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Abstract. The moving coframe method is applied to solve the local equivalence

problem for the class of nonlinear wave equations in two independent variables under

an action of the pseudo-group of contact transformations. The structure equations

and the complete sets of differential invariants for symmetry groups are found. The

solution of the equivalence problem is given in terms of these invariants.
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Introduction

In this article we consider a local equivalence problem for the class of nonlinear second

order wave equations

wtt = f(x, wx)wxx + g(x, wx) (1)

under a contact transformation pseudo-group. Two equations are said to be equiva-

lent if there exists a contact transformation mapping one equation to the other. Élie

Cartan developed a general method for solving equivalence problems for submanifolds

under an action of a Lie pseudo-group, [1] - [5]. The method provides an effective

means of computing complete systems of differential invariants and associated invariant

differential operators. The necessary and sufficient condition for equivalence of two

submanifolds is formulated in terms of the differential invariants. The invariants

parameterize the classifying manifold associated with given submanifolds. Cartan’s

solution to the equivalence problem states that two submanifolds are (locally) equivalent

if and only if their classifying manifolds (locally) overlap. The symmetry classification

problem for classes of differential equations is closely related to the problem of local

equivalence: symmetry groups and their Lie algebras of two equations are necessarily

isomorphic if these equations are equivalent, while the converse statement is not true in

general. The preliminary symmetry group classification for the class (1) is given in [9].

In [10], it was proposed to transform equation (1) to the equivalent quasi-linear system

of the first order

ut = a(x, u) vx, vt = b(x, u) ux, (2)

http://arXiv.org/abs/math-ph/0306007v1
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and the symmetry classification for non-linearizable cases of this system is given. In

[15] several cases of infinite symmetry algebras for equation (1) are found, and one

linearizable case is given.

In the present paper, we apply Cartan’s equivalence method, [1] - [5], [8], [13], in

its form developed by Fels and Olver, [6, 7], to find all differential invariants of sym-

metry groups and to solve the local contact equivalence problem for equations from

the class (2) in terms of their coefficients. Unlike Lie’s infinitesimal method, Cartan’s

approach allows us to find differential invariants and invariant differential operators

without analyzing over-determined systems of PDEs at all, and requires differentiation

and linear algebra operations only.

The paper is organized as follows. In Section 1, we begin with some notation, and

briefly describe the approach to computing symmetry groups of differential equations

via the moving coframe method of [6]. In Section 2, the method is applied to the class

of nonlinear wave equations (2). Finally, we make some concluding remarks.

1. Pseudo-group of contact transformations and symmetries of differential

equations

In this paper, all considerations are of local nature, and all mappings are real analytic.

Suppose E = R
n × R

m → R
n is a trivial bundle with the local base coordinates

(x1, ..., xn) and the local fibre coordinates (u1, ..., um); then by J1(E) denote the

bundle of the first-order jets of sections of E, with the local coordinates (xi, uα, pα
i ),

i ∈ {1, ..., n}, α ∈ {1, ..., m}. For every local section (xi, fα(x)) of E, the corresponding

1-jet (xi, fα(x), ∂fα(x)/∂xi) is denoted by j1(f). A differential 1-form ϑ on J1(E) is

called a contact form, if it is annihilated by all 1-jets of local sections: j1(f)∗ϑ = 0.

In the local coordinates every contact 1-form is a linear combination of the forms

ϑα = duα − pα
i dx

i, α ∈ {1, ..., m} (here and later we use the Einstein summation

convention, so pα
i dx

i =
∑n

i=1 p
α
i dx

i, etc.) A local diffeomorphism

∆ : J1(E) → J1(E), ∆ : (xi, uα, pα
i ) 7→ (xi, uα, pα

i ), (3)

is called a contact transformation, if for every contact 1-form ϑ, the form ∆∗ϑ is also

contact, in other words, if ∆∗ϑ
α

= duα − pα
i dx

i = ζα
β (x, u, p)ϑβ for some functions ζα

β

on J1(E).

Cartan’s method of equivalence, [2, 5, 13], allows us to compute invariant 1-forms

which define the pseudo-group of contact transformations. The result of its application

is the following (see [11]). Consider the lifted coframe

Θα = aα
β (duβ − pβ

j dx
j),

Ξi = ciβ Θβ + bij dx
j, (4)

Σα
i = fα

iβ Θβ + gα
ij Ξj + aα

β B
j
i dp

β
j
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on J1(E) ×H, where H is the Lie group of block lower triangular matrices of the form








aα
β 0 0

ciγ a
γ
β bij 0

(fα
iγ + gα

ik c
k
γ) a

γ
β gα

ik b
k
j aα

β B
j
i









,

and the parameters aα
β , bij , c

i
β , fα

iβ , and gα
ij obey the requirements det

(

aα
β

)

6= 0,

det
(

bij
)

6= 0, bik B
k
j = δi

j , and gα
ij = gα

ji. Then a transformation Υ : J1(E) × H →

J1(E) ×H satisfies the conditions

Υ∗ Θ
α

= Θα, Υ∗ Ξ
i
= Ξi, Υ∗ Σ

α
i = Σα

i

if and only if it is projectable on J1(E) and its projection ∆ : J1(E) → J1(E) is a contact

transformation. The lifted coframe has the structure equations

dΘα = Φα
β ∧ Θβ + Ξk ∧ Σα

k ,

dΞi = Ψi
k ∧ Ξk + Πi

γ ∧ Θγ, (5)

dΣα
i = Φα

γ ∧ Σγ
i − Ψk

i ∧ Σα
k + Λα

iβ ∧ Θβ + Ωα
ij ∧ Ξj,

where Φα
β , Ψi

k, Πi
γ , Λα

iβ, and Ωα
ij are 1-forms on J1(E) × H, and, as it is shown in [11],

the coframe is involutive.

