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CONTACT-EQUIVALENCE PROBLEM
FOR LINEAR HYPERBOLIC EQUATIONS

O. I. Morozov UDC 514.763.8+514.747.3+517.956.3

Abstract. We consider the local equivalence problem for the class of linear second-order hyperbolic equa-

tions in two independent variables under an action of the pseudo-group of contact transformations. É. Car-
tan’s method is used for finding the Maurer–Cartan forms for symmetry groups of equations from the
class and computing structure equations and complete sets of differential invariants for these groups. The
solution of the equivalence problem is formulated in terms of these differential invariants.

Introduction

In the present paper, we find necessary and sufficient conditions for two equations from the class of
linear second-order hyperbolic equations

utx = T (t, x)ut +X(t, x)ux + U(t, x)u (1)

to be equivalent under an action of the contact transformation pseudo-group. We use Élie Cartan’s
method of equivalence [1–5] in its form developed by Fels and Olver [6,7] to compute the Maurer–Cartan
forms, the structure equations, the basic invariants, and the invariant derivatives for symmetry groups of
equations from the class. All differential invariants are functions of the basic invariants and their invariant
derivatives. The differential invariants parametrize classifying manifolds associated with given equations.
Cartan’s solution to the equivalence problem states that two equations are (locally) equivalent if and only
if their classifying manifolds (locally) overlap.

The symmetry classification problem for classes of differential equations is closely related to the prob-
lem of local equivalence: symmetry groups of two equations are necessarily isomorphic if these equations
are equivalent, while the converse statement is not true in general. The symmetry analysis of linear
second-order hyperbolic equations (1) was done by Lie [16, Vol. 3, pp. 492–523]. Two semi-invariants,
H = −Tt + TX + U and K = −Xx + TX + U , were discovered by Laplace [15]. These functions are
unaltered under an action of the pseudo-groups of linear transformations ū = c(t, x)u. In [22], Ovsian-
nikov found the invariants P = KH−1 and Q = (ln |H|)txH

−1 and used them to classify Eqs. (1) with
nontrivial symmetry groups. In [9, Theorem 2.3] and [10, Sec. 10.4.2], it was claimed that the invariants
P and Q form a basis of differential invariants for Eqs. (1), while all the other invariants are functions
of P and Q and their invariant derivatives. In [14], a basis of five invariants and operators of invariant
differentiation are found in the case Px �= 0. In the case Pt �= 0 and Px �= 0, two bases of four invariants
are computed in [12].

In [18], the invariant version of Lie’s infinitesimal method was developed and applied to the symmetry
classification of the class (1).

The symmetry classification problem and invariants for the class of linear parabolic equations uxx =
T (t, x)ut + X(t, x)ux + U(t, x)u are studied in [11, 13, 16, 23] by Lie’s infinitesimal method. In [20, 21],
Cartan’s method is applied to solve the contact equivalence problem for this class.

The paper is organized as follows. In Sec. 1, we begin with some notation and use Cartan’s equiva-
lence method to find the invariant 1-forms and the structure equations for the pseudo-group of contact
transformations on the bundle of second-order jets. In Sec. 2, we briefly describe the approach to com-
puting Maurer–Cartan forms and structure equations for symmetry groups of differential equations via
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the moving coframe method of Fels and Olver. In Sec. 3, the method is applied to the class of hyperbolic
equations (1). Finally, we make some concluding remarks.

1. Pseudo-Group of Contact Transformations

In this paper, all considerations are of a local nature and all mappings are real analytic. Let
E = R

n × R → R
n be a trivial bundle with the local base coordinates (x1, . . . , xn) and the local fi-

bre coordinate u; then by J2(E) denote the bundle of second-order jets of sections of E , with the local
coordinates (xi, u, pi, pij), i, j ∈ {1, . . . , n}, i ≤ j. For every local section (xi, f(x)) of E , the corresponding
2-jet (xi, f(x), ∂f(x)/∂xi, ∂2f(x)/∂xi∂xj) is denoted by j2(f). A differential 1-form ϑ on J2(E) is called
a contact form if it is annihilated by all 2-jets of local sections: j2(f)∗ϑ = 0. In the local coordinates every
contact 1-form is a linear combination of the forms ϑ0 = du − pidx

i, ϑi = dpi − pijdx
j , i, j ∈ {1, . . . , n},

pji = pij (here and later we use the Einstein summation convention, so pidx
i =

n∑
i=1

pidx
i, etc.). A local

diffeomorphism
∆: J2(E) → J2(E), ∆: (xi, u, pi, pij) �→ (x̄i, ū, p̄i, p̄ij), (2)

is called a contact transformation if for every contact 1-form ϑ the form ∆∗ϑ̄ is also contact. We use
Cartan’s method of equivalence [5, 24] to obtain a collection of invariant 1-forms for the pseudo-group of
contact transformations on J2(E). For this, take the coframe

{ϑ0, ϑi, dx
i, dpij | i, j ∈ {1, . . . , n}, i ≤ j}

on J2(E). A contact transformation (2) acts on this coframe in the following manner:

∆∗



ϑ̄0

ϑ̄i

dx̄i

dp̄ij


 = S



ϑ0

ϑk

dxk

dpkl


 ,

where S : J2(E) → G is an analytic function and G is the Lie group of nondegenerate block matrices of
the form 



a ãk 0 0
g̃i hk

i 0 0
c̃i f̃ ik bik rikl

s̃ij w̃k
ij z̃ijk q̃kl

ij


 .

In these matrices, i, j, k, l ∈ {1, . . . , n}, rikl are defined for k ≤ l, s̃ij , w̃k
ij , and z̃ijk are defined for i ≤ j,

and q̃kl
ij are defined for i ≤ j, k ≤ l.

Let us show that ãk = 0. Indeed, the exterior (nonclosed!) ideal

I = span{ϑ0, ϑi}
has the derived ideal

δI = {ω ∈ I | dω ∈ I} = span{ϑ0}.
Since ∆∗Ī ⊂ I implies ∆∗(δĪ) ⊂ δ(∆∗Ī) ⊂ δI, we obtain ∆∗ϑ̄0 = aϑ0.

For convenience in the following computations, we denote by (Bj
i ) the inverse matrix for (bji ), so

bjiB
k
j = δk

i ,

by (Hj
i ) denote the inverse matrix for (hj

i ), so

hj
iH

k
j = δk

i ,

make the change of variables on G such that

gi = g̃ia
−1, f ij = f̃ ikHj

k, ci = c̃ia−1 − f ikgk, sij = s̃ija
−1 − w̃k

ijH
m
k gm − z̃ijmB

m
k c

k,

wk
ij = w̃m

ijH
k
m − z̃ijmB

m
l f

lk, zijk = z̃ijmB
m
k , qkl

ij = q̃kl
ij − z̃ijmB

m
m′rm′kl,
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and define Qkl
k′l′ by

Qkl
k′l′q

k′l′
ij = δk

i δ
l
j .

