DIFFERENTIAL GEOMETRY AND APPLICATIONS

Satellite Conference of ICM in Berlin, Aug. 10 – 14, 1998, Brno Masaryk University in Brno (Czech Republic) 1999, 263–272

THE CONTACT SYSTEM ON THE SPACES OF (m, ℓ) -VELOCITIES

J. MUÑOZ, F. J. MURIEL AND J. RODRIGUEZ

ABSTRACT. In this paper we define the contact system on the space M_m^ℓ of the (m,ℓ) -velocities of a smooth manifold M. For each velocity $p_m^\ell \in M_m^\ell$, the tangent space $T_{p_m^\ell} M_n^\ell$ and the \mathbf{R}_m^ℓ -module $\operatorname{Der}_{\mathbf{R}}(C^\infty(M), \mathbf{R}_m^\ell)$ are canonically isomorphic; as a consequence, p_m^ℓ gives rise to a morphism p_{m*}^ℓ between the $\mathbf{R}_m^{\ell-1}$ -modules $\operatorname{Der}_{\mathbf{R}}(\mathbf{R}_m^\ell, \mathbf{R}_m^{\ell-1})$ and $T_{p_m^{\ell-1}}M_m^{\ell-1}$ which is injective if and only if p_m^ℓ is regular. If X is an m-dimensional submanifold of M and p_m^ℓ is a regular point of X_m^ℓ , then the image of the above morphism is the tangent space to $X_m^{\ell-1}$ at $p_m^{\ell-1}$; in this sense, p_m^ℓ is a frame for $X_m^{\ell-1}$ at $p_m^{\ell-1}$. Each smooth differential form on M can be prolonged to a form on M_m^ℓ

Each smooth differential form on M can be prolonged to a form on M_m^ℓ with values in \mathbf{R}_m^ℓ ; the inner product of the lift of each (m+1)-form ω on Mto $M_m^{\ell-1}$ with the image by each p_{m*}^ℓ of a basis of $\operatorname{Der}_{\mathbf{R}}(\mathbf{R}_m^\ell, \mathbf{R}_m^{\ell-1})$ gives rise to an $\mathbf{R}_m^{\ell-1}$ -valued 1-form defined on M_m^ℓ . The Pfaff system generated by the real components of those 1-forms, when ω runs through the set of (m+1)-forms on M, is the contact system on M_m^ℓ .

1. The spaces of (m, ℓ) -velocities

In this section we fix the notations used along the paper and recall the basic definitions and properties of the spaces of A-points and (m, ℓ) -velocities of a smooth manifold. A more detailed exposition may be found in [5] (see also [6, 4, 3, 2]).

By a *local algebra* (also called *Weil algebra* in [3]) we shall mean a finite dimensional local commutative \mathbb{R} -algebra A with a unit.

If A is a local algebra and \mathfrak{m} its maximal ideal, then there is a nonnegative integer ℓ such that $\mathfrak{m}^{\ell} \neq 0$ and $\mathfrak{m}^{\ell+1} = 0$; this integer is called the *height* of A, according to Weil [6]. The *width* of A is the dimension of the vector space $\mathfrak{m}/\mathfrak{m}^2$.

Let us denote $\mathbb{R}_m^{\infty} = \mathbb{R}[[X_1, \ldots, X_m]]$ and let $\mathfrak{m}(\mathbb{R}_m^{\infty})$ be its maximal ideal; the quotient ring $\mathbb{R}_m^{\ell} = \mathbb{R}_m^{\infty} / \mathfrak{m}(\mathbb{R}_m^{\infty})^{\ell+1}$ is a local algebra of height ℓ . In general, if $m_1, \ldots, m_k, \ell_1, \ldots, \ell_k$ are positive integers, then the tensor product

$$\mathbb{R}_{m_1,\dots,m_k}^{\ell_1,\dots,\ell_k} = \mathbb{R}_{m_1}^{\ell_1} \otimes \dots \otimes \mathbb{R}_{m_k}^{\ell_k}$$

is a local algebra of height $\ell_1 + \cdots + \ell_k$. Each local algebra A is a quotient of \mathbb{R}_m^{∞} by an ideal of finite codimension (for a proof see [3]).

¹⁹⁹¹ Mathematics Subject Classification. 58A20.

Key words and phrases. Near points, jets, contact system, velocities.

This paper is in final form and no version of it will be submitted for publication elsewhere.

Definition 1.1. Let M be a smooth manifold and A a local algebra. An A-point or near point of type A of M is an algebra homomorphism $p^A : C^{\infty}(M) \longrightarrow A$. A near point $p^A \in M^A$ is said to be regular if the algebra homomorphism $p^A : C^{\infty}(M) \longrightarrow A$ is onto. We will denote by M^A the set of A-points of M; the set of regular A-points of M will be denoted by \check{M}^A .

Examples. (1) The space of algebra homomorphisms $\operatorname{Hom}_{\mathbb{R}}(C^{\infty}(M), \mathbb{R})$ is well known to be M, hence the \mathbb{R} -points of M are the usual points of M. Thus, if A is a local algebra, the composition of each A-point $p^A \in M^A$ with the homomorphism $A \longrightarrow A/\mathfrak{m} \approx \mathbb{R}$ is a point $p \in M$. We say that p^A is an A-point near p and that p is the projection of p^A into M.

(2) If $\mathbb{D} = \mathbb{R}^1_1$, the algebra of dual numbers, then $M^{\mathbb{D}} = TM$, the tangent bundle to M.

