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CONTACT-EQUIVALENCE PROBLEM
FOR LINEAR HYPERBOLIC EQUATIONS

O. I. Morozov UDC 514.763.84-514.747.3+517.956.3

ABSTRACT. We consider the local equivalence problem for the class of linear second-order hyperbolic equa-
tions in two independent variables under an action of the pseudo-group of contact transformations. E. Car-
tan’s method is used for finding the Maurer—Cartan forms for symmetry groups of equations from the
class and computing structure equations and complete sets of differential invariants for these groups. The
solution of the equivalence problem is formulated in terms of these differential invariants.

Introduction

In the present paper, we find necessary and sufficient conditions for two equations from the class of
linear second-order hyperbolic equations

Uty = T(t, x)ur + X (¢, x)ug + U(t, z)u (1)

to be equivalent under an action of the contact transformation pseudo-group. We use Elie Cartan’s
method of equivalence [1-5] in its form developed by Fels and Olver [6,7] to compute the Maurer—Cartan
forms, the structure equations, the basic invariants, and the invariant derivatives for symmetry groups of
equations from the class. All differential invariants are functions of the basic invariants and their invariant
derivatives. The differential invariants parametrize classifying manifolds associated with given equations.
Cartan’s solution to the equivalence problem states that two equations are (locally) equivalent if and only
if their classifying manifolds (locally) overlap.

The symmetry classification problem for classes of differential equations is closely related to the prob-
lem of local equivalence: symmetry groups of two equations are necessarily isomorphic if these equations
are equivalent, while the converse statement is not true in general. The symmetry analysis of linear
second-order hyperbolic equations (1) was done by Lie [16, Vol. 3, pp. 492-523]. Two semi-invariants,
H=-T,+TX +U and K = =X, + TX + U, were discovered by Laplace [15]. These functions are
unaltered under an action of the pseudo-groups of linear transformations 4 = c(¢,z)u. In [22], Ovsian-
nikov found the invariants P = KH ! and Q = (In|H|);;H ! and used them to classify Egs. (1) with
nontrivial symmetry groups. In [9, Theorem 2.3] and [10, Sec. 10.4.2], it was claimed that the invariants
P and @ form a basis of differential invariants for Egs. (1), while all the other invariants are functions
of P and @ and their invariant derivatives. In [14], a basis of five invariants and operators of invariant
differentiation are found in the case P, # 0. In the case P; # 0 and P, # 0, two bases of four invariants
are computed in [12].

In [18], the invariant version of Lie’s infinitesimal method was developed and applied to the symmetry
classification of the class (1).

The symmetry classification problem and invariants for the class of linear parabolic equations u,, =
T(t,x)us + X(t, z)uy + U(t,x)u are studied in [11,13,16, 23] by Lie’s infinitesimal method. In [20,21],
Cartan’s method is applied to solve the contact equivalence problem for this class.

The paper is organized as follows. In Sec. 1, we begin with some notation and use Cartan’s equiva-
lence method to find the invariant 1-forms and the structure equations for the pseudo-group of contact
transformations on the bundle of second-order jets. In Sec. 2, we briefly describe the approach to com-
puting Maurer—Cartan forms and structure equations for symmetry groups of differential equations via
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the moving coframe method of Fels and Olver. In Sec. 3, the method is applied to the class of hyperbolic
equations (1). Finally, we make some concluding remarks.

1. Pseudo-Group of Contact Transformations

In this paper, all considerations are of a local nature and all mappings are real analytic. Let
& = R" x R — R" be a trivial bundle with the local base coordinates (z!,...,2") and the local fi-
bre coordinate u; then by J2(£) denote the bundle of second-order jets of sections of £, with the local
coordinates (x, u, p;, pij), i,j € {1,...,n}, i < j. For every local section (z¢, f(x)) of £, the corresponding
2-jet (af, f(x),0f (x)/0xt, 0 f(x)/0x'027) is denoted by ja(f). A differential 1-form 9 on J2(€) is called
a contact form if it is annihilated by all 2-jets of local sections: ja(f)*® = 0. In the local coordinates every

contact 1-form is a linear combination of the forms ¥y = du — p;da’, 9; = dp; — p;jda?, i,5 € {1,...,n},
. n .
pji = pi;j (here and later we use the Einstein summation convention, so p;dz* = ) p;da’, etc.). A local
diffeomorphism 4 ' i=1
Az JHE) = JAE), A (2 u,pipij) — (Z, 0, Pi, Dij), (2)

is called a contact transformation if for every contact 1-form ¥ the form A*¥ is also contact. We use
Cartan’s method of equivalence [5,24] to obtain a collection of invariant 1-forms for the pseudo-group of
contact transformations on J2(&). For this, take the coframe

{790719i)dxi7dpij ‘ 7’7.] S {1,...,71}, ZSJ}

on J%(€). A contact transformation (2) acts on this coframe in the following manner:

Yo Yo
A az' | — S dzk |’
dpi; dpyi

where S: J2(€) — G is an analytic function and G is the Lie group of nondegenerate block matrices of
the form
a a 0 0
g hE o0 0
& fik b ikl
S 0 Zgr G
In these matrices, 4,7, k, 1 € {1,...,n}, r’* are defined for k <, §;;, 0
and qul are defined for i < j, k <.
Let us show that @ = 0. Indeed, the exterior (nonclosed!) ideal

