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Series Preface

Mathematics is playing an ever more important role in the physical and biolog-
ical sciences, provoking a blurring of boundaries between scientific disciplines
and a resurgence of interest in the modern as well as the classical techniques
of applied mathematics. This renewal of interest, both in research and teach-
ing, has led to the establishment of the series Texts in Applied Mathematics
(TAM).

The development of new courses is a natural consequence of a high level
of excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose
of this textbook series is to meet the current and future needs of these advances
and to encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate
and beginning graduate courses, and will complement the Applied Mathe-
matical Sciences (AMS) series, which will focus on advanced textbooks and
research-level monographs.

Pasadena, California J.E. Marsden
Providence, Rhode Island L. Sirovich
College Park, Maryland S.S. Antman
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1

Introduction

These lecture notes have grown out of a course that was conceived in Oxford
in the 1960s, was modified in the 1970s and formed the basis for Inviscid Fluid
Flows by Ockendon and Tayler which was published in 1983 [1]. This mono-
graph has now been retitled and rewritten to reflect scientific development in
the 1990s.

The cold war was at its height when Alan Tayler gave his first course
on Compressible Flow in the early 1960s. Naturally, his material emphasized
aeronautics, which was soon to be encompassed by aerospace engineering, and
it concerned flows ranging from small-amplitude acoustics to large-amplitude
nuclear explosions. The area was technologically glamorous because it de-
scribed how only mathematics could give a proper understanding of the de-
sign of supersonic aircraft and missiles. It was also mathematically glamorous
because the prevalence of “shock waves” in the physically relevant solutions of
the equation of compressible flow led many students into a completely new ap-
preciation of the theory of partial differential equations. Suddenly, there was
the challenge to find not only non-differentiable but also genuinely discontin-
uous solutions of the equations and the simultaneous problem of locating the
discontinuity. This led to enormous theoretical developments in the theory
of weak solutions of differential equations and, more generally, to the whole
theory of moving boundary problems.

It has been the even more dramatic developments that have occurred re-
cently in all branches of applied science that have made the scope of this book
so much broader than that of its predecessor. In particular, three recent “rev-
olutions” have changed the mathematical aspects of compressible flow and,
more generally, of wave motion.

First, the computer revolution has completely altered the way mathemati-
cians need to think about systems of partial differential equations. Gone is
the need for academic “exact solutions”, or for ad hoc approximate solutions.
In their place, mathematics now has to provide all-important guides to well-
posedness and to systematic perturbation theories that can provide quality
control for scientific computation, especially in parameter regimes that are
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awkward to analyze numerically. Of course, physically relevant exact solu-
tions are still invaluable for the insight they give, but more and more they are
used as checks on computer output.

Second, the communications revolution has immeasurably increased the
demand for understanding electromagnetic waves in situations that were no
more than science fiction in the 1960s. An applied mathematician working in
the real world may now have to have a good theoretical understanding of the
working of optical fibers, radio waves in cluttered environments, and the waves
generated by electronic components. All of these phenomena are governed by
wave equations not too dissimilar from those arising in gasdynamics, but in
configurations that call out for completely new solution methods.

Third, the environmental revolution has presented the whole community
with a host of new problems associated with wave propagation in the atmo-
sphere, in the oceans, and in the interior of the earth. The models describing
these waves are often much more complicated than those from compressible
flow, involving far more mechanisms and, especially, wildly disparate time and
length scales. Nonetheless, we will see that, in many situations, these mod-
els are still susceptible to the traditional methodologies devised for treating
gasdynamics. We should also mention the importance of waves in solids in con-
nection with modern developments in materials science and non-destructive
testing.

Even after these upheavals, it remains the authors’ abiding belief that
fluid mechanics provides the best possible vehicle for anyone wishing to learn
applied mathematical methodology, simply because the phenomena are at
once so familiar and so fascinatingly complex. Indeed, the mathematical study
of these phenomena has led to some of the most dramatic new ideas in the
theory of partial differential equations as well as profound scientific insights
that have affected much of the modern theoretical framework in which we
understand the world around us.

In the light of these developments, the lecture course on which this book
is based has undergone an organic transformation in order to provide stu-
dents with a basis for understanding the wide range of wave phenomena with
which any applied mathematician may now be confronted. Hence, this mono-
graph reflects a shift in emphasis to one in which gasdynamics is seen as a
paradigm for wave propagation more generally and in which the associated
mathematics is presented in a way that facilitates its wider use. Although
compressible flow remains the main focus of the book, and we still derive the
equations of compressible flow in some detail, we will also show how wave
phenomena in electromagnetism and solid mechanics can be treated using
similar mathematical methods. We cannot give a comprehensive account of
models for these other kinds of waves nor can we, in the space available, even
start to describe the burgeoning area of mechanical and chemical wave prop-
agation in biological systems. However, we will revisit their omission in the
Epilogue and provide some references to relevent texts at the same level as
this one.
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The layout of the book is as follows. We begin in Chapter 2 with a deriva-
tion of the equations of compressible flow that is as simple as possible while
still being self-contained. The only required physical background is a belief in
the ideas of conservation of mass, momentum, and energy together with the
associated elementary thermodynamics. Then, in Chapter 3, we immediately
distill the simplest wave motion model to emerge from the general equations
of gasdynamics, namely the model for acoustics. This will be applied not only
to sound propagation and to some theories of flight but, before that, we will
present several other models for linear wave propagation that are relevant to
the fields of application listed above. Except for the case of surface gravity
waves, these will take the form of linear hyperbolic partial differential equa-
tions for which, thankfully, there is a fairly well-developed body of knowledge,
even at the undergraduate level. We will recall some of the more important
exact solutions in Chapter 4 and the phenomena that they reveal, especially
that of dispersion. Then, we will look more generally at waves that have a
purely harmonic time-dependence, sometimes called monochromatic waves or
waves in the frequency domain. This assumption frequently reduces the lin-
ear models of Chapter 3 to elliptic partial differential equations, which are
also well studied at the undergraduate level, but the questions that need to
be answered are often very different from those traditionally associated with
elliptic equations. Following on from this, we look at high-frequency (which
often means short-wavelength) approximations in frequency domain models.
This leads us to the ever-more-important “ray theory” approach to wave prop-
agation which, as we will see, opens up fascinating new mathematical chal-
lenges and analogies in subjects ranging from quantum mechanics to celestial
mechanics.

In Chapter 5, we return to our generic theme of compressible flow with
a review of the little that is known about nonlinear solutions, followed by
the similarly meager theory for nonlinear surface gravity waves. Finally, in
Chapter 6, we will present a theory that allows us to consider shock waves
and the sound barrier and helps us to understand several other interesting
nonlinear phenomena such as laminar and turbulent nozzle flows, detonations,
and transonic and hypersonic flows.

This book is written, as was its predecessor, at a level that assumes that
the reader already has some familiarity with basic fluid dynamics modeling,
especially the use of the convective derivative and the basis of the Euler
equations for incompressible flow. A knowledge of asymptotic analysis up
to Laplace’s method and the method of stationary phase is also helpful; we
do not have space to give ab initio accounts of these methods, which un-
derpin the mathematics of group velocity and ray theory, but we do give a
brief recapitulation and references to texts where the reader can find all the
details.

The starred sections are self-contained and describe more advanced topics
which can be omitted at a first reading. The exercises are an integral part of
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the book; those marked R are “recommended” as containing basic material,
whereas the starred ones are harder or refer to the work in starred sections.

Both authors acknowledge their great debt to their guide and mentor Alan
Tayler; it will be apparent to all who knew him that this book is part of his rich
legacy to applied mechanics. Also we would like to record our special thanks
to Brenda Willoughby for her invaluable assistance with the preparation of
this book and to Carina Edwards whose suggestions have greatly enhanced
its presentation.



2

The Equations of Inviscid Compressible Flow

In this chapter, we will derive the equations of inviscid compressible flow of
a perfect gas. We will do this by making the traditional assumption that we
are working on length scales for which it is reasonable to model the gas as a
continuum; that is to say, it can be described by variables that are smoothly
defined1 almost everywhere. This means that the gas is infinitely divisible into
smaller and smaller fluid elements or fluid particles and we will see that it will
help our understanding to relate these particles to the “particles” of classical
mechanics.

This approach will, of course, become physically inaccurate at small
enough scales because all matter is composed of molecules, atoms, and sub-
atomic particles. This is particularly evident for gases especially when they are
in a rarified state as, for example, is the case in the upper atmosphere. In order
to treat such gases when the mean free path of the molecules is large enough
to be comparable with the other length scales of interest (such as the size of a
space vehicle), it is necessary to resort to the ideas of statistical mechanics. As
described in Chapman and Cowling [2], this leads to the well-developed, but
much more difficult kinetic theory of gases and, fortunately, when the limit of
this theory is taken, on a scale which is much greater than a mean free path,
the equations which we derive in this chapter can be retrieved.

2.1 The Field Equations

With the continuum approach, the state of a gas may be described in terms
of its velocity u, pressure p, density ρ, and absolute temperature T . If the
independent variables are x and t, where x is a three-dimensional vector with
components either (x, y, z) or (x1, x2, x3) referred to inertial cartesian axes
and t is time, then we have an Eulerian description of the flow. An alternative
1 We hope the reader will not be deterred by such imprecision, which is necessary
to keep applied mathematics texts reasonably concise.
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description, in which attention is focused on a fluid particle, is obtained by
using a, and t as independent variables, where a is the initial position of
the particle. This is a Lagrangian description. A particle path x = x(a, t) is
obtained by integrating ẋ = u with x = a at t = 0, where the dot denotes
differentiation with respect to t keeping a fixed, and this relation may be
used to change from Eulerian to Lagrangian variables. The two descriptions
are equivalent, but for most problems, the Eulerian variables are found to be
more useful.2

It is important to distinguish between differentiation “following a fluid
particle,” which is denoted by d/dt, and differentiation at a fixed point, de-
noted by ∂/∂t. If f(x, t) is any differentiable function of the Eulerian variables
x and t, then

df

dt
=

∂f

∂t
+ (u · ∇)f, (2.1)

where ∇ is the gradient operator with respect to the x components. The
derivative df/dt is called the convective derivative and the term (u · ∇)f is
the convective term which takes account of the motion of the fluid.

We have already assumed that the fluid is a continuum and this implies
that the transformation from a to x is, in general, a continuous mapping which
is one-to-one and has an inverse. We will also restrict attention to flows for
which this mapping is continuously differentiable almost everywhere. The Ja-
cobian of the transformation, J(x, t) = ∂(x1, x2, x3)/∂(a1, a2, a3), represents
the physical dilatation of a small element. In order to understand the evolu-
tion of a fluid flow, it will be helpful to work out how J changes following the
fluid. Since the transformation from a to x is invertible and continuous, J will
be bounded and non-zero and its convective derivative will be

dJ

dt
=

∂(ẋ1, x2, x3)
∂(a1, a2, a3)

+
∂(x1, ẋ2, x3)
∂(a1, a2, a3)

+
∂(x1, x2, ẋ3)
∂(a1, a2, a3)

=
∂(u1, x2, x3)
∂(a1, a2, a3)

+
∂(x1, u2, x3)
∂(a1, a2, a3)

+
∂(x1, x2, u3)
∂(a1, a2, a3)

.

Writing out the first term, we see that

∂(u1, x2, x3)
∂(a1, a2, a3)

=

∣∣∣∣∣∣∣∣∣∣∣∣

∂u1

∂a1

∂u1

∂a2

∂u1

∂a3
∂x2

∂a1

∂x2

∂a2

∂x2

∂a3
∂x3

∂a1

∂x3

∂a2

∂x3

∂a3

∣∣∣∣∣∣∣∣∣∣∣∣
.

2 We make this remark in the context of understanding the mathematical basis of
models for compressible flow. For computational fluid dynamics, particle-tracking
methods are often more appropriate than discretizations based on Eulerian vari-
ables.
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However,
∂u1

∂ai
=

∂u1

∂x1

∂x1

∂ai
+

∂u1

∂x2

∂x2

∂ai
+

∂u1

∂x3

∂x3

∂ai
,

and so, using the properties of determinants, we obtain

∂(u1, x2, x3)
∂(a1, a2, a3)

= J
∂u1

∂x1
.

The other two terms can be treated similarly and so

dJ

dt
= J∇ · u. (2.2)

We can now consider the rate of change of any property, such as the total
mass or momentum, in a material volume V (t), which is defined as a volume
which contains the same fluid particles at all times. We find that

d

dt

[∫
V (t)

F (x, t) dV (x)

]
=

d

dt

[∫
V (0)

F (x(a, t), t)J dV (a)

]

=
∫

V (0)

d

dt
[F (x(a, t), t)J ]dV (a)

=
∫

V (0)

(
dF

dt
J + FJ∇ · u

)
dV (a) (on using (2.2))

=
∫

V (t)

(
dF

dt
+ F∇ · u

)
dV (x). (2.3)

This formula for differentiating over a volume which is “moving with the fluid”
is called the transport theorem. Using (2.1) and denoting the outward normal
to ∂V (t) by n, we can rewrite (2.3) as

d

dt

[∫
V (t)

F dV

]
=
∫

V (t)

(
∂F

∂t
+ ∇ · (Fu)

)
dV (2.4)

=
∫

V (t)

∂F

∂t
dV +

∫
∂V (t)

Fu · n dS, (2.5)

on using the divergence theorem. Thus, from (2.5), the derivative can be
interpreted as the sum of the term

∫
V
(∂F/∂t)dV , which would be the answer

if V were fixed in space, and
∫

∂V
Fu · n dS, which is an extra term resulting

from the movement of V . Note that (2.5) is a generalization of the well-known
formula for differentiating a one-dimensional integral:

d

dt

(∫ b(t)

a(t)
f(x, t) dx

)
=
∫ b(t)

a(t)

∂f

∂t
dx + f(b, t)

db

dt
− f(a, t)

da

dt
.
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We also remark that the function u in (2.5) does not have to be the velocity
of the fluid everywhere inside V because we only require that u · n be the
velocity of the boundary of V normal to itself.