(3) When $A = \mathbb{R}_m^{\ell}$, the space of \mathbb{R}_m^{ℓ} -points of M will be denoted by M_m^{ℓ} ; it agrees with the space $J_0^{\ell}(\mathbb{R}^m, M)$ of (m, ℓ) -velocities on M defined by Ehresmann [1]. Moreover, the regular (m, ℓ) -points of M are the regular (m, ℓ) -velocities; more concretely: Let $p_m^{\ell} \in M_m^{\ell}$, where $\ell \geq 1$, and $\varphi : \mathbb{R}^m \longrightarrow M$ a mapping such that $j_0^{\ell}\varphi = p_m^{\ell}$. Then p_m^{ℓ} is regular if and only if φ defines a local diffeomorphism between a neighbourhood of the origin of \mathbb{R}^m and a locally closed submanifold of M. \check{M}_m^{ℓ} is an open subset of M_m^{ℓ} ; for $\ell > 0$ and $m > n = \dim M$, $\check{M}_m^{\ell} = \emptyset$. If $m \leq n$, then \check{M}_m^{ℓ} is a dense subset of M_m^{ℓ} (see [5]).

Let M and A be as above; each function $f \in C^{\infty}(M)$ can be prolonged to a mapping $f^A \colon M^A \longrightarrow A$ defined by $f^A(p^A) = p^A(f)$. We will simply write finstead of f^A when no confusion can arise.

Let $\{a_1, \ldots, a_d\}$ be a basis of A as a vector space; $f(p^A)$ can be written in the form

$$f(p^A) = \sum_{k=1}^d f_k(p^A)a_k,$$

 f_1, \ldots, f_d being real-valued functions defined on M^A , called the *real components* of f in M^A with respect to the basis $\{a_1, \ldots, a_N\}$. The set M^A can be given a smooth structure canonically determined by the condition that each $f \in C^{\infty}(M)$ be smooth when considered as a mapping from M^A to A.

Let $y_1, \ldots, y_n \in C^{\infty}(M)$ be a coordinate system on an open subset U of M; set $A = \mathbb{R}_m^{\ell}$ and take the basis $\{\frac{1}{\alpha!}x^{\alpha} : |\alpha| \leq \ell\}$ of A. If for each $p_m^{\ell} \in U_m^{\ell}$ we write

$$y_i(p_m^\ell) = \sum_{|\alpha| \le \ell} \frac{1}{\alpha!} y_{i\alpha}(p_m^\ell) x^\alpha \qquad i = 1, \dots, n,$$

the functions $y_{i\alpha}$ $(1 \le i \le n; |\alpha| \le \ell)$ form a coordinate system in U_m^{ℓ} .

If A is a local algebra, the mapping which assigns to M the manifold M^A is a covariant functor from the category of finite dimensional smooth manifolds into itself; in fact, each smooth mapping $\varphi : M \longrightarrow N$ gives a mapping $\varphi^A : M^A \longrightarrow N^A$ which associates with each $p^A \in M^A$ the algebra homomorphism

$$\begin{split} \varphi^{A}(p^{A}) &: C^{\infty} (N) \longrightarrow A \\ f \longmapsto (\varphi^{*}(f))(p^{A}) &= (p^{A} \circ \varphi^{*})(f) \end{split}$$

It follows easily that if $\varphi: M \longrightarrow N, \psi: N \longrightarrow N_1$ are smooth maps, then $(\psi \circ \varphi)^A = \psi^A \circ \varphi^A$. We will simply write φ instead of φ^A when no confusion can arise. As for each $f \in C^{\infty}(N)$ and $p^A \in M^A$ we have

$$(\varphi^*(f))(p^A) = f(\varphi^A(p^A))$$

if we fix a basis a_1, \ldots, a_d of A it follows that

$$(\varphi^*(f))_k = f_k \circ \varphi^A = (\varphi^A)^*(f_k)$$

for k = 1, ..., d, hence $(\varphi^A)^*(f_k) \in C^{\infty}(M^A)$ for each $f \in C^{\infty}(N)$ and $1 \leq k \leq d$. Since the f_k determine the smooth structure in N^A , the mapping $\varphi^A : M^A \longrightarrow N^A$ is smooth.

As a special case, each smooth automorphism of M gives a smooth automorphism of M^A , and the same is true for each one-parameter group of automorphisms of M.

The following theorem, due to Weil [6], is fundamental in the theory of Weil bundles:

Theorem 1.2 (Weil). Let M be a smooth manifold, and A, B local algebras. The manifolds $(M^B)^A$ and $M^{A\otimes B}$ are canonically diffeomorphic.

2. Lift of tangent vector fields and differential forms

As a direct consequence of Weil's theorem and the fact that $M^{\mathbb{D}} = TM$ we have another important result:

Theorem 2.1. For each point $p^A \in M^A$ there exists a canonical linear isomorphism between $T_{p^A}M^A$, the tangent space to M^A at p^A , and $\text{Der}_{\mathbb{R}}(C^{\infty}(M), A)$, where A is considered as a $C^{\infty}(M)$ -module through the homomorphism p^A .

Because of this theorem the tangent space $T_{p^A}M^A$ can be understood as a space of derivations from $C^{\infty}(M)$ into A; in this case it will be denoted by $\mathcal{T}_{p^A}M^A$ and called *tangent module to* M^A at p^A . It is a free A-module of rank $n = \dim M$.