The structure equations (5) remain unchanged if we make the following change of

the modified Maurer - Cartan forms Φα
β , Ψi

k, Πi
γ, Λα

iβ, and Ωα
ij :

Φα
β 7→ Φα

β +Kα
βγ Θγ,

Ψi
k 7→ Ψi

k + Li
kj Ξj +M i

kγ Θγ,

Πi
γ 7→ Πi

γ +M i
kγ Ξk +N i

γǫ Θǫ,

Λα
iβ 7→ Λα

iβ + P α
iβγ Θγ +Qα

iβk Ξk +Kα
γβ Σγ

i −Mk
iβ Σα

k ,

Ωα
ij 7→ Ωα

ij +Qα
iβj Θβ +Rα

ijk Ξk − Lk
ij Σα

k ,

(6)

where Kα
γǫ, L

i
kj, M

i
kγ, N

i
γǫ, P

α
iβγ, Q

α
iβk, and Rα

ijk are arbitrary functions on J1(E) × H

satisfying the following symmetry conditions:

Kα
γǫ = Kα

ǫγ, Li
kj = Li

jk, N i
γǫ = N i

ǫγ,

P α
iβγ = P α

iγβ , Qα
iβk = Qα

kβi, Rα
ijk = Rα

ikj = Rα
jik.

Another approach to construct 1-forms characterizing contact transformations is

presented in [14].

Suppose R is a first-order differential equation in m dependent and n independent

variables. We consider R as a sub-bundle in J1(E). Let Cont(R) be the group of

contact symmetries for R. It consists of all the contact transformations on J1(E)

mapping R to itself. The moving coframe method, [6, 7], is applicable to find invariant

1-forms characterizing Cont(R) is the same way, as the lifted coframe (4) to J1(E)×H

characterizes Cont(J1(E)). We briefly outline this approach.

Let ι : R → J1(E) be an embedding. The invariant 1-forms of Cont(R) are re-

strictions of the coframe (4) on R: θα = ι∗Θα, ξi = ι∗Ξi, and σα
i = ι∗Σα

i (for brevity

we identify the map ι × id : R ×H → J1(E) ×H with ι : R → J1(E)). The forms θα,

ξi, and σα
i have some linear dependencies, i.e., there exists a non-trivial set of functions
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Sα, Ti, and U i
α on R×H such that Sα θ

α +Ti ξ
i +U i

α σ
α
i ≡ 0. These functions are lifted

invariants of Cont(R). Setting them equal to appropriate constants allows us to specify

some parameters aα
β , bij , c

i
β , fα

iβ, and gα
ij of the group H as functions of the coordinates

on R and the other group parameters.

After these normalizations, some restrictions of the forms φα
β = ι∗Φα

β , ψi
k = ι∗Ψi

k,

πi
β = ι∗Πi

β, λα
iβ = ι∗Λα

iβ, and ωα
ij = ι∗Ωα

ij , or some their linear combinations, become

semi-basic, i.e., they do not include the differentials of the parameters of H. From (6),

we have the following statements: (i) if φα
β is semi-basic, then its coefficients at σγ

j and

ξj are lifted invariants of Cont(R); (ii) if ψi
k or πi

β are semi-basic, then their coefficients

at σγ
j are lifted invariants of Cont(R). Setting these invariants equal to some constants,

we get specifications of some more parameters of H as functions of the coordinates on

R and the other group parameters.

More lifted invariants can appear as essential torsion coefficients in the reduced

structure equations

dθα = φα
β ∧ θβ + ξk ∧ σα

k ,

dξi = ψi
k ∧ ξ

k + πi
γ ∧ θ

γ,

dσα
i = φα

γ ∧ σγ
i − ψk

i ∧ σα
k + λα

iβ ∧ θβ + ωα
ij ∧ ξ

j.

After normalizing these invariants and repeating the process, two outputs are possible.

In the first case, the reduced lifted coframe appears to be involutive. Then this coframe is

the desired set of defining forms for Cont(R). In the second case, when the reduced lifted

coframe does not satisfy Cartan’s test, we should use the procedure of prolongation, [13,

ch 12].

2. Structure and invariants of symmetry groups for nonlinear wave

equations

We apply the method described in the previous section to the class of nonlinear wave

equations (2). Denote x1 = t, x2 = x, u1 = u, u2 = v, p1
1 = ut, p

1
2 = ux, p

2
1 = vt, and

p2
2 = vx, The coordinates on R are {t, x, u, v, ux, vx}, and the embedding ι : R → J1(E)

is defined by (2). For simplicity in the following computations, we put F (x, u) =

(a(x, u) b(x, u))1/2 and G(x, u) = (b(x, u)/a(x, u))1/2, so a(x, u) = F (x, u)/G(x, u) and

b(x, u) = F (x, u)G(x, u).

