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Lecture 1.

1 Manifolds: definitions and examples

Looselymanifoldsaretopologicalspaceghatlook locally like Euclideanspace.
A little more preciselyit is a spacetogetherwith a way of identifying it locally
with a Euclideanspacewhich is compatibleon overlaps. To formalize this we
needthefollowing notions.Let X beaHausdorff,secondcountabletopological
space.

Definition 1.1. A chartis apair (U, ¢) whereU is anopensetin X and¢ : U —
R" is homeomorphisnontoit image. The component®f ¢ = (x1, x2, ..., x")
are called coordinates.

Giventwo charts(U1, ¢1) and(U2, ¢2) thenwe getoverlapor transitionmaps

¢20p7 : p1(U1NU2) — ¢a(Ur NUY)

and
P10 ¢y p2(U1NU2) — ¢1(UrNUY)

Definition 1.2. Two charts(U1, ¢1) and(U,, ¢2) arecalledcompatiblef theover-
lap maps are smooth.

In practiceit is usefulto considemanifoldswith otherkindsof regularity.One
manyconsidelCK-manifoldswherethe overlapsareCk-mapswith CK inverses|f
we only requirethe overlapmapsto be homeomorphismwe arrive at the notion
of atopologicalmanifold. In somevery importantwork of Sullivanoneconsider
Lipschitz, or Quasi-conformal manifolds.
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An atlasfor X is a (non-redundantollection A = {(Uy, ¢o)|a € A} of pair
wise compatiblecharts. Two atlasesareequivalentif theretheirunionis anatlas.

An atlas A is calledmaximalif any otheratlascompatiblewith it is containedn
it.

Exercisel. Using Zorn’s lemma, show that any atlasis containedin a unique
maximal atlas.



Definition 1.3. A smoothn-dimensionamanifoldis a Hausdorff,secondcount-
able, topological spac¥ together with an atlas4.

1.1 examples

R" or anyopensubsebf R" is a smoothmanifoldwith anatlasconsistingof one
chart. The unit sphere

S = {x% xL, ... x| Z(xi)2 =1
i=0

hasanatlasconsistingof two charts(U, ¢+) whereU. = S"\{(£1,0,0,...,0)}
and

1 1 n
= X, .., X
:|:1—X0( )

Real projectivespace RP", is spaceof all lines throughthe origin in R"+1
which we canidentify with nonzerovectorsup to the actionof non-zeroscalars

p+(x% xt, ... xM

SoRP" = (R"™1\ {6})/R*. The equivalenceclassof (o, ..., Xn) is denoted
[Xo: X1 :...:Xy]. RP" has an atlas consisting of+ 1 charts.The open sets are
Ui = {[Xo:X1:...: X]IXj € R, andx; # O}

and the corresponding coordinates are

di([Xo:X1:...:Xn)) :(xl/xi,...,m,...,xn/xi).

Similarly we havecomplexprojectivespaceCP", the spaceof aline through
the origin in C"*1. Sojustasabovewe haveCP" = (C"+1\ {0})/C*. A typical
point of CP" is written[zg : z1 : ... : zz]. CP" hasaatlasconsistingof n + 1
charts.The open sets are

U ={[zo0:z1:...:z)]|z # 0}
and the corresponding coordinates are

¢i(20:21:...:20)) = (@1/2, ..., % /2%, Za/2).



Exercise 2.Show that in fact the above construction yield charts.

Noticethatin thecaseof CP" thecoordinatefavevaluesin C" andsotheoverlap
mapsmapanopensubsebf C" to C". We canaskthattheyareholomorphic.We
make the following definition.

Definition 1.4. A complexmanifoldis a Hausdorffsecondcountableopological
spaceX, with anatlas.A = {(U,, ¢,)|la € A the coordinatefunctions¢, take
values in @ and so all the overlap maps are holomorphic.

Let Gik(R") be the space of-klanes through the origin inR

Exercise3. Showthat Grg(R™) hasan atlaswith (E) chartseachhomeomorphic
with RK(M=k),

Similarly we haveGry (C") thespaceof all complexk-planethroughtheorigin
in C".
Exercise4. ShowthatGr(C") hasanatlaswith () chartseachhomeomorphic
with Ck("=K) Showthatwe cangive Gr(C") thestructureof acomplexmanifold.
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2 Smooth maps and the notion of equivalence

Let X andY besmoothmanifolds.A continuousnap f : X — Y iscalledsmooth
if for all charts U, ¢) forandX and V, v) for Y we have that the composition

yofoptipUni=tV) - y(V)

is smooth.
Two manifoldsX andY arecalleddiffeomorphiaf thereis ahomeomorphism
h: X — Y so thath andh— are smooth.

3 Standard pathologies.

Theconditionthat X be Hausdorffandseconccountabledoesnotfollow from the
existence of an atlas.

Theline with two origins. Let X bethe quotientspaceof R x {0, 1} by the
equivalenceelation(t, 1) = (t, 0) unlesst = 0. Then X is not Hausdorff,how-
ever X admitsanatlaswith two charts.Let U; betheimageof R x {i} in X. These
maps invert to give coordinates.

Remarkl. Actually non-Hausdorflspacesvhich satisfyall the other properties
arisein reallife for examplein the theoryof foliations or whentaking quotients
by non- compacgroupactions.More work is requiredto comeup with a useful
notions to replace that of manifolds in this context.

Thelong line. Let &, denotethe smallestuncountableotally orderedset.
Considerthe product X = S, x (0, 1] with dictionary ordertopology. Then
give X chartsasfollows. For (w,t) € Xif t # 1letUyt = {o} x (0,1)
and¢.t: U — R begivenby ¢, (o, t) = t. If t = 1let S(w) denotethe
successor of wSetU, 1) = {w} x (0, 1] supS(w)} x (0, 1) and

t ifn=w
v, 1) —{ t+1 ifn=Sw).

Exercise 5.Check that overlaps are smooth.



Thecollection{U, 1/2)}wes, iS uncountable@ndconsistf disjointopensets,
so X is not second countable.

Different charts

ConsiderR; denoteR with thefollowing charts(R, x) andR, with the chart
(R, x3). Identity mapR1 — R» is smoothbut not R, — R3. R; andR; are
diffeomorphic by the mag — x2 thought of as a map from{R— Ro.

Thesepathologiesare simpleproblemsto keepin mind whenthinking about
the definitions. Therearefar more subtleissuesthat arise. Given a topological
manifold we canaskcancarry an atlas,andif it carriesanatlashow manynon-
diffeomorphicatlasesdoesit carry. The first observatiorof this phenomenoms
dueto JohnMilnor who showedthatthe seven-spheradmitsan atlas(with two
charts!)which s not diffeomorphicto the standardlifferentiablestructure We'’ll
examine this example later in the course.



Lecture 3.

4 The derivative of a map between vector spaces

Let f : V — W be a smooth map between real vector spaces.

Definition 4.1. Givenx € V wesaythat f is differentiableat x if thereis alinear
mapLy: V — W so that for all ve V we have:

10 — F(X) = Lx(x = x)[I = o(l|x — x'|D).

Herewe usingthe Landausymbolo to meana functiono: R, — R continu-
ous at zero and(©®) = 0.

Reallythis is animproperdefinition. We really needV andW to be normed
vectorspacesandit is naturalto requirethat L is a continuoudinear map. One
cantry to developdifferentialcalculuson manifoldsmodelledon generatopolog-
ical vectorspacesA sufficiently generalcontextto work in is that of manifolds
modelledon Banachspacesthatis completenormedlinearspacesEssentiallyof
thebasicresultsin differentialtopologywork in this contextwith the sameproofs
(as long as proof don't use coordinates)

Noticethat mapL in the abovedefinition isunique.If L’ is another sucimap
then

o(Ix =X =1 f(x)— f(X)—Lx—=x")—(f(x)— f(X)—L'(x=x))|
= [I(L = LY(x = x|

SolL-L)Yx-x)=0.
The mapL is called the differential off atx and is denoted

dy f or Dy f.

We say f is differentiableif f is differentiableateachx € U andis continuously
differentiable if
df : U - hom(V/, W).

is continuous. The secondderivativeis the derivativeof the first derivativeand
thus is a map
d?f : U — hom(V, hom(V, W)).
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In thefinite dimensionatasehom(/, hom(/, W)) with a subspacef homV ®
V, W) . In theinfinite dimensionakasewe needto be more carefulbut we can
identify hom{, hom(/, W)) with bilinear maps from

V —- W.

You can read all about this in gory detail in [?]

Definition 4.2. A smoothmap f : X — Y is calledanimmersionits differential
is everywherdnjective. It is calleda submersionf it differentialis everywhere
surjective.

There obvious examples of such masppose mx n are positive integers

i :RM > R"
given by
ioxt . xm) = XA Xm, 0, ..., 0)
is an immersion while
s:R"—» RM
given by
s(XY, L Xmy Xmaeds -« -5 Xn) = (XL, ..., Xm)

isasubmersionWewill seein thenextsectionthatlocally thesesimpleexamples
are completely general.



Lecture 4.

5 Inverse, and implicit function theorems.

Amongthebasictoolsof thetradearetheinverseandimplicit functiontheorems.
We will first statethemin acoordinatedlependenfiashion.Whenwe developsome
of the basic terminology we will have available a coordinate free version.

Theorem 5.1. Let U be a neighborhoodet f : U ¢ V — W be a smooth
map. Supposely f : R" — R" is invertible for somex € U. Thenthereis a
neighborhoodJ’ ¢ U of x so that

flU — fU)
is a diffeomorphismEurthermore

do(f™H = (do F)~%.

Proof. Wewill constructaninversefor f usingthecontractiormappingtheorem.
It isenougho provetheresultin thecasehatx = Oandf (0) = OandDo f = Id.
(Forthelastconditionreplacef by (Dgf)~1o f.. Setg(x) = f(x) — x (sogis
the “nonlinear” part off .) The equationf (x) = y can be rewritten as

X+90) =y
or as the fixed point equation
y —9(x) =X.

We claim thatif f is C! thenfor y in a small enoughneighborhoodf 0 x
y — g(x) = hy(x) is a contraction mapping on a small enough ball.

Since Dohy(x) = 0 andhy is C! thereis a neighborhoodB, (0) so that
| Dohy|l < % By the mean value theorem far X’ € B, (0) we have

1
Ihy(x) — hy(x)|l < SlIx = X'l



Furthermore ix € B, (0) andy € By ,2(0) we have

Ithy )1 <llhy(X) — hy(0)[| + [Ihy (O)]]
1

=

X1+ Nyl

NI NI

Lt
2

[A

<T.

Thusfor y € B;,» we havehy(B;) C B; andhy is a contractionthere. The
contractionmappingtheoremimplies for eachy the existenceof a uniquefixed
point ¢(y) which is a least a set wise inverse fbr

We check that ¢y) is continuous.

lp(y) — ¢ (Y)Il = lIhy(@(y) — hy (YD
<9l (y) —g@YNI + Iy = I

1
< §||¢(Y) — oI+ 1Y =yl
o)
le(y) =) <21y -Vl (1)
Now we check that ¢s differentiableLet x = ¢(y) andx’ = ¢ (y')

lp(y) = (Y) — (A )"y = Yl = lIx = X' = (e ) H(F ) — O

< Jldx FII7 I (X = X)) — (F(x) — (X))
<o(fx = x|

<o(ly—=ymh.

wherewe usethe differentiability of f to go from the secondto third lines and
and inequality 1 to go from the third to the fourth.
Notice that if f is continuously differentiable then so is ¢ O

An importantcorollaryof theinversefunctiontheoremis theimplicit function
theorem. The implicit functiontheoremcanbe statedin various,eachusefulin
somesituation. We will userepeatedlythe OpenMapping Theoremwhich say
thata surjectiveboundedinear mapbetweerBanachspacess anopenmapping

in particularanboundedinearmapwhich is analgebraidsomorphisms aniso-
morphism.
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Theorem5.2. Let f: U ¢ V — W bea smoothmapwith f(0) = 0. Suppose
thatfor somex in U wehavethat Dy f is surjectiveandker(Dy f ) admitsa closed
complemen€. Thenthereare neighborhood$J; of 0 € ker(Dy f), U2 of 0 € W
anddiffeomorphismg : U; x U — U andvy : U, — W sothat the following
diagram commutes:

Uu - w
T Ty

Ui x Us E> Us

where p, denotes the projection on the second factor.

Proof. Write a typical elementof U asa pair (k, ¢) with k € ker(Dxf) and
c € C. ThefactthatC is closedmeandn impliesthatC is a C a Banachspace
in its own right. ThenthemapK x C — V givenby (k,c) — k + cis an
isomorphismby the OpenMapping Theorem.The OpenMapping Theoremalso

impliesthatdg of |c : C — W is anisomorphism.Let L : W — C denoteits
inverse.Consider the map

Fk,c) = (k, LTk, C)).

