 to prove the Pontryagin maximum principle
for free-endpoint ODE control systems.

One can see that the PDE case under consideration is much more in-
volved in comparison with its ODE counterpart. The needle-type control
variations used in this analysis are known in the PDE control literature as
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diffuse perturbations, and also as “spike/multispike” and “patch” variations;
cf. Fattorini [432], Li and Yong [789], and Raymond and Zidani [1121]. Such
variations/perturbations of optimal controls were first used by Li and Yao
[786, 787] to derive necessary optimality conditions for PDE control problems
and then were developed in many publications; see particularly the afore-
mentioned references [432, 789, 1121] and the bibliographies therein. Note
that the justification of the required properties of such perturbations and their
implementation in the proof of necessary optimality conditions are based on
the Lyapunov-Aumann convexity theorem—a “hidden convexity” manifesta-
tion; see Raymond and Zidani [1121, Lemma 4.2], Mordukhovich and Ray-
mond [944, Lemma 4.2 and Theorem 4.1], and the constructions reproduced
in Lemma 7.19 and in the proof of Theorem 7.18 of Subsect. 7.2.3.

Observe that the usage of diffuse control perturbations allows us to derive
the Pontryagin maximum principle for the Neumann boundary control prob-
lem for hyperbolic equations in the pointwise form, for both approximating
and state-constrained systems under consideration in Sect. 7.2. This is simi-
lar to the case of ODE control systems studied in Chap. 6. At the same, the
limiting procedures in the passing from necessary optimality conditions for
unconstrained to constrained problems are significantly different in the ODE
and hyperbolic PDE cases (cf. Subsects. 6.2.1 and 7.2.4); the latter is strongly
based on the regularity theory for weak solutions to the Neumann-type devel-
oped in Subsect. 7.2.2.

7.5.13. Dirichlet Boundary Control of Hyperbolic Systems. Sec-
tion 7.3 is devoted to Dirichlet boundary control of the state-constrained linear
wave equation in n-dimensional spaces; actually the results obtained can be
extended to more general linear hyperbolic equations with strongly elliptic
operators replacing the classical Laplacian as in the “wave” case. We are
not familiar with any results for the optimal control problem considered in
Sect. 7.3 expect the recent paper by Mordukhovich and Raymond [943] on
which Sect. 7.2 is based.

It has been well recognized that the Dirichlet boundary control case ex-
hibits the lowest regularity properties in comparison with distributed and Neu-
mann boundary controls for all the types of PDE systems; cf. also more dis-
cussions in Sect. 7.4 and the comments to it for parabolic equations. However,
the hyperbolic case probably offers the lowest regularity in comparison with
the other PDE types.

To the best of our knowledge, the sharpest regularity theory for Dirichlet
hyperbolic boundary value problems was developed by Lasiecka, Lions and
Triggiani [740]; see also the subsequent paper by Lasiecka and Sokolowski
[741] and the book by Lasiecka and Triggiani [746] for some additional ma-
terial and applications. We employ this theory in Sect. 7.3 for the purposes
of our variational analysis. However, the regularity properties available in the
PDE theory for the hyperbolic Dirichlet setting are not sufficient to develop
variational methods and results for Dirichlet boundary control in hyperbolic
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systems similar to those for the Neumann hyperbolic case in Sect. 7.2 as
well as for the Dirichlet parabolic case considered in Sect. 7.4. Nevertheless,
something can be done by another method, and the results obtained in this
direction are presented in Sect. 7.3.

The method developed in the afore-mentioned paper [943] and reproduced
in Sect. 7.3 is based on the reduction of the state-constrained Dirichlet bound-
ary control problem to a special problem of infinite-dimensional programming
with operator and geometric constraints. The lack of regularity in the hy-

perbolic Dirichlet boundary control case, which doesn’t allow us to conduct a
perturbation/approximation analysis, is compensated by extra full convexity
requirements on the integrands of the minimizing cost functional that ensure
the applications of an appropriate version of the Lagrange multiplier rule in
the obtained infinite-dimensional problem of mathematical programming (cf.
particularly Alibert and Raymond [9]) due to the properties of weak solutions
to the adjoint Dirichlet system derived in Subsect. 7.3.3. The assumptions
made and the available regularity allow us also to establish the existence of
optimal controls in the state-constrained Dirichlet boundary control prob-
lems under consideration.

7.5.14. Minimax Problems in Optimization and Control. Opti-
mization problems with minimax cost functions play a significant role in many
aspects of optimization and equilibrium theory, in analysis and synthesis of
open-loop and closed-loop control systems, in various (static and dynamic)
game-theoretical frameworks, as well as in numerous applications. It is worse
repeating that, being intrinsically nonsmooth, minimax functions and asso-
ciated minimax problems have always been among primary motivations for
developing and implementations of nonsmooth variational analysis and gen-
eralized differentiation techniques. Among the enormous literature on various
issues in minimax theory and its applications we refer the reader to Başar
and Bernhard [87], Chernousko [238], Chikrii [239], Danskin [307], Demyanov
and Malozemov [319], Freeman and Kokotović [474], Krasovskii and Sub-
botin [702], Kryazhimskii and Osipov [721], Kurzhanskii [731], Kurzhanskii
and Vályi [732], Moiseev [885], von Neumann and Morgenstern [1000], Rock-
afellar and Wets [1165], Subbotin [1230], Simons [1213], and the bibliographies
therein.

In Subsects. 5.3.2 and 5.5.19 we have discussed certain minimax issues from
the viewpoint of multiobjective optimization and generalized differentiation,
while the main objective of Sect. 7.4 is to study a minimax control problem for
parabolic systems with the Dirichlet boundary conditions and pointwise state
constraints. Note that some minimax problems for control systems governed
by partial differential equations were considered by Ahmed and Xiang [5],
Arada [21], Arada, Bergounioux and Raymond [22], Lenhart, Protopescu and
Stojanović [762], Li and Yong [789], Mordukhovich [905, 918], Mordukhovich
and Shvartsman [957], Mordukhovich and Zhang [978] among other publica-
tions.
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7.5.15. Minimax Control of Constrained Parabolic Systems. The
main motivation for considering the minimax control problem studied in
Sect. 7.4 came from applications to automatic control of the soil water
regime under uncertainty; see Mordukhovich [898, 905]. Dynamic processes
in such systems are described by linearized parabolic equations of the filtra-
tion/diffusion theory with bounded controls acting in the Dirichlet boundary
conditions and with distributed uncertain perturbations modeled on the right-
hand side of the parabolic equation. Furthermore, the major technological
requirements in these practical problems can be satisfied by imposing point-
wise state constraints on controlled motions.

Since there is no probabilistic information on uncertain perturbations
available in the engineering control problems modeled in [898, 905], mini-
max seems to be the most natural criterion for optimization and control de-
sign. In this way, some open-loop and feedback control problems were solved
and practically implemented in [898, 905] for the case of one-dimensional
linear parabolic equations by using certain specific features of the dynamic
systems and constraints under consideration. More rigorous investigations are
required for hard-constrained multidimensional parabolic systems, which mo-
tivates the study presented in Sect. 7.4 that is mainly based on the paper by
Mordukhovich and Zhang [978].

The minimax problem (P) studied in Sect. 7.4 concerns a linear mul-
tidimensional parabolic equation described via a strongly uniformly elliptic
operator with variable coefficients, which generates an analytic semigroup on
a Hilbert space. Measurable controls act in the Dirichlet boundary conditions,
while uncertain perturbations are additively distributed in the body of the
equation. The solution notion for linear parabolic equations with the Dirich-
let boundary conditions is understood in the mild sense; see Subsect. 7.4.1
and more comments below. The notion of minimax optimality is taken in the
standard sense as a saddle point (worst perturbations and best controls) of
the given integral functional depending on control, perturbation, and state
variables. A significant feature of the minimax problem is the presence of
hard/pointwise constraints of the magnitude type on controls, perturbations,
and trajectories.

The linearity of the dynamic system and the structure of the imposed
constraints allow us to split the minimax problem into two interrelated prob-
lems for worst perturbations and for Dirichlet boundary controls, which are
studied separately by different methods. However, both of these methods in-
volve certain smooth approximation procedures, which are strongly based on
well-posedness properties of mild solutions to parabolic systems with irregu-
lar/measurable boundary conditions of the Dirichlet type.

7.5.16. Mild Solutions and Their Properties for Parabolic Sys-
tems with Dirichlet Boundary Conditions. Mild solutions to parabolic
systems with irregular (merely measurable) Dirichlet boundary conditions
were particularly studied by Balakrishnan [74], Lasiecka [739], Lasiecka and
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Triggiani [742, 743], and Washburn [1324], where the reader can find existence
and uniqueness results for such solutions with the basic operator estimates
(7.71). The results of Subsect. 7.4.2 are mostly taken from Mordukhovich and
Zhang [978], where they were employed to establish the existence of minimax
solutions in Theorem 7.36 (on the base of the classical von Neumann min-
imax theorem in appropriate topologies used in Subsect. 7.4.2) and then to
justify the convergence/well-posedness of the approximation procedures de-
veloped for deriving the necessary optimality and suboptimality conditions in
Subsects. 7.4.3–7.4.5.

Observe a special situation occurring in the study of the minimax prob-
lem (P) and its splitting control/perturbation counterparts, where the state
constraints are imposed in the pointwise form (7.62) involving generally dis-
continuous real-valued functions y(x, t) of two variables, while the employed
semigroup approach deals with continuous time-dependent mild solutions from
Definition 6.26 that take values in functional spaces. Theorem 7.35 plays a
crucial role to overcome this discrepancy by establishing the a.e. pointwise
convergence in values of two-variable state solutions implied by the corre-
sponding weak convergence of measurable functions in the Dirichlet boundary
conditions.

7.5.17. Distributed Control of Constrained Parabolic Systems
with Irregular/Nonsmooth Data. According to the splitting procedure,
the worst perturbations in the original minimax problem happen to be op-
timal solutions to the parabolic distributed control problem with the fixed
Dirichlet boundary conditions and pointwise state constraints. Necessary op-
timality conditions for such control problems can be found, e.g., in Casas [225],
Bergounioux and Tröltzsch [104], Mackenroth [825], Fattorini [430, 432], Ray-
mond and Zidani [1121], and Tröltzsch [1271]; see also the references therein.
Note that for parabolic systems, distributed control problems are fairly close,
in methods and results, to their boundary control counterparts with the Neu-
mann (but not Dirichlet) boundary conditions.

However, the distributed control problem (P1) studied in Subsects. 7.4.3
and 7.4.5 is substantially different from its standard versions due to the sig-
nificant data irregularity. The issue is that the cost functional and state con-
straints in problem (P1), which appeared via the splitting procedure from the
original minimax problem, depend on the given mild solution ȳ2(x, t) to the
Dirichlet boundary control problem (P2) that usually exhibits a high disconti-
nuity as a function of two variables; such problems are often called nonsmooth
in the PDE literature.

To deal with such distributed control problems with irregular/nonsmooth
data, we follow the paper by Mordukhovich and Zhang [978], which is mainly
based on a certain smooth approximation technique developed in the theory
of parabolic variational inequalities; see, e.g., Barbu [82], Friedman [479], He
[554], Neittaaanmäki and Tiba [997], Tiba [1255], and the references therein.
This technique employed in Subsect. 7.4.3 is different from that based on
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Ekeland’s variational principle while also allowing us to efficiently penalize
the irregular state-constrained problem by a parametric family of smooth un-
constrained problems, to establish the required strong convergence of approx-
imating solutions, and then to derive necessary optimality conditions in the
well-posed approximation problems.

The next step accomplished in Subsect. 7.4.5 is to justify a limiting pro-
cedure in the proof of necessary conditions for optimal solutions (worst per-
turbations) to the state-constrained distributed control problem (P1) by pass-
ing to the limit from the necessary optimality conditions in the parametric
approximation problems (P1ε) with no state constraints. In our implemen-
tation of the limiting procedure we employ a refined qualification condition
used in somewhat different settings by Bergounioux and Tiba [103] and by
Bergounioux and Tröltzsch [104]. This condition (CQ1), which doesn’t re-
quire that the feasible solution set in (P1) is of nonempty interior, happens to
be significantly different from standard infinite-dimensional counterparts of
the classical Slater constraint qualification in convex programming. Based on
(CQ1) and employing a delicate contraction result by Brézis and Strauss [177]
as well as the classical Sobolev imbedding, we arrive in this way at necessary
optimality conditions for the worst perturbations in the integral form of the
Pontryagin maximum principle, which easily implies the pointwise bang-bang
relations.

7.5.18. Dirichlet Boundary Control of Parabolic Systems with
Pointwise State Constraints. The second problem (P2) appearing in the
minimax splitting procedure happens to be a state-constrained Dirichlet
boundary control problem with highly irregular (L∞) control functions acting
in the Dirichlet boundary conditions. It has been well recognized that the
Dirichlet boundary control case is the most challenging in optimal control the-
ory for parabolic equations, since such conditions offer the lowest regularity
properties of the parabolic dynamics. We refer the reader to Arada and Ray-
mond [23, 24], Barbu [82], Fattorini [433], Fattorini and Murphy [435, 436],
Lasiecka [739], Lasiecka and Triggiani [742, 743, 746], Mordukhovich and
Zhang [978, 979], and Washburn [1324] for various necessary optimality con-
ditions in parabolic systems with Dirichlet boundary controls.

Our study of the Dirichlet parabolic problems in Subsects. 7.4.4 and 7.4.5
mainly follow the developments by Mordukhovich and Zhang [978, 979] based
on the regularity/stability properties of mild solutions given in Subsect. 7.4.2
and on the approximation methods from the theory of parabolic variational in-
equations that are largely similar in spirit to those presented in Subsects. 7.4.3
and 7.4.5 for the case of distributed controls/perturbations.

Observe that the previous results obtained in this direction (see, e.g.,
Barbu’s book [82] and the references therein) imposed much stronger smooth-
ness requirements on Dirichlet boundary controls assuming, in the best case,
that
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u ∈ W 2−1/p,1−2/p
p (Σ) with p ≥ 2 .

This was due to the fact that, instead of the mild solution theory as in Sect. 7.4,
the afore-mentioned previous developments in this direction were mostly based
on the classical strong solution theory for the parabolic Dirichlet boundary
value problem dealing particularly with solutions of class y ∈ W 2,1

p (Q) to the
Dirichlet parabolic system (7.61); see the book Ladyzhenskaya, Solonnikov
and Uralzeva [735] intensively used by Barbu [82] and other researchers.

The usage of mild solutions in our highly nonsmooth/irregular case allows
us, first at all, to establish the existence of minimax solutions as in Theo-
rem 7.36 and also the existence of optimal controls in a more general Dirichlet
boundary control (not minimax) problem studied in Mordukhovich and Zhang
[979]. Note that the latter theorem removes the linearity assumption on the in-
tegrand g(x, t, ·) needed for the minimax existence theorem; see Remark 7.37.
Furthermore, the properties of mild solutions given in Subsect. 7.4.2 make it
possible to accomplish the smooth approximation/penalization procedure in
Subsect. 7.4.4 and to establish the strong convergence of approximating op-
timal solutions with no restrictive smoothness assumptions as those imposed
in Barbu [82].

Finally, Subsect. 7.4.5 justifies the limiting procedure to derive necessary
optimality conditions for the state-constrained Dirichlet boundary control
problem (P2); see also Mordukhovich and Zhang [979] for similar results con-
cerning a more general optimal control problem of this type. To proceed,
we employ the constraint qualification condition (CQ2), which is in spirit
of the corresponding constraint qualifications imposed by Bergounioux and
Tiba [103] and by Bergounioux and Tröltzsch [104] in different settings; see
Subsect. 7.5.18 for more discussions. The main result obtained in this way in
Theorem 7.52 provides an integral-type counterpart of the Pontryagin maxi-
mum principle for the Dirichlet boundary control problem under consideration
via the adjoint operator

L∗: L∞(Q)∗ → L∞(Σ)∗

to the mild solution operator L defined in (7.72), where the dual space L∞(Q)∗

is identified with that of bounded additive functions (measures) on the do-
main Q. Somewhat different methods and results dealing with L∞-controls
acting in the Dirichlet boundary conditions of parabolic systems were de-
veloped by Arada and Raymond [23, 24], Fattorini [433], and Fattorini and
Murphy [435, 436].

7.5.19. Feedback Synthesis and Minimax Design of Control Sys-
tems. As well known, problems of feedback control—when control functions
depend on state variables—are among the most difficult in control theory and
the most important for applications. There are various approaches to feed-
back control design, which have been mainly developed for control systems
governed by ordinary differential equations. We are not going to discuss them
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in more detail just referring the reader to some recent developments employing
certain constructions and techniques of modern variational analysis and gen-
eralized differentiation; see Bardi and Capuzzo Dolcetta [85], Cannarsa and
Sinestrari [217], Clarke, Ledyaev, Sontag and Subbotin [263], Clarke, Ledyaev,
Stern and Wolenski [264, 265], Clarke and Stern [269], Fleming and Soner
[458], Frankowska [472], Freeman and Kokotović [474], Goebel [511], Rock-
afellar and Wolenski [1166, 1167], Subbotin [1230], Sontag [1220], Zelikin and
Melnikov [1359], and the bibliographies therein. However, most of the results
obtained in the afore-mentioned publications are largely theoretical, and their
implementation to design feedback controls in more or less practical problems
is always a subject of special considerations and additional investigations.

In many situations occurring in practical applications it happens that con-
trol systems are functioning in uncertainty conditions, where no (deterministic
or stochastic) information is available for uncertain disturbances/perturbations
but only regions of their possible deviations. The minimax approach, or the
principle of guaranteed result, paves a natural route for the design/synthesis
of feedback control systems in such uncertainty conditions. It has been well
recognized that game-theoretic methods provide a general framework for the
minimax control design; see Başar and Bernhard [87], Chernousko [238],
Chikrii [239], Krasovskii and Subbotin [702], Kryazhimskii and Osipov [721],
Kurzhanskii [731], Kurzhanskii and Vályi [732], Subbotin [1230], and their
references among a great many publications in this direction. Observe again
that the application of game-theoretical methods and results to the minimax
design of particular control systems always requires an additional work that
takes into account specific features of the problem in question.

As mentioned in the beginning of Sect. 7.4 (and additionally discussed
in Subsect. 7.5.14), the original motivation for our study of minimax con-
trol came from some practical problems of engineering design of automatic
reclamation systems for regulating the groundwater (or soil water) regime; see
Mordukhovich [898, 905]. Adequate mathematical models were identified and
described in [898, 905] as problems of minimax synthesis of state-constrained
parabolic systems with distributed uncertain perturbations and with controls
acting in the Dirichlet boundary conditions; see Remark 7.54 for a typical
problem of this type. Since no methods and results have been available in
general theory for such problems, we developed special techniques for their
solution in the case of the dynamics described by the one-dimensional heat
equation. The developed techniques involved several approximation proce-
dures that particularly exploited, besides necessary and sufficient optimal-
ity conditions, some monotonicity properties of the one-dimensional parabolic
dynamics and its asymptotics on the infinite horizon. It has been revealed fur-
thermore that such systems exhibit a certain turnpike behavior (as described
in the books by Carlson, Haurie and Leizarowitz [224], by Dyukalov [379], and
by Zaslavski [1357]), which happened to be crucial for the efficient feedback
control design conducted in [905].
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Some multidimensional extensions of the methods and results initiated in
[898, 905] were presented in Mordukhovich [918] and in Mordukhovich and
Shvartsman [957], although the minimax design problem for the constrained
parabolic systems under consideration has largely remained open.
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Applications to Economics

The concluding chapter of this book is devoted to applications of modern
techniques of variational analysis and generalized differentiation to competi-
tive equilibrium models of welfare economics involving nonconvex economies
with infinite-dimensional commodity spaces. Note that economic modeling
has always been a challenging territory for applications of optimization theory,
variational methods, and generalized differential constructions. In particular,
convex models of welfare economics of the type considered in this chapter
were among the most important motivations for the development of convex
analysis in the beginning of the 1950s. Since that time such models have been
an attractive area for applications of advanced variational and generalized
differential techniques in convex and nonconvex settings.