There are three cases to be treated separately: Case A, when Fu 6= 0 and Gx 6= 0,

Case B, when Gx = 0, and Case C, when Fu = 0.

In the case B system (2) has the form ut = F (x, u) (G(u))−1 vx, vt =

F (x, u)G(u) ux, so the change of variables ũ = H(u) provided H ′(u) = G(u)

transforms this system into the system ũt = F̃ (x, ũ) vx, vt = F̃ (x, ũ) ũx with F̃ (x, ũ) =

F (x,H−1(ũ)) = F (x, u). Therefore we drop the tildes and conclude that in the case B

system (2) is equivalent to the system

ut = F (x, u) vx, vt = F (x, u) ux. (7)
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In the case C system (2) has the form ut = F (x) (G(x, u))−1 vx, vt =

F (x)G(x, u) ux, so the change of variables x̃ = H(x) provided H ′(x) = 1/F (x)

transforms this system into the system ut = (G̃(x̃, u))−1 vx̃, vt = G̃(x̃, u) ux̃, with

G̃(x̃, u) = G(H−1(x̃), u) = G(x, u). Next, the contact transformation t = v, x = u,

u = x̃, and v = t maps the last system to the system in the form ut = F (x, u) vx,

vt = F (x, u) ux. Thus in the case C system (2) is equivalent under a contact

transformation to the system in the form (7) too.

Let us analyze the system

ut = F (x, u) (G(x, u))−1 vx, vt = F (x, u)G(x, u) ux (8)

in the case A. For brevity we denote

P =
Gx F

2

Fu
. (9)

Computing the linear dependence conditions for the reduced forms θα, ξi, and σα
i by

means of MAPLE, we express the group parameters a1
2, a

2
1, b

1
2, b

2
1, f

1
11, f

1
12, f

2
21, f

2
22, g

1
11,

g1
12, g

2
12, and g2

22. Particularly, since

σ1
1 ≡

F (a1
1 −Ga1

2) (a1
1 +Ga1

2) det(aα
β)

G (b11 −Gb12) (b11 +Gb12) det(bij)
σ2

2 (mod θ1, θ2, ξ1, ξ2, σ1
2),

we take a1
2 = G−1 a1

1. Then

σ1
1 ≡

(b21 − F b22)

(b12 − F b11)
σ1

2 (mod θ1, θ2, ξ1, ξ2),

and we take b21 = F b22. Similarly, we set the coefficients of σ1
1 at θ1, θ2, ξ1, and ξ2 equal

to zero, and express f 1
11, f

1
12, g

1
11, and g1

12, respectively.

Then we obtain

σ2
1 ≡

F (a2
1 +Ga2

2) b
2
2

(b12 + F b11) a
1
1

σ1
2 (mod θ1, θ2, ξ1, ξ2, σ2

2),

so we take a1
2 = −Ga2

2. Now we get

σ2
1 ≡ −

2F b22
(b11 + F b12)

σ2
2 (mod θ1, θ2, ξ1, ξ2).

Since b22 6= 0 (otherwise b21 = 0 and det(bij) = 0), we set the coefficient at σ2
2 equal to 1,

and obtain b12 = −(F−1 b11 + 2 b22). After that, we set the coefficients of σ2
1 at θ1, θ2, ξ1,

and ξ2 equal to zero and find f 2
21, f

2
22, g

2
12, and g2

22, respectively. This yields

σ1
1 = 0, σ2

1 = σ2
2 . (10)

At the next step we analyze the forms φα
β = ι∗ Φα

β and ψi
j = ι∗ Ψi

j reduced by

setting (10) and substituting the values of a1
2, a

2
1, b

1
2, b

2
1, f

1
11, f

1
12, f

2
21, f

2
22, g

1
11, g

1
12,

g2
12, and g2

22 obtained at the previous step. The form φ1
2 is semi-basic now, and

φ1
2 ≡ c22 σ

1
2(mod θ1, θ2, ξ1, ξ2, σ2

2). So we take c22 = 0. For the semi-basic form φ2
1 we

have φ2
1 ≡ (c21 + c11) σ

1
2(mod θ1, θ2, ξ1, ξ2, σ2

2), so we put c21 = −c11. Then

φ1
2 ≡

Fu (P − F Gux − F vx) a
1
1

4F G2 a2
2 (b11 + F b22)

ξ1 (mod θ1, θ2, ξ2),
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and we take a2
2 = Fu a

1
1 (P − F Gux − F vx)F

−1G−2 (b11 + F b22)
−1. Then we have the

semi-basic linear combination ψ1
1 − φ1

1 + φ2
2 with

ψ1
1 − φ1

1 + φ2
2 ≡

(P − F Gux − F vx) a
1
1 c

1
1 − F G b22

(P − F Gux − F vx) a
1
1

σ1
2 (mod θ1, θ2, ξ1, ξ2),

so we take c11 = F G b22 (P −F Gux −F vx)
−1 (a1

1)
−1. Similarly, we set the coefficients of

φ1
2 and φ2

1 at ξ2 equal to zero, and find f 1
22 and f 2

11, respectively. Then

φ2
1 ≡

F 2
u (P − F Gux − F vx) (P − F Gux + F vx)

4F 3G2 b22 (b11 + F b22)
ξ1 (mod θ1, θ2),

so we set the coefficient at ξ1 equal to 1 and find

b11 =
F 2

u (P − F Gux − F vx) (P − F Gux + F vx) − 4F 4G2 (b22)
2

4F 3G2 b22
.