We now apply the transport theorem to derive the equations which govern
the motion of an inviscid fluid. Conservation of the mass of any material
volume V (t) can be written as

d

dt

(∫
V (t)

ρ dV

)
= 0,

where ρ is the fluid density or, using (2.4), as∫
V (t)

(
∂ρ

∂t
+ ∇ · (ρu)

)
dV = 0.

If we now shrink V to a small neighborhood of any point, we derive the
differential equation

∂ρ

∂t
+ ∇ · (ρu) = 0. (2.6)

This equation is known as the continuity equation. We must emphasize that
the above argument relies crucially on the differentiability of ρ and u. If, as
will be seen to be the case in Chapter 6, the variables are integrable but
not differentiable, conservation of mass will just lead to the statement that∫

V (t) ρ dV is independent of time.
We next consider the linear momentum of the fluid contained in V (t).

The forces created by the surrounding fluid on this volume are the “internal”
surface forces exerted on the boundary ∂V , together with any “external” body
forces that may be acting. If we assume that the fluid is inviscid, then the
internal forces are just due to the pressure,3 which acts along the normal to
∂V . If there is a body force F per unit mass and we suppose that we can
apply Newton’s equations to a volume of fluid, then

d

dt

(∫
V (t)

ρu dV

)
= −
∫

∂V (t)
pn dS +

∫
V (t)

ρF dV.

Using (2.3) on the left-hand side of this equation and the divergence theorem
on the right-hand side, we obtain∫

V (t)

(
d

dt
(ρu) + ρu(∇ · u)

)
dV =

∫
V (t)

(−∇p + ρF) dV.

Remembering that this is true for any volume V (t) and using (2.6) leads to

du
dt

=
∂u
∂t

+ (u · ∇)u = −1
ρ
∇p + F, (2.7)

3 It is at this stage that our restriction to inviscid flow is crucial. If the fluid has
appreciable viscosity, the internal forces require much more careful consideration,
as described in Ockendon and Ockendon [3].
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which is Euler’s equation for an inviscid fluid.4 If (2.6) and (2.7) both hold, it
can be shown that the angular momentum of any volume V is also conserved
(Exercise 2.3).

For an incompressible fluid, (2.6) and (2.7) are sufficient to determine p
and u, but when ρ varies, we need another relation involving p and ρ. This
relation comes from considering conservation of energy, which will also involve
the temperature T , thus demanding yet another relation among p, ρ, and T .
When ρ is constant, the mechanical energy is automatically conserved if (2.6)
and (2.7) are satisfied and there is no need to consider energy conservation
unless we are concerned with thermal effects.

The energy of an inviscid compressible fluid consists of the kinetic energy
of the fluid particles and the internal energy of the gas (potential energy will
be accounted for separately if it is relevant). The internal energy represents
the vibrational energy of the molecules of which the gas is composed and is
manifested as the heat content of the gas. For an incompressible material,
this heat content is the product of the specific heat and the absolute temper-
ature, where the specific heat is determined from calorimetry. For a gas that
can expand, we must take care that no unaccounted-for work is done by the
pressure during the calorimetry and so we insist that the experiment is done
at constant volume. The resulting specific heat is denoted by cv.

Now, we must make a crucial assumption from thermodynamics. The First
Law of Thermodynamics says that work, in the form of mechanical energy,
can be transformed into heat, in the form of internal energy, and vice versa,
without any losses being incurred. Thus, we must add the internal and me-
chanical energies together so that the total local “energy density” is e+ 1

2 |u|2,
where e = cvT is the internal energy per unit mass. Now, the rate of change
of energy in a material volume V must be balanced against the following:

(i) The rate at which work is done on the fluid volume by external forces.
(ii) The rate at which work is done by the body forces, and this is the term

which will include the potential energy.
(iii) The rate at which heat is transferred across ∂V .
(iv) The rate at which heat is created inside V by any source terms such as

radiation.

By Fourier’s law, the rate at which heat is conducted in a direction n is
(−k∇T ) · n, where k is the conductivity of the material. Thus, conservation
of energy for the fluid in V (t) leads to the equation

d

dt

[∫
V (t)

(
1
2
ρ|u|2 + ρe

)
dV

]

=
∫

V

ρF · u dV −
∫

∂V

pu · n dS

∫
∂V

k∇T · n dS +
d

dt

∫
V

ρQ dV,

4 Here, we use (u·∇)u to denote the operator (u·∇) in cartesian coordinates acting
on u. In general coordinates, (u · ∇)u is 1

2∇|u|2 − u ∧ (∇ ∧ u).
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where Q is the heat addition per unit mass. Using the transport theorem (2.3),
and (2.6) and transforming the surface integrals by the divergence theorem,
we obtain the equation

ρu · du
dt

+ ρ
de

dt
= −∇ · (pu) + ρF · u+ ∇ · (k∇T ) + ρ

dQ

dt
.

This can be further simplified using (2.7) and (2.6) to get

ρ
de

dt
=

p

ρ

dρ

dt
+ ∇ · (k∇T ) + ρ

dQ

dt
. (2.8)

(see Exercise 2.2).
Looking back at (2.6), (2.7), and (2.8), we see that we have five formidable

simultaneous nonlinear partial differential equations to solve. A first check
shows that there are six dependent variables u, ρ, p, and T , and, so, before
we consider the appropriate boundary or initial conditions, we need to feed
in some more information if we are to have any possibility of a well-posed
mathematical model.

An immediate reaction is to note how much easier things are for an incom-
pressible inviscid fluid. If we can say that ρ is constant, then the equations
uncouple so that first (2.6) and (2.7) can be solved for p and u and (2.8)
will determine T subsequently. Further than this, if we were considering a
barotropic flow in which p is a prescribed function of ρ, then the same decom-
position would occur.5 Unfortunately, most gas flows are far from barotropic,
but there is one simple relationship that holds for gases that are not being
compressed or expanded too violently. This is the perfect gas law :

p = ρRT. (2.9)

It is both experimentally observed and predicted from statistical mechanics
arguments that R is a universal constant.6 The law applies to gases that are
not so agitated that their molecules are out of thermodynamic equilibrium.
Hence if we assume that the perfect gas law does hold, we are, in effect, requir-
ing that any non-equilibrium effects are negligible and we will discuss briefly
how to model some non-equilibrium gasdynamics in Section 6.3.3 of Chap-
ter 6. Furthermore, most observations to corroborate this law are made when
the gas is at rest. This immediately raises the question of whether relation
(2.9) can be used to describe the gasdynamics we are modeling here and, in
particular, whether the pressure measured in static experiments can be identi-
fied with the variable p in (2.6)–(2.8). For the moment, we will simply assume
that (2.9) is sufficient for practical purposes.
5 Note that compressibility effects in water can be modeled by taking p proportional
to ργ , where γ is approximately 7; see Glass and Sislan [4].

6 It looks strange mathematically to put this constant in between two variables,
but this is the conventional notation.
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We are now almost in a position to make a dramatic simplification of
(2.8). Before doing so, we need one other technical result that involves two
“thought experiments”. Suppose first that we change the state of a constant
volume V of gas from pressure p and temperature T to pressure p + δp and
temperature T + δT . We assume that the gas is in equilibrium both at the
beginning and end of this experiment. Then, the amount of work needed to
make this change is

δq = cvδT. (2.10)

Next, we consider changing the state by altering V and T to V + δV and
T + δT while keeping the pressure constant. In this case, the work needed to
make this change is defined to be

δq′ = cpδT, (2.11)

where cp is the specific heat at constant pressure and, from (2.9),

pδV = RδT. (2.12)

Finally, we observe that if we had attained this second state from the state
p+ δp, T + δT , V by an isothermal (constant temperature) change, we would
have had to provide an extra amount of work pδV over and above that needed
for the constant volume change. Hence,

δq′ = δq + pδV

and so, from (2.10) and (2.11),

cpδT = cvδT + pδV.

Using (2.12), we find the relation

cp − cv = R. (2.13)

It is conventional to define γ as the ratio of specific heats

γ =
cp

cv
(2.14)

and we note that since R > 0, cp > cv, and so γ > 1; it can be shown from
the kinetic theory of gases that γ = 1.4 for nitrogen and this is approximately
the value for air under everyday conditions.

For simplicity, let us assume that there is no heat conduction by putting
k = 0 in (2.8). (This is part of the definition of an ideal gas.) Then, (2.8)
becomes

de

dt
− p

ρ2

dρ

dt
=

dQ

dt
, (2.15)

and we can put e = cvT = cvp
Rρ , on using (2.9). Now, the left-hand side of (2.15)

depends only on p and ρ and we can therefore find an integrating factor that
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makes this expression proportional to a total derivative. A simple calculation
using (2.13) and (2.14) shows that

de

dt
− p

ρ2

dρ

dt
=

cv

Rρ

dp

dt
−
(

cvp

Rρ2 +
p

ρ2

)
dρ

dt

=
cv

Rρ

[
dp

dt
− γp

ρ

dρ

dt

]

= cvT
d

dt

(
log

p

ργ

)
.

Hence, if we write S = S0 + cv log(p/ργ), where S0 is a constant, we obtain
the celebrated result

T
dS

dt
=

dQ

dt
. (2.16)

The formal relation TδS = δQ is the usual starting point for the definition
of the entropy S of a gas; when a unit mass of gas is heated by an amount
δQ, its entropy is defined to be a function that changes by δQ/T . However, by
starting from the energy equation, we have shown that this mysterious func-
tion arises quite naturally in gasdynamics. The above discussion also enables
us to state at once that since volumetric radiative cooling with δQ < 0 has
never been observed experimentally, and since T ≥ 0, then dS/dt ≥ 0, which
is a manifestation of the Second Law of Thermodynamics.

Finally, reinstating the conduction term in the energy equation, we can
write (2.8) as

T
dS

dt
=

1
ρ
∇ · (k∇T ) +

dQ

dt
. (2.17)

In most of the subsequent work, k and Q will be taken to be zero and so the
equation will reduce to

dS

dt
= 0. (2.18)

In this situation, S is constant for a fluid particle and the flow is isentropic.
If, in addition, the entropy of all fluid particles is the same (as would happen
if the gas was initially uniform for instance), then S ≡ S0 and the flow is
homentropic.

In fact, the Second Law of Thermodynamics states that the total entropy
of any thermodynamical system can never decrease, but here we have obtained
the stronger statement (2.18) that the rate of change of entropy of any fluid
particle is zero. Now, it is well known (see, e.g., Ockendon and Ockendon [3],
that in any viscous flow in which there is shear, there is a positive dissipation of
mechanical to thermal energy. Hence, we expect dS/dt to be positive whenever
viscosity is present. On the other hand, as shown in Exercise 2.6, thermal
conduction is a less powerful dissipative mechanism than viscosity because the
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equation T (dS/dt) = (1/ρ)∇ · (k∇T ) does not constrain the sign of dS/dt.7

We will return to these ideas in more detail in Chapter 6.
We have now succeeded in writing down six equations [(2.6), (2.7), (2.9),

and (2.16)], for our six dependent variables. Before considering their implica-
tions, we will consider briefly the sort of initial and boundary conditions that
may arise.

2.2 Initial and Boundary Conditions

The presence of a single time derivative in each of (2.6)–(2.8) suggests that
no matter what the boundary conditions are, we will require initial values for
ρ, u, and T and these will give the initial value for p from (2.9).

The boundary conditions are easy enough to guess when there is a pre-
scribed impermeable boundary to the flow. We simply synthesize what is
known about incompressible inviscid flow and what is known about heat con-
duction in solids to propose the following:

(i) The kinematic condition: The normal component of u should be equal to
the normal velocity of the boundary (with no condition on p).

(ii) The thermodynamic condition: The temperature or the heat flux,
−kn · ∇T , or some combination of these two quantities should be pre-
scribed. This assumes that k > 0; if k = 0, then no thermodynamic
condition is needed.

For a prescribed, moving, impermeable boundary f(x, t) = 0, we note
that a consequence of the assumption that the gas is a continuum is that fluid
particles which are on the boundary of a fluid at any time must always remain
on the boundary. Hence, the kinematic condition on the boundary is

df

dt
= 0 =

∂f

∂t
+ u · ∇f. (2.19)

However, the situation becomes much more complicated when the boundary
of the gas is free rather than being prescribed. This could occur if the gas was
confined behind a shock wave and this difficult situation will be discussed in
Chapter 6. Things are simpler for an incompressible flow, such as the flow of
water with a free surface; now, we must impose a second condition over and
above the kinematic condition (2.19) if we are to be able to solve the field equa-
tions and also determine the position of the boundary. This second condition
comes from considering the momentum balance. A simple argument suggests
7 We hasten to emphasize that in most gases, the effects of viscosity and thermal
conductivity are of comparable size. Hence, the study of an inviscid gas with
k > 0 is of purely academic interest.
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that in the absence of surface tension, the pressure must be continuous across
the boundary, because the boundary has no inertia; hence,

p1 = p2 (2.20)

on the boundary, where p2 is the external pressure and p1 is the pressure in
the fluid. Conditions (2.19) and (2.20) will be reconsidered more carefully in
specific circumstances in later chapters.

