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1 Introduction

The theory of Lie groups has greatly influenced diverse branches of mathematics and physics.
The main tool of the theory, Sophus Lie’s infinitesimal method, [30], establishes the connection
between continuous transformation groups and algebras of their infinitesimal generators. The
method leads to many techniques of great significance in studying the group-invariant solutions
and conservation laws of differential equations, [42, 21, 36, 4, 28]. The application of Lie’s infini-
tesimal method to concrete systems of differential equations requires an analysis and integration
of over-determined defining systems for symmetry algebras. Additional integrations need to be
done when differential invariants and operators of invariant differentiations are computed via
the infinitesimal method. Also, the complexity of defining systems in symmetry analysis of
classes of differential equations sometimes is high enough to make the full study of all branches
of classifications trees very hard.

An alternative approach for studying Lie (pseudo-)groups was developed by Élie Cartan,
[6, 7, 8]. His theory is based on characterizing transformations from a pseudo-group by means
of a set of invariant differential 1-forms called Maurer–Cartan forms. Expressions of exterior
differentials of Maurer–Cartan forms in terms of the forms themselves yield the Cartan structure
equations for the pseudo-group. These equations contain all information about the pseudo-group,
in particular, they give all differential invariants and operators of invariant differentiations. The
knowledge of Maurer–Cartan forms and differential invariants enables one to solve equivalence
problems for classes of differential equations and to find mappings between equivalent equations.
An important feature of the method is that it does not require integration, and allows one to
find the Maurer–Cartan forms by means of only differentiation and linear algebra operations.

Nowadays there are different methods for computing Maurer–Cartan forms and structure
equations of symmetry pseudo-groups of differential equations. We discuss four of these methods.
We restrict our attention to symmetries of partial differential equations only. For applications
of Cartan’s method to symmetries of ordinary differential equations we refer, e.g., to [24, 25, 27,
17, 19, 3, 37, 11, 12].
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2 Apriori known geometric properties of a given differential

equation

The first approach is presented in [45, 26, 27, 1, 2, 3, 10, 13]. It is based on apriori known in-
formation about geometric properties of a given differential equation. We illustrate the method
on the example of Liouville’s equation

uxy = eu. (1)

It is a hyperbolic equation of second order in two independent variables. From the geometric
theory of such equations, [3], it follows that there exists a coframe (a collection of independent
1-forms) ϑ, ωi, i ∈ {1, ..., 4}, on R

5 with coordinates (x, y, u, p, q), such that a local section
σ : (x, y) 7→ (x, y, u(x, y), p(x, y), q(x, y)) of the trivial bundle R

5 → R
2, (x, y, u, p, q) 7→ (x, y),

provides a local solution u(x, y) of equation (1) whenever σ∗ ϑ = 0, σ∗ (ω1 ∧ ω2) = 0, and
σ∗ (ω3 ∧ ω4) = 0. Indeed, we take

ϑ = du− p dx− q dy, ω1 = dp− eu dy, ω2 = dx, ω3 = dq − eu dx, ω4 = dy.

Then a local diffeomorphism Φ : R
5 → R

5, Φ : (x, y, u, p, q) 7→ (x, y, u, p, q), is a contact
symmetry of equation (1) whenever it preserves the ideal generated by the contact form ϑ and
the ideals generated by the pairs ω1, ω2 and ω3, ω4 modulo the contact ideal. That is, Φ must
satisfy the following condition:

Φ∗




ϑ
ω1

ω2

ω3

ω4




=




a 0 0 0 0
c1 b11 b12 0 0
c2 b21 b22 0 0
c3 0 0 b33 b34
c4 0 0 b43 b44







ϑ
ω1

ω2

ω3

ω4




with a (b11 b
2
2 − b12 b

2
1) (b33 b

4
4 − b34 b

4
3) 6= 0.

This is a standard set-up for Cartan’s equivalence method, [6, 7, 8, 15, 27, 37]. Procedures
of this method give the Maurer–Cartan forms

θ1 = du− p dx− q dy,

θ2 = s1 (dp − eu dy) + s2 dx,

θ3 = s−1
1 dx,

θ4 = s−1
1

(
e−u (dq − eu dx) + s3 dy

)
,

θ5 = s1 e
u dy,

η1 = s−1
1 ds1 + p dy,

η2 = s1 ds2 − s2 ds1 + s21 p dp− s−1
1 (s21 s2 p− z1) dx,

η3 = e−2u s−2
1

(
s1 ds3 + s3 ds1 + q dq + s1 (s3 + s21 z2) dy

)
,

where s1 = b11, s2 = b12, s3 = b11b
2
2, z1 and z2 are arbitrary parameters, with the structure

equations

dθ1 = −θ2 ∧ θ3 − θ4 ∧ θ5,

dθ2 = η1 ∧ θ
2 + η2 ∧ ω

3 − θ1 ∧ θ5,

dθ3 = −η1 ∧ θ
3,
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dθ4 = −η1 ∧ θ
2 + η3 ∧ θ