Then the semi-basic linear combination ψ1
2 + 2 (φ2

2 − φ1
1) gives

ψ1
2 + 2(φ2

2 − φ1
1) ≡

16F 5G2(b22)
2c12 − F 3

u ((P − F Gux)
2 − F 2 v2

x)

16F 5G2 a1
1 (b22)

2
σ2

2 (mod θ1, θ2, ξ1, ξ2),

therefore we put

c12 = −
F 3

u ((P − F Gux)
2 − F v2

x)

16F 5G2 a1
1 (b22)

2
.

At the third step, we analyze the reduced structure equations. After absorption,

we have an essential torsion coefficient at ξ1 ∧ σ1
2 in dσ1

2. This coefficient depends on

f 2
12; we set the coefficient equal to zero and express f 2

12, while the expression is too long

to be written in full. Similarly, we express f 2
21 from the essential torsion coefficient at

ξ2 ∧ σ2
2 in dσ2

2. Then after absorption of torsion in all the structure equations we have

dσ2
2 = ζ1 ∧ (2 θ1 + σ2

2) + ζ2 ∧ (θ1 + σ2
2) + ζ3 ∧ θ

2 + ζ4 ∧ (ξ1 + ξ2) − ξ2 ∧ σ2
2

−
2F 5G2 (b22)

2 (GPx + (Gux − vx)Pu)

F 2
u a

1
1 (P − FGux + Fvx) (P − FGux − Fvx)3

θ2 ∧ σ2
2,

where ζ1, ζ2, ζ3, and ζ4 are 1-forms on R×H, and the last torsion coefficient is essential.

There are two possibilities now: P 6= const and P = const. Denote by P1 the subclass

of systems (8) such that Gx 6= 0, Fu 6= 0, and P 6= const. For a system from P1 we set

the coefficient at θ2 ∧ σ2
2 in dσ2

2 equal to 1 and obtain

a1
1 = −

2F 5G2 (b22)
2 (GPx + (Gux − vx)Pu)

F 2
u (P − FGux + Fvx) (P − FGux − Fvx)3

.

Similarly, we set the essential torsion coefficient at θ1 ∧ θ2 in dξ1 equal to zero and find

b22 = −
Fu (P − FGux − Fvx)

2F 2G
.

Next, we express g1
22 from the essential torsion coefficient at θ1 ∧ ξ1 in dσ1

2 . Now the

essential torsion coefficient at θ1 ∧ σ1
2 in dθ1 has the form

R =
Fu (FGPx + PPu) (P − FGux + Fvx)

2

2F 3 (GPx + (Gux − vx)Pu)
2 .
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This function is an invariant of the symmetry group for a system from P1, together with

its invariant derivatives Di(R), i ∈ {1, ..., 6}, defined by dR = D1(R) θ1 + D2(R) θ2 +

D3(R) ξ1 + D4(R) ξ2 + D5(R) σ1
2 + D6(R) σ2

2. The invariant D3(R) depends on g2
11; we

set D3(R) = 0 and express g2
11.

Now all the parameters of the group H are expressed as functions of x, u, ux, and

vx. The structure equations of the symmetry group for a system from P1 have the form

