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Abstract

The dynamics of wave front in two dimensional excitable media is described by the derivative Burgers� equation. In
this paper, we will carry out Lie symmetry analysis to the equation for constructing particular solutions associated with
chemical patterns. The form of the variable coefficient in the reduced equation by using symmetries classifies the invari-
ant solutions into three cases and the solutions include arc, circle, knee, spiral and double scroll patterns.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Pattern formation by chemical reaction in excitable media has been investigated by theoretical or experimental stud-
ies [1–11]. Analytical treatment to the phenomena is mainly performed by a probe into the reaction–diffusion equations
which are evolution equations to the concentrations of the activator and the inhibitor. Yamada and Nozaki [11] have
investigated isolated wave fronts in two dimension and assume a width of a boundary layer between the rest and excited
region of the activator are enough thin. For this situation, they have derived a derivative Burgers� equation (DB equa-
tion) as an equation governing the dynamics of the boundary layer (i.e. wave front) by using a singular perturbation
method. As a result of their study, we can treat various chemical patterns in one frame, i.e. the DB equation. This equa-
tion can be linearized to the heat equation by the Cole–Hopf transformation. Yamada and Nozaki have focused on
group invariant solutions under the Lie symmetry of the heat equation. Their result implies that various patterns
are classified into three types by the Lie symmetries.

Lie symmetry analysis is one of the most powerful methods to get particular solutions of differential equations [12].
It is based on the study of their invariance with respect to one-parameter Lie group of point transformations whose
infinitesimal generators are represented as vector fields. Once the Lie groups that leave the differential equations invari-
ant are known, we can construct an exact solution called a group invariant solution which is invariant under the
transformation.
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The aim of this paper is to present a neat formalism to complete classification of group invariant solutions of the DB
equation. Lie symmetry analysis provides a list of symmetries and reduced equations described by invariant variables
only. Analytical expressions of the solutions (i.e. shapes of patterns) may not be related to symmetry properties directly.
The simplest way to notice a relation between the solutions and shapes of patterns is to classify the solutions by the
reduced DB equation and to plot their figures. The results include that the variable coefficient in the reduced equation
is a key to perform classification, and show some figures of the solutions. And furthermore, the boundary value prob-
lem for patterns with an edge are discussed.
2. Lie symmetry analysis to the DB equation

By using the multiplescale technique, the reaction–diffusion equations are reduced into the DB equation which is an
equation of the tangential velocity along with the boundary layer between the chemical activities [11]. The DB equation
is written as
uxt ¼ ðuux þ uxxÞx; ð1Þ
where s ¼ x=ð
ffiffi
�

p
KÞ, t and a ¼

ffiffi
�

p
dKuðx; tÞ are the arclength, the time and the tangential velocity, respectively; d is a

diffusion constant of the activator, 1/K a characteristic length which has relation to parameters representing pattern
and � a small parameter in multiplescale expansion.

An infinitesimal generator of Lie symmetry is given in the following form:
V ¼ sot þ nox þ /ou. ð2Þ
Eq. (1) admits the Lie symmetry whose coefficients are
s ¼ c1t2 þ c2t þ c3;
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where ci (i = 1,2,3) are arbitrary constants and n is an arbitrary function of the time t. The symmetry (2) is derived
through the standard procedure.

The group invariant solution is a solution of a transformed differential equation by similarity variables, which is
obtained by solving the Lie equation associated with the symmetry (2)
dt
s
¼ dx

n
¼ du

/
. ð3Þ
Solving Eq. (3) yields the similarity variables
y ¼ xffiffiffi
s

p � nðtÞ; u ¼ � sty þ UðyÞ þ stnþ 2snt
2
ffiffiffi
s

p . ð4Þ
Under the transformation (4), we can reduce Eq. (1) to an ordinary differential equation of the form
2U 000 � ðU 0Þ2 � UU 00 þ D ¼ 0; ð5Þ
where prime denotes differentiation with respect to y and D ¼ c22 � 4c1c3. Eq. (5) can be integrated twice and be line-
arized by the Cole–Hopf transformation u = �4V 0/V, we get
�4V 00 þ F ðyÞV ¼ 0; where F ðyÞ ¼ D
4
y2 þ ay þ b; ð6Þ
where a and b are integration constants. Since the function F(y) are in three cases i.e. constant, linear and quadrature. In
the next section, we enumerate all group invariant solutions in the cases.
3. Classification for group invariant solutions and related patterns

We present a complete classification of solutions of the linearized equation (6) and typical patterns in the following
figures.
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3.1. The case F(y) = b

In this case, we find three types of solutions according to the sign of b:
the case b > 0; V ¼ C1 expð
ffiffiffi
b

p
y=2Þ þ C2 expð�

ffiffiffi
b

p
y=2Þ; ð7Þ

the case b ¼ 0; V ¼ C1y þ C2; ð8Þ
the case b < 0; V ¼ C1 cosð

ffiffiffiffiffi
jbj

p
y=2Þ þ C2 sinð

ffiffiffiffiffi
jbj

p
y=2Þ; ð9Þ
where C1 and C2 are arbitrary constants. In Figs. 1–4, we illustrate shapes of patterns associated with the solution for
b = 4. The solution (7) becomes cosh(y) and sinh(y) in C1 = C2 = 1/2 and C1 = �C2 = 1/2, respectively. The function s
are chosen as 1 and (t + 1)2. Especially, an evolution of pattern are shown at the time t = 0, 1, 2 in Fig. 2. In Figs. 5 and
6, we choose the function V(y) as y with s = 1 and (t + 1)2, respectively. In Figs. 7 and 8, we use only a part of cos(y)
and let values of parameters, C1 = 1 and b = �4. Fig. 8 shows shapes at the time t = 1, 2 and 3.

