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Abstract

A generalization of the concept of variational symmetry, based on
λ−prolongations, allows us to construct new methods of reduction for
Euler-Lagrange equations. An adapted formulation of the Noether’s
theorem for the new class of symmetries is presented. Some examples
illustrate how the method works in practice.

1 Introduction

Lie symmetry groups provides a powerful and systematic method for an-
alyzing ordinary (and partial) differential equations. However, not every
integration technique can be based on symmetry analysis, [6, 7], and require
generalizations of the classical Lie methods.

A more general approach to the integration of ordinary differential equa-
tions is based on the concept of a nonlocal exponential symmetry, which first
appeared in ([15], Exercise 2.31). This method was further developed in the
work of Abraham–Shrauner and her collaborators, [1], and in the theory
of solvable structures, [2, 8]. There exists a large variety of processes of
reduction that can be explained and deduced by this theory. These ideas
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were further developed by the first author, [11], who replaces the non-local
exponential terms by a new method of prolonging vector fields known as the
λ−prolongation, leading to the notion of a C∞−symmetry or λ−symmetry.
These methods have been extended to partial differential equations in the
work of Cicgona, Gaeta and Morando, [3, 4, 5], who develop the concept of
a µ-symmetry.

For ordinary differential equations that can be derived from a variational
principle

L[u] =

∫
L(x, u(n))dx, (1.1)

the existence of special types of symmetries (variational symmetries) doubles
the power of Lie’s method of reduction. Due to the special structure of the
Euler-Lagrange equation derived from (1.1), the knowledge of a variational
symmetry allows us to reduce the order by two.

We can expect that a generalization of the concept of variational sym-
metry, based on the new λ−prolongations, will generate new methods of
reduction for Euler-Lagrange equations. In this paper we establish this gen-
eralization and introduce the concept of variational C∞−symmetry, also
including generalized vector fields. Some important properties of these vari-
ational C∞−symmetries are presented. We also provides an algorithmic
procedure to reduce by two the order of any Euler-Lagrange equation that
admits a variational C∞−symmetry. This is a “partial” reduction, because,
in general, a one-parameter family of solutions is lost when the reduced
equation is considered.

The correspondence between variational symmetries and conservation
laws for Euler-Lagrange equations is completely determined by celebrated
Noether’s Theorem [9, 14, 15]. Since every conservation law rises from an
ordinary (generalized) variational symmetry, we can not expect to find new
conservation laws associated with variational C∞−symmetries. In Section
4 we establish the corresponding version of Noether’s theorem for the new
symmetries (Theorem 3). This result allows us to reformulate the connection
between the original Euler-Lagrange equation and the reduced equation. In
addition, we will be able to obtain a conservation law for the one-parameter
family of solutions lost in the reduction process, by relating the variational
C∞−symmetry to an special pseudo-variational symmetry. We also include
several examples to illustrate how this new method works in practice.

Throughout the paper, we will freely use the notations and results in
[15]. We will restrict our attention to single variable integrals leading to
ordinary differential equations. Extensions of these results to µ−variational
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symmetries of multivariable variational problems and Euler–Lagrange par-
tial differential equations will proceed in an analogous fashion, but we leave
the details to another publication.

2 Variational C
∞−symmetries

2.1 Some previous results

Let us consider a variational problem

L[u] =

∫
L(x, u(n))dx (2.2)

where the Lagrangian L(x, u(n)) is defined on M (n), for some open set M of
the space of independent and dependent variables X × U . Let

E[L] ≡
n∑

i=0

(−D)i(∂ui
L) = 0 (2.3)

be the associated Euler-Lagrange equation, where D stands for the total
derivative operator with respect to x. To simplify the notation, we will
denote by A the space of smooth functions depending on x, u and derivatives
of u up to some finite, but unspecified, order and we write P [u] = P (x, u(m))
if we do not need to precise the order of derivatives that P depends on.

Roughly speaking, a variational symmetry group of the functional (2.2)
is a local group of transformations that leaves the variational integral L
unchanged when u = f(x) is transformed by the action of the group. The
infinitesimal criterion of invariance ([15], pag. 253) characterizes the in-
finitesimal generators of connected groups of variational symmetries. They
are the vector fields v = ξ(x, u)∂x + η(x, u)∂u such that

v(n)(L) + LD(ξ) = 0. (2.4)

The relation between symmetry groups and conservation laws was first
determined by E. Noether. In modern language, the characteristic Q =
v(u) − v(x)ux of a variational symmetry v is also the characteristic of a
conservation law for the Euler-Lagrange equation, i.e. QE[L] = D(P ) for
some P ∈ A. The hypothesis that the vector field v generate a group
of variational symmetries is overly restrictive to deduce the existence of a
conservation law. This motivates a generalization of a variational symmetry:
the infinitesimal divergence symmetries are the vector fields v such that

v(n)(L) + LD(ξ) = D(B), (2.5)
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for some B ∈ A.
It is well-known that a one-parameter symmetry group of variational

symmetries for the Euler-Lagrange equations allows us to reduce the order by
two. This is the Lagrangian counterpart of what is now known as Marsden–
Weinstein reduction, [10].