Our main single tool in studying nonconvex models of welfare economics is
the extremal principle of variational analysis, which allows us to establish new
versions of the so-called generalized/extended second welfare theorem for weak
Pareto, Pareto, and strong Pareto optimal allocations in nonconvex economies
with marginal/equilibrium prices formalized via the basic normal cone and its
Fréchet-like approximations developed in this book.

8.1 Models of Welfare Economics

In this section we describe models of welfare economics, in both classical
and advanced frameworks, define the corresponding equilibrium and Pareto-
type optimality concepts, and discuss the so-called net demand qualification
conditions needed for the subsequent study of Pareto and weak Pareto (but
not strong Pareto) optimal allocations. Let us start with informal (and then
formal) descriptions of such models and mathematical techniques used for
their studies and applications.
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8.1.1 Basic Concepts and Model Description

The classical Walrasian equilibrium model of welfare economics and its var-
ious generalizations have long been recognized as an important part of the
economic theory and applications. It has been well understood that the con-
cept of Pareto efficiency/optimality and its variants play a crucial role for the
study of equilibria and making the best decisions for competitive economies.

A classical approach to the study of Pareto optimality in economic models
with smooth data consists of reducing it to conventional problems of math-
ematical programming and using first-order necessary optimality conditions
that involve Lagrange multipliers. In this way important results were obtained
at the late 1930s and in the 1940s when it has been shown that the marginal
rates of substitution for consumption and production are equal to each other
at any Pareto optimal allocation of resources; see the fundamental book by
Samuelson [1188] with the discussions and references therein, and also further
comments at the end of this chapter.

In the beginning of the 1950s, Arrow [26] and Debreu [309] made the next
crucial step in the theory of welfare economics considering economic models
with possibly nonsmooth but convex data. Based on the classical separation
theorems for convex sets, they and their followers developed a nice theory
that particularly contains necessary and sufficient conditions for Pareto opti-
mal allocations and shows that each of such allocations leads to a decentralized
equilibrium in convex economies. The key result of this theory is known as the
classical second fundamental theorem of welfare economics stated that any
Pareto optimal allocation can be decentralized at price equilibria, i.e., it can
be sustained by a nonzero price vector at which each consumer minimizes
his/her expenditures and each firm maximizes its profit. The full statement
of this result is definitely due to convexity, which is crucial in the Arrow-
Debreu model and its extensions based on convex analysis. Note also that the
Arrow-Debreu general equilibrium theory in welfare economics has played an
important motivating role in the development of convex analysis as a mathe-
matical discipline with its subsequent numerous applications.

On the other hand, the relevance of convexity assumptions is often doubt-
ful for many important applications, which had been recognized even before
developing the Arrow-Debreu model; see, e.g., the afore-mentioned book by
Samuelson [1188, pp. 231–232] stating that such assumptions are fulfilled “only
by accident. . . ” It is well known, in particular, that convexity requirements
don’t hold in the presence of increasing returns to scale in the production
sector. A common approach to the study of nonconvex models is based on
utilizing local convex tangential approximations and then employing the clas-
sical separation theorems for convex cones. Constructively it has been done
by using the Clarke tangent cone, which is automatically convex. In this way,
marginal prices are formalized in terms of the dual Clarke normal cone that,
however, may be too large for satisfactory results in nonconvex models and of-
ten doesn’t impose any restriction on marginal cost pricing; the reader can find
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many examples, discussions, and references in the paper by Khan [671]. The
latter paper contains much more adequate extensions of the second welfare
theorem to nonconvex economies with finite-dimensional commodity spaces,
where marginal prices are formalized via our (nonconvex) basic normal cone.
Khan’s approach to derive such results are based on reducing, under appropri-
ate constraint qualifications, Pareto optimal allocations to optimal solutions
for problems of nondifferentiable programming and then applying necessary
conditions in nonsmooth optimization established by Mordukhovich [892].
This approach doesn’t require the use of convex separation and/or related
results of convex analysis.

The primary goal in what follows is to derive comprehensive results on
the extended second welfare theorem(s) in nonconvex models of welfare eco-
nomics, in the general framework of infinite-dimensional commodity spaces,
based on the extremal principle, which is the main single tool of the varia-
tional analysis developed in this book. As discussed in Chap. 2, the extremal
principle can be viewed as a variational counterpart of the (local) separation
in nonconvex settings. On the other hand, it provides necessary conditions
for extremal points of nonconvex sets that cover, as will be shown below,
the case of Pareto-like optimal allocations. Thus using the extremal principle,
we actually unify both approaches discussed above, which are based on ei-
ther the reduction of Pareto optimality to mathematical programming or the
application of separation theorems for convex sets.

The machinery of the extremal principle developed in Chap. 2 allows us
to derive extended versions of the second welfare theorem for nonconvex
economies in both approximate/fuzzy and exact/limiting forms under mild
net demand qualification conditions needed in the case of Pareto and weak
Pareto optimal allocations. In this way we obtain efficient conditions ensuring
the marginal price positivity when commodity spaces are ordered. The results
obtained bring new information even in the case of convex economies, since
we don’t impose either the classical interiority condition or the widely imple-
mented properness condition by Mas-Colell [855]. Moreover, in contrast to the
vast majority of publications on convex economies with ordered commodity
spaces, our approach doesn’t require any lattice structure of commodity spaces
in either finite-dimensional or infinite-dimensional settings.

The usage of the extremal principle makes it possible to derive really sur-
prising results on the generalized second welfare theorem in both approximate
and exact forms for strong Pareto optimal allocations in nonconvex economies
with ordered commodity spaces. Indeed, in this case we don’t need qualification
conditions of the above type for the validity of our extended versions of the
second welfare theorem. This conclusion seems to be new even for classical
models involving convex economies with finite-dimensional commodities.

As mentioned, marginal prices in our nonconvex extensions of the second
welfare theorem are formalized via the basic normals in the exact version and
via their Fréchet-like approximations in the approximate version presented be-
low for all the three types of Pareto optimal allocations. Then the variational
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descriptions of approximate normals established in Subsect. 1.1.4 allow us to
derive a convex-type/decentralized equilibrium interpretation of the extended
second welfare theorems in nonconvex economies involving nonlinear prices;
see Sect. 7.2 for more details and discussions.

Next let us formally describe the basic model of welfare economics under
consideration in this chapter. Although the given description and subsequent
properties discussed in this section hold in the general framework of linear
topological spaces equipped with a locally convex Hausdorff topology, the main
results involving generalized normals require the Asplund space structure; see
also Sect. 8.4 for their counterparts in other classes of Banach spaces.

Let E be a normed commodity space of the economy E that involves n ∈ IN
consumers with consumption sets Ci ⊂ E, i = 1, . . . , n, and m ∈ IN firms
with production sets Sj ⊂ E, j = 1, . . . ,m. Each consumer has a preference
set Pi (x) that consists of elements in Ci preferred to xi by this consumer
at the consumption plan/bundle x = (x1, . . . , xn) ∈ C1 × · · · × Cn. This is
a valuable generalization (with a useful economic interpretation) of ordering
relations given by preferences ≺i as in Sect. 5.3 and, in particular, by utility
functions as in classical models of welfare economics. We have by definition
that xi /∈ Pi (x) for all i = 1, . . . , n and always assume that Pi (x) �= ∅ for
some i ∈ {1, . . . , n}, i.e., at least one consumer is nonsatiated. For convenience
we put cl Pi (x) := {xi} if Pi (x) = ∅.

Now we define feasible allocations of the economy E imposing market con-
straints formalized via a given nonempty subset W ⊂ E of the commodity
space; we label W as the net demand constraint set in E .

Definition 8.1 (feasible allocations). Let x = (xi ) := (x1, . . . , xn), and let
y = (y j ) := (y1, . . . , ym). We say that the pair (x, y) ∈

∏n
i=1 Ci ×

∏m
j=1 Sj is

a feasible allocation of E if

w :=
n∑

i=1

xi −
m∑

j=1

y j ∈ W . (8.1)

Introducing the net demand constraint set allows us to unify some conven-
tional situations in economic models and to give a useful economic insight in
the general framework. Indeed, in the classical case the set W consists of one
element {ω}, where ω is an aggregate endowment of scarce resources. Then
constraint (8.1) reduces to the “markets clear” condition. Another conven-
tional framework appears in (8.1) when the commodity space E is ordered by
a closed positive cone E+ and we put W := ω− E+, which corresponds to the
“implicit free disposal” of commodities. Generally constraint (8.1) describes
a natural situation that may particularly happen when the initial aggregate
endowment is not exactly known due to, e.g., incomplete information. In the
latter general case the set W reflects some uncertainty in the economic model
under consideration.

In what follows we pay the main attention to the three Pareto-type notions
of optimality for feasible allocations in the economic model E : weak Pareto
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optimality, Pareto optimality, and strong Pareto optimality. While the first two
notions will be considered in parallel under similar but somewhat different
net demand constraint qualifications, the strong Pareto optimality plays a
specific role in the case of ordered commodity spaces, where such constraint
qualifications are not needed for the validity of the extended versions of the
second welfare theorem established below, even for the classical framework of
convex economies with finite-dimensional commodities.

Definition 8.2 (Pareto-type optimal allocations). Let (x̄, ȳ) be a feasi-
ble allocation of the economy E with the property

x̄i ∈ cl Pi (x̄) for all i = 1, . . . , n .

We say that:
(i) (x̄, ȳ) is a local weak Pareto optimal allocation of E if there is

a neighborhood O of (x̄, ȳ) such that for every feasible allocation (x, y) ∈ O
one has xi /∈ Pi (x̄) for some i ∈ {1, . . . , n}.

(ii) (x̄, ȳ) is a local Pareto optimal allocation of E if there is a
neighborhood O of (x̄, ȳ) such that for every feasible allocation (x, y) ∈ O
either xi /∈ cl Pi (x̄) for some i ∈ {1, . . . , n} or xi /∈ Pi (x̄) for all i = 1, . . . , n.

(iii) (x̄, ȳ) is a local strong Pareto optimal allocation of E is there
is a neighborhood O of (x̄, ȳ) such that for every feasible allocation (x, y) ∈ O
with (x, y) �= (x̄, ȳ) one has xi /∈ cl Pi (x̄) for some i ∈ {1, . . . , n}.

When the preference sets Pi (x) are defined via preference relations ≺i as
in Sect. 5.3 (in particular, by utility functions), the above notions of Pareto
and weak Pareto optimal allocations reduce to the corresponding concepts
of multiobjective optimization under the special type of constraints (8.1).
The notion of strong Pareto optimality is non-conventional in multiobjective
optimization, even in the classical framework, while playing an important role
in economic modeling.

To study Pareto and weak Pareto optimal allocations, we introduce and
discuss in the next subsection appropriate net demand qualification conditions,
which allow us to reduce these types of Pareto optimality to local extremal
points of some closed sets. Such qualifications are not needed in the case of
strong Pareto optimal allocations, which will be shown in Subsect. 8.3.2.

8.1.2 Net Demand Qualification Conditions for Pareto
and Weak Pareto Optimal Allocations

We begin this subsection with two parallel definitions of qualification condi-
tions for the economy E that play a crucial role in the subsequent results on
the extended second welfare theorem in the case of Pareto and weak Pareto
optimal allocations, respectively. Obviously the condition in (ii) implies the
one in (i), but not vice versa.
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Definition 8.3 (net demand qualification conditions). Let (x̄, ȳ) be a
feasible allocation of the economy E, and let

w̄ :=
n∑

i=1

x̄i −
m∑

j=1

ȳ j . (8.2)

Given ε > 0, we consider the set

∆ε :=
n∑

i=1

cl Pi (x̄) ∩ (x̄i + ε IB) −
m∑

j=1

cl Sj ∩ (ȳ j + ε IB) − cl W ∩ (w̄ + ε IB)

and say that:
(i) The net demand qualification (NDQ) condition holds at (x̄, ȳ)

if there are ε > 0, a sequence {ek} ⊂ X with ek → 0 as k → ∞, and a
consumer index i0 ∈ {1, . . . , n} such that

∆ε + ek ⊂ Pi0(x̄) +
∑
i �=i0

cl Pi (x̄) −
m∑

j=1

Sj − W (8.3)

for all k ∈ IN sufficiently large.
(ii) The net demand weak qualification (NDWQ) condition holds

at (x̄, ȳ) if there are ε > 0 and a sequence ek → 0 as k → ∞ such that

∆ε + ek ⊂
n∑

i=1

Pi (x̄) −
m∑

j=1

Sj − W (8.4)

for all k ∈ IN sufficiently large.

It is easy to observe that both NDQ and NDWQ conditions automatically
hold if either one among preference, or production, or net demand constraint
sets is epi-Lipschitzian around the corresponding point in the sense of Defini-
tion 1.24(ii). We know from Proposition 1.25 that for epi-Lipschitzian property
of a convex set Ω ⊂ X is equivalent to its nonempty interior intΩ �= ∅. Thus
the above qualification conditions may be viewed as far-going extensions of
the classical nonempty interiority condition well developed for convex models
of welfare economics.

The next proposition contains verifiable conditions that ensure the ful-
fillment the NDQ and NDWQ properties and significantly extend the epi-
Lipschitzian requirements mentioned above. Note to this end that the epi-
Lipschitzian property of Ω around x̄ implies this property of the closure clΩ
around this point, but not vice versa. It is also worth mentioning that the
summation of sets as in (8.6) and (8.7) below (especially for a large number
of sets) tends to improve properties related to nonempty interiors, and that
the epi-Lipschitzian property of sets falls into this category.
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Proposition 8.4 (sufficient conditions for NDQ and NDWQ prop-
erties). Let (x̄, ȳ) be a feasible allocation of the economy E. The following
assertions hold:

(i) Assume that the sets Sj , j = 1, . . . ,m, and W are closed near the
points ȳ j and w̄ from (8.2), respectively. Then the NDQ condition is satisfied at
(x̄, ȳ) if there exist a number ε > 0, an index i ∈ {1, . . . , n}, and a desirability
sequence {eik} ⊂ E, eik → 0 as k → ∞, such that

cl Pi (x̄) ∩ (x̄i + ε IB) + eik ⊂ Pi (x̄) for all large k ∈ IN . (8.5)

Moreover, the NDWQ condition is satisfied at (x̄, ȳ) if a desirability sequence
{vik} exists for each i ∈ {1, . . . , n} with some ε > 0 in (8.5).

(ii) Assume that x̄i ∈ cl Pi (x̄) for all i = 1, . . . , n. Then the NDWQ con-
dition is satisfied at (x̄, ȳ) if the set

∆ :=
n∑

i=1

Pi (x̄) −
m∑

j=1

Sj − W (8.6)

is epi-Lipschitzian around 0 ∈ cl∆. It happens when either one among the sets
Pi (x̄) for i = 1, . . . , n, Sj for j = 1, . . . ,m, and W or some of their partial
combinations in (8.6) is epi-Lipschitzian around the corresponding point.

(iii) Assume that n > 1. The NDQ condition is satisfied at (x̄, ȳ) if there
is a consumer i0 ∈ {1, . . . , n} such that Pi0(x̄) �= ∅ and that the set

Σ :=
∑
i �=i0

cl Pi (x̄) (8.7)

is epi-Lipschitzian around the point
∑

i �=i0
x̄i . It happens when either one

among the sets cl Pi (x̄) for i ∈ {1, . . . , n} \ {i0} or some of their partial sums
is epi-Lipschitzian around the corresponding point.

Proof. Both statements in (i) easily follow from the definitions and the as-
sumptions made.

Let us prove (ii). Due to the structure of (8.4), it is sufficient to consider the
case when the aggregate set ∆ in (8.6) is epi-Lipschitzian around the origin.
Using Definition 1.24(ii) of the epi-Lipschitzian property, we find v ∈ E and
γ > 0 satisfying

∆ ∩ (γ IB) + t(v + γ IB) ⊂ ∆ for all t ∈ (0, γ ) . (8.8)

Picking an arbitrary sequence tk ↓ 0 as k → ∞, put

ek := tkv as k ∈ IN , ε :=
γ

n + m + 2
(8.9)

and show that the NDWQ condition (8.6) holds with ek and ε from (8.9). To
proceed, we take any zε ∈ ∆ε and conclude by the construction of w̄ and ∆ε
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in Definition 8.3 that zε ∈ (n + m + 1)ε IB. Due to the structure of ∆ in (8.6),
find a sequence of elements zk ∈ ∆ converging to zε as k → ∞. Obviously

zk ∈
(
n + m + 2

)
ε IB = γ IB for large k ∈ IN (8.10)

by the choice of ε in (8.9). We can also select zk so that

zε − zk ∈ (tkγ )B for large k ∈ IN . (8.11)

Now combining (8.8)–(8.11), we get

zε + ek = zk + tkv + (zε − zk) ∈ ∆ ∩ (γ IB) + tk(v + γ IB) ⊂ ∆ ,

which surely implies (8.4).
It remains to justify (iii) considering the case when the set Σ in (8.7) is

epi-Lipschitzian around the reference point. Using this property, we find v ∈ E
and γ > 0 such that∑

i �=i0

cl Pi (x̄)
⋂(∑

i �=i0

x̄i + γ IB
)

+ t
(
v + γ IB

)
⊂
∑
i �=i0

cl Pi (x̄) . (8.12)

Now select vk and ε as in (8.9) and proceed similarly to the above proof of
(ii). Take zε ∈ ∆ε with

zε =
n∑

i=1

xi −
m∑

j=1

y j − w, xi ∈ cl Pi (x̄), y j ∈ cl Sj , w ∈ cl W

and approximate xi0 , y j , and w by sequences of elements from the correspond-
ing sets Pi0(x̄), Sj , and W . In contrast to the proof of (ii), we don’t approximate
xi for i �= i0. Proceedings in this way, we deduce the net demand qualification
condition (8.3) from the epi-Lipschitzian property (8.8) by arguments similar
to those used in justifying assertion (ii). This gives (iii) and completes the
proof of the proposition. �

It is important to observe that we don’t need to impose any assumption
on the preference and production sets for the fulfillment of both qualification
conditions from Definition 8.3 if the net demand constraint set W is epi-
Lipschitzian around w̄. This easily follows from Proposition 8.4(ii). It happens,
in particular, when E is ordered and W := ω − E+ with int E+ �= ∅ for the
closed positive cone E+ ⊂ E . The latter covers the conventional case of the
so-called “free disposal Pareto optimum” defined by Cornet [288].

8.2 Second Welfare Theorem for Nonconvex Economies

This section contains necessary conditions for Pareto and weak Pareto op-
timal allocations of the nonconvex economy E with an Asplund commodity
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space E without imposing any ordering structure on commodities. Invoking
the extremal principle from Chap. 2, we derive necessary conditions for these
two types of Pareto optimal allocations in the approximate and exact forms
via the prenormal/Fréchet normal cone and the basic normal cone, respec-
tively. The results obtained are appropriate extensions of the generalized sec-
ond welfare theorem to nonconvex economies involving the same (common)
marginal/equilibrium price for all the preference and production sets. We
discuss various consequences and interpretations of the main results includ-
ing rather surprising ones that ensure convex-type decentralized equilibria for
nonconvex models by using nonlinear prices.

8.2.1 Approximate Versions of Second Welfare Theorem

This subsection is devoted to approximate/fuzzy versions of the extended sec-
ond welfare theorem, which are formulated and proved in a parallel way for
both Pareto and weak Pareto optimal allocations.

