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ABSTRACT

• We study the ordinary differential equation

yy(n+1) + αy′y(n) = 0

and show that this equation is always �integrable for a cer-

tain value of α.

• We also note that there is a special case for a particular

α for which this equation has a nonlocal symmetry which

enables one to reduce it to an equation of maximal sym-

metry.

• Different features of the differential equation and its in-

trinsic connection to the sl(2, R) subalgebra are illustrated

including the connection to integrating factors. Here, we

look at the reduction properties of these equations from an

algebraic point of view.
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Synopsis videlicit Motivation

• The original motivation comes from the Ermakov-Pinney

equation [1, 2] which in its simplest form is

w′′ +
K

w3
= 0, (1)

where K is a constant.

• In theoretical discussions the sign of the constant K is im-

material and in fact it is often rescaled to unity. In prac-

tical applications it would be negative to avoid ’collapse

into the origin’ due to its interpretation as the square of

angular momentum [3, 4].

• The general form of (1), videlicet

ρ̈ + ω2(t)ρ =
1

ρ3
(2)

occurs in the study of the time-dependent linear oscillator,

be it the classical or the quantal problem, as the differential

equation which determines the time-dependent rescaling of

the space variable and the definition of ’new time’. In this

context we mention the references [5, 6, 7, 8, 9, 10, 11].
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• Another origin of (1) – of particular interest in this work

– is as an integral of the third-order equation of maximal

symmetry which in its elemental form is

y′′′ = 0. (3)

• The integration of (3), which is a feature of the calcula-

tion of the symmetries of all linear ordinary differential

equations of maximal symmetry [18], by means of an in-

tegrating factor gives a variety of results depending upon

the integrating factor used. This includes the one relevant

to (1).

• Some obvious integrating factors give

1.y′′′ = 0 −→ I3 = y′′

x.y′′′ = 0 I2 = xy′′ − y′

1
2x

2.y′′′ = 0 I1 = 1
2x

2y′′ − xy′ + y

y′′.y′′′ = 0 J = 1
2y

′′2 ie 1
2I

2
3

y.y′′′ = 0 y′′y3 + K = 0

(4)

and the last of these is to (1) when the integral is inter-

preted as an equation. (The numbering of the fundamental

first integrals follows the convention given in Flessas et al
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[19, 20].)

• To illustrate the point on integrating factors we consider

the equation of maximal symmetry (3) which has seven Lie

point symmetries. These are

G1 = ∂y

G2 = x∂y

G3 = x2∂y

G4 = y∂y

G5 = ∂x

G6 = x∂x + y∂y

G7 = x2∂x + 2xy∂y.

The algebra is 3A1, {sl(2, R) ⊕s A1} and 3A1. The au-

tonomous integrating factors for (3) are y′′ and y as men-

tioned above. We list the symmetries and algebra when

each of the integrating factors is treated as an equation

and as a function.

When we multiply y′′′ = 0 by the integrating factor y′′

we obtain y′′y′′′ = 0. Integrating this expression gives

1
2y

′′2 = k, where k is a constant of integration. This may

4



be rewritten as y′′ = k without loss of generality. This may

be treated as the function y′′ or as an equation y′′− k = 0

in which k is a parameter. We then have three cases for

which we list the symmetries as follows:

y′′ = 0 y′′ = k y′′

G1 = ∂y G1 = ∂y G1 = ∂y

G2 = x∂y G2 = x∂y G2 = x∂y

G3 = y∂y G3 = (1
2x

2k − y)∂y G3 = ∂x

G4 = ∂x G4 = ∂x + 2xk∂y G4 = x∂x + 2y∂y

G5 = x∂x G5 = x∂x + x2k∂y

G6 = x2∂x + xy∂y G6 = x2∂x + (xy + 1
2x

3k)∂y

G7 = y∂x G7 = (y − 3
2x

2k)∂x − x3k2∂y

G8 = xy∂x + y2∂y G8 = (xy − 1
2x

3k)∂x+

(y2 − 1
4x

4k2)∂y

• It is well known that when a symmetry is used to determine

a first integral for a differential equation, the symmetry

provides an integrating factor for the equation and remains

as a symmetry of the first integral.
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• Definition: We define a first integral I for an equation of

maximal symmetry E = y(n) = 0 as I = f (y, y′, y′′, ..., y(n−1))

where
dI

dx |E=0
= 0 ⇐⇒ df

dx |E=0
= 0. (5)