T = span{do, i}

k

ij» and Zjp, are defined for ¢ < j,

has the derived ideal
0L ={w €T |dweI}=span{dp}.
Since A*Z C T implies A*(6Z) C §(A*Z) C 0Z, we obtain A*Jy = at. A
For convenience in the following computations, we denote by (B/) the inverse matrix for (b)), so
| Rk k
by (HlJ ) denote the inverse matrix for (hg), so
7k _ sk
make the change of variables on G such that
gi = gia/_17 f” = fNZkH]g7 Ci = 6ia_1 - ka.gkh Sij = gija_l - 2I}zk_;}I]anrn - glijlznck,

k _ =myprk 5 pmglk s pm Kl skl s
= Wi Hy, — Zigm Bl %, zijk = ZijmBr's 45 = @G5 — ZiymB

m'kl
w’i] )

m
m'T
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and define QF, by
Qk"l’ klll — (Skél

In accordance with Cartan’s method of equivalence, we take the lifted coframe

@0 190 Cl’l90

0; | _ g U | g9i©0 + hfﬁk 3
2T [ dat | T | 00+ fFOr+ bzda: F rkldpyy (3)
Xij dpr 500 + wfj@k + 2 2R + 45 M dpp

on J%(&) x G. Expressing du, dz*, dpy,, and dpy, from (3) and substituting them into d©g, we have

dOy = da A Yy + addy = daa™! A Oy + adz® A dp; = daa™ A Oy + adz® A Y;
= ®Y A O + aBLHMEF A O, + aH" RSy A Oy, + aH™(BLf¥ + R*w] )O; A O, (4)
where
®) = daa™" + aH™ (Bi(c* + R*511)0, — gow BL(EF — FO — f570,)
— gm/Rikl(Zkl — 51100 — WL Om — ZkimZ""))
and RIM = ZMIBJQM/

The multipliers of ZF A ©,,, L A Oy, and ©; A O, in (4) are essential torsion coefficients. We
normalize them by setting aB! GH =0, R =0, and f* = fik_ Therefore, the first normalization is

hf :an, rikl =0, fkj :fjk' (5)
Analyzing d©;, d=’, and d¥;; in the same way, we obtain the following normalizations:

kl k nl k k
%ij = abB; B]" Sij = Sjiy Wi = Wiy Zijk = Zjik = Zikj- (6)

After these reductions the structure equations for the lifted coframe have the form
dOy = YA Oy + E' A O,
d@i:(I’?/\@o—i-(I)?/\@k—i-Ek/\Zik,

2= QYN — DL AEF L WO A Q)+ TR A Gy,
d¥ij = ®f A S — G A Sij + T A Op + T A Op + Agjr AEF,

where the forms <I>0 <I>0 <I>k U0 g YO YE and A;j, are defined by the following equations:
%] 17 J

Y = daa™t — grZF + (¢ + g, Oy,
O = dg; + grdbi B! — (gig + sic + ¢ 2i1)ZF + F S + (gic" + gigm f™ — Jwfs + [ 5im) O,
oF = 6Fdaa™! — ab¥ B} + (9:05 — wfs — [ 25, )F + [ Sim + 050
O =dc + fI] + P+ (M g — ¢ [ wy)O; — KIS + e (f@mzkmj +wh; — 910} — g;04)F,
U= dfT 4 (fF6, + RO+ (6L + IS, — [ g+ F 1 )2
+ FIE + 7 gm) Ok — FF 7 S,
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Y = dsij — sijdaa™" + sp;dbl, Bl + s dbl, B + 58 + wh O + 2,55 U0,

m’m)‘—'

+ Wl OE + R + Wl ) S — (€ ™ gm) S, (7)

Tfj = dwfj — wfjdaa_l + (wflé]m/ + wfléf",)dbilB:’;, + (sijéfn + zijlfm/kwl

Aijk = dzijk — 2zijkdaa_1 + ZijldbinB]T + ZilkdbinB;n + lekdblmBzm + Zz‘jkq)g + Zijkngm
+ 9%k + 95 Sk + g6 S — wh S — wip Sy — w5 S — 1 (Zimg S+ Zime S0+ ZjmkSi)-
Let ‘H be the subgroup of G defined by (5) and (6). We shall prove that the restriction of the

lifted coframe (3) to J%(E) x H satisfies Cartan’s test of involutivity, [24, Definition 11.7]. The structure
equations remain unchanged under the following transformation of the forms (7):

of - &), OF - &F, )= ), WV UY, 00 U0 T% — T?j’ T?j — Tfja Aijk — Aiji,
where
Y9, = 0 + Uij©o + V5O + WisnZF + K5 + MISy,
T =T + X5 O+ V0o + Y5E + LiZy,  Aije = Aiji + Zign=' + Y01 + WijOo
and K’ Lfl’ Mzk’ N’L? PU, Sljku sz Ul]7 ‘/’L‘Ijg’ I/I/ij) X’L]ZZ7 }{L‘I;lv
the following symmetry conditions:

[H =k pi = pii gk — gitk — giki .= Uy, Vi];' = Vj’g, )