Theorem 8.5 (approximate form of the extended second welfare
theorem with Asplund commodity spaces). Let the pair (x̄, ȳ) be a
local Pareto (resp. weak Pareto) optimal allocation of the economy E with an
Asplund commodity space E. Assume that the net demand qualification con-
dition (resp. net demand weak qualification condition) is satisfied at (x̄, ȳ).
Then for every ε > 0 there exist a suboptimal triple

(x, y, w) ∈
n∏

i=1

cl Pi (x̄) ×
m∏

j=1

cl Sj × cl W

with w defined in (8.1) and a common marginal price p∗ ∈ E∗ \{0} satisfying

−p∗ ∈ N̂
(
xi ; cl Pi (x̄)

)
+ ε IB∗ (8.13)

with xi ∈ x̄i + ε
2 IB for all i = 1, . . . , n,

p∗ ∈ N̂(y j ; cl Sj ) + ε IB∗ (8.14)

with y j ∈ ȳ j + ε
2 IB for all j = 1, . . . ,m,

p∗ ∈ N̂(w; cl W ) + ε IB∗ (8.15)

with w ∈ w̄ + ε
2 IB, and

1 − ε

2
√

n + m + 1
≤ ‖p∗‖ ≤ 1 + ε

2
√

n + m + 1
, (8.16)

where w̄ is defined in (8.2).
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Proof. Let (x̄, ȳ) be a feasible allocation of the economy E . We suppose
that this allocation is locally optimal in the sense of either Pareto or weak
Pareto from Definition 8.2 and proceed in a parallel way for both cases. In
fact, the only difference between these cases is in applying the corresponding
net demand qualification condition from Definition 8.3, which are actually
designed to reduce the Pareto-type optimality under consideration to local
extremal points of a special system of sets. Consider the product space X :=
En+m+1 equipped with the norm

‖(v1, . . . , vn+m+1)‖X :=
[
‖v1‖2 + . . . + ‖vn+m+1‖2

]1/2
.

Since E is Asplund, the product space X is Asplund as well. Taking now a
number ε > 0 for which the NDQ condition (resp. the NDWQ condition)
holds with the corresponding sequence {ek} in (8.3) and (8.4), define the two
closed sets in X as follows

Ω1 :=
n∏

i=1

[
cl Pi (x̄) ∩ (x̄i + ε IB)

]
×

m∏
j=1

[
cl Sj ∩ (ȳ j + ε IB)

]

×
[
cl W ∩ (w̄ + ε IB)

]
,

(8.17)

Ω2 :=
{

(x, y, w) ∈ X
∣∣∣ n∑

i=1

xi −
m∑

j=1

y j − w = 0
}
. (8.18)

Check that (x̄, ȳ, w̄) is a local extremal point of the set system {Ω1,Ω2}
built in (8.17) and (8.18). Indeed, it follows directly from (8.1) and (8.2) that
(x̄, ȳ, w̄) ∈ Ω1∩Ω2. To justify the local extremality of (x̄, ȳ, w̄), it is sufficient
to find a neighborhood U of this point and a sequence {ak} ⊂ X such that
ak → 0 as k → ∞ and that

(Ω1 − ak) ∩Ω2 ∩ U = ∅ for all large k ∈ IN (8.19)

under the corresponding qualification condition from Definition 8.3. To pro-
ceed, we take a neighborhood O ∈ En+m of the Pareto (weak Pareto) optimal
allocation (x̄, ȳ) and a sequence {ek} ⊂ E converging to zero for which one
has (8.3) and (8.4), respectively. In both cases we put

U := O × IR ⊂ X and ak := (0, . . . , 0, ek) ∈ X

and show that (8.19) holds for the same k ∈ IN as in (8.3) and (8.4). Assuming
the contrary, we find zk ∈ Ω1 with zk − ak ∈ Ω2. By the structure of (8.17)
and (8.18) and by the construction of ak and U this implies the existence of
(xk, yk, wk) with (xk, yk) ∈ O,
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xik ∈ cl Pi (x̄) ∩ (x̄i + ε IB), i = 1, . . . , n ,

y jk ∈ cl Sj ∩ (ȳ j + ε IB), j = 1, . . . ,m ,

wk ∈ cl W ∩ (w̄ + ε IB), and

n∑
i=1

xik −
m∑

j=1

y jk − wk + ek = 0 .

The latter means, by the construction of the set ∆ε in Definition 8.3, that
0 ∈ ∆ε +ek . Then applying the NDQ condition, we get that the origin belongs
to the set on right-hand side of (8.3), while the NDWQ condition ensures that
the right-hand side set in (8.4) contains the origin. This definitely contradicts
the (local) Pareto optimality of (x̄, ȳ) in the first case and the weak Pareto
optimality of (x̄, ȳ) in the second one. Thus we arrive at (8.19), which signifies
that (x̄, ȳ, w̄) is a local extremal point for the system of closed sets {Ω1,Ω2}
under consideration in the Asplund space X .

Now we can apply to this system the approximate version of the extremal
principle from Theorem 2.20. According to extremal principle in Asplund
spaces, for every ε > 0 there are z := (x1, . . . , xn, y1, . . . , ym, w) ∈ Ω1, z̃ ∈ Ω2,
and dual elements (Fréchet normals)

z∗ ∈ N̂(z;Ω1), and z̃∗ ∈ N̂(z̃;Ω2) (8.20)

satisfying the relations

‖xi − x̄i‖ ≤ ε

2
, ‖y j − ȳ j‖ ≤ ε

2
, ‖w − w̄‖ ≤ ε

2
(8.21)

for i = 1, . . . , n and j = 1, . . . ,m with

1 − ε

2
≤ ‖z̃∗‖ ≤ 1 + ε

2
and ‖z∗ + z̃∗‖ ≤ ε

2
. (8.22)

Observe that the set Ω2 in (8.18) is a linear subspace separated in all the
variables (xi , y j , w). Thus N̂(z̃;Ω2) is a subspace orthogonal to Ω2 and

z̃∗ = (p∗, . . . , p∗,−p∗, . . . ,−p∗)

in (8.20), where the minus terms start with the (n + 1)st position. It follows
from (8.22) and the norm definition on X that

1 − ε

2
≤

√
n + m + 1 ‖p∗‖ ≤ 1 + ε

2
. (8.23)

Then we conclude from (8.18) and the last estimate in (8.22) that

−z̃∗ = (−p∗, . . . ,−p∗, p∗, . . . , p∗) ∈ N̂(z;Ω1) + ε IB∗ . (8.24)
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Now use the Fréchet normal product formula from Proposition 1.2 applied
to the set Ω1 and observe by (8.21) that all the components (xi , y j , w) of
the point z in (8.24) belong to the interiors of the corresponding neighbor-
hoods in (8.17); hence these neighborhoods can be ignored in the calculation
of N̂(z;Ω1). Combining finally (8.21), (8.23), and (8.24), we arrive at relations
(8.13)–(8.16) and complete the proof of the theorem. �

Observe that, in contrast to the approximate extremal principle of Theo-
rem 2.20 for the general extremal system of closed sets, Theorem 8.5 ensures
the existence of a common dual element p∗ ∈ E∗ \{0} for all the sets involved
in (8.13)–(8.16), instead of generally different elements x∗

i in the extremal
principle. This common element, which can be interpreted as an approximate
marginal/equilibrium price for all the preference and production sets near
Pareto and weak Pareto optimal allocations, corresponds to the very essence
of the classical second welfare theorem ensuring the identity between marginal
rates of substitution for consumers and firms. Note that such a specification
of the extremal principle in models of welfare economics is due to the specific
structure of sets (8.17) and (8.18) in the extremal system, especially due to
the separated variables in (8.18).

Let us present an equilibrium interpretation of the obtained approximate
version of the second welfare theorem in the case of convex economies; more
precisely, for economies with convex preference and production sets. In this
case relations (8.13) and (8.14) reduce, respectively, to global minimization
(maximization) of the perturbed consumer expenditures (firm profits) over the
corresponding preference (production) sets, justifying therefore a decentralized
price equilibrium in convex models with no interiority assumptions on the
convex preferences and production sets in question under small perturbations.

Corollary 8.6 (perturbed equilibrium in convex economies). In addi-
tion to the assumptions of Theorem 8.5, suppose that all the preferences and
production sets Pi (x̄), i = 1, . . . , n, and Sj , j = 1, . . . ,m, are convex. Then
for every ε > 0 there exist a suboptimal allocation (x, y) with the feasible
linear combination w from (8.1) satisfying

(x, y, w) ∈
n∏

i=1

[
cl Pi (x̄)

⋂(
x̄i +

ε

2
IB
)]

×
m∏

j=1

[
cl Sj

⋂(
ȳ j +

ε

2
IB
)]

×
[
cl W

⋂(
w̄ +

ε

2
IB
)] (8.25)

and an equilibrium price p∗ ∈ E∗ \ {0} such that one has (8.15), (8.16), and

〈p∗, ui − xi 〉 ≥ −ε‖ui − xi‖ for all ui ∈ cl Pi (x̄), i = 1, . . . , n, (8.26)

〈p∗, v j − y j 〉 ≤ ε‖v j − y j‖ for all v j ∈ cl Sj , j = 1, . . . ,m . (8.27)
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Proof. It follows directly from relations (8.13) and (8.14) of Theorem 8.5 and
the representation of ε-normals to convex sets given in Proposition 1.3. �

The next theorem establishes rather surprising results about the equilib-
rium meaning of marginal prices from the approximate second welfare theorem
for general nonconvex economies based on smooth variational descriptions of
Fréchet-like normals. Indeed, in this way we get a perturbed decentralized equi-
librium of the convex type as in the preceding corollary, but with no convexity
assumptions, replacing the linear price p∗ in (8.26) and (8.27) by some non-
linear prices that are differentiable in certain senses with the derivatives (i.e.,
rates of change) arbitrarily close to p∗ at suboptimal allocations.

Theorem 8.7 (decentralized equilibrium in nonconvex economies
via nonlinear prices). Given any ε > 0, the following assertions hold:

(i) Let all the assumptions of Theorem 8.5 be fulfilled. Then there exist a
suboptimal triple (x, y, w) satisfying (8.25) with w defined in (8.1), a marginal
price p∗ ∈ E∗\{0} satisfying relations (8.15) and (8.16), as well as real-valued
functions gi , i = 1, . . . , n, and h j , j = 1, . . . ,m + 1, on the commodity space
E that are Fréchet differentiable at xi , y j , and w, respectively, with⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

‖∇gi (xi ) − p∗‖ ≤ ε, i = 1, . . . , n ,

‖∇h j (y j ) − p∗‖ ≤ ε, j = 1, . . . ,m ,

‖∇hm+1(w) − p∗‖ ≤ ε

(8.28)

and such that each gi , i = 1, . . . , n, achieves its global minimum over cl Pi (x̄)
at xi , each h j , j = 1, . . . ,m, achieves its global maximum over cl Sj at y j , and
h j+1 achieves its global maximum over cl W at w.

(ii) In addition to the assumptions of Theorem 8.5, suppose that E admits
an S-smooth bump function from the classes S considered in Theorem 1.30.
Then there exist a suboptimal triple (x, y, w) satisfying (8.25), a marginal price
p∗ ∈ E∗ \ {0} satisfying (8.15) and (8.16), as well as S-smooth functions gi

and h j on E satisfying (8.28) such that each gi achieves its global minimum
over cl Pi (x̄) uniquely at xi , that each h j , j = 1, . . . ,m, achieves its global
maximum over cl Sj uniquely at y j , and h j+1 achieves its global maximum
over cl W uniquely at w. Moreover, we can choose gi and h j to be convex and
concave, respectively, if E admits a Fréchet smooth renorm.

Proof. Take p∗ satisfying the conclusions of Theorem 8.5 and then, by (8.13)–
(8.15), find p∗

i and p∗
j with⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−p∗
i ∈ N̂

(
xi ; cl Pi (x̄)

)
, ‖p∗

i − p∗‖ ≤ ε, i = 1, . . . , n ,

p∗
j ∈ N̂(y j ; cl Sj ), ‖p∗

j − p∗‖ ≤ ε, j = 1, . . . ,m ,

p∗
j+1 ∈ N̂(w; cl W ), ‖p∗

j+1 − p∗‖ ≤ ε .

(8.29)
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Applying now the smooth variational descriptions of Fréchet normals from
Theorem 1.30, we arrive at all the conclusions of the theorem. �

One can see that the functions gi and h j play a role of nonlinear prices dis-
cussed before the formulation of Theorem 8.7, which ensure the decentralized
convex-type equilibrium in nonconvex economies under small perturbations.

8.2.2 Exact Versions of Second Welfare Theorem

Next we derive pointbased necessary optimality conditions for Pareto and weak
Pareto optimal allocations of the economy E expressed via the basic normal
cone to the preference, production, and net demand constraint sets computed
exactly at optimal allocations. The results obtained are given in the exact form
of the extended second welfare theorem, where the same marginal price is
associated, at the optimal allocation under consideration, with all the economy
sets listed above, providing thus a marginal price equilibrium.

Our proof of the exact second welfare theorem is based on passing to the
limit in the relations of the approximate second welfare theorem established in
the preceding subsection. To furnish the limiting procedure, we need to impose
some sequential normal compactness conditions, as always in this book. How-
ever, the present economic model is different from all the previous settings, in
particular, from the one in Theorem 2.22 for the exact extremal principle. The
specific feature of the model E under consideration is that, instead of imposing
the SNC condition on all but one sets involved, we require this property only
for one among the preference, production, and net demand constraint sets.
Such an essential improvement of the exact extremal principal in the economic
framework E happens to be possible mostly due to the separated structure of
the set (8.18) involved in the extremal system.

Theorem 8.8 (exact form of the extended second welfare theorem
with Asplund commodity spaces). Let (x̄, ȳ) be a local Pareto (resp.
weak Pareto) optimal allocation of the economy E satisfying the corresponding
assumptions of Theorem 8.5 with w̄ defined in (8.2). Suppose in addition that
one of the sets

cl Pi (x̄), i = 1, . . . , n; cl Sj , j = 1, . . . ,m; cl W

is sequentially normally compact at x̄i , ȳ j , and w̄, respectively. Then there is
a nonzero price p∗ ∈ E∗ satisfying

−p∗ ∈ N
(
x̄i ; cl Pi (x̄)

)
, i = 1, . . . , n, (8.30)

p∗ ∈ N(ȳ j ; cl Sj ), j = 1, . . . ,m, (8.31)

p∗ ∈ N(w̄; cl W ) . (8.32)
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Proof. We prove this theorem by passing to the limit in the relations of
Theorem 8.5. Pick an arbitrary sequence εk ↓ 0 as k → ∞ and, according to
the latter result, find sequences (xk, yk, wk, p∗

k ) ∈ E × E × E × E∗ satisfying

xik ∈ cl Pi (x̄) ∩ (x̄i + εk IB), i = 1, . . . , n ,

y jk ∈ cl Sj ∩ (ȳ j + εk IB), j = 1, . . . ,m ,

wk =
n∑

i=1

xik −
m∑

j=1

y jk ∈ cl W ∩ (w̄ + εk IB) ,

and the dual relations (8.13)–(8.16) with ε = εk for each k ∈ IN . Obviously
(xk, yk, wk) → (x̄, ȳ, w̄) as k → ∞. Since E is Asplund and the prices p∗

k
are uniformly bounded by (8.16), there is p∗ ∈ E∗ such that the sequence
{p∗

k } converges to p∗ in the weak∗ topology of E∗. Now passing to the limit
in (8.13)–(8.15) as k → ∞ and remembering the construction of the basic
normal cone, we arrive at all the relations (8.30)–(8.32).

It remains to prove that p∗ �= 0 if one of the sets cl Pi (x̄), cl Sj , and cl W is
SNC at the corresponding point. On the contrary, let p∗ = 0 and assume for
definiteness that the set cl W is SNC at w̄. Then by (8.15) there is a sequence
of e∗k ∈ E∗ such that

p∗
k − εke∗k ∈ N̂(wk ; cl W ) with ‖e∗k ‖ = 1 for all k ∈ IN . (8.33)

Obviously p∗
k − εke∗k

w∗
→ 0 as k → ∞. Then by Definition 1.20 of SNC sets, we

conclude from (8.33) that

‖p∗
k − εke∗k ‖ → 0 and hence ‖p∗

k ‖ → 0 as k → ∞ .

The latter clearly contradicts the left-hand side inequality in (8.16) for p∗
k .

Thus we have p∗ �= 0, which completes the proof of the theorem. �

Let us discuss some useful consequences of Theorem 8.8. First we consider
a special case of E , where the net demand constraint set W admits the conic
representation

W = ω + Γ with some ω ∈ cl W . (8.34)

If E is an ordered commodity space with the closed positive cone E+ in it (see
the next section), then representation (8.34) with Γ := −E+ corresponds to
the so-called implicit free disposal of commodities. We consider a more general
case of Γ being an arbitrary convex cone in E , with no ordering structure,
and show that (8.32) implies in this case the following complementary slack-
ness condition, which economically can be interpreted as zero value of excess
demand at the marginal price.
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Corollary 8.9 (excess demand condition). In addition to the assump-
tions of Theorem 8.8, suppose that W is given as (8.34), where Γ is a non-
empty convex subcone of the commodity space E. Then there is a nonzero price
p∗ ∈ E∗ satisfying (8.30), (8.31), and

〈
p∗,

n∑
i=1

x̄i −
m∑

j=1

ȳ j − ω
〉

= 0 . (8.35)

Proof. To justify (8.35), observe that

〈p∗, w̄ − ω〉 ≥ 〈p∗, w − ω〉 for all w ∈ cl W (8.36)

due to (8.32), (8.34), and the normal cone representation for convex sets.
Hence 〈p∗, w̄ − ω〉 ≥ 0. On the other hand, taking

2(w̄ − ω) ∈ W − ω = Γ

due to the conic structure of Γ , we get by (8.36) that 〈p∗, w̄−ω〉 ≤ 0, which
justifies (8.35) and completes the proof of the corollary. �

In the case of economies with convex preference and production sets, re-
lations (8.30) and (8.31) of Theorem 8.8 reduce to the classical consumer
expenditure minimization and firm profit maximization conditions of the sec-
ond fundamental theorem of welfare economics. We are able, however, essen-
tially improve the nonempty interiority condition imposed on convex sets in
the economy E . Indeed, we know from Theorem 1.21 that the SNC prop-
erty required in our extension of the second welfare theorem is equivalent,
for convex sets with nonempty relative interiors, to the finite codimension-
ality of such sets. Moreover, convex sets in Asplund spaces may be SNC
even having empty relative interiors; see Example 3.6 and also the discus-
sion in Remark 1.27. Thus the following consequence of Theorem 8.8 provides
a far-going improvement of the classical second welfare theorem for convex
economies with Asplund commodity spaces in both cases of Pareto and weak
Pareto optimality.

Corollary 8.10 (improved second welfare theorem for convex eco-
nomies). In addition to the assumptions of Theorem 8.8, suppose that all the
preference and production sets

Pi (x̄), i = 1, . . . , n, and Sj , j = 1, . . . ,m, are convex.

Then there is a nonzero price p∗ ∈ E∗ satisfying (8.32) and such that

x̄i minimizes 〈p∗, xi 〉 over xi ∈ cl Pi (x̄i ) whenever i = 1, . . . , n ,

ȳ j maximizes 〈p∗, y j 〉 over y j ∈ cl Sj whenever j = 1, . . . ,m .
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Proof. This follows directly from (8.30) and (8.31) due to the normal cone
representation for convex sets. �

Remark 8.11 (nonconvex equilibria). As shown in the above corollary,
the assumptions in Theorem 8.8 justify the decentralized price equilibrium, at
Pareto and weak Pareto optimal allocations of convex models of welfare eco-
nomics. In contrast to the approximate/suboptimal setting of Theorem 8.7,
we may not generally provide a decentralized equilibrium interpretation of the
pointbased relations (8.30) and (8.31) via nonlinear prices. Nevertheless, the
results obtained allow us to treat the marginal price equilibrium given by the
first-order necessary optimality conditions of Theorem 8.8 as the limiting case
of the convex-type decentralized equilibrium in nonconvex models, which can
be achieved by using nonlinear prices.