In accordance with Cartan’s method of equivalence, we take the lifted coframe



Θ0

Θi

Ξi

Σij


 = S



ϑ0

ϑk

dxk

dpkl


 =




aϑ0

giΘ0 + hk
i ϑk

ciΘ0 + f ikΘk + bikdx
k + rikldpkl

sijΘ0 + wk
ijΘk + zijkΞk + qkl

ij dpkl


 (3)

on J2(E) × G. Expressing du, dxk, dpk, and dpkl from (3) and substituting them into dΘ0, we have

dΘ0 = da ∧ ϑ0 + adϑ0 = daa−1 ∧ Θ0 + adxi ∧ dpi = daa−1 ∧ Θ0 + adxi ∧ ϑi

= Φ0
0 ∧ Θ0 + aBi

kH
m
i Ξk ∧ Θm + aHm

i R
iklΣkl ∧ Θm + aHm

i (Bi
kf

kj +Riklwj
kl)Θj ∧ Θm, (4)

where

Φ0
0 = daa−1 + aHm′

i (Bi
k(c

k +Riklskl)Θm′ − gm′Bi
k(Ξ

k − ckΘ0 − fkjΘj)

− gm′Rikl(Σkl − sklΘ0 − wm
klΘm − zklmΞm))

and Rjkl = −rik′l′Bj
iQ

kl
k′l′ .

The multipliers of Ξk ∧ Θm, Σkl ∧ Θm, and Θj ∧ Θm in (4) are essential torsion coefficients. We
normalize them by setting aBi

kH
m
i = δm

k , Rikl = 0, and fkj = f jk. Therefore, the first normalization is

hk
i = aBk

i , rikl = 0, fkj = f jk. (5)

Analyzing dΘi, dΞi, and dΣij in the same way, we obtain the following normalizations:

qkl
ij = aBk

i B
l
j , sij = sji, wk

ij = wk
ji, zijk = zjik = zikj . (6)

After these reductions the structure equations for the lifted coframe have the form

dΘ0 = Φ0
0 ∧ Θ0 + Ξi ∧ Θi,

dΘi = Φ0
i ∧ Θ0 + Φk

i ∧ Θk + Ξk ∧ Σik,

dΞi = Φ0
0 ∧ Ξi − Φi

k ∧ Ξk + Ψi0 ∧ Θ0 + Ψik ∧ Θk,

dΣij = Φk
i ∧ Σkj − Φ0

0 ∧ Σij + Υ0
ij ∧ Θ0 + Υk

ij ∧ Θk + Λijk ∧ Ξk,

where the forms Φ0
0, Φ0

i , Φk
i , Ψi0, Ψij , Υ0

ij , Υk
ij , and Λijk are defined by the following equations:

Φ0
0 = daa−1 − gkΞk + (ck + fkmgm)Θk,

Φ0
i = dgi + gkdb

k
jB

j
i − (gigk + sik + cjzijk)Ξk + ckΣik + (gic

k + gigmf
mk − cjwk

ij + fmksim)Θk,

Φk
i = δk

i daa
−1 − dbkjB

j
i + (giδ

k
j − wk

ij − fkmzi
jm)Ξj + fkmΣim + f jmwk

ijΘm,

Ψi0 = dci + f ijΦ0
j + ckΦi

k + (cifmjgm − ckfmjwi
kj)Θj − ckf ijΣkj + ck(f imzkmj + wi

kj − gkδ
i
j − gjδ

i
k)Ξ

j ,

Ψij = df ij + (f ikδj
m + f jkδi

m)Φm
k + (ciδj

k + cjδi
k − f ij , gk + f imf jlzklm)Ξk

+ f ij(ck + fkmgm)Θk − f ikf jmΣkm,
(7)
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Υ0
ij = dsij − sijdaa

−1 + skjdb
k
mB

m
i + sikdb

k
mB

m
j + sijΦ0

0 + wk
ijΦ

0
k + zijkΨk0,

Υk
ij = dwk

ij − wk
ijdaa

−1 + (wk
ilδ

m′
j + wk

jlδ
m′
i )dblmB

m
m′ + (sijδ

k
m + zijlf

m′kwl
m′m)Ξm

+ wm
ij Φk

m + f lk(wm
il δ

m′
j + wm

jl δ
m′
i )Σm′m − (ck + fmkgm)Σij ,

Λijk = dzijk − 2zijkdaa−1 + zijldb
l
mB

m
k + zilkdb

l
mB

m
j + zljkdb

l
mB

m
i + zijkΦ0

0 + zijkgmΞm

+ giΣjk + gjΣik + gkΣij − wl
ijΣlk − wl

ikΣlj − wl
jkΣli − f lm(zimjΣkl + zimkΣjl + zjmkΣil).

(7)

Let H be the subgroup of G defined by (5) and (6). We shall prove that the restriction of the
lifted coframe (3) to J2(E) ×H satisfies Cartan’s test of involutivity, [24, Definition 11.7]. The structure
equations remain unchanged under the following transformation of the forms (7):

Φ0
0 �→ Φ̃0

0, Φk
i �→ Φ̃k

i , Φ0
i �→ Φ̃0

i , Ψij �→ Ψ̃ij , Ψi0 �→ Ψ̃i0, Υ0
ij �→ Υ̃0

ij , Υk
ij �→ Υ̃k

ij , Λijk �→ Λ̃ijk,

where

Φ̃0
0 = Φ0

0 +KΘ0, Φ̃k
i = Φk

i + Lkl
i Θl +Mk

i Θ0, Φ̃0
i = Φ0

i +Mk
i Θk +NiΘ0,

Ψ̃ij = Ψij + P ijΘ0 + SijkΘk − Lij
k Ξk, Ψ̃i0 = Ψi0 + P ijΘj + T iΘ0 +KΞi −M i

kΞ
k,

Υ̃0
ij = Υ0

ij + UijΘ0 + V k
ijΘk +WijkΞk +KΣij +Mk

i Σkj ,

Υ̃k
ij = Υk

ij +Xkl
ij Θl + V k

ijΘ0 + Y k
ijlΞ

l + LiΣlj , Λ̃ijk = Λijk + ZijklΞl + Y l
ijkΘl +WijkΘ0

(8)

and K, Lkl
i , Mk

i , Ni, P ij , Sijk, T i, Uij , V k
ij , Wijk, Xkl

ij , Y k
ijl, and Zijkl are arbitrary constants satisfying

the following symmetry conditions:

Lkl
i = Llk

i , P ij = P ji, Sijk = Sjik = Sikj , Uij = Uji, V k
ij = V k

ji,

Wijk = Wjik = Wikj , Xkl
ij = Xkl

ji = X lk
ij , Y k

ijl = Y k
jil = Y k

ilj , Zijkl = Zjikl = Zijlk = Zikjl.
(9)

The number of such constants

r(1) = 1 +
n2(n+ 1)

2
+ n2 + n+

n(n+ 1)
2

+
n(n+ 1)(n+ 2)

6
+ n+

n(n+ 1)
2

+
n2(n+ 1)

2

+
n(n+ 1)(n+ 2)

6
+
n2(n+ 1)2

4
+
n2(n+ 1)(n+ 2)

6
+
n(n+ 1)(n+ 2)(n+ 3)

24

=
1
24

(n+ 1)(n+ 2)(11n2 + 29n+ 12)

is the degree of indeterminancy of the lifted coframe, [24, Definition 11.2]. The reduced characters of this
coframe, [24, Definition 11.4], are easily found:

s′i =
1
2
(n+ 1)(n+ 4) − i for i ∈ {1, . . . n+ 1},

s′n+1+j =
1
2
(n+ 1 − j)(n+ 2 − j) for j ∈ {1, . . . , n}.

A simple calculation shows that

r(1) = s′1 + 2s′2 + 3s′3 + · · · + (2n+ 1)s′2n+1.

Thus, the Cartan test is satisfied and the lifted coframe is involutive.
It is easy to directly verify that a transformation

∆̂ : J2(E) ×H → J2(E) ×H
satisfies the conditions

∆̂∗Θ̄0 = Θ0, ∆̂∗Θ̄i = Θi, ∆̂∗Ξ̄i = Ξi, ∆̂∗Σ̄ij = Σij (10)

if and only if it is projectable on J2(E), and its projection ∆: J2(E) → J2(E) is a contact transformation.
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Since (10) imply

∆̂∗dΘ̄0 = dΘ0, ∆̂∗dΘ̄i = dΘi, ∆̂∗dΞ̄i = dΞi, ∆̂∗dΣ̄ij = dΣij ,

we have

∆̂∗(Φ̄0
0 ∧ Θ̄0 + Ξ̄i ∧ Θ̄i) = (∆̂∗Φ̄0

0) ∧ Θ0 + Ξi ∧ Θi = Φ0
0 ∧ Θ0 + Ξi ∧ Θi,

∆̂∗(Φ̄0
i ∧ Θ̄0 + Φ̄k

i ∧ Θ̄k + Ξ̄k ∧ Σ̄ik) = ∆̂∗(Φ̄0
i ) ∧ Θ0 + ∆̂∗(Φ̄k

i ) ∧ Θk + Ξk ∧ Σik

= Φ0
i ∧ Θ0 + Φk

i ∧ Θk + Ξk ∧ Σik,

∆̂∗(Φ̄0
0 ∧ Ξ̄i − Φ̄i

k ∧ Ξ̄k + Ψ̄i0 ∧ Θ̄0 + Ψ̄ik ∧ Θ̄k)

= ∆̂∗(Φ̄0
0) ∧ Ξi − ∆̂∗(Φ̄i

k) ∧ Ξk + ∆̂∗(Ψ̄i0) ∧ Θ0 + ∆̂∗(Ψ̄ik) ∧ Θk

= Φ0
0 ∧ Ξi − Φi

k ∧ Ξk + Ψi0 ∧ Θ0 + Ψik ∧ Θk,

∆̂∗(Φ̄k
i ∧ Σ̄kj − Φ̄0

0 ∧ Σ̄ij + Ῡ0
ij ∧ Θ̄0 + Ῡk

ij ∧ Θ̄k + Λ̄ijk ∧ Ξ̄k)

= ∆̂∗(Φ̄k
i ) ∧ Σkj − ∆̂∗(Φ̄0

0) ∧ Σij + ∆̂∗(Ῡ0
ij) ∧ Θ0 + ∆̂∗(Ῡk

ij) ∧ Θk + ∆̂∗(Λ̄ijk) ∧ Ξk

= Φk
i ∧ Σkj − Φ0

0 ∧ Σij + Υ0
ij ∧ Θ0 + Υk

ij ∧ Θk + Λijk ∧ Ξk.

Therefore, we have the following transformation rules:

∆̂∗(Φ̄0
0) = Φ̃0

0, ∆̂∗(Φ̄k
i ) = Φ̃k

i , ∆̂∗(Φ̄0
i ) = Φ̃0

i ,

∆̂∗(Ψ̄ij) = Ψ̃ij , ∆̂∗(Ψ̄i0) = Ψ̃i0, ∆̂∗(Ῡ0
ij) = Υ̃0

ij , ∆̂∗(Ῡk
ij) = Υ̃k

ij , ∆̂∗(Λ̄ijk) = Λ̃ijk,
(11)

where the constants K, . . . , Zijkl in (8) are replaced by arbitrary functions on J2(E) × H such that the
same symmetry conditions (9) are satisfied.

2. Contact Symmetries of Differential Equations

Suppose R is a second-order differential equation in one dependent and n independent variables. We
consider R as a sub-bundle in J2(E). Let Cont(R) be the group of contact symmetries for R. It consists
of all the contact transformations on J2(E) mapping R to itself. The moving-coframe method [6, 7] is
applicable to finding invariant 1-forms characterizing Cont(R) in the same way as the restriction of the
lifted coframe (3) to J2(E) ×H characterizes Cont(J2(E)). We briefly outline this approach.

Let ι : R → J2(E) be an embedding. The invariant 1-forms of Cont(R) are restrictions of the coframe
(3), (5), (6) to R:

θ0 = ι∗Θ0, θi = ι∗Θi, ξi = ι∗Ξi, σij = ι∗Σij

(for brevity we identify the map ι × id : R×H → J2(E) ×H with ι : R → J2(E)). The forms θ0, θi, ξi,
and σij have some linear dependencies, i.e., there exists a nontrivial set of functions E0, Ei, Fi, and Gij

on R×H such that
E0θ0 + Eiθi + Fiξ

i +Gijσij ≡ 0.
These functions are lifted invariants of Cont(R). Setting them equal to some constants allows us to specify
some parameters a, bki , ci, gi, f ij , sij , wk

ij , and zijk of the group H as functions of the coordinates on R
and the other group parameters.