5 − θ1 ∧ (θ3 + θ4) (2)

dθ5 = (η1 + θ1) ∧ θ5,

dη1 = −θ3 ∧ θ4 + θ2 ∧ θ3,

dη2 = π1 ∧ θ
3 + 2 η1 ∧ η2,

dη3 = π2 ∧ θ
5 − 2 (θ1 + η1) ∧ η3.

Thus the method is quite simple. It does not require writing out defining systems for sym-
metry generators. Also, it gives Maurer–Cartan forms, differential invariants, and invariant
derivatives for symmetry groups explicitly. But a lot of preliminary work needs to be done
before the method becomes applicable to a given differential equation. It is neccessary to find
a formulation of the equation in terms of ideals of exterior forms convenient for setting up the
equivalence problem for coframes.

3 Taylor series expansion of defining equations for infinitesimal

generators of transitive Lie pseudo-groups

The second method was provided in [31, 32]. It extracts information about Cartan’s structure
equations from defining systems for infinitesimal generators. The basic point is that in the
case of a transitive symmetry group the explicit form of solutions of the defining system is not
required for computing coefficients of the structure equations. These coefficients depend on the
finite order Taylor series expansions of the generators, while the information about the Taylor
series can be obtained from the involutive form of the defining system.

When the defining system for the infinitesimal generator X =
n∑

i=1
ξi ∂

∂xi of a transitive Lie

pseudo-group G is of the first order, the procedure of the method is as follows. Let P1 be the
set of all parametric derivatives of the defining system. Denote

∂ξi

∂xj
= φρ, ρ ∈ {1, ...,#(P1)}, (3)

for all ∂ξi

∂xj ∈ P1. Then the involutive form of the defining system is

∂ξi

∂xj
=

#(P1)∑

ρ=1

Ai
jρ(x)φ

ρ +

n∑

k=1

bijk(x) ξ
k (4)

for all principal derivaties. As it is shown in [32], in this case Cartan’s structure equations of
the pseudo-group G have the form

dωi =

#(P1)∑

ρ=1

n∑

j=1

ai
jk π

ρ ∧ ωj +
∑

1≤j<k≤n

cijk ω
j ∧ ωk, i ∈ {1, ..., n},

with ai
jk = Ai

jk(x0) and cijk = bikj(x0)−b
i
jk(x0), where x0 is any non-singular point of the defining

system (4).
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Example 1. ([32, Ex. 20]): Consider the Lie pseudo-group on R
2 whose infinitesimal generator

X = ξ ∂x + η ∂y satisfies the defining system

ξx = 1
y
η, ξy = 0, ηy = 1

y
η.

In this system, the only parametric derivative of the first order is ηx. We denote it by φ1 and
add the only parametric equation (3):

ηx = φ1.

Therefore, in any non-singular point (x0, y0) with y0 6= 0 we have A2
11 = 1, b112 = y−1

0 , b111 =
b121 = b122 = b2ij = 0. This yields the structure equations

dω1 = −
1

y0
ω1 ∧ ω2, dω2 = π1 ∧ ω1.

Any value y0 6= 0 is suitable as an initial data point, so we choose y0 = 1.

Additional work should be done when the order of the defining system is greater then 1, [32,
§ 4.4].

Example 2. ([32, Ex. 31]): For the symmetry group of Liouville’s equation (1) the coefficients
of the infinitesimal generator X = ξ ∂x + η ∂y + τ ∂u satisfy the defining system in involutive
form

τyy = −ηy, ηxy = 0, ξx = −τy − η, ξy = 0, ξu = 0, τx = 0, τu = 0, ηu = 0. (5)

The algorithm of [32] gives the following form of the Cartan structure equations:

dω1 = −ω1 ∧ ω6,

dω2 = −ω2 ∧ ω3 + ω2 ∧ ω6,

dω3 = −ω1 ∧ ω4 − ω2 ∧ ω5, (6)

dω4 = π1 ∧ ω1 + ω4 ∧ ω6,

dω5 = π2 ∧ ω2 − ω3 ∧ ω5 − ω5 ∧ ω6,

dω6 = −ω1 ∧ ω4.

This result coincides with the previous one: the substitution of θ1 = ω3, θ
2 = −ω2−ω4, θ

3 = ω1,
θ4 = −ω1 − ω5, θ

5 = ω2, η1 = ω6, η2 = −π1, and η3 = −π2 into (2) gives (6).