It is also known that there exist ordinary differential equations without
Lie symmetries that can be reduced or integrated by using different methods.
One of them, that explains a large variety of these processes, is based on the
existence of C∞−symmetries [11, 13]. This concept is based of a new way of
prolonging vectors fields. For a given vector field v = ξ(x, u)∂x + η(x, u)∂u

defined on M ⊂ X × U and for an arbitrary function λ ∈ C∞(M (1)) the
λ−prolongation of order n of v is the vector field

v[λ,(n)] = ξ(x, u)∂x +
n∑

i=0

η[λ,(i)](x, u(i))∂ui
, (2.6)

defined on M (n), where η[λ,(0)](x, u) = η(x, u) and, for 1 6 i 6 n,

η[λ,(i)](x, u(i)) = D
(
η[λ,(i−1)](x, u(i−1))

)
− D(ξ(x, u))ui

+λ
(
η[λ,(i−1)](x, u(i−1)) − ξ(x, u)ui

)
.

(2.7)

Formally, the λ−prolongation of a vector field v can be identified as the
ordinary prolongation of a nonlocal exponential vector field, ([15], Exercise
2.31)

v̂(n) = e
R

λdxv[λ,(n)] where v̂ = e
R

λdxv..

Equivalent characterizations of the λ−prolongations can be consulted in [12]
(Theorem 2). One of them, that will be used in this paper, states that an
arbitrary prolongation of v to M (n)

v∗
n = ξ(x, u)

∂

∂x
+ η(x, u)

∂

∂u
+

n∑

i=1

η∗i (x, u(i))
∂

∂ui
, (2.8)

is the λ−prolongation of v if and only if

[v∗
n, D] = λv∗

n − (D + λ)(v∗
n(x))D. (2.9)

For this kind of prolongations it is possible to calculate a complete system
of differential invariants by invariant derivation of lower order invariants.
This is the key to construct new methods of order reduction, based on the
existence of C∞−symmetries, [11].
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2.2 The Concept of Variational C
∞−Symmetries.

In this section, we show how the concept of variational symmetry can be
generalized when λ− prolongations are considered. This will generate new
methods of reduction for Euler-Lagrange equations. The concept of in-
finitesimal divergence symmetry and the λ−prolongation formula inspire
the following generalization of the definition of variational symmetry:

Definition 2.1 A vector field v = ξ(x, u)∂x + η(x, u)∂u is a variational
C∞−symmetry of the functional L[u] =

∫
L(x, u(n))dx if there exists B[u] ∈

A such that
v[λ,(n)](L) + L(D + λ)(ξ) = (D + λ)(B), (2.10)

for some λ ∈ C∞(M (1)). We also say that v is a variational λ−symmetry
to precise the function λ for which (2.10) is satisfied.

Let us observe that standard divergence variational symmetries correspond
to variational C∞−symmetries for function λ = 0.

Two Lagrangians L and L̃ are equivalent if L − L̃ = Df is a divergence
term (see Theorem 4.7 in [15]). In particular, the associated Euler-Lagrange
equations are the same. The next proposition states the coherence of defini-
tion 2.1: formula (2.10) remains invariant when equivalent Lagrangians are
considered.

Proposition 2.1 Let v be a variational λ−symmetry of L[u] =
∫

L(x, u(n))dx.

The vector field v is also a variational λ−symmetry of L̃[u] =
∫

L̃(x, u(n))dx

where L̃ = L + Df , for any f ∈ A.

Proof By using

v[λ,(n)](L) + L(D + λ)(ξ) = (D + λ)(B), (2.11)

we get:

v[λ,(n)](L + Df) + (L + Df)(D + λ)(ξ) =

= v[λ,(n)](L) + v[λ,(n)](Df) + L(D + λ)(ξ) + Df(D + λ)(ξ)

= (D + λ)(B) + Df(D + λ)(ξ) + v[λ,(n)](Df).

(2.12)

Formula (2.9), written as [v[λ,(n)], D] = λv[λ,(n)] − (D +λ)(v(x)) ·D, applied
to f gives

v[λ,(n)](Df) = (D + λ)(v[λ,(n)]f) − (D + λ)(v(x)) · Df. (2.13)
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Therefore (2.12) becomes

v[λ,(n)](L + Df) + (L + Df)(D + λ)(ξ) =

= (D + λ)(B) + (D + λ)(v[λ,(n)]f)

= (D + λ)(B + v[λ,(n)]f).

(2.14)

The following result shows that a variational C∞−symmetry remains as
a variational C∞−symmetry under a change of variables:

Proposition 2.2 Let v be a variational C∞−symmetry of L[u] =
∫

L(x, u(n))dx

and consider any change of variables

x̃ = X̃ (x, u), ũ = Ũ(x, u). (2.15)

The vector field v in new variables, ṽ, is a variational C∞−symmetry of
the corresponding transformed functional L̃[ũ] =

∫
L̃(x̃, ũ(n))dx̃.

