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Symmetries of Differential Equations via Cartan’s

Method of Equivalence

O. I. Morozov

Abstract. We formulate a method of computing invariant 1-forms and structure

equations of symmetry pseudo-groups of differential equations based on Cartan’s

method of equivalence and the moving coframe method introduced by Fels and Olver.

Our apparoach does not require a preliminary computation of infinitesimal defining

systems, their analysis and integration, and uses differentiation and linear algebra

operations only. Examples of its applications are given.

1. Introduction

The theory of symmetries of differential equations was created by Sophus Lie more

than a hundred years ago. One of Lie’s greatest contributions was the discovery of

the connection between continuous transformation groups and their infinitesimal ge-

nerators, which allows one to reduce complicated nonlinear invariance conditions of

d.e.s under an action of a transformation group to much simple linear conditions of

infinitesimal invariance – defining equations of symmetry algebra. Lie’s method turned

out to be a powerful tool for studying differential equations, finding their exact solutions,

conservation laws, etc. [14, 1, 4, 12, 18, 19, 29, 13, 30]. In almost all cases the

infinitesimal defining equations of the Lie pseudo-groups of symmetries of d.e.s can

be derived algorithmically. Lie’s method requires an integration of (over-determined)

system of partial differential equations to find a symmetry group of d.e.s explicitly. In

the last decade methods which do not use an integration but rather extract information

about structure of symmetry groups directly from their infinitesimal defining systems

were developed [23, 24, 27, 28]. It was shown how to obtain the dimension of the

finite Lie group, and in [23, 24] it was also shown how to find the structure constants

cijk of the symmetry algebra in the finite-dimensional case. In [16, 17] the method of

[23, 24] was generalized to the case of structurally transitive infinite Lie pseudo-groups.

Specifically, it was shown how to obtain the Cartan structure equations of the symmetry

pseudo-group for a system of d.e.s from its infinitesimal defining equations.

The theory of infinite Lie pseudo-groups was created by Élie Cartan [5] – [9]. It does

not use infinitesimal methods and is based on the possibility to characterize an infinite

http://arXiv.org/abs/math-ph/0105022v1
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Lie pseudo-group on a manifold M as the set of projections of bundle transformations

of a principal fiber bundle M × G → M , where G is some Lie group, that preserve

a collection of 1-forms τ i on M × G. The equations that express the differentials dτ i

through the τ i and modified Maurer - Cartan forms µα of the group G,

dτ i = Ai
αj µ

α ∧ τ j + T i
jk τ

j ∧ τk,

are called Cartan structure equations; they include important information about the

pseudo-group (see, particularly, [20, Theorem 11.16]).

In the present paper we apply Cartan’s method of equivalence [9, 20] and the moving

coframe method of [10, 11] to obtain invariant 1-forms of a symmetry pseudo-group

of d.e.s. Unlike the approach of [16, 17], the method used here does not require a

preliminary computation of infinitesimal defining systems and their reduction to the

involutive form.

A system Rs of differential equations of order s in n independent variables and m

dependent variables is locally considered to be the subbundle in the bundle Js(E) of s-jets

of the bundle E = R
n×R

m → R
n. A pseudo-group of symmetries Sym(Rs) of the system

Rs is a subgroup of the pseudo-group of contact transformations of the bundle Js(E) and

consists of those transformations which preserve the subbundle Rs. So the problem of

finding the group Sym(Rs) is a particular case of the general problem of equivalence of

embedded submanifolds under an action of a pseudo-group. A powerful and convenient

moving coframe method for solving this equivalence problem was developed in [10, 11].

Some simplifications are possible if we deal with the first order systems of d.e.s.

By [22, Theorem 3.3.1.] a system Rs is equivalent to the system R̂1 of the first order,

which is the subbundle in J1(Ê), where Ê = Js−1(E). The pseudo-group Sym(R̂1)

of symmetries of the system R̂1 is a subgroup of the pseudo-group Cont(J1(Ê)) of

contact transformations of the bundle J1(Ê). By Bäcklund’s theorem, [3], [20, Theorem

4.32], contact transformations on J1(Ê) are prolongations of point transformations on

Ê. Cartan’s method of equivalence allows us to obtain invariant 1-forms which define

the pseudo-group of contact transformations. Then we can find the invariant 1-forms

of the pseudo-group Sym(R̂1). To do that, we should make the following steps. First,

we restrict the invariant 1-forms of the pseudo-group Cont(J1(Ê)) on the subbundle

R̂1 and obtain the set of linear dependent 1-forms. Next, we apply the procedure of

normalization to the appearing conditions of linear dependence. Finally, we apply the

operations of Cartan’s equivalence method to the restrictions on R̂1 of the structure

equations of the pseudo-group Cont(J1(Ê)).
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2. Invariant 1-forms and structure equations of the pseudo-group of

contact transformations

According to [22, Theorem 3.3.1.] a compatible system Rs of d.e.s of order s is equivalent

to the system R̂1 of order 1, which has more dependent variables. So it is possible to

restrict our attention to the case of s = 1.

