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SUMMARY

The complete symmetry group of a 1 + 1 evolution equation has been demonstrated to be repre-
sented by the six-dimensional Lie algebra of point symmetries sl(2, R) ⊕s W , where W is the three-
dimensional Heisenberg–Weyl algebra. We construct a complete symmetry group of a nonlinear heat
equation ut = F(ux )uxx for some smooth functions F , using the point symmetries admitted by each
equation. The nonlinear heat equation is not specifiable by point symmetries alone even when the number
of symmetries is 6. We report Ansätze which provide a route to the determination of the required nonlocal
symmetry necessary to supplement the point symmetries for the complete specification of these nonlinear
1 + 1 evolution equations. The nonlocal symmetry immediately realized is said to be generic to a class
of equations as it gives a specific structure to an equation. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The concept of complete symmetry groups of a differential equation was introduced some 12
years ago by Krause [1, 2] to ordinary differential equations to describe the group in which its
algebraic representation completely specified the differential equation under consideration. The
differential equation in this instance was that of the Kepler problem for which Krause found
it necessary to introduce nonlocal symmetries since the Lie point symmetries of the system of
ordinary differential equations describing the Kepler problem were insufficient to specify the
system completely. Indeed the symmetries corresponding to the angular momentum are not even
included in the representation of the complete symmetry group. The reason for this is found in the
concept of minimality of representation which forms an integral part of the definition of a complete
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symmetry group. Although nonlocal symmetries feature in a number of studies of the complete
symmetry groups of certain problems [3–6], this has been more an accident of the development
of the study of complete symmetry groups. The theoretical treatment and applications in terms of
point symmetries have been well established for ordinary differential equations [7–9].

In general [8], a system of n second-order ordinary differential equations requires 2n + 1
symmetries to specify it completely. The Newtonian equations for the Kepler problem possess
just the five Lie point symmetries of the algebra A2 ⊕ A3,9 representing invariance under time
translation and rescaling on the one hand and the rotational invariance of so(3) on the other.‡ Krause
had resorted to the use of nonlocal symmetries to remedy the deficit§ and devised an ingenious
scheme for their determination. Unfortunately, nonlocal symmetries of differential equations in
general have a property in common with symmetries of first-order differential equations. Although
they are more numerous than the grains of sand by the sea, there is no finite algorithm for their
general determination.

Until recently, the determination of complete symmetry groups has been confined to systems
of ordinary differential equations [7]. In a study of the complete symmetry group of the 1 + 1
heat equation and some related equations which arise in Financial Mathematics, some basic
considerations in [14–16] showed that the number of Lie point symmetries required to specify the
1+1 heat equation is 6. Moreover, the condition for the number of symmetries required to specify
the heat equation is the same for all 1 + 1 evolution equations [15] be they linear or nonlinear.

In this paper, we turn our attention to the complete characterization of a class of partial differential
equations by its symmetry group involving nonlocal symmetries of the nonlinear heat equation of
the form

ut = F(ux )uxx (1)

where

ut = �u
�t

, ux = �u
�x

and uxx = �2u
�x2

In particular, we consider the specific case mentioned in [17] for which F ¶ takes the form

F = unx , n �= 0, −2 (2)

We adopt a following notation for a symmetry X of a partial differential equation:

X= �(·)�x + �(·)�t + �(·)�u
where �, � and � are functions of their arguments and with the second extension/prolongation
given by

X[2] = �(·)�x + �(·)�t + �(·)�u + �x (·)�ux + �t (·)�ut + �xx (·)�uxx

‡We use the classification scheme of Mubarakzyanov [10–13].
§We must note that the use of nonlocal symmetries in the first application of this concept of a complete symmetry
group should not be taken to imply that nonlocal symmetries are a necessary concomitant. That nonlocal symmetries
have played an important role in the determination of the complete symmetry group in a number of instances [3–6]
should not obscure the reality that point symmetries have played an important role in the theoretical development
as well as certain applications [7–9] of complete symmetry groups.
¶Note that the conditions demanded for n contrast those given in [18]. This is because the symmetry group of the
second equation in (2) is no different for all values of n except possibly for n = 0,−2.
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The relevant extended infinitesimals �x (·), �t (·) and �xx (·) are functions of their arguments and
are as found on [19, p. 67]. We begin by giving a brief review of point symmetries admitted by
(1) for a specific function F .