Before considering the full implications of the model we have derived, it is
very helpful to recall some well-known results about vorticity, circulation and
incompressible flow. This will not only help us pose the best questions to ask
about compressible flows in general but will also provide useful background
for some of the models to be considered in Chapter 3.

2.3 Vorticity and Irrotationality

2.3.1 Homentropic Flow

One distinctive attribute of fluid mechanics, compressible or incompressible,
compared to other branches of continuum mechanics is the existence of vor-
ticity ω, defined by ω = ∇ ∧ u. We can derive an equation for the evolution
of ω by first writing

(u · ∇)u = 1
2∇|u|2 − u ∧ (∇ ∧ u)

in (2.7). If we assume that F is a conservative force so that F = −∇Ω for
some scalar potential Ω and we use the same algebraic manipulations as those
used to derive (2.16), we obtain

du
dt

=
∂u
∂t

+ ∇
(

1
2
|u|2
)

− u ∧ ω = ∇
(

−Ω − γp

(γ − 1)ρ

)
+ T∇S. (2.21)

Taking the curl of this equation leads to

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ ∇ ∧ (T∇S),

or
dω

dt
= (ω · ∇)u+ ∇T ∧ ∇S.

For a homentropic fluid, ∇S will be zero and so the equation for ω is then

dω

dt
= (ω · ∇)u. (2.22)

Thus, in two-dimensional homentropic flow, in which (ω · ∇)u is automati-
cally zero, vorticity is convected with the fluid. Remarkably, if we change to
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Lagrangian variables, (2.22) can be solved explicitly, even in three dimensions
(see Exercise 2.4), to give

ω = (ω0 · ∇a)x, (2.23)

where ∇a is the gradient operator with respect to Lagrangian variables a, and
ω0 is the value of ω at t = 0. This is Cauchy’s equation for the vorticity in an
arbitrary homentropic flow, but it is not very useful since we cannot find ∇a

until we have found the flow field! However, (2.23) does tell us immediately
that if the vorticity is everywhere zero in a fluid region V (0) at t = 0, then
it will be zero at all subsequent times in the region V (t), which contains the
same fluid particles as V (0). Thus, ω ≡ 0 in V (t) and the flow is irrotational.
Such flows occur, for example, when the fluid is initially at rest or when there
are uniform conditions at infinity in steady flow.

To understand vorticity transport geometrically, we plot the trajectories
of two nearby fluid particles that are at x(t) and x(t) + εω(x(t), t) at time t,
as shown in Figure 2.1. After a short time δt, the particles will have moved
to x(t) +u(x, t)δt and x(t) + εω(x, t) +u(x+ εω(x, t), t)δt, respectively, and
the vector joining the two particles will therefore have changed from εω(x, t)
to εω(x, t) + ε(ω · ∇)uδt. However, from (2.22),

(ω · ∇)uδt = ω(x(t + δt), t + δt) − ω(x(t), t),

and so the vector joining the particles at t + δt is εω(x(t + δt), t + δt). Thus,
we can see that, in three dimensions, the vortex lines, which are parallel to
the vorticity at each point of the fluid, move with the fluid and are stretched
as the vorticity increases.

x(t) +      (x, t) + u(x +      , t) t

x(t) + w(x, t)
(x + u t, t + t)

x(t) + u(x, t) t

ε δ

ε

δ

εω ω

δ δω
x(t)

(x, t)ω

Fig. 2.1. Convection of vorticity.

An alternative way to approach vorticity is to consider the total vorticity
flux through an arbitrary closed contour C(t) which moves with the fluid.
This quantity, known as the circulation around C, is given by

Γ =
∫

C

u · dx =
∫

Σ

ω · dS,



16 2 The Equations of Inviscid Compressible Flow

where Σ is any smooth surface spanning C and contained within the fluid.
Note that the circulation integral around C is defined even in a non-simply
connected region. To consider the rate of change of Γ , we change to Lagrangian
variables so that

Γ =
∫

C(t)
ui dxi =

∫
C(0)

ui
∂xi

∂aj
daj .

Then,

dΓ

dt
=
∫

C(0)

dui

dt

∂xi

∂aj
daj + ui

∂ẋi

∂aj
daj

=
∫

C(t)

(
du
dt

· dx+ u · du
)

.

Now, ∫
C

u · du = [
1
2
(u)2]C = 0

since u is a single-valued function, and, so, using (2.21),

dΓ

dt
=
∫

C(t)
T∇S · dx−

[
Ω +

γp

(γ − 1)ρ

]
C(t)

=
∫

C(t)
T∇S · dx,

since Ω, p, and ρ are all single-valued functions. For a homentropic flow,
∇S = 0 and we have Kelvin’s theorem, which shows that the circulation
around any closed contour moving with the fluid is constant. In particular,
if the fluid region is simply connected, we again arrive at the result that if
ω ≡ 0 at t = 0 for all points, then Γ ≡ 0 for all closed curves C and so the
flow is irrotational.8

Note that we can use the identity ∇∧(T∇S) = ∇T ∧∇S to write Kelvin’s
theorem in the form

dΓ

dt
=
∫

Σ

(∇T ∧ ∇S) · dS.

Now, in any smooth irrotational flow in a simply connected region, Γ is iden-
tically zero and so, since Σ is arbitary, ∇T ∧∇S = 0. Since T is proportional
to p/ρ and S is a function of p/ργ with γ > 1, T cannot be a function of S
alone and so the flow must be either homentropic or isothermal. The latter
is unlikely in practice, and vorticity can thus be associated with an entropy
gradient and vice versa except in special cases (see Exercise 2.5).
8 It is easy to see that this result does not apply in, say, a circular annulus when

u = (Γ/2π)eθ in polar coordinates.
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Whenever the flow is irrotational, we can define a velocity potential φ by
φ(x, t) =

∫ x
x0
u·dx for any convenient constant x0, and from Kelvin’s theorem,

φ will be a well-defined function of x and t. From this definition, we can write

u = ∇φ.

Now, substituting for u in (2.6) and (2.21), the equations for homentropic
irrotational flow with a conservative body force collapse to

∂ρ

∂t
+ ∇ · (ρ∇φ) = 0 (2.24)

and
∂φ

∂t
+

1
2
|∇φ|2 + Ω +

γp

(γ − 1)ρ
= G(t), (2.25)

where G is some function of t, often determined by the conditions at infinity.
Equation (2.25) is Bernoulli’s equation for homentropic gas flow.

2.3.2 Incompressible Flow

Most of the modeling in the previous section is an obvious generalization
of well-known results for inviscid incompressible flows. In particular, home-
ntropic compressible flow has many features in common with incompressible
flow; (2.22) and (2.23) hold for incompressible flow, as does Kelvin’s theorem,
and in both cases, the existence of a velocity potential in irrotational flow
leads to a dramatic simplification.

However, the incompressible limit of our compressible model is non-trivial
mathematically and we only make one general remark about it here, although
we will return to it again in Chapter 4. In the light of footnote 5 on page 10,
one possible procedure is to let γ → ∞. Now, γ only enters the general model
via the energy equation in the form (2.18), which we can write as

d

dt

(
ρ

p1/γ

)
= 0.

Letting γ → ∞ now clearly suggests that dρ/dt = 0 and, hence, that the flow
is incompressible. We also note that letting γ → ∞ in (2.25) leads to the
familiar incompressible form of Bernoulli’s equation.

We will now use our nonlinear model for gasdynamics as a basis for the
linearized theory of acoustics or sound waves. This will lead us to the proto-
type of all models for wave motion. Even more importantly, it will show how
the linearization of an intractable nonlinear problem can lead to a linear wave
propagation model which is both revealing and straightforward to analyze.
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Exercises

R2.1 If J is the Jacobian ∂(x1, x2, x3)/∂(a1, a2, a3), where a are Lagrangian
coordinates, use (2.2) and (2.6) to show that d(ρJ)/dt = 0.

R2.2 The equations for a compressible gas are, in the absence of heat conduction
or radiation,

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂

∂t
(ρu) + (u · ∇)(ρu) + ρu(∇ · u) = −∇p (2)

and
∂

∂t

(
ρ

(
e +

1
2
|u|2
))

+ ∇ ·
(

ρ

(
e +

1
2
|u|2
)
u
)

= −∇ · (pu). (3)

From (1) and (2) show that the Euler equation

du
dt

= −1
ρ
∇p (4)

holds. Using (1) and (4) to eliminate dρ/dt and du/dt from (3), show that

ρ
de

dt
= −p∇.u,

and, hence, from (1) that
de

dt
=

p

ρ2

dρ

dt
.

Deduce that p/ργ is a constant for a fluid particle in a perfect gas.
2.3 Define the angular momentum of a material volume V as

L =
∫

V (t)
x ∧ ρu dV,

where x is the position of a particle of fluid with respect to a fixed origin.
Show by using (2.6) and (2.7) that

dL
dt

= −
∫

∂V (t)
x ∧ pn dS +

∫
V (t)

x ∧ ρF dV

and deduce that the rate of change of angular momentum of the fluid in
V (t) is equal to the sum of the moments of the forces acting on V (t).

Note that if this formula is applied to the angular momentum of a small element
of fluid Σ about its center of gravity, the magnitude of L will be of O(δ4) if
δ is the length scale of the element, whereas the term

∫
x ∧ pn dS is of O(δ3).

Formally, letting δ → 0 gives

p

∫
∂Σ

x ∧ n dS = 0,

which, fortunately, is identically true.
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2.4 Starting from the Euler equation (2.7) with F = 0, show that, in homen-
tropic flow, the vorticity ω = ∇ ∧ u satisfies the equation

dω

dt
= (ω · ∇)u.

By changing to Lagrangian variables a, and t, where x(a, 0) = a, show
that

dωi

dt
= ωk

∂aj

∂xk

d

dt

(
∂xi

∂aj

)
,

where the summation convention for the repeated suffices j and k is used.
Noting that (∂xi/∂ak) · (∂ak/∂xj) = δij , show that

d

dt

(
ωk

∂ai

∂xk

)
= 0

and, hence, deduce that
ω = (ω0 · ∇a)x,

where ω = ω0 at t = 0.
2.5 Show that in a two-dimensional steady flow, the entropy S is constant on

a streamline and, hence that u and ∇∧u are perpendicular to ∇S. Deduce
Crocco’s theorem, which states that for rotational, non-homentropic flow,

u ∧ (∇ ∧ u) = λ∇S

for some scalar function λ.
Show that for the steady two-dimensional flow u = (y, 0, 0), the entropy

S must be a function of y and, hence that it is possible for a rotational
flow to be homentropic. Show also that for the three-dimensional rota-
tional flow u = (0, cosx,− sinx), it is again possible for the flow to be
homentropic.

2.6 Show that in a heat conducting gas with positive conductivity k (which
need not be constant),

T
dS

dt
=

1
ρ
∇ · (k∇T ).

Deduce that if the gas is confined in a fixed thermally insulated container
Ω, then the rate of change of total entropy is

d

dt

[∫
Ω

ρS dV

]
=
∫

Ω

k|∇T |2
T 2 dV ≥ 0.

2.7 If Ω is an arbitrary volume of fluid fixed in space, show that the principle
of conservation of mass implies that

d

dt

∫
Ω

ρ dV = −
∫

∂Ω

ρu · dS

and hence deduce (2.6). In a similar way, deduce (2.7) and (2.8) by con-
sidering the momentum and energy of the fluid in Ω.
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Models for Linear Wave Propagation

This chapter will discuss models for several quite different classes of waves
with the common characteristic that they are of sufficiently small amplitude
for the models to be linear. We will focus on waves in fluids, but even here,
we will find that the models are far from trivial and can look very different
from each other. Their unifying features will become more apparent when we
embark on their mathematical analysis in Chapter 4. We begin with sound
waves, which are one of the most familiar of all waves.

3.1 Acoustics

The theory of acoustics is based on the fact that in sound waves (at least those
that do not affect the eardrum adversely), the variations in pressure, density,
and temperature are all small compared to some ambient conditions. These
ambient conditions from which the motion is initiated are usually either that
the gas is at rest, so that p = p0, ρ = ρ0, T = T0, and u = 0, or the gas is in
a state of uniform motion in which u = U i, say. We start with the simplest
case and motivate the linearization procedure in an intuitive way.

We suppose that the gas is initially at rest in a long pipe along the x axis
and that it is subject to a small disturbance so that

u = ū(x, t)i.

We assume that p̄ = p−p0 and ρ̄ = ρ−ρ0 are “small” and neglect the squares
of the barred quantities. From (2.6) and (2.7), we find

∂ρ̄

∂t
+ ρ0

∂ū

∂x
= 0 (3.1)

and
∂ū

∂t
+

1
ρ0

∂p̄

∂x
= 0. (3.2)
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The energy equation (2.17) reduces to p/ργ = p0/ργ
0 , so that

p̄ =
γp0

ρ0
ρ̄ (3.3)

to a first approximation. We define c2
0 to be γp0/ρ0, and then, from (3.1),

(3.2), and (3.3), we can show that the variables ρ̄, ū, and p̄ all satisfy the
same equation, namely

∂2φ

∂x2 =
1
c2
0

∂2φ

∂t2
; (3.4)

this is the well-known one-dimensional wave equation which generates waves
traveling with speed ±c0, and c0 is known as the speed of sound.