Let R1 be a system of partial differential equations of the first order, considered to be

the subbundle in the bundle J1(E) of 1-jets of the bundle E → X over an n-dimensional

base manifold X, with q-dimensional fibers. Let (x1, x2, ..., xn) denote local coordinates

of the base X and (u1, u2, ..., uq) denote local coordinates of the fibers of E. Then local

coordinates of the bundle J1(E) are (x1, ..., xn, u1, ..., uq, p1
1, ..., p

1
n, ..., p

q
1, ..., p

q
n), and a

local section f : X → E defined by the equalities uα = fα(x), α ∈ {1, ..., q}, has

corresponding 1-jet j1(f) : X → J1(E), defined by the equalities uα = fα(x), pα
i =

∂fα(x)
∂xi , α ∈ {1, ..., q}, i ∈ {1, ..., n}.

A differential form τ on J1(E) is called a contact form if it is annihilated by all

1-jets: j1(f)∗τ = 0. In local coordinates every contact 1-form is a linear combination of

the Cartan forms τα = duα − pα
i dx

i, α ∈ {1, ..., q} (here and below we use Einstein

summation convention, so pα
i dx

i =
n
∑

i=1
pα

i dx
i etc.)

A local diffeomorphism ∆ : J1(E) → J1(E), ∆ : (x, u, p) 7→ (x, u, p), is called a

contact transformation, if for every contact form τ , the form ∆∗τ is also a contact form;

in other words, if ∆∗τα = duα − pα
i dx

i = ζα
β (x, u, p) τβ for some functions ζα

β on J1(E).
By Bäcklund’s theorem, [3], [20, Theorem 4.32], in the case of n > 1 and q > 1 every

contact transformation ∆ : J1(E) → J1(E) is a prolongation of a point transformation

Γ : E → E, Γ : (x, u) 7→ (x, u), where the functions pα
i are defined by the equalities

∂uα

∂xj
+
∂uα

∂uβ
p

β
j = pα

i

(

∂xi

∂xj
+
∂xi

∂uβ
p

β
j

)

. (1)

To obtain a collection of invariant 1-forms of the pseudo-group of contact transfor-

mations on J1(E) we apply Cartan’s equivalence method [9, 20]. For this purpose we

consider the coframe {(τα, dxi, dpα
i ) |α ∈ {1, ..., q}, i ∈ {1, ..., n} } on J1(E). A contact

transformation ∆ acts on this coframe in the following manner:

∆∗









τα

dxi

dpα
i









= S









τα

dxi

dpα
i









,

where S : J1(E) → G is an analytic function on J1(E) taking values in the Lie group G
of non-degenerate block lower triangular matrices of the form









aα
β 0 0

Ci
β bij 0

F α
iβ Gα

ij h
αj
iβ









.



4

In accordance with Cartan’s method of equivalence, we consider the lifted coframe

on J1(E) × G

Θα = aα
β τ

β,

Ξi = ciβ Θβ + bij dx
j, (2)

Σα
i = fα

iβ Θβ + gα
ij Ξj + h

αj
iβ dp

β
j ,

where for convenience we use the notations ciβ = Ci
γ A

γ
β, fα

iβ = F α
iγ A

γ
β − Gα

ij B
j
k c

k
β ,

gα
ij = Gα

ik B
k
j ; (Aβ

γ) is the inverse matrix of the matrix (aα
β), (Bj

k) is the inverse matrix of

the matrix (bij), so aα
β A

β
γ = δα

γ and bij B
j
k = δi

k. To find an invariant coframe we use the

procedure of absorption and normalization of essential torsion coefficients [20, Chapter

10].

Taking exterior differentials of 1-forms Θα and substituting the differentials duβ,

dxj , dpβ
j expressed from the equations (2), we obtain

dΘα =
(

daα
β A

β
γ + aα

β B
j
k H

βs
jη

(

ckγ (Ση
s − f η

sǫ Θǫ − g
η
sl Ξ

l) − f η
sγ Ξs

))

∧ Θγ

+aα
β B

j
k H

βs
jη Ξk ∧ Ση

s − aα
β B

j
k H

βs
jη g

η
sl Ξ

k ∧ Ξl,

where the functions Hβk
jγ are defined by the conditions Hβk

jγ h
γi
kα = δi

j δ
β
α. The multipliers

of Ξk ∧ Ση
s and Ξk ∧ Ξl are essential torsion coefficients. We normalize them by the

following choice of the parameters of the Lie group G:

h
αj
iβ = aα

β B
j
i , (3)

gα
ij = gα

ji. (4)

Then we have

dΘα = Φα
β ∧ Θβ + Ξk ∧ Σα

k , (5)

Φα
β = daα

γ A
γ
β + ckγ f

α
kβ Θγ − fα

kβ Ξk − ckβ g
α
kj Ξj + ckβ Σα

k . (6)

Now the exterior differentials of Ξi and Σα
i become

dΞi = Ψi
k ∧ Ξk + Πi

γ ∧ Θγ, (7)

dΣα
i = Φα

γ ∧ Σγ
i − Ψk

i ∧ Σα
k + Λα

iβ ∧ Θβ + Ωα
ij ∧ Ξj, (8)

where

Ψi
k = dbij B

j
k − ciβ Σβ

k , (9)

