
IMA Journal of Applied Mathematics (2001) 66, 111–125

New methods of reduction for ordinary differential equations
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We introduce a new class of symmetries, that strictly includes Lie symmetries, for which
there exists an algorithm that lets us reduce the order of an ordinary differential equation.
Many of the known order-reduction processes, that are not consequence of the existence of
Lie symmetries, are a consequence of the invariance of the equation under vector fields of
the new class. These vector fields must satisfy a new prolongation formula and there must
exist a procedure for determining the vector fields of this class that lead to an equation
invariant. We have also found some whose Lie symmetries are trivial, have no obvious
order reductions, but can be completely integrated by using the new class of symmetries.

1. Introduction

Classical symmetry groups have been widely used to reduce the order of an ordinary
differential equation (ODE) and to reduce the number of independent variables in a partial
differential equation (PDE).

Nevertheless, there are many examples of ODEs with trivial Lie symmetries whose
order can be reduced, or that can be completely integrated. It is not obvious (Clarkson,
1995) how a theory of order reductions could be achieved from a group-theoretic
standpoint. In a recent paper (Hood, 1997) presented an ansatz-based method for the
reduction of ODEs, which is somewhat similar to the direct method used for PDEs
(Clarkson & Kruskal, 1989). It has also been suggested (González-López, 1988) that
dynamical symmetries or Lie–Bäcklund symmetries could explain the reduction and
integrability of a family of ODEs which has no Lie symmetries but, however, can be
integrated. Other examples related to this situation appear in Olver (1995, p. 182).

The aim of this paper is to show that many of the known order-reduction processes
can be explained by the invariance of the equation under some special vector fields that
are neither Lie symmetries nor Lie–Bäcklund symmetries, but satisfy a new prolongation
formula. The components of these vector fields must satisfy a system of determining
equations that depends on an arbitrary function, which can be chosen to solve the system
easily. When this arbitrary function is chosen to be null we obtain the classical Lie
symmetries.

For this class of vector fields it is still possible, as for Lie symmetries (Olver, 1986,
p. 144), to obtain a complete set of functionally independent invariants, by derivation of
invariants of lower order. This lets us reduce the order of the equation and explain the
reduction process of many ODEs that lack Lie symmetries, but whose order reductions are
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almost obvious. We have also found some ODEs whose Lie symmetries are trivial, have
no obvious order reductions, but can be completely integrated by using the new class of
vector fields.

Finally, the new theory allows us to explain several aspects of the loss and the gain
of symmetries by order reductions. This has been studied by Abraham-Shrauner & Guo
(1993), Abraham-Shrauner et al. (1995), Abraham-Shrauner (1996), who mention the
difficulty in evaluating hidden symmetries: there is no direct method for determining this
kind of symmetry. The vector fields we consider in this paper are essential in this theory
and, for instance, exponential vector fields (Olver, 1986, p. 185) are a specific example of
our class of vector fields.

2. The concept of C∞(M (1))-symmetry

Let v be a vector field defined on an open subset M ⊂ X × U . We denote by M (k) the
corresponding jet space M (k) ⊂ X × U (k), for k ∈ N. Their elements are (x, u(k)) =
(x, u, u1, . . . , uk), where, for i = 1, . . . , k, ui denotes the derivative of order i of u with
respect to x .

The two basic tools to obtain Lie symmetries of an ODE

∆(x, u(n)) = 0 (2.1)

are the general prolongation formula (Olver, 1986, p. 113) and the infinitesimal invariance
criterion (Olver, 1986, p. 106). The latter characterizes a Lie symmetry of an ODE as a
vector field v = ξ(x, u)∂/∂x + η(x, u)∂/∂u that satisfies

v(n)(∆(x, u(n))) = 0 if ∆(x, u(n)) = 0, (2.2)

where v(n) denotes the nth prolongation of v.
For every function λ ∈ C∞(M (1)), we will define a new prolongation of v in the

following way.