After these normalizations, a part of the forms

φ0
0 = ι∗Φ0

0, φk
i = ι∗Φk

i , φ0
i = ι∗Φ0

i ,

ψij = ι∗Ψij , ψi0 = ι∗Ψi0, υ0
ij = ι∗Υ0

ij , υk
ij = ι∗Υk

ij , λijk = ι∗Λijk,

or some of their linear combinations, become semi-basic, i.e., they do not include the differentials of the
parameters of H. From (11) and (8), we have the following statements:

(i) if φ0
0 is semi-basic, then its coefficients at θk, ξk, and σkl are lifted invariants of Cont(R);

(ii) if φ0
i or φk

i is semi-basic, then their coefficients at ξk and σkl are lifted invariants of Cont(R);
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(iii) if ψi0, ψij , or λijk is semi-basic, then their coefficients at σkl are lifted invariants of Cont(R).
Setting these invariants equal to some constants, we get specifications of some more parameters of H as
functions of the coordinates on R and the other group parameters.

More lifted invariants can appear as essential torsion coefficients in the reduced structure equations

dθ0 = φ0
0 ∧ θ0 + ξi ∧ θi,

dθi = φ0
i ∧ θ0 + φk

i ∧ θk + ξk ∧ σik,

dξi = φ0
0 ∧ ξi − φi

k ∧ ξk + ψi0 ∧ θ0 + ψik ∧ θk,

dσij = φk
i ∧ σkj − φ0

0 ∧ σij + υ0
ij ∧ θ0 + υk

ij ∧ θk + λijk ∧ ξk.

After normalizing these invariants and repeating the process, two outputs are possible. In the first case,
the reduced lifted coframe appears to be involutive. Then this coframe is the desired set of defining forms
for Cont(R). In the second case, when the reduced lifted coframe does not satisfy Cartan’s test, we should
use the procedure of prolongation [24, Chap. 12].

3. Structure and Invariants of Symmetry Groups for Linear Hyperbolic Equations

We apply the method described in the previous section to the class of linear hyperbolic equations (1).
Denote x1 = t, x2 = x, p1 = ut, p2 = ux, p11 = utt, p12 = utx, and p22 = uxx. The coordinates on R
are {(t, x, u, ut, ux, utt, uxx)}, and the embedding ι : R → J2(E) is defined by (1). At the first step, we
analyze the linear dependence between the reduced forms θ0, θi, ξi, and σij . Without loss of generality,
we suppose that b11 �= 0 and b22 �= 0; then we find

σ12 = E1σ11 + E2σ22 + E3θ0 + E4θ1 + E5θ2 + E6ξ
1 + E7ξ

2,

where, for example,

E1 = −(b11b
2
2 + b12b

2
1)

−1b11b
1
2, E2 = −(b11b

2
2 + b12b

2
1)

−1b22b
2
1.

Setting E1, E2, . . . , E7 equal to 0 sequentially, we have

E1 = 0 =⇒ b12 = 0,

E2 = 0 =⇒ b21 = 0,

E3 = 0 =⇒ s12 = −z112c
1 − z122c

2 + g1(b22)
−1T + g2(b11)

−1X − (b11b
2
2)

−1U,

E4 = 0 =⇒ w1
12 = −z112f

11 − z122f
12 − (b22)

−1T,

E5 = 0 =⇒ w2
12 = −z112f

12 − z122f
22 − (b11)

−1X,

E6 = 0 =⇒ z112 = −a(b11)−2(b22)
−1(Tutt + (2TX + 2U −H)ut + (Xt +X2)ux + (Ut +XU)u),

E7 = 0 =⇒ z122 = −a(b11)−1(b22)
−2(Xuxx + (Tx + T 2)ut + (2TX + 2U −K)ux + (Ux + TU)u),

where H = −Tt + TX + U and K = −Xx + TX + U are the Laplace invariants [15], [23, Sec. 9].
At the second step, we analyze the semi-basic forms φi

j and φ0
j . We have

φ2
1 ≡ f12σ11 + (g1 + (b11)

−1X)ξ2 (mod θ0, θ1, θ2, ξ1);

therefore we take f12 = 0, g1 = −(b11)
−1X. This yields

φ2
1 ≡ (−w2

11+af22(b11)
−2(b22)

−1(Tutt+(2TX+2U−H)ut+(Xt+X2)ux+(Ut+XU)u))ξ1 (mod θ0, θ1, θ2);

therefore we set

w2
11 = af22(b11)

−2(b22)
−1(Tutt + (2TX + 2U −H)ut + (Xt +X2)ux + (Ut +XU)u).

After that, we have
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φ1
2 ≡ (g2 + (b22)

−1T )ξ1 + (−w1
22 + af11(b11)

−1(b22)
−2(Xuxx + (Tx + T 2)ut

+ (2TX + 2U −K)ux + (Ux + TU)u))ξ2 (mod θ0, θ1, θ2),

and so we set g2 = −(b22)
−1T and

w1
22 = af11(b11)

−1(b22)
−2(Xuxx + (Tx + T 2)ut + (2TX + 2U −K)ux + (Ux + TU)u).

Then we have

φ0
1 ≡ c1σ11 (mod θ0, θ1, θ2, ξ1, ξ2), φ0

2 ≡ c2σ22 (mod θ0, θ1, θ2, ξ1, ξ2),

and so we set c1 = 0 and c2 = 0. Now we obtain

φ0
1 ≡ K(b11)

−1(b22)
−1ξ2 (mod θ0, θ1, θ2), φ0

2 ≡ H(b11)
−1(b22)

−1ξ1 (mod θ0, θ1, θ2). (12)

There are two possibilities now: H ≡ K ≡ 0 or at least one of the Laplace invariants is not identically
equal to 0.

We denote by S1 the subclass of Eqs. (1) such that H ≡ K ≡ 0. For an equation from S1 we use the
procedures of absorption and prolongation, [24], to compute the structure equations:

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η2 ∧ θ1 + ξ1 ∧ σ11,

dθ2 = η3 ∧ θ2 + ξ2 ∧ σ22,

dξ1 = (η1 − η2) ∧ ξ1 + η4 ∧ θ1,
dξ2 = (η1 − η3) ∧ ξ2 + η5 ∧ θ2,
dσ11 = (2η2 − η1) ∧ σ11 + η6 ∧ θ1 + η7 ∧ ξ1,
dσ22 = (2η3 − η1) ∧ σ22 + η8 ∧ θ2 + η9 ∧ ξ2,
dη1 = 0,

dη2 = π1 ∧ θ1 + η4 ∧ σ11 − η6 ∧ ξ1,
dη3 = π2 ∧ θ2 + η5 ∧ σ22 − η8 ∧ ξ2,
dη4 = −π1 ∧ ξ1 + π3 ∧ θ1 + (η1 − 2η2) ∧ η4,

dη5 = −π2 ∧ ξ2 + π4 ∧ θ2 + (η1 − 2η3) ∧ η5,

dη6 = 2π1 ∧ σ11 + π5 ∧ θ1 + π6 ∧ ξ1 + (η2 − η1) ∧ η6 − η4 ∧ η7,

dη7 = π6 ∧ θ1 + π7 ∧ ξ1 − 3η6 ∧ σ11 + (3η2 − 2η1) ∧ η7,

dη8 = 2π2 ∧ σ22 + π8 ∧ θ2 + π9 ∧ ξ2 + (η3 − η1) ∧ η8 − η5 ∧ η9,

dη9 = π9 ∧ θ2 + π10 ∧ ξ2 − 3η8 ∧ σ22 + (3η3 − 2η1) ∧ η9.