2. REVIEW OF THE LIE POINT SYMMETRIES OF ut = unxuxx

It is well understood from [17] that Equation (1) has, inter alia, a realization of the algebra A3,1,
where

A1
3,1 = 〈�t, �u, �x〉 (3)

for an arbitrary smooth function F . Also the maximal invariance algebra admitted by (1) according
to Theorem 3.4 of [17] is the four-dimensional Lie algebra:

A3,1 ⊕ 〈2t�t + x�x + u�u〉 (4)

The class of equations is further reported to admit the following Lie point symmetries for different
smooth functions F :

F = unx :�= nt�t − u�u, n �= 0, −2 (5)

There are no further point symmetries of (1) with F taking one of the forms in (5) reported by
[17, Theorem 3.4] to have been admitted by Equation (1). It is further accepted [20] that for
the realization of a complete symmetry group of a 1 + 1 evolution equation one requires six
symmetries, be they point, generalized or nonlocal. This therefore implies that one would require
a nonlocal symmetry, possibly more, to specify (1) completely.

The classical heat equation, i.e. F = unx , n = 0,

ut = uxx (6)

as a linear partial differential equation, its complete symmetry group has been dealt with in [20].
For F = unx , n = − 2, in (5) one immediately realizes a linearizable equation,

ut = u−2
x uxx (7)

which admits the following Lie point symmetries‖

�1 = �t

�2 = �u

�3 = 2t�t + u�u

�4 = xu�x − 2t�u

�5 = t2�t − 1
4 (2t + u2)x�x + ut�u

�6 = x�x

�7 = F5(u, t)�x

(8)

‖The calculation of point symmetries has been made possible by one of the classic codes described in [21, 22].
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where F5 a solution of the linear heat equation xt = xuu . We have a few important observations of
Equation (11) to note. Firstly, contrary to [18, Theorem 3.4] we have an extension of the algebra,
which has been reported by the theorem to have been impossible, as we witness the ∞+1+5 Lie
point symmetries admitted by Equation (11) with �2, �4 and �5 constituting an sl(2, R) algebra.
Secondly, this equation does not seem to admit point symmetries constituting the A3,1 algebra
but rather the A2,1 algebra given by �1 and �2. Thirdly, the point symmetries look very similar
to those admitted by the heat equation (6) but with the x in place of u. This reflects a particular
behaviour in the geometry of the problem. Furthermore, the case n = 0 constitutes the classical
heat equation and there is no need to discuss its symmetry properties here as these are well known
in the literature.

For F = unx , n �= 0,−2, in (5) one immediately realizes the not-so-simple equation,

ut = unxuxx , n �= 0, −2 (9)

which is invariant under the action of the following Lie point symmetries:

�1 = �t

�2 = �u

�3 = �x

�4 = (n + 2)t�t + x�x

�5 = nt�t − u�u

(10)

We note here that Equation (9) admits a finite number of Lie point symmetries but this does not
reflect any strange behaviour associated with the geometry as in the previous case. The homogeneity
and solution symmetries are lacking. This behaviour is very much in line with the stipulations of
[18, Theorem 3.4] in terms the presence of A3,1 realizations given by �1, �2 and �3. Also �5 has
already been reported in (5), however we have an extra nongeneric point symmetry �4.

3. COMPLETE SYMMETRY GROUP OF ut = unxuxx

In this section, we turn our attention to the construction of a complete symmetry group of the
class of equations:

ut = unxuxx (11)

The complete symmetry group of (11) for n = 0, i.e. the classical heat equation, is well understood
and was treated in [15]. In this section, we construct the complete symmetry group of (11) for
n = −2 and n �=−2. We begin with the former case.

3.1. Specification of ut = unxuxx for n =−2

To construct a complete symmetry group of (7), we start with a general second-order evolution
equation videlicet:

uxx = f (x, t, u, ux , ut ) (12)
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where f is a function of its arguments to be specified. For Equation (12) to be invariant under �1
and �2 it must be of the form

uxx = f (x, ux , ut ) (13)

The second extension of �6 is given by

�[2]
6 = x�x − ux�ux − 2uxx�uxx (14)

The application of (14) to (13) produces the following associated Lagrange’s system upon taking
(13) into account:

d f

−2 f
= dx

x
= dux

−ux
= dut

0
(15)

One may carefully select the characteristics so that (13) takes the form

uxx = u2xh(ut , xux ) (16)

The application of the second extension of �3, given by

�[3]
3 = u�u + 2t�t + ux�ux − ut�ut + uxx�uxx (17)

to (16) produces the associated Lagrange’s system

dh

−h
= dv

v
= dut

−ut
(18)

upon letting v = xux . One’s choice of characteristics may reduce (16) to

uxx = utu
2
x g(w) (19)

where w = xutux . The application of the second extension of �4, i.e.