(8)

and Z;jp; are arbitrary constants satisfying

Wijk = Wyiw = Wiy, X =XJ = XI5, Y =Y =Y, Ziw= Zijis = Zijik = Zis1.
The number of such constants
2 2
RO (n2—|— 1) PRI n(n2—|— 1) N n(n + lg(n—f— 2) s n(n2—|— 1) L (n2+ 1)
nn+1(n+2) n?(n+1)2 22m+1)(n+2) nn+1)n+2)(n+3)

+ + + +

6 4 6 24
1
= 5+ D+ 2)(11n? + 29n + 12)

is the degree of indeterminancy of the lifted coframe, [24, Definition 11.2]. The reduced characters of this
coframe, [24, Definition 11.4], are easily found:

1
s§:§(n+1)(n+4)—i forie{l,...n+ 1},
1 . . .
s;+1+j:§(n+1—])(n+2—]) for j € {1,...,n}.

A simple calculation shows that
r) =) + 285 + 355+ -+ (20 + 1)shy,, g

Thus, the Cartan test is satisfied and the lifted coframe is involutive.
It is easy to directly verify that a transformation

A:JHE)x H — JHE) x H
satisfies the conditions
A*éo = @0, A*él = @i, A*EZ = EZ A*EU = Eij (10)

if and only if it is projectable on J2(€), and its projection A: J%(£) — J%(&) is a contact transformation.
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Since (10) imply

A*dO©y = dOy, A*dO; =dO;, A*dZ'=d=', A*dL; = d%ij,

we have
A*(BIANO)+ENO;) = (AP AOy+ENO; = DIN Oy +ELAO;,
A (@Y N By + BF A O, +EF ASi) = A (D)) A O+ A*(BF) A O +EF A By
= ®Y N Oy + OF A Oy, +EF A Dy,
A*(BYNEF — B AEF 4 B0 A By + T ABy)

= A*(®) AE - A¥(DL) AEF 4+ A*(T0) A O + A*(TF) A O,
= PINE — B AEF U0 A0y + TR A By,
A*(®F A Sy — @Y A Dij + T4 A O+ T A Ok + Agji AEF)
= A*(®F) A Sy — A%(BY) A iy + A% (YY) A Og + A*(TE) A Oy + A*(Ayj) NEF
:(I)f/\zkj—@8/\2@‘—I-ng/\@o—i—T?j/\@k—FAijk/\Ek.
Therefore, we have the following transformation rules:
AY(Bf) = 8), A*(®F) = dF, A*(8)) =&, )
AR(W) =04 AX(00) =00 AY(TY) =T, ANTE) =TE, At(Ayr) = A,

where the constants K, ..., Z; in (8) are replaced by arbitrary functions on J?(£) x H such that the
same symmetry conditions (9) are satisfied.

2. Contact Symmetries of Differential Equations

Suppose R is a second-order differential equation in one dependent and n independent variables. We
consider R as a sub-bundle in J?(€). Let Cont(R) be the group of contact symmetries for R. It consists
of all the contact transformations on J?(€) mapping R to itself. The moving-coframe method [6, 7] is
applicable to finding invariant 1-forms characterizing Cont(R) in the same way as the restriction of the
lifted coframe (3) to J?(€) x H characterizes Cont(J2(£)). We briefly outline this approach.

Let t: R — J2(€) be an embedding. The invariant 1-forms of Cont(R) are restrictions of the coframe
(3), (5), (6) to R:

00 == L*@O, 091 == L*@Z’, fl == L*:l, 055 = L*Ei]’
(for brevity we identify the map ¢ x id: R x H — J%(€) x H with ¢: R — J*(£)). The forms 6y, 0;, &,
and o;; have some linear dependencies, i.e., there exists a nontrivial set of functions E° E' F;, and GY
on R x H such that
E%g + E'0; + F;,¢' + G0y = 0.

These functions are lifted invariants of Cont(R). Setting them equal to some constants allows us to specify
some parameters a, bf, iy iy [9, sij, w;;, and z;;, of the group H as functions of the coordinates on R
and the other group parameters.

After these normalizations, a part of the forms

0 =000, oF =), o) =19,
P = WY 0 = g0 v = L*T?j, vl] = L*Tfj, Nijk = U N,
or some of their linear combinations, become seml—basm, i.e., they do not include the differentials of the
parameters of H. From (11) and (8), we have the following statements:

k
ijo

(i) if ¢3 is semi-basic, then its coefficients at 0, £*, and oy are lifted invariants of Cont(R);
(ii) if @Y or czﬁf is semi-basic, then their coefficients at ¢* and oy are lifted invariants of Cont(R);
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(iii) if 1%, ¥, or Aijk is semi-basic, then their coefficients at oy, are lifted invariants of Cont(R).
Setting these invariants equal to some constants, we get specifications of some more parameters of H as

functions of the coordinates on R and the other group parameters.
More lifted invariants can appear as essential torsion coefficients in the reduced structure equations

do = ¢ A 0o + € N 6;,

df; = &9 N Oy + OF A Oy + €8 A o,

dg' = g3 NE — Gk AEF + 0 A By + 0 Ay,

doij = ¢F N owj — 9 A oij + vy Ao + vl A Ok + Aiji A EF.