Fix a basis a_1, \ldots, a_d in A; if we think a function $f \in C^{\infty}(M)$ as a mapping from M^A into A, we write it as $f = \sum_{k=1}^d f_k a_k$, where $f_k \in C^{\infty}(M^A)$. For each $\bar{D}_{p^A} \in T_{p^A} M^A$, the derivation $D_{p^A} \in \mathcal{T}_{p^A} M^A$ attached to it according to the above theorem maps each $f \in C^{\infty}(M)$ into the element

$$D_{p^A}f = \sum_{k=1}^d \left(\bar{D}_{p^A}f_k\right)a_k.$$

From now on we will consider only the spaces M_m^ℓ , although some results remain valid in the general case (see [5] for details). Let D be a tangent vector field on M; for each $p_m^\ell \in M_m^\ell$ the mapping $D_{p_m^\ell}: C^{\infty}(M) \longrightarrow \mathbb{R}_m^\ell$ defined as $D_{p_m^\ell}(f) = (Df)(p_m^\ell)$ is an element of $\mathcal{T}_{p_m^\ell}M_m^\ell$ which we call value of D at p_m^ℓ . Thus we obtain a vector field \overline{D} on M_m^{ℓ} which will be called the *prolongation of* D to M_m^{ℓ} . If $f \in C^{\infty}(M)$ and $\{f_{\alpha}, |\alpha| \leq \ell\}$ are its real components on M_m^{ℓ} , then $\overline{D}(f_{\alpha}) = (Df)_{\alpha}$.

Proposition 2.2. A point $p_m^{\ell} \in M_m^{\ell}$ is regular if and only if each tangent vector to M_m^{ℓ} at p_m^{ℓ} is the value at p_m^{ℓ} of a vector field on M.

For a proof see [5]

For each point $p_m^{\ell} \in M_m^{\ell}$, $\mathcal{T}_{p_m^{\ell}} M_m^{\ell}$ is a free \mathbb{R}_m^{ℓ} -module with rank $n = \dim M$; let us denote by $\mathcal{T}_{p_m^{\ell}}^* M_m^{\ell}$ its dual \mathbb{R}_m^{ℓ} -module. Given a function $f \in C^{\infty}(M)$ we can define a map

$$d_{p_m^\ell}f:\mathcal{T}_{p_m^\ell}M_m^\ell\longrightarrow \mathbb{R}_m^\ell$$

by associating to each derivation $D_{p_m^\ell} \in \mathcal{T}_{p_m^\ell} M_m^\ell$ the element

$$d_{p_m^\ell}f)(D_{p_m^\ell})=D_{p_m^\ell}f.$$

Then $d_{p_m^\ell} f$ is \mathbb{R}_m^ℓ -linear and the map which assigns to each $f \in C^\infty(M)$ the form $d_{p_m^\ell} f$ is a derivation from $C^\infty(M)$ into the $C^\infty(M)$ -module $\mathcal{T}_{p_m^\ell}^* M_m^\ell$. We will call $d_{p_m^\ell} f$ the differential of f at p_m^ℓ .

If $y_1, \ldots, y_n \in C^{\infty}(M)$ is a coordinate system around $p = p_m^0$, for each $f \in C^{\infty}(M)$ we have:

$$d_{p_m^\ell}f = \sum_{i=1}^n \left(\frac{\partial f}{\partial y_i}\right) (p_m^\ell) d_{p_m^\ell} y_i,$$

as we can see by applying both sides of this equality to

$$\left(\frac{\partial}{\partial y_i}\right)_{p_m^\ell} \qquad i=1,\ldots,n,$$

and having in mind that these derivations are a basis of $\mathcal{T}_{p_m^\ell} M_m^\ell$.

Let $\mathcal{E}^1(M)$ be the $C^{\infty}(M)$ -module of the 1-forms in M. If $\omega \in \mathcal{E}^1(M)$ and $p \in M$, around p we can write $\omega = \sum_{i=1}^n g_i dy_i$. The germs at p of the g_i are completely determined by ω , so the same is true for the $g_i(p_m^{\ell})$; then we can give the following

Definition 2.3. The value of ω at p_m^{ℓ} is

$$\omega_{p_m^\ell} = \sum_{i=1}^n g_i(p_m^\ell) d_{p_m^\ell} y_i$$

The expression $\omega_{p_m^\ell}$ belongs to $\mathcal{T}_{p_m^\ell}^* M_m^\ell$ and the map which assigns to each $\omega \in \mathcal{E}^1(M)$ its value at p_m^ℓ is a morphism of $C^{\infty}(M)$ -modules from $\mathcal{E}^1(V)$ into $\mathcal{T}_{p_m^\ell}^* M_m^\ell$ which agrees with the map $df \longrightarrow d_{p_m^\ell} f$ on the exact 1-forms and it is completely determined by this condition.

Proposition 2.2 asserts that, if p_m^ℓ is regular, then each element of $\mathcal{T}_{p_m^\ell} M_m^\ell$ is the value at p_m^ℓ of some vector field D tangent to M; this allows us to give in this case an alternative definition of $\omega_{p_m^\ell}$: If $D_{p_m^\ell} \in \mathcal{T}_{p_m^\ell} M_m^\ell$, then

$$\omega_{p_m^\ell}(D_{p_m^\ell}) = [\omega(D)](p_m^\ell),$$

where D is any vector field on M whose value at p_m^{ℓ} is $D_{p_m^{\ell}}$. This definition agrees with the previous one, because both of them are the same for exact 1-forms.