In these equations, the forms η1, . . . , η9 on J2(E)×H depend on differentials of the parameters of H, while
the forms π1, . . . , π10 depend on differentials of the prolongation variables. From the structure equations
it follows that Cartan’s test for the lifted coframe

{θ0, θ1, θ2, ξ1, ξ2, σ11, σ22, η1, η2, . . . , η9}
is satisfied; therefore, the coframe is involutive.

The same calculations show that the symmetry group of the linear wave equation utx = 0 has the same
structure equations but with a different lifted coframe. All the essential torsion coefficients in the structure
equations are constants. Thus, applying [24, Theorem 15.12], we obtain a well-known result, [23, Sec. 9]:
every equation from S1 is contact equivalent to the wave equation.
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Now we return to the case of H �≡ 0 or K �≡ 0. Since we can replace H and K by renaming the
independent variables t �→ x, x �→ t, we put H �≡ 0 without loss of generality. Then we use (12) and take
b22 = H(b11)

−1. After this, the form φ1
1 + φ2

2 − 2φ0
0 becomes semi-basic. Since

φ1
1 + φ2

2 − 2φ0
0 ≡ f11σ11 + f22σ22 (mod θ1, θ2, ξ1, ξ2),

we take f11 = 0 and f22 = 0. Then we have

φ1
1 + φ2

2 − 2φ0
0 ≡ −(w1

11 +H−1(b11)
−1(Ht + 2XH))ξ1 − (w2

22 +H−2b11(Hx + 2TH))ξ2 (mod θ1, θ2),

and so we take
w1

11 = −H−1(b11)
−1(Ht + 2XH), w2

22 = −H−2b11(Hx + 2TH).
At the third step, we analyze the structure equations. After absorption of torsion they have the form

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η2 ∧ θ1 + ξ1 ∧ σ11 − Pθ0 ∧ ξ2,
dθ2 = (2η1 − η2) ∧ θ2 − θ0 ∧ ξ1 + ξ2 ∧ σ22,

dξ1 = (η1 − η2) ∧ ξ1,
dξ2 = (η2 − η1) ∧ ξ2,
dσ11 = (2η2 − η1) ∧ σ11 + η3 ∧ ξ1 − Pt(b11)

−1θ0 ∧ ξ2 + (Q+ 1 − 2P )θ1 ∧ ξ2,
dσ22 = (3η1 − 2η2) ∧ σ22 + η4 ∧ ξ2 + (P +Q− 2)θ2 ∧ ξ1,

(13)

where the functions P = KH−1 and Q = (HHtx − HtHx)H−3 = (ln |H|)txH
−1 are invariants of the

symmetry group and the 1-forms η1, . . . , η4 depend on differentials of parameters of the group H (these
forms are not necessarily the same as in the case of an equation from S1).

We denote by S2 the subclass of Eqs. (1) such that Pt �≡ 0. This subclass is not empty, since, for
example, the equation utx = t2x2ut+u belongs to S2. For an equation from S2 we can normalize Pt(b11)

−1,
the only essential torsion coefficient in the structure equations (13), to 1 by setting b11 = Pt. Then, after
prolongation, we have the involutive lifted coframe

θ = {θ0, θ1, θ2, ξ1, ξ2, σ11, σ22, η1, η2, η3}
with the structure equations

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η1 ∧ θ1 − Pθ0 ∧ ξ2 − J2θ1 ∧ ξ1 − J1θ1 ∧ ξ2 + ξ1 ∧ σ11,

dθ2 = η1 ∧ θ2 − θ0 ∧ ξ1 + J2θ2 ∧ ξ1 + J1θ2 ∧ ξ2 + ξ2 ∧ σ22,

dξ1 = J1ξ
1 ∧ ξ2,

dξ2 = J2ξ
1 ∧ ξ2,

dσ11 = η1 ∧ σ11 + η2 ∧ ξ1 − θ0 ∧ ξ2 + (Q+ 1 − 2P )θ1 ∧ ξ2 + 2J1ξ
2 ∧ σ11,

dσ22 = η1 ∧ σ22 + η3 ∧ ξ2 + (P − 2 +Q)θ2 ∧ ξ1 − 2J2ξ
1 ∧ σ22,

dη1 = (P − 1)ξ1 ∧ ξ2,
dη2 = π1 ∧ ξ1 + η1 ∧ η2 − 3J1η2 ∧ ξ2 + J2θ0 ∧ ξ2

+ (4PJ2 − 2QJ2 − D1(Q) − 2J2 + 3)θ1 ∧ ξ2 + (2J1J2 + 2 − 3P + 3Q− 2D2(J2))ξ2 ∧ σ11,

dη3 = π2 ∧ ξ2 + η1 ∧ η3 + 3J2η3 ∧ ξ1 + (2J1(P +Q− 2) − D2(Q) − D2(P ))θ2 ∧ ξ1
+ (2P − 3 − 2J1J2 + 2D2(J2) +Q)ξ1 ∧ σ22,

(14)
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where the functions J1 = −PtxH
−1 and J2 = (HtPt − HPtt)H−1(Pt)−2 are invariants of the symmetry

group of an equation from S2 and the operators

D1 =
∂

∂ξ1
= (Pt)−1Dt, D2 =

∂

∂ξ2
= PtH

−1Dx

are invariant differentiations associated with ξ1 and ξ2. These operators are defined by the identity

dF = D1(F )ξ1 + D2(F )ξ2,

where F = F (t, x) is an arbitrary function. The commutator identity for the invariant differentiations
has the form

[D1,D2] = −J1D1 − J2D2. (15)

We have D1(P ) = 1, and, applying (15) to P , we obtain the syzygy

J1 = −D1(D2(P )) − J2D2(P ). (16)

If D2(P )D1(Q) �= D2(Q), i.e., if PtQx �= PxQt, then, applying (15) to Q and using (16), we have

J2 = ([D1,D2](Q) − D1(Q)D1(D2(P )))(D2(P )D1(Q) − D2(Q))−1.

