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Abstract
We completely solve the local point equivalence problem for the Euler–
Bernoulli beam equation using Cartan’s method of equivalence. We obtain five
equivalence classes. For each equivalence class, we establish the necessary and
sufficient conditions for similarity, and derive a basis of differential invariants
as well as operators of invariant differentiation.

PACS numbers: 02.20.Qs, 02.20.Tw, 02.30.Jr

1. Introduction

Modern architectural prowess owes a lot to the development of vibration theories. Indeed
vibration is the single most frequent cause of failure in architectural structures such as bridges
and buildings. Therefore the understanding of the response of these structures to unwanted
vibrations is of paramount importance in their design and durability. Scientists such as
Leonardo Da Vinci and Galileo already anticipated the need of sound vibration theories. Da
Vinci’s drawings and multiple attempts to rationalize them are vivid testimonies to his quest
for such theories. Although very advanced in his time, Da Vinci lacked mathematical tools
and physical laws such as calculus and Newton’s laws which postdate him. We owe to Jacob
Bernoulli (1654–1705) the first consistent theory of elastic beams that uses the language of
calculus and a specific constitutive law. Daniel Bernoulli (1700–1782), relying on the seminal
work of his uncle Jacob, derived the differential equation governing the motion of vibrating
beams. Leonard Euler (1707–1783) validated the Bernoullis theory by studying the shape
of loaded thin elastic beams. It is worth noting that in the Euler–Bernoulli beam theory,
rotary inertia and shear distortion are neglected. A theory including all these effects is due to
Timoshenko [1]. For a recent review of the development of models for transversely vibrating
thin elastic beams, we refer the reader to Han et al [2], and Park and Gao [3].
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Our focus in this paper is on the equivalence problem for the unloaded one-dimensional
Euler–Bernoulli equation

∂2

∂x2

(
f (x)

∂2u

∂x2

)
+ m(x)

∂2u

∂t2
= 0, t > 0, 0 < x < L, (1)

where f (x) > 0 is the flexural rigidity, m(x) > 0 is the lineal mass density and u(t, x) is the
transversal displacement at time t and position x from one end of the beam taken as origin.
Equation (1) is customarily solved subject to initial and boundary conditions such as clamped
ends, hinged ends and free ends boundary conditions.

Solving the equivalence problem for (1) amounts to finding necessary and sufficient
conditions under which equation of the form (1) is mapped by an invertible transformation to a
given equation of the same class. The equivalence problem is considered solved if we exhaust
all the equivalence classes. There are typically two proven approaches to the equivalence
problem for differential equations: Lie’s infinitesimal method and Cartan’s equivalence
method. The two methods are loosely dual of each other: Lie’s method uses vector fields
whereas Cartan’s method employs differential forms. However a major difference between
the two methods is that Lie’s infinitesimal method requires integration in the solution process
whereas Cartan’s method necessitates only differentiation. There are other subtle similarities
and differences between the two methods. In order to appreciate these subtleties, the reader is
referred to the books [4–6]. Arguably, Lie’s method has received its fair share of popularization
since the early 1980s. The same cannot be said about Cartan’s method. A possible reason can
be found in Weyl’s review [7] of Cartan’s book [8]: ‘Nevertheless, I must admit that I found the
book like most Cartan’s papers, hard reading’. Therefore, it comes as no surprise that Cartan’s
students such as Ehresmann [9, 10] and Chern [11] dedicated a great deal of their work to
the justification and explanation of Cartan’s computations. In the process they introduced two
fundamental concepts that lie at the heart of modern exposés of Cartan’s method: jet spaces
and G-structures. Undoubtedly, the books by Gardner [4], and Olver[6] made the case for
Cartan’s method even stronger by presenting the method in modern language supported by
rigorous justifications of all calculations and constructions.

Our main goal in this paper is to implement Cartan’s equivalence method on (1). Previous
works on the equivalence problem for the Euler–Bernoulli equation include the paper by
Gottlieb [12] where the author was concerned by beams equivalent to the uniform beam (i.e.
m and f constant), the paper by Wafo Soh [13] dealing with Lie’s approach to the equivalence
problem for (1).

We have divided our exposé into four sections including this introduction. In section 2, we
establish that the contact symmetry Lie algebra of (1) coincides with its point symmetry Lie
algebra. Thus the contact equivalence problem for (1) is equivalent to the point equivalence
problem. In section 3 that deals with the point equivalence problem for (1), the result of
section 2 comes in handy since setting up the point equivalence problem in Cartan’s method
is generally more involved than the contact equivalence problem. In the final section, we sum
up our findings.

2. Contact symmetries of the Euler–Bernoulli beam equation

In this section, we compute the infinitesimal contact symmetries of the Euler–Bernoulli beam
equation. The main result is that the contact symmetry Lie algebra of the Euler–Bernoulli
beam equation coincides with its point symmetry Lie algebra. Owing to this result, the
contact equivalence problem for the Euler–Bernoulli beam equation is identical to the point
equivalence problem.

2



J. Phys. A: Math. Theor. 41 (2008) 135206 O I Morozov and C W Soh

We assume throughout this section that the reader is familiar with the theory of contact
transformations and contact symmetries. For an authoritative introduction to these theories,
the reader is referred to [14–16].

