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THE CONTACT SYSTEM ON THE SPACES OF
(m, ()-VELOCITIES

J. MUNOZ, F. J. MURIEL AND J. RODRIGUEZ

ABSTRACT. In this paper we define the contact system on the space an of
the (m, £)-velocities of a smooth manifold M. For each velocity pfn S an, the
tangent space Tpanf; and the R£ -module Derg (C°(M),RE,) are canoni-

cally isomorphic; as a consequence, pfn gives rise to a morphism pfn* between
the RS -modules Derg (R, an_l) and Tpfn_len_l which is injective if and

only if pfn is regular. If X is an m-dimensional submanifold of M and pfn is
a regular point of X£ , then the image of the above morphism is the tangent
space to X,l;l_l at pfn_l; in this sense, pfn is a frame for X,l;l_l at pfn_l

Each smooth differential form on M can be prolonged to a form on M£,
with values in an; the inner product of the lift of each (m + 1)-form w on M
to M,Zn_1 with the image by each pfn* of a basis of DerR(an7 an_l) gives rise
to an an_l—valued 1-form defined on an The Pfaff system generated by the
real components of those 1-forms, when w runs through the set of (m+1)-forms

on M, is the contact system on an

1. The spaces of (m, ()-velocities

In this section we fix the notations used along the paper and recall the basic
definitions and properties of the spaces of A-points and (m, £)-velocities of a smooth
manifold. A more detailed exposition may be found in [5] (see also [6, 4, 3, 2]).

By a local algebra (also called Weil algebra in [3]) we shall mean a finite dimen-
sional local commutative R-algebra A with a unit.

If A is a local algebra and m its maximal ideal, then there is a nonnegative
integer ¢ such that m® # 0 and m‘*! = 0; this integer is called the height of A,
according to Weil [6]. The width of A is the dimension of the vector space m/m?.

Let us denote R = R[[X71,..., X;n]] and let m (RY) be its maximal ideal; the

+1

quotient ring Rf = R /m (Ro%) is a local algebra of height ¢. In general, if

my,...,mg,l1,... L are positive integers, then the tensor product
ool _ b ¢
le,...,);nk - le ® e ® ]RTTI;k
is a local algebra of height ¢1 + - - -4 {;. Each local algebra A4 is a quotient of RY
by an ideal of finite codimension (for a proof see [3]).
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Definition 1.1. Let M be a smooth manifold and A a local algebra. An A-point
or near point of type A of M is an algebra homomorphism p# : C*° (M) —
A. A near point pA € M4 is said to be regular if the algebra homomorphism
pd: O (M) — A is onto. We will denote by M# the set of A-points of M; the
set of regular A-points of M will be denoted by M4,

Examples. (1) The space of algebra homomorphisms Homg(C™ (M), R) is well
known to be M, hence the R-points of M are the usual points of M. Thus, if A is a
local algebra, the composition of each A-point p4 € M4 with the homomorphism
A— A/m~a Ris apoint p € M. We say that p# is an A-point near p and that p
is the projection of p* into M.

(2) If D = R}, the algebra of dual numbers, then M = T'M | the tangent bundle
to M.

(3) When A = RY | the space of R: -points of M will be denoted by MY ; it
agrees with the space JE(R™ M) of (m, ¢)-velocities on M defined by Ehresmann
[1]. Moreover, the regular (m, £)-points of M are the regular (m, £)-velocities; more
concretely: Let p’ € M/ where £ > 1, and ¢: R™ — M a mapping such that
jée = pf,. Then p’, is regular if and only if ¢ defines a local diffeomorphism
between a neighbourhood of the origin of R™ and a locally closed submanifold of
M. M. is an open subset of MY%; for £ > 0 and m > n = dim M, M!, = 6. If

m < n, then M, is a dense subset of MY, (see [5]).

Let M and A be as above; each function f € C° (M) can be prolonged to
a mapping f4: M4 — A defined by f4(p?) = pA(f). We will simply write f
instead of f4 when no confusion can arise.

Let {aji,...,as} be a basis of A as a vector space; f(p#) can be written in the
form

Fe) =D 5™ an,

f1,-.., fa being real-valued functions defined on M4, called the real components
of fin M4 with respect to the basis {aj,...,ax}. The set M4 can be given a
smooth structure canonically determined by the condition that each f € C'* (M)
be smooth when considered as a mapping from M4 to A.