DEFINITION 2.1 (New prolongation formula) Let v = ξ(x, u)∂/∂x + η(x, u) ∂
∂u be a

vector field defined on M , and let λ ∈ C∞(M (1)) be an arbitrary function. The λ-
prolongation of order n of v, denoted by v[λ,(n)], is the vector field defined on M (n) by

v[λ,(n)] = ξ(x, u)
∂

∂x
+

n∑
i=0

η[λ,(i)](x, u(i))
∂

∂ui
,

where η[λ,(0)](x, u) = η(x, u) and

η[λ,(i)](x, u(i)) = Dx (η
[λ,(i−1)](x, u(i−1))) − Dx (ξ(x, u))ui

+ λ(η[λ,(i−1)](x, u(i−1)) − ξ(x, u)ui )

for 1 � i � n, where Dx denotes the total derivative operator with respect to x .

Let us observe that, if λ ∈ C∞(M (1)) and λ = 0, the λ-prolongation of order n of v is the
usual nth prolongation of v.
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DEFINITION 2.2 Let ∆(x, u(n)) = 0 be an nth-order ordinary differential equation. We
will say that a vector field v, defined on M , is a C∞(M (1))-symmetry of the equation if
there exists a function λ ∈ C∞(M (1)) such that

v[λ,(n)](∆(x, u(n))) = 0 when ∆(x, u(n)) = 0.

In this case we will also say that v is a λ-symmetry.

Let us observe that if v is a 0-symmetry then v is a classical Lie symmetry.
An elegant characterization of Lie symmetries of the equation

un = F(x, u(n−1)) (2.3)

appears in Stephani (1989, p. 22): we associate to this equation the vector field

A = ∂

∂x
+ u1

∂

∂u
+ · · · + F(x, u(n−1))

∂

∂un−1
.

Then, a vector field v is an infinitesimal symmetry of (2.3) when [v(n−1), A] = µA for
some µ ∈ C∞(M (1)).

Our next result presents a characterization of C∞(M (1))-symmetries which is similar
to this one.

THEOREM 2.1

1. Let us suppose that, for some λ ∈ C∞(M (1)), the vector field v is a λ-symmetry
of equation (2.3). Then

[v[λ,(n−1)], A] = λ · v[λ,(n−1)] + µ · A

for some µ ∈ C∞(M (1)).
2. Conversely, if

X = ξ(x, u)
∂

∂x
+ η0(x, u)

∂

∂u
+

n−1∑
i=1

ηi (x, u(i))
∂

∂ui

is a vector field defined on M (n−1) such that

[X, A] = λ · X + µ · A

for some λ, µ ∈ C∞(M (1)), then the vector field

v = ξ(x, u)
∂

∂x
+ η0(x, u)

∂

∂u
,

defined on M , is a λ-symmetry of the equation (2.3) and X = v[λ,(n−1)].

Proof. 1. Let us determine the expression of the vector field [v[λ,(n−1)], A] in the
coordinates {x, u, u1, . . . , un−1}. By using the prolongation formula that appears in
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Definition 2.2 we have

[v[λ,(n−1)], A](x) = −A(ξ(x, u)),

[v[λ,(n−1)], A](u) = η[λ,(1)](x, u(1)) − A(η(x, u))

= −A(ξ(x, u)) · u1 + λ(η(x, u) − ξ(x, u)u1),

[v[λ,(n−1)], A](u1) = η[λ,(2)](x, u(2)) − A(η[λ,(1)](x, u(1)))

= −A(ξ(x, u)) · u2 + λ(η[λ,(1)](x, u(1)) − ξ(x, u)u2),

···
[v[λ,(n−1)], A](ui ) = η[λ,(i+1)](x, u(i+1)) − A(η[λ,(i)](x, u(i)))

= −A(ξ(x, u)) · ui+1 + λ(η[λ,(i)](x, u(i)) − ξ(x, u)ui ),

···
[v[λ,(n−1)], A](un−1) = v[λ,(n−1)](F(x, u(n−1))) − A(η[λ,(n−1)](x, u(n−1)))

and

v[λ,(n)](un) = Dx (η
[λ,(n−1)](x, u(n−1))) − Dx (ξ(x, u))un

+λ(η[λ,(n−1)](x, u(n−1)) − ξ(x, u)un). (2.4)

Since v is a λ-symmetry,

v[λ,(n)](un) = v[λ,(n−1)](F(x, u(n−1))) when un = F(x, u(n−1)). (2.5)

Hence, if un = F(x, u(n−1)), equation (2.4) says that

v[λ,(n−1)](F(x, u(n−1))) = A(η[λ,(n−1)](x, u(n−1))) − A(ξ(x, u))F(x, u(n−1))

+ λ(η[λ,(n−1)](x, u(n−1)) − ξ(x, u)F(x, un−1))).