After normalizing these invariants and repeating the process, two outputs are possible. In the first case,
the reduced lifted coframe appears to be involutive. Then this coframe is the desired set of defining forms
for Cont(R). In the second case, when the reduced lifted coframe does not satisfy Cartan’s test, we should
use the procedure of prolongation [24, Chap. 12].

3. Structure and Invariants of Symmetry Groups for Linear Hyperbolic Equations

We apply the method described in the previous section to the class of linear hyperbolic equations (1).
Denote z! = t, 2% = T, p1 = Ut, P2 = Uz, P11 = U, P12 = Uz, and poo = Ugz,. The coordinates on R
are {(t,x,u, ut, Uy, Ust, Uzz) }, and the embedding ¢: R — J%(&) is defined by (1). At the first step, we
analyze the linear dependence between the reduced forms 6, 0;, ', and o;;. Without loss of generality,
we suppose that bl # 0 and b3 # 0; then we find

o12 = B1011 + FEa02 + E3fy + Es01 + Esfy + Eg¢' + E7€2,
where, for example,
By = —(b1b3 + b3b7) " 'biby, By = —(brbs + byb?)b3bi.
Setting F1, Fo, ..., F7 equal to 0 sequentially, we have

Fi=0 = b} =0,

Ey=0 = b2 =0,

F3=0 = s19 = —2119¢" — 219962 + g1 (03) 71T + go (b)) 71X — (b103) 71U,

Ey=0 = wiy = —z112f" — 2102 — (03) 7T,

By =0 = wiy = —z112f" — 21222 — (b}) 7' X,

Fs =0 = 2112 = —a(b)2(03) "N (Tuy + (2TX + 2U — H)uz + (X + X?)up + (Uy + XU)u),
FBr =0 = 2199 = —a(b)) 7103 2 (X uge + (T + T?)us + (2TX + 2U — K)ug + (Up + TU)u),

where H = —T; + TX + U and K = —X,; + TX + U are the Laplace invariants [15], [23, Sec. 9].
At the second step, we analyze the semi-basic forms oy and qb?. We have

¢7 = [P+ (g1 + (b1) 7' X)E? (mod 6, 61, 05,");
therefore we take f12 =0, g; = —(b})~1X. This yields
1 = (—wi +af2 D) 72(13) T (Tuw+ (2T X 42U — H)ug+ (Xt + X e +(Us+XU)u))EL (mod 6y, 01, 605);
therefore we set
w? = af?(b1)72(03) "N (Tug + (2T X +2U — H)ug + (Xt + XH)ug + (U + XU)u).
After that, we have
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¢3 = (92 + (03) 7' T)E + (—wayp + af 1 (b1) 7 (03) A (Xuge + (Te + Ty
+ (2TX +2U — K)ug + (Uy + TU)u))E*  (mod 6y, 61, 605),

and so we set go = —(b2)71T and

wyy = aft(b])THB3) T H( X gy + (Tn + THup + (2TX + 2U — K)uy + (Uy + TU )u).

Then we have
¢l =clon (mod ,01,605,61,6%), ¢3=c’om  (mod o, 61,6,6",%),

and so we set ¢! =0 and ¢ = 0. Now we obtain

¢ = K (b))~ (03)7'¢%  (mod 6y, 61,62), 5= H(by) ' (b3)7 '€ (mod 6y, 61, 62). (12)

There are two possibilities now: H = K = 0 or at least one of the Laplace invariants is not identically
equal to 0.

We denote by S; the subclass of Egs. (1) such that H = K = 0. For an equation from S; we use the
procedures of absorption and prolongation, [24], to compute the structure equations:

dfo = m Ao+ & N0+ E2 A B,
dfy =ma A Oy + E Aoy,
dfy = m3 A Oy + 2 A 0ga,
¢ = (m —m2) NE +ma A by,
dg? = (m —m3) AE> 415 A O,

doyy = (202 —m) Ao +m6 A0y +m7 AE

doge = (2n3 — m) A 22 + ng A B2 + ng A 52,
dn =0,
g =m A0 +m Ao — e AE
dng = my A G2+ 15 A o2z — 18 N E2,
dng = —m A&+ g A O+ (1 — 2m2) A,
dns = —ma N+ may Ao + (1 — 213) A,
dne = 2m1 Aor1 + 5 A0y + w6 AE 4 (12 — M) Amg — na Az,
dnr =6 A1 + 17 AE — 3ng A onn + (32 — 2m1) Ay,
dns = 2my A ogg + s A Oa + w9 AEX+ (13 — m) Ams — 15 Ao,
dng = mg A O 4 19 A E2 — 3ng A 099 + (3113 — 2m1) A 1.

In these equations, the forms 71, ...,n9 on J?(€) x H depend on differentials of the parameters of H, while

the forms 7y, ..., mo depend on differentials of the prolongation variables. From the structure equations
it follows that Cartan’s test for the lifted coframe

{60,01,02,,€%, 011,092, M1,m2, - . ., Mo}

is satisfied; therefore, the coframe is involutive.