Proof

Let us denote by

x = X (x̃, ũ), u = U(x̃, ũ). (2.16)

the inverse change of coordinates. The two Lagrangians L(x, u(n)) and
L̃(x̃, ũ(n)) are related, through the change of variables, by the formula

L(x, u(n)) =
L̃(x̃, ũ(n))

DexX (x̃, ũ)
. (2.17)

We need the following useful property of λ−prolongations (see [11] for de-
tails):

v[λ,(n)] = ṽ[eλ,(n)], for λ =
λ̃

DexX (x̃, ũ)
. (2.18)

By (2.18) and since Dx =
Dex

DexX
, formula (2.10), in new variables, becomes:

ṽ[eλ,(n)]

(
L̃

DexX

)
+

L̃

(DexX )2
(Dex + λ̃)(ṽ(x̃)) =

1

DexX
(Dex + λ̃)(B̃). (2.19)
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By derivation, the first term of (2.19) becomes

DexX ṽ[eλ,(n)](L̃) − L̃ṽ[eλ,(n)](DexX )

(DexX )2
(2.20)

and formula (2.9) applied to X gives

ṽ[eλ,(n)](Dex(X )) = (Dex + λ̃)(X ) − (Dex + λ̃)(ṽ(x̃))DexX . (2.21)

By replacing (2.20) and (2.21) into (2.19) and simplifying, we finally get

ṽ[eλ,(n)](L̃) + L̃(Dex + λ̃)(ṽ(x̃)) = (Dex + λ̃)(B̃). (2.22)

This proves the result.

Near any point where the vector field v 6= 0, we can introduce a partic-
ular change of variables (2.15) such that v takes the canonical form ṽ = ∂eu,
formula (2.22) becomes

ṽ[eλ,(n)](L̃) = (Dex + λ̃)(B̃). (2.23)

Suppose that B̃ = −∂eu(A) for some function A. Then the Lagrangian

L̂ ≡ L̃(x̃, ũ(n)) + Dex(A) (2.24)

and L̃ have the same Euler-Lagrange expression, Eeu[L̂]. Now formula (2.9)

becomes [ṽ[eλ,(n)], Dex] = λ̃ṽ[eλ,(n)], which, when applied to A, provides:

ṽ[eλ,(n)](Dex(A)) = (Dex + λ̃)(ṽ[eλ,(n)](A)). (2.25)

By (2.23) and (2.25), we get

ṽ[eλ,(n)](L̂) = 0. (2.26)

Let w = w(x̃, ũ, ũ1) be a first order invariant for ṽ[eλ,(1)], that is

∂eu(w) + λ̃∂eu1
(w) = 0. (2.27)

A very important property of λ−prolongations is that a complete system
of invariants of the n-th order λ−prolongation can be constructed by suc-
cessive derivations of lower order invariants, [12]. In this case, by suc-
cessive derivations of w with respect to x̃ we obtain a system of coordi-

nates {x̃, ũ, w, · · · , wn−1}, such that ṽ[eλ,(n)] = ∂eu. Let us also denote by
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L̂(x̃, w(n−1)) the Lagrangian (2.24) in the (x̃, ũ, w(n−1)) variables. By (2.26),
L̂ does not depend on ũ.

By means of the transformation {x̃ = x̃, w = w(x̃, ũ, ũ1)} we get the fol-
lowing relation between Eeu[L̂] and the Euler-Lagrange equation of L̂(x̃, w(n−1))
(see Exercise 5.49 in [15]):

Eeu[L̂] = D∗
w(Ew[L̂]) − D∗

ex(DexwEw[L̂])

= D∗
w(Ew[L̂])

= ∂eu(w)Ew[L̂] − Dex(∂euex
(w)Ew[L̂])

(2.28)

Therefore, by (2.27):

Eeu[L̂] = (Dex + λ̃)[−∂euex
(w)Ew[L̂]]. (2.29)

Let w = H(x̃, C1, · · · , C2n−2) be the general solution of the reduced Euler-
Lagrange equation Ew[L̂] = 0. When w is written in terms of {x̃, ũ, ũ1}, we
have a first order ordinary differential equation for ũ:

w(x̃, ũ, ũ1) = H(x̃, C1, · · · , C2n−2), (2.30)

whose general solution ũ = G(x̃, C1, · · · , C2n−1) yields a (2n−1)−parameter
family of solutions

ũ(x, u) = G(x̃(x, u), C1, · · · , C2n−1) (2.31)

to the original Euler-Lagrange equation Eu[L] = 0.
In this way, we have managed to construct a reduced Lagrangian, of order

n − 1, whose corresponding Euler-Lagrange equation (of order 2n − 2) pro-
vides a 2n−1−parameter family of solutions to the original Euler-Lagrange
equations. In other words, we have proved that variational C∞−symmetries
generate new reduction procedures for Euler-Lagrange equations, as spelled
out in the following theorem:

Theorem 1 Reduction of order

Let L[u] =
∫

L(x, u(n))dx be an n−th order variational problem with
Euler-Lagrange equation Eu[L] = 0, of order 2n. Let v be a variational
λ−symmetry, where λ ∈ C∞(M (1)). Then there exists a variational prob-
lem L̂[w] =

∫
L̂(x̃, w(n−1))dx̃ of order n − 1, with Euler-Lagrange equation

Ew[L̂] = 0 of order 2n − 2, such that a (2n − 1)−parameter family of solu-
tions of Eu[L] = 0 can be found by solving a first order equation from the
solutions of the Euler-Lagrange reduced equation Ew[L̂] = 0.
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3 Generalized variational C
∞−symmetries