�[2]
4 = xu�x − 2t�u − uux�ux − 2ut�ut − 2uuxx�uxx (20)

to (19) produces, after some simplification,

g + wg′ = 0 (21)

upon the integration of which (19) becomes

uxx = ux
x

� (22)

where � is a constant of integration. It is clear that we are by no means obtaining the intended
equation as we note that the term ut has disappeared completely in Equation (22) and there is
no way to recover it from the application of �5. This surely is not an desired outcome since we
started with a general second-order time-evolution equation, applied point symmetries admitted by
an time-evolution equation hoping to achieve an time-evolution equation. In fact what we obtain
is politely expressed as absurd! Why?

The answer lies in the consideration of the geometry of the equation. Symmetries (8) of (7)
reflect the rotation and reflection in space. The reflection behaviour is amenable to continuous
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transformations only but not to continuous point transformations. This in turn translates into the
fact that this equation is not connected to the heat equation via a continuous transformation but
rather a discrete transformation,∗∗ videlicet,

t = −T, x =U, u = X, T �= 0, U �= 0 (23)

Transformation (23) clearly is a continuous but not a point transformation and one immediately
observes a reflection symmetry and consequently (7) cannot be specified using point symmetries
only and so we require nonlocal symmetries to remove the deficit and we do this in the next
section.††

3.2. Specification of ut = unxuxx for n �=−2

As before, we commence with a general second-order time-evolution equation:

uxx = f (x, t, u, ux , ut ) (24)

where f is a function to be specified. For the intended equation to be invariant under �1, �2 and
�3 of (10), it must be of the form

uxx = f (ux , ut ) (25)

The second extension of �5 is given by

�[2]
5 = nt�t − u�u − ux�ux − (n + 1)ut�ut − uxx�uxx (26)

and its application to (26) produces

uxx = ux
� f

�ux
+ (n + 1)ut

� f

�ut
(27)

With the associated Lagrange’s system given by

d f

f
= dux

ux
= dut

−(n + 1)ut

the characteristics may be chosen such that Equation (24) takes the form

uxx = uxh

(
un+1
x

ut

)
(28)

The second extension of the remaining point symmetry is

(n + 2)t�t + x�x − ux�ux − (n + 2)ut�ut − 2uxx (29)

Its application to (28) yields after some simplification

h = − wh′ (30)

∗∗One needs to take heed when constructing similarity solutions of (1) with F = unx , n =−2. using point symmetries
to avoid disaster!

††This feature is in fact important to illustrate the fact that the maximal number of point symmetries possessed by
a given equation is not adequate to imply its complete specification with point symmetries only as claimed in [14].
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where we have set w = un+1
x /ut . The solution of this equation is child’s play and it produces

h = �

w

and consequently (28) takes the form

ut = �uxxu
n
x , n �=−2 (31)

where � is a constant to be specified. To specify the constant, one requires a nonlocal symmetry
as we have exhausted the available point symmetries of (10). Note that unlike the previous case,
Equation (33) is in line with the equation we are trying to specify. The not-so-pleasant journey to
search for nonlocal symmetries is inevitable in both these circumstances and for that reason we
devote the entire Section 4 to this exercise.

4. ALGORITHMIC APPROACH FOR FINDING NONLOCAL SYMMETRIES

In this section, we return to the question of finding nonlocal symmetries of (1). We begin with the
case for which

F = unx , n = − 2 (32)

where we have the ∞ + 1 + 5 Lie point symmetries (8), and later the case where n �= −2. From
the previous section, it has become apparent that the two point symmetries �4 and �5 are not
specifying Equation (1). Hence one requires two more symmetries, which must be nonlocal, to
remove the deficit so as to satisfy the requirements of the conjecture in [15]. To accomplish this,
we commence with the general second-order evolution equation:

uxx = f (x, t, u, ux , ut ) (33)

where f is a function yet to be determined. We proceed to apply the symmetries of the algebra
A2,1, where

A1
2,1 = 〈�t, �u〉 (34)

to Equation (33) and consider both cases for n.