The method has the following properties. It is not universal since it is not applicable to
differential equations with intransitive symmetry pseudo-groups. Also, it does not give Maurer–
Cartan forms and differential invariants explicitly. An integration should be used to find them
from the structure equations, [14, § 7.6].
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4 Invariantized defining equations for Maurer–Cartan forms

The third method is developed in [38, 39, 9]. It is based on use of invariantized defining equations
for Maurer–Cartan forms of Lie pseudo-groups.

Let D(M) be the pseudo-group of local diffeomorphisms Z = φ(z) of a manifold M , dimM =
m, and D(∞)(M) be the bundle of ∞ - jets of maps in D(M). Local coordinates of the base space
M and D(∞)(M) are denoted by z = (zi) and (zi, Zα

I ), respectively, where Z = (Zα) are target
coordinates for φ ∈ D(M), φ(z) = Z, and Zα

I = ∂IZα/∂zI = ∂i1+...+imZα/(∂z1)i1 ...(∂zm)im

for I = (i1, i2, ..., im) (our notation for multi-indexes differs slightly from those of [38, 39, 9]).
Then, as it is shown in [38], the Maurer–Cartan forms for D(∞)(M) are σα = Zα

j dz
j , µα =

dZα−Zα
j dz

j , and µα
I = D

I
Z(µα), α ∈ {1, ...,m}, #I = i1+...+im ≥ 1, where D

I
Z = D

i1
Z1◦...◦D

im
Zm ,

DZj =

m∑

i=1

wi
j Dzi, Dzi =

∂

∂zi
+

m∑

α=1

∑

#I≥0

Zα
I+1i

∂

∂Zα
I

,

while (wi
j) is the inverse matrix for the Jacobian matrix (Zα

j ). The structure equations for

D
(∞)(M) have the form

dµJHK = ∇µJHK ∧ (µJHK − dZ) , (7)

dσ = −dµJ0K, (8)

where µJHK = (µαJHK) =

(
∑

#I≥0

1
I! µ

α
I H

I

)
, HI = H i1

1 · ... ·H im
m , and ∇µJHK =

(
∂µαJHK

∂Hj

)
denote

the Jacobian matrix of the vector µJHK of power series in the variables H = (Hj).

Let V = ζα ∂zα be the infinitesimal generators of a sub-pseudo-group G ⊂ D(M). They are
characterized by the defining equations

L(zi, ζα
I ) = 0. (9)

If G is the symmetry group of a system of differential equations, then (9) are (the involutive
completion of) the usual determining equations obtained through Lie’s infinitesimal technique.

The method is based on the following theorems, [38]:

Theorem 1. The invariant forms µα
I of a Lie pseudo-group G ⊂ D(M) satisfy the linear system

L(Zi, µα
I ) = 0, (10)

obtained by replacing zi by Zi and ζα
I by µα

I in the determining equations (9).

Theorem 2. The structure equations of the invariant coframe for a Lie pseudo-group G are
obtained by restricting the diffeomorphism structure equations (7), (8) to the space of solutions
of the equations (10).

These results allow to find the structure equations of the symmetry group of a system of
differential equations from an involutive form of infinitesimal defining equations. The required
computations rely exclusively on linear algebra and differentiation, and can be readily imple-
mented in any standard symbolic computation package.
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Example 3. To illustrate the method, we apply it to Liouville’s equation (1). We denote
(z1, z2, z3) = (x, y, u), (Z1, Z2, Z3) = (X,Y,U), and take the infinitesimal defining system in the
involutive form (5). Then from the fourth and fifth equations of (5) and their derivatives w.r.t.
y and u we have µ1

(0,k,l) = 0 for k + l ≥ 1, so

µ1JHK =
∑

j≥0

1

j!
µ1

(j,0,0)H
j
1 .

Further, from the sixth and seventh equations of (5) and their derivatives w.r.t. x and u we
have µ2

(j,0,l) = 0 for j + l ≥ 1, thus

µ2JHK =
∑

k≥0

1

k!
µ2

(0,k,0)H
k
2 .

Finally, from the third equation of (5) and its derivatives w.r.t. x, y, and u we have µ3
(0,0,0) =

−µ1
(1,0,0) − µ2

(0,1,0) and

µ3JHK = −
∑

j≥0

1

j!
µ1

(j+1,0,0)H
j
1 −

∑

k≥0

1

k!
µ2

(0,k+1,0)H
k
2 .