Therefore, in this case the functions P and Q are a basis of differential invariants of the symmetry group.
But P and Q are not necessarily a basis in the case of their functional dependence (cf. [9, Theorem 2.3],
[10, Sec. 10.4.2]). To prove this statement, we consider the equation

utx = ut +
2(p(t) − 1)
q(t)(t+ x)

ux +
2

q(t)(t+ x)2
(1 − (p(t) − 1)(t+ x))u (17)

with arbitrary functions p(t) and q(t) such that p′(t) �= 0 and q′(t) �= 0. For this equation we have

P = p(t), Q = q(t),

J2 = −2(q′(t))−1(t+ x)−1 − p′′(t)(p′(t))−2 − q′(t)(p′(t)q(t))−1,

D1(P ) = 1, D2(P ) = 0, D1(Q) = q′(t)(p′(t))−1, D2(Q) = 0,

and by induction the only nontrivial higher-order differential invariants D
i
1(Q) depend on t. Since J2,x �= 0,

the function J2 is independent of P , Q, and all their invariant derivatives. Thus, for the whole subclass S2

we should take the functions P , Q, and J2 as a basis for the set of differential invariants of the symmetry
group. To construct all the other invariants, we apply D1 and D2 to P , Q, and J2. The commutator
identity (15) allows us to permute D1 and D2, so we need only deal with the invariants Pjk = D

j
1(D

k
2(P )),

Qjk = D
j
1(D

k
2(Q)), and J2,jk = D

j
1(D

k
2(J2)), where j ≥ 0, k ≥ 0.

For s ≥ 0, the sth-order classifying manifold associated with the lifted coframe θ and an open subset
U ⊂ R

2 is
C(s)(θ, U) = {(Pjk(t, x), Qjk(t, x), J2,jk(t, x)) | 0 ≤ j + k ≤ s, (t, x) ∈ U}. (18)

Since all the functions Pjk, Qjk, and J2,jk depend on two variables t and x, it follows that ρs =
dim C(s)(θ, U) ≤ 2 for all s ≥ 0. Let

r = min{s | ρs = ρs+1 = ρs+2 = . . . }
be the order of the coframe θ. Since Pt �= 0, we have

1 ≤ ρ0 ≤ ρ1 ≤ ρ2 ≤ · · · ≤ 2.

In any case, r + 1 ≤ 2. Hence from [24, Theorem 15.12] we see that two linear hyperbolic equations (1)
from the subclass S2 are locally equivalent under a contact transformation if and only if their second-order
classifying manifolds (18) locally overlap.
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Remark 1. A Lie pseudo-group is called structurally intransitive [17] if it is not isomorphic to any
transitive Lie pseudo-group. In [4], Cartan proved that a Lie pseudo-group is structurally intransitive
whenever it has essential invariants. An invariant of a Lie pseudo-group with the structure equations

dωi = Ai
βkπ

β ∧ ωk + T i
jkω

j ∧ ωk

is called essential if it is a first integral of the systatic system Ai
βkω

k. From the structure equations (14) it
follows that the systatic system for the symmetry pseudo-group of an equation from S2 is generated by the
forms ξ1 and ξ2. First integrals of these forms are arbitrary functions of t and x. Therefore, the invariants
P , Q, J2, and all the nonconstant derived invariants are essential. Thus, the symmetry pseudo-group of
Eq. (1) from the subclass S2 is structurally intransitive, and the moving-coframe method is applicable to
finding Maurer–Cartan forms for differential equations with structurally intransitive symmetry pseudo-
groups (cf. [17]).

Remark 2. In [14, Theorem 1], the following basis of invariants for the symmetry group of Eq. (1) is
found: {P,Q, J1

3 , J
2
3 , J

3
3}, where

J1
3 = H−3(KHtx +HKtx −HtKx −HxKt),

J2
3 = H−9(HKx −KHx)2(HKHtt −H2Ktt − 3KH2

t + 3HHtKt),

J3
3 = H−9(HKt −KHt)2(HKHxx −H2Kxx − 3KH2

x + 3HHxKx).

Using (16), we have the following expressions for invariants J1
3 , J2

3 , and J3
3 in terms of P , Q, J2, and their

invariant derivatives:

J1
3 = 2PQ+ D1(D2(P )) + J2D2(P ),

J2
3 = J2(D2(P ))2,

J3
3 = D2(P )(D1(D2(P )) + J2D2(P )) − D2(D2(P )).

The following operators of invariant differentiation are found in [14]:

X̃1 = H−3(HKx −KHx)Dt, X̃2 = H2(HKx −KHx)−1Dx.

We have X̃1 = D2(P )D1 and X̃2 = D2(P )−1
D2. Then in the case D2(P ) ≡ 0 ≡ Px the operator X̃2 is not

defined, while X̃1 is trivial, J1
3 = 2PQ, J2

3 = 0, and J3
3 = 0. Therefore, the functions P , Q, J1

3 , J2
3 , and

J3
3 are not a basis of invariants of the symmetry group for Eq. (17).

Remark 3. In the theorem of [12], two sets of functions are stated to be bases for invariants of symmetry
groups of Eqs. (1): the first set consists of functions P , Q, I = PtPxH

−1, and Q̃ = (ln |K|)txK
−1, and the

second set consists of functions P , Q, I, and −J2. The operators of invariant differentiation are taken in
the form D1 = P−1

t Dt and D2 = P−1
x Dx. We have I = D2(P ); therefore the function I can be excluded

from both sets. Also we have Q̃ = QP−1 + J2D2(P )P−2 + D1(D2(P ))P−2 − D2(P )P−3, D1 = D1, and
D2 = (D2(P ))−1

D2. Therefore, in the case Px = 0 = D2(P ) we have I = 0 and Q̃ = QP−1, and so the
functions P , Q, I, and Q̃ are not a basis of invariants for the symmetry group of Eq. (17).

The function J2 and the operator D1 are not defined when Pt ≡ 0 (for example of this case we take the
Moutard equation utx = U(t, x)u). So the second set of functions is not a basis of invariants of symmetry
groups for the whole class (1).