If we set µ = −A(ξ(x, u)) − λξ(x, u) then we can write

[v[λ,(n−1)], A](x) = λξ(x, u) + µ,

[v[λ,(n−1)], A](u) = λη(x, u) + µ · u1,

[v[λ,(n−1)], A](u1) = λη[λ,(1)](x, u(1)) + µ · u2,

···
[v[λ,(n−1)], A](ui ) = λη[λ,(i)](x, u(i)) + µ · ui+1,

···
[v[λ,(n−1)], A](un−1) = λη[λ,(n−1)](x, u(n−1)) + µF(x, u(n−1)).
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Therefore, we conclude that

[v[λ,(n−1)], A] = λv[λ,(n−1)] + µ · A.

2. Let us suppose that [X, A] = λX + µA. If we apply both elements of this equation to
each coordinate function, we obtain

µ = −A(ξ(x, u)) − λξ(x, u)

and, for 0 � i � n − 2, the coordinates ηi (x, u(i)) of X must satisfy

ηi+1(x, u(i+1)) = Dx (ηi (x, u(i))) − ui+1 Dx (ξ(x, u)) + λ(ηi (x, u(i)) − ξ(x, u)ui+1).

Hence

X = v[λ,(n−1)].

If we apply both elements of [X, A] = λX +µA to the coordinate function un−1, we obtain

X (F(x, u(n−1))) − A(η[λ,(n−1)](x, u(n−1)))

= λη[λ,(n−1)](x, u(n−1)) − (A(ξ(x, u)) + λξ(x, u)) · F(x, u(n−1)).

This proves that

X (F(x, u(n−1))) = A(η[λ,(n−1)](x, u(n−1))) + λη[λ,(n−1)](x, u(n−1))

−(A(ξ(x, u)) + λξ(x, u)) · F(x, u(n−1)). (2.6)

Let us check that v satisfies

v[λ,(n)](un − F(x, u(n−1))) = 0, if un = F(x, u(n−1)).

If we evaluate

v[λ,(n)](un − F(x, u(n−1))) = Dx (η
[λ,(n−1)](x, u(n−1))) − un Dx (ξ(x, u))

+ λ(η[λ,(n−1)](x, u(n−1))

− ξ(x, u)un) − X (F(x, u(n−1)))

when un = F(x, u(n−1)), we obtain, by (2.6), that

v[λ,(n)](un − F(x, u(n−1))) = 0, when un = F(x, u(n−1)).

Therefore v satisfies

0 = v[λ,(n)](un − F(x, u(n−1))) = v[λ,(n)](∆(x, u(n))), if ∆(x, u(n)) = 0,

and v is a λ-symmetry of the equation. �
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3. Order reductions and C∞(M (1))-symmetries

In this section we prove that if v is a C∞(M (1))-symmetry of equation (2.3) then there
exists a procedure to reduce the equation to an (n − 1)th-order equation and a first-order
equation. For this goal, the main tools will be Theorem 2.1 and our next result, which
explains that if v is a λ-symmetry, with λ ∈ C∞(M (1)), then we can determine invariants
for the λ-prolongation of v by derivation of invariants of lower order.

THEOREM 3.1 Let v be a vector field defined on M ⊂ X × U and let λ ∈ C∞(M (1)). If

α = α(x, u(k)), β = β(x, u(k)) ∈ C∞(M (k))

are such that
v[λ,(k)](α(x, u(k))) = v[λ,(k)](β(x, u(k))) = 0,

then

v[λ,(k+1)]
(

Dxα(x, u(k))

Dxβ(x, u(k))

)
= 0.