The simplicity of (3.4) in comparison with (2.6)–(2.8) is dramatic and
the validity of the linearization procedure requires careful scrutiny. In fact,
even assuming that we are in a regime where (2.6), (2.7), and (2.8) are valid,
much more care is needed to derive (3.4) than the simple assumption that
the square of the perturbations (the barred variables) can be neglected. Most
strikingly, even though ū is small, ∂ū/∂x may be large, so that the neglect of
the nonlinear term ū(∂ū/∂x) may not be justified. Also, not only must the
amplitude of the waves be small, but the time variation must not be too slow
if it is to interact with the spatial variation. In order to clarify the assumptions
built into the approximation represented by (3.4), we need to do a systematic
non-dimensionalization and analyze the equations as below.

In many circumstances, the wave motion will be driven with a prescribed
velocity u0, and frequency ω0 and propagate over a known length scale L. We
therefore introduce non-dimensional variables

ρ = ρ0(1 + ερ̂),
p = p0(1 + εp̂),
u = u0û,

x = LX

and
t = ω−1

0 T,

where ε is a small dimensionless parameter. Then, (2.6) and (2.7) become

ερ0ω0
∂ρ̂

∂T
+

ρ0u0

L

∂û

∂X
+

ρ0u0ε

L

∂

∂X
(ûρ̂) = 0

and

(1 + ερ̂)
(

u0ω0
∂û

∂T
+

u2
0

L
û

∂û

∂X

)
= − εp0

Lρ0

∂p̂

∂X
.

These equations will thus retain the same terms as (3.1) and (3.2), as a first
approximation in ε, if1 u0 � εω0L � εp0/Lω0ρ0 and, remembering that c2

0 =
1 Here, we use the symbol � to mean “is approximately equal to.”
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γp0/ρ0, this is achieved by taking

ω0L � c0, u0 � εc0. (3.5)

Thus if, for example, the motion is being driven by a piston oscillating with
speed u0, then u0 must be much smaller than the speed of sound in the undis-
turbed gas for the linearization to be valid. If ε is defined to be u0/c0, then the
resulting pressure and density variations will automatically be of O(εp0) and
O(ερ0). Equally, if the motion is driven by a prescribed pressure oscillation
of amplitude O(εp0), then the resulting density and velocity changes will be
O(ερ0) and O(εc0). In all cases, our theory will only describe waves whose
frequency is no higher than O(c0/L).

Although this derivation of (3.4) is more laborious than the simple hand-
waving that we used at the beginning of the section, it is the only way we can
have any reliable knowledge of the range of validity of the model and we will
need to take this degree of care throughout this chapter.

We note here some other important but less fundamental remarks about
the acoustic approximation.

(i) Sound waves in three dimensions. As shown in Exercise 3.1, in higher
dimensions, (3.4) is replaced by2

∇2φ =
1
c2
0

∂2φ

∂t2
. (3.6)

This may still reduce to a problem in two variables if we have either circu-
lar symmetry, when ∇2 = ∂2/∂r2 + (1/r)(∂/∂r), or spherical symmetry,
when ∇2 = ∂2

∂r2 + 2
r

∂
∂r , in suitable polar coordinates.

(ii) Sound waves in a medium moving with uniform speed U . If the
uniform flow U is taken along the x axis, it can be shown (Exercise 3.1)
that by writing u = U i+ ε∇φ, (3.4) is now replaced by

∇2φ =
1
c2
0

(
∂

∂t
+ U

∂

∂x

)2

φ.

In particular, for steady flow,(
1 − U2

c2
0

)
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 = 0, (3.7)

and it is clear that the parameter U/c0 now plays a key role in the solution.
It is called the Mach number and the flow is supersonic if M > 1 (U > c0)
and subsonic if M < 1 (U < c0). Note that the Mach number of acoustic
waves in a stationary medium is of O(ε) by (3.5), even though the waves
themselves propagate at sonic speed.

2 Note that the three-dimensional version of (3.2) is ∂u/∂t = −(1/ρ0)∇p, which
automatically guarantees that ∂ω/∂t = 0; this makes irrotationality even more
common than Kelvin’s theorem suggests.
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3.2 Surface Gravity Waves in Incompressible Flow

We now consider the problem of waves on the surface of an incompressible
fluid subject to gravitational forces. It may seem strange to suddenly revert
to incompressible flow at this stage, but, in fact, we can think of water and air
separated by an interface as an extreme case of a variable density fluid where
all the density variation takes place at the surface. The ratio of densities of
air and water is about 10−3, so the jump is extreme in magnitude as well as
occurring over a very short distance. We will come back to this point of view
later, but for the moment, we will derive the governing equations from the
usual equations of incompressible fluid dynamics.

We recalled in Chapter 2 that the classical theory of inviscid flow predicts
that if the fluid motion is initially irrotational, then it will remain irrotational.
Thus, writing u = ∇φ, the field equations reduce to Laplace’s equation

∇2φ = 0 (3.8)

for φ and to Bernoulli’s equation

∂φ

∂t
+

1
2
|∇φ|2 + gz +

p

ρ
=

p0

ρ
(3.9)

for p, where we have assumed that the external pressure in the air is p0 and
that the z axis is vertical. What is important now are the boundary conditions
for φ at the free surface. We anticipate that whereas only one condition is
needed for φ at a prescribed boundary, we will now need two conditions to
compensate for the fact that the position of the free surface is unknown and
needs to be determined as part of the solution of the problem. A problem of
this type is known as a free boundary problem.

The first free surface condition comes from the fact that no fluid particle
can cross the surface (we will neglect any “spray”). If the surface is given
by z = η(x, t), where we are considering a two-dimensional situation for sim-
plicity, a particle on the surface has position (x, 0, η) and the velocity of this
particle is (u, 0, w), where

w =
dη

dt
=

∂η

∂t
+ u

∂η

∂x
.

Hence, as could have also been deduced from (2.19), we have the kinematic
boundary condition

∂φ

∂z
=

∂η

∂t
+

∂φ

∂x
.
∂η

∂x
, (3.10)

which expresses the principle of conservation of mass at the free surface.
The second condition expresses the principle of conservation of momentum

at the free surface. As discussed in Chapter 2, this simply means that, if surface
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tension effects can be neglected,3 then the pressure at the surface will be p0,
so that, from (3.9),

∂φ

∂t
+

1
2
|∇φ|2 + gη = 0 (3.11)

on z = η(x, t).
If we apply suitable initial conditions (which must satisfy irrotationality)

and conditions at any fixed boundaries, we will have a fully nonlinear model
for surface gravity waves. This model is every bit as formidable as the com-
pressible equations (2.6), (2.7), and (2.18), so let us again consider the effect
of linearization. We will take water of depth h at rest as the basic equilib-
rium state and formally neglect squares and products of the variables φ and
η. There is one extra subtlety here because when we make this assumption in
(3.10), we must, to be consistent, write

∂φ

∂z
=

∂η

∂t
on z = 0,

rather than on z = η. This is because the difference between ∂φ(x, η, t)/∂z and
∂φ(x, 0, t)/∂z is a product of η and ∂2φ/∂z2 and thus is negligible under the
linearization approximation. Hence, from (3.8), (3.10), and (3.11), the formal
model for small-amplitude waves, called Stokes waves, on water of depth h is

∇2φ = 0, (3.12)

with
∂φ

∂z
=

∂η

∂t
,

∂φ

∂t
+ gη = 0 on z = 0 (3.13)

and
∂φ

∂z
= 0 on z = −h. (3.14)

The conditions (3.13) can be further reduced to a single condition on φ in
the form

∂2φ

∂t2
+ g

∂φ

∂z
= 0 on z = 0 (3.15)

and we are left with the problem of solving Laplaces equation (3.8) with
an odd-looking boundary condition (3.15) on one prescribed boundary and
a more standard condition (3.14) on the other. Although linearization has
greatly simplified the difficulty caused by the free boundary, (3.15) poses a
new challenge. Standard theory tells us that Laplace’s equation can usually
be solved uniquely, or to within a constant, if φ or its normal derivative or
even a linear combination thereof is prescribed on the boundary of a closed
region, but (3.15) does not fall into any of these categories.

Before making any further remarks about this model, we will repeat the
procedure adopted in Section 3.1 for discussing the parameter regime in which
3 See Exercise 4.5 of Chapter 4 for a brief discussion of the effect of surface tension.
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we might expect (3.12)–(3.15) to be valid. We suppose that the disturbance to
the surface of the water has an amplitude a, which must be small compared to
the depth h. Then, we non-dimensionalize by introducing an arbitrary length
scale λ, time scale ω−1

0 , and potential scale φ0 and writing η = aη̂, x = λX,
z = λZ, t = ω−1

0 T , and φ = φ0φ̂. We find that the linearized equations
(3.12)–(3.15) are a valid approximation provided λ, ω0, and φ0 satisfy

ω0 =
( g

λ

)1/2
, φ0 = a(λg)1/2, and

a

λ
� 1. (3.16)

Since the boundary condition (3.14) is applied on Z = −h/λ, we will also need
to insist that h/λ ≥ O(1). If this latter restriction is violated, we can still make
simplifications, and these lead to the nonlinear shallow water theory, as will
be described in Chapter 5.

Once again, we can extend this theory easily enough to three dimensions
when (3.12)–(3.15) will still be valid as long as we write ∇2φ as ∂2φ/∂x2 +
∂2φ/∂y2 + ∂2φ/∂z2. It is also straightforward to consider waves on a uniform
stream moving with velocity Ui and in this case, the only change is that (3.15)
becomes (

∂

∂t
+ U

∂

∂x

)2
φ + g

∂φ

∂z
= 0.

3.3 Inertial Waves

As a generalization of the last section, we now consider flows which consist
of incompressible particles but where the density may vary from particle to
particle. This may arise, for example, in oceanography, where the density of
the sea is related to the salinity, and diffusion is so small that the salinity of
a fluid particle is conserved. Thus,

dρ

dt
=

∂ρ

∂t
+ u · ∇ρ = 0, (3.17)

and (2.6) and (2.7) reduce to
∇ · u = 0 (3.18)

and
∂u
∂t

+ (u · ∇)u = −1
ρ
∇p − gk, (3.19)

where k is measured vertically upward. We now have sufficient equations to
solve for u, p, and ρ. Moreover, using (2.7) in the energy equation removes
the terms involving the gravitational body force and reduces (2.8) to

de

dt
= 0.
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Thus, when there is no conduction, the temperature is constant for each fluid
particle.

An exact hydrostatic solution of (3.17)–(3.19) is that of a stratified fluid
where

u = 0, ρ = ρs(z), and p = p0 − g

∫ z

0
ρs(σ) dσ = ps(z), (3.20)

say, where p0 is a constant reference pressure on z = 0. Now, we can, as usual,
effect a handwaving derivation of the linear theory about the state given by
(3.20). For simplicity, we look at two-dimensional disturbances and assume
that ρ̄ = ρ − ρs(z), p̄ = p − ps(z), and |u| = |(u, 0, w)| are all small. Then,
with d

dz denoted by a prime, (3.17)–(3.19) reduce to

∂ρ̄

∂t
+ ρ′

sw = 0, (3.21)

∂u

∂x
+

∂w

∂z
= 0, (3.22)

ρs
∂u

∂t
= −∂p̄

∂x
(3.23)

and
ρs

∂w

∂t
= −∂p̄

∂z
− ρ̄g. (3.24)

It is now a simple matter to cross-differentiate to eliminate ρ̄, p̄, and u to
obtain

∂2

∂t2

(
∂2w

∂x2 +
∂2w

∂z2

)
= −N2(z)

(
∂2w

∂x2 − g−1 ∂3w

∂z∂t2

)
, (3.25)

where N2(z) = −gρ′
s(z)/ρs(z) is a positive function in a stably stratified fluid.

We note with satisfaction that if

ρs(z) =
{

0, z > 0
ρ0, z < 0 ,

as was the case in Section 3.2, then, in z < 0, w will be a potential function
(assuming suitable initial conditions). Moreover, by integrating (3.22) across
z = 0, we find that w is continuous there and, from (3.24), we get that p̄
is also continuous, which are the conditions used in deriving the free surface
boundary conditions (3.13).

In order to check the validity of (3.25), once again we can systematically
non-dimensionalize the equations by writing

ρ = ρs + ερ0ρ̂, p = ps + εp0p̂, u = u0(û, 0, ŵ),

x = LX, z = LZ, and t = ω−1
0 T . Here, we choose typical values ρ0 = ρs(0)

and p0 = ps(0), and L and u0 are, as usual, representative length and velocity
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scales. Now, the linearized equations (3.21) and (3.22) are obtained from (3.17)
and (3.18) as long as ω0 = u0/εL. Moreover, (3.19) leads to

(ρs + ερ0ρ̂)
[

∂û

∂T
+ ε

(
û

∂û

∂X
+ ŵ

∂û

∂Z

)]
= −ε2p0

u2
0

∂p̂

∂X

and

(ρs + ερ0ρ̂)
[
∂ŵ

∂T
+ ε

(
û

∂ŵ

∂X
+ ŵ

∂ŵ

∂Z

)]
= −ε2p0

u2
0

∂p̂

∂Z
− ε2ρ0gL

u2
0

ρ̂.

Hence, in order to retrieve (3.23) and (3.24), we need

p0 � ρ0gL and u0 � ε
√

gL.

This example again illustrates the importance of our systematic method.
We have chosen the above scales in order to justify the use of (3.25). However,
were we modeling sonic boom propagation in the atmosphere, we would be
considering wavelengths much shorter than the length scale of the stratifica-
tion, and this leads to quite a different model, as we will see at the end of this
section.