Now we return to the case Pt ≡ 0. Then the torsion coefficients in the structure equations (13) are
independent of the group parameters, while dP = Pxb

1
1H

−1ξ2. We denote by S3 the subclass of Eqs. (1)
such that Pt ≡ 0, Px �= 0. This subclass is not empty, since, for example, the equation utx = x2ux + u
belongs to S3. For an equation from S3 we normalize b11 = HP−1

x . After absorption of torsion and
prolongation, we obtain the involutive lifted coframe

θ = {θ0, θ1, θ2, ξ1, ξ2, σ11, σ22, η1, η2, η3}
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with the structure equations

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η1 ∧ θ1 − Pθ0 ∧ ξ2 − Lθ1 ∧ ξ2 + ξ1 ∧ σ11,

dθ2 = η1 ∧ θ2 − θ0 ∧ ξ1 + Lθ2 ∧ ξ2 + ξ2 ∧ σ22,

dξ1 = Lξ1 ∧ ξ2,
dξ2 = 0,

dσ11 = η1 ∧ σ11 + η2 ∧ ξ1 + (Q+ 1 − 2P )θ1 ∧ ξ2 + 2Lξ2 ∧ σ11,

dσ22 = η1 ∧ σ22 + η3 ∧ ξ2 + (P − 2 +Q)θ2 ∧ ξ1,
dη1 = (P − 1)ξ1 ∧ ξ2,
dη2 = π1 ∧ ξ1 − η1 ∧ η2 − 3Lη2 ∧ ξ2 − D1(Q)θ1 ∧ ξ2 + (3Q− 3P + 2)ξ2 ∧ σ11,

dη3 = π2 ∧ ξ2 + η1 ∧ η3 − (4L+ 1 − 2PL− 2QL+ D2(Q))θ2 ∧ ξ1 + (Q− 3 + 2P )ξ1 ∧ σ22,

where the function L = (HPxx−HxPx)(Px)−2H−1 is an invariant of the symmetry group and the operators
of invariant differentiation are D1 = PxH

−1Dt and D2 = (Px)−1Dx. We have D1(P ) = 0, D2(P ) = 1, and

[D1,D2] = LD1. (19)

In the case D1(Q) �= 0, we apply (19) to Q and obtain L = [D1,D2](Q)(D1(Q))−1. Therefore, in this case
the functions P and Q are a basis for the set of differential invariants of the symmetry group. But if
D1(Q) = 0, then the functions P and Q are not necessarily a basis. For example, consider the equation

utx = −2(p(x) − 1)
q(x)(t+ x)

ut + ux +
2

q(x)(t+ x)2
(p(x) + (p(x) − 1)(t+ x))u,

where p(x) and q(x) are arbitrary functions such that p′(x) �= 0 and q′(x) �= 0. This equation has the
following invariants:

P = p(x), Q = q(x), L = 2(p′(x))−1(t+ x)−1 + p′′(x)(p′(x))−2 + q′(x)(p′(x)q(x))−1.

We have D1(Q) = 0, D2(Q) = q′(x)(p′(x))−1, and by induction the only nontrivial higher-order differential
invariants D

i
2(Q) depend on x. Since Lt �= 0, the function L is independent of P , Q, and all their invariant

derivatives. Thus, for the whole subclass S3 we should take the functions P , Q, and L as a basis for the
set of differential invariants of the symmetry group. The sth order classifying manifold associated with
the coframe θ and an open subset U ∈ R

2 can be taken in the form

C(s)(θ, U) = {(P (x), Qjk(t, x), Ljk(t, x)) | 0 ≤ j + k ≤ s, (t, x) ∈ U}, (20)

with Qjk = D
j
1(D

k
2(Q)) and Ljk = D

j
1(D

k
2(L)). Then two equations from S3 are equivalent under a contact

transformation if and only if their second-order classifying manifolds (20) (locally) overlap.
Now we consider the case P ≡ const. Then we have

dQ = Qt(b11)
−1ξ1 +Qxb

1
1H

−1ξ2.

We denote by S4 the subclass of Eqs. (1) such that P ≡ const, Qt �= 0. This subclass is not empty, since,
for example, the equation utx = (t−x)3ux+(t−x)2u belongs to S4. For an equation from S4 we normalize
b11 = Qt. Then, after absorption of torsion and prolongation, we have the involutive lifted coframe

θ = {θ0, θ1, θ2, ξ1, ξ2, σ11, σ22, η1, η2, η3}
with the structure equations

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η1 ∧ θ1 − Pθ0 ∧ ξ2 −M2θ1 ∧ ξ1 −M1θ1 ∧ ξ2 + ξ1 ∧ σ11,
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dθ2 = η1 ∧ θ2 − θ0 ∧ ξ1 +M2θ2 ∧ ξ1 +M1θ2 ∧ ξ2 + ξ2 ∧ σ22,

dξ1 = M1ξ
1 ∧ ξ2,

dξ2 = M2ξ
1 ∧ ξ2,

dσ11 = η1 ∧ σ11 + η2 ∧ ξ1 + (Q+ 1 − 2P )θ1 ∧ ξ2 + 2M1ξ
2 ∧ σ11,

dσ22 = η1 ∧ σ22 + η3 ∧ ξ2 + (P − 2 +Q)θ2 ∧ ξ1 − 2M2ξ
1 ∧ σ22,

dη1 = (P − 1)ξ1 ∧ ξ2,
dη2 = π1 ∧ ξ1 + η1 ∧ η2 − 3M1η2 ∧ ξ2 − (1 + 2M2 + 2QM2 − 4PM2)θ1 ∧ ξ2

+ (Q− 2M1M2 − 3P − 2D1(M1) + 2)ξ2 ∧ σ11,

dη3 = π2 ∧ ξ2 + η1 ∧ η3 + 3M2η3 ∧ ξ1 − (4M1 − 2M1P − 2M1Q+ D2(Q))θ2 ∧ ξ1
+ (2M1M2 + 2P − 3 + 2D1(M1) + 3Q)ξ1 ∧ σ22,

where the functions M1 = −QtxH
−1 and M2 = (HtQt −HQtt)H−1Q−2

t are invariants of the symmetry
group and the operators of invariant differentiation are D1 = Q−1

t Dt and D2 = QtH
−1Dx. We have

[D1,D2] = −M1D1−M2D2. Since D1(Q) = 1, applying the commutator identity to Q, we have the syzygy
M1 = −D1(D2(Q)) −M2D2(Q). The functions Q and M2 are a basis for the set of all invariants of the
symmetry group of an equation from S4. We take the sth-order classifying manifold associated with the
coframe θ and an open subset U ∈ R

2 in the form

C(s)(θ, U) = {(P,Qjk(t, x),M2,jk(t, x)) | 0 ≤ j + k ≤ s, (t, x) ∈ U} (21)

with Qjk = D
j
1(D

k
2(Q)) and M2,jk = D

j
1(D

k
2(M2)). Then two equations from S4 are equivalent under

a contact transformation if and only if their second-order classifying manifolds (21) (locally) overlap.
Next we denote by S5 the subclass of Eqs. (1) such that P ≡ const, Qt ≡ 0, and Qx �= 0. This

subclass is not empty, since, for example, the equation

utx = − 2(λ− 1)
q(x)(t+ x)

ut + ux +
2(λ+ (λ− 1)(t+ x))

q(x)(t+ x)2
u

has invariants P = λ ≡ const and Q = q(x) and belongs to S5. For an equation from S5 we normalize
b11 = HQ−1

x . Then, after absorption of torsion and prolongation, we have the involutive lifted coframe