4.1. Nonlocal symmetry for F = unx , n =−2

In this case, we use the realization of (34) to remove t and u from f to obtain

uxx = f (x, ux , ut ) (35)

At this juncture, we must specify the desired general structure of the remaining function and
then work backwards to find the nonlocal symmetry which would specify that structure.‡‡ In this
case, we desire that the function f takes the form

uxx = uth(x, ux ) (36)

‡‡This is what makes the nonlocal symmetry immediately realized generic to a particular class of the equations
having a similar underlying structure.
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and we impose this structure and conduct a search for this miraculous nonlocal symmetry. This
structure, (36), would have been obtained by setting f = uth(x, ux ) which can only be specified
by the choice of characteristics obtained from the associated Lagrange’s system:

d f

f
= dut

ut
= dx

0
= dux

0
(37)

The associated Lagrange’s system above results from the application of the second extension of
our as yet unknown nonlocal symmetry, say �8, given by

�[2]
8 = �(·)�t + �(·)�u + (0)�x + �t�ut + (0)�ux + uxx�uxx (38)

where � and � are functions of unspecified arguments, to Equation (35). Note that from the
associated Lagrange’s system above we deduce that �(·) = 0. The extended infinitesimals of (38)
insinuate the system of partial differential determining equations [23]:

�x : ��

�x
− ��

�x
ut = 0

�t :
��

�t
− ��

�t
ut = ut

�xx : �2�
�x2

− 2
��

�x
utx − �2�

�x2
ut = uxx

(39)

in which differentiation with respect to t or x is total, with the assumption that � is free of u. The
first and third equations give

��

�x
= − uxx

utx
(40)

Differentiating the first equation with respect to t and the second equation with respect to x , taking
(40) into account and after some manipulation we obtain

��

�t
=−1 − uxxutt

utx
(41)

With (41) the second equation of (39) produces

��

�t
= uxxutt ut

utx
(42)

Also Equation (40) with the first equation of (39) yields

��

�x
= −uxxut

utx
(43)

With (40)–(43) one immediately gathers the required coefficients

�(·) = −
(∫

uxx
utx

dx +
∫

uxxutt
utx

dt + t

)

�(·) =
∫

uxxutt ut
utx

dt −
∫

uxxut
utx

dx

(44)
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and the required nonlocal symmetry is given by

�8 = �(·)�t + �(·)�u (45)

with � and � defined by (44). The search for a nonlocal symmetry§§ of Equation (1) has been
made possible by what we term the Choice¶¶ algorithm. Furthermore, the nonlocal symmetry is
said to be generic to a class of equations having a structure similar to (36). Accordingly, upon
application of a nonlocal symmetry (45), Equation (35) takes the form (36).

4.2. Nonlocal symmetry for F = unx , n �=−2

In this case we apply the third realization of (34) to obtain

uxx = f (u, ux , ut ) (46)

and requires that (46) takes the form

uxx = uth(u, ux ) (47)

This can be obtained by a setting f = uth(u, ux ) from the characteristics f/ut , u and ux . These
characteristics are obtained from the associated Lagrange’s system:

d f

f
= dut

ut
= du

0
= dux

0

The above system is the result of the application of an as yet unknown nonlocal symmetry, �6
say. The system tells us that the nonlocal symmetry can only be of the form

�6 = �(·)�t + �(·)�x (48)

where � and � are to be specified. The extended infinitesimals produce the following system of
symmetry determining equations:

�x : ��

�x
ux − ��

�x
ut = 0

�t :
��

�t
ut + ��

�t
ut = −ut

�xx : �2�
�x2

ux + �2�
�x2

+ 2
�2�
�x

uxx + 2
�2�
�x2

uxt− = −uxx

(49)

§§One can also use the methods treated in [24–28] to find nonlocal symmetries. However, for our purposes this is a
more direct method for finding nonlocal symmetries.