This means that if g(x, y, y′, y′′, ..., y(n−1)) is an integrating

factor then

dI

dx |E=0
= gE(x, y, y′, ..., y(n))|E=0 = 0. (6)
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Some Remarks

• The algebra of the symmetries listed in columns one and

two is sl(3, R) : 2A1 ⊕s {sl(2, R) ⊕ A1} ⊕ 2A1 whereas

that for the third column is A1
4,9 : A2 ⊕s 2A1.

• This is a clear indication of the distinction of the alge-

braic properties between first integrals, that is the func-

tion of column three, and configurational invariants, that

the equations of columns one and two.

• If y is used an the integrating factor we obtain yy′′′ = 0.

Integrating this equation gives

yy′′ − 1
2y

′2 = k (7)

which can be written as

(y1/2)′′ =
k

(y1/2)3
(8)

and is the simplest form of the Ermakov-Pinney equation

[1, 2].

• As before we write down the point symmetries correspond-

ing to the three cases of the differential equation u′′ = k/u3

where u = y1/2. We have the following:
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u′′ = 0 u′′ = k/u3 u′′u3

G1 = ∂u G1 = ∂x G1 = ∂x

G2 = x∂u G2 = 2x∂x + u∂u G2 = 2x∂x + u∂u

G3 = u∂u G3 = x2∂x + xu∂u G3 = x2∂x + xu∂u.

G4 = ∂x

G5 = x∂x

G6 = x2∂x + xu∂u

G7 = u∂x

G8 = xu∂x + u2∂u

(9)

• The transformation of yy′′ − 1
2y

′2 = k to u′′ = k/u3 does

not make a difference in terms of the symmetries as we just

have a point transformation in this case.

• The characteristic feature of the Ermakov-Pinney equa-

tion, (1), is that it possesses the three-element algebra of

Lie point symmetries sl(2, R) which in itself is characteris-

tic of all scalar ordinary differential equations of maximal

symmetry.

• One of the interesting things to do will be to investigate
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higher-order analogues of the Ermakov-Pinney equation.

The basic criterion is algebraic.

• In investigations of the Emden-Fowler equation [21, 22,

23, 24] the existence of a Lie point symmetry for certain

indices∗ is intimately connected [25, 26, 27] with the solu-

tion of the fourth-order equation

2yy′′′′ + 5y′y′′′ + αy′′′ = 0, (10)

where α is a parameter which occurs in both the Emden-

Fowler equation and in the symmetry [26, 27, 28, 29, 30,

31].

• The determination of the first integral associated with the

symmetry is not possible in closed-form for nonzero α.

When α = 0, the Lie symmetry becomes a Noether sym-

metry and the associated integral follows directly from an

application of Noether’s theorem [32]. Equation (10) pos-

sesses just two Lie point symmetries.

• However, in the case that α = 0, ie, when the equation
∗For instance when the Emden-Fowler equation of index two given by y′′ = f(x)y2 gives rise to

(10). See [25] for a detailed treatment of this equation.
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has the form

2yy′′′′ + 5y′y′′′ = 0, (11)

there are the three Lie point symmetries

Γ1 = ∂x, Γ2 = x∂x and Γ3 = y∂y. (12)

Reduction by Γ1 leads to a third-order equation which also

has three Lie point symmetries. Two of these are the de-

scendants of Γ2 and Γ3 as one would expect since Γ1 is the

normal subgroup in both cases. The third symmetry of the

reduced equation,

Λ4 = 2u2∂u + uv∂v (13)

(the variables of the reduced equation are u = y and

v = y′) is a hidden symmetry of Type II [33, 34, 35] and

has its origin in the nonlocal symmetry of the fourth-order

equation,

Γ4 = 3
(∫

ydx
)
∂x + 2y2∂y. (14)

• When the symmetry (13) is used to reduce the third-order

equation to a second-order equation, the resulting equation

is of maximal symmetry and so is linear when expressed
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in the correct coordinates [25]. Without this hidden sym-

metry the reduction by the three symmetries given in (12)

leads to an Abel’s equation of the second kind.