Πi
γ = dciγ + ciβ Φβ

γ − ckγ Ψi
k − ckγ c

i
β Σβ

k , (10)

Λα
iβ = dfα

iβ + fα
iγ Φγ

β + gα
ij Πj

β − f
γ
iβ (Φα

γ − ckǫ f
α
kγ Θǫ + fα

kγ Ξk

+ckγ g
α
kj Ξj − ckγ Σα

k ) + fα
kβ (Ψk

i + ckγ Σγ
i ) + ckβ f

α
kγ Σγ

i , (11)

Ωα
ij = dgα

ij + gα
ik Ψk

j + gα
jk Ψk

i − fα
iβ Σβ

j − fα
jβ Σβ

i

−gγ
ij (Φα

γ − ckβ f
α
kγ Θβ + fα

kγΞ
k + ckγ g

α
ks Ξs − ckγ Σα

k ). (12)
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We note that the conditions (4) imply

Ωα
ij = Ωα

ji. (13)

Thus the specifications (3) and (4) of the group parameters of the coframe (2) give the

lifted coframe

Θα = aα
β (duβ − p

β
j dx

j), (14)

Ξi = ciβ Θβ + bij dx
j, (15)

Σα
i = fα

iβ Θβ + gα
ij Ξj + aα

β B
j
i dp

β
j (16)

on J1(E)×H, where H is the subgroup of the group G defined by the equalities (3) and

(4). The structure equations (7), (8) do not contain any torsion coefficients, while the

structure equations (5) contain only constant torsion coefficients.

The structure equations (5), (7), (8) remain unchanged if we make the following

change of the modified Maurer - Cartan forms Φα
β , Ψi

k, Πi
γ , Λα

iβ, Ωα
ij :

Φα
β 7→ Φα

β +Kα
γǫ Θǫ,

Ψi
k 7→ Ψi

k + Li
kj Ξj +M i

kγ Θγ,

Πi
γ 7→ Πi

γ +M i
kγ Ξk +N i

γǫ Θǫ,

Λα
iβ 7→ Λα

iβ + P α
iβγ Θγ +Qα

iβk Ξk +Kα
γβ Σγ

i −Mk
iβ Σα

k ,

Ωα
ij 7→ Ωα

ij +Qα
iβj Θβ +Rα

ijk Ξk − Lk
ij Σα

k ,

where Kα
γǫ, L

i
kj, M

i
kγ, N

i
γǫ, P

α
iβγ , Q

α
iβk, R

α
ijk are arbitrary functions on J1(E)×H satisfying

the following symmetry conditions:

Kα
γǫ = Kα

ǫγ, Li
kj = Li

jk, N i
γǫ = N i

ǫγ,

P α
iβγ = P α

iγβ , Qα
iβk = Qα

kβi, Rα
ijk = Rα

ikj = Rα
jik. (17)

Their number

r(1) = 1
2
q2 (q + 1) + 1

2
n2 (n+ 1) + n2 q + 1

2
n q (q + 1) + 1

2
n q2 (q + 1)

+1
2
n q2 (n+ 1) + 1

6
q n (n+ 1) (n+ 2)

is the degree of indeterminancy [20, Definition 11.2] of the lifted coframe Θα, Ξi, Σα
i .

Using the conditions (13), it is not hard to compute the reduced characters [20,

Definition 11.4] of this coframe: s′1 = s′2 = ... = s′q = q + n + n q, s′q+1 = n + n q,

s′q+2 = n + (n − 1) q, s′q+2 = n + (n − 2) q, ... , s′q+n−1 = n + 2 q, s′q+n = n + q,

s′q+n+1 = s′q+n+2 = ... = s′q+n+nq = 0. It is easy to verify that the Cartan test

r(1) = s′1 + 2 s′2 + 3 s′3 + ... + (q + n+ n q) s′q+n+nq

is satisfied, so by definition 11.7 of [20] the lifted coframe (14), (15), (16) is involutive,

and by theorem 11.16 of [20], since the last non-zero reduced character s′q+n is equal to

q + n, the transformations of the invariance pseudo-group of this coframe depend on



6

q + n functions of q + n variables, as it should be. It is easy to verify directly that the

transformation Υ : J1(E) ×H → J1(E) ×H satisfies the conditions

Υ∗ Θα = Θα, Υ∗ Ξi = Ξi, Υ∗ Σα
i = Σα

i (18)

if and only if it is projectable on J1(E) and its projection ∆ : J1(E) → J1(E),
∆ : (x, u, p) 7→ (x, u, p), is the prolongation of the transformation Γ : E → E,
Γ : (x, u) 7→ (x, u), such that the conditions (1) are satisfied. Thus the equalities

(18) really define the pseudo-group of contact transformations on J1(E), when q > 1

and n > 1.