We have that g
| *
dooF = [ 0 Idc]

and again by the OpenMapping Theoremthe differential of F at (0,0) is an
isomorphism. The inversefunction theoremimplies F hasan inverse,¢, in a
neighborhood of (00). Setting = dp o f |c we have

f(p(k, ) = ¢ (p2(k, ©))
on a sufficiently small neighborhood of (@) since
Lf(¢(k,c) =c
on such a neighborhood. O

We call apointx whereDy f is notasurjectivea critical point. A pointin the
range off which is not the image of a critical point is called a regular value.
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Definition 5.3. A subsety of a manifoldX is called submanifoldf forally € Y
thereis aneighborhoodJ of Y andachart¢ : V — B sothat¢(Y NU) is an
open subset of a closed linear subspace admitting a complement.

Havingmadethesedefinitionwe havea corollary of theimplicit functionthe-
orem.

Corollary 5.4. The preimage of a regular value is a submanifold.
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Lecture 5.

6 More examples.

The orthogonal group.et
O() = {A € Mnn(R)|AAT = I}.

be the groupof orthogonalransformation®f R". We claim thatthe orthogonal
group is a smooth manifoldo see this consider the map

f 1 Mnxn(R) — Sym,(R)

given by
f(A) = AAT

whereSym, (R) denoteghe spaceof symmetricn x n matrices.ThenO(n) =
f~1(1) so it suffices to show thdtis a regular valueThe differential off is

Daf(B) = ABT + BAT,
andwe mustshowthatit is surjective.Fix A € O(n) andchooseC € Syn(R).
If we take B = 3C A then
1
Daf(B) = E(AATCT +CAA)=C

as required.

Let proveexistenceanduniquenessheoremfor ODEsusingtheinversefunc-
tiontheoremLet X : B — B beasmoothmapof BanachspacesWe would like
so see that the differential equation

d
d_?[( = X(X)X(0) = Xo

has a unique solution for alh € B. Define a map

F:CL([0, €], B) > C°(0,¢], B) x B

by g
X
F(X) = (E — X(X), X(0))
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Lemma 6.1. If X is K-Lipschitzsois F : C% — CO. If X is C! with uniformly
bounded

Proof. | X(x) — X(X")|co < K|x — X'|co if X is K-Lipschitz. We also have that

|X(X) = X(X") = Dy X(x = X")| < ox(x — X)
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Lecture 6.

7 \ector bundles and the differential

Consider the Grassman manifold say@*) of two planes in K. Let
y = (I, X) € Gr(R* x R¥x e I1}.

Let p: y — Gr(R* be the naturalprojection. The fibersof p, p~1(I1) are
vector spaces (in this case over the reals).

This is an exampleof a vectorbundle. We’'ll give the definition appropriate
for the world of smoothmanifolds. Thereis an obviousversionof the definition
for more general topological spaces.

Definition 7.1. LetV beavectorspacgoverthereals,complexe®r quaternions.)
A vectorbundlewith fiber V is atriple (E, B, p) where E and B are smooth
manifoldsandz : E — B is a smoothmap. For eachb € B, p~1(b) hasthe

structureof a vectorspaceover the samefield asV andfor eachb € B thereis

anopensetU andasmoothmap¢: p~1(U) — V whichis linearisomorphism
on eachfiber. In additionthe mapz, : p~1(U) — U x V givenby 7,(e) =

(p(e), ¢(e)) is a diffeomorphism.

The map g is called a local trivialization.
Example 7.2. Let
y = {(IT, v) C Gr(R") x R"|v € IT}.

We claim asthe naturalprojectionp : y — Gr(R") hasthestructureof avector
bundlewith fiber RX. Let¢ : Uy — hom(I1,IT11) be oneof our charts. Then
¢~ Lisgivenby A — I'a c R" = IT1 @ IT+ wherel' o denoteshe graphof A.
The map ¢: p~1(Up) — I is simply the orthogonal projection.

A very importantnotionis the transitionfunction. Supposeve aregiventwo
trivializations,: p~1(Uy) — U, x V andzg: p~1(Ug) — Ug x V. Thenget
amap

Jop - Uy, N Ulg — GI(V).

defined as followslf
7o (V) = (P(V), ¢ (v)) @andrg(v) = (P(v), Pp(v))
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then
9up (P(V) P (V) = o (V).

The transitionfunction satisfythe cocyclecondition: If we havethreetrivializa-
tions %, 18, T, Over open setd,, Ug, U, then for allx e U, NUg N U,,

Oep 98y Yya = 1

A vectorbundleis determinedts transitionfunctionsandgive an opencover
{U,} and a collection of functions

Oup: Ug NUg — GI(V).

satisfying the cocycle condition we can construct a vector bundle.

7.1 New vector bundles from old

We can get new vector bundlesfrom old bundlesin a numberof ways. Given
p1: V1 — X andpz: Vo — X we cantakedirect (or Whitney) sumto geta
bundleV; @V, — X whosefiberabovex is pl‘l(x) &) pgl(x). Anotherimportant
operations thepullback.Supposave havep: V — Xandf : Y — X asmooth
map. Thenwe canform avectorbundleoverY asfollows. Thetotalspacedenoted
f*(V)is:

f*(V) = {(y, vl f(y) = pv)}
and projection
f*(p)(y, v) =y.
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Lecture 7.

7.2 The tangent bundle

Let M be a smoothmanifold. We will associateo M abundleT M. We will do
this concretelybuttherearemanywaysof doingthis. You shouldreadaboutthem
alll!!

We know what a tangent vector if"R

Definition 7.3. A tangentvectorto M at x is the equivalenceclassof all pairs
v, (U, ¢) where(U, ¢) is achartaboutx andv is atangentvectorto R" at ¢ (x).
We say that 4 (U’, ¢') is equivalent to v(U, ¢) if

v =y (¢ 09 H(v).
The tangent bundeM to M is the set of all tangent vectors.

In otherwordsthetangentbundleto M is bundledeterminedby choosingan
atlas{(U,, ¢»)|a € X} and taking as transition functions

Gep () = Gy ) (e © D5 (V).

Givenachart(U, ¢) we getcoordinatext, x2, ..., x" onU. A typical tan-
gentX vector is written as

X =al i +a? 0 +. 0
- axt X2 axn'
reminding us that we can differentiatefunction using tangentvectors. Given
f: M — R and a tangent vector atinM we define
1 1
X100 = a2 () + @2 G () + f B(X)).
(2)

in other word the usual directional derivative bb ¢ 1.
Givenasmoothmap f : M — N we candefinethedifferentialof f asamap

Df: TM — TN.

Givenxin M andX = (v, (U, ¢)) atangentectorandachart(V, v) aboutf (x)
setDy f (X) to be the equivalence class of the vector

Dy (¥ o fog™H)(v)
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and the chart,\, ) or in terms of coordinates if we write
vofog t(xt,x% ..., xM) = (frxt, .. x™), .., £ L X))
then the matrix oDf is

gl
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Lecture 8.

8 Connections

We motivatetheintroductionof connectionsn avectorbundleasageneralization
of theusualdirectionalderivativeof functionson a manifold. Givena vectorfield
X andafunction f onamanifold M, its directionalderivativeis a new function
as in equation (2)Thus we have a map

C®(M; TM) x C*(M) — C®(M).

This map has the following properties.

X(fg) = f Xg+ gXf 3)
(@X+BY)f =aXf+BYf 4)
whereX andY are smooth vector fields and g, f andg are smooth functions.

If we try to generalizehis to a directionalderivativeon sectionsof a vector
bundle we would like a map

C*®(M; TM) x C®(M; E) > C*(M; E).

This map is using denoted
(X,8) > Vxs

We cannolongermultiply sectionsof avectorbundlebutwe canmultiply sections
of avectorbundleby functions. The appropriategeneralizatiorof the two rules
about are

Vx fs= fVxs+ (Xf)s (5)
Vax+pYS = aVxs+ BVy f (6)
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9 Partitions of unity

Givenanopencover,{U,|x € A} of atopologicalspaceX we saythatacollection
of function 4,: X — R is a partition of unity if

1. Forall « € A Support(4) c U,

2. The collection{Support(4)|a € A} is locally finite, thatis to sayfor all
x € X thereis aneighborhooaf x meetingonly finitely manyof members
of the collection.

3. For allx € X we have

Y a0 =1.

aeA

Smooth manifolds have smooth partitions of unity.

10 The Grassmanian is universal

We saythatbundleis of finite typeif thereis a finite setof trivializationswhose
open sets covern this section we will prove the following theorem.

Theorem 10.1. Let E — M bea vectorbundleof finite type. Thenfor someN
large enough there is a map

f:M— Gr(RN).

Proof. Let {(Uj, 7j)|i = 1,...m} beacollectionof trivializationsso thatthe U;
cover. Write the trivializationsas 7j(e) = (p(e), ¢;(e)) asbefore. Choosea
partition of unity{g;|i = 1,..., m} subordinate to th&);. Then define

®: E - RM
by the formula

P (e) = (B1(P(€)9P1(€), f2(P(€))92(E). ..., Bm(P(E))Pm(E)).

@ is well definedby the supportconditionon the partitionof unity. @ is linearon
eachfiber of E asthe ¢; are. ® is injective on eachfiber sincefor eachb € B

20



thereis a 8; with 8; (b) # 0. Thusfor eachpointb € B we havethat®—1(p~1(b))
is a kplane in B'K. So we can now define

f:B— Gr(R™
by
f (o) = @(p~(b)).

Exercise6. Checkthatthis map issmooth.In otherwordswrite themap downin
charts on the domain and range.

We claim thatf *(yx) is isomorphic toE. Consider the map
d:E— Bxw

given by

®(e) = (p(e), (P(p~1(p(e)). ®(©))).
From the definition off this mapsE to f*(y).
Exercise 7.Check that this is an isomorphism.
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11 The embedding manifolds in R

Theorem 11.1. (TheWhitneyEmbeddingrheoremEasiestVersion).Let X bea
compact n-manifoldThenX admits a embedding in'R

Proof. First we constructan embeddingd : X — RN for somelarge N. Let
{ fi }ik=1 be a partition of unity sothatthe supportof eachf; is containedn some
coordinatechart (U, ¢j) sothat¢; (U;j) is bounded. Thenwe canconstruction
smooth functions p: X — R" by

= oo fixeix) it xely;
¢'(X)_{0 if xeU;

Then we can define ® by the equation

D (X) = (1(X), p2(X), - .., Pk(X), F1(X), f2(X), ..., f(X)).

Then ®(x) = ®(x’) impliesthat for somei, f;(x) = fi(X') # 0 sothat
X, X € Uj. Then for the samewe have

#i (X) = ¢i (X)

and hencex = X’ since ¢ is a diffeomorphism otJ; and so @ is injective.
Next we needto checkthatthe differential of ® is injective. The differential
of ® atx send ve Ty X to

(Dx f1(0)$1()+ f1(X) Dx¢1(v), . . ., Dx fc(@)d (X)+ fic(X) Dxk (v), Dx fa(v), ..., Dx fk(v))

and the result follows. O



Lectures 10 and 11

12 Sard’'s Theorem

An extremelyimportantnotionin differentialtopologyis thatthatof generaposi-
tion or genercity.A particularmapmay havesomehorrible pathologiesut often
a nearby map has much nicer properties.

For example the map

f(0) = ((cos(20 cos(h), cos(20 sin(6H), 0).

mapsthe unit circle in the plain to the a figure 8 lying in a planein R3 while the
near by map

fc(0) = (cos(26 cos(b), cos(26 sin(h), € cos(H)).

is anembeddingWe will developa generalkettingin which we candecidewhen
a nearbymap will havesomenice property. Theseideashavebeencentralin
topology sinceearly daysof Lagrange,Poincaé and where put into a modern
efficient setting by Thom and Smale.

Themostbasicresultwe will needis Sard’sTheorem A subsebf amanifold
is saidto havemeasurezeroif its intersectiorwith everycharthasmeasurezero

with respectto the Lebesquemeasureon R". We will needan easyversionof
Fubini’s theorem.
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Theorem 12.1. Supposea measureableC ¢ R" hasthe property that for all
t € R C N {t} x R"1 has measure zerdhenC has measure zero.

We will also use the following lemma.

Lemma 12.2. If C ¢ R™Mis measureabland f : R™ — R" is continuousthen
f (C) is measureable.

Theorem12.3.Let f : M — N beasmoothmapoffinite dimensionamanifolds.
Then the set of critical values has measure ze in

Proof. (Copiedfrom Milnor’s little blue book Topologyfrom the differentiable
viewpoint, this proof doesnot give the sharpresultthat a CK map with k >
maxX{1, m — n + 1} alsosatisifies theonclusion.)The definitionof measure zero
is local soit sufficesto provetheresultin caseM c R™ andN c R" areopen
subsets.