Proof. It is clear that

[v[λ,(k+1)], Dx ] = λv[λ,(k+1)] + µDx ,

where µ = −Dx (v(x)) − λv(x) ∈ C∞(M (1)). Therefore,

v[λ,(k+1)]
(

Dxα

Dxβ

)
= 1

(Dxβ)2
(Dxβ · v[λ,(k+1)](Dxα) − Dxα · v[λ,(k+1)](Dxβ))

= 1

(Dxβ)2
(Dxβ · [v[λ,(k+1)], Dx ](α) − Dxα · [v[λ,(k+1)], Dx ](β))

= 1

(Dxβ)2
(Dxβ · (µ · Dxα) − Dxα · (µ · Dxβ))

= 0. �

Our next objective is to show how a C∞(M (1))-symmetry lets us reduce the order of
an ODE.

THEOREM 3.2 Let v be a λ-symmetry, with λ ∈ C∞(M (1)), of the equation ∆(x, u(n)) =
0. Let y = y(x, u) and w = w(x, u, u1) be two functionally independent first-order
invariants of v[λ,(n)]. The general solution of the equation can be obtained by solving an
equation of the form ∆r (y, w(n−1)) = 0 and an auxiliary equation w = w(x, u, u1).

Proof. Let y = y(x, u) and w = w(x, u, u1) be two functionally independent first-order
invariants of v[λ,(n)] such that w depends on u1. By Theorem 3.1,

w1 = Dxw(x, u, u1)

Dx y(x, u)

is an invariant for v[λ,(n)] which is obviously functionally independent of y and w, because
w1 depends on u2. From w1 and y we construct, by derivation, a third-order invariant for
v[λ,(n)], and so on. Therefore, the set

{y, w, w1, . . . , wn−1}
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is a complete set of functionally independent invariants of v[λ,(n)]. Since v is, by
hypothesis, a C∞(M (1))-symmetry of the equation, this can be written in terms of
{y, w, w1, . . . , wn−1}. The resulting equation is a (n − 1)th-order equation of the form

∆r (y, w(n−1)) = 0. (3.7)

We can recover the general solution of the original equation from the general solution
of (3.7) and the corresponding first-order auxiliary equation:

w = w(x, u, u1). �

4. Some applications

In this section we consider some equations whose order can be reduced by using some
specific ansatz, but lack Lie or Lie–Bäcklund symmetries, and that have appeared in the
literature. Some of the corresponding reduction processes can be explained by the existence
of C∞(M (1))-symmetries.

A. Olver (1995, p. 182) considered the equation

uxx = [(x + x2)eu]x (4.8)

as an example of an equation that can be integrated by quadratures, but that lacks
non-trivial Lie symmetries. Equation (4.8) has the form

uxx = Dx F(x, u), (4.9)

which admits the obvious order reduction

ux = F(x, u) + C, C ∈ R, (4.10)

but could have no Lie symmetries. For this class of equations we have the following
result.

THEOREM 4.1 A second-order differential equation of the form (4.9) admits the λ-
symmetry v = ∂/∂u, with λ = Fu(x, u). The reduction process of (4.8)–(4.10) is the
process described in Theorem 3.2.

Proof. 1. By using the prolongation formula that appears in Definition 2.2, we obtain

V = ∂

∂u
+ Fu

∂

∂ux
+ (F2

u + ux Fuu + Fxu)
∂

∂uxx
. (4.11)

It is straightforward to check that the vector field v[λ,(2)] satisfies v[λ,(2)](uxx −
Dx F(x, u)) = 0. Hence v[λ,(2)](uxx − Dx F(x, u)) = 0 when uxx − Dx F(x, u) = 0.

Therefore v is a λ-symmetry of (4.9), with λ = Fu(x, u).
2. Two functionally independent invariants for v[λ,(2)] are z = x and w = ux − F(x, u).
3. Another invariant of v[λ,(2)] can be obtained by derivation:

wz = Dxw

Dx z
= uxx − Dx F(x, u).
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4. In terms of {z, w, wz} the expression of (4.9) is the trivial first-order differential
equation:

wz = 0.