8.3 Nonconvex Economies with
Ordered Commodity Spaces

In this section we study a special case of the welfare economic model E when
the commodity space E is an ordered Banach space. Our goals are:

(i) Find efficient conditions ensuring the marginal price positivity in the
framework of the (exact) extension of the second welfare theorem given by
Theorem 8.8 for Pareto and weak Pareto optimal allocations of (generally
nonconvex) economies E .

(ii) Derive new versions of both approximate and exact second welfare the-
orems for strong Pareto optimal allocations in the case of ordered commodity
spaces, without imposing net demand qualification conditions.

We accomplish these goals in the following two subsections. Observe that
we don’t impose a lattice structure on the commodity space in question.

8.3.1 Positive Marginal Prices

Let E be an ordered Banach space with the closed positive cone

E+ :=
{

e ∈ E
∣∣ e ≥ 0

}
,

where the (standard) partial ordering relation is denoted by ≥, in accordance
with the conventional notation in the economic literature. The corresponding
dual positive cone E∗

+, which is the closed positive cone of the ordered space
E∗, admits the representation

E∗
+ :=

{
e∗ ∈ E∗∣∣ e∗ ≥ 0

}
=
{

e∗ ∈ E∗∣∣ 〈e∗, e〉 ≥ 0 whenever e ∈ E+

}
,

where the order on E∗ is induced by the given one ≥ on E .
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Our conditions for the marginal price positivity are based on the following
lemma of independent interest, which ensures the positivity of the basic normal
cone to closed subsets of ordered Banach spaces.

Lemma 8.12 (positivity of basic normals in ordered spaces). Let E
be an ordered Banach space, and let Ω be a nonempty closed subset of E
satisfying the condition

Ω − E+ ⊂ Ω . (8.37)

Then one has the inclusion

N(ē;Ω) ⊂ E∗
+ whenever ē ∈ Ω . (8.38)

Proof. Take e∗ ∈ N(ē;Ω), where Ω satisfies (8.37). By the definition of basic
normals there are sequences

εk ↓ 0, ek
Ω→ ē, and e∗k

w∗
→ e∗ as k → ∞

with e∗k ∈ N̂εk (ek ;Ω) for all k ∈ IN . Due to (8.37) and the monotonicity
property of ε-normals

N̂ε(e;Ω1) ⊂ N̂ε(e;Ω2) whenever e ∈ Ω2 ⊂ Ω1 and ε ≥ 0 ,

we have e∗k ∈ N̂εk (ek ;Ω − E+) for all k ∈ IN . Fix k ∈ IN and take an arbitrary
number γ > 0. Using the definition of ε-normals, find ηk > 0 such that〈

e∗k , e − ek
〉
≤ (εk + γ ) ‖e − ek‖ if e ∈ (ek + ηk IB) ∩ (Ω − E+) . (8.39)

It is easy to see that

ek − ηku ∈ (ek + ηk IB) ∩ (Ω − E+) for any u ∈ E+ ∩ IB .

Substituting e := ek − ηku into (8.39), one has〈
e∗k ,−u

〉
≤ (εk + γ ) ‖u‖ ≤ εk + γ whenever u ∈ E+ ∩ IB and k ∈ IN .

Passing to the limit in the latter inequality and taking into account that
e∗k

w∗
→ e∗ as k → ∞, we arrive at〈

e∗,−u
〉
≤ γ for all u ∈ E+ ∩ IB ,

which implies that e∗ ∈ E∗
+, since γ > 0 was chosen arbitrary. This gives

(8.38) and completes the proof of the lemma. �

Note that (8.37) is related to free disposal type conditions in economic
models. The next theorem contains assumptions in this line imposed on ei-
ther preference, or production, or net demand constraint sets that ensure the
price positivity p∗ ∈ E∗

+ \ {0} in our extended second welfare theorem in the
framework of ordered Asplund commodity spaces.
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Theorem 8.13 (positive prices for Pareto and weak Pareto optimal
allocations). Let (x̄, ȳ) be a local Pareto (resp. weak Pareto) optimal allo-
cation of the economy E. In addition to the corresponding assumptions of
Theorem 8.8, suppose that E is an ordered space and that one of the following
conditions holds:

(a) There exists i ∈ {1, . . . , n} such that the i-th consumer satisfies the
desirability condition at x̄, i.e.,

cl Pi (x̄) + E+ ⊂ cl Pi (x̄) .

(b) There exists j ∈ {1, . . . ,m} such that the j-th firm satisfies the free
disposal condition, i.e.,

cl Sj − E+ ⊂ cl Sj .

(c) The net demand constraint set W exhibits the implicit free disposal
of commodities, i.e.,

cl W − E+ ⊂ cl W .

Then there is a positive marginal price p∗ ∈ E∗
+ \ {0} satisfying relations

(8.30)–(8.32) via the basic normal cone.

Proof. The marginal price positivity p∗ ∈ E∗
+ in cases (b) and (c) follows

directly from Lemma 8.12 due to relations (8.31) and (8.32) of Theorem 8.8.
Case (a) reduces to the same lemma by (8.30) and the property

N(ē;Ω) = −N(−ē;−Ω) for every Ω ⊂ E and ē ∈ Ω

valid in any Banach space, which can be checked by definition. �

Observe that each of the conditions in (a)–(c) implies the epi-Lipschitzian
property of the corresponding sets cl Pi (x̄), cl Sj , and cl W provided that
int E+ �= ∅. Due to the discussions above, the latter nonempty interior require-
ment on the positive cone of E ensures also the fulfillment of the qualification
and normal compactness conditions of Theorem 8.8 and thus the existence
of a positive marginal price p∗ ∈ E∗

+ \ {0} in Theorem 8.13.

8.3.2 Enhanced Results for Strong Pareto Optimality

One can see that the net demand qualification conditions (NDQ and NDWQ)
play a major role in the proofs of the above extensions of the second wel-
fare theorem for Pareto and weak Pareto optimal allocations. Indeed, they
allow us to reduce the corresponding notions of Pareto optimality to extremal
points of set systems and then to apply the extremal principle. In the case
of ordered commodity spaces E these qualification conditions are related to
the nonempty interior requirement int E+ �= ∅ on the positive cone of E . Of
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course, all the above extensions of the second welfare theorem hold true for
strong Pareto optimal allocations, which connote a more restrictive notion of
Pareto optimality.

In this subsection we show that the net demand qualification conditions
are not needed at all for strong Pareto optimal allocations of convex and non-
convex economies in ordered commodity spaces, where int E+ = ∅ in many
settings important for both the theory and applications. It happens that the
strong Pareto optimality requirement allows us to reduce the corresponding
optimal allocations to local extremal points of set systems with no qualification
conditions imposed. Thus we can employ again the extremal principle, which
is our main tool of variational analysis.

Recall that the closed positive cone E+ is generating for E if this space
can be represented as E = E+ − E+. The class of Banach spaces ordered by
their generation positive cones is sufficiently large including, in particular, all
Banach lattices (or normed complete Riesz spaces) whose generating positive
cones typically have empty interiors.

The next result establishes several versions of the second welfare theo-
rem for strong Pareto optimal allocations of (generally nonconvex) economies
with ordered Asplund commodity spaces. It contains both approximate and
exact forms of the second welfare theorem including marginal price positivity
under desirability/free disposal type assumptions. Note that the generating
requirement is imposed on the positive cone in the first two statements of the
theorem, while the third one provides alternative assumptions on the economy
ensuring the same conclusions in more general ordered spaces.

Theorem 8.14 (second welfare theorems for strong Pareto optimal
allocations). Let (x̄, ȳ) be a local strong Pareto optimal allocation of the
economy E with an ordered Asplund commodity space E, and let the sets Sj ,
W be locally closed near ȳ j and w̄, respectively. Then the following hold:

(i) Assume that the closed positive cone E+ is generating and that either
the economy exhibits the implicit free disposal of commodities

W − E+ ⊂ W , (8.40)

or the free disposal production condition

Sj − E+ ⊂ Sj for some j ∈ {1, . . . ,m} (8.41)

is fulfilled, or n > 1 and there is a consumer i0 ∈ {1, . . . , n} such that
Pi0(x̄) �= ∅ and one has the desirability condition

cl Pi (x̄) + E+ ⊂ cl Pi (x̄) for some i ∈ {1, . . . , n} \ {i0} . (8.42)

Then for every ε > 0 there exist a suboptimal triple
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(x, y, w) ∈
n∏

i=1

[
cl Pi (x̄)

⋂(
x̄i +

ε

2
IB
)]

×
m∏

j=1

[
Sj

⋂(
ȳ j +

ε

2
IB
)]

×
[
W

⋂(
w̄ +

ε

2
IB
)]

with the aggregate commodity w defined in (8.1) and a common marginal price
p∗ ∈ E∗ satisfying relations (8.13)–(8.16).

(ii) If in addition to (i) one of the sets

cl Pi (x̄), i = 1, . . . , n, Sj , j = 1, . . . ,m, W

is SNC at the corresponding point, then there is a positive marginal price
p∗ ∈ E∗ \ {0} satisfying the pointbased relations (8.30)–(8.32).

(iii) All the conclusions in (i) and (ii) hold true if, instead of the assump-
tion that E+ is a generating cone, we suppose that E+ �= {0} and at least
two sets among W , Sj for j = 1, . . . ,m, and Pi (x̄) for i = 1, . . . , n satisfy the
corresponding conditions in (8.40)–(8.42).

Proof. Consider the system of two sets {Ω1,Ω2} defined in (8.17) and (8.18),
where the closure operation for Sj and W in (8.17) is omitted, since these sets
are locally closed around the points of interest. Taking a strong Pareto local
optimum (x̄, ȳ) of E , we show that (x̄, ȳ, w̄) ∈ Ω1∩Ω2 is a local extremal point
of {Ω1,Ω2} if either the assumptions in (i) or those in (iii) hold. Thus these
assumptions replace the corresponding net demand qualification conditions in
the proof of Theorem 8.5 for Pareto and weak Pareto optimal allocations.

First we consider case (i) when the positive cone E+ is generating and one
of the sets W , Sj , and Pi (x̄) satisfies the corresponding condition in (8.40)–
(8.42). For definiteness assume that (8.40) holds; the other two cases are
treated similarly.

It is easy to observe that w̄ is a boundary point of W ; otherwise one has a
contradiction with Pareto optimality of (x̄, ȳ) under the standing assumption
on Pi (x̄) �= ∅ for some i ∈ {1, . . . , n}. Thus we find a sequence ek → 0 in
E satisfying w̄ + ek /∈ W for all k ∈ IN . Due to the classical Krein-Šmulian
theorem (see, e.g., the book by Abramovich and Aliprantis [1] for the proof,
discussions, and references), in any Banach space E ordered by a closed gen-
erating cone there exists a constant M > 0 such that for each e ∈ E there are
positive vectors

u, v ∈ E+ with e = u − v and max
{
‖u‖, ‖v‖

}
≤ M‖e‖ .

This allows us to find sequences uk
E+→ 0 and vk

E+→ 0 satisfying ek = uk − vk .
Since vk ∈ E+ and W − E+ ⊂ W , we get

w̄ + uk /∈ W with uk
E+→ 0 as k → ∞ . (8.43)
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Now take a neighborhood O ⊂ En+m from the definition of the local
strong Pareto optimal allocation (x̄, ȳ) and show that the extremality condi-
tion (8.19) in the proof of Theorem 8.5 holds for all k ∈ IN along the sequence
of ak := (0, . . . , 0, uk) ∈ En+m+1 and the neighborhood U := O × E . This
will justify the local extremality of (x̄, ȳ, w̄) for the system {Ω1,Ω2} under
consideration.

Supposing that (8.19) doesn’t hold for some k ∈ IN , find (xk, yk, wk) ∈ Ω1

such that (xk, yk) ∈ O and (xk, yk, wk −uk) ∈ Ω2. By uk ∈ E+ and the implicit
free disposal assumption (8.40), the latter implies that

n∑
i=1

xik −
m∑

j=1

y jk = wk − uk ∈ W − E+ ⊂ W (8.44)

for the components of (xk, yk). This means that (xk, yk) is a feasible allocation
of the economy E belonging to the prescribed neighborhood of (x̄, ȳ). Since
(x̄, ȳ) is a strong Pareto optimal allocation of E , we get (xk, yk) = (x̄, ȳ) for
all large k ∈ IN . Hence one has

w̄ + uk =
n∑

i=1

x̄i −
m∑

j=1

ȳ j + uk =
n∑

i=1

xik −
m∑

j=1

y jk + uk

= (wk − uk) + uk = wk ∈ W ,

which contradicts (8.43) and thus justifies the local extremality of (x̄, ȳ, w̄)
for {Ω1,Ω2} in case (i).

Let us next show that the extremality condition (8.19) also holds in case
(iii) of the theorem when the positive cone E+ may not be generating. Suppose
for definiteness that the implicit free disposal condition (8.40) is fulfilled and
that one of the production set (say S1) satisfies the free disposal condition

in (8.41). Choose a sequence uk
E+→ 0 with uk �= 0 for all k ∈ IN , which is

always possible due to E+ �= {0}. Take again ak := (0, . . . , 0, uk) ∈ X and
check (8.19) along this sequence. Assuming the contrary and repeating the
arguments as above, we find (xk, yk, wk) ∈ Ω2∩U satisfying (8.44). The latter
implies that (xk, yk) = (x̄, ȳ) for all large k ∈ IN , since (x̄, ȳ) is a local strong
Pareto optimal allocation of E . It follows from (8.44) in this case that

n∑
i=1

xik − (y1k − uk) −
m∑

j=2

y jk = wk ∈ W (8.45)

for all k ∈ IN sufficiently large. By the free disposal condition (8.41) for j = 1
we have y1k − uk ∈ S1, and hence (8.45) ensures that (xk, yk − (uk, 0, . . . , 0))
is a feasible allocation of E belonging to the prescribed neighborhood of the
strong Pareto local optimum (x̄, ȳ). The latter implies that

y1k − uk = ȳ1 − uk = ȳ1 ,
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i.e., uk = 0 for all large k ∈ N . This contradiction justifies the local extremality
of (x̄, ȳ, w̄) for the system {Ω1,Ω2} under the assumptions in (iii).

Applying the extremal principle of Theorem 2.20 to this system of sets, we
arrive at the conclusions of the approximate second welfare theorem listed in
Theorem 8.5, but now in the case of strong Pareto optimal allocations under
the assumptions in either (i) or (iii) with no imposing the SNC property. If

finally the SNC assumptions from (ii) are additionally imposed, we get the
exact relationships (8.30)–(8.32) of the extended second welfare theorem by
passing to the limits as in the proof of Theorem 8.8. The price positivity under
(8.40)–(8.42) follows from Lemma 8.12 as in the proof of Theorem 8.13. This
completes the proof of this theorem. �

Since the consequences of Theorems 8.5 and 8.8 established in Sect. 8.2,
including equilibrium interpretations, don’t depend on the net demand qual-
ification conditions, they hold true for strong Pareto optimal allocations in
the framework of Theorem 8.14.

Remark 8.15 (modified notion and results for strong Pareto opti-
mal allocations). It has been recently observed by Glenn Malcolm (personal
communication) that the results on the extended second welfare theorem ob-
tained in Subsect. 8.3.2 for strong Pareto optimal allocations hold true with
no change in their formulations for a modified version of strong Pareto opti-
mality, which is probably more attractive for economic applications. The only
difference between the new modified version of (local) strong Pareto optimal
allocations and that given in Definition 8.2(iii) is as follows: instead of the
condition xi /∈ cl Pi (x̄) for some i ∈ {1, . . . , n} along every feasible allocation
with (x, y) �= (x̄, ȳ), we now require (locally) the fulfillment of this condition
merely for those (x, y) with x �= x̄.

The latter modification allows us to involve into consideration feasible
allocations with different production plans and associated endowments, which
seems to be of substantial economic importance.

The reader can check that the above proof of Theorem 8.14 holds, with
just small changes needed, to establish both approximate and limiting versions
of the extended second welfare theorem for modified strong Pareto optimal
allocations under exactly the the same assumptions as in assertions (i)—(iii)
of this theorem, with no net demand qualification conditions.

Indeed, consider the set

Σ := W +
m∑

j=1

Sj ∩ (ȳ j + ν IB) ,

where ν > 0 is sufficiently small. We can easily check that the commodity

w̄ +
m∑

j=1

ȳ j
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gives a boundary point of the set Σ . Then we proceed similarly to the proof
of assertion (i) in Theorem 8.14 by using the Krein-Šmulian theorem and
replacing condition (8.43) by

w̄ +
m∑

j=1

ȳ j /∈ Σ with uk
E+→ 0 as k → ∞ .

This allows us to show that the triple (x̄, ȳ, w̄) is a local extremal point of
the set system {Ω1,Ω2} as in Theorem 8.14 based on the modified definition
of strong Pareto optimal allocations. Similar arguments are applied to justify
counterparts of assertions (ii) and (iii) of Theorem 8.14 in the modified case.

8.4 Abstract Versions and Further Extensions

The last section of the chapter contains some results and discussions on eco-
nomics modeling in more general frameworks in comparison with the basic
settings studied above. First we present abstract (pre)normal counterparts of
the extended second welfare theorems for the economy E described in Sect. 8.1
without imposing the Asplund structure of the commodity space. The final sub-
section concerns models of welfare economics with public goods as well as some
further extensions including models with public environment and with direct
distribution.

8.4.1 Abstract Versions of Second Welfare Theorem

The model E of welfare economics considered above makes sense in any linear
topological space as mentioned in Subsect. 8.1.1. At the same time the re-
sults obtained in Sects. 8.2–8.3 on the extended second welfare theorems are
formulated and proved in terms of Fréchet and basic normals in economies
with Asplund commodity spaces. Analyzing the proofs of the results given
in Sects. 8.2–8.3, we observe the two major points that require the usage of
either Fréchet-like constrictions, or the Asplund structure of commodities, or
both these properties:

(i) Applying the extremal principle of Theorem 2.20 formulated via
Fréchet-like normals to general closed sets, we don’t have an opportunity
to avoid the Asplund property of the space in question due to the characteri-
zation of Asplund spaces from this theorem.

(ii) The results of Theorems 8.13 and 8.14 involving positive prices are
based on Lemma 8.12, which holds in arbitrary Banach spaces but seems to
significantly employ some specific features of Fréchet and basic normals. Fur-
thermore, the decentralized equilibrium descriptions of the extended second
welfare theorem in nonconvex economies via nonlinear prices given in Theo-
rem 8.7 and the related discussions presented in Remark 8.11 definitely require
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the Freéchet-like structure of generalized normals ensuring their variational
representations. As already mentioned, the special geometric properties of the
space in question listed in assertion (ii) of Theorem 8.7 imply the Asplund
property of commodity spaces.

It doesn’t seem possible to get similar variational descriptions for general-
ized normals of non-Fréchet type, which are crucial for the above decentralized
interpretations of the marginal price equilibrium. On the other hand, the main
results of group (i) based on the extremal principle have their counterparts in
non-Asplund spaces via the corresponding prenormal and normal structures
discussed in Sect. 2.5, where some abstract/axiomatic versions of the extremal
principle have been derived. The goal of this subsection is to clarify what ad-
ditional assumptions on the prenormal and normal structures are needed for
the validity of abstract analogs of the approximate and exact second welfare
theorems established in Sects. 8.2 and 8.3.

Let us start with the approximate version of the second welfare theorem
for Pareto, weak Pareto, and strong Pareto optimal allocations. Note that
the net demand qualification conditions of Definition 8.3 and the free dis-
posal/desirability type conditions listed in Theorem 8.14 don’t involve gen-
eralized normals. We need to recognize properties of generalized normals,
in addition to (H) from Definition 2.41 of prenormal structures and those
of presubdifferential structures implying (H) by Propositions 2.42 and 2.43,
which are sufficient for deriving abstract counterparts of Theorems 8.5 and
8.14(ii,iii) in the corresponding settings of Banach spaces.