Let us denote µ1
(j,0,0) = φj and µ2

(0,k,0) = ψk for brevity. Then substitution of µ1JHK, µ2JHK,

and µ3JHK into (7) and (8) yields an infinite system of structure equations:




∑
j≥0

1
j! dφj H

j
1

∑
k≥0

1
k! dψk H

k
2

−
∑
j≥0

1
j! dφj+1H

j
1 −

∑
k≥0

1
k! dψk+1H

k
2




=




∑
j≥0

1
j! φj+1H

j
1 0 0

0
∑
k≥0

1
k! ψk+1H

k
2 0

−
∑
j≥0

1
j! φj+2H

j
1

∑
k≥0

1
k! ψk+2H

k
2 0




∧




−σ1 +
∑
j≥1

1
j! φj H

j
1

−σ2 +
∑
k≥1

1
k! ψk H

k
2

−σ3 −
∑
j≥1

1
j! φj+1H

j
1 −

∑
k≥1

1
k! ψk+1H

k
2




and

dσ1 = −dφ0, dσ2 = −dψ0, dσ3 = dφ1 + dψ1.

From these equations we have

dφ0 = −φ1 ∧ σ
1,

dφj = −φj+1 ∧ σ
1 +

∑

p≥0,q≥1,p+q=j

j!

p!q!
φp+1 ∧ φq, j ≥ 1,

dψ0 = −ψ1 ∧ σ
2, (11)

dψk = −φk+1 ∧ σ
2 +

∑

p≥0,q≥1,p+q=k

k!

p!q!
ψp+1 ∧ ψq, k ≥ 1,

dσ1 = φ1 ∧ σ
1,
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dσ2 = ψ1 ∧ σ
2,

dσ3 = −φ2 ∧ σ
1 − ψ2 ∧ σ

2.

To establish a correspondence with the previous results, we note that the substitution of
σ1 = ω1, σ2 = ω2, φ1 = ω6, φ2 = ω4, ψ1 = ω3 − ω6, ψ2 = ω5, φ3 = −π1, and ψ3 = −π2 into
equations (11) for dσ1, dσ2, dφ1, dφ2, dψ1, and dψ2 gives equations (6), while equations (11)
for dφi+1 and dψk+1 appear from the exterior differentials of the equations for dφi and dψk,
respectively. Therefore, equations (11) are the infinite prolongation of equations (6).

The sets of equations (11) for σ1, φi, and σ2, ψk are independent. Moreover, each of these
sets coinsides with the structure equations for the infinite prolongation of the diffeomorphism
pseudo-group on R

1, [5], [38, Ex. 4.1]. This shows that the pseudo-group of contact symmetries
of Liouville’s equation is a direct product of two diffeomorphism pseudo-groups on R

1, as it
follows, of course, from the results obtained by the infinitesimal method, [30, Bd. 5, 469–478].

Unlike the previous two methods, the method of [38, 39, 9] is universal since it is applicable to
any differential equation. It requires analysis of the defining systems for infinitesimal generators
and its reduction to the involutive form. For differential equations with infinite symmetry
pseudo-groups the method produces infinite sets of Maurer–Cartan forms and infinite systems
of structure equations. Also, the Maurer–Cartan forms obtained by this method depend on
both source and target variables of the diffeomorphism pseudo-group. Therefore, additional
work needs to be done to obtain finite sets of Maurer–Cartan forms and to express them in
terms which are suitable for further implementations such as finding transformations between
equivalent equations.

5 The moving coframe method

Finally, the fourth approach is based on the moving coframe method provided in [12]. Applied
to contact symmetries of diferential equations of the second order, the method has the following
outline. Consider the bundle J2(E) of the second order jets of local sections of the trivial
bundle E = R

n × R → R
n. Contact transformations ∆ : J2(E) → J2(E), ∆ : (xi, u, pi, pij) 7→

(xi, u, pi, pij), are characterized by requirements ∆∗(du − pi dx
i) ≡ 0 (mod du − pi dx

i) and
∆∗(dpi − pij dx

j) ≡ 0 (mod du − pi dx
i, dpi − pij dx

j). Therefore, Maurer–Cartan forms for
the pseudo-group Cont(J2(E)) of contact transformations on J2(E) can be easily found using
Cartan’s equivalence method, see, e.g., [35]. These forms are