• Equation (11) was used by Euler et al [36] as an example

in their study of the integrability properties of equations

of the form

y(n+1) = h
(
y, y(n)

)
y′ (15)

and they showed that the equation could be reduced to

d4Y/dX4 = 0, that is the fourth-order equation of maxi-

mal symmetry, by means of a complex sequence of nonlo-

cal transformations which by most curious happenstance

included the very Emden-Fowler equation from which it

arose.

• In this work we draw together various features to which

we have alluded above to make a coherent study. We com-

mence with first integrals which possess three Lie point

symmetries with the algebra sl(2, R) and have a structure

resembling that of (1). The associated differential equation

is of the form of (15) with an explicit form of the function h,
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that is the imposition of the algebraic constraint provides

a precise definition of the associated differential equation.

Equation (11) does not fit into this structure. Equation

(11) is a particular case of the two-parameter family of

differential equations,

yy(n+1) + αy′y(n) = 0, (16)

and we make a study of the point symmetries for general

values of the parameter α using the parameter-testing fa-

cility of Program LIE [37, 38].

• We find that there is a value of the parameter, α, for which

(16) is always integrable. We see that (11) and its useful

nonlocal symmetry is peculiar.
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Higher-order analogues of the Ermakov-Pinney

equation

– As we indicated above, there are several approaches

which may be taken. Here we assume that the integral

has the same structure as (1) and possesses the Lie

algebra sl(2, R) of point symmetries.

– Suppose that there exists an integral of the form

I = y(n)yα, (17)

when α is a parameter to be determined, with the as-

sociated (n + 1)th-order equation

yy(n+1) + αy′y(n) = 0 (18)

such that the integral, I , has the sl(2, R) symmetries

appropriate [18] to the nth-order equation of maximal

symmetry, y(n) = 0, ie

Γ1 = ∂x

Γ2 = x∂x + 1
2(n− 1)y∂y (19)

Γ3 = x2∂x + (n− 1)xy∂y.
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– The first symmetry, Γ1, is implied by the autonomy of

(17). Since the Lie Bracket, [Γ1, Γ3]LB = 2Γ1, we need

use only Γ1 and Γ3. The (n + 1)th extension of Γ3 is

Γ
[n+1]
3 = x2∂x + (n− 1)xy∂y + [(n− 1)y + (n− 3)xy′] ∂y′ (20)

+ [2(n− 2)y′ + (n− 5)xy′′] ∂y′′ + [3(n− 3)y′′ + (n− 7)xy′′′] ∂y′′′ + . . .

+ [n− (2n + 1)] xy(n)∂y(n) −
[
(n + 1)y(n) + (n + 3)xy(n+1)

]
∂y(n+1).

Since both integral and equation are autonomous, (20)

may be split into an x-free part and an x-dependent

part. The former does not contain any operators of rel-

evance to the integral and so gives zero automatically.

In the case of the latter we obtain

−(n + 1)xy(n)yα + (n− 1)αxyy(n)yα−1 (21)

which is zero provided the parameter α takes the value

(n + 1)/(n − 1). Evidently n 6= 1, ie there does not

exist a first-order Ermakov-Pinney equation.

– We recall that the Ermakov-Pinney equation has the

form

w′′ =
K

w3
(22)
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in the notation adopted above whereas its primitive

form is

yy′′ − 1
2y

′2 = 1
2K (23)

as the direct integral of y′′′ = 0 in association with the

integrating factor y. The transformation is y = 1
2w

2.

Does a similar property persist at the higher order?