Our next proposition follows in a straightforward way:

Proposition 2.4. The morphism $\mathcal{E}^1(M) \longrightarrow \mathcal{T}^*_{p_m^\ell} M_m^\ell$ can be prolonged in a natural way to a $C^{\infty}(M)$ -algebra morphism from the covariant tensor algebra on M into the tensor algebra of the free \mathbb{R}^ℓ_m -module $\mathcal{T}^*_{p_m^\ell} M_m^\ell$.

Definition 2.5. If T is a covariant tensor field over M, we will call value of T at p_m^{ℓ} the image $T_{p_m^{\ell}}$ of T by the morphism of the previous proposition.

It is clear that if T has an homogeneous degree then $T_{p'_m}$ has the same degree as T and that, if T es symmetric or skew-symmetric, the same is true for $T_{p'_m}$.

3. The regular (m, ℓ) -velocities as frames

Let $p_m^{\ell} \in M_m^{\ell}$; for each derivation $\xi : \mathbb{R}_m^{\ell} \longrightarrow \mathbb{R}_m^{\ell-1}$ we will write $\xi_{(p_m^{\ell})} = \xi \circ p_m^{\ell}$. It is clear that $\xi_{(p_m^{\ell})} \in \mathcal{T}_{p_m^{\ell-1}} M_m^{\ell-1}$ and that the map

$$p_{m_*}^{\ell} \colon \operatorname{Der}_{\mathbb{R}}(\mathbb{R}_m^{\ell}, \mathbb{R}_m^{\ell-1}) \longrightarrow \mathcal{T}_{p_m^{\ell-1}} M_m^{\ell-1}$$
$$\xi \longmapsto p_{m_*}^{\ell}(\xi) = \xi_{(p_m^{\ell})}$$

is a morphism of $\mathbb{R}_m^{\ell-1}$ -modules.

Proposition 3.1. Each point $p_m^{\ell} \in M_m^{\ell}$ is completely determined by the couple (p_m^0, p_{m*}^{ℓ}) .

Proof. It follows from the fact that each $P(x) \in \mathbb{R}_m^{\ell}$ is completely determined by its projection on \mathbb{R} and by the polynomials $\frac{\partial P(x)}{\partial x_i} \in \mathbb{R}_m^{\ell-1}$ $(1 \le i \le m)$.

Proposition 3.2. The point p_m^{ℓ} is regular if and only if p_{m*}^{ℓ} is injective.

Proof. The necessity of the condition is inmediate. On the other hand, if $p_m^{\ell} \in M_m^{\ell}$ is not regular, its image is a proper subalgebra of \mathbb{R}_m^{ℓ} , hence the proposition is a consecuence of the following

Lemma 3.3. If B is a proper subalgebra of \mathbb{R}_m^{ℓ} , then there is a nonzero derivation from \mathbb{R}_m^{ℓ} into $\mathbb{R}_m^{\ell-1}$ whose restriction to B vanishes.

Proof. The *m* derivations $(\frac{\partial}{\partial x_i})_0 : \mathbb{R}_m^{\ell} \longrightarrow \mathbb{R}$ $(1 \leq i \leq m)$ cannot have linearly independent restrictions to *B*: on the contrary the "inverse function theorem module $O^{\ell+1}$ " would imply that $B = \mathbb{R}_m^{\ell}$; hence there exist constants $\lambda_1, \ldots, \lambda_m$, not all equal to zero, such that the derivation $\overline{\xi} = \lambda_1 \frac{\partial}{\partial x_1} + \cdots + \lambda_m \frac{\partial}{\partial x_m}$ from \mathbb{R}_m^{ℓ} into $\mathbb{R}_m^{\ell-1}$ applies *B* into $\mathfrak{m}(\mathbb{R}_m^{\ell-1})$. Therefore, if $P(x) \in \mathfrak{m}(\mathbb{R}_m^{\ell})^{\ell-1}, P(x) \notin \mathfrak{m}(\mathbb{R}_m^{\ell})^{\ell}$, the derivation $\xi = P(x)\overline{\xi}$ from \mathbb{R}_m^{ℓ} into $\mathbb{R}_m^{\ell-1}$ vanishes on *B*.

Proposition 3.4. Let W be a closed submanifold of M, I its ideal in $C^{\infty}(M)$, $p_m^{\ell} \in W_m^{\ell}$, $\overline{D}_{p_m^{\ell}}$ a tangent vector to M_m^{ℓ} at p_m^{ℓ} and $D_{p_m^{\ell}} \in \mathcal{T}_{p_m^{\ell}} M_m^{\ell}$ the derivation attached to it according to theorem 2.1. A necessary and sufficient condition for $\overline{D}_{p_m^{\ell}}$ to be tangent to W_m^{ℓ} is that the derivation $D_{p_m^{\ell}}$ annihilates I.

Proof. It is straightforward.

Proposition 3.5. Let W be an m-dimensional submanifold of M, p_m^{ℓ} a regular point of W_m^{ℓ} and $p_m^{\ell-1}$ its projection into $M_m^{\ell-1}$. The tangent $\mathbb{R}_m^{\ell-1}$ -module $\mathcal{T}_{p_m^{\ell-1}}W_m^{\ell-1}$ agrees with the image of $\operatorname{Der}_{\mathbb{R}}(\mathbb{R}_m^{\ell},\mathbb{R}_m^{\ell-1})$ by the map p_{m*}^{ℓ} .