Theproofis by inductionon m the dimensionof thedomain. Thecasem = 0
istrivial. LetC = Crit(f) denotehecritical setof f. It sufficesto provethatfor
everypointy € f(C) thereis neighborhoodf y whoseintersectiorwith f(C)
has measure zerbdlow set

Cs={xeM|d)f=0,foralll <] <k

ThenC > C; D Cy D ... is adescedingsequencef closedsetsand hence
measureable setButhermore the setb(Cs \ Cs;1) are all measureable.
The proof has three stepé.m < n then you can skip directly to step 3.
Stepl. f(C \ Cy) hasmeasurezero.If x € C c C; thenthereis somefirst
partial which doesn’t vanish so assume that

aft
— 0.
Xt (X) #
Then we consider the map R™ — R™.
gxt, o x™ = (Fxt L x™), X3 L x™)

Notice that from our assumption

— 1 1 1 =
ngl(x) ngZ(x) %(x)

0 1 0 ... O

dg=| 0 o 1 ... 0

0 0 0 1
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whichis clearlyinvertible. Theinversefunctiontheorenthenprovidesaninverse,
h: V — R™ on small neighborhood of Then consider the map o h we have

fohxt, ..., x™M =L f2ohxt, ..., xM, ..., fPohxd, ..., x™).

So f(C Nh(V)) = f o h(h™(C) N V). Theinverseimageof the setcritical
h=1(C) NV are simply the critical points of o h. If we set

kX2, x3, ..., xM = (f?oh(t,...,x™, ..., f"oh(,...,x™)

then
h=(C) NV = Ui{t} x Crit (ko).

By the induction hypothesis we have
ki(Crit (ky))
has measure zero in"R* and hence by Fubini
f(CNh(V)) = U {t} x k(Crit (ko))

has measure zero in"R
Step2. Suppose € Cs\ Cst1. Thenwithoutlossof generalitywe canassume
that there is some-th order mixed partial derivative so that if we set
ail+--~+im f
w = - -
a(xDyiz. .. 9(xm)im

so that
ow
m(x) # 0.
Define
gx, .o x™ = (wxt, .. x™), %2 L x™).

Againthis mapis adiffeomorphismwith inverseh: V — R™ for someneighbor-
hoodV of g(x). Let
k=foh

and let

|

= Kljo)xrm-1v -
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Clearlyg(Cx nh(V)) c {0} x R™ 1NV andthecritical setof k containsg(Cyx N
h(V)) since it containg)(C N h(V)). Thus

f (Ck N h(V)) c k(Crit (k))

which has measure zero by the induction hypothesis.

Step3. Supposehatx € Cx wherek + 1 > &', Choosealittle cubel of side
lengths. We havefrom Taylorstheoremandthe compactnessf | thatthereis a
constantM > O sothatforally e | and allx e Cy N |

1) = fy)ll < M|x — y|+?

Subdividel into|™ subcube®f sidelengths/1. By theaboveestimatdf 1’ is
sucha subcubecontaininga point of Cy then f (1) is containedn a cubeof side
length at most

2M/m(s/ K+t
Thus thef (Cx N |) is contained in set of total volume bounded above

(ZM \/m(a/l)k+1)n|m — Clm—n(k—i—l)'

By our assumption this goes to zerol apes to infinity. O
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Lecture 12.

13 Stratified Spaces

Definition 13.1. A stratificationof a topologicalspaceX is a filtraion is a de-
compositionX = | J'_, § whereeachof the § aresmoothmanifolds(possibily
empty) of dimensiom and so that

k—1

S\&clJs.

i=0
The closureS; is called the stratum of dimension k

Note that any stratum of a strafied space is a stratified space in its own right.

Stratifiedspacesreusefulbecausenanyresultsaboutsmoothmanifoldscan
be extendedo stratifiedspacesA goodexampleis the spaceof matricesMgnl.
The strataare the matricesof rank boundedaboveby a fixed number. (assume
that k< n)

As anapplicationof this resultwe will computethelow homotopygroupsfor
the Stiefel manifolds, Stc(R"). Recallthat the Stiefel manifold is the spaceof
k-framesin R". Givenak-frame(vy, vy, ..., vk) we getaninjective linear map
A : RK - R" by sendingthe standarcasisvectorse — vj. In otherwordswe
canidentify the Stiefel manifold, Vi (R"), with the opensubseif hom(R¥, R™)
consistingof injective maps. The complimentof Vk(R") hasa decomposition
according to the dimension of the kernel of the map codify this set

R = {A € hom(R, R")|Rank®)) = I}.
We claim that in fact thes® are submanifolds.

Proposition 13.2. R ¢ hom(R¥, R") is a smooth submanifold of codimension

k—Dmn—1).
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Proof. Fix A € §. Write R¥ = ker(A) @ Ran(A*) andR" = ker(A*) + Ran(A).
Then with respect to this decomposition we can write

n=[o 9

« B
B:A+L J

and a nearby matrix as

Lemma 13.3. If A_—|— « is invertible thena vector (v, w) is in the kernelof B if
andonly if v= —(A+a) 1Bwand — y(A+a) 18)v =0

Proof. If (v, w) is the the kernel oB then
(A+a)v+Bw=0
sothefirst equationis clear. The secondequationfollows by substitutingthe first

into
yv+dw =0

The lemma implies that the kernel Bfis |-dimensional if and only if
§—y(A+a) =0
The map
[)"/‘ ’g] 8 —y(A+a) B

is clearlya submersiorsothe preimageof 0, our local modelof R is a submani-
fold of codimension

dim(ker(A)) dim(Coker@A)) = (k —1)(n —1).
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We'll use this to do a simple calculation of homotopy groups.
i (Sk(R™) =0

fori < n — k. Fromits definition St (R") canbe identifiedwith the spaceof
matrices of maximal rank iMyxn, and so

SK(R") = Mixn \ (U5R
so the problem is to show that a map
f:S — SK®R"
from a sphereof dimension < n — k is null homotopic.We know thatthereis a
null-homotopyin the largercontractiblespaceof matricesthatis to saythereis a
map
h:D'* - Mxun.
so that .
his= f.
If we canfind ahomotopyk : | x D'*1 — My, sothatduringthehomotopy
the following two conditions hold.

1. k|l x S c St(R")
2. k({1} x D'ty c St (RM).

To seethatwe cando thiswe will appealo Sard’stheorem.Letsconsiderthe
larger family of maps

H : Mixn x D' = Mixn

given by
H(A, X) = A+ h(x).

If Ais small enough then
K(t,X) = H(tA x) =tA+ f(X)

satisfieghefirst condition. To seethatwe canarrangethatthe secondcondition
is satisfiedwe notethat H is a submersionThusthe preimage®f the R’s areall
submanifoldsSet

R =HR)
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these are submanifolds of codimension<k)(n — ). so they have dimension
i+1+nk—(k—-hHn-1)
Consider the projectioFﬁ — Myxn. Provided that forall <k — 1
i+1+nk—(k-DHn-1)<nk

thenimageof the projectionhasmeasurezero. Theworstcaseis| = k — 1 when
the right hand side is
i +nk+k—n

sothattheinequalityholdsif i < n—k. If (A, X) 3 R thatforall x f(x) > R
completing the proof.



Lecture 13.

14 Fiber bundles

The notion of a vectorbundlehasa naturaland useful generalizationthat of a
fiber bundle Here is a basic example.

Example 14.1. A k-framefor R" is ak-tuple(ey, ..., &) of linearlyindependent
vectors.

Let S (R") be the spaceof all k-framesfor R". This the Stiefel manifold.

There is a natural map
p: SkR") — Gr(RM)

givenby sendinghek-tupleto (v1, vy, .. ., vk) toits span.This mapis asubmer-
sion and the preimage of small open sets can be given a product structure.

Definition 14.2. A (locally trivial) fiber bundlewith fiber F is triple (E, B, p)
wherep: E — B isasmoothmapsothatfor all b € B in B thereis a neighbor-
hoodU of b and a diffeomorphism:

:plU)>UxF

so thatp; o T = pwherep;: U x F — U is the projection.
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In our examplelet U be oneof our standarcthartsandlet F = Inj(R¥, R™)
bethe spaceof injective linearmaps.This anopensubsebf hom (R, R") soit is
a manifold.We’'ll define the inverse of the trivialization

t™:Up x F - p~XUn).
To do this we need to fix an identification af i1 — RX. Then
T HTa J) = (Aoctojer), Actoj(e),..., Aoto j(&)).

where as usuah: IT — I1+ is a linear transformation andalis its graph.

For anotherexampleconsidera real vectorbundlep: E — B. The projec-
tivization of E, denotedP(E) is spaceof linesin E andhasnaturalprojection
p’: P(E) — B which is a fiber bundle with fiber RPL.
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Lecture 14.

15 Whitney’s embeddingtheorem, medium version.

Theorem 15.1. (Whitney). Let X be a compactn-manifold. ThenM admitsa
embedding in R,

Proof. FromTheorem?] we canassumehat M is embeddednh RN for someN.
To statethe nextresultfor a hyperplanell ¢ RN let pg: RN — IT denotethe
orthogonabprojection.Notethatthe setof hyperplanesn RN is acopyof RPN—1
by associatingo eachhyperplanehe orthogonaline. Thedesiredresultfollows
from:

Lemma15.2. If N > 2n+ 1 thenfor a full measuresetof hyperplaned ¢ RN
the compositiorpr o @ is a differentiable embedding ™ into IT.

Proof. Let A € M x M be the diagonal, A= {(x, X)|x € M}. Define the map
a:Mx M\A— RPN-L,

which sendddistinct pointsx andx’ to theline throughthe origin parallelto the
line passinghroughx andx’ or equivalentlytheline throughO andx — x’. Notice
that pr; o @ is injectiveif andonly if a missegheline orthogonalto IT. If 2n <
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N — 1 thenany pointin the imageof a is a critical value and henceby Sard’s
theoremtheimageof hasmeasurezero. Thusthe setof thentheimageof a has
measureeroandsothe setof hyperplangor which the compositionis injective
is a Baire set.

Nextconsideithe projectivizationof thetangentundleof M, P(T M). Thisis
afiberbundleover M with fiber RP"~1. Thetotal spaceof the bundleis asmooth
manifold of dimension 2r- 1. Define the map

b:P(TM) » RPN

whichsendsaline ¢ € T,M totheline Dy®(¢) in RN. Noticethatthedifferential
of pr o @ is injective precisely whethe line orthogonal to IT is not ithe image
of b. If 2n — 1 < N — 1 then as above the image ohhs full measure.
Thusthe setof goodplaness theintersectiorof two setsof full measureand
hence had full measure itself. O

]

Notice thatthe conditionon the mapb wasweakerthenthe conditionon the
mapa so the proof also proves:

Proposition 15.3. If M is a closedsmootm-manifoldthenM immersesnto R?".

Proof. ]

We’'ll use this theorem to prove the hard version of Whitney’s theorem.
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Lecture 15.

16 A brief introduction to linear analysis

In anumberof placewe’ve talkedaboutthesocalledinfinite dimensionatontext.
In this sectionwe’ll introducebriefly the basicnotionsnecessaryo discussthis
story rigorously.The main application we have in mind is to the

16.1 Basic definitions

Definition 16.1. A normedvector spaceis a vector spaceX (over the real or
complexnumbers)ith afunction|| - || : X — R, satisfyingtheusualproperties
of anorm. A Banachspacas acompletenormedvectorspacehatis all sequences
which are Cauchy with respect to the converge.

Examples.C%(X), the spaceof continuousfunctionson a compactmetric space
is a Banachspacewith its naturalnorm. Completenesss the statementhat a
uniform limit of continuous functions is continuous.

CK(X), the spaceof k-times continuouslydifferentiablefunctionson a compact
manifold when given the norm

Il sup ”a' f I
ck = — 1l
xeX. lwithe(1)<k  0X!

wherel = (ig,i2,...,in) is amulti-indexand¢(l) = Y-7_,ij. Completeness
follows form the same theorem applied to the derivative$ .of

L P-spaces.

Spaces of dlder continuous functions.

Nextwe wish to considerfunctionson normedvectorspacesit turnsout that
continuity of mapson a normedvectorspaces equivalento boundednessviore
precisely we have:

Definition 16.2. A linearmapT : X — Y is calledboundedf thereis aconstant
C > 0 so that for alx € X we have

ITxlly = Clix|Ix.

Furthermordhe smallestsuchconstantC is calledthe operatomormof T andis
denoted|T ||
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Exercise: T : X — Y is continuous if and onlyl is bounded.
A basicfact of life is thateverynormedvectorspacesitsin canonicafashion
in a Banach space.

Theorem 16.3. To eachnormedvectorspaceX therecorrespondsa uniqueBa-

nachspaceX calledthe completionof X anda uniqueinjectivemapcontinuous
linear mapX — X satisfyingthefollowing universalproperty.lf T : X — Yisa

continuoudinear mapthenthereis a uniquecontinuoudinear mapT : X — Y

so that the operator norm af and T agree.

For proof seefor exampleRoyden’stext. In practicethe significanceof this
theoremis thatwe will considervariousnormson C5°(R") andtakethe comple-
tions with respecto thesenorms. To checkif mapsbetweenthesecompletions
arecontinuoust sufficesto checkthatthe mapis boundedon C3° with respecto
the norms in question.

Definition 16.4. Let B(X, Y) denotethe spaceof boundedinear operatordrom
XtoY.