Its general solution, w = C, C ∈ R, allows us to obtain the general solution of (4.9) by
solving:

ux = F(x, u)+C . �

B. González-López (1988) proved that an ODE of the form

uxx − (u−1u2
x + pg(x)u pux + g′(x)u p+1) = 0, p �= 0, (4.12)

is integrable by quadratures but does not have non-trivial Lie symmetries, unless the
function g is in the form:

g(x) = k1ek2x (k3 + k4x)k5 , or g(x) = k6ek7x2
,

where ki ∈ R, for 1 � i � 7. For this class of equations we have the result that
follows.

THEOREM 4.2 Equation (4.12) admits v = ∂
∂u as a λ-symmetry, with λ = pg(x)u p+1+ux

u .
This equation can be reduced by the process described in Theorem 3.2.

Proof. It can be checked, by using the prolongation formula given in Definition 2.2, that

v[λ,(2)] = ∂

∂u
+

(
ux

u
+ p u p g(x)

)
∂

∂ux

+
(

uxx

u
+ 2 p u−1+p ux g(x)

+p2 u−1+p ux g(x) + p2 u2 p g(x)2 + p u p g′(x)

)
∂

∂uxx
. (4.13)

Let us denote by ∆(x, u, ux , uxx ) the first member of (4.12).

1. It can be checked that

v[λ,(2)](∆(x, u, ux , uxx )) = −ux
2

u2
+ uxx

u
− p u−1+p ux g(x) − u p g′(x).

To evaluate the second member when ∆(x, u, ux , uxx ) = 0, we substitute uxx by
u−1u2

x + pg(x)u pux + g′(x)u p+1, and then we simplify. Accordingly:

v[λ,(2)](∆(x, u, ux , uxx )) = −ux
2

u2
− p u−1+p ux g(x) − u p g′(x)

+ ux
2

u
+ p u p ux g(x) + u1+p g′(x)

u
= 0.

Therefore, v = ∂/∂u is a λ-symmetry of (4.12), with λ = (pg(x)u p+1 + ux )/u.
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2. Two functionally independent invariants for v[λ,(2)] are

z = x, w = ux

u
− u p g(x).

3. The key feature that allows us to use v[λ,(2)] to reduce the order of (4.12) is that
we can obtain another invariant of v[λ,(2)] from z and w by derivation:

wz = Dxw

Dx z
= −ux

2

u2
+ uxx

u
− p u−1+p ux g(x) − u p g′(x).

The set {z, z, wz} is a complete set of functionally independent invariants for v[λ,(2)].
4. The first member of equation (4.12) can be written, in terms of z, w and wz , as

wz = 0. (4.14)

The general solution of (4.14) is w = C, C ∈ R. We recover the general solution of
our original equation (4.12) by solving the first-order differential equation:

ux

u
− u p g(x) = C,

which is a Bernoulli equation and is, therefore, integrable by quadratures. �
C. Since the specific equations that have been considered above can be easily reduced,

in order to show the utility of our new symmetries, we must find ODEs which cannot
be trivially reduced or integrated and that have no Lie symmetries.

The existence of a C∞(M (1))-symmetry for a second-order ODE can be used to
integrate the equation, by solving two first-order differential equations: one of them
is the reduced equation and the other one is the auxiliary equation which appears
in Theorem 3.2. The relation between the original equation and the two first-order
equations is not clear unless one knows how to calculate C∞(M (1))-symmetries.

The algorithm to obtain C∞(M (1))-symmetries will be described using an
example and will exhibit another of the advantages of C∞(M (1))-symmetries: the
determining equations to obtain C∞(M (1))-symmetries are easier to solve than the
usual determining equations in the classical Lie method. The reason is clear, the
function λ can be chosen in such a way that the corresponding infinitesimals can be
calculated. Nevertheless, if you want to find Lie symmetries, you must solve a fixed
system.

To show this advantage, the determining equations in the classical method (4.16)
should be compared with the new determining equations (4.23) which appear below.
The example that follows goes even further: the determining equations in Lie’s
method has only the trivial solution (the equation has no Lie symmetries) but, with
an appropriate selection of λ (not equal to zero, of course), we have found non-trivial
solutions for the infinitesimals of a C∞(M (1))-symmetry.