In order to simplify calculations we rewrite the Euler–Bernoulli equation as a system of
first-order partial differential equations (PDEs).⎧⎨
⎩

u1
x = u2, u2

x = u3, u3
x = u4, u1

t = u5, u2
t = u5

x

u4
x = −2

f ′(x)

f (x)
u4 − f ′′(x)

f (x)
u3 − (g′(x))4u5

t ,
(2)

where the subscripts stand for partial differentiation, u1 = u, and m(x) = f (x)(g′(x))4 for
later convenience. If X is a contact symmetry of the Euler–Bernoulli equation, its fourth
prolongation X[4] rewritten in the variables t, x, u1 to u5 becomes a point symmetry of (2).
However, a point symmetry of (2) when projected on the space with coordinates (t, x, u1 = u),
is a contact symmetry of the Euler–Bernoulli equation if and only if the symmetry coefficients
depend on t, x, u1 = u, u2 = ux and u5 = ut . This remark gives us a way to obtain the
contact symmetries of the Euler–Bernoulli equation from the point symmetries of (2).

Now, a vector

X = ξ 1(t, x, uj )
∂

∂t
+ ξ 2(t, x, uj )

∂

∂x
+ ηi(t, x, uj )

∂

∂ui
(3)

is a point symmetry of (2) if⎧⎪⎪⎪⎨
⎪⎪⎪⎩

X[1]
(
u1

x − u2
) = 0, X[1]

(
u2

x − u3
) = 0, X[1]

(
u3

x − u4
) = 0,

X[1]
(
u1

t − u5
) = 0, X[1]

(
u2

t − u5
x

) = 0

X[1]

(
u4

x + 2
f ′(x)

f (x)
u4 +

f ′′(x)

f (x)
u3 + (g′(x))4u5

t

)
= 0,

(4)

whenever (2) is satisfied. In (4), X[1] is the first prolongation of X defined by

X[1] = X + ηi
,t

∂

∂ui
t

+ ηi
,x

∂

∂ui
x

, (5)

ηi
,t = Dt(η

i) − ui
tDt (ξ

1) − ui
xDt(ξ

2), (6)

ηi
,x = Dx(η

i) − ui
tDx(ξ

1) − ui
xDx(ξ

2), (7)

Dt = ∂

∂t
+ ui

t

∂

∂ui
, Dx = ∂

∂x
+ ui

x

∂

∂ui
· (8)

Expanding the system (4) yields an over-determined system of linear PDEs. After lengthy
albeit simple calculations and simplifications, we obtain

ξ 1 = 2c1t + c3, ξ 2 = c1
g(x)

g′(x)
+

c2

g(x)
, η1 = a(x)u1 + b(t, x) (9)

η2 = Dx(η
1) − u2Dx(ξ

2), η3 = D2
x(η

1) − u2D2
x(ξ

2) − 2u3Dx(ξ
2), (10)

η4 = D3
x(η

1) − u2D3
x(ξ

2) − 3u3D2
x(ξ

2) − 3u4Dx(ξ
2), (11)

η5 = Dt(η
1) − u5Dt(ξ

1), (12)

where the functions a(x), b(t, x), f (x) and g(x) are constrained by the following equations:

∂4
x b + 2

f ′

f
∂3
x +

f ′′

f
∂2
x b + g′4∂2

t b = 0, (13)
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a(4) + 2
f ′

f
a(3) +

f ′′

f
a′′ = 0, (14)

2a′ + c1

(
f ′

f
+

gf ′′

g′f
− gf ′2

g′f 2
− gg′′f ′

g′2f
+ 3

g′′

g
− 6

gg′′2

g′3 + 3
gg(3)

g′2

)

+ c2

(
f ′′

fg′ − f ′2

f 2g′ − f ′g′′

fg′2 + 6
g′′2

g′3 + 3
g(3)

g′2

)
= 0, (15)

6
f ′

f
a′′ + 2

f ′′

f
a′ + 4a(3) + c1

(
f ′′g′′

fg′ − 6
f ′g′′2

fg′2 + 2
f ′′gg′′2

fg′3 + 12
f ′gg′′3

fg′4 + 12
g′′3

g′3

− 24
gg′′4

g′5 + 4
f ′g(3)

fg′ +
f ′′gg(3)

fg′2 − 12
f ′gg(3)

fg′3 + 14
g′′g(3)

g′2 + 36
gg′′2g(3)

g′4

+ 6
g(g(3))2

g′3 + 2
f ′gg(4)

fg′2 + 3
g(4)

g′ − 8
gg′′g(4)

g′3 +
gg(5)

g′2

)

+ c2

(
12

f ′g′′3

fg′4 − 2
f ′′g′′2

fg′3 + 24
g′′4

g′5 +
f ′′g(3)

fg′2 − 12
f ′g′′g(3)

fg′3

+ 36
g′′2g(3)

g′4 − 6
(g(3))2

g′3 +2
f ′g(4)

g′3 + 8
g′′g(4)

g′3 +
g(5)

g′2

)
= 0, (16)