We can extend the theory to disturbances that vary in three dimensions
about the same basic stratified equilibrium solution and the equation for w
becomes

∂2

∂t2

(
∂2w

∂x2 +
∂2w

∂y2 +
∂2w

∂z2

)
= −N2(z)

((
∂2w

∂x2 +
∂2w

∂y2

)
− g−1 ∂3w

∂z∂t2

)
.

(3.26)
We note that the stratification of the fluid destroys any hope of conservation
of vorticity. Even in the linear three-dimensional theory, the only vestige that
remains is the following argument. Since, from the generalizations of (3.23)
and (3.24),

ρs(z)
∂u
∂t

= −∇p̄ − ρ̄gk,

we can deduce that

ρs
∂

∂t
(∇ ∧ u) + ρ′

sk ∧ ∂u
∂t

= −g∇ρ̄ ∧ k

and so
k · ∂ω

∂t
= 0.

Hence, the vertical component of the vorticity is conserved in time.
As suggested earlier, it is interesting to note what happens when we com-

bine some aspects of this section with those of Section 3.1 and consider acous-
tic waves in an inhomogeneous compressible atmosphere. Then, we have to
revert to the full continuity equation dρ/dt + ρ∇ · u = 0. For simplicity, we
neglect the effect of gravity, so that ρ = ρs(z), but ps(z) = constant.
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The continuity equation linearizes to

∂ρ̄

∂t
+ ρs∇ · u+ u · ∇ρs(z) = 0

and the momentum equation is just

ρs(z)
∂u
∂t

= −∇p̄.

We now need to close the system with the energy equation d/dt(p/ργ) = 0,
which linearizes to

1
ps

∂p̄

∂t
=

γ

ρs(z)

(
∂ρ̄

∂t
+ u · ∇ρs(z)

)
.

Thus, when we write γps/ρs(z) = c2
s(z), we find that the flow is described by

a velocity potential φ such that p̄ = −∂φ/∂t, and ρs(z)u = ∇φ, where

∂2φ

∂t2
= −∂p̄

∂t
= γps∇

(
1

ρs(z)
∇φ

)
= ∇(c2

s∇φ).

Note that this result is not what we would have obtained by setting c0 = cs(z)
in (3.6), and although the pressure perturbations satisfy the same equation
as φ, the density perturbations do not.

3.4 Waves in Rotating Incompressible Flows

It can be shown (see Acheson [5]) that the equations of motion of a constant-
density inviscid fluid which is moving with velocity u relative to a set of
axes which are rotating with constant angular velocity Ω with respect a fixed
inertial frame are

∇ · u = 0,
∂u
∂t

+ (u · ∇)u+ 2Ω ∧ u+Ω ∧ (Ω ∧ r) = −1
ρ
∇p. (3.27)

Here, r is the position vector, in the rotating frame, of the fluid particle whose
velocity in that frame is u and, most importantly, all spatial derivatives are
taken relative to the rotating frame. An elementary argument to explain (3.27)
is based on the formula that the rate of change of any vector a with respect
to a rotating frame is

da
dt

+Ω ∧ a·
Hence, the velocity of the particle with position vector r is

dr
dt

+Ω ∧ r = u+Ω ∧ r
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and its acceleration will be(
d

dt
+Ω ∧ r

)
(u+Ω ∧ r) =

du
dt

+ 2Ω ∧ u+Ω ∧ (Ω ∧ r),

and, to account for convection, we must interpret d/dt = ∂/∂t + u · ∇. This
is a plausible but by no means a watertight argument! We can immediately
simplify (3.27) since the term Ω∧ (Ω∧ r) = −∇( 1

2 (Ω∧ r)2) and, thus, incor-
porating a centrifugal term in the pressure leads to

∂u
∂t

+ (u · ∇)u+ 2Ω ∧ u = −1
ρ
∇p′, (3.28)

where the reduced pressure p′ = p − 1
2ρ|Ω∧ r|2. Now, a handwaving lineariza-

tion about an equilibrium state u = 0, p′ = p0 leads to

∂u
∂t

+ 2Ω ∧ u = −1
ρ
∇p′, (3.29)

and a systematic analysis along the lines used in the previous three sections
reveals that the nonlinear term in (3.28) can be neglected if the Rossby number,
Ro, defined as U0/LΩ, is small. The systematic analysis also shows that the
appropriate timescale for this flow is Ω−1. For meteorological flows on the
surface of the earth, we might choose L = 103 km, U0 = 10 ms−1, and, of
course, Ω is one revolution per day, so that Ro � 0.15. Also, we note that
for a steady flow, (3.29) shows that u · ∇p′ = 0; this explains why the wind
velocity is parallel to the isobars on which the reduced pressure is constant, as
we see daily on weather maps. The term 2Ω∧u in (3.29) is called the Coriolis
term.

Alas, as in stratified fluids, the flow governed by (3.29) inevitably results
in vorticity generation when Ω 	= 0. However, if we take Ω = Ωk, it is easy
to show from (3.29) that p′ and each component of u all satisfy the equation

∂2

∂t2

(
∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2

)
= −4Ω2 ∂2φ

∂z2 . (3.30)

As stated by Greenspan [6], “the balance between pressure gradient and Cori-
olis force emerges as the backbone of the entire subject (of rotating flows).”
Already we can see the importance of Ω in determining the frequency of os-
cillatory solutions of (3.30) and the similarities and differences between this
model and the inertial wave model given by (3.26).

3.5 Isotropic Electromagnetic and Elastic Waves

Our motivation for now introducing models from the two physically disparate
situations of electromagnetics and elasticity is principally to indicate the
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breadth of applicability of the mathematical methodology that will be de-
scribed in Chapter 4. Electromagnetism and elasticity are vast subjects, to
the modeling of which we cannot hope to do justice here.

Both of these situations have the saving grace of leading to linear models
more or less from the start. Maxwell’s equations of electromagnetism are de-
ceptively simple, and in free space, they simply state that the electric field E
and the magnetic field H are related by

∇ ∧H = ε
∂E
∂t

and
∇ ∧E = −µ

∂H
∂t

, (3.31)

where ε and µ are positive constants4 and ∇·E = ∇·H = 0. Unfortunately, an
explanation of these equations can take many pages, but a simple derivation
is described in Coulson and Boyd [7]. For our purposes, the principal result is
that all the components of E and H satisfy the wave equation

∇2φ =
1
c2

∂2φ

∂t2
, (3.32)

where c = 1/
√

εµ is now the speed of light.
The most familiar models for elastic waves are those for the small trans-

verse vibrations of a string or membrane of density ρ under tension T ; the
displacement simply satisfies the one- or two-dimensional version of (3.32)
with c2 = T/ρ. However, the equation for waves in a linear elastic solid looks
a little more formidable and can be written as

ρ
∂2u
∂t2

= (λ + 2µ)∇(∇ · u) − µ∇ ∧ (∇ ∧ u), (3.33)

where u is the displacement of an element of the material from its equilibrium
position and λ and µ are called the Lamé constants5 of the material. As may
be guessed, this equation represents conservation of momentum and has some
similarities with the Navier–Stokes equation for viscous flow. The derivation
of (3.33) is given by Love [8], where it is explained that the term involving
λ represents the stresses that do work in expansion or compression, like the
pressure term in (2.7), whereas the terms in µ represent the shear stresses and
are analogous to the viscous terms in the Navier–Stokes equation.

Now, we have a more complicated equation, but we can notice at once that
if u = ∇φ, then (3.33) reduces to

∇2φ =
1
c2
p

∂2φ

∂t2
, (3.34)

4 They are matrices in an anisotropic medium.
5 Again, these numbers need to be replaced by matrixes for anisotropic materials.
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where c2
p = (λ+2µ)/ρ, and if u = ∇∧w, then the components of w all satisfy

∇2φ =
1
c2
s

∂2φ

∂t2
, (3.35)

where c2
s = µ/ρ. The key novelty here is that there are two distinct wave

speeds, cp and cs, and we may anticipate that general solutions of (3.33) will
comprise both types of wave.

Since the field equations for E, H, and u are all vector wave equations,
this is a good place to introduce the ideas of transverse and longitudinal wave
motion. In general, waves satisfying vectorial wave equations are longitudinal
if the vector variable is parallel to the direction of wave motion and trans-
verse if it is perpendicular to the direction of the wave. In elasticity, a simple
traveling wave solution of (3.34) is φ = f(x · k1 − cpt), where k1 is a fixed
unit vector in the wave direction and u = ∇φ = k1f

′(x · k1 − cpt), which is,
therefore, an example of a longitudinal wave. The same solution shows that
acoustic waves which satisfy (3.6) are always longitudinal since the velocity
is in the direction in which the wave travels. On the other hand, if, in (3.35),
we take w = k2f(x ·k1 − cst), where k2 is another constant unit vector, then
u = ∇f ∧ k2 = f ′(x · k1 − cst)k1 ∧ k2 and, hence, this is a transverse wave.
Similarly in electromagnetics, there are transverse wave solutions of the form

E = k2f(x · k1 − ct), H =
k3

µc
f(x · k1 − ct),

where k1, k2, and k3 form an orthonormal triad of vectors. In practice, the
functions f in all these examples are usually taken to be complex exponentials
so that general solutions can be found by Fourier superposition.

The classification of waves into longitudinal and transverse leads to the
more general concept of polarization6 in vectorial wave equations. For any
such equation with constant coefficients, we may seek solutions of the form

u = f(k · x− ct)U,

where k is a unit vector in the direction of the wave and U is a unit vector
which depends on the choice of k. A particular solution of this type is called
a plane polarized wave, with U being the direction of polarization and (U,k)
defining the plane of polarization (assuming it is not a longitudinal wave). As
we will see in the next chapter, the general solution can always be written in
principle in terms of Fourier integrals as

u =
∫∫∫

ei(k·x−ct)A(k) dk;

polarized waves correspond to the vectorA being “localized” near a particular
vector k.
6 This is not to be confused with magnetic polarization, which is an important
phenomenon in electromagnetic theory (see Coulson and Boyd [7]).
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Exercises

R3.1 (i) Show that, in three dimensions, the linearized equations for acoustic
flow, namely (3.1) and (3.2), are replaced by

∂ρ̄

∂t
+ ρ0∇ · u = 0

and
∂u
∂t

+
1
ρ0

∇p̄ = 0

and deduce that p̄, ρ̄, and u all satisfy (3.6).
(ii) Suppose now that ū = u − U i is small, in addition to p̄ and ρ̄. Show

that the linearized equations are then(
∂

∂t
+ U

∂

∂x

)
ρ̄ + ρ0∇ · ū = 0

and (
∂

∂t
+ U

∂

∂x

)
ū+

1
ρ0

∇p̄ = 0

and deduce that p̄, ρ̄, and ū all satisfy

∇2φ =
1
c2
0

(
∂

∂t
+ U

∂

∂x

)2

φ.

Show that this reduces to (3.6) if we change to moving axes (X, y),
where X = x − Ut and we assume that U is constant.

R3.2 Gas is contained in a box 0 < x < L, 0 < y < b, 0 < z < c. Show that
acoustic oscillations satisfying (3.6) are possible in which φ is proportional
to cosωt if

ω2 = π2c2
0

(
l2

L2 +
m2

b2 +
n2

c2

)
,

where l, m, and n are integers.
Show also that if just one face of the box is subject to small-amplitude

oscillations so that
∂φ

∂x
= a cosωt

on x = 0, then, in general, a possible solution is

φ =
−ac0 cos[ω(L − x)/c0]

ω sinωL/c0
cosωt.

For what values of ω is this solution inadmissible?
Show that if L = ∞ and

∂φ

∂x
= a cos

mπy

b
cos

nπz

c
cosωt



34 3 Models for Linear Wave Propagation

on x = 0, then if m2/b2+n2/c2 > ω2/c2
0π

2, there are solutions of the form

φ = −a

λ
cos

mπy

b
cos

nπz

c
e−λx cosωt,

where λ2 = m2π2/b2 + n2π2/c2 − ω2/c2
0. Show further that if m2/b2 +

n2/c2 < ω2/c2
0π

2, then

φ = −a

µ
cos

mπy

b
cos

nπz

c
sin(ωt − µx),

where µ2 = ω2/c2
0 − m2π2/b2 − n2π2/c2. (This problem of a wavemaker

will be considered further in Chapter 4.)
3.3 Show that if φ(r, t) is the velocity potential for a spherically symmetric

acoustic wave, where r is the polar coordinate measured from the origin,
then

∂2φ

∂r2 +
2
r

∂φ

∂r
=

1
c2
0

∂2φ

∂t2
.

Deduce that rφ satisfies the one-dimensional wave equation.
Acoustic waves in an infinite gas are driven by a sphere which starts

oscillating at t = 0 so that its radius is given by r = a(1+ ε cosωt), where
ε � 1. Show that the appropriate boundary condition for acoustic waves
in r > a is

∂φ

∂r
= −aεω sinωt on r = a.

Show that for t > 0, the velocity potential φ is given by

φ =
1
r

[
a3εω2c2

0

c2
0 + a2ω2

] [
aω cos

ω

c0
(r − a − c0t)

+ c0 sin
ω

c0
(r − a − c0t) − aωe(1/a)(r−a−c0t)

]

for a < r < a + c0t.
R3.4 Show that for small-amplitude waves on an incompressible stream in which

u = ∇(Ux + φ), where φ and the elevation η are small, the linearized
versions of the boundary conditions (3.10) and (3.11) are

∂φ

∂z
=

∂η

∂t
+ U

∂η

∂x

and
∂φ

∂t
+ U

∂φ

∂x
+ gη = 0

on z = 0. If η = a cos(kx − ωt), show that a solution of (3.8) satisfying
∂φ/∂z = 0 on z = −h and the above boundary conditions is

φ =
a(ω − Uk) cosh k(z + h) sin(kx − ωt)

k sinh kh
,
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providing (ω −Uk)2 = gk tanh kh. Deduce that ω and k can only both be
real if g > 0.