Θ0 = a (du− pi dx
i),

Θi = gi Θ0 + aBk
i (dpk − pkl dx

l),

Ξi = ci Θ0 + f ik Θk + bik dx
k,

Σij = sij Θ0 + wk
ij Θk + zijk Ξk + aBk

i B
l
j dpkl,

where i, j ∈ {1, ..., n}, a 6= 0, det (bij) 6= 0, f ik = fki, sij = sji, w
k
ij = wk

ji, zijk = zjik = zikj,

while (Bi
j) is the inverse matrix for the matrix (bij). The structure equations of Cont(J2(E))

have the following form:

dΘ0 = Φ0
0 ∧ Θ0 + Ξi ∧ Θi,

dΘi = Φ0
i ∧ Θ0 + Φk

i ∧ Θk + Ξk ∧ Σik,

dΞi = Φ0
0 ∧ Ξi − Φi

k ∧ Ξk + Ψi0 ∧ Θ0 + Ψik ∧ Θk,

dΣij = Φk
i ∧ Σkj − Φ0

0 ∧ Σij + Υ0
ij ∧ Θ0 + Υk

ij ∧ Θk + Λijk ∧ Ξk.
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A differential equation R of the second order is a subbundle of J2(E). Let ι : R → J2(E) be
the inclusion map. Then we can find the Maurer–Cartan forms for the pseudo-group Sym(R)
of contact symmetries of R from the restrictions θ0 = ι∗ Θ0, θi = ι∗ Θi, ξ

i = ι∗ Ξi, σij = ι∗ Σij

by standard procedures of Cartan’s equivalence method, see [12, 33, 34] for details.

Example 4. Applying the moving coframe method to the symmetry pseudo-group of Liouville’s
equation (1), we obtain the Maurer–Cartan forms

θ0 = du− uxdx− uydy,

θ1 = r−1
1 (dux − uxxdx− eudy),

θ2 = r1 e
−u (duy − eudx− uyydy),

ξ1 = r1dx,

ξ2 = r−1
1 eudy,

σ11 = r−2
1

(
duxx − uxdux + (uxuxx + r31r2) dx

)
,

σ22 = r21e
−2u

(
duyy − uyduy + (uyuyy + r−3

1 r3)dy
)
,

η1 = r−1
1 (dr1 − ux ξ

1),

η2 = dr2 − 3 r2 η1 + r−2
1 (uxx + u2

x) (θ1 + ξ2) + 3 r−1
1 ux σ11 + v1 ξ

1,

η3 = dr3 + 3 r3 (η1 + θ0) + r21e
−2u (uyy + u2

y) (θ2 + ξ1) + 3 r1e
−uuyσ22 + v2 ξ

2,

where r1 = b11, r2 = z111, r3 = z222, v1 and v2 are arbitrary parameters, while σ12 = 0. The
forms satisfy the following structure equations:

dθ0 = −θ1 ∧ ξ
1 − θ2 ∧ ξ

2,

dθ1 = η1 ∧ θ1 − θ0 ∧ ξ
2 + ξ1 ∧ σ11,

dθ2 = −η1 ∧ θ2 − θ0 ∧ (θ2 + ξ1) + ξ2 ∧ σ22,

dξ1 = −η1 ∧ ξ
1,

dξ2 = (η1 + θ0) ∧ ξ
2,

dσ11 = η2 ∧ ξ
1 + 2 η1 ∧ σ11, (12)

dσ22 = η3 ∧ ξ
2 − 2 (η1 + θ0) ∧ σ22,

dη1 = (θ1 + ξ2) ∧ ξ1,

dη2 = π1 ∧ ξ
1 + 3 η1 ∧ η2 + 2 (θ1 + ξ2) ∧ σ11,

dη3 = π2 ∧ ξ
2 − 3 (η1 + θ0) ∧ η3 + 2 (θ2 + ξ1) ∧ σ22.

The substitution of ξ1 = ω1, ξ2 = ω2, θ0 = ω3, θ1 = −ω2 − ω4, θ2 = −ω1 − ω5, η1 = −ω6,
η2 = π1, and η3 = π2 into (12) yields equations (6). Therefore, this result coincides with the
results obtained in previous examples.

The moving coframe method enables one to find Maurer–Cartan forms, differential invariants,
and operators of invariant differentiations for symmetry pseudo-groups explicitly, in contrast to
the method of [32]. It does not require integration at all, and, unlike the methods of [32, 38, 39, 9],
does not use infinitesimal defining systems. Also, the method is universal since it is applicable to
any differential equation. The price of these advantages is lengthy and intricate computations.
Nevertheless the method allows one to solve effectively problems conserned with symmetry clas-
sification and equivalence of differential equation. We illustrate it in the two following sections.
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6 Contact equivalence problem for linear hyperbolic equations

In [35], the moving coframe method is used to solve the local equivalence problem for the class
of linear second order hyperbolic equations in two independent variables

utx = T (t, x)ut +X(t, x)ux + U(t, x)u (13)

w.r.t. the pseudo-group of contact transformations.
This class has been studied for more than two centuries. In [29], P.S. Laplace found semi-

invariants H = −Tt + T X +U and K = −Xx + T X +U . These functions are invariants of the
sub-pseudo-group u 7→ λ(t, x)u, λ 6= 0. Laplace proved that equation (13) is equivalent to the
wave equation utx = 0 w.r.t. this sub-pseudo-group whenever H ≡ 0 and K ≡ 0.