A significant generalization of the notion of symmetry group is obtained by
allowing the components ξ and η of an infinitesimal generator to depend also
on derivatives of u. A generalized vector field will be a formal expression of
the form v = ξ[u]∂x+η[u]∂u in which ξ and η depends on x, u and derivatives
of u with respect to x up to some finite (but unspecified) order. Formally, the
prolongation of generalized vector fields is obtained in the same manner as
for ordinary vector fields. In a similar way, we can consider λ−prolongations
of generalized vector fields, for functions λ depending on x, u and derivatives
of u (see [13] for details). Based on this generalizations, the concepts of
generalized symmetry and generalized λ−symmetry are straightforward. In
particular, we can also define generalized variational C∞−symmetries as
follows:

Definition 3.1 A generalized vector field v = ξ[u]∂x + η[u]∂u is a gener-
alized variational C∞−symmetry of the functional L[u] =

∫
L(x, u(n))dx if

there exists B[u] ∈ A such that

v[λ,(n)](L) + L(D + λ)(ξ) = (D + λ)(B), (3.32)

for some λ ∈ A.

To simplify the terminology, in what follows we will not specify the
term generalized if it is clear from the context which type of variational
C∞−symmetry is considered.

Any vector field v = ξ[u]∂x + η[u]∂u has an associated evolutionary
representative, vQ = Q∂u where Q = η[u]− ξ[u]u1 is the characteristic of v.
We have the following alternative expression for the λ−prolongation of the
vector field, [13]:

v[λ,(n)] = v
[λ,(n)]
Q + ξ[u]D, where v

[λ,(n)]
Q =

n∑

i=0

(D + λ)i(Q)∂ui
. (3.33)

The vector field v and its evolutionary form vQ determine essentially the
same variational C∞−symmetry:

Proposition 3.1 A vector field v is a variational λ−symmetry of (2.2) if
and only if vQ is a variational λ−symmetry.
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Proof By (3.33), the identity (3.32) is satisfied if and only if:

v
[λ,(n)]
Q (L) + ξD(L) + L(D + λ)(ξ) = (D + λ)(B). (3.34)

This expression can be written as follows:

v
[λ,(n)]
Q (L) = (D + λ)(B − ξL), (3.35)

which proves the result.

The term strict variational symmetry is used to distingue standard vari-
ational symmetries from divergence variational symmetries. Similarly, we
will say that v is a strict variational C∞−symmetry when the second mem-
ber of (2.10) is identically null. The following result proves, in particular,
that there exists strict variational C∞−symmetry associated to any given
variational C∞−symmetry:

Proposition 3.2 Let v be a variational λ−symmetry of L[u] =
∫

L(x, u(n))dx

and f ∈ A. The vector field v[λ,(n)]+fD is also a variational C∞−symmetry.
As a consequence, v[λ,(n)] − B

L D is a strict variational C∞−symmetry.

Proof

A simple calculation gives

(v[λ,(n)] + fD)(L) + L(D + λ)(ξ + f)

= v[λ,(n)](L) + L(D + λ)(ξ) + fD(L) + D(fL) + Lλf.
(3.36)

By (3.32), the right member of (3.36) becomes (D + λ)(B) + D(fL) + Lλf ,
for some B ∈ A and thus

(v[λ,(n)] + fD)(L) + L(D + λ)(ξ + f)
= (D + λ)B + (D + λ)(fL)
= (D + λ)(B + fL).

(3.37)

This proves that v[λ,(n)] + fD is a variational C∞−symmetry. For f =
−B

L , the second member of (3.37) is identically null, which proves that the

modified vector field v[λ,(n)] − B
L D is a strict variational C∞−symmetry.

The following proposition will also be useful.
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Proposition 3.3 Let v be a variational λ−symmetry of L[u] =
∫

L(x, u(n))dx

and let f ∈ A be an arbitrary non null function. Then fv is a variational
λ̃−symmetry of L[u] =

∫
L(x, u(n))dx for λ̃ = λ − D(f)

f .

Proof

The proof is based on the following property of λ−prolongations ([11],
Lemma 5.1):

fv[λ,(n)] = (fv)[
eλ,(n)] for λ̃ = λ − D(f)

f
. (3.38)

By multiplying both members of (2.10) by f , replacing λ by λ̃ + D(f)
f and

by (3.38), we get:

(fv)[
eλ,(n)](L) + fL(D + λ̃)ξ + fL

D(f)

f
ξ = f(D + λ̃)B + f

D(f)

f
B. (3.39)

Successive simplifications of expression (3.39):

(fv)[
eλ,(n)](L) + fL(D + λ̃)ξ + LD(f)ξ = f(D + λ̃)B + D(f)B

(fv)[
eλ,(n)](L) + L(fD(ξ) + fλ̃ξ + D(f)ξ) = fD(B) + fλ̃B + D(f)B

lead to the desired result:

(fv)[
eλ,(n)](L) + L(D + λ̃)(fξ) = (D + λ̃)(fB). (3.40)

4 Noether’s theorem and variational C
∞−symmetries

Theorem 1 provides a method to reduce by two the order of a given Euler-
Lagrange equation. This is a “partial” reduction, meaning that, in general,
a one-parameter family of solutions can not be derived from the solutions
of the corresponding reduced equation. It all has to do with relation (2.29).
Solutions of the reduced equation annihilates the expression in the brackets
of second member of (2.29). However there could be solutions of the Euler-
Lagrange equation for which this expression is neither null nor constant. In
other words, in general, that expression is not a first integral of the Euler-
Lagrange equation.