Show that a solution for steady waves (with ω = 0) is only possible if
U2 < gh. Show also that if U = 0, then, as h → ∞, ω2 → gk.

3.5 Show that three-dimensional Stokes waves on the surface of a running
stream of depth h can be found where the surface elevation is

η = a cos(k1x + k2y − ωt)

and the velocity potential is

φ = Ux + b cosh
[√

k2
1 + k2

2(z + h)
]
sin(k1x + k2y − ωt),

provided

(Uk1 − ω)2 = g
√

k2
1 + k2

2 tanh
√

k2
1 + k2

2h

and

b =
a(ω − Uk1)√

k2
1 + k2

2 sinh
√

k2
1 + k2

2h
.

3.6 Small-amplitude waves propagate on the interface z = 0, which separates
liquid of density ρ1 in z > 0 from liquid of density ρ2 in z < 0. The
upper liquid is streaming with uniform velocity U in the x direction and
the lower fluid is at rest. If variables in the upper and lower liquids are
denoted by suffices 1 and 2, respectively, and z = η is the elevation of the
interface, show that the model (3.12)–(3.14) generalizes to

∇2φ1 = 0 in z > 0, ∇2φ2 = 0 in z < 0,

with
∂φ1

∂z
=

∂η

∂t
+ U

∂η

∂x
,

∂φ2

∂z
=

∂η

∂t
,

and

ρ1

(
∂φ1

∂t
+ U

∂φ1

∂x
+ gη

)
= ρ2

(
∂φ2

∂t
+ gη

)

on z = 0. Show that waves for which η = a cos(kx − ωt), with k > 0, are
possible provided

ρ1((ω − Uk)2 + gk) = ρ2(gk − ω2).

Deduce that when U = 0, with g > 0, ω and k can only both be real if
ρ2 ≥ ρ1. Show also that ω and k cannot both be real when g = 0 and
U 	= 0.
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3.7 From (2.6) and (2.7), show that waves propagating in a vertical direction
in an inhomogeneous atmosphere satisfy

∂ρ

∂t
+

∂

∂z
(ρw) = 0,

ρ

(
∂w

∂t
+ w

∂w

∂z

)
= −∂p

∂z
− gρ,

and (
∂

∂t
+ w

∂

∂z

)(
p

ργ

)
= 0.

Show that, in equilibrium, ρ = ρs(z) and p = ps(z) satisfy (3.20). For
acoustic waves, the variables w, ρ̄ = ρ − ρs, and p̄ = p − ps are all small.
Show that the linearized equations satisfied by these variables are

∂ρ̄

∂t
+ ρs

∂w

∂z
+ ρ′

sw = 0,

ρs
∂w

∂t
= −∂p̄

∂z
− gρ̄

and
∂p̄

∂t
− c2

s

∂ρ̄

∂t
+ w(p′

s − c2
sρ

′
s) = 0,

where c2
s = γps/ρs. If we assume that gravity is negligible, show that ps

is constant and deduce that

∂2p̄

∂t2
=

∂

∂z

(
c2
s

∂p̄

∂z

)
.

3.8 A component of a heat exchanger consists of a uniform tube along the
x axis which contains gas and whose walls transmit heat to the gas at a
rate ∂Q(x, t)/∂t per unit length. When Q = 0, the gas has constant speed
U , density ρ0, and pressure p0. Show that for small heat addition, the
pressure, density, and velocity perturbations satisfy the equations

∂ρ̄

∂t
+ ρ0

∂ū

∂x
+ U

∂ρ̄

∂x
= 0,

ρ0
∂ū

∂t
+ ρ0U

∂ū

∂x
= −∂p̄

∂x

and

ρ0cv

(
∂T̄

∂t
+ U

∂T̄

∂x

)
=

p0

ρ0

(
∂ρ̄

∂t
+ U

∂ρ̄

∂x

)
+

∂Q

∂t
,

where T̄ = p̄/ρ0R − p0ρ̄/ρ2
0R. Deduce that(

∂

∂t
+ U

∂

∂x

)(
∂2ρ̄

∂t2
+ 2U

∂ρ̄

∂x∂t
+ (U2 − c2

0)
∂2ρ̄

∂x2

)
= (γ − 1)

∂3Q

∂x2∂t
.
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3.9 Suppose that the Rossby number in an incompressible rotating fluid is
small so that (3.29) holds with respect to a frame rotating with angular
velocity Ω. Show that if Ω = (0, 0, Ω), then, in steady flow, ∂u/∂z = 0
(this is the Taylor–Proudman theorem).

Now suppose that fluid fills a sealed cylindrical container which is ro-
tating with a small Rossby number. The ends of the cylinder are flat and
perpendicular to the axis of rotation save for a small finite bump on one
end which protrudes into the fluid.

Show that an observer rotating with the cylinder will see a two-
dimensional flow perpendicular to the axis of rotation in which a “pillar”
of fluid above the bump is at rest (this pillar is called a Taylor column).

R3.10 A long tube containing gas at rest lies along the x axis. In x < 0, the gas
has density ρ1 and sound speed c1, whereas in x > 0, the gas has density
ρ2 and sound speed c2. An acoustic wave described by φ = a sin k(c1t−x)
is incident from the region x < 0. Show that at x = 0, ∂φ/∂x and ρ(∂φ/∂t)
are continuous and deduce that the reflected and transmitted waves have
amplitude aR and aT , respectively, where

R =
∣∣∣∣ρ2c2 − ρ1c1

ρ1c1 + ρ2c2

∣∣∣∣ and T =
∣∣∣∣ 2ρ1c2

ρ2c2 + ρ1c1

∣∣∣∣ .
(R is the reflection coefficient and T is the transmission coefficient.)

This illustrates the idea of the impedance of a boundary, which is a generic
expression used to describe the qualitative response of an inhomogeneity to an
incoming wave. In this case we can see that if ρ1c1 = ρ2c2, there is no reflected
wave. Hence, when ρ1c1 − ρ2c2 is suitably small, we say that the boundary has
low impedance, whereas if ρ1 or c2 is suitably small, the transmission is weak
and it has high impedance.

*3.11 In this Exercise, [ ] is used to denote the size of a discontinuous jump in
a variable.
(i) The vector a satisfies ∇ · a = 0 and changes rapidly from one side of

a surface S to the other. By integrating over a “pillbox” straddling
an area Σ of S with normal n and then shrinking the pillbox to zero,
show that

[a · n]+− = 0

in the limit when a has a jump discontinuity across S.
(ii) The matrix A = (Aij) satisfies the equation ∂Aij/∂xj = 0. Show that

if A has a jump discontinuity across S, then

[An]+− = 0.

(iii) Show that (∇ ∧ b)i = −∂Aij/∂xj if

A =

⎛
⎝ 0 −b3 b2

b3 0 −b1
−b2 b1 0

⎞
⎠ .
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Hence, deduce that if ∇∧b = 0 and b has a jump discontinuity across
S, then

[b ∧ n]+− = 0.

(iv) When ε and µ are spatially dependent, Maxwell’s equations can be
written as

∇ · (εE) = 0,
∇ · (µH) = 0,

µ
∂H
∂t

= −∇ ∧E

and
ε
∂E
∂t

= ∇ ∧H.

Show that across a surface on which E and H have jump discontinu-
ities,

[εE · n] = 0, [µH · n] = 0,
[E ∧ n] = 0, [H ∧ n] = 0.

Note that if conducting material is present, Maxwell’s equations have to be
modified to allow for current flow. Hence, these jump conditions may not be
appropriate at the boundary of a conductor.

*3.12 By writing u = ∇φ+∇∧Ψ, where ∇·Ψ = 0, show that (3.33) for elastic
waves can be satisfied if

∂2φ

∂t2
= c2

p∇2φ

and
∂2Ψ
∂t2

= c2
s∇2Ψ,

where cp = (λ + 2µ/ρ)1/2 and cs = (µ/ρ)1/2.
Consider waves traveling in the x direction in a semi-infinite elastic

solid z ≥ 0. Given that φ = φ(x, z, t), Ψ = (0,−ψ(x, z, t), 0), and that
the boundary condition on the free surface z = 0 is σi3 = 0 where, with
(x, z) = (x1, x3),

σij = δijλ∇ · u+ µ

(
∂ui

∂xj
+

∂uj

∂xi

)
,

show that on z = 0,

λ

(
∂2φ

∂x2 +
∂2φ

∂z2

)
+ 2µ

(
∂2φ

∂z2 − ∂2ψ

∂x∂z

)
= 0

and

2
∂2φ

∂x∂z
− ∂2ψ

∂x2 +
∂2ψ

∂z2 = 0.
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3.13 A sound source with frequency ω moves along a tube with speed V for
time t > 0. You are given that the velocity potential satisfies

∂2φ

∂x2 =
1
c2

∂2φ

∂t2
, x 	= V t,

where φ is continuous at the source x = V t and the velocity jump across
x = V t is cosωt. If the gas is initially at rest, show that if V < c,

2ωc

c2 − V 2 φ =

⎧⎪⎨
⎪⎩

− sin
(ct − x)ω

c − V
, V t < x < ct

− sin
(ct + x)ω

c + V
, −ct < x < V t.

Deduce that the Doppler frequency shift between observers just ahead of
and behind the source is

ωc

(
1

c − V
− 1

c + V

)
=

2ωcV

c2 − V 2 .
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Theories for Linear Waves

Looking back at the models derived in the last chapter, we see that they almost
all comprise linear partial differential equations in time and at least one space
variable, together with linear boundary conditions. The only exception to
this rule is the model describing Stokes waves in Section 3.2, where the time
derivatives only occur in the boundary condition. Importantly, in most of the
equations, many of the terms have constant coefficients. We therefore start
this chapter by reviewing the mathematical methodologies that are available
for the analysis of such models.

4.1 Wave Equations and Hyperbolicity

It is well known that systems of linear partial differential equations can be
classified into a hierarchy which has “hyperbolic” models at one end and
“elliptic” models at the other (Ockendon et al. [9]). Hyperbolic models are
probably the best understood and for such a system the Cauchy problem, in
which appropriate data are prescribed at some initial time, is, in general, a
well-posed problem. Moreover, much is known about how the solution depends
on the data via regions of influence and domains of dependence in the space
of the independent variables. These concepts depend crucially on the fact
that the characteristics (in two dimensions) or the characteristic manifolds
(in three or more dimensions) are real for a hyperbolic system. However, this
information does not necessarily give us any detailed knowledge of the solution
itself, let alone an explicit analytic solution.

The situation can be illustrated with reference to the wave equation (3.4)
in one space dimension,

∂2φ

∂x2 =
1
c2

∂2φ

∂t2
; (4.1)

for most of this chapter, we drop the suffix zero from c0 for convenience.
It is known (see Ockendon et al. [9]) that the quasilinear partial differential
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equation

A
∂2φ

∂x2 + 2B
∂2φ

∂x∂t
+ C

∂2φ

∂t2
= D,

where A, B, and C depend only on x and t, is hyperbolic if B2 > AC, and
its characteristics are given by

C

(
dx

dt

)2

− 2B
dx

dt
+ A = 0.

Hence we can see at once that (4.1) is hyperbolic and its characteristics are
the lines x ± ct = constant. Moreover, if Cauchy data

φ(x, 0) = f(x) and
∂φ

∂t
(x, 0) = g(x) (4.2)

are prescribed at t = 0 for all x, where, additionally, f and g are only non-
zero in a finite interval a < x < b, then it is only possible for the solution
to be non-zero in a − ct < x < b + ct. This is the region of influence of the
interval (a, b). Even without the general theory, these results follow directly
from D’Alembert’s solution

φ =
1
2
[f(x − ct) + f(x + ct)] +

1
2c

∫ x+ct

x−ct

g(s) ds. (4.3)

Yet another way to look at the solution of (4.1) is by “factorizing” the differ-
ential operators and writing the equation in the form(

∂

∂x
∓ 1

c

∂

∂t

)(
∂φ

∂x
± 1

c

∂φ

∂t

)
= 0,

so that it follows that ∂φ/∂x ± (1/c)(∂φ/∂t) is constant on the lines x ± ct =
constant. Hence φ = F (x − ct) + G(x + ct) for arbitrary functions F , G.

We note that by considering Cauchy data with “compact support,” (i.e.,
data that are only non-zero on a finite interval of the x axis), we have found
solutions that are not analytic everywhere; hence, we have run the risk of
ending up with a solution which is not differentiable enough for (4.1) to make
sense. We will return to this restriction in Chapter 6 but will not let this
interrupt the discussion for the moment.

It is sad but ineluctible that (4.1) is almost the only model from Chapter
3 whose general solution can be written down explicitly, as in (4.3). One other
such case is that of sound waves with spherical symmetry when (3.6) reduces
to

∂2φ

∂r2 +
2
r

∂φ

∂r
=

1
c2

∂2φ

∂t2
, (4.4)

where r is the spherical polar coordinate. At first sight, this looks worse than
(4.1) because the extra term does not have a constant coefficient, but writing
rφ = Φ leads to (4.1) for Φ, so that the general solution is

φ =
1
r
[F (r + ct) + G(r − ct)]. (4.5)
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We thus see that acoustic waves in one dimension and in three dimen-
sions are closely related. However, things are not so simple in two dimensions.
Writing (3.6) in cylindrical polar coordinates and assuming that the flow is
axisymmetric leads to

∂2φ

∂r2 +
1
r

∂φ

∂r
=

1
c2

∂2φ

∂t2
,

and here the term (1/r)(∂φ/∂r) really does make life harder. We will return
to this equation and to the fascinating question of how waves depend on the
dimensionality of the space within which they are propagating in Section 4.8.