Proof. We can suppose W closed in M; if I is its ideal in $C^{\infty}(M)$, from its definition and proposition 3.4 follows that the image of p_{m*}^{ℓ} is a subspace of $\mathcal{T}_{p_m^{\ell-1}} W_m^{\ell-1}$. As p_m^{ℓ} is regular in W_m^{ℓ} , from proposition 3.2 we conclude, being both of them free $\mathbb{R}_m^{\ell-1}$ -modules of rank m.

According to proposition 3.5 we can say that p_m^{ℓ} is a frame for $W_m^{\ell-1}$ at $p_m^{\ell-1}$. As a particular case, when W = M and $\ell = 1$, each point $p_n^1 \in M_n^1$ gives an isomorphism p_{n*}^1 : $\text{Der}_{\mathbb{R}}(\mathbb{R}_n^1, \mathbb{R}) \longrightarrow T_p M$ and by proposition 3.1 it is completely determined by the couple (p, p_{n*}^1) . Thus, the projection $\check{M}_n^1 \longrightarrow M \approx \mathcal{J}_n^1(M)$ is the usual frame bundle on M (note that $\text{Aut}(\mathbb{R}_n^1) \approx \text{GL}(n, \mathbb{R})$).

The following proposition will be useful to deal with the contact system on the higher order Grassmann bundles $\mathcal{J}_m^\ell(M)$, because the mapping $\check{M}_m^\ell \longrightarrow \mathcal{J}_m^\ell(M)$ is a fibre bundle with $\operatorname{Aut}(\mathbb{R}_m^\ell)$ as structural group (see [5, 2]).

Proposition 3.6. Let $p_m^{\ell}, q_m^{\ell} \in \check{M}_m^{\ell}$; if $p_m^{\ell-1} = q_m^{\ell-1}$ and the mappings p_{m*}^{ℓ} and q_{m*}^{ℓ} have the same image in $\mathcal{T}_{p_m^{\ell-1}}W_m^{\ell-1}$, then p_m^{ℓ} and q_m^{ℓ} belong to the same orbit of the group $\operatorname{Aut}(\mathbb{R}_m^{\ell})$.

Proof. By the "inverse function theorem module $O^{\ell+1}$ " it suffices to show that p_m^ℓ and q_m^ℓ have the same jet, so we will show that $\ker p_m^\ell \subseteq \ker q_m^\ell$.

Let $f \in \ker p_m^{\ell}$; as p_{m*}^{ℓ} and q_{m*}^{ℓ} have the same range, for each $\xi \in \operatorname{Der}_{\mathbb{R}}(\mathbb{R}_m^{\ell}, \mathbb{R}_m^{\ell-1})$ we have $\xi(f(q_m^{\ell})) = \xi_{(q_m^{\ell})}f = 0$, hence $f(q_m^{\ell})$ is constant, but then

$$f(q_m^\ell) = f(q_m^0) = f(p_m^0) = 0,$$

that is to say, $f \in \ker q_m^\ell$.

Example. Let $p_m^1 \in \check{M}_m^1$; the map p_{m*}^1 is one to one, therefore its range is an *m*-dimensional vector subspace of T_pM ; furthermore, in this case the converse of the former proposition holds, that is to say, if two points p_m^1 and q_m^1 lay in the same orbit of Aut $(\mathbb{R}_m^1) = Gl(m, 1)$, then $p_m^0 = q_m^0$ and p_{m*}^1 and q_{m*}^1 have the same range in T_pM . Thus, the orbits of Aut (R_m^1) in \check{M}_m^1 can be identified with the ones of Gl(m, 1) in the set of *m*-dimensional subspaces of T_pM , where *p* runs through M; hence \check{M}_m^1 is the *m*-Stiefel manifold of M and $\mathcal{J}_m^1(M)$ its *m*-Grassmannian.

4. The contact system on M_m^{ℓ}

Let $\{\xi_1, \ldots, \xi_m\}$ be a basis of the free $\mathbb{R}_m^{\ell-1}$ -module $\operatorname{Der}_{\mathbb{R}}(\mathbb{R}_m^\ell, \mathbb{R}_m^{\ell-1})$. For each exterior differential form ω of degree m+1 on M and each $p_m^\ell \in M_m^\ell$ we can define a map $\hat{\omega}_{p_m^\ell}$ from $\mathcal{T}_{p_m^\ell}M_m^\ell$ into $\mathbb{R}_m^{\ell-1}$ by

(4.1)
$$\hat{\omega}_{p_m^{\ell}}(D_{p_m^{\ell}}) = \omega_{p_m^{\ell-1}}\left(\xi_{1(p_m^{\ell})}, \dots, \xi_{m(p_m^{\ell})}, D_{p_m^{\ell-1}}\right),$$

where $p_m^{\ell-1} \in M_m^{\ell-1}$ is the projection of p_m^{ℓ} and $D_{p_m^{\ell-1}}$ is the one of $D_{p_m^{\ell}}$. It is obvious that $\hat{\omega}_{p_m^{\ell}}$ is \mathbb{R}_m^{ℓ} -linear.