In this section we investigate the form of the well-known Noether’s the-
orem for when λ−prolongations are considered. The version presented here
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is inspired on the proof of Noether’s theorem used in [15]. From this stand-
point, the essence of this theorem is reduced to the formula

v(n)(L) = Q · E[L] + D(A), for some A ∈ A, (4.41)

which is based on techniques of integration by parts. First of all, we prove
a formula that is similar to (4.41), but adapted to λ−prolongations.

Lemma 4.1 Suppose Q, λ ∈ A. There exists A ∈ A such that

v
[λ,(n)]
Q (L) = Q · E[L] + (D + λ)(A). (4.42)

Proof

Let us prove that for any F, G and for each i ∈ N, there exists Ai ∈ A
such that

(D + λ)i(F )G = F (−D)i(G) + (D + λ)(Ai). (4.43)

For i = 0 and i = 1, formula (4.43) is satisfied for A0 = 0 and A1 = FG,
respectively. Let us assume that (4.43) is true for i − 1. Then there exists
a function Ãi−1 such that

(D + λ)i−1((D + λ)(F ))G = (D + λ)(F )(−D)i−1(G) + (D + λ)(Ãi−1).

It is clear that

(D + λ)i(F )G = −FD((−D)i−1(G)) + (D + λ)(Ã1) + (D + λ)(Ãi−1)
= F (−D)i(G) + (D + λ)(Ai),

where Ã1 = F (−D)i−1(G) and Ai = Ãi−1 + Ã1. Then we can write

v
[λ,(n)]
Q (L) =

∑n
i=0(D + λ)i(Q)∂ui

(L)

=
∑n

i=0 Q(−D)i(∂ui
(L)) + (D + λ)(A)

= QE[L] + (D + λ)(A).

(4.44)

Next we present a result which is formally similar to Noether’s theorem,
for variational λ−symmetries.

Theorem 2 Let v be a variational λ−symmetry of the variational problem
L[u] =

∫
L(x, u(n))dx and Q the corresponding characteristic of v. Then

there exists P [u] ∈ A such that

QE[L] = (D + λ)(P ). (4.45)
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Proof

By (3.35) and (4.42) we deduce

0 = QE[L] + (D + λ)(A − B + ξL). (4.46)

Therefore (4.45) is satisfied for P = −A + B − ξL.

Every variational symmetry of a variational problem is necessarily a sym-
metry of the corresponding Euler-Lagrange equation. This can be proved
by means of an important commutation formula ([15], pag. 332):

E[v
(n)
Q (L)] = v

(2n)
Q (E[L]) + D∗

Q(E[L]), (4.47)

where L, Q ∈ A, and D∗
Q denotes the Frechet derivative operator.

Our next goal is to prove that variational C∞−symmetries are condi-
tional C∞−symmetries of the Euler-Lagrange equation. That means that
variational C∞−symmetries satisfy the invariance criterion v[λ,(2n)](E[L]) =
0 only for a particular class of solutions of E[L] = 0.

With this aim, let us investigate the form of formula (4.47) when λ−pro-
longations are considered. First we introduce some notations and technical
formulas that will be used to prove subsequent results. The following oper-
ators are similar to the Frechet derivative operator and its adjoint, when D

is replaced by D + λ :

(D + λ)P (Q) = v
[λ,(n)]
Q (P ) =

n∑

i=0

(∂ui
P )(D + λ)i(Q), (4.48)

(D + λ)∗Q(P ) =
n∑

i=0

(−(D + λ))i(∂ui
(Q) · P ). (4.49)

Let us observe that (D+λ)∗R(1) corresponds to the Euler-Lagrange operator
when D is replaced by D + λ, so we will write

Eλ[Q] = (D + λ)∗Q(1).

In Lemma 4.2 formula (4.47) for λ-prolongations will be stated. The
proof we present uses the following relations, that can be checked without
too much difficulty:

13



Eλ[P + Q] = Eλ[P ] + Eλ[Q] (4.50)

Eλ[PQ] = (D + λ)∗P (Q) + (D + λ)∗Q(P ) (4.51)

Eλ[(D + λ)P ] = (D + λ)∗λ(P ) (4.52)

(D + λ)E[L](Q) = (D + λ)∗E[L](Q). (4.53)

Lemma 4.2 Suppose L, Q and λ ∈ A. Then

Eλ[v
[λ,(n)]
Q (L)] = v

[λ,(2n)]
Q (E[L]) + (D + λ)∗Q(E[L]) + (D + λ)∗λ(A) (4.54)

for A given in Lemma 4.1.