Since the forms Θα, Ξi, Σα
i are preserved by the pseudo-group transformations, their

exterior differentials are preserved also, so Υ∗dΘα = dΘα, Υ∗dΞi = dΞi, Υ∗dΣα
i = dΣα

i ,

therefore we have

Υ∗(Φα
β ∧ Θβ + Ξk ∧ Σα

k ) = (Υ∗Φα
β) ∧ Θβ + Ξk ∧ Σα

k = Φα
β ∧ Θβ + Ξk ∧ Σα

k ,

Υ∗(Ψi
k ∧ Ξk + Πi

γ ∧ Θγ) = (Υ∗Ψi
k) ∧ Ξk + (Υ∗Πi

γ) ∧ Θγ = Ψi
k ∧ Ξk + Πi

γ ∧ Θγ,

Υ∗(Φα
γ ∧ Σγ

i − Ψk
i ∧ Σα

k + Λα
iβ ∧ Θβ + Ωα

ij ∧ Ξj)

= Υ∗(Φα
γ ) ∧ Σγ

i − (Υ∗Ψk
i ) ∧ Σα

k + (Υ∗Λα
iβ) ∧ Θβ + (Υ∗Ωα

ij) ∧ Ξj

= Φα
γ ∧ Σγ

i − Ψk
i ∧ Σα

k + Λα
iβ ∧ Θβ + Ωα

ij ∧ Ξj ,

and thus

Υ∗Φα
β = Φα

β +Kα
γǫ Θǫ,

Υ∗Ψi
k = Ψi

k + Li
kj Ξj +M i

kγ Θγ,

Υ∗Πi
γ = Πi

γ +M i
kγ Ξk +N i

γǫ Θǫ, (19)

Υ∗Λα
iβ = Λα

iβ + P α
iβγ Θγ +Qα

iβk Ξk +Kα
γβ Σγ

i −Mk
iβ Σα

k ,

Υ∗Ωα
ij = Ωα

ij +Qα
iβj Θβ +Rα

ijk Ξk − Lk
ij Σα

k

for some functions Kα
γǫ, L

i
kj , M

i
kγ , N

i
γǫ, P

α
iβγ, Q

α
iβk, R

α
ijk on J1(E) × H satisfying the

conditions (17).

3. Symmetries of differential equations

A suitable method for studying geometrical properties of embedded submanifolds under

an action of finite-dimensional Lie groups or infinite Lie pseudo-groups was developed

in [10, 11]. For its application to the problem of finding symmetries of a system of d.e.s

R1 we restrict the lifted coframe (14), (15), (16) on R1. That is, we consider the set of

1-forms θα = ι∗Θα, ξi = ι∗Ξi, σα
i = ι∗Σα

i , where ι : R1 → J1(E) is the embedding (for

brevity we identify the map ι × id : R1 × H → J1(E) × H with ι : R1 → J1(E)). The

1-forms θα, ξi, σα
i are linearly dependent, i.e., there exists a non-trivial set of functions

Uα, Vi, W
i
α on R1 ×H, such that Uα θ

α + Vi ξ
i +W i

α σ
α
i ≡ 0.
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Setting these functions equal to some constants allows one to express a part of

parameters aα
β , bij , c

i
β, fα

iβ , gα
ij of the group H as functions of coordinates of R1 and other

group parameters. Substituting the obtained values of parameters into the modified

Maurer - Cartan forms φα
β = ι∗Φα

β , ψi
k = ι∗Ψi

k, π
i
β = ι∗Πi

β , λα
iβ = ι∗Λα

iβ, ωα
ij = ι∗Ωα

ij

makes a part of these forms independent of all differentials of the group parameters.

Since the transformation Υ∗ changes the forms Φα
β , Ψi

k, Πi
β by the rules (19), in the

case when the obtained form φα
β does not depend on all differentials of the group

parameters, its coefficients at σγ
j and ξj are lifted invariants of the pseudo-group, and if

the obtained forms ψi
k or πi

β are independent of all differentials of the group parameters,

their coefficients at σγ
j are lifted invariants also. Normalizing these lifted invariants to be

constants allows us to express a part of the group parameters as functions of coordinates

on R1 and other group parameters. If not all group parameters are expressed, we

should substitute the expressed parameters into the forms φα
β , ψi

k, π
i
γ , which depend

on their differentials, and repeat the process. If the process is completed, but not all

group parameters are expressed as functions on R1, we should substitute the modified

Maurer - Cartan forms φα
β , ψi

k, π
i
γ , λ

α
iβ, ωα

ij , which were reduced during the process of

normalization, into the reduced structure equations

dθα = φα
β ∧ θβ + ξk ∧ σα

k ,

dξi = ψi
k ∧ ξk + πi

γ ∧ θγ,

dσα
i = φα

γ ∧ σγ
i − ψk

i ∧ σα
k + λα

iβ ∧ θβ + ωα
ij ∧ ξj.

If the essential torsion coefficients dependent on the group parameters appear, then we

should normalize them to constants and find some new part of the group parameters,

which, being substituted into the reduced modified Maurer - Cartan forms, allows us to

repeat the procedure of normalization. There are two possible results of this process.