6a′′ + 6
f ′

f
a′ + c1

(
2
f ′′

f
− f ′f ′′g

f 2g′2 + 6
f ′g′′

fg′ − 2
f ′′gg′′

fg′2 + 12
f ′gg′′2

fg′3 − 12
g′′2

g′2

+ 24
gg′′3

g′4 +
f (3)g

fg′ + 6
f ′gg(3)

fg′2 + 8
g(3)

g′ − 24
gg′′g(3)

g′3 + 4
gg(4)

g′2

)
(17)

+ c2

(
− ff ′′

f 2g′ − 2
f ′′g′′

fg′2 − 12
f ′g′′2

fg′3 + 24
g′′3

g′4

+
f (3)

fg′ + 6
f ′g(3)

fg′2 + 24
g′′g(3)

g′3 + 4
g(4)

g′2

)
= 0. (18)

The projection of the symmetry vector X on the space with coordinates (t, x, u1 = u)

yields

X̃ = (2c1t + c3)
∂

∂t
+

(
c1

g(x)

g′(x)
+

c2

g(x)

)
∂

∂x
+ (a(x)u1 + b(t, x))

∂

∂u
· (19)

The coefficients of X̃ are independent of ut and ux . Thus any contact symmetry of the
Euler–Bernoulli equation is a point symmetry. The converse is trivial.

3. Point equivalence problem for the Euler–Bernoulli beams equations

In this section we consider the local equivalence problem for (1) under the action of the pseudo-
group of point transformations. Two equations are said to be equivalent if there exists a point
transformation which maps the equations to each other. We apply Élie Cartan’s structure
theory of Lie pseudo-groups (see [17, 22]), to obtain necessary and sufficient conditions under
which equivalence mappings can be found. This theory describes a Lie pseudo-group in
terms of a set of invariant differential 1-forms called Maurer–Cartan forms. Expressions of
exterior differentials of Maurer–Cartan forms in terms of the forms themselves yield Cartan
structure equations for the pseudo-group. The Maurer–Cartan forms contain all information
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about the pseudo-group, in particular, they give basic invariants and operators of invariant
differentiation and allow one to solve equivalence problems for submanifolds under the action
of the pseudo-group.

For convenience of computations we let h(x) = g′(x) in (2). From the calculations of
section 2, we infer that two equations from the class (1) are equivalent with respect to point
transformations whenever their corresponding systems (2) are equivalent with respect to the
pseudo-group Cont(J 1(π)) of point transformations on the bundle J 1(π) of the first-order jets
for the bundle π : R

2 × R
5 → R

2, π : (t, x, u1, ...u5) �→ (t, x).
As is shown in [23], the following differential 1-forms,

�α = aα
β (duβ − u

β

xj dxj ),

�i = bi
j dxj + ci

β�β,

	α
i = aα

βB
j

i du
β

xj + qα
iβ�β + rα

ij�
j ,

are Maurer–Cartan forms of Cont(J 1(π)). They are defined on J 1(π) × H, where

H = {(
aα

β , bi
j , c

i
β, qα

iβ, rα
ij

)|α, β ∈ {1, . . . , 5}, i, j ∈ {1, 2}, det
(
aα

β

) · det
(
bi

j

) �= 0, rα
ij = rα

ji

}
,(

Bi
j

)
is the inverse matrix for

(
bi

j

)
, and we have renamed the independent variables as

t = x1, x = x2. They satisfy the structure equations

d�α = 
α
β ∧ �β + �k ∧ 	α

k ,

d�i = �i
k ∧ �k + �i

γ ∧ �γ ,

d	α
i = 
α

γ ∧ 	
γ

i − �k
i ∧ 	α

k + �α
iβ ∧ �β + �α

ij ∧ �j,

where the forms 
α
β,�i

j ,�
i
β,�α

iβ and �α
ij depend on differentials of the coordinates of H.

System (2) defines a submanifold R ⊂ J 1(π). The Maurer–Cartan forms for its symmetry
pseudo-group Cont(R) can be found from restrictions θα = ι∗�α, ξ i = ι∗�i and σα

i = ι∗	α
i ,

where ι = ι0 × id : R × H → J 1(π) × H with ι0 : R → J 1(π) defined by (2). In order to
compute the Maurer–Cartan forms for the symmetry pseudo-group, we implement Cartan’s
equivalence method. Firstly, the forms θα, ξ i, σ α

i are linearly dependent, i.e. there exists a non-
trivial set of functions Uα, Vi,W

i
α on R×H such that Uαθα + Viξ

i + Wi
ασα

i ≡ 0. Setting these
functions equal to some appropriate constants allows one to express a part of the coordinates
of H as functions of the other coordinates of R × H. Secondly, we substitute the obtained
values into the forms φα

β = ι∗
α
β and ψi

k = ι∗�i
k and find their linear combinations which

are semi-basic with respect to the projection R × H → R. The coefficients of semi-basic
forms φα

β at σ
γ

j , ξ j , and the coefficients of semi-basic forms ψi
j at σ

γ

j are lifted invariants of
Cont(R). We set them equal to appropriate constants and get expressions for the next part of
the coordinates of H as functions of the other coordinates of R × H. Thirdly, we analyze the
reduced structure equations

dθα = φα
β ∧ θβ + ξk ∧ σα

k ,

dξ i = ψi
k ∧ ξk + πi

γ ∧ θγ ,

dσα
i = φα

γ ∧ σ
γ

i − ψk
i ∧ σα

k + λα
iβ ∧ θβ + ωα

ij ∧ ξ j .