Proof By (4.50)-(4.53) and (4.42):

Eλ[v
[λ,(n)]
Q (L)] = Eλ[QE[L]] + Eλ[(D + λ)A]

= (D + λ)∗E[L](Q) + (D + λ)∗Q(E[L]) + (D + λ)∗λ(A)

= v
[λ,(2n)]
Q (E[L]) + (D + λ)∗Q(E[L]) + (D + λ)∗λ(A).

Lemma 4.3 Let v be a variational λ−symmetry of the variational problem
L[u] =

∫
L(x, u(n))dx. Let Q be the corresponding characteristic, and let

P [u] be given by Theorem 2. Then

v
[λ,(2n)]
Q (E[L]) = −(D + λ)∗Q(E[L]) + (D + λ)∗λ(P ). (4.55)

Proof By formula (3.35), the left hand side of (4.54) becomes

Eλ[v
[λ,(n)]
Q (L)] = Eλ[(D + λ)(B − ξL)]

= (D + λ)∗λ(B − ξL)
= (D + λ)∗λ(P ) + (D + λ)∗λ(A)

(4.56)

and by (4.54) we get the result.

Let us observe that evaluating (4.55) when E[L] = 0 gives

v
[λ,(2n)]
Q (E[L])|E[L]=0 = (D + λ)∗λ(P )|E[L]=0 (4.57)

14



and the second member, in general, is not null. Therefore, variational
C∞−symmetries are not, in general, C∞−symmetries of the Euler-Lagrange

equation. However, v
[λ,(2n)]
Q (E[L]) = 0 on solutions to the combined system

E[L] = 0, P = 0. This explains, from another point of view, the “partial”
reduction for the Euler-Lagrange equation stated by Theorem 1. Next result
connects function P of Theorem 2 with the expression in brackets of formula
(2.29) and, consequently, with the reduced equation of Theorem 1.

Theorem 3 Let v be a variational λ−symmetry of the variational prob-
lem L[u] =

∫
L(x, u(n))dx, and P [u] given by Theorem 2. Then v is a

λ−symmetry of the equation P [u] = 0. The reduced equation of P [u] = 0
through this λ−symmetry is (up to multipliers) the reduced equation of the
Euler-Lagrange equation corresponding to v, according to Theorem 1.

Proof Let us retain the notation of Theorem 1. We can assume that v

is a proper C∞−symmetry, i.e., not equivalent to a standard variational
symmetry. In terms of (x̃, ũ, w2n−1), (4.45) becomes

Eeu[L̂] = (Dex + λ̃)(P̃ ), (4.58)

where P̃ stands for P in the new variables. By (2.29),

(Dex + λ̃)(P̃ + ∂euex
(w)Ew[L̂]) = 0. (4.59)

We set P̃ + ∂euex
(w)Ew[L̂] = H(x̃, ũ, w(2n−1)) and (4.59) can be written:

0 = Dex(H(x̃, ũ, w(2n−1))) + λ̃(x̃, ũ, w)H(x̃, ũ, w(2n−1))

=
∂H

∂x̃
(x̃, ũ, w(2n−1)) +

∂H

∂ũ
(x̃, ũ, w(2n−1)) · Dexũ + · · ·

+
∂H

∂w2n−1
(x̃, ũ, w(2n−1)) · w2n + λ̃(x̃, ũ, w)H(x̃, ũ, w(2n−1)).

(4.60)

The only term where w2n appears is
∂H

∂w2n−1
(x̃, ũ, w(2n−1)) · w2n, and so

its coefficient must vanish:
∂H

∂w2n−1
(x̃, ũ, w(2n−1)). Therefore, H does not

depend on w2n−1, and (4.60) becomes

0 =
∂H

∂x̃
(x̃, ũ, w(2n−2)) +

∂H

∂ũ
(x̃, ũ, w(2n−2)) · Dexũ + · · ·

+
∂H

∂w2n−2
(x̃, ũ, w(2n−2)) · w2n−1 + λ̃(x̃, ũ, w)H(x̃, ũ, w(2n−2)).

(4.61)
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The variable w2n−1 only appears in
∂H

∂w2n−2
(x̃, ũ, w(2n−2)) · w2n−1, and, as

above, we deduce that H does not depend on w2n−1. By continuing this
process, we obtain

0 =
∂H

∂x̃
(x̃, ũ) +

∂H

∂ũ
(x̃, ũ) · Dexũ + λ̃(x̃, ũ, w)H(x̃, ũ), (4.62)

that is: 0 = Dex(H) + λ̃ · H. If function H is not null, λ̃ − Dex(1/H)
1/H = 0

and Proposition 3.3 proves that
1

H
ṽ is a (standard) variational symmetry,

which we excluded at the start of the proof.
Thus, H ≡ 0 and

P̃ = −∂euex
(w)Ew[L̂]. (4.63)

Since Ew[L̂] does not depend on ũ, we have v[λ,(2n−1)](P ) = 0 when P = 0,
which proves that v is λ−symmetry of P = 0. In particular, P̃ does not
depend on ũ and P̃ = 0 is the reduced equation corresponding to v. Formula
(4.63) proves the second part of the theorem.