The same calculations show that the symmetry group of the linear wave equation us, = 0 has the same
structure equations but with a different lifted coframe. All the essential torsion coefficients in the structure
equations are constants. Thus, applying [24, Theorem 15.12], we obtain a well-known result, [23, Sec. 9]:
every equation from S is contact equivalent to the wave equation.
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Now we return to the case of H £ 0 or K # 0. Since we can replace H and K by renaming the
independent variables ¢t — x, x — t, we put H # 0 without loss of generality. Then we use (12) and take
b3 = H(b})~!. After this, the form ¢ + ¢3 — 2¢ becomes semi-basic. Since

$1+ 05 — 260 = fMlon + [Pz (mod 61,62, €2,
we take f!'' =0 and f?? = 0. Then we have
$1 + 5 — 205 = —(wiy + H ' (01) " (Hy + 2X H))E' — (why + H ?b{(Hy +2TH))E?  (mod 61, 62),
and so we take
wiy = —H (b)) (Hy + 2XH), w3y =—H 2b{(H, +2TH).
At the third step, we analyze the structure equations. After absorption of torsion they have the form
dfo =m Ao+ & N0+ E2 N B,
dby =no N0y + & Aoy — Py A €2,
d92 = (2m —n2) Ay — O NE' + €2 Ao,

= (m —m) NE, (13)
= (m—m) A&,

dff11 = (2@ —m) Ao+ AE = Pi(b) 0 A+ (Q+1—2P)01 A&7,

doge = (31 — 2m2) ANoaa +mu ANE2 + (P +Q — 2)0 N €Y,

where the functions P = KH~! and Q = (HHy, — HiH,)H™3 = (In|H|);, H! are invariants of the
symmetry group and the 1-forms 7y, ...,74 depend on differentials of parameters of the group H (these
forms are not necessarily the same as in the case of an equation from Sy).

We denote by Sz the subclass of Egs. (1) such that P, # 0. This subclass is not empty, since, for
example, the equation us, = t?x2u; +u belongs to So. For an equation from Sy we can normalize Pt(bl)_
the only essential torsion coefficient in the structure equations (13), to 1 by setting bl = P;. Then, after
prolongation, we have the involutive lifted coframe

6 = {60, 01,02, 6%, 011,092, M1, 72,3}
with the structure equations

dfo =m A+ &' N Oy+ € A b,

dfy =1 NGy — Pl NE* — Jo0r NE' — Jiby NE2+ €N Ao,

dfy =1 Ay — Oy N EL+ Joby A EL 4+ J102 A E2 + €2 N 099,

gt = gt A g,

dg? = Jp&t N €%,
doyi=m Ao +m A =0 NE+ (Q+1—2P)0y A&+ 216 Ao,
dogy =m1 AN ogg + 13 ANE2 4+ (P — 24+ Q)0 A EY — 20561 A 099,

dm = (P —1)¢" A €7,

dng = T1 ANE 1 Amg — 3J1m2 A €%+ Jafg A €2

+ (4P Jy — 2QJs — D1(Q) — 2J2 + 3)01 A2 + (212 + 2 — 3P + 3Q — 2Do( )€ A 011,

dns = mo AN +m Ang +3Jams AN+ (2J1(P + Q — 2) — Da(Q) — Da(P))fa A !
+ (2P — 3 — 2105 + 2Da (o) + Q)& A 020,
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where the functions J; = —P,H ! and Jy = (H;P, — HPy)H~'(P;)~2 are invariants of the symmetry
group of an equation from Ss and the operators

0 . 0 .
Dl:a—glz(Pt) Dt, DZ:a—éQ:PtH Dx

are invariant differentiations associated with &' and £2. These operators are defined by the identity
dF =Dy (F)&r + Do(F)E,

where F' = F(t,z) is an arbitrary function. The commutator identity for the invariant differentiations
has the form

Dy, D] = —J1D; — JoDy. (15)
We have Dy (P) = 1, and, applying (15) to P, we obtain the syzygy
J1 = =Dy (Do(P)) — JoDDo(P). (16)

If Do(P)D1(Q) # Do(Q), ie., if P,Q, # PyQy, then, applying (15) to @ and using (16), we have
Jo = ([D1,D2)(Q) — D1 (Q)D1 (D2(P))) (D2(P)D1(Q) — D2(Q)) ™

Therefore, in this case the functions P and @ are a basis of differential invariants of the symmetry group.
But P and @) are not necessarily a basis in the case of their functional dependence (cf. [9, Theorem 2.3,
[10, Sec. 10.4.2]). To prove this statement, we consider the equation

A2 e~ 0 - D+ "

with arbitrary functions p(t) and ¢(t) such that p’(t) # 0 and ¢/(¢t) # 0. For this equation we have

P=p), Q@=q),
Jo==2(d' ()"t +2)7 = p O 1) — ¢ O)@ ()a(t) 7,
Di(P)=1, Dy(P)=0, Di(Q)=d 1))~ DQ) =0,

and by induction the only nontrivial higher-order differential invariants D% (Q) depend on t. Since J5 , # 0,
the function Js is independent of P, (), and all their invariant derivatives. Thus, for the whole subclass S
we should take the functions P, @, and Js as a basis for the set of differential invariants of the symmetry
group. To construct all the other invariants, we apply D; and D2 to P, @, and J;. The commutator
identity (15) allows us to permute Dy and Do, so we need only deal with the invariants P, = D (D5(P)),
Qjr = D] (D5(Q)), and Jo jj, = D} (D5(J2)), where j >0, k > 0.