S. Lie studied equations (13) by means of the infinitesimal method, [30, Bd. 3, 492–523]. He
found canonical forms for equations (13) and methods of their integration.

L.V. Ovsiannikov found contact invariants P = K/H, Q = (ln |H | )tx/H, and applied them
to the problem of classification of equations (13) with non-trivial finite-dimensional subgroups
of symmetry pseudo-groups, [41], [42, § 9.2].

The solution of the contact equivalence problem for the class (13) is found in [35]:

Theorem 3. Class (13) is divided into the six subclasses C1, C2, ..., C6 invariant under an
action of the pseudo - group of contact transformations:

C1 consists of all equations (13) such that H ≡ 0 and K ≡ 0;

C2 consists of all equations (13) such that Pt 6= 0;

C3 consists of all equations (13) such that Pt ≡ 0 and Px 6= 0;

C4 consists of all equations (13) such that P ≡ const and Qt 6= 0;

C5 consists of all equations (13) such that P ≡ const, Qt ≡ 0, and Qx 6= 0;

C6 consists of all equations (13) such that P ≡ const and Q ≡ const.

Every equation from the subclass C1 is equivalent to the linear wave equation utx = 0.
Every equation from the subclass C6 is equivalent to the equation

utx = −t ut − P xux − P t xu

when Q = 0, or to the Euler - Poisson equation

utx =
2

Q (t+ x)
ut +

2P

Q (t+ x)
ux −

4P

Q2 (t+ x)2
u (14)

when Q 6= 0.
For the subclass C2, the basic invariants are P , Q, and J = (HtPt − HPtt)H

−1P−2
t , the

operators of invariant differentiation are D1 = P−1
t Dt and D2 = PtH

−1Dx.
For C3, the basic invariants are P , Q, and L = (HxPx − HPxx)H−1P−2

x , the operators of
invariant differentiation are D1 = PxH

−1Dt and D2 = P−1
x Dx.

For C4, the basic invariants are Q, M1 = QtxH
−1, and M2 = (HtQt −HQtt)H

−1Q−2
t , the

operators of invariant differentiation are D1 = Q−1
t Dt and D2 = QtH

−1Dx.
For C5, the basic invariants are Q and N = (HxQx − HQxx)H

−1Q−2
x , the operators of

invariant differentiation are D1 = QxH
−1Dt and D2 = Q−1

x Dx.
Two equations from the subclasses C2 – C5 are locally equivalent to each other if and only

if they have the same functional dependencies among the basic invariants and their invariant
derivatives up to the second order.
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Different results were stated in [23] and [22]:

Theorem 4. ([23]) The functions P , Q,

J1
3 = H−3 (KHtx +HKtx −HtKx −HxKt) ,

J2
3 = H−9 (HKx −KHx)2

(
HKHtt −H2Ktt − 3KH2

t + 3H HtKt

)
,

and

J3
3 = H−9 (HKt −KHt)

2 (HKHxx −H2Kxx − 3KH2
x + 3H HxKx

)

are a basis of the complete set of invariants of (13). Any other differential inariant is a function
of these basic invariants and their invariant derivatives.

Theorem 5. ([22]) A basis of invariants for equations (13) consists of the invariants

P, Q, I = PtPxH
−1, Q̃ = (ln |K | )txK

−1,

or of the invariants of the alternative basis

P, Q, I, J = (HtPt −HPtt)H
−1P−2

t .

The operators of invariant differentiations are taken in [22] in the following form: D1 = P−1
t Dt

and D2 = P−1
x Dx.

The functions of theorems 4, 5 do not provide bases of invariants for the whole class of
equations (13). To prove this, we consider the following equation:

utx = ut +
2 (p(t) − 1)

q(t) (t+ x)
ux +

2 (1 − (p(t) − 1) (t + x))

q(t) (t+ x)2
u (15)

with p(t) 6= 0, q(t) 6= 0, p′(t) 6= 0, and q′(t) 6= 0. For this equation we have P = p(t), Q = q(t),
J1

3 = 2 p(t) q(t), J2
3 = J3

3 = I = 0, Q̃ = q(t) (p(t))−1, while

J = −
2

q′(t) (t + x)
−

p′′(t)

(p′(t))2
−

q′(t)

p′(t) q(t)
.

Since J depends on x explicitly, it is functionally independent of P , Q, J1
3 , J2

3 , J3
3 , I, and Q̃.

Therefore, the functions from theorem 4 and the first set of functions from theorem 5 do not
provide a basis of differential invariants for the whole class (13).