If their coefficients contain coordinates of H, we normalize them and repeat the process.
Applying, if necessary, the procedure of prolongation, [6, chapter 12], we finally obtain
Maurer–Cartan forms of Cont(R) together with its structure equations, differential invariants
and invariant differentiations. The differential invariants parametrize classifying manifolds
associated with system R. Cartan’s solution to the equivalence problem states that two systems
are (locally) equivalent if and only if their classifying manifolds (locally) overlap.

5
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For system (2) the first step yields linear dependences

σ 1
1 = 0, σ 1

2 = 0, σ 2
2 = 0, σ 3

2 = 0, σ 2
1 = σ 5

2 , σ 4
2 = σ 5

1

after the following normalizations of the matrices
(
aα

β

)
and

(
bi

j

)
,

(
aα

β

) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1
1 0 0 0 0

a2
1 a2

2 0 0 0

a3
1 a3

2 a3
3 0 0

a4
1 a4

2 a4
3

(a5
5 )2

a2
2h4 0

a5
1 a5

2 0 0 a5
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
(
bi

j

) = b1
1 ·

(
1 0

a4
5

a5
5

+ a5
2

a2
2

a5
5

a2
2

)

and normalizations of the parameters r1
ij with i, j ∈ {1, 2}, rα

i2 with α ∈ {2, . . . , 5}, i ∈
{1, 2}, qα

2β with α ∈ {1, . . . , 3}, β ∈ {1, . . . , 5}, r5
iβ with i ∈ {1, 2}, β ∈ {1, . . . , 5}, which are

too long to be written explicitly.
After the normalizations of the second step, the only free coordinates on H are a1

1, a
2
2 and

rα
11 with α ∈ {2, . . . , 5}, while all the other coordinates are expressed in terms of these ones,

the functions f (x) and h(x), and their derivatives (we have omitted the explicit expressions
since they are too long).

At the third step, we obtain the reduced structure equations

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = η2 ∧ θ2 + ξ 1 ∧ σ 5
2 + ξ 2 ∧ θ3,

dθ3 = (2η2 − η1) ∧ θ3 + ξ 1 ∧ σ 3
1 + ξ 2 ∧ θ4 + 1

8

(
a2

2

)2(
a1

1

)−2
K1ξ

2 ∧ θ2,

dθ4 = (3η2 − 2η1) ∧ θ4 + ξ 1 ∧ σ 4
1 − ξ 2 ∧ σ 5

1 + 3
8

(
a2

2

)3(
a1

1

)−3
h−1(hK ′

1 − 2K1h
′)ξ 2 ∧ θ2

+ 3
8

(
a2

2

)2(
a1

1

)−2
K1ξ

2 ∧ θ3, (20)

where

K1 = 10
h′′

h
− 15

(
h′

h

)2

+ 4
f ′′

f
− 3

(
f ′

f

)2

,

and the differential forms η1, η2 depend on da1
1 and da2

2 . To proceed with normalizations,
we have to impose some restrictions on the functions f (x) and h(x). As a result of these
restrictions, the following cases arise.

Case 1. When K1 �≡ 0,K1h
−2 �≡ const, we set the ratio of the coefficients at ξ 2 ∧ θ2 and

ξ 2 ∧ θ3 in (20) to 1 and obtain

a1
1 = a2

2 ·
(

K ′
1

K1
− 2

h′

h

)
.

Case 2. If K1h
−2 ≡ κ , where κ is a non-zero constant, then we equate the coefficient of

ξ 2 ∧ θ3 in (20) to 3κ/8. This yields

a1
1 = ha2

2 .

If K1 ≡ 0, then we have the following structure equations:

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = η2 ∧ θ2 + ξ 1 ∧ σ 5
2 + ξ 2 ∧ θ3,

dθ3 = (2η2 − η1) ∧ θ3 + ξ 1 ∧ σ 3
1 + ξ 2 ∧ θ4,

6
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dθ4 = (3η2 − 2η1) ∧ θ4 + ξ 1 ∧ σ 4
1 − ξ 2 ∧ σ 5

1 ,

dθ5 = −(η1 + 2η2) ∧ θ5 − 1
100

(
a2

2

)4(
a1

1

)−4
K2ξ

1 ∧ θ1 + ξ 2 ∧ σ 5
2 + ξ 1 ∧ σ 5

1 ,

dξ 1 = 2(η1 − η2) ∧ ξ 1,

dξ 2 = (η1 − η2) ∧ ξ 2,

dσ 3
1 = (4η2 − 3η1) ∧ σ 3

1 + η3 ∧ ξ 1 + ξ 2 ∧ σ 4
1 ,

dσ 4
1 = (5η2 − 4η1) ∧ σ 4

1 + η6 ∧ ξ 1 − η5 ∧ ξ 2,

dσ 5
1 = (4η2 − 3η1) ∧ σ 5

1 + η5 ∧ ξ 1 + η4 ∧ ξ 2

+ 1
100

(
a2

2

)5
h−1

(
a1

1

)−5 (
hK ′

2 − 4K2h
′) ξ 2 ∧ θ1

+ 1
100

(
a2

2

)4(
a1

1

)−4
K2ξ

2 ∧ θ2,

dσ 5
2 = (3η2 − 2η1) ∧ σ 5

2 + η4 ∧ ξ 1 − σ 3
1 ∧ ξ 2 (21)

where

K2 = 10
f (4)

f
− 10

f ′f ′′′

f 2
− 11

(
f ′′

f

)2

+ 24
(f ′)2f ′′

f 3
− 9

(
f ′

f

)4

.