“Wave equations” such as (3.6), (3.25), and (3.30) of Chapter 3 act as
a marvellous springboard for a mathematical treatment of wave motion and
might provide a basis for the statement that “hyperbolic equations are wave
equations”. However, surface gravity waves are described by an elliptic partial
differential equation so how is it that the boundary conditions can allow wave
solutions? Also, how can we reconcile hyperbolicity with the observation that
if we seek acoustic waves that vary harmonically in time in three dimensions
by writing φ = Rl(Φ(x, y, z)e−iωt), then we are left with the elliptic equation
∇2Φ + (ω2/c2)Φ = 0?

These questions suggest that we need a more general idea than that of
hyperbolicity if we are to encompass many of the waves that occur in nature.

4.2 Fourier Series, Eigenvalues, and Resonance

Fourier analysis is one of the most powerful methods for the analysis of lin-
ear equations, especially ones which have constant coefficients. Irrespective of
whether the partial differential equation is hyperbolic, elliptic, or parabolic,
such an equation will have solutions that can be obtained by the method
of separation of variables, which leads to solutions that are products of ex-
ponential functions (with either real or imaginary argument).1 By summing
solutions of this type, it is possible to generate quite general explicit solutions
which are often more convenient even than an exact representation such as
D’Alembert’s solution (4.3) of the one-dimensional wave equation.

If we consider acoustic waves or waves on a finite string satisfying (4.1)
and with boundary conditions φ = 0 at x = 0 and x = L, it is easy to separate
the variables and appeal to the theory of Fourier series in order to obtain

φ =
∞∑

n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
. (4.6)

For this finite domain, this form of solution is much easier to deal with than
the D’Alembert solution (4.3) which will involve an infinite series of reflecting
1 Separation of variables can sometimes be applied to variable-coefficient equations,
as will be seen later.
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waves. For a Cauchy problem, where the initial values are given by (4.2), the
coefficients an and bn can easily be found to be

an =
2
L

∫ L

0
f(x) sin

nπx

L
dx (4.7a)

and

bn =
2

nπc

∫ L

0
g(x) sin

nπx

L
dx. (4.7b)

This analysis requires that the functions f and g satisfy certain smoothness
conditions and the series (4.6) will only converge at points where φ is contin-
uous.

The solution (4.6) for one-dimensional waves in a closed container consists
of a sum of “eigenmodes” or “normal modes,” which can be thought of as the
infinite-dimensional generalization of the normal modes encountered when
considering small oscillations in classical mechanics. These oscillations are
perpetual motions (assuming that there is no damping) which can exist in
the absence of any long-term forcing; they just need to be initiated by some
given non-zero initial conditions. If the wave is forced by persistent non-zero
boundary conditions at x = 0 and x = L, we can still use this form of the
solution but we will need to add in a “particular solution” of (4.1) which
satisfies the forcing condition and then the calculation for an and bn will be
different. For example, suppose that we wish to solve (4.1) given

φ = 0 on x = 0 and φ = cosωt on x = L,

in addition to the usual initial conditions (4.2). Then, we can write the solution
as

φ =
sin(ωx/c)(cosωt)

sin(ωL/c)
+

∞∑
n=1

(
an cos

nπct

L
+ bn sin

nπct

L

)
sin

nπx

L
(4.8)

as long as ωL/cπ is not in integer, and then, applying the initial conditions,
we obtain

an =
2
L

∫ L

0

(
f(x) − sin(ωx/c)

sin(ωL/c)

)
sin

nπx

L
dx

and bn is as given in (4.7b).
We make the important remark that the Fourier series representation (4.6)

is not chosen simply because Fourier series are a convenient and familiar way
of representing mathematical functions on a finite interval; the form of the
“modes” defined by the terms in (4.6) are a direct result of separating the
variables in (4.1) and applying the zero (homogeneous) boundary conditions
at x = 0 and x = L. If non-trigonometric “eigenfunctions” had emerged as
a result of separation of variables, it would have been appropriate to employ
a “generalized” Fourier series expansion in which these eigenfunctions were
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used as a basis (see Exercise 4.2). This procedure is often needed for the
construction of normal modes in more general wave models.

Normal modes, whether in terms of trigonometric functions or not, are of
great practical importance because of the phenomenon of resonance. We met
this idea in Exercise 3.2 and a second example is the revelation in (4.8) that
the periodic forced solution will not exist if ω = nπc/L for some integer n.
In crude terms, resonance is the surprisingly large-amplitude response that
occurs when the boundary forcing is at one of the “natural frequencies” (or
“normal frequencies”) of the unforced system.

We now consider how the idea of Fourier analysis can be used to help us to
understand resonance in a more general situation. Intuitively, we expect a de-
composition into eigenmodes to be possible for any linear undamped unforced
wave model in a finite domain. To see this mathematically, we represent the
wave model by

Lφ =
1
c2
0

∂2φ

∂t2
in D (4.9)

with
Lφ = 0 on ∂D,

where L is some linear spatial differential operator. We then seek waves of
frequency ω by writing2

φ = Rl(Φe−iωt). (4.10)

This leads to the problem

LΦ +
ω2

c2
0

Φ = 0 in D (4.11)

with
Φ = 0 on ∂D,

which is an eigenvalue problem where the eigenvalues ω2/c2
0 determine the

natural frequencies of the system (4.9). There is an enormous literature on
such problems and the dependence of the eigenvalues on the operator L and
the geometry of D. We will not discuss this further here except to say that
under “nice” conditions and when there is no damping, the possible values of ω
will be discrete, real, and positive in any closed resonator or finite domain D.
Typically, the discrete numbers ω will “grow linearly” so that if, say, in a one-
dimensional problem, the eigenvalues ωn are arranged in increasing order of
magnitude, then ωn = O(n) as n → ∞. In particular, for the one-dimensional
acoustic oscillator in 0 < x < L, we see from (4.6) that ωn = nπc0/L, and
for the three-dimensional version for waves in a rectangular box with sides of
length a, b, and c (Exercise 3.2),

ωlmn = πc0

[
l2

a2 +
m2

b2 +
n2

c2

]1/2

, (4.12)

2 The negative sign is taken in the exponent for reasons that will become apparent
later.
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where l, m, and n are all integers.
Armed with this information about eigenvalues, we can quickly encapsu-

late the phenomenon of resonance in mathematical terms. Suppose that an
acoustic resonator is forced to oscillate by having part or all of its boundary
moving with frequency ω. If we seek a periodic solution to (3.6) in the form
(4.10), we find that

∇2Φ +
ω2

c2 Φ = 0, (4.13)

with Φ prescribed and non-zero on the boundary ∂D. By the Fredholm al-
ternative (see Ockendon et al. [9]), we can assert that this problem will have
no solution whenever ω/c is one of the eigenvalues of the solution of (4.13)
with zero boundary conditions. Thus, the phenomenon of resonance is simply
a manifestation of the Fredholm alternative.

From a different viewpoint, if the resonator is at rest and we start to drive
it periodically at one of the eigenfrequencies, we would find that the response
grows linearly with time, thereby destroying any possibility of an eventual
periodic response. In practice, this unlimited growth is usually mitigated by
the effects of some damping in the system, as illustrated in Exercise 4.3.
However, in certain cases, the amplitude of the response may become so large
as to invalidate the asumptions that were built into the linear approximation.
Then, as we will see in Chapter 5, we have to reconsider the perturbation
arguments we used in Chapter 3 so as to bring nonlinear terms into play.

We have only defined normal modes and resonances when the wave motion
is confined in a closed container. Quite a different situation applies when the
motion occurs in a region that extends to infinity in all directions. If we excite
such a system by a transient localized forcing, we expect all of the energy
to propagate to infinity, as in the solution (4.5) with f=0, and the motion
will eventually die away even if there is no damping. If, however, a periodic
forcing is maintained, then we will again be able to look for solutions of the
form φ = Rl(e−iωtΦ), with Φ satisfying (4.13). In this case, the conditions to
be imposed at infinity are less obvious and we will return to such problems in
Section 4.5.1.

An interesting configuration that is halfway between a bounded “interior”
problem and an infinite “exterior” problem is found in a waveguide. This is
a device in which waves are directed to propagate in a semi-infinite chan-
nel; the reflection from the walls of the channel allows the propagation to
be unattenuated, unlike the spherically symmetric wave given by (4.5). We
can understand this most easily by solving the problem for two-dimensional
acoustic waves in a channel with fixed walls at y = 0 and y = b. The velocity
potential φ will satisfy

∂2φ

∂x2 +
∂2φ

∂y2 =
1
c2

∂2φ

∂t2
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with ∂φ/∂y = 0 on y = 0 and y = b; thus, writing φ = Rl(Φe−iωt) now leads
to solutions of the form

Φ = cos
nπy

b
(Aeikx + Be−ikx), (4.14)

where k2 = ω2/c2 − n2π2/b2 and n is any integer.3

From this, we can immediately discern the crucial attribute of wave guides;
this is the fact that the wave can only propagate in the x direction if ω exceeds
the so-called “cut-off ” frequency cπ/b; if this is not the case, k will not be
real and (4.14) will not represent a propagating wave.

We conclude this section with one piece of jargon. So far, all our linear
wave models have been posed as evolution problems in which time appears as
an independent variable and we are thus in the “time domain.” However, the
representations in this section in terms of eigenmodes have inevitably led us
to equations like (4.11) or (4.13), in which the only independent variables are
spatial and it is assumed that all time variations are harmonic with frequency
ω. Such problems are said to be posed in the frequency domain and will be
considered in more detail in Section 4.5. However, before going down this
route, we turn our attention to the Fourier representation of problems in
infinite domains.

4.3 Fourier Integrals and the Method of
Stationary Phase

In order to represent solutions of models for waves propagating in infinite
domains, we start by indicating how the theory for Fourier series can be ex-
tended to apply to non-periodic functions. This leads us to Fourier transform
theory.

Noting that a general, sufficiently smooth, 2l periodic function f(x) has
the Fourier series

f(x) =
a0

2
+

∞∑
1

an cos
nπx

l
+ bn sin

nπx

l
, (4.15)

where

an + ibn =
1
l

∫ l

−l

f(x)
(
cos

nπx

l
+ i sin

nπx

l

)
dx,

we can see at once that an alternative formulation of (4.15) is

f(x) =
∞∑

−∞
cne−inπx/l, cn =

1
2l

∫ l

−l

f(x)einπx/l dx,

3 The reason for the minus sign in (4.10) is now apparent, because it means the
first term in (4.14) represents waves propagating in the positive x direction.
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where cn = 1
2 (an + ibn), an = a−n, and bn = −b−n. This gives us the vital

clue as to how to deal with non-periodic functions. All we need to do formally
is to put nπ/l = k and let l → ∞ to obtain the Fourier integral transform
formulas

f̄(k) =
∫ ∞

−∞
f(x)eikx dx (4.16)

and
f(x) =

1
2π

∫ ∞

−∞
f̄(k)e−ikx dk. (4.17)

Of course, this leaves open important questions of convergence which we will
not address in general terms; when these questions loom large, we will deal
with them on a case-by-case basis.

A trivial illustration of this method is the solution of the one-dimensional
wave equation (4.1) on −∞ < x < ∞. By multiplying (4.1) by eikx and
integrating from x = −∞ to x = ∞, we see at once that the Fourier transform
of φ is Ā(k)eikct+B̄(k)e−ikct, where Ā and B̄ are general functions, and hence

φ =
1
2π

∫ ∞

−∞
Ā(k)e−ik(x−ct) dk +

1
2π

∫ ∞

−∞
B̄(k)e−ik(x+ct) dk.

This is a solution containing waves corresponding to all values of k, which can
be seen to be the sum of two traveling waves

φ = A(x − ct) + B(x + ct),

as in (4.3). In wave propagation, the Fourier transform variable k is usually
called the wavenumber and solutions of (4.1) that are proportional to e±ikx

have wavelength 2π/k.
The solution of the general initial value problem for two-dimensional sur-

face gravity waves is less trivial. Suppose that we consider waves on water
of infinite depth which is initially at rest with a surface elevation z = η0(x).
Then, we can take the Fourier transform of (3.12)–(3.14) by writing

φ̄(k, z, t) =
∫ ∞

−∞
φ(x, z, t)eikx dx,

η̄(k, t) =
∫ ∞

−∞
η(x, t)eikx dx,

and assuming that |φ| and |∇φ| → 0 as |x| → ∞, we get

∂2φ̄

∂z2 − k2φ̄ = 0,

with
∂φ̄

∂z
=

∂η̄

∂t
,

∂φ̄

∂t
+ gη̄ = 0 on z = 0.
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In order for φ̄ to decay as z → −∞, we are forced to choose

φ̄ = Ā(k, t)e|k|z,

where |k|Ā = ∂η̄/∂t, ∂Ā/∂t = −gη̄, so that Ā satisfies

∂2Ā

∂t2
= −g|k|Ā.