dθ1 = 1
6
(6K3 + 1 − 4K2K3K5 − 2K4) θ

1 ∧ θ2

+1
6
(K4 + 1 + 2K2K3K5 − 6K3)K

−1
2 K−1

3 θ1 ∧ ξ1

+1
3
(K4 + 1 + 3K1K2K3 + 3K2K3K6 − 6K3 − 4K2K3K5)K

−1
2 K−1

3 θ1 ∧ ξ2

+K2K3 θ
1 ∧ σ2

2 −
1
4
θ2 ∧ ξ1 + ξ2 ∧ σ1

2,

dθ2 = K4 θ
1 ∧ θ2 − θ1 ∧ ξ1 +K5 θ

2 ∧ ξ1 +K6 θ
2 ∧ ξ2 +K2K3 θ

2 ∧ σ2
2 + (ξ1 + ξ2) ∧ σ2

2,

dξ1 = K1K2 θ
1 ∧ ξ1 + 1

2
K1K2 θ

2 ∧ ξ1 +K1 ξ
1 ∧ ξ2,

dξ2 = K2K3 θ
1 ∧ θ2 − θ1 ∧ ξ1 + (K1K2 − 1) θ1 ∧ ξ2 + 1

2
(2K3 − 1 +K1K2) θ

2 ∧ ξ2

+1
6
(K4 + 1 − 4K2K3K5 − 6K3)K

−1
2 K−1

3 ξ1 ∧ ξ2,

dσ1
2 = −K10 θ

1 ∧ θ2 −K11 θ
1 ∧ ξ2 + (K4 − 1) θ1 ∧ σ1

2

+ 1
12

(6K3 − 1 + 4K2K3K5 −K4)K
−1
2 K−1

3 θ2 ∧ ξ1

−K9 θ
2 ∧ ξ2 + 1

6
(2K4 − 3K1K2 + 4K2K3K5 − 12K3 + 2) θ2 ∧ σ1

2

+K8 ξ
1 ∧ ξ2 − 1

3
(K4 − 6K3 + 1 −K2K3K5)K

−1
2 K−1

3 ξ1 ∧ σ1
2 + 1

4
ξ1 ∧ σ2

2

+K7 ξ
2 ∧ σ1

2 −K12 ξ
2 ∧ σ2

2 +K2K3 σ
1
2 ∧ σ

2
2,

dσ2
2 = K19 θ

1 ∧ θ2 +K17 ∧ θ
1 ∧ ξ1 +K14 θ

1 ∧ ξ2 + (K4 −K1K2 + 1) θ1 ∧ σ2
2

+K18 θ
2 ∧ ξ1 +K15 θ

2 ∧ ξ2 + 1
3
(2K2K3K5 +K4 − 2) θ2 ∧ σ2

2 −K16 ξ
1 ∧ ξ2

+K13 ξ
1 ∧ σ2

2 − ξ2 ∧ σ1
2 −K20 ξ

2 ∧ σ2
2,

where

K1 =
2Fvx (2F 2

uGP + FuGuFP − FuuFGP −G2F 2Fxu − FuFGPu +G2FxFuF )

(P − uxGF + Fvx)F 2
uG (−P + uxGF + Fvx)

,

K2 =
Fu (−P + uxGF + Fvx) (−P + uxGF − Fvx)

2

2F 3vx (uxPuG+ PxG− Puvx)
,

K3 =
vx (PPu + FGPx)

(FGux + Fvx − P ) (GPx +GPuux − Puvx)
,

while the expressions for K4, ..., K20 are too long to be written in full.

The functions K1, ..., K20 are differential invariants of the symmetry group

Cont(R) for system (8) from P1. All the other differential invariants of Cont(R) are
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functions of Kj and their invariant derivatives Kj,I = DI(Kj), where for a multi-index

I = (i1, i2, ..., il) of length #I = l we denote DI = Di1 ◦ Di2 ◦ ... ◦ Dil, ik ∈ {1, ..., 6}

for k ∈ {1, ..., l}. For s ≥ 0 the sth order classifying manifold associated with the

coframe θ = {θ1, θ2, ξ1, ξ2, σ1
2, σ

2
2} and an open subset V in space R

4 with the coordinates

(x, u, ux, vx) is

C(s)(θ, V ) = {(Kj,I(x, u, ux, vx)) | j ∈ {1, ..., 20}, #I ≤ s, (x, u, ux, vx) ∈ V }. (11)

Since all the functions Kj,I depend on four variables x, u, ux, and vx, it follows that

ρs = dim C(s)(θ, V ) ≤ 4 for all s ≥ 0. Let r = min{s | ρs = ρs+1 = ρs+2 = ...} be

the order of the coframe θ. We have 0 ≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ ... ≤ 4. In any case,

r + 1 ≤ 4. Hence from Theorem 8.19 of [13] we see that two systems (8) from the

subclass P1 are locally equivalent under a contact transformation if and only if their

fourth order classifying manifolds (11) locally overlap. The dimension of Cont(R) is

equal to 6 − dim C(4)(θ, V ). Therefore dimCont(R) ≥ 2, as it should be, since every

system (8) is invariant under the symmetries with infinitesimal generators ∂/∂t and

∂/∂v.

Now we consider the case Gx 6= 0, Fu 6= 0, and P = m = const. From (9) it follows

that the system Hx = −mF−1, Hu = G is compatible, therefore there exists a function

H(x, u) such that dH = −mF−1 dx+Gdu. Then the change of variables ũ = H(x, u),

ṽ = v − mt maps system (8) to the system ũt = F̃ (x, ũ) ṽx, ṽt = F̃ (x, ũ) ũx with

F̃ (x, ũ) = F (x, u). Dropping tildes, we obtain system (7). Thus in the case P = const

system (8) is equivalent to system (7).

Let us consider system (7). The computations are similar, so we omit them and

present the results. The structure of the symmetry group for system (7) is different in

the cases of (lnF )xu 6= 0 and (lnF )xu = 0. We denote by P2 the subclass of systems