Otherwise, for Moutard’s equation

utx = U(t, x)u (16)

we have Q̃ = Q, P = 1, so Pt = Px = I = 0. Therefore the invariant J and the operators
D1 = P−1

t Dt, D2 = P−1
x Dx are not defined for this equation. This proves that the both sets of

functions from theorem 5 do not provide bases of invariants for the subclass (16).

Remark 1. As it is shown in [35], the symmetry pseudo-groups of equations (13) from the sub-
classes C2 – C5 are intransitive. Therefore, the moving coframe method is shown to be applicable
to study intransitive symmetry pseudo-groups as well.
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7 Linearizability of the generalized Hunter–Saxton equation

In this section, we use the moving coframe method to study the generalized Hunter–Saxton
equation

utx = uuxx + κu2
x. (17)

This equation has a number of applications in the nonlinear instability theory of a director field
of a liquid crystal, [20], in geometry of Einstein–Weil spaces, [46, 18], in constructing partially
invariant solutions for the Euler equations of an ideal fluid, [16], and has been a subject of
many recent investigtions. In the case κ = 1

2 the general solution, [20], the tri-Hamiltonian
formulation, [40], the pseudo-spherical formulation and the quadratic pseudo-potentials, [44],
have been found. The conjecture of linearizability of equation (17) in the case κ = −1 has been
made in [16]. In [43], a formula for the general solution of (17) has been proposed. This formula
uses a nonlocal change of variables.

We prove that equation (17) is equivalent under a contact transformation to the Euler–Poisson
equation (14) with P = 2 (1 − κ) and Q = 2κ:

utx =
1

κ (t+ x)
ut +

2 (1 − κ)

κ (t+ x)
ux −

2 (1 − κ)

(κ (t+ x))2
u. (18)

Also, we find the general solution of (17) in terms of local variables.
Using the moving coframe method, we obtain the structure equations for the symmetry

pseudo-group of equation (18) have the form

dθ0 = η1 ∧ θ0 + ξ1 ∧ θ1 + ξ2 ∧ θ2,

dθ1 = η2 ∧ θ1 − 2 (1 − κ) θ0 ∧ ξ
2 + ξ1 ∧ σ11,

dθ2 = (2 η1 − η2) ∧ θ2 − θ0 ∧ ξ
1 + ξ2 ∧ σ22,

dξ1 = (η1 − η2) ∧ ξ
1,

dξ2 = (η2 − η1) ∧ ξ
2, (19)

dσ11 = (2 η2 − η1) ∧ σ11 + η3 ∧ ξ
1 + 3 (2κ − 1) θ1 ∧ ξ

2,

dσ22 = (3 η1 − 2 η2) ∧ σ22 + η4 ∧ ξ
2,

dη1 = (2κ − 1) ξ1 ∧ ξ2,

dη2 = (1 − 4κ) ξ1 ∧ ξ2,

dη3 = π1 ∧ ξ
1 − (2 η1 − 3 η2) ∧ η3 + 4 (3κ − 1) ξ2 ∧ σ11,

dη4 = π2 ∧ ξ
2 + (4 η1 − 3 η2) ∧ η4 + 2 (3 − κ) ξ1 ∧ σ22,

with θ0 = a (du−ut dt−ux dx), θ1 = a b−1(dut −uttdt−R2 dx)+2 (κ− 1) (κ b (t+x))−1θ0, θ2 =
a b κ (t+x)2 (dux−R2 dt−uxx dx)+b (t+x) θ0, ξ

1 = b dt, and ξ2 = b−1κ−1(t+x)−2dx, where R2

is the right-hand side of equation (18), while a and b are arbitrary non-zero constants. The forms
σ11, ... , π2 are too long to be written out in full here. We write equation (17) and its Maurer–
Cartan forms in tilded variables, then similar computations give θ̃0 = ã (dũ− ũt̃ dt̃− ũx̃ dx̃), θ̃1 =

ã b̃−1(dũt̃−ũt̃t̃ dt̃−R̃1 dx̃)−b̃
−2ũ ũx̃x̃ θ̃2−(2κ−1) b̃ ũx̃ θ̃0, θ̃2 = ã b̃−1(ũx̃x̃)−1 (dũx̃−R̃1 dt̃−ũx̃x̃ dx̃),