THEOREM 4.3 The second-order differential equation

uxx = −
(

x2

4u3
+ u + 1

2u

)
(4.15)

has no Lie symmetries.
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Proof. If a vector field v = p(x, u)∂/∂x + r(x, u)∂/∂u is a Lie symmetry of the equation
(4.15), its infinitesimals p, r must satisfy the following determining system:

puu = 0,

ruu − 2pxu = 0,

3pu x2

4u3
+ 3puu + 3pu

2u
+ 2rxu − pxx = 0,

−ru x2

4u3
+ px x2

2u3
− 3r x2

4u4
+ px

2u3
− ruu + 2px u − ru

2u
+ px

u
− r

2u2
+ rxx + r = 0.

(4.16)

The first equation shows that p must be linear in u:

p(x, u) = a(x)u + b(x). (4.17)

After substituting this value in (4.16) we have:

ruu − 2a′ = 0

3ax2

4u3
+ 3au + 3a

2u
+ 2rxu − (a′′u + b′′) = 0

−ru x2

4u3
+ (a′u + b′)x2

2u3
− 3r x2

4u4
+ (au + b)x

2u3
− ruu + 2(a′u + b′)u − ru

2u
+ a′u + b′

u

− r

2u2
+ rxx + r = 0.

By integrating the first of these equations with respect to u, we obtain that r must have
the form

r(x, u) = a′(x)u2 + c(x)u + d(x), (4.18)

where a, c and d are functions of x . Then, the remaining equations are now

3ax2

4u3
+ 3au + 3a

2u
+ 2(2a′′u + c′) − (a′′u + b′′) = 0,

−(2a′u + c)x2

4u3
+ (a′u + b′)x2

2u3
− 3(a′u2 + cu + d)x2

4u4
+ (au + b)x

2u3
− (2a′u + c)u

+ 2(a′u + b′)u − 2a′u + c

2u
+ a′u + b′

u
− a′u2 + cu + d

2u2

+ a′′′u2 + c′′u + d ′′ + a′u2 + cu + d = 0.

We simplify the first equation and then cancel out every coefficient of powers of u; in
particular, since the coefficient of u2 is a(x), it follows that

a(x) = 0. (4.19)

Therefore,

2c′ − b′′ = 0,

−cx2

4u3
+ b′x2

2u3
− 3(cu + d)x2

4u4
+ bx

2u3
− cu + 2b′u − c

2u
+ b′

u
− cu + d

2u2

+ c′′u + d ′′ + cu + d = 0.
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If we multiply the last equation by u4 then the coefficients of u2 and u5 must vanish. Hence
d(x) = 0 and

c(x) = b′(x). (4.20)

With these values, the determining equations reduce to

b′′ = 0,
−b′x2

2u3
+ bx

2u3
+ b′′′u + 2b′u = 0. (4.21)

Equation (4.21)1 gives

b(x) = c1x + c2, c1, c2 ∈ R
2, (4.22)

and (4.21)2, gives
c2x + 4c1u4 = 0.

Consequently c1 = c2 = 0, and b(x) = 0. By (4.20), we have c(x) = 0. By (4.17),
p(x, u) = 0. Finally, by (4.18), r(x, u) = 0. Therefore, the equation has no Lie
symmetries. �

Our next theorem proves that (4.15) admits non-trivial C∞(M (1))-symmetries that
allow us to obtain the general solution of the equation.

THEOREM 4.4 Equation (4.15) admits non-rivial C∞(M (1))-symmetries and can be
completely integrated by the process described in Theorem 3.2.