For s > 0, the sth-order classifying manifold associated with the lifted coframe @ and an open subset
UcCR?is

Uty = Ut +

C(0,U) = {(Pir(t, x), Qj(t, ), Jojn(t,2)) |0 < j+k <s, (t,x) € U}. (18)

Since all the functions Pjg, @jx, and Js j; depend on two variables ¢t and x, it follows that ps =
dimC®)(0,U) < 2 for all s > 0. Let

r=min{s [ ps = pst1 = psy2=...}
be the order of the coframe 6. Since P, # 0, we have
I1<pp<pr<p2<---<2

In any case, r + 1 < 2. Hence from [24, Theorem 15.12] we see that two linear hyperbolic equations (1)
from the subclass Sy are locally equivalent under a contact transformation if and only if their second-order
classifying manifolds (18) locally overlap.
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Remark 1. A Lie pseudo-group is called structurally intransitive [17] if it is not isomorphic to any
transitive Lie pseudo-group. In [4], Cartan proved that a Lie pseudo-group is structurally intransitive
whenever it has essential invariants. An invariant of a Lie pseudo-group with the structure equations

dw'’ = Aiﬂkﬂﬂ AwP + T;kwj AwP

is called essential if it is a first integral of the systatic system Aiﬁkwk . From the structure equations (14) it
follows that the systatic system for the symmetry pseudo-group of an equation from Sz is generated by the
forms & and £2. First integrals of these forms are arbitrary functions of ¢ and z. Therefore, the invariants
P, Q, Js, and all the nonconstant derived invariants are essential. Thus, the symmetry pseudo-group of
Eq. (1) from the subclass Sy is structurally intransitive, and the moving-coframe method is applicable to
finding Maurer—Cartan forms for differential equations with structurally intransitive symmetry pseudo-
groups (cf. [17]).

Remark 2. In [14, Theorem 1], the following basis of invariants for the symmetry group of Eq. (1) is
found: {P,Q, J3,J2, J3}, where

J3 = H3(KHy, + HKyy — HiK, — H, K}),
J?=H °(HK, — KH,)>(HKHy — H*Ky, — 3K H}? + 3HHK;),
J3=H (HK; — KH)>(HKHy — H*K,p — 3KH? +3HH,K,).

Using (16), we have the following expressions for invariants J§, Jg, and Jg’ in terms of P, ), J2, and their
invariant derivatives:

Ji = 2PQ + D1 (Da(P)) + JoDa(P),
J3 = Ja(Da(P))?,
J§ = Do (P)(D1(Da(P)) + JoDo(P)) — Da(Da(P)).
The following operators of invariant differentiation are found in [14]:
X, =H %HK, - KH,)D;, X,=H*HK,—-KH,) 'D,.

We have X; = H})g(P)]DDl and Xy = Do(P)~'Dy. Then in the case Dy(P) = 0 = P, the operator X5 is not
defined, while X; is trivial, J3 = 2PQ, J? = 0, and J§ = 0. Therefore, the functions P, Q, Ji, J2, and
J3 are not a basis of invariants of the symmetry group for Eq. (17).

Remark 3. In the theorem of [12], two sets of functions are stated to be bases for invariants of symmetry
groups of Egs. (1): the first set consists of functions P, Q, I = P,P,H !, and Q= (In|K )¢ K1, and the
second set consists of functions P, ), I, and —.J5. The operators of invariant differentiation are taken in
the form Dy = Pt_lDt and Dy = P, 'D,. We have I = Dy(P); therefore the function I can be excluded
from both sets. Also we have Q = QP! + JoDo(P)P~2 + Dy (Dy(P))P~2 — Do(P)P~3, D; = Dy, and
Dy = (Dy(P))~'Dy. Therefore, in the case P, = 0 = Dy(P) we have I = 0 and Q = QP~!, and so the
functions P, Q, I, and Q are not a basis of invariants for the symmetry group of Eq. (17).

The function Jo and the operator D; are not defined when P, = 0 (for example of this case we take the
Moutard equation uy,, = U(t, x)u). So the second set of functions is not a basis of invariants of symmetry
groups for the whole class (1).

Now we return to the case P, = 0. Then the torsion coefficients in the structure equations (13) are
independent of the group parameters, while dP = P,b} H~1¢2. We denote by S the subclass of Egs. (1)
such that P, = 0, P, # 0. This subclass is not empty, since, for example, the equation uy = x%u, + u
belongs to S3. For an equation from S3 we normalize b = HP,!. After absorption of torsion and
prolongation, we obtain the involutive lifted coframe