(7) such that (lnF )xu 6= 0. For a system from P2 all the parameters of the group H are

functions of x, u, ux, and vx. The structure equations for the coframe θ have the form

dθ1 = (L3 θ
1 + ξ1) ∧ θ2 + 1

3
(3L2L3 + L2 − L4 + L1 − L1L3) θ

1 ∧ ξ1 + (L4 θ
1 − σ1

2) ∧ ξ
2,

dθ2 = 1
2
L3 θ

1 ∧ θ2 + θ1 ∧ ξ2 + 1
3
(3L2L3 − 2L2 − L4 + L1 − L1L3) θ

2 ∧ ξ1

−(2L2 + L1 − L4) θ
2 ∧ ξ2 + (ξ1 + ξ2) ∧ σ2

2 ,

dξ1 = −1
2
θ1 ∧ ξ1 + θ2 ∧ ξ1 + L1 ξ

1 ∧ ξ2,

dξ2 = −1
2
θ1 ∧ ξ2 + θ2 ∧ ξ2 + L2 ξ

1 ∧ ξ2,

dσ1
2 = 1

3
(4L2 + 3L2L3 − L3L1 − 4L4 + 6 + 4L1) (θ1 ∧ θ2 − ξ2 ∧ σ1

2) + L7 θ
1 ∧ ξ1

+(2L2L3 −
14
3
L2

2 − 2L2
2L3 + 1

3
L2L4 + 1

13
L2 −

1
3
L1L2L3 − 7L2L1 −

25
6
L4 + 1

3
L1

2L3

+7
3
L1L4 −

2
3
L3L1 + 1 + 25

6
L1 −

1
2
L6 −

7
3
L2

1) θ
1 ∧ ξ2 + 1

2
L3 θ

1 ∧ σ1
2 − 2L2 θ

2 ∧ ξ1

+θ2 ∧ (L6 ξ
2 − (L3 + 1) σ1

2) + 1
3
(14L2 + 6L2L3 − 2L3L1 − 8L4 + 3 + 14L1) ξ

2 ∧ σ2
2

+L5 ξ
1 ∧ ξ2 + 1

3
(L4 − 3L2L3 − 4L2 − L1 + L1L3) ξ

1 ∧ σ1
2 + ξ1 ∧ σ2

2,
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dσ2
2 = −1

6
(3L2L3 + L2 + 3

2
+ L1 − L1L3 − L4) θ

1 ∧ θ2 + 1
12

(2L2
1 − 2L2

1L3 + 4L1L3

+2L1L2L3 − 2L1L4 − L1 + 6L1L2 + 6L8 + 2L2L4 + L4 − 6 − 12L2L3 + 4L2
2

+12L2
2L3 + 2L2) θ

1 ∧ (ξ1 − ξ2) + 1
2
(L3 + 1) θ1 ∧ σ2

2 − (L1 − L8 + L7 − 3L2) θ
2 ∧ ξ1

+L8 θ
2 ∧ ξ2 − L3 θ

2 ∧ σ2
2 −

1
6
(3L2L3 + 4L2 − L4 + L1 − L3L1) ξ

1 ∧ σ1
2

+1
2
(2L4 − 4L2 + 1 − 4L1) ξ

1 ∧ σ2
2 + 1

6
(L4 − 3L2L3 − 4L2 − L1 + L1L3) ξ

2 ∧ σ1
2

+1
2
L5 ξ

1 ∧ ξ2 + 1
6
(6L2L3 + 22 + 3 + 2L1 − 2L1L3 − 2L4) ξ

2 ∧ σ2
2,

where

L1 = (3 v2
xF

2
u − 3Fuuv

2
xF − 5 vxFxuF + 5 vxFxFu − 3 uxFxFu + 3Fuuu

2
xF − 3 u2

xF
2
u

+3 uxFxuF ) (u2
x − v2

x)
−1 F−2

u ,

L2 = (F 2
uL1ux + 8 vxF

2
u − 8 vxFFuu + F 2

uL1vx)F
−2
u (3 ux − 5 vx)

−1,

L3 = 1
64
F 3

u (u2
x − v2

x) (6 u2
xFuL2L1 − u2

xFuL
2
1 − 9 u2

xFuL
2
2 + 8FxL1vx − 24FvxL2,x

+8FL1,xvx − 6Fuv
2
xL2L1 + FuL

2
1v

2
x − 24FxL2vx + 9Fuv

2
xL

2
2) v

−2
x (FFxu − FxFu)

−2,

L4 = − 1
16
Fu (u2

x − v2
x) (6 u2

xFuL
2
2 + 9 u2

xFuL2 − 3 u2
xFuL1 − 4 u2

xFuL
2
1 + 10 u2

xFuL2L1

+18 uxFxL2 − 6 uxFxL1 − 6Fuv
2
xL2

2 + 10FxL1vx + 4FuL
2
1v

2
x + 16FL1,xvx

−9Fuv
2
xL2 + 3FuL1v

2
x − 30FxL2vx − 10Fuv

2
xL2L1) (FFxu − FxFu)

−1,

while L5, ..., L8 are too long to be written in full. All the differential invariants

of Cont(R) are functions of Lj and their invariant derivatives Lj,I = DI(Lj) =

Di1 ◦ Di2 ◦ ... ◦ Dil(Lj) (the operators Di are not the same as in the case P1!) The

sth order classifying manifold associated with the coframe θ and an open subset V is

C(s)(θ, V ) = {(Lj,I(x, u, ux, vx)) | j ∈ {1, ..., 8}, #I ≤ s, (x, u, ux, vx) ∈ V }. (12)

Since all the functions Lj,I depend on four variables x, u, ux, and vx, it follows that

ρs = dim C(s)(θ, V ) ≤ 4 for all s ≥ 0, and the order r of the coframe θ satisfies r+1 ≤ 4

again. Two systems (7) from the subclass P2 are locally equivalent under a contact

transformation if and only if their fourth order classifying manifolds (12) locally overlap,

and dimCont(R) = 6 − dim C(4)(θ, V ) ≥ 2.