5 Partial conservation laws

In this section we focus our attention on the solutions of the Euler-Lagrange
equation that do not arise from the reduced equation of Theorem 1. Such
solutions satisfy P 6= 0 but (D +λ)(P ) = 0. The following result states that
1
P v is a pseudo-variational symmetry of the problem, which is defined as a

generalized vector field v = ξ(x, u(k))∂x + η(x, u(k))∂u that satisfies

v(n)(L) + LD(ξ) = D(B), (5.64)

for some B[u] ∈ A, only on solutions of the Euler-Lagrange equations ([15],
Exercise 5.38).

Theorem 4 Let L[u] =
∫

L(x, u(n))dx be an n−th order variational problem
with Euler-Lagrange equation Eu[L] = 0, of order 2n. Let v be a variational
λ−symmetry and let P be as in Theorem 2. The generalized vector field
Y = 1

P v is a pseudo-variational symmetry of the problem.

Proof According to Definition 2.10, there exists B[u] ∈ A such that

v[λ,(n)](L) + L(D + λ)(ξ) = (D + λ)(B), (5.65)
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for some λ ∈ C∞(M (1)). According to Proposition 3.3, the vector field 1
P v

is a variational C∞−symmetry for λ̃ = λ + D(P )
P . In particular,

1

P
v[λ,(n)] =

(
1

P
v

)[eλ,(n)]

. (5.66)

Now we multiply both members of (5.65) by 1
P :

1

P
v[λ,(n)](L) +

1

P
L(D + λ)ξ =

1

P
(D + λ)B. (5.67)

Let us evaluate (5.67) on the solutions u of the Euler-Lagrange equations
such that P [u] 6= 0. Since (D + λ)(P )[u] = 0, the following relation holds,
for any A ∈ A :

1

P
(D + λ)(A)[u] = D

(
A

P

)
[u]. (5.68)

If (D + λ)(P )[u] = 0, we also have

1

P
v[λ,(n)][u] =

(
1

P
v

)[eλ,(n)]

[u] =

(
1

P
v

)(n)

[u]. (5.69)

Therefore, (5.67) evaluated on u becomes

(
1

P
v

)(n)

(L)[u] + LD

(
ξ

P

)
[u] = D

(
B

P

)
[u] . (5.70)

This proves the theorem.

To every pseudo-variational symmetry of a normal variational problem
there corresponds a conservation law and, moreover, there is always a true
variational symmetry giving rise to the same law ([15], Exercise 5.38).

The corresponding conservation law associated to the pseudo-variational
symmetry of the previous theorem can be constructed as follows. Let Q̃ be
the characteristic of vector field 1

P v and
(

1
P v
)

eQ the corresponding evolu-

tionary form. The next relation always holds ([15], pag. 273):

(
1

P
v

)(n)

eQ
(L) = Q̃ · E[L] + D(A), (5.71)
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for some function A. By other hand, in terms of
(

1
P v
)

eQ, formula (5.67)
reads (

1

P
v

)(n)

eQ
(L)[u] = D

(
B

P
− Lξ

)
[u] . (5.72)

From equation (5.71) evaluated when E[L] = 0 and equation (5.72) we
finally get

D

(
A − B

P
− Lξ

)
= 0 when E[L] = 0. (5.73)

In consequence, A− B
P −Lξ is a conservation law associated to the pseudo-

variational symmetry 1
P v.

6 Some examples

6.1 First order Lagrangian

1. Strict variational C∞-symmetries:

The vector field v = ∂u is a strict variational C∞−symmetry, for
λ = u, of the variational problem associated to the Lagrangian

L(x, u, ux) = x3 +

(
ux − u2

2

)2

. (6.74)

Indeed,

v[λ,(2)](L) = (∂u + u∂ux
+ (u2 + ux)∂uxx

)(L) = 0. (6.75)

The corresponding Euler-Lagrange equation is

E[L] ≡ u3 − 2uxx = 0. (6.76)

The order reduction associated to the variational C∞−symmetry v

can be constructed by using Theorem 1 or Theorem 3. Next we use
both theorems to compare the two different methods.

• Theorem 1: in coordinates {x, u} the vector field v adopts the
canonical form ∂u and the original Lagrangian (6.74) is an invari-
ant for v[λ,(2)] by itself. We consider a first order invariant for
v[λ,(2)] :

w = ux − u2

2
. (6.77)
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In coordinates {x, u, w} the Lagrangian L becomes x3 + w2. The
associated Euler-Lagrange equation for the reduced Lagrangian
L̂(x, w) = x3+w2 is given by 2w = 0. The general solution of this
(0-th order) ordinary differential equation is w = 0. By (6.77) we
obtain the first order differential equation

ux − u2

2
= 0. (6.78)

By solving this equation we recover a one-parameter family of

solutions of (6.76) given by u(x) = − 2

x + C
for C ∈ R.

• Theorem 3: it can be checked that P = u2−2ux satisfies QE[L] =
(D + λ)(P ). As promised by theorem 3, the vector field v = ∂u

is also a C∞−symmetry, for λ = u, of the equation P = 0 :

v[λ,(2)](P ) = (∂u + u∂ux
+ (u2 + ux)∂uxx

)(u2 − 2ux) = 0. (6.79)

To reduce the order of the equation P = 0 by means of the
C∞−symmetry v, we consider the set {x, w}, for w as in (6.77),
that constitutes a complete system of invariants of v[λ,(1)]. In
terms of {x, w} the equation P = 0 becomes 2w = 0, that is
equivalent to the reduction obtained by the previous method.