ξ̃1 = b̃ dt̃, and ξ̃2 = b̃−1 (dũx̃−κ (ũx̃)2 dt̃), where R̃1 is the right-hand side of equation (17) written
in the tilded vatiables, while ã and b̃ are arbitrary non-zero constants. The forms σ̃11, ... , π̃2
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are too long to be written out in full. The structure equations for (17) differ from (19) only
in replacing θ0, ... , π2 by their tilded counterparts. Therefore, results of Cartan’s method
(see, e.g., [37, th 15.12]) yield the contact equivalence of equations (17) and (18). Since the
Maurer–Cartan forms for both symmetry groups are known, the equivalence transformation
Ψ : (t, x, u, ut, ux) 7→ (t̃, x̃, ũ, ũt̃, ũx̃) can be found from the requirements Ψ∗θ̃0 = θ0, Ψ∗θ̃1 = θ1,

Ψ∗θ̃2 = θ2, Ψ∗ξ̃1 = ξ1, and Ψ∗ξ̃2 = ξ2:

Theorem 6. The contact transformation Ψ

ũ = (t+ x)−
1

κ (κ (t+ x)ux + (κ− 1)u) ,

t̃ = κ−1 t,

x̃ = −(t+ x)
κ−1

κ (κ (t+ x)ux − u) ,

ũt̃ = κ2 (t+ x)−
1

κ (ut − ux) ,

ũx̃ = −(t+ x)−1

takes the Euler–Poisson equation (18) to the generalized Hunter–Saxton equation (17) (written
in the tilded variables).

Equation (18) has an intermediate integral, and its general solution can be found in quadra-
tures. Indeed, for the invariants of this equation we have P + Q = 2, therefore the Laplace
t-transformation, [42, § 9.3], takes equation (18) to a factorizable linear hyperbolic equation.
Namely, we consider the system

v = ux − (κ (t+ x))−1u, (20)

vt = 2 (1 − κ) (κ (t + x))−1v + κ−1 (t+ x)−2u. (21)

Substituting (20) into (21) yields equation (18), while expressing u from (21) and substituting
it into (20) gives the equation

vtx =
1 − 2κ

κ (t+ x)
vt +

2 (κ− 1)

κ (t+ x)
vx −

(2κ − 1) (κ − 2)

(κ (t+ x))2
v (22)

with the trivial Laplace semi-invariant H. Hence, the substitution

w = vx + (2κ − 1) (κ (t + x))−1v (23)

takes equation (22) into the equation

wt = −2 (κ− 1) (κ (t + x))−1w. (24)

Integrating (24) and (23), we have the general solution for equation (22):

v = (t+ x)
1−2κ

κ

(
S(t) +

∫
R(x) (t+ x)

1

κ dx

)
,

where S(t) and R(x) are arbitrary smooth functions of their arguments. Then equation (21)
gives the general solution for equation (18):

u=(t+x)
1

κ

(
κS′(t)+

∫
R(x) (t+x)

1−κ
κ dx

)
−(t+x)

1−κ
κ

(
S(t)+

∫
R(x) (t+x)

1

κ dx

)
.
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This formula together with the contact transformation from theorem 6 gives the general solution
for the generalized Hunter–Saxton equation (17) in a parametric form:

ũ = κ2 S′(t) + κ

∫
R(x) (t+ x)

1−κ
κ dx,

t̃ = κ−1 t,

x̃ = −κ

(
S(t) +

∫
R(x) (t+ x)

1

κ dx

)
.

Hence, we obtain the general solution of equation (17) without employing nonlocal transforma-
tions.

8 Discussion

Cartan’s method of equivalence in its different incarnations is a powerful tool in the study of
symmetry groups of differential equations. Each of the four approaches discussed has its own
advantages and shortcomings. While the first and the second approaches are not universal, the
third and the fourth approaches provide an effective technique which is valid irrespective of
geometric properties of a given differential equation or of intransitivity of the symmetry pseudo-
group. The last approach, the moving coframe method, is applicable to solving the equivalence
problems, finding differential invariants and operators of invariant differentiation for classes of
differential equations where the power of the infinitesimal method is restricted by complexity
of analysis of the defining systems for symmetry generators. Unlike the second and the third
methods, the moving coframe method does not require analysis of the defining equations and
enables one to find the Maurer–Cartan forms for symmetry pseudo-groups explicitly. The price
of its power is lengthy and massive computations. It would be worthwhile to improve the
algorithms of the basic steps involved in the method.

We conclude the paper by mentioning evident prospects for the use of Cartan’s method in
studying structure of symmetry pseudo-groups of differential equations. The directions of future
research would include, among others, simplification of solving symmetry classification problems
and clarification of the group foliation technique with applications to construction of differential-
ly-invariant solutions. Therefore, the further development and improvement of implementations
of Cartan’s method would be of great interest and significance for investigations in geometry of
differential equations.
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transcendents. // J. Diff. Geometry, 1985, 22, 139–150

[25] Kamran N., Shadwick W.F. A differential geometric characterization of the first Painlevé transcendents. //
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