Then new cases arise.

Case 3. When K1 ≡ 0,K2 �≡ 0 and K2h
−4 �≡ const, we let the ratio of the coefficients at

ξ 2 ∧ θ1 and ξ 2 ∧ θ2 in (21) equal to 1 and obtain

a1
1 = a2

2 ·
(

K ′
2

K2
− 4

h′

h

)
.

Case 4. When K1 ≡ 0 and K2h
−4 ≡ κ , where κ is a non-zero constant, we assign the

coefficient at ξ 2 ∧ θ2 in (21) to κ/100. Then we have

a1
1 = ha2

2 .

Finally, we have

Case 5. K1 ≡ 0 and K2 ≡ 0.
In case 1, after a prolongation, we have the following structure equations:

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = (
η1 − 1

2

(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ θ2 + ξ 1 ∧ σ 5
2 + ξ 2 ∧ θ3,

dθ3 = (
η1 − (

1 + 2D(L1)L
−1
1

)
ξ 2

)
θ3 + ξ 1 ∧ σ 3

1 + ξ 2 ∧ (
θ4 + 1

8L−2
1 θ2

)
,

dθ4 = (
η1 − 3

2

(
1 + 2D(L1)L

−1
1

)
ξ 2

)
θ4 + ξ 1 ∧ σ 4

1 − ξ 2 ∧ (
σ 5

1 − 3
8L−2

1 (θ2 + θ3)
)
,

dθ5 = (
η1 − (

1 + 2D(L1)L
−1
1

)
ξ 2) ∧ θ5 + ξ 1 ∧ σ 5

1 + ξ 2 ∧ σ 5
2

+ 1
400

(
60L1D(L1) + 90L2

1 − 4L2 − 9
)
L−4

1 ξ 1 ∧ θ1,

dξ 1 = − (
1 + 2D(L1)L

−1
1

)
ξ 1 ∧ ξ 2,

dξ 2 = 0,

dσ 3
1 = (

η1 − 2
(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ σ 3
1 + η2 ∧ ξ 1 + ξ 2 ∧ (

σ 4
1 + 1

8L−2
1 σ 5

2

)
,

dσ 4
1 = (

η1 − 5
2

(
1 + 2D(L1)L

−1
1

)
ξ 2) ∧ σ 4

1 + η5 ∧ ξ 1 + ξ 2 ∧ (
η4 + 3

8L−2
1 (σ 3

1 + σ 5
2 )

)
,

dσ 5
1 = (

η1 − 2
(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ σ 5
1 + η4 ∧ ξ 1 + η3 ∧ ξ 2 + 1

200 (2D(L2) + 4L2

− 30L1D
2(L1) − 30(D(L1))

2 − 150L1D(L1) − 90L2
1 + 9

)
L−4

1 θ1 ∧ ξ 2

+ e 1
400

(
60L1D(L1) + 90L2

1 − 4L2 − 9
)
L−4

1 θ2 ∧ ξ 2,

7
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dσ 5
2 = (

η1 − 3
2

(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ σ 5
2 + η3 ∧ ξ 1 − σ 3

1 ∧ ξ 2,

dη1 = 0,

dη2 = (
η1 − 3

(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ η2 + π1 ∧ ξ 1 − (
η5 + 1

8L−2
1 η3

) ∧ ξ 2,

dη3 = (
η1 − 5

2

(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ η3 + π2 ∧ ξ 1 − η2 ∧ ξ 2,

dη4 = (
η1 − 3

(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ η4 + π3 ∧ ξ 1 + π2 ∧ ξ 2 − 1
200 (2D(L2) + 4L2

− 30L1D
2(L1) − 30(D(L1))

2 − 150L1D(L1) − 90L2
1 + 9

)
L−4

1 θ5 ∧ ξ 2

+ 1
400

(
60L1D(L1) + 90L2

1 − 4L2 − 9
)
L−4

1 ξ 2 ∧ σ 5
2 ,

dη5 = (
η1 − 7

2

(
1 + 2D(L1)L

−1
1

)
ξ 2

) ∧ η5 + π4 ∧ ξ 1 − (
π3 + 3

8L−2
1 (η2 + η3)

) ∧ ξ 2,

where we denote

L1 = K ′
1

|K1|3/2
− 2

h′

h|K1|1/2
, L2 = K2

K2
1

, (22)

and the invariant differentiation

D = 1

L1|K1|1/2

∂

∂x
(23)

is defined by the identity dR = Rxdx = D(R)ξ 2 for an arbitrary function R = R(x).
The structure equations in case 2 read