In what follows, impose in addition to (H) the following properties of
generalized normals that certainly hold for any reasonable prenormal structure
N̂ (·;Ω) on a Banach space X :

(H1) If Ω ⊂ X is a linear subspace of X and if x̄ ∈ Ω, then

N̂ (x̄ ;Ω) = Ω⊥ :=
{

x∗ ∈ X∗∣∣ 〈x∗, x〉 = 0 whenever x ∈ Ω
}

is a subspace orthogonal to Ω.

(H2) For all closed subsets Ω1 and Ω2 of X such that Ω1 ×Ω2 ⊂ X and
for every points x̄i ∈ Ωi , i = 1, 2, one has

N̂
(
(x̄1, x̄2);Ω1 ×Ω2

)
⊂ N̂(x̄1;Ω1) × N̂(x̄2;Ω2) .

Note that, by Proposition 1.2, the product property (H2) holds as equal-
ity for Fréchet normals and that (H2) is always induced by property (S3)
of presubdifferentials D̂ from Subsect. 2.5.1 for subdifferentially generated
prenormal structures N̂ (·;Ω) = D̂δ(·;Ω); see the proof of Proposition 2.42.

The next assertion provides an abstract counterpart of the approximate
second welfare theorem for both Pareto and weak Pareto optimal allocations
established in Theorem 8.5.
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Theorem 8.16 (abstract versions of the approximate second welfare
theorem for Pareto and weak Pareto optimal allocations). Let E be an
economy with a Banach commodity space E, let X := En+m+1, and let N̂ be a
prenormal structure on X with properties (H1) and (H2). Considering a local
Pareto (resp. weak Pareto) optimal allocation (x̄, ȳ) of E with w̄ defined in
(8.2), assume that the net demand qualification condition (resp. net demand
weak qualification condition) holds at (x̄, ȳ). Then for every ε > 0 there exist
a suboptimal triple

(x, y, w) ∈
n∏

i=1

cl Pi (x̄) ×
m∏

j=1

cl Sj × cl W

with the aggregate commodity w defined in (8.1) and a common marginal price
p∗ ∈ E∗ \ {0} satisfying relations (8.13)–(8.16) with N̂ replaced by N̂ .

Proof. It follows the procedure in proving Theorem 8.5 with the use of the
abstract version of the approximate extremal principle from Theorem 2.51(i),
which holds for any prenormal structure, and also using properties (H1) and
(H2) needed to accomplish this procedure. �

Since the normal cone of convex analysis always satisfies assumptions (H),
(H1), and (H2) of Theorem 8.16, all the conclusions of Corollary 8.6 on the
perturbed decentralized equilibrium for convex economies holds in arbitrary
Banach spaces. It is not however the case for Theorem 8.7 on nonconvex
economies as discussed above.

An abstract approximate version of the second welfare theorem for strong
Pareto optimal allocations of economies with ordered commodity spaces
doesn’t require net demand qualification conditions as stated next.

Theorem 8.17 (abstract version of the approximate second welfare
theorem for strong Pareto optimal allocations). Let (x̄, ȳ) be a local
strong Pareto optimal allocation of the economy E with an ordered Banach
commodity space E, let the sets Sj and W be locally closed near ȳ j and w̄,
respectively, and let N̂ be a prenormal structure on X = En+m+1 satisfying
properties (H1) and (H2). Suppose that:

(a) either E+ is generating and one of the free disposal/desirability as-
sumptions (8.40)–(8.42) is fulfilled,

(b) or int E+ �= ∅ and at least two sets among W , Sj for j = 1, . . . ,m,
and Pi (x̄) for i = 1, . . . , n, satisfy the corresponding free disposal/desirability
assumptions in (8.40)–(8.42).

Then for every ε > 0 there exist a suboptimal triple



8.4 Abstract Versions and Further Extensions 487

(x, y, w) ∈
n∏

i=1

[
cl Pi (x̄)

⋂(
x̄i +

ε

2
IB
)]

×
m∏

j=1

[
Sj

⋂(
ȳ j +

ε

2
IB
)]

×
[
W

⋂(
w̄ +

ε

2
IB
)]

with the aggregate commodity w defined (8.1) and a common marginal price
p∗ ∈ E∗ satisfying relations (8.13)–(8.16), where N̂ is replaced by N̂ .

Proof. Follows the one for Theorem 8.14(i, iii) with the use of the abstract
extremal principle from Theorem 2.51(i). �

Next we derive exact versions of the abstract second welfare theorem
for Pareto, weak Pareto, and strong Pareto optimal allocations of noncon-
vex economies with Banach commodity spaces by passing to the limit from
the corresponding approximate versions. To proceed, we need to employ the
abstract sequential normal compactness condition (N̂ -SNC) introduced in De-
finition 2.50. This condition depends on the given prenormal structure N̂ ; it
reduces to our basic SNC property for closed subsets of Asplund spaces when
N̂ = N̂ , the Fréchet normal cone. Note that the following abstract extensions
of the second welfare theorem require the sequential normal compactness prop-
erty although the marginal price relations are generally expressed in terms of
topological (net) limiting normal structures on Banach spaces. This is a defi-
nite advantage of the results obtained.

First we present an abstract extension of the exact second welfare theo-
rem for Pareto and weak Pareto optimal allocations, which imposes the net
demand qualification conditions of Definition 8.3 and generalizes the corre-
sponding results of Theorem 8.8. As in the case of Theorem 8.8, observe that
the N̂ -SNC condition in the next theorem is imposed only on one among the
preference, production, and net demand constraint sets, in contrast to the
general exact extremal principle of Theorem 2.51(ii), where this condition is
required for all but one sets in the extremal system.

Theorem 8.18 (abstract versions of the exact second welfare theo-
rem for Pareto and weak Pareto optimal allocations). Let (x̄, ȳ) be a
local Pareto (resp. weak Pareto) optimal allocation of the economy E satisfying
the corresponding assumptions of Theorem 8.16. Taking a prenormal structure
N̂ on X , suppose in addition that one of the sets

cl Pi (x̄), i = 1, . . . , n, cl Sj , j = 1, . . . ,m, cl W

is N̂ -SNC at the corresponding point. Then there is a nonzero price p∗ ∈ E∗

satisfying the relations

−p∗ ∈ N
(
x̄i ; cl Pi (x̄)

)
, i = 1, . . . , n, (8.46)
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p∗ ∈ N (ȳ j ; cl Sj ), j = 1, . . . ,m, (8.47)

p∗ ∈ N (w̄; cl W ), (8.48)

where N stands for the topological normal structure (2.67) generated by N̂ .
Furthermore, the topological structure N can be replaced in (8.46)–(8.48) by
the sequential normal structure N generated by N̂ in (2.66) if the closed dual
ball IB∗ ⊂ E∗ is weak∗ sequentially compact.

Proof. Similarly to the proof of Theorem 8.8, take an arbitrary sequence
εk ↓ 0 as k → ∞ and, according to the abstract approximate version of
Theorem 8.16, find sequences (xk, yk, wk, p∗

k ) ∈ E × E × E × E∗ satisfying

xik ∈ cl Pi (x̄) ∩ (x̄i + εk IB), i = 1, . . . , n ,

y jk ∈ cl Sj ∩ (ȳ j + εk IB), j = 1, . . . ,m ,

wk =
n∑

i=1

xik −
m∑

j=1

y jk ∈ cl W ∩ (w̄ + εk IB)

and the dual relations (8.13)–(8.16) with ε = εk and N̂ replaced by N̂ . Ob-
viously (xk, yk, wk) → (x̄, ȳ, w̄) as k → ∞. Note that the price sequence {p∗

k }
is bounded in E∗. Invoking basic functional analysis, one gets a weak∗ clus-
ter point (in the sense of convergent subsets) p∗ ∈ cl∗{p∗

k | k ∈ IN} of this
sequence in general Banach commodity spaces. If the closed unit ball IB∗ of
E∗ is weak∗ sequentially compact (as for either Asplund or β-smooth Banach
spaces E), then {p∗

k } contains a subsequence that weak∗ converges to some
p∗ ∈ E∗. Passing to the limit in (8.13)–(8.15) with the prenormal structure N̂
therein, we conclude that the cluster point p∗ in both topological and sequen-
tial cases satisfies the limiting relations (8.46)–(8.48) in terms of, respectively,
the topological and sequential structure generated by N̂ .

It remains to show that we can choose p∗ �= 0 if one of the sets cl Pi (x̄),
cl Sj , and cl W is N̂ -sequentially normally compact at the corresponding point.
This is straightforward for Banach spaces with weak∗ sequentially compact
dual balls , but requires some arguments in the general (not sequential) case.

Assume for definiteness that the set cl W is N̂ -sequentially normally com-
pact at w̄ and that p∗ = 0 is the only weak∗ cluster point of {p∗

k }. Then

p∗
k

w∗
→ 0 as k → ∞ for the whole sequence. Due to (8.15) via N̂ we have

p∗
k + εkb∗

k ∈ N̂ (wk ; cl W ) with some b∗
k ∈ IB∗ for all k ∈ IN ,

and hence p∗
k + εkb∗

k
w∗
→ 0 as k → ∞. This implies, by the N̂ -SNC property

of cl W , that ‖p∗
k + εkb∗

k ‖ → 0 and thus ‖p∗
k ‖ → 0 as k → ∞. The latter
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clearly contradicts the nontriviality condition (8.16) for p∗
k in Theorem 8.16

and completes the proof of this theorem. �

It is easy to see that the results of both Corollaries 8.9 and 8.10 of Theo-
rem 8.8 holds true in the abstract framework of Theorem 8.18 provided that
the normal structure in this theorem agrees with the normal cone of convex
analysis for closed convex subsets of E .

Consider next economies with ordered commodity spaces E . First we ob-
serve that, under the standard desirability or free disposal conditions formu-
lated in (8.40)–(8.42), all the qualification and SNC assumptions of Theo-
rem 8.18 are automatic provided that the closed positive cone E+ is solid,
i.e., of nonempty interior. Thus we arrive at the following abstract version
of the second welfare theorem for Pareto and weak Pareto optimal alloca-
tions of economies with ordered commodity spaces. For brevity we present
this result only for topological normal structures in general Banach spaces; its
sequential counterpart under the weak∗ sequential compactness of IB∗ ⊂ E∗

is formulated similarly, as in the case of Theorem 8.18.

Corollary 8.19 (abstract second welfare theorem for Pareto and
weak Pareto optimal allocations in ordered spaces). Let E be an or-
dered Banach space with int E �= ∅, and let the topological normal structure
N in Theorem 8.18 be such that N (·;Ω) is not larger than the Clarke normal
cone for closed subsets of E. The following assertions hold:

(i) Given a local weak Pareto optimal allocation (x̄, ȳ) of E, assume that
either the net demand constraint set W is closed near w̄ exhibiting the free dis-
posal of commodities (8.40), or one of the production sets Sj is closed near ȳ j

and obeys the free disposal condition (8.41). Then there is a nonzero marginal
price p∗ ∈ E∗ satisfying relations (8.46)–(8.48).

(ii) Given a local Pareto optimal allocation (x̄, ȳ) of E for n > 1, assume
that the i-th consumer satisfies the desirability condition (8.42). Then there is
a nonzero marginal price p∗ ∈ E∗ satisfying relations (8.46)–(8.48).

Proof. It is easy to observe that, for any subset Ω of a Banach space, the
inclusion Ω + K ⊂ Ω with some nonempty open cone K implies the epi-
Lipschitzian property of Ω around every x̄ ∈ clΩ. Thus each of the conditions
(8.40)–(8.42) with int E+ �= ∅ ensures the epi-Lipschitzian property of the
corresponding set and hence, by Proposition 8.4, the fulfillment of the net
demand (resp. weak) qualification condition imposed in Theorem 8.18. Since
the Clarke normal cone is weak∗ locally compact for epi-Lipschitzian sets in
any Banach space, such sets have the sequential normal compactness property
with respect to this cone. This yields the latter property for the correspond-
ing sets in (8.40)–(8.42) with respect to any prenormal structure, which is
not larger than the Clarke normal cone. Hence all the assumptions of Theo-
rem 8.18 hold, and we arrive at the marginal price relations (8.46)–(8.48) for
Pareto and weak Pareto optimal allocations. �
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Similarly to the basic case considered in Subsect. 8.3.2, we finally conclude
that the abstract version of the exact second welfare theorem for strong Pareto
optimal allocations doesn’t require net demand constraint qualifications and
may hold for convex and nonconvex economies with ordered commodity spaces
having closed positive cones of empty interior.

Theorem 8.20 (abstract versions of the exact second welfare theo-
rem for strong Pareto optimal allocations). Let (x̄, ȳ) be a local strong
Pareto optimal allocation of the economy E with an ordered Banach commodity
space E, and let the sets Sj and W be locally closed near ȳ j and w̄ respectively.
Suppose that one of the sets

cl Pi (x̄), i = 1, . . . , n, Sj , j = 1, . . . ,m, W

is N̂ -SNC at the corresponding point, where the abstract prenormal structure
N̂ satisfies assumptions (H1) and (H2), and that

(a) either E+ is generating and one of the free disposal/desirability con-
ditions (8.40)–(8.42) is fulfilled,

(b) or E+ �= ∅ and at least two sets among W , Sj , j = 1, . . . ,m, and
Pi (x̄), i = 1, . . . , n, satisfy the corresponding conditions in (8.40)–(8.42).

Then there is a dual element p∗ ∈ E∗ \ {0} satisfying the marginal price
relations (8.46)–(8.48), where N stands for the topological normal structure
generated by N̂ . Furthermore, the topological structure N can be replaced in
(8.46)–(8.48) by the sequential normal structure N generated by N̂ if the closed
unit ball IB∗ of E∗ is weak∗ sequentially compact.

Proof. Pass to limit in the approximate relations of Theorem 8.17 for strong
Pareto optimal allocations similarly to the proof of Theorem 8.18. �

The abstract results derived in this subsection admit efficient concretiza-
tions for the specific prenormal and normal structures on the corresponding
classes of Banach spaces discussed in Subsect. 2.5.3.

8.4.2 Public Goods and Restriction on Exchange

In the concluding subsection we briefly discuss extensions of the methods and
results developed in this chapter to economies with public goods. We also men-
tion some possible applications of this approach to competitive equilibrium
models with public environment and with restriction on exchange.

In contrast to the welfare economic model studied above, economies with
public goods involve two categories of commodities: private and public. Con-
sumption of the first type is exclusive, i.e., what is taken by any one individual
automatically becomes unavailable for all others. On the contrary, goods are
public if their consumption is identical across all individuals. Mathematically
this means that the commodity space E is represented as the product of two
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Banach spaces E = X × Z , where X and Z are the space of private and pub-
lic commodities, respectively. Thus consumer variables xi ∈ X , i = 1, . . . , n,
stand for private goods, while those of zi ∈ Z , i = 1, . . . , n, correspond to
public goods of commodities; y j ∈ Sj ⊂ E connote production variables as
above. Considering for simplicity the “markets clear” setting in (8.1) with the
given initial endowment of scare recourses ω ∈ X only for private goods, we
write the market constraints in the economy involving both private and public
goods as follows:

n∑
i=1

(xi , zi ) −
m∑

j=1

y j = (ω, 0) . (8.49)

Note that the market constraint condition (8.49) reflects the fact that there is
no endowment of public goods, which is the most crucial characteristic feature
of public good economies.

Proceeding as in the above case of economies with no public goods, by
incorporating the market constraint condition (8.49) into the construction of
the set Ω2 in (8.18), we obtain similar results for economies with public goods
applying the extremal principle. These results include both approximate and
exact forms of the extended second welfare theorem for all the three types
of Pareto optimal allocations, as well as abstract versions of these theorems
presented in Subsect. 8.4.1. The main changes for public goods economies, in
comparison with the basic results of this chapter, are as follows presented only
for the case of the exact/limiting conditions from in Theorem 8.8: instead of
the existence of a nonzero marginal price p∗ ∈ E∗ satisfying (8.30) and (8.31),
we have prices p∗ = (p∗

x , p∗
z ) ∈ X∗ × Z∗ and p∗

i ∈ Z∗ as i = 1, . . . , n with
(p∗

x , p∗
i ) �= 0 for at least one i ∈ {1, . . . , n} and such that

−(p∗
x , p∗

z ) ∈ N
(
x̄i ; cl Pi (x̄)

)
, i = 1, . . . , n , (8.50)

(p∗
x , p∗

z ) ∈ N(ȳ j ; cl Sj ), j = 1, . . . ,m, and (8.51)

p∗
z =

n∑
i=1

p∗
i . (8.52)

Observe that, while conditions (8.50) and (8.51) are actually concretizations
of those in (8.30) and (8.31) for the product structure of the commodity space
E = X × Z , the last one in (8.52) confirms the fundamental conclusion for
welfare economics with public goods that goes back to Samuelson [1189]: the
marginal rates of transformation for public goods are equal to the sum of the
individual marginal rates of substitution at Pareto optimal allocations.

As seen above, the main mathematical tool of our approach to the study
of Pareto optimality in models of welfare economics is the extremal principle
of variational analysis applied to the systems of sets Ω1 and Ω2 defined in
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(8.17) and (8.18) for models with no public goods and modified by (8.49) for
public goods economies. Similar considerations work for welfare models with
the so-called public environment involving combinations of a private market
section with a private non-market sector (e.g., the legal system); see Villar
[1287] for more details and examples.

Mathematically such models can be described similarly to the basic wel-
fare model of Subsect. 8.4.1 with consumer, production, and preference sets
depending on parameters. Appropriate versions of the extended second wel-
fare theorem for such models with Asplund commodity spaces were derived
in Habte’s dissertation [533] based on the extremal principle.

Observe that all the models considered above don’t involve any restrictions
on exchange between their agents. Such restrictions are taking into account
in some other models of competitive economic equilibria based on rationing
schemes; see, e.g., Makarov, Levin and Rubinov [829] and Rubinov [1182].
Mathematically most of these models may be written in the form similar to
those studied above but with more complex relationships between consumer
and production variables in the market constraint conditions in comparison
with (8.1) and (8.49). This leads to modifications of the market constraint set
Ω2 in the corresponding extremal system and can be handled by employing
the extremal principle of variational analysis. An important direct distribution
model of this type was studied by Habte [533] who derived for it various
versions of the extended second welfare theorem.

8.5 Commentary to Chap. 8

8.5.1. Competitive Equilibria and Pareto Optimality in Welfare
Economics. Competitive equilibrium models and the basis ideas of market
price decentralization between consumers and producers/firms go back to Léon
Walras who provided, in his seminal work “Eléments d’Economie Politique
Pure” [1300] published in 1874–1877, justified answers to remarkable questions
raised by several of his predecessors. In particular, Adam Smith asked in
[1217] why a large number of agents motivated by self-interest and making
independent decision don’t create social chaos in a private ownership economy.
Smith himself gained a deep insight into the impersonal coordination between
market behavior of consumers and firms making his famous conclusion on
Invisible Hand. However, only a mathematical model could provide a scientific
justification of empirical observations and conclusions. Constructing such a
model, Walras laid the foundation of general equilibrium theory for competitive
economies known also as models of welfare economics.

Roughly speaking, a competitive price equilibrium is a situation in which
all agents of the economy simultaneously achieve their plans at given prices.
It has long been recognized, starting with Pareto’s work [1053], that there are
some relationships between competitive equilibria in welfare economics and
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appropriate notions of efficiency for feasible allocations of resources; the con-
cept of efficiency in economics is generally identified with Pareto optimality.
According to the classical Pareto principle, a feasible allocation is better than
another one if it is preferred by all the agents, i.e., “better than” means unan-
imous agreement. There are several versions and modern interpretations of
Pareto optimality useful in economic modeling; see particularly Definition 8.2
and the comments below.