The first one, when the reduced lifted coframe appears to be involutive, outputs the

desired set of invariant 1-forms which characterize the pseudo-group Sym(R1). In

the second one, when the coframe is not involutive, we should apply the procedure

of prolongation [20, Chapter 12].

3.1. Example 1: Burgers’ equation

For an application of the above method to finding invariant 1-forms of the symmetry

group of the Burgers’ equation

ut = uxx + u ux,

we take the equivalent system of the first order

ux = v, vx = ut − u v.
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Denoting x = x1, t = x2, v = u1, u = u2, vx = p1
1, vt = p1

2, ux = p2
1, ut = p2

2, we

consider this system as a subbundle of the bundle J1(E), E = R
2 × R

2 → R
2, with

local coordinates {x1, x2, u1, u2, p1
1, p

1
2, p

2
1, p

2
2}, where the embedding ι is defined by the

equalities

p1
1 = p2

2 − u1 u2, p2
1 = u1.

The forms θα = ι∗ Θα, α ∈ {1, 2}, ξi = ι∗ Ξi, i ∈ {1, 2}, are linearly independent,

whereas the forms σα
i = ι∗ Σα

i are linearly dependent. The group parameters aα
β , bij

must satisfy the conditions det
(

aα
β

)

6= 0, det
(

bij

)

6= 0. Moreover, without loss of

generality, we can consider that a1
1 6= 0, a2

2 6= 0, b11 6= 0, b22 6= 0. Computing the linear

dependence conditions of forms σα
i by means of MAPLE, we obtain sequentially the group

parameters a2
1, b

2
1, b

2
2, g

2
12, g

2
11, g

1
11, f

2
12, f

2
11, g

2
22, f

2
22, f

2
211 as the functions of other group

parameters and the local coordinates {x1, x2, u1, u2, p1
2, p

2
2} of R1. Particularly,

a2
1 = 0, b21 = 0, b22 =

b11a
2
2

a1
1

, g2
12 = −(−p2

2b
1
2 + u1u2b12 + p1

2b
1
1) a

1
1

(b11)
3

,

g2
11 = −a

2
2 (p2

2 − u1u2)

(b11)
2

, g1
11 =

(u1)2a1
1 − a1

2p
2
2 − a1

1p
1
2 − u1(u2)2a1

1 + p2
2a

1
1u

2 + u1u2a1
2

(b11)
2

,

f 2
12 =

(b11)
2a1

2 + p1
2(a

1
1)

2c22b
1
1 + u1u2(a1

1)
2b12c

2
2 − u1u2a2

2c
1
2b

1
1a

1
1 − p2

2(a
1
1)

2b12c
2
2 + p2

2a
2
2c

1
2b

1
1a

1
1

(b11)
3a1

1

,

f 2
11 = −u

1u2(c11a
2
2b

1
1a

1
1 − (a1

1)
2b12c

2
1) − p2

2c
1
1a

2
2b

1
1a

1
1 + p2

2(a
1
1)

2b12c
2
1 − p1

2(a
1
1)

2c21b
1
1 + a2

2(b
1
1)

2

(b11)
3a1

1

,

while the expressions for g2
22, f

2
22 and f 2

21 are too big to write them out in full here.

The linear dependence between the forms σα
i is σ1

1 = σ2
2, σ

2
1 = 0.

The analysis of the modified Maurer - Cartan forms φα
β , ψi

k, π
i
γ at the obtained

values of the group parameters gives the following normalizations:

φ2
1 ≡ c21 σ

2
2 +

a2
2

b11a
1
1

ξ1
(

mod θ1, θ2, ξ2, σ1
2

)

⇒ c21 = 0, b11 =
a2

2

a1
1

;

ψ2
2 − 2ψ1

1 = (2 c11 − c22) σ
1
2 ⇒ c22 = 2 c11;

ψ1
1 + φ1

1 − φ2
2 ≡ −2 c11σ

2
2

(

mod θ1, θ2, ξ1, ξ2, σ1
2

)

⇒ c11 = 0;

φ2
1 ≡ −

(

f 1
11 +

(a1
2a

2
2 − a1

1a
2
2u

2 + b12(a
1
1)

2

a2
2

)

ξ2
(

mod θ1, θ2, ξ1, σ1
2, σ

2
2

)

⇒ f 1
11 = −a

1
2a

2
2 − a1

1a
2
2u

2 + b12(a
1
1)

2

a2
2

.

Now the analysis of the structure equations gives step by step the following essential

torsion coefficients and the corresponding normalizations:

dθ1 = −c12 θ2 ∧ σ2
2 + ... ⇒ c12 = 0;
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dθ1 =
(

(a2
2)

3f 1
12 − (a1

2)
2a2

2 + a1
1a

1
2a

2
2u

2 − (a1
1)

2a1
2b

1
2

)

θ2 ∧ ξ1 +

(

f 1
22 +

a1
2

a2
2

f 1
21

)

θ2 ∧ ξ2 + ...