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = η1 ∧ θ2 + ξ 1 ∧ σ 5
2 + ξ 2 ∧ θ3,

dθ3 = η1 ∧ θ3 + ξ 1 ∧ σ 3
1 + ξ 2 ∧ (

θ4 + 1
8κθ2

)
,

dθ4 = η1 ∧ θ4 + ξ 1 ∧ σ 4
1 − ξ 2 ∧ (

σ 5
1 − 3

8κθ3
)
,

dθ5 = η1 ∧ θ5 + ξ 1 ∧ (
σ 5

1 − 1
400 (4M + 9κ2)θ1) + ξ 2 ∧ σ 5

2 ,

dξ 1 = 0,

dξ 2 = 0,

dσ 3
1 = η1 ∧ σ 3

1 + η2 ∧ ξ 1 + ξ 2 ∧ (
σ 4

1 + 1
8κσ 5

2

)
,

dσ 4
1 = η1 ∧ σ 4

1 + η5 ∧ ξ 1 + ξ 2 ∧ (
η4 + 3

8κσ 3
1

)
,

dσ 5
1 = η1 ∧ σ 5

1 + η4 ∧ ξ 1 − ξ 2 ∧ (
η3 − 1

100 D(M)θ1 − 1
400 (4M + 9κ2)θ2

)
,

dσ 5
2 = η1 ∧ σ 5

2 + η3 ∧ ξ 1 − σ 3
1 ∧ ξ 2,

dη1 = 0,

dη2 = η1 ∧ η2 + π1 ∧ ξ 1 − (
η5 + 1

8κη3
) ∧ ξ 2,

dη3 = η1 ∧ η3 + π2 ∧ ξ 1 − η2 ∧ ξ 2,

dη4 = η1 ∧ η4 + π3 ∧ ξ 1 +
(
π2 + 1

100 D(M)θ5 + 1
400

(
4M + 9κ2

)
σ 5

2

) ∧ ξ 2,

dη5 = η1 ∧ η5 + π4 ∧ ξ 1 − (
π3 + 3

8κη2
) ∧ ξ 2,

where we denote

M = K2h
−4, (24)

while now

D = h−1 ∂

∂x
. (25)

8
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In case 3 we get the following structure equations:

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = (
η1 − 1

4 (1 + 4D(N)N−1)ξ 2
) ∧ θ2 + ξ 1 ∧ σ 5

2 + ξ 2 ∧ θ3,

dθ3 = (
η1 − 1

2 (1 + 4D(N)N−1)ξ 2
) ∧ θ3 + ξ 1 ∧ σ 3

1 + ξ 2 ∧ θ4,

dθ4 = (
η1 − 3

4 (1 + 4D(N)N−1)ξ 2
) ∧ θ4 + ξ 1 ∧ σ 4

1 − ξ 2 ∧ σ 5
1 ,

dθ5 = (
η1 − 1

2 (1 + 4D(N)N−1)ξ 2
) ∧ θ5 + ξ 1 ∧ (

σ 5
1 − 1

100N−4θ1
)

+ ξ 2 ∧ σ 5
2 ,

dξ 1 = − 1
2 (1 + 4D(N)N−1)ξ 1 ∧ ξ 2,

dξ 2 = 0,

dσ 3
1 = (η1 − (1 + 4D(N)N−1)ξ 2) ∧ σ 3

1 + η2 ∧ ξ 1 + ξ 2 ∧ σ 4
1 ,

dσ 4
1 = (

η1 − 5
4 (1 + 4D(N)N) ξ 2

) ∧ σ 4
1 + η5 ∧ ξ 1 − η4 ∧ ξ 2,

dσ 5
1 = (η1 − (1 + 4D(N)N−1)ξ 2) ∧ σ 5

1 + η4 ∧ ξ 1 +
(
η3 − 1

100N−4(θ1 + θ2)
) ∧ ξ 2,

dσ 5
2 = (

η1 + 3
4 (1 + 4D(N)N) ξ 2

) ∧ σ 5
2 + η3 ∧ ξ 1 − σ 3

1 ∧ ξ 2,

dη1 = 0,

dη2 = (
η1 − 3

2 (1 + 4D(N)N−1)ξ 2
) ∧ η2 + π1 ∧ ξ 1 − η5 ∧ ξ 2,

dη3 = (
η1 − 5

4 (1 + 4D(N)N−1)ξ 2
) ∧ η3 + π2 ∧ ξ 1 − η2 ∧ ξ 2,

dη4 = (
η1 − 3

2 (1 + 4D(N)N−1)ξ 2
) ∧ η4 + π3 ∧ ξ 1 +

(
π2 + 1

100N−4
(
θ5 + σ 5

2

)) ∧ ξ 2,

dη5 = (
η1 − 7

4 (1 + 4D(N)N−1)ξ 2
) ∧ η5 + π4 ∧ ξ 1 − π3 ∧ ξ 2,

with

N = K ′
2

|K2|5/4
− 4

h′

h|K2|1/4
(26)

and

D = 1

N |K2|1/4

∂

∂x
. (27)

In case 4 the structure equations are

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = η1 ∧ θ2 + ξ 1 ∧ σ 5
2 + ξ 2 ∧ θ3,

dθ3 = η1 ∧ θ3 + ξ 1 ∧ σ 3
1 + ξ 2 ∧ θ4,

dθ4 = η1 ∧ θ4 + ξ 1 ∧ σ 4
1 − ξ 2 ∧ σ 5

1 ,

dθ5 = η1 ∧ θ5 + ξ 1 ∧ (
σ 5

1 − κθ1
)