Probably the first rigorously justified necessary condition for Pareto opti-
mality in models of welfare economics was published by Lange [738] who estab-
lished the equality between the marginal rates of substitution in consumption
and production sectors at any Pareto optimal allocation; see also Hicks [566],
Samuelson [1188], and Khan [671] for comments on previous attempts, related
results, and unpublished material. Lange’s proof was based on the observation
that a Pareto optimal allocations of resources could be interpreted, under cer-
tain qualification conditions, as an optimal solution to a constrained problem
of nonlinear programming, which allowed him to use the classical Lagrange
multiplier rule under, of course, the standard smoothness assumptions on the
utility and production functions in finite-dimensional commodity spaces. This
result is now known as the original version of the second fundamental theorem
of welfare economics; the name appeared later in the Arrow-Debreu model for
convex economies. In fact, Lange’s result follows, under the differentiability
and convexity assumptions, from the necessary condition for Pareto optimal-
ity in the Arrow-Debreu model for convex economies labeled as the “second
welfare theorem”—see below.

8.5.2. Convex Models of Welfare Economics. The so-called Arrow-
Debreu model of general equilibrium initiated in the 1951 papers by Arrow
[26] and by Debreu [309] has played a fundamental role in mathematical eco-
nomics and its applications and has also greatly influenced the development of
optimization-related areas in mathematics, particularly that of convex analy-
sis. There are numerous publications on various aspects of the Arrow-Debreu
model for convex economies with finite-dimensional and infinite-dimensional
commodity spaces; see, e.g., the books by Aliprantis, Brown and Burkinshaw
[10], Debreu [310], Florenzano [459], Mas-Colell, Whinston and Green [856],
and the references therein.

In their model, Arrow and Debreu shifted the focus on marginal rates
of substitution to the decentralization of Pareto optimal allocations as price
equilibria. Under the convexity and associated assumptions, they established
necessary and sufficient conditions for Pareto optimality via its equivalence to
their competitive price equilibrium understood in the following sense: there are
prices at which expenditure minimization by consumers and profit maximiza-
tion by producers sustain the given Pareto optimal allocation. Moreover, the
existence of such a price equilibrium was proved under appropriate assump-
tions for general convex models with both finite-dimensional and infinite-
dimensional commodity spaces. The major mathematical tools employed in
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the proofs of these results were separation theorems for deriving optimality
conditions and fixed-point theorems (Brouwer and Kakutani) for establishing
the existence of equilibria; all of them are based on convexity.

The names of the first and second welfare theorems came from the corre-
sponding parts of the equivalence between Pareto optimality and price equilib-
ria. The first welfare theorem states that any equilibrium allocation is Pareto
optimal (sufficient condition for Pareto optimality), while the second welfare
theorem states the converse: any Pareto optimal allocation provides a price
equilibrium (necessary condition for Pareto optimality). Observe that the va-
lidity of the first welfare theorem heavily depends on convexity; it doesn’t
have any analogs in nonconvex (even smooth) models. At the same time, the
second welfare theorem admits far-going extensions to nonconvex models; this
is actually the main topic of Chap. 8. Note also that, being based on convexity,
the Arrow-Debreu model doesn’t need any differentiability assumptions as in
all the previous developments.

Besides the afore-mentioned convexity hypotheses, the Arrow-Debreu
model requires nonempty interiors of some sets involved in economies with
infinitely many commodities. Mathematically this is due to the application
of separation theorems in infinite-dimensional spaces. In the case of ordered
topological spaces, the interiority assumption reduces in fact to the nonempty
interior requirement on the positive cone/orthant in the commodity space in
question, which is not fulfilled in many situations important for economic
modeling. To avoid the latter restrictive requirement, Mas-Colell [855] pro-
posed his celebrated properness assumption for convex economies whose or-
dered commodity spaces are topological vector lattices with possibly empty in-
teriors. Various extensions and improvements of Mas-Colell’s properness con-
dition for convex economies with finite-dimensional and infinite-dimensional
commodity spaces can be found in Aliprantis, Tourky and Yannelis [14], Flo-
renzano [459], Mas-Colell, Whinston and Green [856], Tourky [1261], and their
references. We finally mention the very recent paper by Naniewicz [993], which
develops a new approach to the Arrow-Debreu model with usual convexity
but no interiority assumptions in reflexive commodity spaces. The approach
developed of [993] is based on reducing the economic model to a system of
variational inequalities and employing the theory of pseudo-monotone multi-
valued mappings.

8.5.3. Enter Nonconvexity. As we have mentioned in Subsect. 8.1.1.,
the relevance of convexity assumptions is often doubtful for many important
economic applications, as had been realized even before developing the Arrow-
Debreu model; see the citation from Samuelson’s book [1188] presented above.
Indeed, various types of nonconvexity inevitably arise in modeling monopolis-
tic competition, increasing returns to scale, incomplete markets, externalities,
etc.; see more examples and discussions in Anderson [18], Cornet [287], Flo-
renzano [459], Khan [671], Quinzii [1113], Villar [1287], and the references
therein.
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In his pioneering study on price decentralization in nonconvex models of
welfare economics, Guesnerie [524] established a generalized version of the
second welfare theorem in the form of necessary optimality conditions for
Pareto optimal allocations of nonconvex economies. Instead of postulating
convexity of the initial production and preference sets, Guesnerie assumed
the convexity of their (local) tangential approximations and then employed the
classical separation theorem for convex cones. He formalized this procedure
by using the “cone of interior displacements” developed by Dubovitskii and
Milyutin [370] in general optimization theory.

Guesnerie’s approach to the study of Pareto optimality in nonconvex
economies was extended in many publications concerning economies with
both finite-dimensional and infinite-dimensional commodity spaces; see, e.g.,
Bonnisseau and Cornet [135], Brown [181], Cornet [286], Khan and Vohra
[673, 674], Quinzii [1113], Villar [1287], and their references. Most of these
publications employed the Clarke tangent cone that has an advantage of being
automatically convex and hence can be treated by using the classical convex
separation. In this way, marginal prices (corresponding to marginal rates of
substitution/transformation in nonsmooth and nonconvex models) were for-
malized via the dual Clarke normal cone. However, it has been recognized in a
while that Clarke’s normal cone may often be too large for adequate descrip-
tions of marginal pricing; see examples and discussions in Jouini [642] and
Khan [671].

In the latter paper [671] (its first version appeared as a preprint of 1987),
Khan obtained a significantly more satisfactory extension of the second welfare
theorem to nonconvex economies with finite-dimensional commodity spaces.
In his generalized second welfare theorem, marginal prices were formalized
via our basic normal cone. Note that his approach didn’t involve any con-
vex separation while employing instead a reduction to necessary optimality
conditions (Lagrange multipliers) in nonsmooth mathematical programming
established by Mordukhovich [892]; cf. Theorem 5.21(iii) from Subsect. 5.1.3
in finite dimensions. In this way, Khan’s approach signified the return to the
classical “Lagrange multiplier” viewpoint taken by Hicks, Lange, and Samuel-
son in the foundations of welfare economics versus the separation approach
pioneered by Arrow and Debreu. A similar version of the generalized second
welfare theorem in terms of our basic normal cone in finite dimensions was
derived by Cornet [288] for a somewhat different economic model by using a
direct proof of necessary optimality conditions for the corresponding maxi-
mization problem.

Further developments on the second welfare theorem in various nonconvex
models of welfare economics with finite-dimensional and infinite-dimensional
commodity spaces were given by Borwein and Zhu [164], Fl̊am [452], Fl̊am and
Jourani [453], Florenzano, Gourdel and Jofré [460], Habte [533], Jofré [633],
Jofré and Rivera [635], Khan [669, 670], Malcolm and Mordukhovich [836],
Mordukhovich [920, 922, 930], Villar [1288], and Zhu [1375] by using the basic
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normal cone as well as its infinite-dimensional extensions, modifications, and
abstract versions. These developments will be discussed below in more details.

8.5.4. Extremal Principle and Nonconvex Separation in Models
of Welfare Economics. In Mordukhovich [920, 922], we suggested an ap-
proach to studying Pareto optimality and deriving extended versions of the
second welfare theorem for nonconvex economies based on the extremal princi-
ple of variational analysis fully discussed in Chap. 2. Recall that the extremal
principle provides necessary optimality conditions for local extremal points of
closed set systems covering particularly local solutions to problems in con-
strained mathematical programming and vector optimization. On the other
hand, it gives a variational counterpart of the classical separation in the case
of nonconvex sets, playing essentially the same role in nonconvex variational
analysis as separation theorems do in the convex framework. Thus the ap-
proach to Pareto optimality based on the extremal principle can be viewed
as a unification of both the previous approaches discussed above for smooth
and convex models. Note that all the results presented in Chap. 8 are based
on the application of the extremal principle.

A somewhat different but closely related approach to the study of Pareto
optimality in models of welfare economics was proposed by Jofré [633]. His
approach is based on the application of a subdifferential condition for bound-
ary points of sum of sets derived by Borwein and Jofré [148]. This property
of a set sum, treated in [148] as a nonconvex separation, is actually equiva-
lent to the local extremality of another set system. Furthermore, the subd-
ifferential characterization of boundary points of set sums obtained in [148]
happens to be equivalent to the approximate version of the extremal princi-
ple; see the recent papers by Kruger [716] and Zhu [1375] for more precise
statements and discussions. The results on the extended second welfare theo-
rem for nonconvex economies obtained in the afore-mentioned developments
[164, 452, 453, 460, 533, 633, 635, 836, 920, 922, 930, 1375] were derived by
either a direct application of the extremal principle, or by using the equiv-
alent boundary/nonconvex separation property from Borwein and Jofré [148].

8.5.5. The Basic Model and Solution Concepts. The general model
of welfare economics described in Subsect. 8.1.1 has been widely accepted in
the modern microeconomic literature in the case of W = {ω}, where ω is
the given initial aggregate endowment of scare resources; see, e.g., the books
by Aliprantis, Brown and Burkinshaw [10] and by Mas-Colell, Whinston and
Green [856]. Note that the preference relation in the economy E is given by
set-valued mappings Pi with no use of preodering, utility functions, and other
conventional attributes of the classical welfare economics; cf. Debreu [310].

When W = {ω}, the crucial relation (8.1) in Definition 8.1 of feasible
allocations reduces to the so-called markets clear condition. Introducing the
net demand constraint set W as in Mordukhovich [920, 922] and Malcolm
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and Mordukhovich [836] happens to be useful for at least the following two
reasons:

—–it allows us to consider the standard case W = {ω} simultaneously
with the so-called implicit free disposal of commodities W = ω − E+ (see,
e.g., Cornet [288]) defined via the closed positive cone E+ ⊂ E of the ordered
commodity space E ;

—–with an arbitrary set W , the feasibility condition (8.1) reflects an un-
certainty situation in the market when the initial aggregate endowment is
not exactly known due to, e.g., incomplete information; cf. particularly the
discussion on minimax control problems in uncertainty conditions from Sub-
sect. 7.5.19.

The notions of (local) Pareto and weak Pareto optimal allocations given in
Definition 8.2(i,ii) are standard in the economic literature; they are in accor-
dance with the conventional concepts of Pareto and weak Pareto optimality in
general vector/multiobjective optimization problems; see, e.g., Sect. 5.3 and
the comments to it with the corresponding references.

To the best of our knowledge, the notion of strong Pareto optimal alloca-
tions in models of welfare economics given in Definition 8.2(iii) was clearly
introduced and studied for the first time by Khan [670]. According to the per-
sonal communication with Ali Khan, it was in line with Debreu’s work [311]
and was partially brought out by the previous study on asymptotics from
Khan and Rashid [672], which was in turn motivated by Hildenbrand [568]
and was further extended by Anderson [18].

8.5.6. Qualification Conditions. As mentioned, certain constraint qual-
ification conditions were present in the initial versions of the second-welfare
theorem for smooth and convex models of welfare economics as well as in all
of their further developments concerning Pareto and weak Pareto optimal
allocations. The crucial conditions of this type imposed in the Arrow-Debreu
convex model (there are several versions and modifications of them) are known
as the (nonempty) interiority conditions. The net demand qualification con-
ditions formulated in Definition 8.3 can be viewed as far-going extensions of
the classical interiority properties to the case of nonconvex models of welfare
economics.

Both NDQ and NDWQ conditions imposing the required properties for
Pareto and weak Pareto optimal allocations, respectively, first appeared in
Mordukhovich [920], while the previous version of the NDQ with W = {ω}
and closed production sets Sj was formulated by Jofré in [633] (and in his
earlier preprints with Rivera; see [633] and [635] with the references therein)
under the name of “asymptotically included condition.” Furthermore, if in
the latter case the sequence ek is replaced by αe with a fixed vector e ∈ E
and all α > 0 sufficiently small, the NDQ condition (8.3) reduces to the
qualification condition that goes back to Cornet [286] and is known as either
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“radially Lipschitzian condition” (as in Bonnisseau and Cornet [135]) or “Cor-
net’s constraint qualification” (as in Khan [671]); see also more references and
discussions in the afore-mentioned papers. We refer the reader to the recent
work by Zhu [1375] and Borwein and Zhu [164] for further developments and
applications of the NDWQ condition for weak Pareto optimal allocations.

Proposition 8.4 giving, in a parallel way, easily verifiable sufficient condi-
tions for the fulfillment of the NDQ and NDWQ properties was established
in full generality by Malcolm and Mordukhovich [836], while some of its pre-
vious versions in the case of W = {ω} were given by Bonnisseau and Cornet
[135], Cornet [286], Jofré [633], and Khan [670, 671]. Note that the property
formulated in assertion (i) of Proposition 8.4 is a direct generalization of the
desirability direction condition by Mas-Colell [854], which is related to the
classical “more is better” assumption for convex economies with commodity
spaces ordered by their closed positive cones having nonempty interiors.

As has already been discussed after Definition 8.3, both NDQ and NDWQ
conditions are automatic if at least one among preference and production
is locally epi-Lipschitzian, which is equivalent—for convex sets—to imposing
the classical nonempty interiority assumption on the corresponding set. Set
properties of the latter type were called by Khan [671] to be “fat in some
direction.” Note also that the summation of sets used in formulating the NDQ
and NDWQ conditions tends to improve the epi-Lipschitzian property of the
resulting sets, especially in the case of a larger number of agents in the market.

One of the advantages of using the net demand constraint set W in our
model is that it allows us, by Proposition 8.4, to avoid any requirements on the
preference and production sets while imposing the epi-Lipschitzian property
of W , which never happens when W = {ω}. In this way we automatically
cover the welfare model involving the so-called “free-disposal Pareto optima”
studied by Cornet [288] in the case of finite-dimensional commodity spaces.

Observe that our qualification conditions are not related to Mas-Colell’s
properness condition and its modifications for convex models with ordered
commodity spaces discussed in Subsect. 8.5.2. Some nonconvex versions of
Mas-Colell’s properness have been recently introduced and studied by Flo-
renzano, Gourdel and Jofré [460] in the weak Pareto optimality framework of
the generalized second welfare theorem for models whose ordered commodity
spaced are endowed with a Banach lattice structure. Note that we have never
imposed a lattice structure in our study.

8.5.7. Approximate Versions of the Second Welfare Theorem. To
avoid the afore-mentioned nonempty interiority and properness assumptions,
several approximate versions of the second welfare theorem were established
and economically interpreted for various microeconomic models dealing with
Pareto and weak Pareto optimal allocations under the convexity hypotheses.
We particularly refer the reader to the papers by Aliprantis and Burkinshaw
[11], Hildenbrand [568], Khan and Rashid [672], and Khan and Vohra [675].
Observe that the latter paper employed for these purposes the celebrated
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Bishop-Phelps theorem [116] on the boundary density of support points to
convex sets in Banach spaces, which was considered by Ekeland [399] as the
“grandfather” of modern variational principles.

In Subsect. 8.2.1 we develop, following Mordukhovich [920, 922] and Mal-
colm and Mordukhovich [836], approximate versions of the second welfare the-
orem for Pareto and weak Pareto optimal allocations of nonconvex economies
with marginal prices formalized via the Fréchet normal cone in Asplund
spaces as in [836, 922] and also via more general “prenormal” structures in ap-
propriate Banach spaces as in [920]; see also Subsect. 8.4.1. The proofs of these
results are based on the corresponding versions of the approximate extremal
principle, which can be viewed as nonconvex extensions of the Bishop-Phelps
theorem; see Proposition 2.6, Corollary 2.21, and the subsequent discussions
in Subsect. 2.6.4.

Results of this type were also derived by Jofré [633] as “viscous” versions
of the second welfare theorem for Pareto optimal allocations of nonconvex
economies in Banach spaces. Considering a welfare model in the “markets
clear” setting under the “asymptotically included” qualification condition,
Jofré established a subdifferential form of the approximate/viscous second
welfare theorem via axiomatically defined subdifferentials satisfying some gen-
eral requirements. However, not all of these requirements are satisfied for the
Fréchet subdifferential in Banach spaces, in contrast to those in Mordukhovich
[920]. Thus the results presented in Subsect. 8.2.1 cannot be derived from [633,
Theorem 2] based on the application of the nonconvex boundary condition by
Borwein and Jofré [148]; see Subsect. 8.5.4.

8.5.8. Exact Versions of the Second Welfare Theorem under Nor-
mal Compactness Conditions. By exact (or pointbased) versions of the
second welfare theorem we understand necessary conditions for Pareto-like
optimality with marginal prices formalized via normal cone constructions de-
fined exactly at optimal allocations. Results of this type are the most needed
for economic applications; they include all the classical versions of the second
welfare theorem for various economies with finite-dimensional and infinite-
dimensional commodity spaces under smoothness and convex assumptions.
Concerning nonconvex economies, the majority of the results of this “exact”
type were obtained as marginal pricing rules formalized via Clarke’s normal
cone, while their improvements in terms of basic normals were derived by
Khan [670] and by Cornet [288] for economies with finite-dimensional com-
modity spaces; see Subsect. 8.5.3 for more details and discussions.

As has been well recognized, welfare economies with infinite-dimensional
commodity spaces require some additional amount of compactness for the
validity of exact versions of the second welfare theorem, which is fully in ac-
cordance with general optimization theory in infinite dimensions.; cf. Chap. 5.
Observe that for convex economies, sufficient amounts of compactness are im-
plicitly contained in the classical interiority and properness assumptions.
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The situation is different for nonconvex economies, where most results of
the exact/pointbased type explicitly assume the epi-Lipschitzian property of
certain sets involved in the model; see particularly Bonnisseau and Cornet
[135], Khan [670], and Khan and Vohra [673, 674]. As we know, the latter
property happens to be an appropriate extension of the classical interiority
condition to the nonconvex setting.

The results of the exact type presented in Subsects. 8.2.2 and 8.3.1 can
be found in Mordukhovich [922] and Malcolm and Mordukhovich [836], while
their (not full) abstract versions given in Subsect. 8.4.1 are taken from Mor-
dukhovich [920]. The extended versions of the second welfare theorem from
Subsects. 8.2.2 and 8.3.1 formalize the marginal pricing rule via the basic
normal cone in Asplund commodity spaces, which can be replaced by its ab-
stract either topological or sequential limiting counterparts in the appropriate
Banach settings of Subsect. 8.4.1.

A remarkable feature of all the exact versions of the extended second
welfare theorem from Sects. 8.2–8.4 is the imposes of the basic sequential nor-
mal compactness (SNC) property and its abstract sequential modification on
just one of either preference, or production, or net demand constraint sets
of the welfare models under consideration. This is of a striking difference
with the other similarly looking situations studied in the book that concerned
exact/limiting results for finitely many sets in infinite dimensions, namely:
the exact extremal principle, calculus rules, and necessary conditions in con-
strained optimization. Indeed, in all the previous settings we required the SNC
and/or related properties for all but one of the sets involved in the case study.
The significant improvement achieved in the economic model under consider-
ation is due to the specific linearly separated structure of the constraint set
(8.18) from the extremal system to which we apply the extremal principle.