Let y1,...,yn € C°° (M) be a coordinate system on an open subset U of M; set
A =T, and take the basis {22 : [ < €} of A. If for each pf, € U, we write

1 .
vi(pr) = E Jym(]?fn)xo‘ i=1,...,n,
lal<e

the functions y;o (1 <i < n; |a| <€) form a coordinate system in U, .

If Ais a local algebra, the mapping which assigns to M the manifold M4 is
a covariant functor from the category of finite dimensional smooth manifolds into
itself; in fact, each smooth mapping ¢: M — N gives a mapping o4 : M4 — N4
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which associates with each p4 € M4 the algebra homomorphism
P (p): O (N) — A
Fr= (" (D) = (" o "))

It follows easily that if ¢: M — N, : N — N; are smooth maps, then (op)? =

P4 o 4. We will simply write ¢ instead of ¢4 when no confusion can arise. As for
each f € C* (N) and p* € M4 we have

(™ (M) = Fe" (™),

if we fix a basis ay, ..., aq of A it follows that
(" (MNe = Fe o™ = (™M) (i)
for k=1,...,d, hence (¢2)*(fx) € C* (MA) for each f € C®° (N) and 1 < k < d.
Since the fi determine the smooth structure in N4, the mapping ¢4 : M4 — N4
is smooth.
As aspecial case, each smooth automorphism of M gives a smooth automorphism
of M4, and the same is true for each one-parameter group of automorphisms of M.

The following theorem, due to Weil [6], is fundamental in the theory of Weil
bundles:

Theorem 1.2 (Weil). Let M be a smooth manifold, and A, B local algebras. The
manifolds (MB)* and M4%E are canonically diffeomorphic.

2. Lift of tangent vector fields and differential forms

As a direct consequence of Weil’s theorem and the fact that M” = T'M we have
another important result:

Theorem 2.1. For each point p* € M* there exists a canonical linear isomor-
phism between TpAMA, the tangent space to M4 at p#, and Derg(C* (M), A),
where A is considered as a C™ (M )-module through the homomorphism p#.

Because of this theorem the tangent space T4 M# can be understood as a space
of derivations from C'*° (M) into A; in this case it will be denoted by 7,4 M# and
called tangent module to M* at p*. It is a free A-module of rank n = dim M.

Fix a basis aj,...,aq in A; if we think a function f € C* (M) as a mapping
from M4 into A, we write it as f = ZZ:1 frax, where f € C*°(M#). For each
DpA € Tha M4, the derivation Dpa € Tpa M4 attached to it according to the above
theorem maps each f € C° (M) into the element

d
DpAf = Z (DpAfk;) ag.
k=1
From now on we will consider only the spaces M’ , although some results remain
valid in the general case (see [5] for details). Let D be a tangent vector field on
M; for each p’, € MY, the mapping Dpe + O (M) — RE. defined as Dye (f) =
(Df)(pL,) is an element of %%Mrﬁ which we call value of D at p’,. Thus we obtain
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a vector field D on MY which will be called the prolongation of D to MO f e
C (M) and {fa, |a| < £} are its real components on M}, then D(f,) = (Df)a.

Proposition 2.2. A point pt, € M, is regular if and only if each tangent vector
to M, at p’, is the value at pt, of a vector field on M.

For a proof see [5].

For each point p’, € MY, %%Mrﬁ is a free R -module with rank n = dim M;
let us denote by 7;} MY, its dual RY -module. Given a function f € C* (M) we
can define a map

dpe [ Tpe ME — R
by associating to each derivation Dy € 7pe. MY, the element

(dpfnf)(Dpﬁn) = Dpfnf
Then dp: f1s R¢ -linear and the map which assigns to each f € C° (M) the form
dye fis a derivation from C'° (M) into the C'*° (M )-module 7;2 ME,. We will call
dpe [ the differential of f at Pt

If y1,...,yn € C* (M) is a coordinate system around p = p2  for each f €

C (M) we have:
dpfnf = Z (@) (pfn)dpfnyia
i=1 ¢

as we can see by applying both sides of this equality to

(6) 1=1,...,n,
Fyi Ph

and having in mind that these derivations are a basis of 7, M.

Let £Y(M) be the C* (M)-module of the 1-forms in M. If w € £Y(M) and
p € M, around p we can write w = 2?21 gidy;. The germs at p of the g; are
completely determined by w, so the same is true for the g;(p%,); then we can give
the following

Definition 2.3. The value of w at p’, is
n
wpr, =Y 0i (P s, i
i=1

The expression w,: belongs to 7;7*% M, and the map which assigns to each w €

P
EY(M) its value at pf, is a morphism of C™ (M )- modules from £*(V) into N MY,
which agrees with the map df — d,: f on the exact 1-forms and it is completely
determined by this condition.