¶¶Choice, since the nonlocal symmetry realized after the application of the algorithm depends on the choices made
by the user. It must be noted that the choice algorithm produces a nonunique nonlocal symmetry due to different
possible choices of assumptions.
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which upon solving as we did previously produces the required coefficients of �t and �x to be

� = −
[∫

uxx
utx

dx +
∫

uxxutt
utx

dt + t

]

� =
∫

uxxutt ut
utx

dt −
∫

uxxut
utx

dx

(50)

and consequently (48), which has been obtained by the choice algorithm. All that is left now is to
specify the equations completely.

5. COMPLETE SPECIFICATION OF THE EQUATIONS

5.1. Complete specification of ut = unxuxx for n =−2

To specify completely the equation, one applies the remaining useful symmetries to (36). The
second extension of �6 is given by

�[2]
6 = x�x − ux�ux − 2uxx�uxx (51)

and its application to (36) produces the associated Lagrange’s system:

dh

−2h
= dx

x
= dux

−ux
(52)

so that after a suitable choice of characteristics the function h takes the form

h = u2x g(xux ) (53)

and consequently the equation takes the form

uxx = utu
2
x g(xux ) (54)

A similar application of �[2]
3 to (54) reduces (54) to

uxx = �utu
2
x (55)

where � is a constant of integration. At this point, it seems we have run out of useful point
symmetries as the application of any of the remaining symmetries does not produce the equation.
We therefore have to make use of our algorithm to find a nonlocal symmetry to specify the arbitrary
constant. We require that � = 1. There are several ways to achieve this, one of which would be to
demand that the coefficients of �u, �ux , �ut and �uxx be 0, ux , 0 and −2uxx , respectively. Using
the algorithm described above and after a certain amount of effort, we obtain

�(·) = 2

[∫ (
uxuxx

utx − utuxx

)
dx −

∫ (
uxuxx

utx − utuxx

)
dt

]
+ t

�(·) = 2
∫ (

uxuxx
utx − utuxx

)
dx +

∫ (
ut
ux

(
1 + 2

uxuxx
utx − utuxx

))
dt + t

(56)
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The second nonlocal symmetry is given by

�9 = ��t + ��x (57)

with � and � given by (56) and consequently Equation (33) has been completely specified.

5.2. Complete specification of ut = unxuxx for n �= −2

The complete specification (33) for the case n �= −2 can be achieved in two routes. One may
apply the nonlocal symmetry (57) to Equation (31), since the nonlocal symmetry serves to specify
a constant to equal one, to achieve the desired Equation (9). Alternatively one may apply the
remaining symmetries‖‖ of (10) to (47) as follows. The application of �2 to Equation (47) produces

uxx = ut g(ux ) (58)

The application of the second extension of �5 produces

ng= −uxg
′ (59)

so that (58) becomes

uxx = �utu
−n
x (60)

It is interesting to note that the remaining symmetry gives no useful information when applied
to specify the constant! This is a nice example to show that a complete symmetry group of a
given partial differential equation is not unique once nonlocal symmetries have been summoned
to specify a given equation. Hence one turns back to a nonlocal symmetry (57) to specify the
constant and consequently Equation (9) follows immediately.

The other unused symmetries of (8) and (10) are still necessary for inclusion in the representation
of complete symmetry group of (33) due to meeting the requirement of the closure property.
Consequently, we represent them as

〈�i , i = 1, 9〉csg (61)

for the case n = − 2 and

〈� j , j = 1, 6〉csg (62)

for the case n �= −2.

6. CONCLUSION

We started by showing the fact that, although the equation under consideration may posses a
sufficient number of point symmetries in terms of [15], some of those point symmetries may not
be useful in specification of the equation as observed in Section 3. We further (Section 4) provided
a choice algorithm which allows the determination of the required nonlocal symmetries necessary
to supplement the point symmetries. The nonlocal symmetry realized is generic to the structure

‖‖Point symmetries remaining after finding a nonlocal symmetry.
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imposed upon the equation. As a result all equations having the structure (36) and (47) admit
the nonlocal symmetries, �8 and �6, respectively. Further, these nonlocal symmetries need not
be unique. However, the choice algorithm provides a much more convenient way to find nonlocal
symmetries.

We have also seen that once nonlocal symmetries come into the picture one loses the apparent
uniqueness property of complete symmetry group for a given equation which was a nice feature
for partial differential equations. What has transpired in this paper is that, with the help of the
choice algorithm, one can, (if one so choose), completely specify the given equation using nonlocal
symmetries only.
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