Proof. If a vector field v = p(x, u)∂/∂x + r(x, u)∂/∂u is a λ-symmetry of equation
(4.15), for some λ ∈ C∞(M (1)), then their infinitesimals p and r must satisfy the following
determining equations:

puu = 0,

ruu − 2pxu − 2λpu − λu p = 0,

3pu x2

4u3
+ 3puu + 3pu

2u
+ 2rxu − pxx + 2λru + λur − 2λpx − λx p − λ2 p = 0,

−ru x2

4u3
+ px x2

2u3
− 3r x2

4u4
+ px

2u3
− ruu + 2px u − ru

2u
+ px

u
− r

2u2
+ rxx + r

+ λpx2

2u3
+ 2λpu + λp

u
+ 2λrx + λxr + λ2r = 0.

(4.23)

It can be checked that these equations, whose unknowns are p, r and λ, admit the
solution p = 0, r = u, λ = x/u2. Hence, if λ = x/u2, the vector field v = u ∂

∂u is a
λ-symmetry of (4.15).

By using the prolongation formula (2.1), we can determine v[λ,(2)] with λ = x/u2, and
we obtain

v[λ,(2)] = u
∂

∂u
+

(
ux + x

u

)
∂

∂ux
+

(
1

u
+ uxx + x2

3

)
∂

∂uxx
.
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It can be checked that

y = x, w = −
(

ux

u
+ x

2u2

)

are two functionally independent invariants for v[λ,(1)].
By Theorem 3.1, we can calculate an additional invariant by derivation:

wy = −u + 2uux + 2ux x − 2u2uxx

2u3
.

Equation (4.15) can be written in terms of {y, w, wy} and we obtain the reduced equation

1 + w2 − wy = 0.

This first-order differential equation can be integrated easily: its general solution is:

w = tan(y + c1), c1 ∈ R.

We recover the general solution of equation (4.15) by solving the auxiliary first-order
differential equation

2u2tan(x + c1) + 2uux + x = 0.

We set ũ = u2 and then the equation is transformed into the linear differential equation

2ũtan(x + c1) + ũx + x = 0.

If we integrate this equation, we obtain the general solution of (4.15):

u = ±cos(x+c1)
√−log(cos(x + c1)) − x tan(x + c1) + c2, c1, c2 ∈ R. �

5. Exponential vector fields and C∞(M (1))-symmetries

Olver (1986, p. 185) introduced the concept of ‘exponential vector field’ in order to show
that not every method of integrating an ODE comes from the classical Lie method. He
defined an exponential vector field as a formal expression of the form

v∗ = e
∫

P(x,u) dx
(

ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u

)
,

where
∫

P(x, u) dx is, formally, the integral of the function P(x, u), once one has chosen a
function u = f (x). He notes that v∗(n) = e

∫
P(x,u) dx V , where V is an ordinary vector field

on M (n), and that an exponential vector field can be used to reduce the order of ODEs. We
show here that exponential vector fields are specific C∞(M (1))-symmetries and that study
of λ-symmetries of an equation lets us determine the exponential vector fields admitted by
the equation.

LEMMA 5.1 Let us consider the ODE (2.3) and let A be its corresponding vector field. If
a vector field v is a λ-symmetry of (2.3), then for every f ∈ C∞(M) the vector field f · v

is a λ̃-symmetry, with λ̃ = −(A( f )/ f ) + λ, of (2.3).
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Proof. If v is a λ-symmetry of the equation, then:

[v[λ,(n−1)], A] = λ · v[λ,(n−1)] + µ · A.

By the properties of the Lie bracket,

[ f · v[λ,(n−1)], A] = f · λv[λ,(n−1)] + f · µA − A( f ) · v[λ,(n−1)]

=
(

λ − A( f )

f

)
· f · v[λ,(n−1)] + ( f µ) · A.

Let us denote λ̃ = λ − A( f )/ f . Then, the vector field ( f · v)[λ̃,(n−1)] satisfies:

[( f · v)[λ̃,(n−1)], A] = λ̃ · ( f · v)[λ̃,(n−1)] + ( f µ) · A.

Therefore
( f · v)[λ̃,(n−1)] = f · v[λ,(n−1)],

and, by Theorem 2.1, the vector field f · v is a C∞(M (1))-symmetry of the equation. �

Let us observe that if λ ≡ 0 the vector field v is a Lie symmetry of the equation. In this
case, by Lemma 5.1, the vector field f · v is a λ̃-symmetry with λ̃ = −A( f )/ f , for every
f ∈ C∞(M).