B(X,Y) is Banachspacein its own right. In factit is a Banachalgebra(i.e.
a Banachspacewith the structureof an algebraso thatfor x,y € X we have
IXYll =< [IXI[yIl-

16.1.1 The three pillar’s of linear analysis

You canlook in any book on Functionalanalysisfor this material. Its alsoin
Abraham-Marsden and Ratiu.

Theorem 16.5. The Hahn-BanachtheoremLet X be a linear spaceoverF =
RorCandp: X — R be a map satisfying

1. Forall x,y € X p(x +Y) < p(x) + p(y)
2. Forall » € Fand allx € X we havep(iAx) = |A| p(X).

LetZ ¢ X bealinear subspacandp : Z — F bealinear functional. If for all
z € Z wehave|p(z)| < p(2) thenthereis a linear functionalp : X — F which
extends and satisfie$p(X)| < p(x) for all x € X.

The proof goesby a Zorn’s lemmaargumentconsideringall possibleexten-
sionswith the given property. One showsthatthis is a partially orderedsetand
any extension which is not defined on the whole space has a nontrivial extension.
This has one corollary that we will need later.
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Corollary 16.6. Let X bea Banachspaceand F C B a finite dimensionakub-
space.ThenF hasclosedcomplementargubspace(i.e., thereis a closedsub-
spaceC ¢ BsothatF "nC = {0} andF + C = B.

Proof. Takea basis{fi, ..., f)n} for F. Let¢1, ..., ¢, bethecorrespond-
ing dual basisof F*. Clearlythe ¢; satisfythe hypothesisof the Hahn-Banach
theoremwith p beinga multiple of the norm. So thereare linear functionals
@1, ..., n extending theseSetC = NI, ker(¢).

Theorem16.7. The Openmapping theoremAnysurjectiveboundedinear map-
ping T : X — Y is an open mapping, that is it takes open sets to open sets.

The proof of this theorem is an application of the Baire category theorem.
An important corollary is the Banach isomorphism theorem.

Theorem16.8. The BanachisomorphismtheoremAboundedinear mapT : X —
Y which is an isomorphism of vector spaces is a topological isomorphism.

Proof. At issueis showthat T~ which existsasa map of setsis continuous.
Sowe mustshowfor all U ¢ X openthat(T~1)~1(U) = T(U) isopen. T is
surjective so this following from the open mapping theorem. O

Theorem 16.9. The closedgraph theorem A linear operatorT: X — Y is
bounded if and only if its graph1'= {(x, TX)|x € X|| € X x Y is closed.

16.2 Compact operators

In this subsubsectioX andY will denote Banach spaces.

Definition 16.10. A linearoperatorT : X — Y is calleda compactoperatorthe
image undef of the unit ball inX has compact closure M.
Remark2. Compact operators are sometime called completely continuous.

The prototypicalcompactoperatoiis the following Let X andY bethespace
¢2 of all sequencea = (ay, ay, .. .) so that)_°,(a;)? < oo and define

T(ag,a,...) =(a1,a2/2,a3/3,...,ay/Nn,...)

To seethat T is compactchoosea sequencea! in B; the ball of radiusone. By
a diagonalargumente canpassto a subsequenceherecomponent®f a' con-
vergeto somea™. Thenwe claim thatT(a') convergesn ¢2. Choosee > 0.
Then chooséy > 0 so that the following hold.

34



1

2. (X0t a — ar|d)t < e/2.

The last follows from the component-wise convergerideen we have for > ig

ip—1 00
: 1 . 1 . 1
IW@%W@%V§§hﬂ%—$¥+Q:@%—mﬁ%?
n=1 n=ig

1
<e?/a+ 5 > ey —ayl?
0 n=ig

< e?/4+€?/4 = €?)2.

Thebasicresultthatwe will needis Arzela-Ascolitheorem.Let B beaballin
R". Recallwe call asubsetA € CO(B) equicontinuousf for all ¢ > 0 thereis a
8 > 0sothatiflx —y| < dthen|f(x) — f(y)| <eforall f € A

Theorem 16.11. (Arzela-Ascoli). A subsetA € C%(B) hascompactclosurein
Cc9(B) if and only if A is bounded and equicontinuous.

This has an immediate corollary:

Corollary 16.12. The embeddinG(B) — C9(B) is compact.

Proof. The unit ball in C%%(B) is certainlyboundedn CO(B). If || f|lco« < 1
then| f(xX) — f(y)| < |x — y| we can take & e. O
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Lectures 16 and 17

16.3 Fredholm Operators

A nice way to think aboutcompactoperatorss to showthat setof compactop-
eratorsis the closureof the setof finite rank operatorin operatornorm. In this
senseompacibperatoraresimilarto thefinite dimensionatase.Onepropertyof

finite rankoperatorghatdoesnot generalizeo this settingis theoremfrom linear
algebrathatif T: X — Y is alineartransformatiorof finite dimensionalector

spaces then
dim(ker(T)) — dim(Cokejg)) = dim(X) — dim(Y).

Of courseif X or Y is infinite dimensionalthen the right handside of equal-
ity doesnot makesensehoweverthe stability propertythat the equalityimplies
couldbe generalizedThis bringsusto the studyof Fredholmoperators.t turns
out that many of the operatorsarising naturallyin geometry,the Laplacian,the
Dirac operatoretcgive riseto Fredholmoperators.The following is mainly from
Hormander

Definition 16.13.Let X andY beBanachspacesandletT : X — Y beabounded
linear operatorT is said to be Fredholm if the following hold.

1. ker(T) is finite dimensional.
2. Ran(T) is closed.
3. Coker() is finite dimensional.

If T isFredholmdefinetheindex of T denotednd(T) to bethenumberdim(ker(T))—
dim(Coker())

First let us show that the closed range condition is redundant.

Lemma 16.14.LetT : X — Y bea operatorsothatthe rangeadmitsa closed
complementary subspacEhen the range of is closed.

Proof: C be a closedcomplementfor the range. We canassumehat T is
injectivesinceker(T) is aclosedsubspacandhenceX/ ker(T) isaBanachspace
sowe canreplacel by theinducedmapfrom thisquotient.Now consideithemap
S: X @ C — Y defined by

S(x,c) = T(x) +c.

Sis boundedinearisomorphismandhenceby the openmappingtheoremSis a
topological isomorphismThus RanT) = S(X @ {0}) is closed. L.

An importantresultthatwill be usedoverandover againis the opennes®f
invertibility in the operator norm.

Theorem 16.15.1f T : X — Y is a boundedinvertible operator thenfor all
p: X — Y with sufficiently small nornT + p is also invertible.
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Proof. Withoutlossof generalitywe canassumeX = Y andT = |. Thenif the
norm of p is sufficiently small the Neumann series

Oo .
> (=p)
i=1
converges to the inverse bf p. O

We begin with some lemma’s

Lemma 16.16. (F. Riesz)Theunit ball B in a BanachspaceX is compacif and
only if B is finite dimensional.

Proof. SeeKerszigLemma?2.5-4. Thisis easyfor Hilbert spacedut takesa little
care for Banach spaces. O

Lemma 16.17.The following are equivalent:
1. ker(T)) is finite dimensional and Ram| is closed.

2. Everyboundedsequencégx;} ¢ X with Tx; convergenthasa convergent
subsequence.

Proof: Supposethat 1 holds. Sinceker(T) is finite dimensionalit admitsa
closedcomplimentC. SinceRan(T) is closedit is a Banachspacesothe Banach
isomorphismtheoremimplies T|c: C — Ran() is anisomorphismand the
resultfollows. Now supposéhat2 holds. Thenaboundedsequencén thekernel
hasa convergensubsequencsothe kernelis finite dimensional. ThatRan(T) is
closed follows immediately from 2. O

Let Fred(X, Y) denotethe spaceof FredholmoperatorsbetweenX andY.
Also let FredX) be the set of Fredholm operators ®n

Lemma 16.18.Fred(X, Y) is a open subset @ (X, Y) and the index is a locally
constant function on Fred( Y).

Proof. LetT : X — Y beaFredholmoperatorandlet p : X — Y beanoperator
with smallnorm. We canwrite X = C + ker(T) andY = Ran(T) + D. With
respect to this decomposition we can wilteas a matrix

T 0
T=[¢ o]
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and p as the matrix

_la b

P=lc d|
We provetheresultby reductionto thefinite dimensionakituation. In fact we’ll
prove

Lemma16.19.For p sufficientlysmallthereis a linear transformationA : ker(T) —
Coker(T) so that

ker(T + p) = ker(A) andCokerT + p) = CokerA).

In factthenormof p is smallenoughthenT + a will beinvertibleandif we

set 1 | .
| =T +a)” _
G= [O I ] andH = [—C(T’+a)‘1 I] (7)
then T 0
/+ a
HT + PG = [ 0 —c(T+a b+ d] '

The lemma follows immediately from this takily= —c(T + a)~'b + d. O
The proof of the lemma proved the following conceptually useful result

Lemmal6.20.LetT: X — Y beaFredholmmapandp: X — Y alinear map.
If p hassulfficientlysmallnormthenthereareisomorphisms: X' @ K — X and
j: Y = X @ C sothat

jo(T—f—p)oi:[g 8i|
for some linear mag: K — C.

We'll alsoneedthenotionof theadjointof anoperatorlf X isaBanachspace
the dual spaceof X is the spaceof all boundedlinear functionalson X andis
denotedX*. GivenaboundedinearoperatorT : X — Y we havegetalinear
operator

T : YY" - X*

by declaring that for g Y*, T*(p) is the linear functional so which sexdo
p(T(X)).

First we give the dual characterization of the norm.
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Lemma 16.21.For all x € X

X[l = sup ([p()])
lell=1

Proof. Fix xo € X Certainly|p(Xo)| < ||plll|Xoll SO

X0l = sup (lo (%))
lpll=1

Definealinearfunctional : span&y) — R by A(Xg) = ||Xo|| andextendingby
linearity to thespan.Applying theHahn-Banaclheorento A andthesubadditive
function p(x) = ||x|| impliesthe existenceof anextensiorof A to thewholeof X
with

2O = [IX|

Lemma 16.22.1f T is bounded thefd * is bounded with the same norm

Proof.
ITI = sup [ITX]
X[Ix[I<1

= Sup | sup p(TX)|
XllIXII<1 plllpli<1

= sup sup |p(TX)
plllel=1x]lIx|<1

= sup [T*(p)ll
pllpl=1
= |ITI.
O
We’ll need the relationship between the cokernel adind the kernel of *.

Lemma 16.23.If T has closed range then

Coker(M)* = ker(T™).

39



Proof. Thereis a naturalmapker(T*) — Coker(T)* by sendingp € ker(T*)
to the linear functionalA € Coker(T)* wherei(y + TX) = p(y). This well
definedsincefor all x € X we havep(Tx) = T*(p)(X) = 0. SinceRan() is
closed,Coker(T) = Y/Ran(T) is aBanachspace.Givenalinearfunctionalx e
Coker(T)* so A: Y/Ran(T) — R and hence defines a bounded linear functional

oY = Y/Ran(T) — R.

Now (T*p)(X) = p(T(x)) = 0. It is easyto checkthatthis invertsthe previous
construction. O

Next we observe that compactness is preserved under taking adjoints.

Lemma 16.24.LetK : X — Y be compact theiK*: Y* — X* is compact.

Proof. This takesa little work. Seefor exampleKreszigIntroductoryfunctional
analysis with applications Theorem 8.2-5. O

Lemma16.25.LetK : X — X beacompacbperator.Thenl + K is Fredholm.

Proof: First we coincidethe kernelof | 4+ K. Let B be the unit ball in
ker(l + K). ThenB = K(B) so B is imageof a boundedsetundera compact
operatohenceds precompactBut B is closedso B is compact.By Riesz’slemma
ker(l + K) is finite dimensional.Next we showthatRan({ + K) is closed.By
lemma 16.17it sufficesto showthatif x; is aboundedsequencsothatx; + K; X;
convergeso y € Y thenthereis x € X sothatx+ Kx = y. Since{x; } is bounded
thereis a subsequence;; sothat{Kx;;} converges.But then{x;;} converges.
Thustheoperator + K is asemi-FredholmApplying thesamearguemento the
adjoint| 4+ K* completes the proof. ]

Next we give a useful characterization of Fredholm operators.

Theorem 16.26. T : X — Y is Fredholmif and only this a boundedlinear
operatorR : Y — X so that

RT—landTR— |

are compact operators.
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Proof. If T is Fredholm then as before we can write
X=X @ker(T)and¥Y =RanT) ¢ C

forcloseobubspaceXic XandC C Y. T|x: X’ — Ran(T) isanisomorphism
soit hasandinverseR. ExtendingR to amapyY — X usingthe direct sum
decomposition gives the required map.

If R existsker(T) is finite dimensionalfrom the equationRT = | + K.
Ran(T) is finite dimensionafrom theequationT R = | + K’ andthe operatoiis
Fredholm. O

Next we consider the composition of Fredholm operators.

Lemma 16.27.LetT : X - Y andS:Y — Z beFredholmoperators. Then
ST: X — Zis Fredholm.Furthermore IndST) = Ind(T) + Ind(S).