θ = {θ0, θ1, θ2, ξ1, ξ2, σ11, σ22, η1, η2, η3}
with the structure equations

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η1 ∧ θ1 − Pθ0 ∧ ξ2 −Nθ1 ∧ ξ2 + ξ1 ∧ σ11,

dθ2 = η1 ∧ θ2 − θ0 ∧ ξ1 +Nθ2 ∧ ξ2 + ξ2 ∧ σ22,

dξ1 = Nξ1 ∧ ξ2,
dξ2 = 0,

dσ11 = η1 ∧ σ11 + η2 ∧ ξ1 + (Q+ 1 − 2P )θ1 ∧ ξ2 + 2Nξ2 ∧ σ11,

dσ22 = η1 ∧ σ22 + η3 ∧ ξ2 + (P − 2 +Q)θ2 ∧ ξ1,
dη1 = (P − 1)ξ1 ∧ ξ2,
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dη2 = π1 ∧ ξ1 + η1 ∧ η2 − 3Nη2 ∧ ξ2 + (2 − 3P + 3Q)ξ2 ∧ σ11,

dη3 = π2 ∧ ξ2 + η1 ∧ η3 + (2N(P +Q− 2) − 1)θ2 ∧ ξ1 + (2P +Q− 3)ξ1 ∧ σ22,

where the function N = (HQxx−HxQx)H−1Q−2
x is an invariant of the symmetry group and the operators

of invariant differentiation are D1 = QxH
−1Dt and D2 = Q−1

x Dx. We have [D1,D2] = −ND1, D1(Q) = 0,
and D2(Q) = 1. The functions Q and N are a basis for the set of all invariants of the symmetry group
of an equation from S5. We take the sth-order classifying manifold associated with the coframe θ and an
open subset U ∈ R

2 in the form

C(s)(θ, U) = {(P,Q(x),Dj
1(D

k
2(N))(t, x)) | 0 ≤ j + k ≤ s, (t, x) ∈ U}. (22)

Then two equations from S5 are equivalent under a contact transformation if and only if their second-order
classifying manifolds (22) (locally) overlap.

Finally, we denote by S6 the subclass of Eqs. (1) such that P ≡ const, Q ≡ const. This subclass is
not empty, since, for example, the equation

utx = −tut − λxux − λtxu (23)

has the invariants P = λ and Q = 0, while the Euler–Poisson equation

utx = 2µ−1(t+ x)−1ut + 2λµ−1(t+ x)−1ux − 4λµ−2(t+ x)−2u (24)

has the invariants P = λ and Q = µ, [23, Sec. 9.2]. For an equation from S6, after absorption of torsion
and prolongation we have the involutive lifted coframe

θ = {θ0, θ1, θ2, ξ1, ξ2, σ11, σ22, η1, η2, η3, η4}
with the structure equations

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,
dθ1 = η2 ∧ θ1 − Pθ0 ∧ ξ2 + ξ1 ∧ σ11,

dθ2 = (2η1 − η2) ∧ θ2 − θ0 ∧ ξ1 + ξ2 ∧ σ22,

dξ1 = (η1 − η2) ∧ ξ1,
dξ2 = (η2 − η1) ∧ ξ2,
dσ11 = (2η2 − η1) ∧ σ11 + η3 ∧ ξ1 + (Q+ 1 − 2P )θ1 ∧ ξ2,
dσ22 = (3η1 − 2η2) ∧ σ22 + η4 ∧ ξ2 + (P − 2 +Q)θ2 ∧ ξ1,
dη1 = (P − 1)ξ1 ∧ ξ2,
dη2 = (P −Q− 1)ξ1 ∧ ξ2,
dη3 = π1 ∧ ξ1 − (2η1 − 3η2) ∧ η3 + (3(Q− P ) + 2)ξ2 ∧ σ11,

dη4 = π2 ∧ ξ2 + (4η1 − 3η2) ∧ η4 + (3(Q− 1) + 2P )ξ1 ∧ σ22.

All the invariants of the symmetry group for an equation from S6 are constants, and the classifying
manifold is a point. Thus, an equation from S6 is equivalent to one of the equations (23) or (24) with the
same values of P and Q, [23, Sec. 9.2].

The results of the above calculations are summarized in the following statement.

Theorem. The class of linear hyperbolic equations (1) is divided into the six subclasses S1,S2, . . . ,S6

invariant under an action of the pseudo-group of contact transformations:
S1 consists of all equations (1) such that H ≡ 0 and K ≡ 0;
S2 consists of all equations (1) such that Pt �= 0;
S3 consists of all equations (1) such that Pt ≡ 0 and Px �= 0;
S4 consists of all equations (1) such that P ≡ const and Qt �= 0;
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S5 consists of all equations (1) such that P ≡ const, Qt ≡ 0, and Qx �= 0;
S6 consists of all equations (1) such that P ≡ const and Q ≡ const.
Every equation from the subclass S1 is locally equivalent to the linear wave equation utx = 0.
Every equation from the subclass S6 is locally equivalent to either Eq. (23) when Q = 0 or to Eq. (24)

when Q �= 0.
For the subclass S2, the basic invariants are P , Q, and J2, and the operators of invariant differenti-

ation are D1 = P−1
t Dt and D2 = PtH

−1Dx.
For the subclass S3, the basic invariants are P , Q, and L, and the operators of invariant differentiation

are D1 = PxH
−1Dt and D2 = P−1

x Dx.
For the subclass S4, the basic invariants are Q, M1, and M2, and the operators of invariant differen-

tiation are D1 = Q−1
t Dt and D2 = QtH

−1Dx.
For the subclass S5, the basic invariants are Q and N , and the operators of invariant differentiation

are D1 = QxH
−1Dt and D2 = Q−1

x Dx.
Two equations from one of the subclasses S2, S3, S4, or S5 are locally equivalent to each other if and

only if the classifying manifolds (18), (20), (21), or (22) for these equations locally overlap.

Conclusions

In this paper, the moving-coframe method of [6] is applied to the local equivalence problem for the
class of linear second-order hyperbolic equations in two independent variables under an action of the
pseudo-group of contact transformations. The class is divided into six invariant subclasses. For all of the
subclasses, the Maurer–Cartan forms for symmetry groups, the bases of differential invariants, and the
invariant differentiation operators are found. This allowed us to solve the equivalence problem for the
whole class of linear hyperbolic equations. It is shown that the moving-coframe method is applicable to
structurally intransitive symmetry groups. The method uses linear algebra and differentiation operations
only and does not require analyzing overdetermined systems of partial differential equations or using
procedures of integration.
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Vol. 2, Gauthier-Villars, Paris (1953), pp. 571–714.
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