⇒ f 1
12 =

a1
2(a

1
2a

2
2 − a1

1a
1
2a

2
2u

2 + (a1
1)

2a1
2b

1
2)

(a2
2)

3
, f 1

22 = −a
1
2

a2
2

f 1
21;

dξ2 =
2 (2 a1

2a
2
2 − a1

1a
2
2u

2 + b12(a
1
1)

2)

(a2
2)

2
ξ1 ∧ ξ2 + ... ⇒ a1

2 =
a1

1 (a2
2u

2 − b12a
1
1)

2 a2
2

;

dξ1 =

(

f 2
21 +

(a1
1)

2 (4 (a2
2)

2u1 − 2 a2
2b

1
2a

1
1u

2 + (a2
2)

2(u2)2 + (b12)
2(a1

1)
2)

(a2
2)

4

)

ξ1 ∧ ξ2 + ...

⇒ f 2
21 = −(a1

1)
2 (4 (a2

2)
2u1 − 2 a2

2b
1
2a

1
1u

2 + (a2
2)

2(u2)2 + (b12)
2(a1

1)
2)

(a2
2)

4
;

dσ1
2 = −(a1

1)
2 (b12a

1
1 − a2

2u
2)

(a2
2)

4
θ1 ∧ θ2 + ... ⇒ b12 =

a2
2u

2

a1
1

;

dσ2
2 =

(a1
1)

3 (p2
2 − u1u2)

(a2
2)

3
θ2 ∧ ξ1 + ... ⇒ a2

2 =
a1

1

(p2
2 − u1u2)1/3

;

dθ2 =
1

3 a1
1 (p2

2 − u1u2)2/3
θ2 ∧ σ2

2 + ... ⇒ a1
1 =

1

(p2
2 − u1u2)2/3

;

dθ1 = −
(

2 g1
12

3
+

2 u1

(p2
2 − u1u2)2/3

)

θ1 ∧ ξ2 + ... ⇒ g1
12 = − 3 u1

(p2
2 − u1u2)2/3

;

dσ2
2 =

(

−g1
22 +

2 (−2 (p2
2)

2 + 7 u1u2p2
2 − 5 (u1u2)2 + 2 (u1)3 − 3 u1 p1

2)

(p2
2 − u1u2)2

)

ξ1 ∧ ξ2 + ...

⇒ g1
22 =

2 (−2 (p2
2)

2 + 7 u1u2p2
2 − 5 (u1u2)2 + 2 (u1)3 − 3 u1 p1

2)

(p2
2 − u1u2)2

.

Thus all the group parameters are expressed as the functions of the local coordinates

{x1, x2, u1, u2, p1
2, p

2
2} of the equation R1. The result of all normalizations is the invariant

coframe

θ1 =
du1 − (p2

2 − u1u2) dx1 − p1
2 dx

2

(p2
2 − u1u2)2/3

,

θ2 =
du2 − u1 dx1 − p2

2 dx
2

(p2
2 − u1u2)1/3

,

ξ1 = (p2
2 − u1u2)1/3 (dx1 + u2 dx2),

ξ2 = (p2
2 − u1u2)2/3 dx2,

σ1
2 =

dp1
2 − u2dp2

2 + ((u2)2 − 2 u1) du1 + u1u2 du2

(p2
2 − u1u2)4/3

+
u1(p2

2 − u1u2) dx1 + (4 (u1)3 − 7 (u1u2)2 + 11 u1u2p2
2 − 4 u1p1

2 − 4 (p2
2)

2) dx2

(p2
2 − u1u2)4/3

,

σ2
2 =

dp2
2 − u2du1 − u1du2 − (p1

2 + u1(u2)2 − (u1)2 − u2p2
2) dx

1

p2
2 − u1u2
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+
(4 (u1)2u2 + (u2)2p2

2 − u1(u2)3 − u2p− 3 u1p2
2) dx

2

p2
2 − u1u2

.

Its structure equations are

dθ1 = I θ1 ∧ ξ1 + 2
3
θ1 ∧ σ2

2 + ξ1 ∧ σ2
2 + ξ2 ∧ σ1

2 ,

dθ2 = −θ1 ∧ ξ1 + 1
2
I θ2 ∧ ξ1 + 1

3
θ2 ∧ σ2

2 + ξ2 ∧ σ2
2,

dξ1 = θ2 ∧ ξ2 − 1
3
ξ1 ∧ σ2

2,

dξ2 = I ξ1 ∧ ξ2 − 2
3
ξ2 ∧ σ2

2,

dσ1
2 = −θ1 ∧ ξ1 − 6 I θ1 ∧ ξ2 − 3

2
I θ2 ∧ ξ1 − θ2 ∧ σ2

2 − 15 I ξ1 ∧ ξ2

−2 I ξ1 ∧ σ1
2 + 7 ξ2 ∧ σ2

2 + 4
3
σ1

2 ∧ σ2
2,

dσ2
2 = −3 θ1 ∧ ξ2 + θ2 ∧ ξ1 − 3

2
I θ2 ∧ ξ2 + ξ1 ∧ σ1

2 − 3
2
I ξ1 ∧ σ2

2 ,

where the only invariant I is of form

I =
2 (p1

2 + u1(u2)2 − (u1)2 − u2p2
2)

3 (p2
2 − u1u2)4/3

.