For each tangent vector field D on M we define a mapping

$$\hat{\omega}(D): M_m^\ell \longrightarrow \mathbb{R}_m^{\ell-1}$$

as follows:

$$[\hat{\omega}(D)](p_m^\ell) = \hat{\omega}_{p_m^\ell} \left(D_{p_m^\ell} \right),$$

where for each $p_m^{\ell} \in M_m^{\ell}$ the value $D_{p_m^{\ell}}$ of D at p_m^{ℓ} is considered as an element of $\mathcal{T}_{p_m^{\ell}}M_m^{\ell}$. Thus, $\hat{\omega}$ is a smooth vector field of 1-forms on M_m^{ℓ} with values in $\mathbb{R}_m^{\ell-1}$. Its real components are a collection of $\binom{m+\ell-1}{m}$ smooth 1-forms on M_m^{ℓ} . When the basis $\{\xi_1, \ldots, \xi_m\}$ in (4.1) is changed, the new $\hat{\omega}$ differs from the pre-

When the basis $\{\xi_1, \ldots, \xi_m\}$ in (4.1) is changed, the new $\hat{\omega}$ differs from the previous one in a constant factor belonging to $\mathbb{R}_m^{\ell-1}$. Accordingly, the Pfaff system on M_m^{ℓ} spanned by the real components of $\hat{\omega}$ does not depend on the basis $\{\xi_1, \ldots, \xi_m\}$.

Definition 4.1. The Pfaff system $\Omega(M_m^{\ell})$ spanned in M_m^{ℓ} by the real components of the 1-forms $\hat{\omega}$, when ω runs through the set of (m+1)-forms on M, is called the *contact system* on M_m^{ℓ} .

Proposition 4.2. $\Omega(M_m^{\ell})$ is regular with rank $r = (n-m)\binom{m+\ell-1}{m}$ on the open subset \check{M}_m^{ℓ} and lower than or equal to r at the other points of M_m^{ℓ} .

Proof. Let $p_m^{\ell} \in \check{M}_m^{\ell}$ and fix local coordinates y_1, \ldots, y_n around $p = p_m^0$ in M such that

$$y_i(p_m^\ell) = x_i$$
 $(i = 1, ..., m)$
 $y_{m+j}(p_m^\ell) = 0$ $(j = 1, ..., n - m)$

Then the range of p_{m*}^{ℓ} is the $\mathbb{R}_m^{\ell-1}$ -submodule of $\mathcal{T}_{p_m^{\ell-1}}M_m^{\ell-1}$ spanned by the derivations $\left(\frac{\partial}{\partial y_i}\right)_{p_m^{\ell-1}}$, $(1 \leq i \leq m)$, and from formula (4.1) follows that for each (m+1)form ω on M the corresponding $\hat{\omega}_{p_m^{\ell}}$ is a linear span, with coefficients in $\mathbb{R}_m^{\ell-1}$, of the n-m 1-forms (valued in $\mathbb{R}_m^{\ell-1}$)

$$\left(d_{p_{m}^{\ell-1}}y_{m+j}\right) \circ \pi_{\ell}^{\ell-1}$$
, $(j = 1, \dots, n-m).$

From theorem 2.1 follows that the real components of the forms $d_{p_m^{\ell-1}}y_{m+j}$ are $d_{p_m^{\ell-1}}y_{m+j,\alpha}$ ($|\alpha| \leq \ell - 1$); as, on the other hand, the tangent linear map $\pi_{\ell}^{\ell-1} * : \mathcal{T}_{p_m^{\ell}} M_m^{\ell} \longrightarrow \mathcal{T}_{p_m^{\ell-1}} M_m^{\ell-1}$ is onto, when ω varies the real components of $\hat{\omega}_{p_m^{\ell}}$ run through a vector subspace of $T_{p_m^{\ell}}^* M_m^{\ell}$ of dimension $r = (n-m) \binom{m+\ell-1}{m}$.

As \check{M}_m^ℓ is dense in M_m^ℓ and the rank of a Pfaff system is a lower semicontinuous function, the rank of $\Omega(M_m^\ell)$ is lower than or equal to r at every point of M_m^ℓ .

Corollary 4.3. For each $p_m^{\ell} \in \check{M}_m^{\ell}$ the value at p_m^{ℓ} of the contact system $\Omega(M_m^{\ell})$ is the $\mathbb{R}_m^{\ell-1}$ -submodule of $\mathcal{T}_{p_m^{\ell-1}}^*M_m^{\ell-1}$ orthogonal to the image of p_{m*}^{ℓ} .

Proof. If ω is a (m + 1)-form on M, the 1-form over $\mathcal{T}_{p_m^{\ell-1}} M_m^{\ell-1}$ (with values in $\mathbb{R}_m^{\ell-1}$) which assigns to each $D_{p_m^{\ell-1}}$ the right side of (4.1) belongs to the submodule of $\mathcal{T}_{p_m^{\ell-1}}^* M_m^{\ell-1}$ orthogonal to the image of p_{m*}^{ℓ} ; as by proposition 3.2 the dimension of this submodule over $\mathbb{R}_m^{\ell-1}$ is n-m, and hence $(n-m)\binom{m+\ell-1}{m}$ over \mathbb{R} , the former proposition allows to conclude.

Proposition 4.4. If $\pi_{\ell}^{\ell-1} : M_m^{\ell} \longrightarrow M_m^{\ell-1}$ is the canonical projection, then $(\pi_{\ell}^{\ell-1})^* \Omega(M_m^{\ell-1}) \subseteq \Omega(M_m^{\ell})$.