– Consider the general equation (18) constrained to pos-

sess the representation of the sl(2, R) subalgebra given

in (19)†,

yy(n+1) +
n + 1

n− 1
y′y(n) = 0, (24)

which is the derivative of the Ermakov-Pinney equation

y(n) +
K

y(n+1)/(n−1)
= 0. (25)

– For the purposes of this treatment equation (25) defines

the general Ermakov-Pinney equation for n > 1. The

property holds for n = 2. For n = 3 the Ermakov-

Pinney equation is

y′′′ +
K

y2
= 0 (26)

†Equation (24) is not the most general nth order ordinary differential equation invariant under

sl(2, R). See [39] for a detailed treatment of this question.
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and the corresponding fourth-order equation is

yy′′′′ + 2y′y′′′ = 0. (27)

– To see if this equation has a simple form we set y = wα,

where α is a parameter to be determined. The fourth-

order equation becomes, after a modicum of simplifi-

cation,

w3w′′′′ + 2(3α− 1)w2w′w′′′ + 3(α− 1)w2w′′2 +

12(α− 1)2ww′2w′′ + 3(α− 1)2(α− 2)w′4 = 0. (28)

It is evident that the original form of the equation is the

simplest available under this class of transformations.

In the case of n = 2 the ability to reduce the nonlinear

equation obtained by differentiation of the second-order

Ermakov-Pinney equation to the third-order equation

of maximal symmetry was accidental and not an in-

trinsic property of Ermakov-Pinney equations.
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The structure of Euler et al

A second approach to the investigation of equations of the

structure of the Ermakov-Pinney equation is to begin from

the structure treated by Euler et al [36]. The model equa-

tion which they treated had the general form

y(n+1) = h
(
y, y(n)

)
y′. (29)

We impose an sl(2, R) algebraic structure on this equation.

We take the structure to be

Γ1 = ∂x

Γ2 = x∂x + my∂y (30)

Γ3 = x2∂x + 2mxy∂y,

where the parameter m is at our disposal.

The structure assumed for (29) makes the possession of Γ1

automatic. The action of the (n + 1)th extension of Γ2

leads to

my
∂h

∂y
+ (m− n)y(n) ∂h

∂y(n)
= −nh (31)

dy

my
=

dy(n)

(m− n)y(n)
=

dh

−nh
(32)
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and from the associated Lagrange’s system, (32), we find

that the characteristics of the first-order linear partial dif-

ferential equation, (31), are

u = hyn/m and v =
y(n)

y(m−n)/m
(33)

so that the form of (29) invariant under the actions of Γ1

and Γ2 is

yn/my(n+1) = g

 y(n)

y(m−n)/m

 y′. (34)

We now turn to Γ3. The (n + 1)th extension is

Γ
[n+1]
3 = x2∂x + 2mxy∂y + 2 [my + (m− 1)xy′) ∂y′

+2 [(2m− 1)y′ + (m− 2)xy′′] ∂y′′ + . . . +

2
{[

nm− 1
2n(n− 1)

]
y(n−1) + (m− n)xy(n)

}
∂y(n)

+2
{[

(n + 1)m− 1
2n(n + 1)

]
y(n) + (m− n− 1)xy(n+1)

}
∂y(n+1).(35)

When this is applied to (34), there is no need to consider

the part which has x as coefficient since the actions of Γ1

and Γ2 have already done that. The effective part of the

operator gives

yn/m
[
(n + 1)m− 1

2n(n + 1)
]
y(n)

= gmy +
g′

y(m−n)/m

[
nm− 1

2n(n− 1)
]
y(n−1)y′. (36)
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However, y(n−1) is not permitted. The coefficient of y(n−1)

must be zero, ie m = 1
2(n − 1). With this restriction on

the value of m we find from (36) that

g = −n + 1

n− 1
y

n + 1

n− 1y(n)

and the equation is specifically (24). Thus the sl(2, R)

equation in combination with the constraint of Euler et al

is unique at all orders.

Conclusion

• We have studied the differential equation yy(n+1)+αy′y(n) =

0 and shown that this equation is always �integrable for a

certain value of α.

• α = 0 is a special case for which (10) ( a special case of the

above equation) has a nonlocal symmetry which enables

one to reduce it to an equation of maximal symmetry.

• Different features of the differential equation and its in-

trinsic connection to the sl(2, R) subalgebra are illustrated

including the connection to integrating factors.
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• We have shown how the integrating factors, for example, of

the third ordinary differential equation give different sym-

metry properties depending on which integrating factor is

used.

• It is important to mention that if y is an integrating fac-

tor of y(n) = 0, then the integral obtained by using this

integrating factor always has the sl(2, R) subalgebra.
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