Proposition 2.2 asserts that, if p’, is regular, then each element of Tot. MY, is the

value at p’, of some vector field D tangent to M; this allows us to give in this case
an alternative definition of wpe : If D € %&Mrﬁ, then

wpe, (Dye ) = [w(D)] (pr),
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where D is any vector field on M whose value at p,, is Dy . This definition agrees
with the previous one, because both of them are the same for exact 1-forms.
Our next proposition follows in a straightforward way:

Proposition 2.4. The morphism EY(M) — 7;} MY, can be prolonged in a natural

way to a C™ (M)-algebra morphism from the covariant tensor algebra on M into
the tensor algebra of the free RS -module 7;} M.

Definition 2.5. If T is a covariant tensor field over M, we will call value of T' at
¢ the image T,: of T by the morphism of the previons proposition.

It 1s clear that if 7" has an homogeneous degree then 7}, has the same degree
as T" and that, if 7" es symmetric or skew-symmetric, the same 1s true for 7p. .

3. The regular (m,()-velocities as frames
Let pf, € MY ; for each derivation ¢: RY — RE-1 we will write Epey=¢&o Pt
It is clear that £pm € 7;)4—1 M!~! and that the map
pt.,: Derg(RE REH) — Tye1 ML
& — P (€) = ey
is a morphism of R -modules.

Proposition 3.1. Each point pt, € M is completely determined by the couple

(i Pns)-
Proof. It follows from the fact that each P( ) € RE is completely determined by
its projection on R and by the polynomlals ( ) ERL(1<i<m). O

Proposition 3.2. The point p, is reqular if and only if p%,, is injective.

Proof. The necessity of the condition is inmediate. On the other hand, if pf, € M/,
is not regular, its image is a proper subalgebra of RY  hence the proposition is a
consecuence of the following

Lemma 3.3. If B is a proper subalgebra of RY,, then there is a nonzero derivation
from RE into RETL whose restriction to B vanishes.

Proof. The m derivations (6%1)0: RE — R (1 < i < m) cannot have linearly
independent restrictions to B: on the contrary the “inverse function theorem mod-
ule Ot would imply that B = R’ ; hence there exist constants A1, ..., Am, DOt
all equal to zero, such that the derivation & = Ay 6‘21 4 A M from RY, into
R.-1 applies B into m(IR471). Therefore, if P(z) € m(}an)Z L P(z) ¢ m(RE,)", the
derivation £ = P(z)¢ from RY, into RE;! vanishes on B. O

Proposition 3.4. Let W be a closed submamfold of M, I its ideal in C* (M),
e wt, Dype  a tangent vector to M, at pt, and Dye € Tpe M, the derivation
attached to it according to theorem 2.1. A necessary and suﬁﬁcent condition for

D, to be tangent to W is that the derivation Dy annilulates 1.
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Proof. It is straightforward. O

Proposition 3.5. Let W be an m-dimensional submanifold of M, p’, a regu-
lar point of W, and ptT' its projection into M'~'. The tangent R4 '-module
7;)%_1 WE=1 agrees with the image of Derg(RE,, RETY) by the map pt,,.

Proof. We can suppose W closed in M if T is its ideal in C°° (M), from its defini-
tion and proposition 3.4 follows that the image of p’,, is a subspace of 7;)4_1 Wwi-t,

As pt, is regular in W, from proposition 3.2 we conclude, being both of them free
R:-Lmodules of rank m. O

According to proposition 3.5 we can say that p’ is a frame for Wi=1 at pt-t.
As a particular case, when W = M and ¢ = 1, each point p. € Mﬁ gives an
isomorphism p}., : Derg(R},R) — 7, M and by proposition 3.1 it is completely
determined by the couple (p,pl,). Thus, the projection M} — M ~ J}(M) is
the usual frame bundle on M (note that Aut(Rl) ~ GL(n,R)).

The following proposition will be useful to deal with the contact system on the
higher order Grassmann bundles 7, (M), because the mapping M/, — J% (M) is
a fibre bundle with Aut(R%) as structural group (see [5, 2]).

Proposition 3.6. Let p’, ¢-, € Mf;@; if pi7t = ¢571 and the mappings pt,, and
qfn* have the same 1mage in 7;)%_1 WE=L then p' and ¢°, belong to the same orbit
of the group Aut(IRE).

Proof. By the “inverse function theorem module O**!” it suffices to show that pf,
and ¢%, have the same jet, so we will show that ker pt, C ker ¢’ .