0 = {0o,01,02,&", €2, 011, 029, 1, 12,113 }
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with the structure equations
dfo = m1 A 0o+ EX A0+ E2 A Oy,
doi =ni AOy — PO ANE2 — LO NE2+ €V Aoy,
dfy = A Oy — O NE" + Lo A E* + €2 A 090,
gt = Lg' A €2,
de? =0,
dopn =m Ao +m AEH+(Q+1—2P)0y AE* +2LE% Aoy,
doyy =m ANop +n3 NE + (P =2+ Q)b N E,
dm = (P —1)¢' A €%
dno =mi NEY —m Ama —3Lmy A E2 — D1(Q)6: ANEZ 4+ (3Q — 3P + 2)52 A o11,
dng =mo ANE2+m Az — (4L +1 — 2PL — 2QL 4+ Dy(Q))fa A ' 4 (Q — 3+ 2P)EL A 099,

where the function L = (H Py, — H,P,)(P,) ?H ! is an invariant of the symmetry group and the operators
of invariant differentiation are D; = P,H'D; and Dy = (P,)"'D,. We have D;(P) = 0, Dy(P) = 1, and
Dy, Dy] = LDy. (19)

In the case D1 (Q) # 0, we apply (19) to Q and obtain L = [D1, D2)(Q)(D1(Q))~!. Therefore, in this case
the functions P and ) are a basis for the set of differential invariants of the symmetry group. But if
D1(Q) = 0, then the functions P and @ are not necessarily a basis. For example, consider the equation

2(p(x) — 1)
= — + Uy + + -+ )
where p(x) and ¢(x) are arbitrary functions such that p/(z) # 0 and ¢/(x) # 0. This equation has the
following invariants:

P=p(x), Q=q(z), L=2(p(x))" (t+2)"" +p" (@) (@) + ¢ @)@ (@)a(x) ™"
We have D1 (Q) = 0, D2(Q) = ¢/(x)(p(x)) ", and by induction the only nontrivial higher-order differential
invariants D% (@) depend on x. Since L; # 0, the function L is independent of P, @, and all their invariant
derivatives. Thus, for the whole subclass S3 we should take the functions P, @), and L as a basis for the

set of differential invariants of the symmetry group. The sth order classifying manifold associated with
the coframe @ and an open subset U € R? can be taken in the form

C(S)(07 U) = {(P(x)ijk(t7x)7ij(ta x)) ’ 0<j+ k<s, (t,l’) € U}7 (20)

with Qi = ]D)Ji (D5(Q)) and L), = ]D){ (D4(L)). Then two equations from S are equivalent under a contact
transformation if and only if their second-order classifying manifolds (20) (locally) overlap.
Now we consider the case P = const. Then we have

dQ = Qu(b}) €' + Qub1H €%
We denote by Sy the subclass of Egs. (1) such that P = const, @; # 0. This subclass is not empty, since,

for example, the equation us, = (t—x)3uz + (t—2)?u belongs to Sy. For an equation from S; we normalize
bl = Q;. Then, after absorption of torsion and prolongation, we have the involutive lifted coframe

0 = {0o,01,02,&", €, 011, 029, 1, 12,13 }
with the structure equations

d90:7]1/\90+€1/\91+§2/\92,
dfy =m A6y — POg AE* — Moy NEF — M1Oy AE* + € Aoy,
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dfs =11 A Os — g NEH + Mol A E' + M1y A E* + €2 A 0o,
gt = Mg A€,
dg® = My&' N €2,
doyn =m Ao+ AE +(Q+1—2P)01 A2+ 2M1E% Aoy,
dooo = n1 A o2 +n3 A f2 + (P — 2+ Q)92 /\El — 2M2§1 N 092,
dn = (P =1)§' A&,
dny =1 NEY 41 Amg — 3Mymp A E2 — (1 + 2My + 2Q My — AP M)y A &2
+(Q — 2M My — 3P — 2Dy (M) + 2)€% Aoy,
dng =72 ANE +m A3+ 3Mang A E" — (AMy — 2My P — 2M1Q + Do (Q))02 A €'
+ (2M1 My + 2P — 3 + 2Dy (M7) + 3Q)E" A 092,
where the functions M; = —QuH ™' and My = (H;Q; — HQtt)H_lQ;Q are invariants of the symmetry
group and the operators of invariant differentiation are D; = @, Dy and Dy = Q:H *D,. We have
Dy, Dy] = —M1IDy — MoDs. Since D1 (Q) = 1, applying the commutator identity to @), we have the syzygy
M; = —D1(D2(Q)) — M2D2(Q). The functions @ and My are a basis for the set of all invariants of the

symmetry group of an equation from S;. We take the sth-order classifying manifold associated with the
coframe @ and an open subset U € R? in the form

CO(O,U) = {(P,Qj(t,x), My jx(t,2)) |0 < j+ k <s, (t,2) € U} (21)

with Qjx = D](D5(Q)) and My, = D} (D5(Ms)). Then two equations from Sy are equivalent under
a contact transformation if and only if their second-order classifying manifolds (21) (locally) overlap.