To this end we mention the exact subdifferential versions of the second
welfare theorem obtained by Jofré [633] and similarly by Fl̊am and Jourani
[453] via abstract limiting subdifferentials of the distance function in appro-
priate Banach spaces. These results assumed the compactly epi-Lipschitzian
property of one of the sets involved in the welfare models. As we know from
Subsect. 1.1.4, the epi-Lipschitzian property happens to be a topological coun-
terpart of the SNC property and strictly implies the latter not only in general
Banach spaces without any separability-like structure but also in those spaces
whose closed dual balls are weak∗ sequentially compact, particularly in the
Asplund space setting (even for convex sets as in Example 3.6 from Sub-
sect. 3.1.1). The reader can find further extensions of the exact second welfare
theorem under compactly epi-Lipschitzian assumptions in Fl̊am [452] and in
Florenzano, Gourdel and Jofré [460].

8.5.9. Pareto Optimality in Ordered Commodity Spaces. Consid-
ering nonconvex economies with ordered commodity spaces, it is natural to
ask about the positivity of the marginal price p∗ satisfying the relations of
the exact extended second welfare theorem, in the sense that 0 �= p∗ ∈ E∗

+
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for the dual positive cone E∗
+ ⊂ E∗ associated with the closed positive cone

E ordering the commodity space E of the economy E . It has been observed
by Malcolm and Mordukhovich [836] that the required price positivity follows
from any of the “exact” normal cone relationships (8.30)–(8.32) for the mar-
ginal price p∗ in Theorem 8.8 if the corresponding preference, or production,
or net demand constraint set satisfies (one of) the conventional desirability,
free disposal, or implicit free disposal assumptions listed in Theorem 8.13.
This is a direct consequence of the positivity property of basic normals to
“free disposal” sets from Lemma 8.12 proved in [836].

It should be emphasized again that all the results on the second welfare
theorem discussed above concern either (local) Pareto or weak Pareto optimal
allocations of economies under the fulfillment of the corresponding constraint
qualification condition as NDQ and NDWQ, which extend the classical inte-
riority condition to nonconvex economies. Since any strong Pareto optimal
allocation is obviously a Pareto one, the results obtained are also fulfilled for
the more restrictive notion of strong Pareto optimality in economic modeling.

As has been already mentioned, the concept of strong Pareto optimality
in models of welfare economics was introduced by Khan [670] who employed
it for deriving an exact version of the second welfare theorem with marginal
pricing formalized via Ioffe’s “approximate” normal cone (A-normal cone) in
locally convex linear topological spaces [597], which is an infinite-dimensional
extension of our basic finite-dimensional construction. Khan’s main result in
[670] justified such a generalized second welfare theorem for strong (locally)
Pareto optimal allocations in nonconvex economies whose ordered commodity
spaces were assumed to be lattices with reflexive preference relations and
with “free-disposal” net demand constraint sets of the type W = ω − E+.
Furthermore, it was assumed in [670] the fulfillment of both desirability and
free disposal conditions from (a) and (b) of Theorem 8.13 for all i = 1, . . . , n
and all j = 1, . . . ,m, and the validity of the epi-Lipschitzian property for every
production and preference sets around the strong Pareto optimal allocation
under consideration.

It follows from Theorem 8.13 in the Asplund space setting and from its
abstract analog in Corollary 8.19 for nonconvex economies with any ordered
Banach commodity spaces that the improved versions of Khan’s second wel-
fare theorem hold under significantly less restrictive assumptions for arbitrary
weak Pareto optimal allocations, but not merely for strong ones. Indeed, tak-
ing into account the sufficient condition for the NDWQ property established
in Proposition 8.4(ii), we conclude that the extended second welfare theorem
holds in Khan’s framework (with no lattice while with Banach structure on
the commodity space in question) for any weak Pareto optimal allocation pro-
vided that only one among the preference or production sets is epi-Lipschitzian
around the corresponding point, whereas neither the desirability condition (a)
nor the free disposal condition (b) of Theorem 8.13 is required to be satis-
fied. Moreover, under these weaker assumptions, our afore-mentioned results
improve Khan’s marginal pricing rule by using either the basic normal cone
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in Asplund spaces or Ioffe’s G-normal cone in general Banach spaces, which
both are smaller than Ioffe’s A-normal cone employed by Khan.

In his other paper [669], Khan built (based on some constructions from
Treiman [1262]) an example of a nonconvex economy with the classical As-
plund commodity space c0 (of sequences of real numbers converging to zero
and endowed with the supremum norm) such that Ioffe’s A-normal cone to
the production set is the entire dual space 	1 at the Pareto optimal allocation.
Another remarkable feature of this example is that not only our basic nor-
mal cone but even its weak∗ convexification—Clarke’s normal cone—is strictly
smaller than Ioffe’a A-normal cone and provides therefore a nontrivial mar-
ginal price information in the framework of the generalized second welfare
theorem. Observe that Khan’s results from [670] are not applied in this exam-
ple, since the production set is not epi-Lipschitzian and doesn’t exhibit the
free disposal of commodities.

8.5.10. Strong Pareto Optimality with No Qualification Condi-
tions. It surprisingly happens that strong Pareto optimal allocations play a
distinguished role in welfare economic models (both convex and nonconvex)
with ordered commodity spaces: they don’t need any net demand qualification
conditions (including the nonempty interiority and properness ones) for the
validity of approximate and exact versions of the second welfare theorem.
This was observed by Mordukhovich in [920, 922] and then developed in the
recent paper [930]; the corresponding material is presented in Subsect. 8.3.2
via our basic constructions in the Asplund space setting and in Subsect. 8.4.1
in the general framework of abstract normal/subdifferential structures in Ba-
nach spaces. The results on the modified strong Pareto optimal allocations
discussed in Remark 8.15 and based on the personal communication by Glenn
Malcolm have not been yet published.

Let us emphasize first of all that in our approach to the second welfare the-
orem developed in Sect. 8.2 for Pareto and weak Pareto optimal allocations,
qualification conditions are needed only to show that such allocations can be
reduced to local extremal points of some system of sets. Then we apply the ex-
tremal principle and appropriate calculus rules. Analyzing this scheme in the
case of strong Pareto optimal allocations of economies with ordered commod-
ity spaces under free-disposal-like conditions, we observe that such constraint
qualification (strongly related to the nonempty interiority of positive cones in
this case) are not required due to the very nature of strong Pareto optimality,
which directly leads us to extremal points of sets.

More precisely, we need to impose the afore-mentioned free disposal/
desirability assumptions on at least two among production, preference, and
net demand constraint sets for accomplishing such a reduction. Otherwise,
the positive cone of the ordered space is required to be generating in the sense
of E = E+ − E+, which doesn’t seem to be a restrictive assumption; it holds,
e.g., in any Banach lattice (or Riesz spaces). Note that in the latter case of
generating positive cones, the reduction of strong Pareto optimal allocations
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to local extremal points is based on the deep Krein-Šmulian theorem from
the theory of ordered Banach spaces.

8.5.11. Nonlinear Pricing. As well recognized, shadow prices conven-
tionally used in economic modeling and involved in various versions of the
second welfare theorem are mathematical interpreted as dual vectors, or lin-
ear continuous functionals, over commodity spaces. From this viewpoint they
can be called linear prices.

The usage of nonlinear prices for the achievement of market equilibria and
other desirable value-based characteristics in welfare economics has been ex-
plored in the economic literature, especially in models involving price discrim-
ination, progressive tax tariffs, land markets, and portfolio trading. Probably
one of the first publications on nonlinear pricing was the paper by Arrow and
Hurwicz [27].

Quite recently a new approach to nonlinear pricing has been initiated by
Aliprantis, Tourky and Yannelis [14] for convex models of welfare economics
with no lattice structure of commodity spaces. The main motivation came
from the fact that Mas-Colell’s fundamental theory of welfare economics with
no interiority assumptions crucially requires lattice properties of commodity
spaces, even in finite-dimensional settings. We particularly refer the reader
to the paper by Aliprantis, Monteiro and Tourky [13] containing a striking
example of the convex economy with two traders and a three-dimensional
commodity spaces without a lattice structure, where there is no Walrasian
equilibrium and where the second welfare theorem fails.

As shown by Aliprantis, Tourky and Yannelis [14], the usage of new non-
linear prices vs. linear ones in the previous developments provides an adequate
general equilibrium theory in finite-dimensional and infinite-dimensional con-
vex models with no lattice structure of commodities. Note that nonlinear
prices used in [14] are always concave and positively homogeneous while they
may be nonsmooth. Furthermore, they reduce to standard linear prices in
vector lattices; see more details and references in [14] and in the subsequent
paper by Aliprantis, Florenzano and Tourky [12] with further developments
and applications.

Some results of a completely different type on nonlinear pricing are pre-
sented in Sect. 8.2 (see particularly Theorem 8.7 and Remark 8.11); the reader
can find more results and discussions in Mordukhovich [930], while probably
for the first time such a nonlinear price interpretation of marginal pricing was
observed in Malcolm and Mordukhovich [836, Corollary 4.3]. This approach
has nothing to do with lattice or even ordering structures of commodity spaces,
but signifies the difference between second welfare theorems in convex and
nonconvex models.

Indeed, linear prices in convex economies support a fully decentralized equi-
librium, in the sense that each firm maximizes its profit and each consumer
minimizes his/her expenditure at Pareto optimal allocations. Marginal pric-
ing versions of the second welfare theorem provide only local descriptions of
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linear prices at optimal allocations via some normal cones. It happens however
that the usage of smooth nonlinear prices allows us to support a decentralized
(convex-type, maximization-minimization) equilibrium globally over all the
preference and production sets in fully nonconvex models. Moreover, the rates
of change (i.e., derivatives) of these nonlinear prices at Pareto optimal allo-
cations are arbitrarily close to the linear marginal price from the approximate
second welfare theorem.

Mathematically these nonlinear price conclusions are based on smooth
variational descriptions of Fréchet normals obtained in Theorem 1.30, which
contains strong geometric results of variational analysis involving variational
principles in their proofs. It should be emphasized that the structure of Fréchet
normals is crucial for such variational descriptions; these results, in contrast
to the other approximate and exact versions of the extended second welfare
theorem in Sects. 8.2 and 8.3, don’t admit abstract counterparts presented
and discussed in Sect. 8.4.

The afore-mentioned variational descriptions of Fréchet normals allow us
to provide useful and economically valuable interpretations of marginal prices
from the exact versions of the extended second welfare theorem obtained in
Sects. 8.2 and 8.3. Since our basic normals are approximated by Fréchet nor-
mals in Asplund spaces, the marginal price equilibrium relations (8.30)–(8.32)
established in Theorem 8.8 and used also in the modified exact versions of
Sect. 8.3 can be interpreted as a limiting decentralized equilibrium in noncon-
vex models realized via nonlinear prices. Observe some similarities between
this limiting decentralized equilibrium supported by nonlinear prices and the
so-called “virtual equilibrium” introduced recently by Jofré, Rockafellar and
Wets [636] in convex Walrasian models of exchange via a limiting procedure
from a classical equilibrium supported by linear prices. Their approach was
based on reductions to nonmonotone variational inequalities; it was further
extended in the subsequent paper [637] to a more general convex Walrasian
model of consumption and production with market trading.

Observe that it doesn’t seem to be possible to derive results of such a lim-
iting decentralized type from the previous formalizations of marginal prices in
nonconvex models of welfare economics via the Clarke normal cone and also
via Ioffe’s extensions of the basic normal cone to the general Banach space set-
ting. On the other hand, in some special settings discussed in Subsect. 2.5.2,
basic normals admit limiting representations in terms of other more primi-
tive normals with a variational structure. In particular, this can be done via
proximal normals in the finite-dimensional and also in Hilbert space settings,
which allows us provide an economic interpretation of limiting marginal prices
via a certain perturbed maximization and minimization of quadratic functions;
see Jofré [633] and Jofré and Rivera [635] for more details and discussions.

8.5.12. Abstract Versions. In the last section of Chap. 8 (and of the
whole two-volume book!) we discuss some further possible counterparts and
generalizations of the extended results on the second welfare theorem devel-
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oped in Sects. 8.1–8.3. Since our approach to economic modeling is mainly
based on the extremal principle of variational analysis, we briefly consider
some settings, where certain versions of the extremal principle can be readily
applied.

First we consider the same model as in Sects. 8.1–8.3 analyzing the pos-
sibility to apply the abstract versions of the extremal principle developed in
Subsect. 2.5.3. The reader can see that, while some of the results obtained in
Sects. 8.1–8.3 (particularly related to nonlinear prices and positivity) require
Fréchet-type normals and/or the Asplund space setting, most of the obtained
extensions of the second welfare theorem hold true in other (including arbi-
trary) Banach space settings with appropriate (pre)normal structures satisfy-
ing the revealed axiomatic requirements. We have mentioned above various
abstract extensions of the second welfare theorem to axiomatically defined
normals and subgradients developed by Jofré [633], Fl̊am and Jourani [453],
and Fl̊am [452]. It seems that the abstract results of Subsect. 8.4.1, based on
the paper by Mordukhovich [920], are the most general among other abstract
versions of the extended second welfare theorem for the economic model under
consideration.

8.5.13. Further Extensions. Welfare economic models with public goods
were first studied, under smoothness assumptions, in the 1954 paper by
Samuelson [1189] who established a public goods version of the “founda-
tions” results by Hicks and Lange with the fundamental conclusion that “the
marginal rates of transformation for public goods are equal to the sum of
the individual marginal rates of substitution.” It took thirteen years from
Samuelson’s work to obtain the corresponding version by Foley [463] of the
Arrow-Debreu second welfare theorem for convex economies with public goods;
see the recent paper by De Simone and Graziano [326] and its references for
developing a public goods welfare theory in Mas-Colell’s properness frame-
work for convex economies. Various results on the extended second welfare
theorem for nonconvex models were obtained by Khan and Vohra [673], Khan
[670, 671], Fl̊am and Jourani [453], Villar [1287, 1288], and other researchers.

As follows from the discussions in Subsect. 8.4.2, our methods developed
for welfare economies with no public goods can be easily extended to the case
of public goods economies, keeping with Samuelson’s fundamental conclusion
on marginal rates of transformation and substitution; see (8.52).

Other models (with public environment as in Villar [1287] and with direct
distribution as in Makarov, Levin and Rubinov [829]) were considered in de-
tail, from the viewpoint of the extended second welfare theorem handled via
the extremal principle, in the dissertation by Habte [533].
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148. J. M. Borwein and A. Jofré (1998), A nonconvex separation property in
Banach spaces, Math. Meth. Oper. Res. 48, 169–179.

149. J. M. Borwein and A. S. Lewis (2000), Convex Analysis and Nonlinear
Optimization: Theory and Examples, Springer, New York.

150. J. M. Borwein, Y. Lucet and B. S. Mordukhovich (2000), Compactly
epi-Lipschitzian convex sets and functions in normed spaces, J. Convex Anal.
7, 375–393.

151. J. M. Borwein, B. S. Mordukhovich and Y. Shao (1999), On the equiv-
alence of some basic principles of variational analysis, J. Math. Anal. Appl.
229, 228–257.

152. J. M. Borwein, W. B. Moors and X. Wang (2001), Generalized sub-
differentials: A Baire categorical approach, Trans. Amer. Math. Soc. 353,
3875–3893.

153. J. M. Borwein and D. Noll (1994), Second order differentiability of convex
functions in Banach spaces, Trans. Amer. Math. Soc. 342, 43–81.

154. J. M. Borwein and D. Preiss (1987), A smooth variational principle with
applications to subdifferentiability and differentiability of convex functions,
Trans. Amer. Math. Soc. 303, 517–527.
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292. R. Correa, A. Jofré and L. Thibault (1994), Subdifferential monotonic-
ity as characterization of convex functions, Numer. Funct. Anal. Optim. 15,
1167–1183.

293. R. W. Cottle, F. Giannessi and J.-L. Lions, ed. (1980), Variational In-
equalities and Complementarity Problems, Wiley, New York.

294. R. W. Cottle, J.-S. Pang and R. E. Stone (1992), The Linear Comple-
mentarity Problem, Academic Press, Boston, Massachusetts.

295. M. G. Crandall, L. C. Evans and P.-L. Lions (1984), Some properties
of viscosity solutions, Trans. Amer. Math. Soc. 282, 487–502.

296. M. G. Crandall, H. Ishii and P.-L. Lions (1992), User’s guide to viscosity
solutions of second-order partial differential equations, Bull. Amer. Math. Soc.
27, 1–67.

297. M. G. Crandall and P.-L. Lions (1983), Viscosity solutions of Hamilton-
Jacobi equations, Trans. Amer. Math. Soc. 277, 1–42.

298. B. D. Craven (1994), Convergence of discrete approximations for constrained
minimization, J. Austral. Math. Soc. 35, 1–12.

299. B. D. Craven (1995), Control and Optimization, Chapman and Hall, London,
UK.

300. B. D. Craven and D. V. Luu (1997), A method for establishing optimality
conditions for a nonconvex vector-valued minimax problem, J. Optim. Theory
Appl. 95, 295–304.

301. G. P. Crespi, D. La Torre and M. Rocca (2003), Second-order mollified
derivatives and optimization, J. Nonlinear Convex Anal. 3, 437-454.

302. J. Cullum (1969), Discrete approximations to continuous optimal control
problems, SIAM J. Control 7, 32–49.

303. J. Cullum (1972), Finite-dimensional approximations of state constrained
continuous optimal control problems, SIAM J. Control 10, 649–670.

304. M.-O. Czarnecki and L. Rifford (2005), Approximation and regulariza-
tion of Lipschitz functions: Convergence of the gradients, Trans. Amer. Math.
Soc., to appear.

305. L. Dai (1989), Singular Control Systems, Springer, Berlin.
306. P. Daniele and A. Maugeri (2001), On dynamical equilibrium problems

and variational inequalities, in Equilibrium Problems: Nonsmooth Optimiza-
tion and Variational Inequality Models, edited by F. Giannessi, A. Maugeri
and P. Pardalos, pp. 59–69, Kluwer, Dordrecht, The Netherlands.

307. J. M. Danskin (1967), The Theory of Min-Max and Its Application to
Weapon Allocations Problems, Springer, New York.

308. F. S. De Blasi, G. Pianigiani and A. A. Tolstonogov (2004), A Bo-
golyubov type theorem with a nonconvex constraint in Banach spaces, SIAM
J. Control Optim. 43, 466-476.



522 References

309. G. Debreu (1951), The coefficient of resource utilization, Econometrica 19,
273–292.

310. G. Debreu (1959), Theory of Values, Yale University Press, New Haven,
Connecticut.

311. G. Debreu (1970), Economies with a finite set of equilibria, Econometrica
38, 387–392.

312. E. De Giorgi, A. Marino and M. Tosques (1980), Problemi di evoluzione
in spazi metric e curve di massima pendenza, Atti. Accad. Naz. Lincei Rend.
Cl. Sci. Fis. Mat. Natur. 68, 180–187.

313. M. Degiovanni, A. Marino and M. Tosques (1985), Evolution equations
with lack of convexity, Nonlinear Anal. 9, 1401–1443.

314. K. Deimling (1992), Multivalued Differential Equations, De Gruyter, Berlin.
315. J. Demmel (1987), The condition number and the distance to the nearest

ill-posed problem, Numerische Math. 51, 251–289.
316. S. Dempe (2002), Foundations of Bilevel Programming, Kluwer, Dordrecht,

The Netherlands.
317. S. Dempe (2003), Annotated bibliography on bilevel programming and math-

ematical programs with equilibrium constraints, Optimization 52, 333–359.
318. V. F. Demyanov (2005), Extremality Conditions and Calculus of Variations,

Vysshaya Shkola, Moscow.
319. V. F. Demyanov and V. N. Malozemov (1974), Introduction to Minimax,

Wiley, New York.
320. V. F. Demyanov amd A. M. Rubinov (1980), On quasidifferentiable func-

tionals, Dokl. Akad. Nauk SSSR 250, 21–25.
321. V. F. Demyanov and A. M. Rubinov (1995), Constructive Nonsmooth

Analysis, Peter Lang, Frankfurt, Germany.
322. V. F. Demyanov and A. M. Rubinov, eds. (1995), Quasidifferentiability

and Related Topics (2000), Kluwer, Dordrecht, The Netherlands.
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468. H. Frankowska (1989), Contingent cones to reachable sets of control sys-
tems, SIAM J. Control Optim. 27, 170–198.