Let f € kerp’,; as pfn* and qfn* have the same range, for each ¢ € Derg(R%, RE-1)
we have £(f(q%,)) = &(qt,)f =0, hence f(g%,) is constant, but then

F(4m) = Flam) = f(pm) = 0,
that is to say, f € kerq’,. O

Example. Let pl € Mr}l, the map pl,, is one to one, therefore its range is an
m-dimensional vector subspace of T, M; furthermore, in this case the converse of
the former proposition holds, that is to say, if two points pl and ¢l lay in the
same orbit of Aut (}R}n) = Gl(m, 1), then p®, = ¢° and p},, and ¢} , have the same
range in T, M. Thus, the orbits of Aut (ern) in M}, can be identified with the ones
of Gl(m,1) in the set of m-dimensional subspaces of 7, M, where p runs through
M; hence ML is the m-Stiefel manifold of M and 7, (M) its m-Grassmannian.

4. The contact system on M’

Let {&1,...,&n]} be a basis of the free R:-Lmodule Derg(RE, RE-1). For each
exterior differential form w of degree m+1 on M and each p, € M’ we can define
a map wy: from 7. M/, into R4 by

(41) ('Dpfn (Dpfn> :wpfn_l (gl(pfn)’ . "’gm(Pﬁn)’Dpfn_l) s
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where pf=! € M/~' is the projection of pf, and Dpfn—l is the one of Dy . It is

obvious that w,: is RY -linear.

For each tanénent vector field D on M we define a mapping

w(D): Mf, — RE?
as follows:

(D) (Pm) = @pe, (Dpe, )
where for each pf, € M!, the value D,e of D at pt, is considered as an element of
%&Mrﬁ. Thus, & is a smooth vector field of 1-forms on M/, with values in R

Its real components are a collection of (mtﬁ_l) smooth 1-forms on Mf,.

When the basis {&1,...,&x,} in (4.1) is changed, the new & differs from the pre-
vious one in a constant factor belonging to R-!. Accordingly, the Pfaff system on
M, spanned by the real components of @ does not depend on the basis {&1,...,&n}.

Definition 4.1. The Pfaff system Q(M£,) spanned in M}, by the real components
of the 1-forms w, when w runs through the set of (m + 1)-forms on M, is called the
contact system on Mf;l.

Proposition 4.2. Q(M})) is reqular with rank r = (n — m) (mH_l) on the open
o m
subset Mt and lower than or equal to v at the other points of M.

Proof. Let pf € Mfl and fix local coordinates yi,...,y, around p = p° in M
such that
yi(pfn):xi (i=1,...,m)

Ymti(Pm) =0 (G=1,...,n—m)
Then the range of p’,, is the RS, L-submodule of Tpe M/~1 spanned by the deriva-
tions (%) ,_,» (1 <i<mj, and from formula (4.1) follows that for each (m4-1)-

pm -

form w on M the corresponding wye 1s a linear span, with coeflicients in R of
the n — m 1-forms (valued in R:1)

(dpfn—lym_l_j) owﬁ_l* (j=1,...,n—m).

From theorem 2.1 follows that the real components of the forms dpl—l Ym4; are

dpl—l Ym+jo (Jo| <€ —1); as, on the other hand, the tangent linear map
1

LV %%Mrﬁ — 7;)%_1 M~ is onto, when w varies the real components of Wpe
run through a vector subspace of T% MY, of dimension r = (n — m) (mH_l).
Pm ™ m

As M! is dense in M!, and the rank of a Pfaff system is a lower semicontinuous
function, the rank of Q(M},) is lower than or equal to r at every point of Mf,. O

Corollary 4.3. For each p’, € Mfl the value at pt, of the contact system Q(MY,)
is the RS 1-submodule of 7;27;le;1 orthogonal to the image of pt, ..
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Proof. If w is a (m + 1)-form on M, the 1-form over 7 .- M{~Y (with values in
RE-1) which assigns to each D c—1 the right side of (4.1) belongs to the submodule
of 7;2_le1—1 orthogonal to the image of pf,,; as by proposition 3.2 the dimension

of this submodule over R tis n—m, and hence (n—m) (mtﬁ_l) over R, the former
proposition allows to conclude. O

Proposition 4.4. If 71'?_1: M, — M.~ is the canonical projection, then
(my )" QM) € QM)

Proof. Each derivation £: RS, — R.-L applies m(R2,) in m(R4 N1 hence it
gives a derivation £: R — RE-200f {1, ..., &, )} is a basis if the RS -module