If (lnF )xu = 0, then F (x, u) = S(x) F̃ (u) for arbitrary functions S and F̃ .

Then the change of variables x̃ = H(x) provided H ′(x) = (S(x))−1 maps the system

ut = S(x) F̃ (u) vx, vt = S(x) F̃ (u) ux, to the system ut = F̃ (u) vx̃, vt = F̃ (u) ux̃. We

drop the tildes for simplicity of notation and consider the system

ut = F (u) vx, vt = F (u) ux. (13)

The computations show that there are three non-equivalent types of systems (13):

denote by P3 the subclass of systems (13) such that Fu 6= 0 and

M1 =
4FF 2

uFuu + 4F 2F 2
uu − 4F 2FuFuuu − 3F 4

u

F 4
u

6= const,
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by P4 denote the subclass of systems (13) such that Fu 6= 0 and M1 = const, finally, by

P5 denote the subclass of systems (13) such that Fu = 0.

The subclass P3 is not empty; for example, system (13) with F (u) = (1 + u2)−1

belongs to P3. For a system from P3 the structure equations of the symmetry pseudo-

group after a prolongation have the form

dθ1 = η1 ∧ θ
1 − θ2 ∧ ξ1 + ξ2 ∧ σ1

2,

dθ2 = η1 ∧ θ
2 + θ1 ∧ ξ2 −M2 θ

2 ∧ ξ1 − (2M2 +M3) θ
2 ∧ ξ2 + (ξ1 + ξ2) ∧ σ2

2 ,

dξ1 = M3 ξ
1 ∧ ξ2,

dξ2 = M2 ξ
1 ∧ ξ2,

dσ1
2 = η1 ∧ σ

1
2 + η2 ∧ ξ

2 +M1 θ
1 ∧ ξ1 − 2M2 θ

2 ∧ ξ1 −M2 ξ
1 ∧ σ1

2 + ξ1 ∧ σ2
2,

dσ2
2 = η1 ∧ σ

2
2 + η3 ∧ (ξ1 + ξ2) +M1 θ

2 ∧ ξ2 − 2 (M2 +M3) ξ
2 ∧ σ2

2,

dη1 = (M1 − 1) ξ1 ∧ ξ2,

dη2 = µ1 ∧ ξ
2 + η1 ∧ η2 + 2M2 η2 ∧ ξ

1 − η3 ∧ ξ
1 + (D4(M1) + 2M2 −M1M3) θ

1 ∧ ξ1

−
(

2D4(M2) + 4M2
2 −M1

)

θ2 ∧ ξ1 + (D4(M2) + 2M1 −M2M3 − 1) ξ1 ∧ σ1
2

−(4M2 +M3) ξ
1 ∧ σ2

2 ,

dη3 = µ2 ∧ (ξ1 + ξ2) + η1 ∧ η3 − 3 (M2 +M3) η3 ∧ ξ
2 − (2M1M2 + 1) θ2 ∧ ξ2

+ (4M1 − 2D3(M2)(D4(M1) − 1) + 2M2(M2 +M3) − 3) ξ2 ∧ σ2
2,

where η1, η2, η3, µ1, and µ2 are 1-forms on R × H. The only non-zero reduced

character, [13, def 11.4], is s′1 = 2, therefore the symmetry pseudo-group for system

(13) from P3 depends on two arbitrary functions of one variable. The invariants M2

and M3 are defined by M2 = (2FFuuM1,u − FFuM1,uu − 2F 2
uM1,u)F

−1F−1
u M−2

1,u and

M3 = −(M2 D4(M1) + D(3,4)(M1)), where for an arbitrary function R(u) we have

dR = D3(R) ξ1 + D4(R) ξ2 with the invariant derivatives D3 = M−1
1,u ∂/∂u and D4 =

(1 − 4F 2M2
1,uF

−2
u )M−1

1,u ∂/∂u. We have D3(M1) = 1 and D4(M1) = 1 − 4F 2M2
1,uF

−2
u .

Since M1 6= const, then M2 and D4(M1) depend on M1 functionally: M2 = H1(M1)

and D4(M1) = H2(M1). All the other differential invariants can be expressed as

functions of M1. For example, we have D3(M2) = H ′

1(M1)D3(M1) = H ′

1(M1) and

D4(M2) = D4(M1)D3(M2) = H2(M1)H
′

1(M1).

The first order classifying manifold associated with the coframe θ =

{θ1, θ2, ξ1, ξ2, σ1
2, σ

2
2, η1, η2, η3} and an open subset W ⊂ R can be parameterized by

M1, M2, and D4(M1) :

C(1)(θ,W ) = {(M1(u),M2(u),D4(M1)(u)) | u ∈W}. (14)