Proof. Each derivation $\xi : \mathbb{R}_m^{\ell} \longrightarrow \mathbb{R}_m^{\ell-1}$ applies $\mathfrak{m}(\mathbb{R}_m^{\ell})^{\ell}$ in $\mathfrak{m}(\mathbb{R}_m^{\ell-1})^{\ell-1}$, hence it gives a derivation $\overline{\xi} : \mathbb{R}_m^{\ell-1} \longrightarrow \mathbb{R}_m^{\ell-2}$; if $\{\xi_1, \ldots, \xi_m\}$ is a basis if the $\mathbb{R}_m^{\ell-1}$ -module $\operatorname{Der}_{\mathbb{R}}(\mathbb{R}_m^{\ell}, \mathbb{R}_m^{\ell-1})$, then $\{\overline{\xi}_1, \ldots, \overline{\xi}_m\}$ is a basis of the $\mathbb{R}_m^{\ell-2}$ -module $\operatorname{Der}_{\mathbb{R}}(\mathbb{R}_m^{\ell-1}, \mathbb{R}_m^{\ell-2})$. Then, for each $D_{p_m^{\ell}} \in \mathcal{T}_{p_m^{\ell}} M_m^{\ell}$ and each (m+1)-form ω on M we have:

$$\langle \left(\pi_{\ell}^{\ell-1}\right)^{*}\left(\widehat{\omega}_{p_{m}^{\ell-1}}\right), D_{p_{m}^{\ell}} \rangle = \langle \widehat{\omega}_{p_{m}^{\ell-1}}, D_{p_{m}^{\ell-1}} \rangle = \\ \omega_{p_{m}^{\ell-2}}\left(\overline{\xi}_{1p_{m}^{\ell-1}}, \dots, \overline{\xi}_{mp_{m}^{\ell-1}}, D_{p_{m}^{\ell-2}}\right) = \\ = \text{projection of } \langle \widehat{\omega}_{p_{m}^{\ell}}, D_{p_{m}^{\ell}} \rangle \text{ in } \mathbb{R}_{m}^{\ell-2},$$

hence the set of real components of $(\pi_{\ell}^{\ell-1})^* \left(\hat{\omega}_{p_m^{\ell-1}}\right)$ is contained in the set of real components of $\hat{\omega}_{p_m^{\ell}}$, which finishes the proof.

Theorem 4.5. If W is an m-dimensional submanifold of M, then W_m^{ℓ} is a solution of the contact system $\Omega(M_m^{\ell})$. Furthermore, it is a locally maximal solution, in the following sense: if U^{ℓ} is a submanifold of M_m^{ℓ} solution of $\Omega(M_m^{\ell})$ and it contains an open subset of W_m^{ℓ} , then dim $U^{\ell} = \dim W_m^{\ell}$.

Proof. From proposition 3.5 and corollary 4.3 it follows that \check{W}_m^{ℓ} is a solution of $\Omega(M_m^{\ell})$, and hence that W_m^{ℓ} is a solution of $\Omega(M_m^{\ell})$, because \check{W}_m^{ℓ} is a dense open subset of W_m^{ℓ} . Thus, it remains to show the local maximality of W_m^{ℓ} .

Let U^{ℓ} be the submanifold of W_m^{ℓ} cited in the statement, and let us denote by $\overline{\pi}_{\ell}^j$ the restriction to U^{ℓ} of the projection $\pi_{\ell}^j \colon M_m^{\ell} \longrightarrow M_m^j$. Let $p_m^{\ell} \in U^{\ell} \cap \check{W}_m^{\ell}$ (this set is not empty, because U^{ℓ} contains an open subset of W_m^{ℓ} and \check{W}_m^{ℓ} is dense in W_m^{ℓ}); the rank of the linear map $\overline{\pi}_{\ell*}^0 \colon T_{p_m^{\ell}} U^{\ell} \longrightarrow T_p M$ is m. In fact, from proposition 4.4 follows that U^{ℓ} is a solution of $\Omega(M_m^1)$, hence by corollary 4.3 the projection $\overline{\pi}_{\ell*}^0 (D_{p_m^{\ell}})$ of each vector $D_{p_m^{\ell}} \in T_{p_m^{\ell}} U^{\ell}$ belongs to the image of p_{m*}^1 , which, according to proposition 3.5, is isomorphic to $T_p W$ and consequently has dimension m; as on the other hand $T_{p_m^{\ell}} U^{\ell} \supseteq T_{p_m^{\ell}} W_m^{\ell}$, each vector $D_p \in T_p W$ is the image under $\overline{\pi}_{\ell*}^0$ of some $D_{p_m^{\ell}} \in T_{p_m^{\ell}} U^{\ell}$, and we conclude.

The former discussion shows also that the rank of $\overline{\pi}_{\ell*}^0$ is lower than or equal to m at every point of U^ℓ , hence it is equal the greatest possible at p_m^ℓ and from its semicontinuity follows that it is equal to m on a neighborhood of p_m^ℓ in U^ℓ . Then, from the rank theorem follows that the image under π_ℓ^0 of a suitable neighborhood $U_{(0)}^\ell$ of p_m^ℓ in U^ℓ is an m-dimensional locally closed submanifold of M. The image under $\overline{\pi}_\ell^0$ of $U_{(0)}^\ell$ contains the one of $U_{(0)}^\ell \cap W_m^\ell$ and, as both of them have the same

dimension, we can suppose that $\overline{\pi}^0_{\ell}(U^{\ell}_{(0)}) \subseteq W$, taking $U^{\ell}_{(0)}$ smaller if necessary. Thus we have proved the case j = 0 of the following assertion:

 (P_j) U^{ℓ} contains an open subset $U_{(j)}^{\ell}$ whose projection by π_{ℓ}^j is contained in W_m^j and which contains a nonempty open subset of W_m^{ℓ} .