469. H. Frankowska (1990), Some inverse mappings theorems, Ann. Inst. H.
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690. M. Kočvara and J. V. Outrata (2004), Optimization problems with equi-
librium constraints and their numerical solutions, Math. Progr. 101, 119–149.
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in Optimization and Nonlinear Analysis, edited by A. Ioffe, L. Marcus and
S. Reich, Pitman Research Notes Math. Ser. 244, pp. 178–188, Longman,
Harlow, Essex, UK.

801. P. D. Loewen, Optimal Control via Nonsmooth Analysis (1993), American
Mathematical Society, Providence, Rhode Island.

802. P. D. Loewen (1994), A mean value theorem for Fréchet subgradients, Non-
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vexes, C. R. Acad. Sci. Paris 258, 4413–4416.
1224. C. Stegall (1978), Optimization of functions on certain subsets of Banach

spaces, Trans. Amer. Math. Soc. 236, 171–176.
1225. O. Stein (2003), Bilevel Strategies in Semi-Infinite Programming, Kluwer,

Boston, Massachusetts.
1226. A. S. Strekalovsky (1987), On the problem of global extremum, Soviet

Math. Dokl. 35, 194–198.
1227. A. S. Strekalovsky (1998), Global optimality conditions for nonconvex

optimization, J. Global Optim. 12, 415–434.
1228. A. S. Strekalovsky (2003), Elements of Nonconvex Optimization, Nauka,

Novosibirsk.
1229. M. Studniarski and D. E. Ward (1999), Weak sharp minima: Characteri-

zations and sufficient conditions, SIAM J. Control Optim. 38 (1999), 219–236.
1230. A. I. Subbotin (1995), Generalized Solutions of First-Order PDEs,
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Glossary of Notation

Operations and Symbols

:= and =: equal by definition
≡ identically equal
∗ indication of some dual/adjoint/polar operation
〈·, ·〉 canonical pairing between space X and its

topological dual X∗

x → x̄ x converges to x̄ strongly (by norm)

x
w→ x̄ x converges to x̄ weakly (in weak topology)

x
w∗
→ x̄ x converges to x̄ weak∗ (in weak∗ topology)

x
Ω→ x̄ x converges to x̄ with x ∈ Ω

lim inf lower limit for real numbers
lim sup upper limit for real numbers
Lim inf lower/inner limit for set-valued mappings
Lim sup upper/outer limit for set-valued mappings
dim X and codim X dimension and codimension of X , respectively
≺ preference relation
‖ · ‖ or | · | or ||| · ||| norms
haus(Ω1,Ω2) Pompieu-Hausdorff distance between sets
lip F(x̄, ȳ) exact Lipschitzian bound of F around (x̄, ȳ)
reg F(x̄, ȳ) exact metric regularity bound of F around (x̄, ȳ)
cov F(x̄, ȳ) exact covering/linear openness bound of F

around (x̄, ȳ)
rad F(x̄, ȳ) radius of metric regularity of F around (x̄, ȳ)

 end of proof

Spaces

IR := (−∞,∞) real line

IR := [−∞,∞] extended real line
IRn n-dimensional Euclidean space
IRn

+ and IRn
− nonnegative and nonpositive orthant of IRn ,

respectively



596 Glossary of Notation

C([a, b]; X) space of X-valued continuous mappings with
the supremum norm on [a, b]

C(K ) space of continuous functions on the
compact set K

C[0, ω1] continuous functions on [0, ω1], where ω1 is the
first uncountable ordinal

C0 continuous functions with compact supports
Ck , 1 ≤ k ≤ ∞, k times differentiable functions with all

continuous derivatives
C1,1 continuously differentiable functions with

Lipschitzian derivatives
L p([a, b]; X), 1 ≤ p ≤ ∞, standard Lebesgue spaces of X-valued mappings
W 1,p and H p standard Sobolev spaces
M and Mb measure spaces (dual to spaces of continuous

functions)
BV functions of bounded variation
c space of real number sequences with the

supremum norm
c0 subspace of c with sequences converging to zero
	p, 1 ≤ p ≤ ∞, sequences of real numbers with standard p–norms

Sets

∅ empty set
IN set of natural numbers
Br (x) ball centered at x with radius r
IBX closed unit ball of space X
IB and IB∗ closed unit balls of the space and duals

space in question
S and S∗ unit spheres of the space and dual

space in question
intΩ and riΩ interior and relative interior, respectively
clΩ and cl∗Ω closure and weak∗ topological closure,

respectively
bdΩ or ∂Ω set boundary
coΩ and clcoΩ convex hull and closed convex hull, respectively
coneΩ conic hull

affΩ and aff Ω affine hull and closed affine hull, respectively
mesΩ or Ln(Ω) Lebesgue (n-dimensional) measure
Π(x ;Ω) projection of x to Ω
T (x̄ ;Ω) contingent cone to Ω at x̄
TW (x̄ ;Ω) weak contingent cone to Ω at x̄
TC(x̄ ;Ω) Clarke tangent cone to Ω at x̄
N(x̄ ;Ω) basic/limiting normal cone to Ω at x̄
N+(x̄ ;Ω(ȳ)) extended limiting normal cone to Ω(ȳ) at x̄
N̂(x̄ ;Ω) prenormal cone or Fréchet normal cone to Ω at x̄
NC(x̄ ;Ω) Clarke normal cone to Ω at x̄
NG(x̄ ;Ω) and ÑG(x̄ ;Ω) approximate G-normal cone and its

nucleus to Ω at x̄
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NP(x̄ ;Ω) proximal normal cone to Ω at x̄
N̂ε(x̄ ;Ω) sets of ε-normals to Ω at x̄
Sε(x̄ ;Ω) ε-support to Ω at x̄

Functions

δ(·;Ω) set indicator function
dist(·;Ω) or dΩ(·) distance function
ρ(x, y) := dist(y; F(x)) extended distance function

dom ϕ domain of ϕ: X → IR
epi ϕ, hypo ϕ, and gph ϕ epigraph, hypergraph, and graph of ϕ,

respectively

x
ϕ→ x̄ x → x̄ with ϕ(x) → ϕ(x̄)

H Hamiltonian function in optimal control
H Hamilton-Pontryagin function in optimal control
L Lagrangian function in optimization
LΩ essential Lagrangian relative to Ω
τ (F ; h) averaged modulus of continuity
ϕ′(x̄) or ∇ϕ(x̄) Fréchet derivative/gradient of ϕ at x̄
ϕ′
β(x̄) or ∇βϕ(x̄) derivative/gradient of ϕ at x̄ with respect

to some bornology
|∇ϕ|(x̄) (strong) slope of ϕ at x̄
ϕ′(x̄ ; v) classical directional derivative of ϕ at x̄

in direction v

ϕ◦(x̄ ; v) and ϕ↑(x̄ ; v) generalized directional derivative
and subderivative of ϕ

d−ϕ(x̄ ; v) and d+ϕ(x̄ ; v) Dini-Hadamard lower and upper
directional derivative of ϕ

∂ϕ(x̄) basic/limiting subdifferential of ϕ at x̄
∂+ϕ(x̄) upper subdifferential of ϕ at x̄
∂0ϕ(x̄) symmetric subdifferential of ϕ at x̄
∂≥ϕ(x̄) right-sided subdifferential of ϕ at x̄
∂∞ϕ(x̄) singular subdifferential of ϕ at x̄
∂̂ϕ(x̄) and ∂̂+ϕ(x̄) Fréchet subdifferential and upper subdifferential

of ϕ at x̄ , respectively
∂Aϕ(x̄) and ∂Gϕ(x̄) approximate A-subdifferential and

G-subdifferential of ϕ at x̄
∂Cϕ(x̄) Clarke subdifferential/generalized gradient

of ϕ at x̄
∂βϕ(x̄) viscosity (bornological) β-subdifferential of ϕ at x̄
∂Pϕ(x̄) proximal subdifferential of ϕ

at x̄
∂̂εϕ(x̄), ∂̂aεϕ(x̄), and ∂̂gεϕ(x̄) Fréchet-type ε-subdifferentials of ϕ at x̄
∂−ε ϕ(x̄) Dini ε-subdifferential of ϕ at x̄
∇2ϕ(x̄) classical Hessian (matrix of second derivatives

if in IRn) of ϕ at x̄
∂2ϕ, ∂2

Nϕ, and ∂2
Mϕ second-order subdifferentials (generalized

Hessians) of ϕ
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Mappings

f : X → Y single-valued mappings from X to Y
F : X →→ Y set-valued mappings from X to Y
dom F domain of F
rge F range of F
gph F graph of F
ker F kernel of F
F−1: Y →→ X inverse mapping to F : X →→ Y
F(Ω) and F−1(Ω) image and inverse image/preimage of Ω under F
F ◦ G composition of mappings

F
h◦ G h-composition of mappings

∆(·;Ω) set indicator mapping
Ωρ set enlargement mapping
Eϕ epigraphical mapping
E( f, Θ) generalized epigraph of f : X → Y

with respect to Θ ⊂ Y
DF(x̄, ȳ) graphical/contingent derivative of

F at (x̄, ȳ) ∈ gph F
D∗F(x̄, ȳ) (basic) coderivative of F at (x̄, ȳ) ∈ gph F
D∗

N F(x̄, ȳ) normal coderivative of F at (x̄, ȳ) ∈ gph F
D∗

M F(x̄, ȳ) and D̃∗
M F(x̄, ȳ) mixed and reversed mixed coderivative

of F at (x̄, ȳ), respectively

D̂∗F(x̄, ȳ) and D̂∗
ε F(x̄, ȳ) Fréchet coderivative and ε-coderivative

of F at (x̄, ȳ), respectively
J f (x̄) generalized Jacobian of f at x̄
Λ f (x̄) derivate container of f at x̄
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Fréchet 4, 16, 144, 227–232, 242, 243,
245, 246, 248, 253, 313, 327, 396

Gâteaux 35, 144, 380, 381
strict 16, 45, 55, 56, 104, 121, 123,

130, 139, 207, 231
weak 313

differential inclusions 160–163, 168,
171, 174, 175, 179, 184, 185, 198,
199, 208–210, 212, 214, 218–222,
225, 227, 298–312, 315–318,
320–326, 450

differential-algebraic systems 335–
339, 346–348, 352, 357, 362–364,
445–447

differential-difference systems see
delay systems

diffuse perturbations 376–378, 382,
452

direct distribution model 484, 492, 505
directional derivatives 255, 257, 312,

443
Clarke 35, 138, 144, 301
Dini 255
Dini-Hadamard 35, 255

Dirichlet boundary conditions 335,
449, 452

for hyperbolic systems 365, 368,
386–393, 395, 396, 398, 452, 453

for parabolic systems 335, 399–
402, 404, 405, 407, 410–412, 418,
422, 423, 425, 427, 436–438, 449,
453–458

Dirichlet operator 401, 402, 404, 436,
457

discrete approximations 159, 160, 162–
164, 167, 168, 175–177, 180–186,

188, 190–192, 198, 200, 203, 206,
218, 248, 251–254, 258, 261, 265,
267–276, 280–282, 286–291, 293,
295, 304, 305, 312, 314–325, 328,
330–333, 337, 338, 346, 348, 352,
353, 357, 358, 444, 447, 450

discrete maximum principle 249–252,
289, 297, 329, 330, 333

discrete systems 163, 164, 166, 181,
249, 329–331, 333–335, 338, 355,
358, 440

distance functions 165, 212, 213, 381

subgradients 21, 193, 216, 218, 325,
500

distributed controls for PDEs 335,
364, 410, 441, 449, 455, 456

distributed parameters 159, 304, 335,
440, 441, 445, 447, 450

dual-space approach 73, 137, 312, 313

duality 35

Dunford theorem 177, 179, 202, 204,
217, 320

Egorov theorem 415, 432

Ekeland variational principle 86, 87,
113, 127, 146, 213, 302, 310, 311,
325, 380–382, 450, 451, 456

EPECs see equilibrium problems with
equilibrium constraints

epi-convergence 317

epi-Lipschitzian property 91, 208, 301,
466–468, 479, 489, 498, 500–502

epigraphs

generalized 30, 71, 74, 116, 221

equilibria 453, 461

decentralized 462, 464, 469, 472, 473,
477, 484–486, 492, 493, 495, 503,
504

economic 148, 461, 462, 464, 469,
472, 473, 477, 483–486, 490,
492–494, 503, 504

mechanical 68, 148

Nash 154

equilibrium problems with equilibrium
constraints 99–109, 122–125,
151, 154, 155, 157, 221

Euler equations

abstract 133



602 Subject Index

classical see Euler-Lagrange
equation

generalized 87, 88, 91, 109, 133
Euler scheme 162, 291, 314, 316, 338
Euler-Lagrange conditions/inclusions

160
approximate 192, 195–198, 201, 202,

323
discrete 186, 190, 323, 329, 355, 359,

360
for fully convex processes 299, 301
fully convexified, Clarke 222,

300–303, 306, 445
partially convexified, extended 160,

200, 202, 203, 205, 206, 208–213,
216–224, 249, 304–309, 314,
315, 322, 324–326, 338, 357, 358,
361–363, 444

Euler-Lagrange equation 155, 301, 314
evolution systems 159, 160, 162, 209,

244, 251, 297, 314–317, 319, 324,
327, 337, 338, 340, 346, 348, 357,
364, 440, 447, 448, 450

exact penalization 18–20, 62, 64, 140,
149, 150, 312

extended extremality see linear
subextremality

extended minimality see linear
subminimality

extended optimality see linear
suboptimality

externalities 494
extremal points see extremal systems
extremal principle 3, 18, 32, 70, 71,

132, 133, 139, 141, 151, 381, 461,
463, 479, 480, 491, 492, 496, 500,
502, 505

abstract 484–487, 505
approximate 18, 26, 28, 74, 85, 86,

91, 93, 98, 109, 111, 113, 115, 116,
153, 463, 471, 472, 483, 486, 499

exact 18, 26, 28, 33, 73, 75, 88, 89,
91, 94, 98, 110, 113, 115, 152, 153,
157, 463, 474, 487, 500

extended see for set-valued
mappings

for set-valued mappings 70, 73, 83,
84, 86, 88, 90, 91, 93, 94, 97, 153,
154

via ε-normals 86
extremal systems 3

of set-valued mappings 70, 71, 83,
84, 86, 92, 94, 95, 153

of sets 70, 74, 223, 463, 465, 470–472,
474, 479–481, 487, 492, 496, 502,
503

feedback controls 399, 438, 439, 454,
457, 458

Fermat stationary principle 4, 38, 41,
132, 193, 194

Filippov approximation theorem 214
Filippov implicit function lemma 299
finite codimension 208, 240, 244, 448,

476
finite codimension condition, Ioffe

138–140
finite codimension condition, Li-Yao

209, 240, 244, 324, 328, 448
finite differences see discrete

approximations
first welfare theorem 494
Fredholm properties 21, 185
free disposal 464, 478–480, 482, 485,

486, 489, 490, 501, 502
implicit 464, 475, 479, 480, 482, 497,

501
Pareto optimum 468

Fritz John conditions see non-qualified
necessary optimality conditions

functional-differential systems 233,
348

functions
absolutely continuous 161, 162,

170, 172, 179, 200, 202–204, 207,
211–216, 218, 220, 224, 228, 230,
232, 233, 236, 291, 304, 316

amenable 57, 58, 60, 105–107, 125,
130

approximately convex/concave 136
continuous 33, 57, 176, 197, 338, 347,

388
convex/concave 5–7, 44, 48, 113,

133–135, 173, 179, 209, 253, 258,
262, 263, 300, 302, 303, 307, 309,
351, 381, 386, 388, 408, 410, 423,
445, 473

difference of convex 7, 134



Subject Index 603

epi-continuous 305, 309

Lipschitz continuous 5, 6, 8, 15, 19,
23, 25, 27, 30, 33, 34, 41, 50, 51, 55,
59, 62, 64, 67, 130, 134, 138, 141,
142, 144, 185, 199, 205, 255, 353,
355, 359

lower semicontinuous 6, 8, 9, 12, 26,
33, 35, 37, 40–44, 53, 57, 87, 110,
126–129, 157, 173, 179, 212, 301,
303, 308, 351, 380, 382, 386, 409,
410

lower/upper-Ck 136

measurable 85, 164, 174, 176, 189,
199, 210, 228, 229, 233, 236, 291,
320, 321, 325, 328, 332, 367, 388,
402, 408, 410, 418, 425, 455

paraconvex/paraconcave see
semiconvex/semiconcave functions

pseudoconvex 135

quasiconvex 135

saddle 300

semiconvex/semiconcave 5, 48, 135,
136, 333

strictly convex 138, 140, 305, 308,
381

subsmooth 136

uniformly upper subdifferentiable
254, 256, 257, 259, 262, 267, 276,
286, 293, 333

upper semicontinuous 19, 27, 28,
135, 409, 417

weakly convex/concave 333

fuzzy calculus 18, 37, 86, 88, 101, 184,
191, 193, 194, 323, 447

games 47, 84, 97, 98, 136, 147, 154, 453

general equilibrium theory see
economic equilibria

generalized equations 51, 61–63, 65,
108, 147

fields 59, 67, 106, 125

generalized Jacobians 310

generalized order optimality 70, 71,
73, 74, 78, 100, 102, 104, 107, 117,
119, 121, 150–152, 154, 221

Goursat-Darboux systems 442

graphically Lipschitzian mappings 301

Green formulas 376

for Dirichlet hyperbolic systems
395, 398

for Neumann hyperbolic systems
376, 383

Gronwall lemma 237, 238, 370
growth conditions 305, 388, 391, 409

Hahn-Banach theorem 256
Hale form of neutral systems 444
Hamilton-Jacobi equations 135, 136,

328
Hamilton-Pontryagin function 229,

233, 235, 236, 238, 243, 249, 250,
252, 263, 266, 267, 274–276, 289,
290, 294, 296–299, 311, 368

Hamiltonian conditions/inclusions 211
for fully convex processes 300
fully convexified, Clarke 222, 224,

302, 305, 443–445
partially convexified, extended 211,

221–223, 309, 326, 338, 362, 363,
445

unmaximized 311
Hamiltonian function 211, 221, 222,

229, 298–300, 302, 362, 363
Hausdorff continuity 163, 164, 338
Hausdorff spaces 464, 484, 501
hemivariational inequalities 47, 55,

104, 124
hereditary systems see delay systems
hidden convexity 143, 173, 174, 240,

242, 249, 253, 269, 276, 277, 281,
282, 318, 319, 328, 329, 331, 452

hierarchical optimization 147, 155
Hilbert spaces 153, 454, 504
HVIs see hemivariational inequalities

i.l.m. see intermediate local minimiz-
ers

imagely sequential normal compactness
90–94, 153

implicit mappings 313
implicit systems 446
increment formulas 235–239, 241, 243,

244, 251, 253, 260, 261, 266, 268,
273, 277–280, 282–284, 326–329,
331, 376–378, 451

indicator function 4, 300
indicator mapping 30, 77



604 Subject Index

infimal convolution 37, 136
integrable sub-Lipschitzian property

305, 307, 309
interior 28, 69, 70, 139, 151, 244, 246,

367, 385, 398, 428, 448, 456, 463,
466, 472, 476, 479, 489, 494, 498

relative 208, 476
interiority conditions 151, 385, 398,

428, 448, 456, 463, 466, 472, 476,
479, 489, 494, 497, 498, 500–503

ISNC see imagely sequential normal
compactness

Josefson-Nissenzweig theorem 114,
223

Kadec property 212, 216, 218
Kamke condition 317
Karush-Kuhn-Tucker conditions 147,

155, 157
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