Proof: Since(ST)~1(0) = T-1(S1(0)) wehavedim(ker(ST)) < dim(ker(S))+
dim(ker(T)). Similarly dim(CokerST)) < dim(Coker®)) + dim(Coker{T)) so
the composition is Fredholm.

Nextwe considertheindexassertionTo this endconsiderthe family of oper-
atorsA; 1 Y & X — Z & X defined by the equation

| cos(t)S —sin(t)ST
Y= | sin()l  cost)T

for 0 <t < 1. We claimthat A; is a continuousfamily of Fredholmoperators.
But
A — SO0 cog(t)l —sin(t)l | O
t= 10 | sin(t)l  cos(t)l 0T |
So A; is the compositionof Fredholmoperatorsandhenceis Fredholm.Clearly
Ind(Ag) = Ind(T) + Ind(S) and Ind@A;) = Ind(ST). O



Lecture 18 and 19

17 Smale’s Sard theorem

In theearlysixtiesSmalegealizedthatmanyof theideasof differentialtopology
canbeappliedto aid in the studyof PDEsandaspartof this programhe showed
how to generalizeSard’stheoremto the infinite dimensionakase.First we need
to introduce the correct kind of mappings of Banach manifolds.

Definition 17.1. Let X andY be Banachmanifoldsand f: X — Y asmooth
map.We say thatf is a Fredholm mapping if for alt € X the differential

is a Fredholm map

The first problemwe run into with trying generalizeSard’stheoremis that
the notion of measurezeroisn’'t easyto makesenseof in aninfinite dimensional
spacehoweverthe the complemenbf a (closed)setof measurezerois anopen
denseset. Thecritical setof amapis closedsotheimageis atworsta countable
unionof closedsetsof measureero. Thecomplements a countabldantersection
of opendensesets.This notionmakessensean anarbitrarytopologicalspace.ln
particularBanachmanifold which satisfieshe Baire categorytheoremso sucha
set is non-empty.

Definition 17.2. Let X betopologicalspace A setA C X is calledresidualit is
a countable intersection of open dense sets.

Thusthe Baire categorytheoremsaysthata residualsubsebf a metric space
is dense.
Smale’s generalization of Sard’s theorem is

Theorem17.3.Let f : X — Y beasmoothmappingof seconccountableBanach
manifolds.Then the set of regular values bfis residual inY.

To provethis resultwe provea resultof independeninterestwhich saysthat
afterachangeof coordinates nonlinearFredholmmappingdiffersfrom anlinear
isomorphismby a nonlinearmapbetweerfinite dimensionamanifolds.We have
a kind of analogue of Lemma ??

Lemmal7.4.Let f: X — Y beaFredholmmap.Thenfor anyx € X thereare
coordinate charts pU c X > B® K — andy: V CY — B @ C sothat

Vo fog (x, k) = (X, g(x, k).

Proof. Thisis alocalresultsowe mayassumavithoutlossof generalitythatx is
theorigininU c X — B & K andthat f (x) istheorigininV c Y - B® C
whereB is a Banachspace K = ker(d, f), andC = Coker(d; f). We canalso
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arrangethatO @ K is thekernelof do,0) f andthatB & {0} is complementor the
range of ¢,0) f and finally that

| 0
doot = [o o}

f(x, k) = (a(x, k), b(x, k)).

As in the proof of the implicit function theorem consider the map

Write

h:U—-B@pK
given by
h(x, k) = (a(x, k), k).

Thenthedifferential of h at (0, 0) is theidentity sothereis amapq invertingh
near the originNotice that

foq(x, k) = (x,9(x,k)

as required. n

Remark3. This lemmahasa very importantconsequencePoint preimagesof
Fredholmmappingsarelocally homeomorphic¢o the point preimageof a smooth
map betweenfinite dimensionalmanifolds. This the beginningof Kuranishi's
work in deformationtheoryfor complexmanifolds. Kuranshiand Smalewhere
contemporaries at Columbia in the early sixties.

We need one more technical lemma.

Definition 17.5. Amap f: X — Y is saidto belocally closedif for all x € X
there is a neighborhodd of x so thatf |U : UtoY is a closed map.

Any continuousmapfrom alocally compactspaceis locally closed.Banach
spaces a locally compact if and only if they are finite dimensional.

Lemma 17.6. A Fredholm mapf : X — Y is locally closed.
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Proof. Choosechartsasguaranteedy Lemmal7.4 so that we canassumeour
map has the form
f(x, k) = (X, 9(x, k)

If Ac U c B x K isclosedwe mustshowthat f (A) is closed.Let (X, ¢j) bea
sequencén f (A) convergindgo (X, ¢). Thenc; = g(x;, y;i) for somesequencs;.
Sincethey; areboundedn finite dimensionalectorspaceve canassumehaty;
converge.Then clearly x, c) will be in f(A). O

We are now ready to prove Smale’s Sard theorem.

Proof. Let f: X — Y beour Fredholmmap. Since X is secondcountableit is
enoughto showthatthereis a coveringof X by opensetsU sothatthe regular
valuesof f|y areresidual. In fact we will showthatwe canfind U sothatthe
regularvaluesof f|y areopenanddense.Since f is locally closedandthe since
thecritical pointsetof f is closedtherein no problemin choosingU theregular
valuesof f |y is anopenset. Now choosechartsaboutthe pointin questionso
thatthe local representativef f hasthe form guaranteedy Lemmal7.4. The
differential of local representative df has the form

" dongle)
* A 0lk

sothatd i f is surjectiveif andonly if di k) glk is surjectivein otherwords
(X, c) isaregularvaluefor f|y if andonly if cis aregularvalueof k — g(x, k)
for k in asuitableneighborhoodThustheintersectiorof R( f |y) with eachslice
{x} x CNV isdense and hend@(f|y) is dense. O



Lecture 20.

18 Parametric transversality

An important tool in differential topology is the notion of transversality.

Definition 18.1. f: M — N is saidto betransversato Z ¢ N if forallme M

we have
Am f (TmM) + Tt mZ = Tt mN.

This is sometimes writteri MZ.
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Lemma18.2.1f f: M — N is transverseo Z thenthe preimagef —1(Z) is a
smooth submanifold of dimension

dim(M) — dim(N) 4+ dim(2).

Proof. Let x € f~1(Z) and choosecharts (U, ¢) aboutx and (V, ¢) about
f(x) € Z. We canchoose(V, ¢) sothaty (f(x)) = Oandy(V N Z) C
R% x {0} c R". Let p: R" — R"“ betheprojection.Defineg : U — R"* by
g(x) = po ¢ o fly(X). Thentheconditionthat f is travsversato Z impliesthat
the origin a regular value af and hencgy=1(0) = Z NU is a submanifold. [

Remark4. Often one can makecleanerstatementdy introducingthe notion of
codimension.If Z c N is a submanifoldwe definecodimZ) = dim(N) —
dim(2Z). It is thenumberof equationgequiredto cutout Z locally. In theabove
theoremthe codimensiorof Z and f ~1(Z) arethe same.(Theyareeachcut out
by the same number of equations!)

Our aim is to showthat the condition of beingtransversals genericin the
senseof Sard’stheorem. As a modelfor what we wish to prove considerthe
following situation.

Let

F:PxM—N

be a smooth map.

Theorem 18.3. Suppos¢hat F is a submersioni.e. thedifferentialof F is surjec-
tive everywhere Supposdurther that P, M and N are finite dimensional.Then
for eachp € P wegetamap f,: M — N. Givena submanifoldZ of N t for a
genericp € P we havef is transversal toZ.

Proof. SinceF is a submersionF is transversato Z sothatS = F~1(2) ¢
P x M is a submanifoldConsider the projection
p1: S— P.

Fix (p, m) € Sandsetn = F(p, m) Thetangentspaceof Sat(p, m) is (v, w) €
T(p.myM so that dp,m) F (v, w) € ThZ or equivalently

We claimthat p is aregularvalueof the projectionif andonly if fj is transverse
to Z. This follows from
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Lemma18.4.S= F~1(Z) istransversdo { p} x M if andonlyif fpistransverse
to Z.

Proof. The first condition is
08 TuM + (dpmF) 1 (TnZ) = TpP & TyM
The second condition is
dp.mF(0® TmM) 4 TnZ = TaN.

SinceF is surjective these condition are equivalent.
O

Next we observethatthe condition S is transverseo {p} x M is equivalent
to the conditionthat p is regularvalueof the projectionpy|s : S — P. Thefirst
condition is

0® TmM + (dpmF) H(ThZ) = TpP & TnM

while the second is
dp.mp1 : [@p.mF) H(ThZ) = TpP.

Since0® T M isthekernelof dp m p1 is 06 T M theseconditionsareequivalent.
Thuswe canappeato Sard’stheoremappliedto theprojectionp;: S— P to

saythatagenericp € P is aregularvalueandby thelemmafor genericp € P,

fp is transverse t@. O

Theorem 18.5. Supposehat F is a submersioni.e. the differential of F is sur-
jectiveeverywhere Supposdurther that P, M and N are Banachmanifoldsfor
eachp € P wegetthemap f,: M — N is Fredholm.Givena finite dimensional
submanifoldZ of N thenfor a residualsetof p € P wehave f,, is transversato
Z.

Proof. We simply needto checkthemap pi|s: S— P is Fredholm.To thisend
we needto inspectthe proofsof the two lemmasabove.We cansharperthemto

the following.
Lemma 18.6. There an isomorphism

ToP® TaM/(0® TmM + (dp,mF)_l(TnZ) — TaN/dpmF(O® TmM) + ThZ
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Proof. Differential of F inducesamapwhichis easilyseento beanisomorphism
using the fact thaF is a submersion. O

dpvmp]_ . (dp’mF)_l(TnZ) = TpP
Lemma 18.7. There an isomorphism

TpP @ TnM/(0® TmM + (dp.mF) ™ (ThZ) — TpP/dp.mp1 : (dp.mF) H(Th2)

Proof. Now thedifferentialof p; induceshedesiredmapwhichis easilyseento
be an isomorphism using the fact thatis a submersion. O

These two lemmas tell us that the cokernepgfs is finite dimensional.
Thekernelof theprojectionp1|Sistheintersectior(O@TmMm(dp,mF)—l(TnZ).
This intersection Fits into a short exact sequence

0 — ker(dnfp) — (0@ TmM N (dp.mF) " H(ThZ) — ThZ — 0.
and hence is finite dimensional. O
The main application we will have of this result is the following result.

Theorem18.8.LetM, N, andZ besmoothmanifoldswith Z ¢ N a submanifold.
Thesetof mapsf: M — N in CK(M, N) whichare transverseo Z is residual
in CK(M, N).

A little laterin the coursewe will dealwith giving C¥(M, N) the structureof
a Banach manifold.
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Lectures 21 and 22.

19 The Strong Whitney Embedding Theorem

Whitney proved a stronger version of this theorem.

Theorem 19.1. (Whitney1944) Any compactn-manifoldadmitsan embedding
into R?",

Proof. (Sketch).We will work outthecasen is evenandn > 2 andM orientable
first. Considerthe spacel mmof CK-immersionsof M — R2". The conditionof
beinganimmersionis anopenconditionin the CK-topologyon the spaceof maps
sothat  mmis a Banachmanifold. By Proposition15.3 propositionthis space
is non-empty.Firstwe will showthatfor a Baire setof immersionghethereare
only finitely manydoublepointsandthatthe two sheetf imagearetransverse
at the double points.
To this end consider the map

F:lmmx (M x M\ A) = Gr(R?" x Gry(R? x R?".
givenby F(f, x,y) = (Im(Dx f), Im(Dy f), f(x) — f(x’). OnecheckshatF is

asubmersionLet Zj ¢ Gr,(R?") x Grn(R?") bethesetof pairs(I1y, I1,) sothat
dim(ITy N IIp) =1i.

Lemma 19.2. Z; is a smooth submanifold of dimensioré2ni2.

Proof. Write R?" as
MNTL@ M NIy ®T1 NI @ My NIy

ThestandarctoordinatechartaboutlT; representaplanenearll; asthegraphof
alinearmapA; : IT; — I decomposinghis matrix accordingtheto theabove
deomposition we can write

AL = [Otl 51}

Y1 61
viewed as a map

MyNT@ My N Iy — i N3 @ 1 NI

Doing the same of a chart aboup Me get
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az P2
Ao —
2 [Vz 52}

now viewed as a map
MiNT @I N — i N5 @ [ NIy

Theconditionthattheplanesepresentelly (A1, A2) alsointersecin ani-dimensional
subspace is the condition that e« a2 so the total dimension is Zn-i2 O

We seeka map f sothatfor all distinctx,y € M F(f,x,y) ¢ Z x {0}
for anyi. The parametridransversalitytheoremimpliesthatfor a Baire setof f
themap(x,y) — F(f, X, y) istransversdo Z; x {0}. But the codimensiorof
Zi x {0} is2r? 4+ 2n — (2n® — i?) = i% 4+ 2nwhichis largerthanthe dimension
of the domain 2n
Exercise 8.Show that we can in addition assume tliatas no triple points.