Next we denote by S5 the subclass of Egs. (1) such that P = const, Q; = 0, and @, # 0. This
subclass is not empty, since, for example, the equation

2(,\—1)u " 20+ (A =1)(t+x))
@+ T T @t )

has invariants P = A = const and @ = ¢(z) and belongs to Ss. For an equation from S5 we normalize
bl = HQ;!. Then, after absorption of torsion and prolongation, we have the involutive lifted coframe

Uty = —

6 = {60, 01,02, ", 6%, 011,092, M1, 72,3}

with the structure equations

dfy = 1 A Oy + EX N O+ E2 N Oy,

do1 =m ANOy — POy NE2 — NO AE2+ &Y Ao,

dfy =1 Ny — g NEL + NOy A E% + €2 N o,

¢t = N¢' A,

d* =0,

doyi=m Ao +m A+ (Q+1—2P)0y A2+ 2NE2 Aoy,

dogy =m Ao +n3 ANE+ (P =2+ Q)0 AE,

dm = (P —1)¢' A €2,

2691



d772:7['1/\fl+7]1/\772—3N772/\€2+(2—3P+3Q)62/\011,
dns =mo NE+m A+ 2CN(P+Q—2)—1)0 A + (2P +Q — 3)¢" Ao,

where the function N = (HQ., — H,Q,)H 1Q,? is an invariant of the symmetry group and the operators
of invariant differentiation are Dy = Q. H ' D; and Dy = Q' D,. We have [Dy,Ds] = —NDy, D1(Q) = 0,
and D9 (@) = 1. The functions @ and N are a basis for the set of all invariants of the symmetry group
of an equation from S5. We take the sth-order classifying manifold associated with the coframe 6 and an
open subset U € R? in the form

(0. U) = {(P,Q(z), D{(D5(N))(t,2)) [0< j+ k < s, (t,2) € U}. (22)

Then two equations from Sy are equivalent under a contact transformation if and only if their second-order
classifying manifolds (22) (locally) overlap.

Finally, we denote by Sg the subclass of Egs. (1) such that P = const, @) = const. This subclass is
not empty, since, for example, the equation

Uge = —tUr — ATUL — Azu (23)
has the invariants P = A and ) = 0, while the Euler—Poisson equation
Uy = 27 Lt 4 ) Ty + 2207 (4 1) Ty — A2 (t + x) 2w (24)

has the invariants P = A and @ = u, [23, Sec. 9.2]. For an equation from Sg, after absorption of torsion
and prolongation we have the involutive lifted coframe

6 = {00,01,02, &, €, 011,022, 71,772,113, T}
with the structure equations
dfo =m Ao+ & A0y + &2 A B,
dfy =na N0y — POg NE> + &M Aoy,
d92 = (2 —m) N2 — Og A& + &2 N oaa,
= (m —m)NE,
=(m—m)AE,
d01 =2 —m) Ao+ A+ (Q+1—2P)0y AE2,
(Bm —2m) Ao +m A+ (P—2+ Q)0 AE,
dn = (P —1)¢' N2,
iy = (P—Q—1)¢" A &%,
dnz = m A& — (2m = 3m) Az + (3(Q — P) +2)6% Aoy,
dng = ma NEX 4 (41 — 3m2) Ana + (3(Q — 1) + 2P)E! A ogo.

All the invariants of the symmetry group for an equation from Sg are constants, and the classifying
manifold is a point. Thus, an equation from S is equivalent to one of the equations (23) or (24) with the
same values of P and @, [23, Sec. 9.2].

d0'22

The results of the above calculations are summarized in the following statement.

Theorem. The class of linear hyperbolic equations (1) is divided into the siz subclasses S1,Sa,...,Sp
invariant under an action of the pseudo-group of contact transformations:

S1 consists of all equations (1) such that H =0 and K = 0

So consists of all equations (1) such that P, # 0

Ss consists of all equations (1) such that P, =0 and P, # 0;

Sy consists of all equations (1) such that P = const and Qy # 0;

e N T T
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S5 consists of all equations (1) such that P = const, Q; =0, and Q, # 0;

Sg consists of all equations (1) such that P = const and ) = const.

Every equation from the subclass 81 is locally equivalent to the linear wave equation ug, = 0.

Every equation from the subclass Sg is locally equivalent to either Eq. (23) when @ = 0 or to Eq. (24)
when @Q # 0.

For the subclass Sz, the basic invariants are P, Q, and J2, and the operators of invariant differenti-
ation are Dy = Pt_lDt and Dy = PLH™1D,,.

For the subclass Ss, the basic invariants are P, (), and L, and the operators of invariant differentiation
are D; = P,H'D; and Dy = Pz_le.

For the subclass Sy, the basic invariants are Q, M1, and Ms, and the operators of invariant differen-
tiation are D = Qt_lDt and Dy = Q:H ' D,.

For the subclass Ss, the basic invariants are QQ and N, and the operators of invariant differentiation
are D1 = Q. H 'D; and Dy = Q' D,.

Two equations from one of the subclasses So, S3, Sy, or S5 are locally equivalent to each other if and
only if the classifying manifolds (18), (20), (21), or (22) for these equations locally overlap.

Conclusions

In this paper, the moving-coframe method of [6] is applied to the local equivalence problem for the
class of linear second-order hyperbolic equations in two independent variables under an action of the
pseudo-group of contact transformations. The class is divided into six invariant subclasses. For all of the
subclasses, the Maurer—Cartan forms for symmetry groups, the bases of differential invariants, and the
invariant differentiation operators are found. This allowed us to solve the equivalence problem for the
whole class of linear hyperbolic equations. It is shown that the moving-coframe method is applicable to
structurally intransitive symmetry groups. The method uses linear algebra and differentiation operations
only and does not require analyzing overdetermined systems of partial differential equations or using
procedures of integration.
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