Derg(RE,, RE-1) then {€), ..., €, } is a basis of the RS- Zmodule Derg (R RE-2).
Then, for each D,: € %&MZ and each (m 4+ 1)-form w on M we have:

<<7T§_1) (@pfn_l) ,Dp§n> = <apfn_l’Dpfn_l> =

wpfn_2 (glpf{l 5. .,fmpz—l,Dpfn—z) =

m

= projection of (&y: , Dy ) in RE-2

hence the set of real components of (ﬂﬁ_l)* (C:)pl—l) is contained in the set of real

components of w, , which finishes the proof. O

Theorem 4.5. IfW is an m-dimensional submanifold of M, then W, is a solution
of the contact system Q(M],). Furthermore, it is a locally marimal solution, in the
following sense: if U is a submanifold of MY, solution of Q(M},) and it contains
an open subset of W, then dimU* = dim W,

Proof. From proposition 3.5 and corollary 4.3 it follows that W/, is a solution of
Q(ML), and hence that WY, is a solution of Q(M},), because WY, is a dense open
subset of WY, . Thus, it remains to show the local maximality of W< .

Let U® be the submanifold of W¢, cited in the statement, and let us denote by
f‘z the restriction to U* of the projection 71'?: ML — M}, Let pt, € U'n W,
(this set is not empty, because U* contains an open subset of WY, and Wrﬁ is dense
in WY)); the rank of the linear map fg*: Ty Ut — T,M is m. In fact, from
proposition 4.4 follows that U* is a solution of Q(M}},), hence by corollary 4.3 the
projection fg* <Dpfn) of each vector D, € T: U* belongs to the image of pl, .,
which, according to proposition 3.5, is isomorphic to 7, W and consequently has
dimension m; as on the other hand 7). Ut o Ty W, each vector D, € T,W is
the image under 7 _ of some Dye €1pe U*, and we conclude.

The former discussion shows also that the rank of fg* is lower than or equal to
m at every point of U*, hence it is equal the greatest possible at pf, and from its
semicontinuity follows that it is equal to m on a neighborhood of p¢, in U*. Then,
from the rank theorem follows that the image under 7 of a suitable neighborhood
U(ZO) of p, in U* is an m-dimensional locally closed submanifold of M. The image

under 7 of U(ZO) contains the one of U(ZO) NWE and, as both of them have the same
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dimension, we can suppose that fS(U(ZO)) C W, taking U(ZO) smaller if necessary.
Thus we have proved the case j = 0 of the following assertion:

(P;) U* contains an open subset U(Zj) whose projection by 71'% is contained in W,

and which contains a nonempty open subset of W, .

The case j = £ is precisely our theorem, which we prove by mductlon on j.
Let us assume that j > 1 and that (P;_;) holds. Then, as 7~ apphes U(] 1)

WJ~1, its rank at each point of U(j_l) is lower than or equal to dim W] L U(] 1

contains a nonempty open subset of Wfl, at whose points the rank of 7 71'Z Lis greater

than or equal to dim W™, hence the set U(Zj) of those points of U(Zj_l) belonging

to W, for which the rank of fi_l is the greatest one =dim Wi, ™! is a nonempty
open subset of U(Zj_l) hence of U*, and it contains a nonempty open subset of W, .
If we show that 71'? (U( )) C Wi, we will finish the proof.

Let pf, € U(Zj), bt € TpfnU and Dpe € %%Mrﬁ the derivation attached to
Epfn by theorem 2.1. As, by proposition 4.4, U’ is a splution of Q(Mgl), from
corollary 43 follows that D ;-1 belongs to the image of p/, .. The condition on the
rank of f‘z_l at p’ implies that, when Epfn runs through Ty Ut the corresponding
Dpz'n—l runs through 7;)%_1'Wh71_1, which is a free R/ -L-module with rank m. As pl,
is regular, the image of pl, _ is also a free R/~ !-module with rank m; but then, from
our remark about the vectors D i1 follows that T] 1 Wi=t CImpl,,, hence they
must agree, because both of them are vector R- spaces with the same dlmensmn

On the other hand, as p/! € Wh@ ! there exists a point ¢/, € Wh@ such that
¢t = pi=L; then Imgi,, = 7;)]'—1 Wi=1 =1Impi,  , by proposition 3.5, hence from
proposition 3.6 follows that p/. and ¢/  lay in the same orbit of Aut(IR/ ) in Wi
hence pJ, € W},. Thus we have shown that 7 (U(])) C W/, and (P)).
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