+ ξ 2 ∧ σ 5
2 ,

dξ 1 = 0,

dξ 2 = 0,

dσ 3
1 = η1 ∧ σ 3

1 + η2 ∧ ξ 1 + ξ 2 ∧ σ 4
1 ,

dσ 4
1 = η1 ∧ σ 4

1 + η5 ∧ ξ 1 − η4 ∧ ξ 2,

dσ 5
1 = η1 ∧ σ 5

1 + η4 ∧ ξ 1 + (η3 − κθ2) ∧ ξ 2,

dσ 5
2 = η1 ∧ σ 5

2 + η3 ∧ ξ 1 − σ 3
1 ∧ ξ 2,

dη1 = 0,

dη2 = η1 ∧ η2 + π1 ∧ ξ 1 − η5 ∧ ξ 2,

dη3 = η1 ∧ η3 + π2 ∧ ξ 1 − η2 ∧ ξ 2,

9
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dη4 = η1 ∧ η4 + π3 ∧ ξ 1 +
(
π2 + κσ 5

2

) ∧ ξ 2,

dη5 = η1 ∧ η5 + π4 ∧ ξ 1 − π3 ∧ ξ 2.

In case 5 we have the following structure equations:

dθ1 = η1 ∧ θ1 + ξ 1 ∧ θ5 + ξ 2 ∧ θ2,

dθ2 = η2 ∧ θ2 + ξ 1 ∧ σ 5
2 + ξ 2 ∧ θ3,

dθ3 = (2η2 − η1) ∧ θ3 + ξ 1 ∧ σ 3
1 + ξ 2 ∧ θ4,

dθ4 = (3η2 − 2η1) ∧ θ4 + ξ 1 ∧ σ 4
1 − ξ 2 ∧ σ 5

1 ,

dθ5 = (2η2 − η1) ∧ θ5 + ξ 1 ∧ σ 5
1 + ξ 2 ∧ σ 5

2 ,

dξ 1 = 2(η1 − η2) ∧ ξ 1,

dξ 2 = (η1 − η2) ∧ ξ 2,

dσ 3
1 = (4η2 − 3η1) ∧ σ 3

1 + η3 ∧ ξ 1 + ξ 2 ∧ σ 4
1 ,

dσ 4
1 = η6 ∧ ξ 1 − η5 ∧ ξ 2 + (5η2 − 4η1) ∧ σ 4

1 ,

dσ 5
1 = η4 ∧ ξ 2 + η5 ∧ ξ 1 + (4η2 − 3η1) ∧ σ 5

1 ,

dσ 5
2 = η4 ∧ ξ 1 + (3η2 − 2η1) ∧ σ 5

2 − σ 3
1 ∧ ξ 2,

dη1 = 0,

dη2 = 0,

dη3 = (6η2 − 5η1) ∧ η3 + π1 ∧ ξ 1 − η6 ∧ ξ 2,

dη4 = (5η2 − 4η1) ∧ η4 + π2 ∧ ξ 1 − η3 ∧ ξ 2,

dη5 = (6η2 − 5η1) ∧ η5 + π3 ∧ ξ 1 + π2 ∧ ξ 2,

dη6 = (7η2 − 6η1) ∧ η6 + π4 ∧ ξ 1 − π3 ∧ ξ 2.

These computations together with results of Cartan’s equivalence method (see, e.g.
[6, theorem 15.12]) yield the following.

Theorem. The class of systems (2) is divided into five subclasses A1 to A5 invariant under an
action of the pseudo-group of point transformations:

A1 consists of all systems (2) such that K1h
−2 �≡ const;

A2 consists of all systems (2) such that K1h
−2 ≡ κ , where κ is a non-zero constant;

A3 consists of all systems (2) such that K1 ≡ 0 and K2h
−4 �≡ const;

A4 consists of all systems (2) such that K1 ≡ 0,K2h
−4 ≡ κ , where κ is a non-zero constant;

A5 consists of all systems (2) such that K1 ≡ 0 and K2 ≡ 0.

The basic differential invariants for systems from the subclass A1 are the functions L1

and L2 defined by (22), the invariant differentiation D is defined by (23). Two systems from
A1 are equivalent w.r.t. the pseudo-group of point transformations whenever they have the
same functional dependences among the invariants L1, L2, D(L1) and D(L2).

The basic differential invariant for systems from A2 is the function M defined by (24),
and the invariant differentiation D is defined by (25). Two systems from A2 are equivalent
if and only if they have the same value of κ and the same functional dependence among the
invariants M and D(M).

The basic differential invariant for systems from A3 is the function N defined by (26), and
the invariant differentiation D is defined by (27). Two systems from A3 are equivalent if and
only if they have the same functional dependence among the invariants N and D(N).

Two systems from A4 are equivalent if and only if they have the same value of κ .
Every system from A5 is equivalent to the system (2) with f ≡ 1 and h ≡ 1.