Thuswheneverf (x) = f(y) we havethatthe differentialshavetransverse
imagesat thosepoints. We assumehatin theremainderof the discussiorthat f
has been chosen satisfy these conditions.

Lemma 19.3. Ateachpair (x, x") with f (x) = f(X") = ytherearecharts(U, ¢),
(U’, ¢") nearx, x’and (V, ¥) neary so that

v lo fog(Xy, Xo, ..., Xn) = (X1, X2, ..., Xn, 0,0, ...,0)
and

U lo fod (X], Xp, ..., X)) = (0,0,...,0,X], X5, ..., X))
Proof. Since f is animmersiontherearecoordinatesp) = (X1, ..., Xn) aboutx
and ya(y1, ..., Yon) abouty so that

Yito fod(Xe, Xo, ..., Xn) = (X1, X2, ..., Xn, 0,0, ...,0)

andcoordinatesp’ = (Xy, ..., X,) aboutx” andyz = (y;, ..., Y5, abouty so
that
Yo to fod(X], X, ..., Xh) = (0,0, ...,0,X], Xp, - .-, X))

Thensety = (Y1,..., Yn, Ynp1s - - - » Yon) We claim that this givesthe desired
coordinate system. ]
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Thusthedoublepointsareisolatedandhenceby compactnestherearefinitely
many.

Next we definethe sign of a doublepoint. Recallnow thatareassuminghat
n is evenandthat M is orientable. Choosean orientationof M andof R?". If
f(x) = f(x') = y then transversality tells us that we can write

TyR?" = Dy f (TxM) @ Dy f (T M).

As bothsidesof this equationsareorientedvectorspacese canassigna signto
the doublepoint accordingto whetheror not the orientationsagree. Notice that
sincen is eventhe orderof the factorson theright handsideis immaterial. Also
notice that the sign is independent of the choice of orientatidvl of

We will now prove the following key proposition.

Proposition 19.4. If a pair of doublepointsy; andy, of oppositesignwith preim-
ages(x1, X;) and (xz, X5) respectively.Thenwe canmodify f soasto eliminate
the double point without introducing any others.

Proof. Thenchooses andy’ embeddedmoothcurvesn M with endpointsi, x»
andx, X, respectively.Sincen > 2 we canassumehatthe curvesaredisjoint
andthattheirimagesaredisjoint exceptattheendpointsLetI" = f(y) U f(y/)
denotethe union of theseimages. I' is an embeddedtlosedcurvein R2" and
henceboundsa disk o : D? — R?". We canassumehato is transversdo f
and toitself. This implies that chas nodouble points anthat o missesf except
along T

Let N bethenormalbundleof o. Sinceo is contractibleN is trivial sothat
there is a bundle isomorphism

N = D? x R2"2,

Let v andv’ denotethe normalbundlesof y andy’ in M. Theseare again
trivial bundles. Note thatalong f (y), Df (v) definesa distinguishedsubbundle
similarly along f (y), Df (/).

Noticethatthetubularneighborhooaf By thetubularneighborhoodheorem
there is a diffeomorphism

¥ : D% x D*"% - R
Suppose that we can writé = &1 @ &2 so that

Eltyy)=Df(v) and |,y =DfQ)
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Thenwe canwrite the tubularneighborhoof o in a standardvay andwe see
sincewe canpushthetwo dimensionapicturetill thetwo arcsdon’tintersectve
can also push the higher dimensional picture till they don'’t intersect.

We mustreturnto the issueof extendingthe splitting. The splitting givesrise
toamapv : I' — Gry_1(R2"-2) andwe mustunderstandvhenthis mapis null
homotopic. Form algebraictopology we know that Gr,_1(R?"~2?) fundamental
group Z/27Z and is generated by the family of subspaces

I; = sparicos(he' + sin(t)e”, €2, ..., e" 1}

ast variesbetween0 and. In otherwordsthe identificationof I1g with IT, is
orientationreversing.Thusthe orientatiorof &1 & & mustbe thesame athe two
endif the splitting is to extend.On the otherhandthe normalvectorsin the two
disk reverse orientation.

OJ

To provethetheoremwe needto seethatwe first modify f sothatthe signed
number of double points is zer®o this end consider the map

(X1, ..., Xn) > (X1 — 2X1/U, X2, ..., Xn, 1/U, X1X2/U, ..., X1Xn/U)

whereu(xy, . . ., Xn) = (1+x2)(1+x3) ... (1+x2). It is straightfowardf tedious
to checkthat this map hasexactlyone doublepoint andalsonoticethat at very
large distance from the origin this map is quite close to the linear embedding

(X1, ..., X%n, 0,...,0)

in otherwordswe canshrinkthemapdownalot anduseit to modify agivenmap
to haveanotherdoublepoint andwe canchoosethe sign of this doublepointsas
well.

Now we considerthe casethat n is odd (it doesn’tmatternow if M is ori-
entable). Thenthe signof a point of intersections not well defined.In this case
howeverthe relative sign of a pair of intersectionpointsgiventhe pair of curves
y andy’ is still well defined.If the curvesy joining x; andx, andy’ joining x}
to x5 leadto intersectionwith the samesign choosedifferentcurvesnow joining
X1 to X5 and joiningx] to xo.

If M is nonorientableandwe havecurvesy andy’ leadingto a pair of in-
tersectionpoint with the samesignaddto y’ a curverunningarounda loop that
reverses orientation. O
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Lecture 23-28

20 Morse Theory

Definition 20.1. A function on a manifoldis calleda Morsefunctionif all of it
critical points are non-degenerate.

Sorry, no notes.



Lecture 30.

21.2 The Frobenious Integrability Theorem

Nextwe considemwhencanasubbundle of thetangentundleT M of M canbe

broughtinto a canonicalform. In generalitythis is a very complicatedproblem

andwe needto isolatemanageableases.The examplethatcomesto mindis the

casewhereZo|x,y) = TxR" x {0} € TYR" x TxR™™", thetangentoundlealong

a product.A subbundle which is locally diffeomorphic togds called integrable.
Notice that & is has following propertyif

n n
: 0 : 0
_ [y my —— _ (e my ——
Xl_z a(x,...,x)axi, and XZ_.E b(x,...,x)axi
is a pair of local sections of gthen the bracket

n . .

. ob! coal, 0
X1, Xo] = a— — b — :
[Xa, X iJX::l( oX! ax')axl

is alsoa local sectionof E. A subbundlewith this propertyis calledinvolutive.
Clearly any integrable subbundle is involutive.
Examples:

2zx d 0 2zy 0

0
Ep=spaf— + —————, — F+ — > —
1=3P r{ax+1+x2—|—y282 ay+1+x2+y282
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is involutive indeed it field of tangent planes to the family of paraboloids
z=11+x>+Vy?

On the other hand

is notinvolutive. In factin hasthe mterestlngpropertythatgiven anytwo points
andanypathconnectedheighborhoodhereis apathtangento Z5 joining thetwo
points contained in the neighborhod@early then & is not integrable.

The following provides a converse.

Theorem 21.4.(Frobenius).If E is involutive then it is integrable.

Proof. Choos¢dirst acoordinatgpatchaboutof thefrom¢ : U — R" x R™ " so
that at p(m = 0 and ¢ (§m) = ToR" x {0}. Set & = ¢, (E).

Thenin someneighborhoodv x W of ¢(m) = 0 we canfind a function
f:VxWxR"— R™" |inearin thelastfactorwith f (0,0, ) = 0 andsothat
any & € E can uniguely be written as

&E=(e f(x,y,e).
There is a natural homotopy ofpd0 E; given by
2 = {(e tf(tx,y,e)le e R"}.
We will show that there is a one parameter family of diffeomorphigimnso that
1. KO)=0and

2. (F)«(Xt) = Eo.

ThusF; is the desired change of coordinatEsrx € V let
XX(va U)) == (X7 f(U, w, X))

Thenthe fact the E; is involutive implies that [ Xy, Xy] € E1 but [Xy, Xy] is
certainlyof theform (O, x) sincethe constanwectorsfieldsx andy commuteso
[Xx, Xy] = 0. More explicitly

[XX7 Xy] = (09 D(v,w,x) f (y’ f(v9 w, y)’ O) - D(v,w,y) f(X, f(U, w, X)’ O)) =
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Let Xi (v, w) = (O, f(tv, w, v)). A typicalsectionof Et is X; x(u, v) = (X, tf (tv, w, X)).

We can work out the brackek}, X x]

[Xtv Xt,X] = (O,tD(tv,w,X) f(o’ f(tU, wv U)a O)
—tDto,w,v) (X, f(tv, w,x),0)— f(tv, w, x))
= —tDtyw.x f(v,0,0)— f(tv, w, X)
d
= ——X
dt t,x
ThustheLie derivativeof [( X;, %), Xt.x] = 0 or equivalentlyif F is theflow of
the time dependenvectorfield thenwe have(F).(Xsx) = Xstt.x asrequired.
O

Here is a more intuitive proof by induction on the dimension.

Proof. Inductionon the dimensionof the subbundle.The caseof dimensionone
follows from the standardiorm for an non-vanishingvectorfield. The question
is alsolocal so we assumehat we are given a subbundleof the tangentbundle
of R" definedin a neighborhoof 0 € R". Supposeve haveprovedthe result
for all subbundle®f dimensiond. Let E be aninvolutive subbundleof TR" of
dimensiond + 1. Chooseanowherevanishingocalsection X, of E. Nextchoose
acoordinatesystemz', ..., 2", centeredat0, sothat ;% = X. TR"1 x {0} is
an integrablehenceinvolutive subbundle. E' = E N TR"1 x {0} definesa
subbundlen a neighborhoodf 0 of dimensiond. SinceE’ is theintersectiorof
two involutive subbundledt is involutive andsotheinductionhypothesisapplies.

We canfind a coordinatesystemy?, ..., y" centeredat O sothat E’ is givenin a
neighborhooaf 0 asthespanof y2, . .., y9 In thisnewcoordinatesystemX may
not be straight but we have that
0 0
— ey, —, X
oyl ayd

forms a basis fokE. We can write
d
- 8
X = a —
LT
i=1
whereXg is section ofT W. Then

0 0
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is alsoa basisfor E. Since Xy is asectionof TW sois [ay' , Xo]. By involutivity
it is parallelto Xg sothereis asmoothfunction f; definedin aneighborhooaf O
with

[ Xo] = f1Xo.

oyt
Set )
o1 = —intd fiw,s,y?, ..., yNds
Then set
X1 = exp@1) Xo.
It is now easy to check that
0

—_— X == .
[8y" 1] =0

X1 is still asectionof TW so[--
function f; so that

By Xo] is parallelto X; andwe canfind asmooth

[8 o Xa] = f2Xg
We claim that
ofo B
ayl
To see this notice that
0 0 ofr
— [—=, X — X1 =0.
[y Ly Xal = 1% =
Using Jacobi’s identity we also have
0 0 0 0 0 0
— [, X4 = [—, —]X — [—, X
[8y1’[ay2a 1] [[8y1’8y2] l]+[8y2’[8y1’ l]
= 0.
So if we set
y2
o= —/ fiow, y s y3 ..., yHds
0
and
Xo = e%2 X,
we have 5
—_—, X = O
[ay' 2]
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fori = 1,2. Continuingin this fashionwe eventuallyfind Xy commutingwith
yl, ..., y4 andwe canconstructhe desiredcoordinatesystemaswe did in class.
O

21.3 Foliations

The local structureof the previoussubsectiorhasasits global counterparthe
notion of a foliation.Here is the precise definition.

Definition 21.5. A foliation F of M is adecompositiorof M asa disjointunion
of connectedmmersedsubmanifoldsM = [ [, 5 £« calledthe leavesof F so
that eachpoint hasa chart (U, ¢) so that under¢ the decompositiorobtained
from the decomposition] [, 5 £« N U by taking componentgjoesover to the
decomposition of R = [ [, gn-« R¥ x x.

It is importantto realizethatin the abovedefinition we do not requirethe
leaves to have the subspace topoldgy example Consider the 2-torus

T2 = R?/7?

Fix a pair of real numbers(¢1, ¢2) sothat¢1/¢2 is irrational. The cosetsof the
subgroud” generatedby {[t 1, tg2]|t € R} giveriseto afoliation with leaveshat
are not locally closed subsets.

Remark6. The spaceof leavesof a foliation is one settingwhereonerunsinto
non-Hausdorfimanifolds. The spaceof leaveshasa naturalcoveringby charts
(These may not be injective so be careful).