Taking its exterior differential, we have

dI = −2
3
θ2 − 2 I2 ξ1 + 2 ξ2 + 2

3
σ1

2 − 4
3
I σ2

2 ,

so all differential invariants of the group are functionally expressed as functions of I,

the rank of the coframe [20, Proposition 8.18] is equal to 1, and its symmetry group

is 5-dimensional [20, Theorem 8.22] (as it should be; for the full details of finding

infinitesimal generators of this group by Lie’s method see, e.g., [30, Chapter 3, § 5].)

3.2. Example 2: One-dimensional equations of gas dynamics in Lagrange coordinates

One-dimensional dynamics of polytropic gas in Lagrange coordinates is described by the

system of d.e.s [26]

ρt + ρ2um = 0,

ut + pm = 0, (20)

pt + γ ρ p um = 0.

Denoting ρ = u1, u = u2, p = u3, t = x1, m = x2 and using the above method, we

obtain the invariant coframe of the symmetry group of the system (20)

θ1 =
1

u1

(

du1 + (u1)2p2
2 dx

1 − p1
2 dx

2
)

,

θ2 =

√

u1

γu3

(

du2 + p3
2 dx

1 − p2
2 dx

2
)

,

θ3 =
1

γu3

(

du3 + γ u1 u3 p2
2 dx

1 − p3
2 dx

2
)

,
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ξ1 =

√

u1

γu3
dx2, (21)

ξ2 = u1 p2
2 dx

1,

σ1
2 =

1

u1 p2
2

√

γu3

u1

(

dp1
2 −

p1
2

u1
du1 − (γ − 1) (u1)3(p2

2)
2u3 − (p1

2)
2(u3)2 − (p3

2)
2(u1)2

2 u1 (u3)2
dx2

)

,

σ2
2 =

1

u1 p2
2

(

dp2
2 +

γ − 1

2
(u1)2(p2

2)
2 dx1 + p1

2 p
2
2 dx

2
)

,

σ3
2 =

1

p2
2

√
γ u1 u3

(

dp3
2 + γ u1 p2

2 p
3
2 dx

1 − γ − 1

2
u1 (p2

2)
2 dx2

)

(since from considering the physical meaning we have u1 = ρ > 0 and u3 = p > 0,

therefore there is no need to worry about the signs of the expressions under the square

roots).

The structure equations of this coframe are

dθ1 = θ1 ∧ ξ2 + ξ1 ∧ σ1
2 − ξ2 ∧ σ2

2,

dθ2 = 1
2
θ1 ∧ θ2 + γ

2
θ2 ∧ θ3 + I1 θ

2 ∧ ξ1 + γ−1
2
θ2 ∧ ξ2 + ξ1 ∧ σ2

2 − ξ2 ∧ σ3
2,

dθ3 = θ1 ∧ ξ2 + I2 θ
3 ∧ ξ1 + ξ1 ∧ σ3

2 − ξ2 ∧ σ2
2 ,

dξ1 = 1
2
θ1 ∧ ξ1 − γ

2
θ3 ∧ ξ1 − ξ1 ∧ σ2

2 ,

dξ2 = θ1 ∧ ξ2 − ξ2 ∧ σ2
2,

dσ1
2 = 1

2
γ (γ − 1) θ1 ∧ ξ1 − 1

2
θ1 ∧ σ1

2 − 1
2

(

2 I2
2 − γ2 + γ

)

θ3 ∧ ξ1

+γ
2
θ3 ∧ σ1

2 + I1 ξ
1 ∧ σ1

2 + γ (γ − 1) ξ1 ∧ σ2
2 − γ I2 ξ

1 ∧ σ3
2 + σ1

2 ∧ σ2
2,

dσ2
2 = γ−1

2
θ1 ∧ ξ2 − ξ1 ∧ σ1

2 − γ−1
2
ξ2 ∧ σ2

2 ,

dσ3
2 = −γ−1

2
θ1 ∧ ξ1 + I2 θ

1 ∧ ξ2 − 1
2
θ1 ∧ σ3

2 − γ
2
θ3 ∧ σ3

2 + (γ − 1) ξ1 ∧ σ2
2

−I1 ξ1 ∧ σ3
2 − I2 ξ

2 ∧ σ2
2 − σ2

2 ∧ σ3
2.

The invariants I1 and I2 are defined by the equalities

I1 =

√

γ u1

u3

p3
2 u

1 − p1
2 u

3

2 (u1)2 p2
2

, I2 =

√

γ

u1 u3

p3
2

p2
2

.

Their exterior differentials are

dI1 = −I1
2
θ1 +

γ

2
(I1 − I2) θ

3 +
1

2
σ1

2 − I1 σ
2
2 +

γ

2
σ3

2,

dI2 = −I2
2
θ1 + γ

(

I1 −
I2

2

)

θ2 +

(

γ (γ − 1)

2
− I1I2

)

ξ1 − I2 σ
1
2 + γ σ3

2,

so all differential invariants of the symmetry group depend functionally on I1 and I2.