The case $j = \ell$ is precisely our theorem, which we prove by induction on j.

Let us assume that $j \geq 1$ and that (P_{j-1}) holds. Then, as $\overline{\pi}_{\ell}^{j-1}$ applies $U_{(j-1)}^{\ell}$ in W_m^{j-1} , its rank at each point of $U_{(j-1)}^{\ell}$ is lower than or equal to dim W_m^{j-1} ; $U_{(j-1)}^{\ell}$ contains a nonempty open subset of \check{W}_m^{ℓ} , at whose points the rank of $\overline{\pi}_{\ell}^{j-1}$ is greater than or equal to dim W_m^{j-1} , hence the set $U_{(j)}^{\ell}$ of those points of $U_{(j-1)}^{\ell}$ belonging to \check{W}_m^{ℓ} for which the rank of $\overline{\pi}_{\ell}^{j-1}$ is the greatest one $=\dim W_m^{j-1}$ is a nonempty open subset of $U_{(j-1)}^{\ell}$, hence of U^{ℓ} , and it contains a nonempty open subset of W_m^{ℓ} . If we show that $\pi_{\ell}^j \left(U_{(j)}^{\ell} \right) \subseteq W_m^j$, we will finish the proof.

Let $p_m^{\ell} \in U_{(j)}^{\ell}$, $\overline{D}_{p_m^{\ell}} \in T_{p_m^{\ell}} U^{\ell}$ and $D_{p_m^{\ell}} \in \mathcal{T}_{p_m^{\ell}} M_m^{\ell}$ the derivation attached to $\overline{D}_{p_m^{\ell}}$ by theorem 2.1. As, by proposition 4.4, U^{ℓ} is a solution of $\Omega(M_m^j)$, from corollary 4.3 follows that $D_{p_m^{j-1}}$ belongs to the image of p_{m*}^j . The condition on the rank of $\overline{\pi}_{\ell}^{j-1}$ at p_m^{ℓ} implies that, when $\overline{D}_{p_m^{\ell}}$ runs through $T_{p_m^{\ell}} U^{\ell}$, the corresponding $D_{p_m^{j-1}}$ runs through $\mathcal{T}_{p_m^{j-1}} W_m^{j-1}$, which is a free \mathbb{R}_m^{j-1} -module with rank m. As p_m^j is regular, the image of p_{m*}^j is also a free \mathbb{R}_m^{j-1} -module with rank m; but then, from our remark about the vectors $D_{p_m^{j-1}}$ follows that $\mathcal{T}_{p_m^{j-1}} W_m^{j-1} \subseteq \mathrm{Im} p_{m*}^j$, hence they must agree, because both of them are vector \mathbb{R} -spaces with the same dimension.

On the other hand, as $p_m^{j-1} \in \check{W}_m^{j-1}$, there exists a point $q_m^j \in \check{W}_m^j$ such that $q_m^{j-1} = p_m^{j-1}$; then $\operatorname{Im} q_{m*}^j = \mathcal{T}_{p_m^{j-1}} W_m^{j-1} = \operatorname{Im} p_{m*}^j$, by proposition 3.5, hence from proposition 3.6 follows that p_m^j and q_m^j lay in the same orbit of $\operatorname{Aut}(\mathbb{R}_m^j)$ in W_m^j , hence $p_m^j \in \check{W}_m^j$. Thus we have shown that $\pi_\ell^j \left(U_{(j)}^\ell \right) \subseteq \check{W}_m^j$, and (P_j) .

References

- Ehresmann, C., Introduction à la théorie des structures infinitesimales et des pseudo-groupes de lie, Colloque de Géometrie Différentielle, C.N.R.S. (1953), 97-110.
- [2] Grigore, D. R., Krupka, D., Invariants of velocities, and higher order Grassmann bundles, to appear in J. Geom. Phys.
- [3] Kolář, I., Michor, P. W., Slovák, J., Natural operations in differential geometry, Springer-Verlag, New York, 1993.
- [4] Morimoto, A., Prolongation of connections to bundles of infinitely near points, J. Differential Geom. 11 (1976), 479-498.
- [5] Muñoz, J., Muriel, F. J., Rodríguez, J., Weil bundles and jet spaces, to appear in Czech. Math. J.
- [6] Weil, A., Théorie des points proches sur les variétés différentiables, Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111-117.

J. Muñoz, Departamento de Matemáticas, Universidad de Salamanca Plaza de la Merced 1-4, E-37008 Salamanca, SPAIN E-mail: clint@gugu.usal.es

F. J. Muriel, Departamento de Matemáticas, Universidad de Extremadura Avda. de la Universidad s/n, E-10004 Cáceres, SPAIN E-mail: fjmuriel@unex.es

J. Rodriguez, Departamento de Matemáticas, Universidad de Salamanca Plaza de la Merced 1-4, E-37008 Salamanca, SPAIN $E\text{-}mail:\ jrl@gugu.usal.es$