22 Characterizing acodimensiononefoliation in terms
of its normal vector.

Let F be a two dimensional foliation of &

Proposition 22.1. Let n be a local normal vector field t6. Then

n-(Vxn =0
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Proof. Write
B

n=a 0 + b +cC
X ay 0z’
By rotatingthe coordinatesve canassumehatnoneof a, b or c arezero. Then
F is locally spanned by the local sections
d ad a ad a

—-b—+a—,c——a—,c— —b—

ay 09X 0z ay 0z

and we have

[—bi-l—ai,ci—aa] = [—bi,—a3]+[ai —]+[ i —a—]

X ay 9X 0z X 0z ay oy’
da o b o ac a da 9 da o da o
= b——--a——+a——-c——+-a——+a——
X 0z dZ 0X ay 90X ax oy ay 0z a0z oy

oc db 9 fda d oa o oa d aaa

= (- —+————— ——+—C——

ay 0z 8x+8zay E)yaz)Jr aX 0z XAy’

Since we are assuming thatis involutive we have
((E - —) —b - ) =
Sincea # 0 we have:
((%——) —b——)—O

This sameequationhold for any cyclic permutationof a, b, ¢ and simultaneous
permutation of, y, z. Adding the resulting three equations gives

(80 Ja (8a ) (ab aac) B
2G5~ 57 Gz~ 3x 0 G~ 5y =

as required. n

23 The holonomy of closed loop in a leaf
Definition 23.1. Let F be a foliation of a manifold M. A transversato F is

smoothlocally closedsubmanifoldof M which meetsall leavestransversallyA
local transversal is a transversal which is diffeomorphic to a disk.
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To discuss the holonomy we will use the terminology of a germs.

Definition 23.2. Let X, Y be smoothmanifolds. Fix a pointx € X. A germof

smoothmappingsat x is the equivalenceclassof functionsf : U — Y where
U c Xisanopenneighborhooaf x underthe equivalenceelationof agreement
uponrestriction. Thatis f : U — Y is equivalenttog : V — Y if thereis a

neighborhoodV of x so thatf |w = g|w.

Let r; and, belocal transversalitting the sameleaf £ of F. 1 andr, are
bothcontainedn thesamefoliation chartU. Thenthechartdefineshegermof a
diffeomorphismfromzatg N Ltoatn N L

Lety: St — £ beaC? closedloop basedatx in aleaf £ of foliation F. Let
7 be a transversal t¢ passing through.

24 Reeb’s stability theorem

Definition 24.1. A codimensioronefoliation is calledtransversallyorientableif
the normal bundle v= T M/ TF is orientable.

Theorem24.2. Let F bea normallyorientedtwo dimensionafoliation of a com-
pact orientedthree manifold. If F containsS? as a closedleavethenthe pair
M, F is diffeomorphic toS? x S* with the product foliation by two-spheres..

Remark7. To seethatthe normally orientedconditionis importantin the state-
mentof theresultnotethefollowing. S? x S! hasanorientationpreservingnvo-
lution 7 : * x St - S? x St given by

t(x, €)= (=x, e ).

This is a fixed point free involution so the quotientX = S? x St/(x, €?) ~
(—x, e'%) hasthe structureof manifoldas well. The productfoliation is of S? x
Stis carriedto itself by r and descend® a foliationof X. The inducedoliation
is not normally oriented(canyou seethis). Most of theleavesaretwo spherebut
there are two leaves which are real projective planes.

Lemma 24.3. Let¢ : D2 — M be an smoothembeddingf D2 into M2 with
image containedin a leaf L of 7. Thenthereis a foliating coordinatepatch
$ : D? x (—¢, €) > M3 extending ¢
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Proof. Firstof all it is straightforwardo constructa coordinatepatchy : D? x
(—a, a) > M extendingp sothatF is transverseo all they ({x} x (—a, a)) and
soT F agreeswvith Dg ¥ (ToD? x {0}). TransferF to afoliation of D2 x (—a, a)
still called . Let (r, ) be polar coordinates in the disk.

Define Gon (D?\ {0}) x (—a, a) to bethespanof aa_r and%. By construction
G is transverséo F andsotheintersectionT F N G definesaline field on (D? \
{0}) x (—a, a). Thisline field is spannedy avectorfield of theform v(r, 6, t) =
a% +af(r, 6, t)%. We havea(r, 6, 0) = 0 anda(0, 6,t) = 0. andlet Fs denotethe
time s flow of v. Fs(r,0,t) = (r + 5,0, Ts(r, 6, 1)) whenit is defined. Choose
b small enoughso that the time 1-flow of v with initial conditions(0, 6,t) for
t| < b is defined. Defineamap¢ : D? x (=b,b) — D2\ {0}) x (—a, a)
by sending(r, 9, t) to the point (r, 6, T, (0, 6,t)) or in wordsthetimer flow of
(0, 6,1) underv. This maptakestheline segmen{(r,6,1)|0 <r < 1} to aleaf.
Sincefor any6 v(0, 6,t) = % is tangentto F, ¢ carriesD? x {t} ontoa leaf.
Thusé¢ is the required map. O

Next we provethatin a neighborhoof atwo-spherdeafthe foliation hasa
product structure.

Lemma 24.4. Supposéhat £ is a leaf of F which diffeomorphicto S? Theis
a saturatedneighborhoodN of £ which diffeomorphicto S x (—a, a) with the
product foliation.

Proof. Decomposes? = D2 U D2. By the previouslemmawe canfind standard
neighborhoods and glue them together to get the result. O

Nextwe will showthatthe setof pointson a leaf diffeomorphicto S? is both
open and closed.

Theorem 24.5. Let F be a transversallyorientedfoliation. Thenthereis a em-
beddingy : St — M transverseo the leaves.In fact y canbe choserto pass
through any point oM

Remark8. Thisis notto saythattheimageof y hitsall theleaves.Thisisamuch
strongercondition. A foliation with thisadditionpropertyis calledtaut. TheReeb
foliation of S® is anexampleof anon-tautfoliation. Any flow line canonly touch
the torusleaf oncebut a closedcircle transversdo atorusin S® mustmeetthe
torus in an even number of points.
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Proof. Fix apointxg € M. SinceF is transversallyorientedthereis a nowhere
vanishingvectorfield, v, whichis transverseo theleaves.Let F; denotethetime-
t flow for this vectorfield and considera particularflow line, y, of this vector
field. If this flow line is a periodicorbit we aredoneso supposet is not. Then
we claim thatthereis leaf thatis hit infinitely oftenby the flowline. We canfind
X € X andsequencé, — oo sothatlim;_, F;(Xo) = X. LetU beafoliation
chartin M aboutx. We canconstructa smallerchart,V, aboutx by usingthe
vectorfield v to flow awayfrom the leaf £ containingx. In V if apointis ona
connecteccomponenbf the partof the flow line in V it hits £. Sinceinfinitely
manypointsof y in differentcomponentsf y NV arecontainedn V theclaim
follows.

Thuswe canfind a pieceof orbit which containsxg andhits someleaf twice
andthepointsof intersectiorarecontainedn thepatchV. It is straightforwardo
modify the piece of flow line in this patch to close it up. O

Now considerour transversallyorientedfoliation of M3 containinga leaf £
diffeomorphicto S°. Let y beaclosedtransverseurvepassinghrough£. Let T
denotetheunionof all theleaveswhich passthroughI'. We claimthatI" is all of
M and that yhits each leaf the same number of times.

By Lemma?24.4T is open. Also by this lemmatherefor eachpoint y of y
thereis a compactfoliated neighborhoodliffeomorphicto S* x [0, 1]. By the
compactnessf y finitely many suchneighborhoodsovery butthenT is the
unionof finitely manyclosedsetsandhenceclosed.Finally considerthe function
which associatet eachpointy of y theof pointsof y containedn thesamdeaf
asy. By Lemma 24.4 this is a continuous function and hence is constant.

Finally choose a new which hits£ once and hence all leaves ondéen

h:Lxy —> M

givenby takingy € £ andt € y to theuniquepointin theleaf throught hit by
the flow line of vthroughy is the required diffeomorphism.
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25 Diffferential forms and de Rham’s Theorem

Let V beafinite dimensionalectorspaceoverthereals.Thetensoralgebraof V
is direct sum
TenV) =R@V @ V.. @ Vvek

It is madeinto analgebraby declaringthatthe productof a € V& andb ¢
Veisa®@b e V@K |t is characterizethy theuniversaimappingpropertythat
anylinearmapV — A whereA is analgebraoverR extendgo a uniqguemapof
algebras Tery) — A.

The exterior algebra algebra is the quotient of exterior algebra by the relation

v®uv=0.

The exterioralgebrais denotedA*(V) or A(V). It is customaryto denotethe
multiplicationin the exterioralgebraby (a, ) — a A b If vy... vk is abasisfor V
then this relation is equivalent to the relations

vi Avj = —vj Ay for i #j,

Vi A Ui 0

Thus A*(V) has basis the products
Vig A Uiy - - . Vi

wheretheindicesrunoverall strictly increasingsequencesf numbersetweerl
andn
l<ij<ip<...<ik<n.

Since for each khere are<n

k) such sequences of lengtiwle have

dim(A*(V)) = 2",

A*(V) sincetherelationis homogenouthegradingof thetensoralgebradescends
to a grading on the exterior algebra (hence the *).

We canapplythis constructiorfiberwiseto a vectorbundle. The mostimpor-
tant examples the cotangertbundle of amanifold T* X in which case we gethe
bundle of differential forms

A*(T*X) or A*(X).
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We will denotethe spaceof smoothsectionsof A*(X) by *(X). In local coor-
dinates a typical element of*@X) looks like
w = Z a)iiiz_._<ikdxil/\dXiz/\...dXik.
1<ij<io<...<ik=<n

Sincethe constructiorof A*(X) wasfunctorialin the cotangenbundlethese
bundlesnaturally pull back underdiffeomorphismandif f : X — Y is any
smooth map there is natural map

f*:Q%Y) - Q*(X).

Themostimportantthing aboutdifferentialformsis the existenceof a natural
differentialoperatoithe exteriordifferentialdefinedocally by thefollowing rules

of .
df == Zmdxl

do = > dwiii,...<i A dXTAdX2 A L. dXE,
1<ij<io<...<ik=<n

Noticethatwe can’tinvariantlydefinea similar operatoronthetensoralgebra.
If we have a one form _
0 => fidx
i=1

and try to define f
_ i o j i
D6 = .; 70X ®dx
then when if we have new coordinatgs. . . y” we have

=Y
and
n
0 = Z gmdy™

m=1
where ,
ax!
Om = flay_m



= a?aT/lay_mdym@dy
i gyl
- A ey
— E98)/—]cr'ng—);:dym@)dy'
_ %%dw®dy
= (aym(. y|> 3y ma .)dy'“@dy
_ Z 89'o|ym® y—f.a —rdy" @ dy
m= 1

Thusour definition dependsn the choiceof coordinates.Notice thatwhenwe
passto the exterioralgebrathis lastexpressiorvanisheghatexteriorderivativeis
well defined.

Theorem 25.1.d2 =0

Proof. Fromthedefinitionin local coordinatest sufficesto checkthatd? = 0 on

functions.
n 2f

9 . .

2

d*(f)= ) o dX adxd =0
ij=1

since thef smooth so the matrix of second derivatives is symmetric. O

Proposition 25.2.

d@nrb)=danb+ (—1)%98 A db.
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Proof. The bilinearity of the wedgeproductimplies thatit sufficesto checkthe

result when _ _ _
a= fdxTAdx2A... Adxk.

O
Definition 25.3. A cochaincomplexis a gradedvectorspaceC = > °,C; to-

gethewith amapd : C — C sothatdG c Cj;1 andd? = 0. Thecohomology
groups of a cochain complex are defined to be

H'(C,d) = ker(d: C' - C'*Y)/Ran(d: C' 1 — C")



Lecture 32.

25.2 The Poincarelemmaand homotopyinvariance of the DeR-
ham cohomology

Thereareabunchof basicforumlasin dealingwith forms,the exteriorderivative
and contraction and the Lie derivative.

RecallthattheLie derivativeis definedasfollow. Givenavectorfield v let F;
beits timet flow. By pull backthis actson formson the manifold. Fixing a point
x € X we canwatchwhathappengo theaform atthe point x undertheflow, i.e

consider the path
R (0Rx) € A(X)

The derivative at &= 0 is called the Lie derivative

d
Low = L F (@Rw)h=o € AX(X)

More generallythereis a Lie derivativeon tensors.Note thatif f is afunction
then this definition amounts to nothing more that

£Uf = %f o Ft(X)t:() = Uf(X) = Lvdf

Sincethe exteriorderivativeis naturalunderdiffeomorphismst follows thatLie
derivative commutes with.dHence

L,df =dL, f = di,df.
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More generally we have Cartan’s formula or the homotopy formula.
Lyow = diyw + ,dw.

We provethis by inductionon the degreeof the form. We havecheckedthe
caseof functions. Furthermoret is enoughto checkthatthat both sidessatisfy
the Leibniz rule.

Ly(wAn) =LylwAn) =dyo+ ,do.

Leti : M — R x M betheinclusioni (x) = (0,x) andletr : R x M — M
bethe projection.We claim thattheinducedmapson cohomologyareinverseof
each otherThus we have

Proposition 25.4. The groupsH*(M) and H*(R x M) are isomorphic.