Thus the coframe (21) has the rank 2, and the symmetry group of the system (20) is

6-dimensional. In [2, Chapter 3] the explicit form of the infinitesimal generators of this

group is given.
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3.3. Example 3: Liouville’s equation

For finding invariant 1-forms and structure equations of the symmetry pseudo-group of

Liouville’s equation

utx = eu

we take the equivalent system of the first order

ut = v, vx = eu.

Using the notations u = u1, v = u2, t = x1, x = x2 and applying the above procedure

of absorption and normalization, we have σ1
1 = 0, σ2

2 = 0, while θ1, θ2, ξ1, ξ2, σ1
2 and σ2

1

constitute the lifted coframe

θ1 = du1 − u2dx1 − p1
2dx

2,

θ2 = a2
2

(

du2 − p2
1dx

1 − eu1

dx2
)

,

ξ1 = (a2
2)

−1dx1, (22)

ξ2 = a2
2e

u1

dx2,

σ1
2 = (a2

2)
−1e−u1

dp1
2 − (a2

2)
−1dx1 + a2

2g
1
22e

u1

dx2,

σ2
1 = (a2

2)
2
(

dp2
1 − u2dx1 + ((a2

2)
−1g2

11 + u2p2
1)dx

1
)

.

The exterior differentials of these forms are

dθ1 = −θ2 ∧ ξ1 + ξ1 ∧ σ1
2,

dθ2 = χ1 ∧ θ2 − θ1 ∧ ξ2 + ξ1 ∧ σ2
1,

dξ1 = −χ1 ∧ ξ1, (23)

dξ2 = χ1 ∧ ξ2 + θ1 ∧ ξ2,

dσ1
2 = χ2 ∧ ξ2 − χ1 ∧ σ1

2 − θ1 ∧ (σ1
2 + ξ1),

dσ2
1 = χ3 ∧ ξ1 + 2χ1 ∧ σ2

1,

where

χ1 = (a2
2)

−1da2
2 + a2

2u
2ξ1,

χ2 = dg1
22 + 2 g1

22(χ1 + θ1) + (a2
2)

−1e−u1

p1
2(ξ

1 − σ1
2) + w1ξ

2, (24)

χ3 = dg2
11 − 3 g2

11χ1 + (a2
2)

2(p2
1 + (u2)2) (θ2 + ξ2) + 3 a2

2u
2σ2

1 + w2ξ
1,

w1 and w2 are free parameters. The structure equations (23) do not contain any torsion

coefficient depending on the group parameters. The coframe (22) is not involutive,

because its degree of indeterminancy r(1) is 2, whereas the reduced characters are s′1 = 3,

s′2 = ... = s′6 = 0, so Cartan’s test is not satisfied. Therefore we should use the procedure

of prolongation [20, Chapter 12]. For this purpose we unite both coframes (22) and (24)
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into the new base coframe, whereas w1 and w2 turn into the new group parameters.

Finding exterior differentials of χ1, χ2 and χ3, we have

dχ1 = θ2 ∧ ξ1 − ξ1 ∧ ξ2,

dχ2 = ν1 ∧ ξ2 − 2 θ1 ∧ χ1 − 2χ1 ∧ χ2, (25)

dχ3 = ν2 ∧ ξ1 + 2 (θ2 + ξ2) ∧ σ2
1 + 3χ1 ∧ χ2,

where

ν1 = dw1 + 3w1(θ
1 + χ1) +

(

(a2
2)

−1e−2u1

(p1
2)

2 − g1
22

)

(ξ1 + σ1
2) − (a2

2)
−1e−u1

p1
2χ2,

ν2 = dw2 + 4w2χ2 + 2
(

(a2
2)

3(u2)3 − g2
11

)

(θ2 + ξ2) + 2 (a2
2)

2
(

(u2)2 − 2 p2
1

)

σ2
1

+3 a2
2u

2χ3.

The structure equations (25) admit the change

ν1 7→ ν1 + z1ξ
2, ν2 7→ ν2 + z2ξ

1

for the free parameters z1 and z2. So the degree of indeterminancy of the coframe (22),

(24) is r(1) = 2 again, while the reduced characters now are s′1 = 2, s′2 = ... = s′9 = 0.

Cartan’s test is therefore satisfied, and the coframe (22), (24) is involutive. Since the

last non-zero reduced character is s′1 = 2, the symmetry pseudo-group transformations

depend on two arbitrary functions of one variable. This agrees with the result found by

Liouville [15]. In [16, 17] the structure equations of this pseudo-group are derived using

a different method; see also [25].

4. Conclusion

The approach to computation of symmetry groups used here does not require obtaining

infinitesimal defining systems, analysis of their involutivity and integration, and includes

only differentiation and linear algebra operations. So it is algorithmic in principle,

although the labyrinth of corresponding computations is very intricate. In the future

it seems that it will be possible to reduce the complexity of computations by means of

using the canonical contact forms [21] on bundles of higher order jets.
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