THEOREM 5.1 Let v∗ be the exponential vector field, in Olver’s sense,

v∗ = e
∫

P(x,u) dx
(

ξ(x, u)
∂

∂x
+ η(x, u)

∂

∂u

)
.

Let us suppose that

v∗(n)
(∆(x, u(n))) = 0 if ∆(x, u(n)) = 0.

Then the vector field v = ξ(x, u)∂/∂x + η(x, u)∂/∂u is a λ-symmetry with λ = P(x, u).

Proof. It is sufficient to apply Lemma 5.1 to v∗ and f = e− ∫
P(x,u) dx .

Exponential vector fields usually arise, in practice, in reduction processes. When
an ODE admits a Lie algebra with two infinitesimal generators v1 and v2 such that
[v1, v2] = cv1, c ∈ R, one must reduce the order by using v1 and the reduced equation
inherits a Lie symmetry from v2. Nevertheless, if c �= 0, and we use v2 instead of v1 to
reduce the equation then, in the coordinates of the reduced equation, the vector field v

(1)
1

is not well defined: it is an exponential vector field. In our language, we say that v1 can be
‘modified’ in order to be conserved as a C∞(M (1))-symmetry of the reduced equation. This
is the first step on the theory of the loss and gain of symmetries by successive reductions
of order. Additional work dealing with this theory is currently in progress.

Let us consider, again, equation (4.12), which admits v = ∂/∂u as a λ-symmetry, with
λ = pgu p + ux/u. This equation has been considered in Abraham-Shrauner et al. (1995),
to explain its integrability via hidden symmetries. By means of the transformation

u p = − w′

pgw
, (5.24)
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equation (4.12) can be transformed into the third-order equation

w′w′′ − (w′′)2 −
(

g′

g

)′
(w′)2 = 0. (5.25)

This equation admits G1 = ∂/∂w and G2 = w∂/∂w as Lie symmetries. Since [G1, G2] =
G1, the reduction of (5.25) to (4.12) via (5.24) has been carried by a non-normal subgroup
and so G1 is lost as a point symmetry of (4.12). In fact G1 is the exponential vector field

G1 = − 1

p
u · exp

(∫
pgu p dx

)
∂

∂u
.

By Lemma 5.1, the vector field v1 = −(1/p)u∂/∂u is a λ̃-symmetry of (4.12) with λ̃ =
pgu p. Essentially, the vector field v1 is the same λ-symmetry v that we have found in
Theorem 4.2. By Lemma 5.1, the vector field v = ∂/∂u is a λ-symmetry with

λ = −
(−1

p
u

)−1

A

(−1

p
u

)
+ λ̃.

It must also be observed that vector fields v or v1 can be obtained through a well-defined
algorithm and there is no need to guess the transformation (5.24).

6. Concluding remarks

There are many known examples of ODEs, without Lie symmetries, that can be completely
integrated. Many of the corresponding reduction processes are based on some specific
ansätze and, as far as we know, they are not based on group theoretic considerations.

We have introduced a new class of vector fields, the C∞(M (1))-symmetries, that are
neither Lie symmetries nor Lie–Bäcklund symmetries but that let us give a reduction
process in these equations, using the invariance of the equation under these vector fields.
These using can be obtained by solving a set of determining equations that are easier to
solve than the determining equations for the classical Lie method.

We illustrate our new theory with some examples of second-order differential equations
which have no Lie symmetries (therefore the classical Lie method cannot be used to
integrate them) but admit non-trivial C∞(M (1))-symmetries. The new method of reduction
is applied to integrate these equations by solving, in each case, two first-order differential
equations.

There are many recent papers dealing with properties of hidden symmetries (Abraham-
Shrauner, 1996; Abraham-Shrauner & Guo, 1993; Abraham-Shrauner et al., 1995). In
general, we have found that any vector field that is lost, as a point symmetry, after an order
reduction, can be modified appropriately (depending on the structure of the Lie algebra) in
a such a way that it can be recovered as a C∞(M (1))-symmetry of the reduced equation.
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