2. Divergence variational C∞-symmetries:

The vector field v = ∂u is a divergence variational C∞−symmetry, for
λ = u, of the variational problem associated to the Lagrangian

L(x, u, ux) = x ux
2 +

u3 (4 + 3 x u)

12
, (6.80)

because

v[λ,(2)](L) = u
(
u + x u2 + 2 x ux

)
= (D + u)(x u2). (6.81)

Therefore, (2.10) is satisfied for B = x u2. The corresponding Euler-
Lagrange equation is

E[L] ≡ u2 + x u3 − 2 (ux + x uxx) = 0. (6.82)

In coordinates {x, u} the vector field v adopts the canonical form ∂u

but in this case, in view of (6.81), the original Lagrangian (6.80)
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is not an invariant of v[λ,(2)]. According to Theorem 1, we choose
some function A such that B = −∂u(A), for example, A = −1

3 u3 x.
In coordinates {x, u, w, wx}, for w given by (6.77), the correspond-
ing v[λ,(2)]−invariant Lagrangian (2.24) becomes x w2. The associated
Euler-Lagrange equation for the reduced Lagrangian L̂(x, w) = x w2 is
given by 2 x w = 0. From the general solution of this 0-th order ordi-
nary differential equation (w = 0) and through the first order differen-
tial equation (6.78), we obtain the one-parameter family of solutions
of (6.82) given by u(x) = − 2

x+C for C ∈ R.

To apply Theorem 3, P = x u2 − 2 x ux satisfies QE[L] = (D + λ)(P ),
and the reduced equation of P = 0, by means of the λ−symmetry
v, is 2 x w = 0, which is equivalent to the reduction obtained by the
previous method.

6.2 Second order Lagrangian

The vector field v = ∂u is a variational C∞−symmetry, for λ = u, of the
variational problem associated to the Lagrangian

L(x, u, ux, uxx) = x

(
ux − u2

2

)
+

1

uxx − u ux
(6.83)

because

v[λ,(2)](L) = (∂u + u∂ux
)(L) = 0 (6.84)

The corresponding Euler-Lagrange equation is a fourth order differential
equation:

E[L] ≡ −1 +
2 u
(
ux

2 + u uxx − uxxx

)

(u ux − uxx)3
− 6

(
ux

2 + u uxx − uxxx

)2

(− (u ux) + uxx)4

+
2 (3 ux uxx + u uxxx − uxxxx)

(u ux − uxx)3
− x u = 0.

(6.85)

• Theorem 1: A complete system of invariants of v[λ,(4)] is given by
{x, w, wx, wxx, wxxx}, for w as in (6.77). In coordinates {x, u, w, wx},
(6.83) becomes L̂(x, w, wx) = x w + 1

wx
. The Euler-Lagrange equa-

tion that corresponds to the reduced Lagrangian L̂, in coordinates
{x, w, wx, wxx}, becomes

2wxx

w3
x

− x = 0. (6.86)

20



The general solution of this second order equation is given by

w = ±
√

2 arctan

(
x√

C1 − x2

)
+ C2, C1, C2 ∈ R. (6.87)

By setting w = ux − u2

2 through the first order equation

ux − u2

2
= ±

√
2 arctan

(
x√

C1 − x2

)
+ C2, (6.88)

we get a three-parameter family of solutions of E[L] = 0.

• We can also use Theorem 3 to effect the reduction, but the complexity
of (6.85) to determine an expression P that satisfies Q E[L] = (D +
λ)(P ) suggests to use the previous method. Anyway, the reader can
check that P is given

P (x, u, ux, uxx, uxxx) =
2
(
ux

2 + u uxx − uxxx

)

(u ux − uxx)3
− x. (6.89)

We use the λ−symmetry v to reduce the equation P = 0. In terms of
the invariants {x, w, wx, wxx} as above, the equation P = 0 becomes
(6.86). By Theorem 3, this is also the reduced equation for the Euler-
Lagrange equation (6.85).

7 Conclusions

The new technique of λ−prolongations and some conditions of invariance
allowed us to introduce the concept of C∞−symmetry and to derive new
methods of reduction for ordinary differential equations [11]. In this pa-
per we prove that a convenient generalization of the concept of variational
symmetries for Euler-Lagrange equations, based on a similar technique, also
provides new algorithms of reduction for this type of equations (Theorem
1).

This generalization corresponds to the concept of variational C∞−sym-
metry, and some important properties have been presented. We have also
provided the general algorithm to reduce by two the order of a given Euler-
Lagrange equation admitting a C∞−symmetry. In general, a one-parameter
family of solutions can not be derived from the solutions of the corresponding
reduced equation. For this kind of solutions we have proved the existence of
a conditional conservation law, associated to a pseudo-variational symmetry
of the problem (Theorem 4).
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The method of reduction can also be interpreted in terms of the for-
mulation of the Noether’s theorem when λ−prolongations are considered
(Theorem 2). This result clarifies the relation between the original Euler-
Lagrange equations and the reduced equation (Theorem 3). Finally, some
examples have been included to illustrate the main results and the methods
presented in this work.
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