Two systems (13) from P3 are equivalent under a contact transformation iff their

classifying manifolds (14) (locally) overlap, [13, Th 15.22], i.e., they have the same

functions H1 and H2.
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The subclass P4 is not empty; for example, systems (13) with F (u) =

exp(C arctan(sinh(λ u))), F (u) = eu, or F (u) = um, m 6= 0, belong to P4. For a

system from P4 the structure equations of symmetry pseudo-group after a prolongation

have the form

dθ1 = η1 ∧ θ
1 − θ2 ∧ ξ1 + ξ2 ∧ σ1

2,

dθ2 = η2 ∧ θ
2 − θ1 ∧ ξ2 + (ξ1 + ξ2) ∧ σ2

2,

dξ1 = (η1 − η2) ∧ (ξ1 + 2 ξ2),

dξ2 = (η2 − η1) ∧ ξ
2,

dσ1
2 = −2 η1 ∧ (θ2 − σ1

2) + η2 ∧ (2 θ2 − σ1
2) + η3 ∧ ξ

2 +M1 θ
1 ∧ ξ1 + ξ1 ∧ σ2

2 ,

dσ2
2 = (2 η2 − η1) ∧ σ

2
2 + η4 ∧ (ξ1 + ξ2) +M1 θ

2 ∧ ξ2,

dη1 = (M1 − 1) ξ1 ∧ ξ2,

dη2 = −(M1 − 1) ξ1 ∧ ξ2,

dη3 = µ1 ∧ ξ
2 + (3 η1 − 2 η2) ∧ η3 − 2 (M1 + 1) (η1 − η2) ∧ θ

1 + 4 (η1 + η2) ∧ σ
2
2 − η4 ∧ ξ

1

+(3M1 − 4) θ2 ∧ ξ1 + (4M1 − 3) ξ1 ∧ σ1
2 ,

dη4 = µ2 ∧ (ξ1 + ξ2) − (2 η1 − 3 η2) ∧ η4 + (4M1 − 3) ξ2 ∧ σ2
2 ,

where η1, η2, η3, η4, µ1, and µ2 are 1-forms on R × H. The only non-zero reduced

character is s′1 = 2, therefore the symmetry pseudo-group for system (13) from P3

depends on two arbitrary functions of one variable. Since M1 = const, all the other

differential invariants are equal to zero, and the classifying manifold is a point. Two

systems from P4 are equivalent under a contact transformation iff they have the same

values of M1.

A system from P5 with F (u) ≡ m = const can be transformed to the system

ut = vx, vt = ux (15)

by the change of variables t 7→ m−1 t. The symmetry pseudo-group for system (15) has

the structure equations

dθ1 = η1 ∧ θ
1 + ξ1 ∧ σ1

2,

dθ2 = η2 ∧ θ
2 + ξ2 ∧ σ2

2,

dξ1 = η3 ∧ ξ
1 + η4 ∧ θ

1,

dξ2 = η5 ∧ ξ
2 + η6 ∧ θ

2,

dσ1
2 = (η1 − η3) ∧ σ

1
2 + η7 ∧ θ

1 + η8 ∧ ξ
1,

dσ2
2 = (η2 − η5) ∧ σ

2
2 + η9 ∧ θ

2 + η10 ∧ ξ
2,
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where η1, ..., η10 are 1-forms on R×H. The non-zero reduced characters are s′1 = 6 and

s′2 = 4, therefore the pseudo-group depends on 4 arbitrary functions of two variables.

The subclasses P3 and P4 are linearizable: the contact transform t̃ = v, x̃ = u, ũ =

x, and ṽ = t maps system (13) to the system ũt̃ = F (x̃) ṽx̃, ṽt̃ = (F (x̃))−1 ũx̃. Therefore

all systems (8) with infinite-dimensional symmetry pseudo-groups are linearizable, cf.

[15].

The results of the computations are summarized in the following

Theorem : Every system from the class of nonlinear wave equations (8) is equivalent

under a contact transformation to a system from one of the five invariant subclasses

P1, P2, P3, P4, and P5: P1 consists of all systems (8) such that Gx 6= 0, Fu 6= 0, and

Gx F
2 F−1

u 6= const, P2 consists of all systems (7) such that (lnF )xu 6= 0, P3 consists of

all systems (13) such that M1 = (4FF 2
uFuu + 4F 2F 2

uu − 4F 2FuFuuu − 3F 4
u )F−4

u 6= const,

P4 consists of all systems (13) such that M1 = const, and P5 consists of system (15).

Systems from P1 and P2 have finite-dimensional symmetry groups, while systems

from P3, P4, and P5 are linearizable and have infinite-dimensional symmetry pseudo-

groups.

Two systems from one of the subclasses P1, P2, or P3 are equivalent to each other

under a contact transformation if and only if the classifying manifolds (11), (12), or

(14) for these systems locally overlap. Two systems from the subclass P4 are equivalent

if and only if they have the same constant value of the invariant M1.

Conclusion

In this paper, the moving coframe method of [6] is applied to the local equivalence

problem for a class of systems of nonlinear wave equations under an action of the pseudo-

group of contact transformations. We have found five invariant subclasses and shown

that every system of nonlinear wave equations can be transformed to a system from one

of these subclasses. The structure equations and the differential invariants for all the

subclasses are found. The solution of the equivalence problem is given in terms of the

differential invariants. Three of the invariant subclasses consist of linearizable systems

with infinite-dimensional symmetry pseudo-groups. Therefore all the linearizable cases

for non-linear wave equations are classified.
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- Villars) 1335–84



Contact Equivalence Problem for Nonlinear Wave Equations 13
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