10
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4. An illustrative example

In [12], Gottlieb obtained seven classes of non-uniform Euler–Bernoulli beams that are
isospectral with the unit beam (i.e. f = 1,m = 1). The method he employed to derive
these beams consists in transforming the Euler–Bernoulli equation into a canonical equation
using Baricilon’s transformation [24]. Then, he obtained conditions under which the canonical
equation is a unit beam. These conditions form a system of nonlinear PDEs. The solutions
of this system yield instances of non-uniform beams that can be mapped to the unit beam.
Gottlieb [12] found some explicit solutions of this system and used them to derive his models.
All his models fall in the class A5 of the above theorem. Consider from class (1) of [12] the
non-uniform beam with the following physical characteristics:

m(x) = 3(1 + x)−1/2, f (x) = 1
27 (1 + x)3/2. (28)

Simple computations show that

h(x) =
√

3(1 + x)−1/2 (29)

and

K1 = 0, K2 = 0. (30)

Therefore, according to our theorem, we may map (1) with f and m given by (28) to the unit
beam. Indeed the change of coordinates [12]

v = u, z = 3((1 + x)1/2 − 1), t = t (31)

does the job.
Now consider the following boundary-value problem for the beam with physical

characteristics provided by (28)

∂2

∂x2

(
1

27
(1 + x)3/2 ∂2u

∂x2

)
+ 3(1 + x)−1/2 ∂2u

∂t2
= 0, 0 � x � 3 (32)

u(0, x) = x3(3 − x)3, ut (0, x) = 0, (33)

u(t, 0) = 0, uxx(t, 0) = 0, u(t, 3) = 0, uxx(t, 3) = 0. (34)

The boundary conditions (34) correspond to hinged ends. It can be verified that the boundary
conditions (33) and (34) are compatible. Under the change of variables (31), the boundary-
value problem (32)–(34) becomes

vzzzz + vtt = 0, 0 � z � 3, (35)

v(0, z) = z3(3 − z)3(6 + z)3(9 + z)3

912
, vt (0, z) = 0 (36)

v(t, 0) = 0, vzz(t, 0) = 0, v(t, 3) = 0, vzz(t, 3) = 0. (37)

We employ separation of variables to solve (35)–(37). That is, we look for a solution in the
form

v(t, z) = T (t)V (z), (38)

where T (t) and V (z) are functions to be determined. The insertion of the ansatz (38) into (35)
yields

− T̈

T
= ω4 = V ′′′′

V
, (39)

11
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Figure 1. Solution of the boundary-value problem (32)–(34).

where the dot and prime stand for differentiations with respect to t and z respectively, and ω

is a constant. Taking into account (36), the first equation of (39) yields

T (t) = k cos(ω2t), (40)

where k is a constant. The function V (z) satisfies the boundary-value problem

V ′′′′ − ω4V = 0, 0 � z � 3, (41)

V (0) = 0, V ′′(0) = 0, V (3) = 0, V ′′(3) = 0. (42)

The general solution of (41) is

V (z) = c1 sin(ωz) + c2 cos(ωz) + c3 sinh(ωz) + c4 cosh(ωz), (43)

where c1 to c4 are constants. Imposing the boundary conditions (42) leads to the following
restrictions:

c2 = c3 = c4 = 0, ω = kπ

3
, k ∈ Z − {0}. (44)

We end up with a family of solutions

vn = an cos

(
n2π2

9
t

)
sin

(
nπ

3
z

)
, n ∈ N, (45)

where the {an}’s are constants. Since (35) is linear and homogeneous, the superposition of the
solutions (45), i.e.

v =
∞∑

n=1

an sin

(
n2π2

9
t

)
sin

(
nπ

3
z

)
, (46)

is again a solution of (35) and it satisfies the boundary conditions (37). We now impose the
initial conditions (36) to obtain

an = 2

3 × 912

∫ 3

0
z3(3 − z)3(6 + z)3(9 + z)3 sin

(
nπ

3
z

)
dz. (47)

12
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The explicit expression of (47) is not presented since it is too large. Finally the solution
of the boundary-value problem (32)–(34) is given by

u =
∞∑

n=1

an cos

(
n2π2

9
t

)
sin(nπ((1 + x)1/2 − 1)). (48)

The solution (46) is plotted in figure 1.

5. Conclusion

We have completely solved the (local) point equivalence problem for the Euler–Bernoulli
equation. We first show using Lie’s infinitesimal method that the point equivalence problem
for the Euler–Bernoulli equation is the same as the contact equivalence problem. The latter is
easier to set up in the context of Cartan’s equivalence method. After going through Cartan’s
equivalence algorithm, we found five inequivalent classes. For each class we compute a basis
of differential invariants and the operators of invariant differentiations. Also, we provide for
each class the necessary and sufficient conditions for equivalence.

It can be readily verified that the necessary and sufficient conditions under which (1) is
reducible to the constant coefficient one is equivalent to those obtained by Wafo Soh [13] using
Lie’s infinitesimal method. However it remains to ascertain whether the equivalence classes
obtained via Lie’s infinitesimal method and Cartan’s equivalence method are isomorphic. We
note that, in Lie’s approach, equivalence is established via smaller subalgebras (3D and 4D
subalgebras) of the symmetry Lie algebra whereas Cartan’s approach behooves much larger
subalgebras (11D, 15D, 16D and 17D subalgebras) of the symmetry Lie algebra.
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