3.2. The case F(y) = ay + b (a 5 0)

In this case, we get
V ¼ C1Ai
a
4

� �1=3
y þ b

a

� �� �
þ C2Bi

a
4

� �1=3
y þ b

a

� �� �
, ð10Þ
where Ai and Bi are the Airy�s functions and C1 and C2 are arbitrary constants. Let the parameters, a = 4 and b = 0.
Figs. 9–12 show patterns in all combination of two Airy�s function in V and s = 1, (t + 1)2.
Fig. 2. The case F(y) = b (D = 0, a = 0, b > 0): V = cosh(y), b = 4, s = (t + 1)2.

Fig. 3. The case F(y) = b (D = 0, a = 0, b > 0): V = sinh(y), b = 4, s = 1.

Fig. 1. The case F(y) = b (D = 0, a = 0, b > 0): V = cosh(y), b = 4, s = 5.



Fig. 5. The case F(y) = b (D = 0, a = 0, b = 0): V = y, s = 1.

Fig. 4. The case F(y) = b (D = 0, a = 0, b > 0): V = sinh(y), b = 4, s = (t + 1)2.

Fig. 6. The case F(y) = b (D = 0, a = 0, b = 0): V = y, s = (t + 1)2.
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3.3. The case F ðyÞ ¼ D
4
y2 þ ay þ b ðD 6¼ 0Þ

In this case, the solution of Eq. (6) are given as,
the case D > 0,
V ¼ exp �ð4aþ DyÞy
8
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Fig. 8. The case F(y) = b (D = 0, a = 0, b < 0): V = cos(y), b = �4, s = (t + 1)2.

Fig. 9. The case F(y) = ay + b (D = 0, a5 0): V = Ai(y), a = 4, b = 0, s = 1.

Fig. 10. The case F(y) = ay + b (D = 0, a5 0): V = Ai(y), a = 4, b = 0, s = (t + 1)2.

Fig. 7. The case F(y) = b (D = 0, a = 0, b < 0): V = cos(y), b = �4, s = 1.
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Fig. 11. The case F(y) = ay + b (D = 0, a5 0): V = Bi(y), a = 4, b = 0, s = 1.

Fig. 12. The case F(y) = ay + b (D = 0, a5 0): V = Bi(y), a = 4, b = 0, s = (t + 1)2.
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the case D < 0,
V ¼ exp
ið4a� DyÞy
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where Hn(z), 1F1(a,b,c) are the Hermitian polynomial, the hypergeometric function of confluent type and
n � a2 � ðbþ
ffiffiffiffi
D

p
ÞD

2
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D
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2
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i.
We concentrate only the Hermitian polynomial term in the solution (11). For D = 1 and a = 0, the values of �1, �3 and
�5 of b correspond to the zeroth, first and second order Hermitian polynomials, i.e. H0, H1 and H2, respectively. In
Figs. 13–15, patterns with s = (t2 + 1)/2 are shown, and one of the zeroth order at various times t = 1, 2 and 3 are
depicted.
Fig. 13. The case F(y) = Dy2/2 + ay + b (D5 0): V = exp(�y2/8)H0(y/2), D = 1, a = 0, b = �1, s = (t2 + 1)/2.



Fig. 15. The case F(y) = Dy2/2 + ay + b (D 5 0): V = exp(�y2/8)H2(y/2), D = 1, a = 0, b = �5, s = (t2 + 1)/2.

Fig. 14. The case F(y) = Dy2/2 + ay + b (D 5 0): V = exp(�y2/8)H1(y/2), D = 1, a = 0, b = �3, s = (t2 + 1)/2.
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Remark. For patterns having an edge (for example, spiral), we should have to discuss a boundary value problem at the
edge. As a boundary condition, we consider the situation that the edge remains at the edge. Then the patterns do not
admit translational symmetry for the edge. Since the invariance y are rewritten as
y ¼ x�
ffiffiffi
s

p
nffiffiffi

s
p ;
the function nðtÞ should vanish.
4. Summary

We present a complete description of group invariant solutions under the Lie symmetry of the DB equation. Requir-
ing invariance under the symmetry yields reduced ordinary differential equations with one variable coefficient whose
form can takes in three cases. So, the invariant solutions are classified into three cases associated with the form of
the coefficient and all solutions are able to be listed, especially, the solution described by the hypergeometric function
of confluent type is a new result. We show some figures of typical patterns admitted by the DB equations. On the pat-
terns, double scroll is obtained as a newly result. In some figures, we show specific shapes associated with the solutions.
Since the patterns cannot be classified by the form of the function F(y), we come to a conclusion that the classification
of the invariant solution dose not give one of their patterns. In remark, we further give a short discussion on a boundary
value problem to patterns with an edge. If patterns with an edge are invariant under the symmetry, the arbitrariness nðtÞ
vanishes.
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