To prove this we will construct a malp

26 Cech cohomology

LetU = {Uy|a € Albeaopencoverof atopologicalspace.Usingthe combina-
toricsof the coverwhencandefinea complexasfollows. Let CP(4l) bethespace
of all locally constant functions op + 1 fold intersections

Uewo M. NUq,
with the symmetry property that if és a permutation of Q.. ., p then

flUgo N ... N Uq, = 8igNn(0) f[Ug,q N ... N Ug,, -

We write fag..cp fOr FUgq N ... NUg,
There is a natural codifferential on such functions

§:CPl) — CPHy)
defined by the formula

p+1

(Sf)ao.“ap_‘_l = Z(_l)l foto...&iolp_;,_l'UaOﬂ...ﬂU
i=0

“p+1
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If we order A thenwe canconsideronly orderedintersectionsand definea
similary complexwhich hasisomorphiccohomology.In practicethis is how one
work but the first definition is choice free so a bit prefereable.

Example. Think of S? asthe boundaryof tetrahedron Cover S? by the four
openwhich arethe complement®f the four closedtwo dimensionafaces.If we
label these setdq, Uo, U3, Uy then the non empty two fold intersections are

Ui NUs UgNU3, Uq, NUg, Uo NU3, Us N Uy, Uz N Uy,
and the non-empty three fold intersections are
UiNUaNUz, UiNUaNUg, UiNU3NUg, UpoNUz N Ug

the four-fold intersection is empty.
Then all interections are connected and the complex is

R4 — RS > R?

with the maps

So(f1, fo, f3, fa) = (f1 — fp, f1 — f3, f1 — fa, fo — f3, f2 — fa, f3— f2) (8)
and

81(f12, 13, 14, fo3, f24, f34) = (fo3— f13+f12, fos— f1a4f12, f3a— f14+ f13, f3a— fou+f23)
9)

The kernelof §g is clearlyvthe constantfunctions. Cokernelof §; is onedimen-

sional and hence we ha¥¢*(U) = R, O, R.



Lecture 33.

26.1 refinement

By a refinementJ of an open covetl we mean &5 = {Vg|8 € B} and a map
r : B — Asothatforall € B we haveVg C U;g). If we have a refinement

then there is a chain map of tikeck complexes.
F:CPl) — CP()

given by the formula

r({ fﬁoﬁlﬂp}) = { fﬁr(o)ﬁr(l)...ﬁr(p) |Vﬂr(0)/3r(1)~~ﬁr(p)}

Thus there is a map 5 5
F*: H* (W) — H*(D).

Thuswe havean directedsystem(well really needto checkthatif we have
two refinement$s, r andQ, r’ thenthevinducedmapsr~ andr’ arethesame.)The
direct limit of this system is called théech cohomology oK.

27 The acyclicity of the sheaf ofp-forms.

Thenwe canconsideranotherversionof the of the Cechcomplex. Thatis we
defineCP (L, Q9) to beall colletionsof g-forms wy,,.«, definedon Uy, with
the symmetrypropertiesabove. The sameformula abovedefinesa differential

mapping 5 5
CP, Q%) — CPHL(y, Q9

Given an open cover {l consider tBech complex

L CL Py A R Py S Ly Py &
Lemma 27.1. This sequence is exact so long as 0.

Proof. Fix a partition of unity {¢z|8 € B} subordinateo i = {Uy}sca. The
supportof thegg arearefinemendf theU, andwe choosearefinemenfunction
r: B— Asothatsupppg) C r(8). Define

K : CKHL(U: Sap) — CKU: Sap)
by

K (a))|Ua0al...ak,1 = Z ¢/3w|ur(ﬁ)aoal...atk_1
BeB
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Sincethe supportsof the ¢gs arelocally finite by definition of partition of unity
this is well definedNow consider where k 1

K + K8)0lUyy

BeB

k
Z(_l)l K (w) |Ua0...&i B + Z ¢l3 (8w)|ur (Bagag...ak
i=0

k

(_1)I Z d)ﬂa)lur(ﬁ)ao.“&i e

i=0 BeB
k .
+ D 0l — D D DI B0, g )
BeB BeB j=0
= w|U(x0a1...ak'

We haveusedthatthe sumif locally finite to rearrangehe ordersummation.
Thuswe have provedthe identity is cochainhomotopicto zero and so the co-

homologygroupsare zero. Note thatif k = 0 thenwe simpleget zeroandthe
arguement proves nothing. m

Definition 27.2. A sheaf that admits partitions of unity is called fine.



Lecture 35.

29 The immersion theorem of Smale

Let Imm( X, Y) denotethe spaceof immersionof X into Y. Fixing basepoints
x € X andy € Y andaninjectionf : Ty X — TyY. letimm (X, Y) bethespace
of base point preserving immersions in the sense that

f(x) =y, dy f =€&.

Let Imm(X, Y) denotethe spaceof pair (f, f’) wheref : X — Y isan
immersionand f’ is a sectionof f*(TY) — X with the propertythat f'(x) >
Ran(d, f) andlet Imm i(X, Y) denotethe basedversion.Hereis the proof of the
covering homotopy property of the natural map

7 1 Imm(DK, R") — ImmY(S<1, rRM

where 7 (f) = (f|g-1, g—;|sk71).

Theideaof the proofis the following. The conditionof beinganimmersion
is openandthereis certainly a sectionof = (indeedlinear) if we disregardthe
immersioncondition so we canalway lift a given a homotopyfor a shorttime
wherethetime depend®n how closeto failing to beanimmersionthetime zero
lift is andon how big the derviativesof the sectionare. Smale’strick is morally
to essentialljnomotopehetime zerolift to bevery muchinsidethe spaceof im-
mersion.Thenhecanlift the homotopya fixed amountalongthetime parameter
in the homotopySee“The classificationof immersionsof spheresn Euclidean
Spaces’by StepherSmalein the Annalsof Mathematicsvol. 69, No. 2, March
1959, pg 327.
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18.965 Fall 04
Homework 1

FEzercise 1. Prove that the grassmanians Gri(F") for F = R, C, or H are
smooth manifolds.

FEzercise 2. Prove that the O(n) and U(n) are smooth manifolds. Here is
one hint. Show that if A is a skew symmetric (skew hermitian) matrix then

O=(I+A)(1— A"

is orthogonal (unitary). Thus we have map from a Euclidean space to the
coresponding group. Show that this map is a homemorphism onto an open
neighbhor of the identity and its inverse gives us a chart. By translating the
map by elements of the group show that you get an atlas.

FEzxercise 3. In class we noted the coincidences of the basic smooth manifolds
St =RP', S? = CP!, S* = SU(2) = Sp(1), RP? = S0(3),

It is also the case that Gry(R?) = Gri(R?) = RP3. Show that in general
Gri(F™) is diffeomorphic to Gr,_(F") where F = R, C,or H.

Given these coincidences the obviously distinct four dimensional (compact
without boundary) manifolds we know from class are

1. g4

2. 5% x S1

3. 52 x 52

4. S§% x RP?

5. 5% x St x St

6. St x St x St x St
7. RP*

8. RP? x St

9. RP? x RP?



10. RP? x St x S*
11. CP?

12. HP!

13. Gs(RY)

14. U(2)

Which of the manifolds in the list are diffeomorphic?



18.965 Fall 2004
Homework 2
Due Monday 9/27/04

Ezercise 1. Let F : R — R is a C? map with uniformly bouned first and
second derivatives. I’ induces a map

F:C°0,1] — C°0,1]

by composition; F(u) is the function ¢ — F(u(t)) Show that F'is a C" map.
More generally let given a Banach space B let B = C°([0, 1], B) be the be
space of contiuous maps from [0, 1] to B. Show that B° is a Banach space. If
F : B — Bis a C? map with uniformly bounded first and second derivatives,
then the map induced by composition F' is C*

Exercise 2. Let A : B — B be a bounded linear operator. Consider the
linear ODE in a Banach space

du
— 4+ Au=0
dt+ U

with the intial condition u(0) = v. First show that the solution is given by

€7tAU

where the time dependent operator e ** is defined by showing the usual

power series for the expotential is convergent in the Banach space of bounded
linear operator from B to itself. Let BY = C°([0, ¢], B) and B! = C*([0, €], B).
Then we can view the differntial equation as giving rise to a map

L:B'—-B"'xB

where p
L(u) = (d—:fAu, u(0)).

Show that L is invertible and indeed its inverse is given by the familiar
formula

t
L™ (u,v) = e o +/ eA Dy (s)ds
0



Exercise 3. The exercise uses the previous one to prove the existence and
uniqueness theorem for first order ordinary differential equations. Let B be
a Banach space and let X : B — B be a C? map with bounded derivaitves.
We seek a solution to the differntial question

du

X () =
dt+ (u) =0

subject to the initial condition u(0) = v. Let B® = C°([0,¢], B) and B! =
C1([0,€], B). Then we can view the differntial equation as given rise to a
map
F:B'— B"xB
where
du

F(u) = (o + X(u), u(0)).

Assuming the first exercise show that this a C'' map. Show that The differ-
ential at 0 is the map

DoF(u) = (%‘ + Do X (u), u(0))

which by the second exercise is invertible. Conclude from the this and the
inverse function theorem the existence and unique ness theorem.

Ezercise 4. Suppose that V' — X is given as a subbundle of the trivial bundle
X X R" — X via a family of projections II. Then the induced connection
is Il o d where d denotes the ordinary derviative. Given a local basis for V
find the connection matrix for the connection. Use this formula to find a
connection matrix for v — CP"™ be the tautogical bundle. (The tautological
bundle sits inside the trivial C"*! bundle.)



18.965 Fall 2004
Homework 3
Due Friday 10/9/04

FEzercise 1. Prove Riesz’s lemma. The unit ball in a Banach space is compact
if and only if the Banach space is finite dimensional.

Ezercise 2. Prove that the adjoint of a compact operator is compact. Prove
that if K : X — Y is compact and T : Y — Z is bounded then TK is
compact.

Exercise 3. Let L*(S') be the set of square integrable functions on the unit
circle and let L?(S') be the set of functions so that f and f’ are square
integrable. Show that the inclusion L?(S') — L?(S%) is compact.

Hint: Let f € L?(S') then we can expand f in a Fourier series;

f= Z aneme.
n

and

Z lan|? < oo.
n

If the first derivative f’ € L?(S') is square integrable then

237‘L2|0Ln|2 < 0.
n

Ezercise 4. Suppose that a is a C! function on the unit circle. Using the
previous exerise show the operator

u—iu + au

is Fredholm.



18.965 Fall 2004
Homework 4
Due Monday 10/19/04

Exercise 1. Proof that the evaluation map
ev: CF(M,R") — R"
is C! and that it is a submersion.

FEzercise 2. Prove that there is an immersion of 72 \ {pt} into R?. Prove
that there is an immersion of 7" \ {pt} into R"™. (This is Exercise 2 pg 27 of
Hirsch’s “Differential Topology.”)

Ezxercise 3. An s-fold point of a map f: M — R" is a point x € M so that
there are s distinct points © = x4, ... x, so that

flz) =... = f(zy).
Let M and N be manifolds whose dimensions satisfy
s+1/s<n/dimM < s/s—1

Show that there is a residual set in C*(M,R") so the set of s + 1-fold points
is empty and the set of s-fold points is a smooth submanifold of dimension
ms—(s—1)n. (This is derived from Exercise 7 pg 27 of Hirsch’s “Differential
Topology.”)



18.965 Fall 2004
Homework 5
Due Monday 11/8/04

FEzercise 1. Let M be smooth manifold embedded in RY. Show that for a
residual subset of the dual space of RY the restriction on a linear functional
to M is a Morse function.

Ezercise 2. Show that every Morse function on a closed orientable 2 dimen-
sional manifold of genus g has at least 2¢g + 2 critial points.

Exercise 3. Show that the space of n x n symmetric matrices with at least
one eigenvalue of multiplicity greater than one is a stratified space with the
stratum stratum of larget dimension being of codimension three.

Exercise 4. Show that every real vector bundle £ of rank £ over a manifold
X of dimension d can be pulled back from the grassmanian

G?"k (Rker) .

Hint: If £ is pulled back then there is a fiberwise injective map

g N €k+d
Use parameteric transeversality to find the codimension of the set where a
fiberwise linear map

f N 6k+d

is not of full rank.



I I I Massachusetts Institute of Technology

18.965 Fall 2004
Homework 5
Due Friday 12/10/04

FEzxercise 1. Let

Doioli + 1)z
(20,21, 22, .., 2n) = =5
Zi:O |2i|?

This defines a function on the projective space CP". Find the critical points of
this function and compute their indices. Use the Morse complex to compute
the homology of CP".

Ezercise 2. Find a good cover of a surface of genus g and compute the Cech
cohomology of this cover.

Exercise 3. Prove the following formulae where a and g are forms and v and
w are vector fields.

L (o AB) = (o) A B+ (=1)la A (1,8)
2. [Ly, Lo] = Lipu)

Ezercise 4. Find a formula for £,« in local coordinates.

Ezercise 5. Show that if & is a good cover (all intersections are contractible
or empty) and il is a refinement of & then

H(U) = H(®)
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