Then, since Ā = 0, and ∂Ā
∂t = −gη̄0 at t = 0, we find that

Ā = −η̄0
√

g/|k| sin
√

g|k|t and η̄ = η̄0 cos
√

g|k|t,
so that

η(x, t) =
1
2π

∫ ∞

−∞
η̄0(k) cos

√
g|k|t e−ikx dk. (4.18)

It is unfortunate that the integrand in this integral is, as it stands, a non-
analytic function of k, but we recall from complex variable theory that we
can define |k| = limε→0

√
k2 + ε2 as long as we define the “branch” of the

function
√

k2 + ε2 correctly. This gives us a theoretical solution of the general
gravity wave problem in two dimensions, but of what use is it? Only for
a very few functions η̄0 will we be able to integrate (4.18) explicitly, and
from the numerical point of view, (4.18) is a superposition of harmonic waves
which is difficult to represent accurately with a computer, especially if η̄0(k) is
appreciable for large values of k. Nevertheless, there is an ingenious asymptotic
method for determining how (4.18) behaves when x and t are large and this
is the last piece of fundamental methodology to be described in this section.

It is well-known that integrals involving exponentials with large arguments
can be evaluated asymptotically by Laplace’s method and this theory is de-
scribed by Hinch [10]. To illustrate the idea by an example, suppose we want
to evaluate

I1 =
∫ ∞

−∞
A(k)exg(k) dk

asymptotically as x → +∞, where g(k) is a real function that takes its largest
value at k = k0. Then, we find that4

I1 ∼ A(k0)√
2πx|g′′(k0)|

exg(k0)
(
1 + O

(
1
x

))
.

However, the modification of this argument to consider an integral like (4.18)
is more difficult. Nonetheless, if we consider

I2 =
∫ ∞

−∞
A(k)eixg(k) dk,

4 Here, and subsequently, we use ∼ to denote expressions that are asymptotic to
each other as defined by Hinch [10], for example; this is more precise than the
cruder �, which we use to mean “is approximately equal to.”
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where g is still real-valued, we can still assert that the main contribution to
the integral as x → ∞ usually comes from values of k for which g′(k) = 0.
This results from the key observation that the real and imaginary parts of
the integrand oscillate with a wavelength of O(x−1) except near these critical
values of k, where the wavelength is O(x−1/2). The sketch in Figure 4.1 illus-

0(x –1/2)
0(x –1)

k0
k

Rl e ixg(k)

Fig. 4.1. Rl eixg(k) near a turning point of g(k).

trates how, say, the real part of the integrand behaves. We can see that away
from points where g′(k) = 0, the contribution to the integral from neighboring
values of k will cancel out much more efficiently than it will in the neighbor-
hood of such points. Thus, if g(k) has one turning point at k = k0, it can be
shown that

I2 ∼ A(k0)eixg(k0)
√

x

∫ ∞

−∞
eig′′(k0)s2/2 ds.

Using contour integral methods, we can show that if λ > 0,∫ ∞

−∞
eiλs2

ds = (1 + i)
√

π

2λ
,

and, so, ∫ ∞

−∞
A(k)eixg(k) dk ∼

√
πA(k0)eixg(k0)(1 + i)√

g′′(k0)x
(4.19)

as x → ∞, if g′′(k0) > 0. This method is called the method of stationary phase
and the formula can easily be adapted to deal with large negative values of x
or with cases where g′′(k0) < 0.

The estimate (4.19) immediately allows us to make predictions from (4.18).
In order to see what happens for large x and t, we imagine an observer moving
with constant speed V by writing x = V t, and then we let x, t → ∞, keeping
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V constant. From (4.18), we are led to consider integrals of the form∫ ∞

−∞
η̄0(k)ei(−kV ±

√
g|k|)t dk.

The exponents −kV ±√g|k| have turning points at k = ±g/4V 2 and we
can see straightaway that, after a long time, the dominant waves seen by the
observer have one or other of these wavenumbers. Using (4.19), we can see
that, as t → ∞,

η(V t, t) ∼ Rl
{

C1e
igt/4V + C2e

−igt/4V

√
t

}
, (4.20)

for some complex constants Ci; the terms in C1 and C2 correspond to waves
traveling in the positive and negative x directions, with k = g/4V 2 and k =
−g/4V 2, respectively. Thus, as V increases, the frequency and wavenumber
of the dominant observed waves decreases and their wavelength increases.
Alternatively, a stationary observer far from the initial disturbance will see
waves of gradually increasing frequency and wavenumber as time goes by.
These predictions can be verified for the special case in which η0 is localized5

near x = 0 (see Exercise 4.4).
More generally, we notice that in the far field, waves of wavenumber k

are only observed to dominate by an observer traveling at speed V if |V | =
1
2

√
g/k; this speed is called the group velocity of waves of wavenumber k. This

idea can be generalized to models where (4.18) is replaced by

η(x, t) =
1
2π

∫ ∞

−∞
η̄0(k) cosω(k)te−ikx dk.

Then, the dominant contribution to the integral occurs when

V =
dω

dk

and this is the mathematical definition of group velocity for such a wave
model.

This is all dramatically different than the type of solution one gets when
solving the acoustic wave equation (4.1) with localized initial data. In that
case, ω(k) = ±ck for any value of k, and the disturbance is eventually propa-
gated at constant speed c without change of shape, so that results like (4.20)
are not observed. The phenomenon we have just described for gravity waves is
a manifestation of the dispersive nature of the system; dispersion occurs when-
ever the speed of waves varies with the wavenumber and we will consider this
idea in more generality in the next section.
5 They can also be observed by throwing a stone into a large pond.
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4.4 *Dispersion and Group Velocity

We have already remarked that almost all of the models in Chapter 3 admit
separable solutions that are products of exponential functions in space and
time. Indeed, if we write the solution in each case as

φ = Rl[Aeik.x−iωt], (4.21)

where, as usual, ω is the frequency and k is a “wavenumber vector” in the
direction of the traveling wave, then we almost always find that ω satisfies a
dispersion relation of the form

ω = ω(k).

We have already seen explicit examples of such relations in Exercises 3.2 and
3.4–3.6, and in Section 4.3, we used the fact that for waves on deep water,
ω =

√
g|k|. In this case, we observed that the non-constancy of the group

velocity dω/dk led to the phenomenon of dispersion.
We anticipate the fact that the stationary phase argument used in Section

4.3 can be applied to multiple Fourier integrals of the form∫∫∫
A(k)ei(k·x−ωt) dk

and will predict that the dominant contribution seen by an observer at x = Vt
for large t comes from the values of k for which

∇k(k ·V − ω(k)) = 0, (4.22)

where ∇k = (∂/∂k1, ∂/∂k2, ∂/∂k3) and k = (k1, k2, k3). From (4.22), we see
that

V = ∇kω (4.23)

and this motivates us to define ∇kω as the group velocity of the waves with
wavenumber k. The phase velocity of these waves is

ωk
|k|2 , (4.24)

and (4.23) and (4.24) are only equal if ω = c|k|, where c is a constant. In all
other circumstances, the wave speed varies with k and the system is dispersive.

We now look at the models derived in Chapter 3 in the light of these ideas.

4.4.1 Dispersion Relations

Collecting together the dispersion relations for the systems considered in
Chapter 3, we see that a number of these systems are indeed dispersive. With
the exception of (ii) below, the following results emerge trivially from substi-
tuting solutions of the form (4.21) into the relevant field equations without
imposing any boundary conditions; in case (ii), the boundary conditions are
crucial.
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(i) Acoustic and Electromagnetic Waves. Equations (3.6) and (3.32)
lead to the dispersion relation

ω2 = c2|k|2,
so these waves are always non-dispersive.

(ii) Surface Gravity Waves. Two-dimensional waves satisfy (3.12) with
boundary conditions (3.13) and (3.14) on water of depth h provided φ
is proportional to Rl cosh k3(z + h)ei(k1x+k2y−ωt). This gives

ω2 = g|k| tanh |k|h, (4.25)

where |k|2 = k2
1 + k2

2, and these waves are dispersive. The group velocity
is given by

V =
g

2ω|k| (tanh |k|h + |k|h sech2|k|h)k.

Note that as h → 0, (4.25) reduces to

ω2 = gh|k|2,
so that waves on shallow water are non-dispersive and their phase speed
is

√
gh.

(iii) Inertial Waves on a Stratified Fluid. A solution of type (4.21) only
works for these waves if N is constant in (3.26). This can happen if ρ0 is
an exponential function of z, and in this case,

ω2 =
N2(k2

1 + k2
2)

|k|2 − ik3N2g−1 , (4.26)

which is clearly dispersive. Note that ω may now be complex when k is
real, and we will discuss the implications of this at the end of the section.

(iv) Rossby Waves. For waves in a rotating fluid governed by (3.30), the
dispersion relation is

ω2 =
4Ω2k2

3

|k|2 , (4.27)

and these waves are dispersive with group velocity

V =
2Ω
|k|3 (−k1k3,−k2k3, k

2
1 + k2

2).

(v) Elastic Waves. Elastic waves are governed by (3.33), and if we write

u = Rl(Aeik·x−iωt),

we find that the dispersion relation for longitudinal waves, where A is
parallel to k, is

ω2 =
(

λ + 2µ
ρ

)
|k|2, (4.28)
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whereas for transverse waves, for which A is perpendicular to k,

ω2 =
µ

ρ
|k|2. (4.29)

Both of these waves are non-dispersive, but there is the possibility of
“mode conversion” if energy is transferred from longitudinal waves to
transverse waves or vice versa. This is an important phenomenon in seis-
mic waves, as shown in Exercise 4.6.

Except for (ii), the above dispersion relations are all relevant for unconfined
waves. However, the addition of boundaries can have a dramatic effect. In
Section 4.2, we showed how the motion in a waveguide, where we solved the
acoustic wave equation subject to boundary conditions on y = 0 and y = b,
led to (4.14) and the dispersion relation

ω2 = c2
(

k2 +
n2π2

b2

)
, (4.30)

where n is a positive integer. Thus, waves in an acoustic waveguide are dis-
persive, and the group velocity is

V =
ck(

k2 + n2π2

b2

)1/2 .

Looking back at these examples, there are no obvious rules relating phase
velocity and group velocity as defined by (4.23) and (4.24). They may be
oriented in any direction relative to each other and either one may exceed
the other in magnitude. However, there is one vitally important property of
dispersive waves that can be discerned from the dispersion relation, namely
whether ω is real or complex when k is real. Since all the above relations
involve ω2 only, there will be two roots ±ω for any given k so that if the
imaginary part of ω is non-zero, there will be solutions that grow exponentially
in time. In fact, looking at the relations (4.25)–(4.30), we see that, fortunately,
ω is real in all cases except for waves on a stratified fluid, when (4.26) shows
that Imω is non-zero whenever k3 is non-zero. When Imω is non-zero, the
solution is unstable and this means that the linearized model from which the
dispersion relation was derived will no longer be valid over sufficiently long
timescales.

Another way of creating an instability arises if we change the sign of g in
(4.25) so that the heavy fluid is above the lighter air. Then, ω is inevitably
complex and this is the simplest example of the famous Rayleigh–Taylor in-
stability. This is a particularly catastrophic instability because ω is imaginary
for all k and is large for small wavelengths 2π/k. As shown in Exercise 3.6,
a very similar situation is revealed if we seek waves on the interface between
two inviscid fluids moving parallel to each other and to the surface, but with
different velocities. In this case, the instability is called the Kelvin–Helmholtz
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instability. Both of these instabilities can be stabilized by the introduction of
surface tension at the interface; surface tension is a powerful mechanism at
short wavelengths and allows the existence of capillary waves as described, for
example, in Drazin and Reid [11] (see also Exercise 4.5).

4.4.2 Other Approaches to Group Velocity

Up to now, we have used large-time asymptotics as the motivation for intro-
ducing group velocity, but several other approaches are possible.

From the physical viewpoint, group velocity can be interpreted as the
velocity with which the mean energy in a particular mode is transported; this
idea is described in Lighthill [12]. A more elementary theoretical motivation
comes from the following simple example, which gives an intuitive idea of the
difference between phase and group velocity. We consider two sinusoidal wave
trains of equal amplitude but slightly different wavenumber and frequency.
The sum of these waves is

a sin(k1x − ω1t) + a sin(k2x − ω2t) = 2a cos(∆kx − ∆ωt) sin(kx − ωt),

where k1 = k + ∆k, k2 = k − ∆k, ω1 = ω + ∆ω, and ω2 = ω − ∆ω. Thus,
if ∆k and ∆ω are small, the result is a slowly modulated wave of amplitude
2a cos(∆kx − ∆ωt), as shown in Figure 4.2. We can see that the so-called

x

Fig. 4.2. Superposition of two harmonic waves.

“envelope” of the wave crests and troughs travels with speed ∆ω/∆k, which
is approximately the group velocity of these waves.

Alternatively, we can take the asymptotic approach as in Section 4.3, but
now we will use it directly on the equations rather than on the Fourier trans-
form solution. This means that we need to use the WKB expansion method
to determine the long-time or far-field solution of the linear wave model. To
do this, we have to introduce a large artificial parameter ε−1 to represent the
length and timescales and we rescale the independent variables by x = ε−1X
and t = ε−1T . Then, we write

φ = Rl(Â(X, T )eiu(X,T )/ε).
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We note that we can do this only after the introduction of ε and taking the
limit ε → 0; otherwise, the functions u (the phase) and Â (the amplitude)
would not be uniquely defined6 for a given φ.

Now, we can see that since ε is small,

∂φ

∂T
∼ Rl

[(
i
Â

ε

∂u

∂T

)
eiu/ε

]
,

and
∂2φ

∂T 2 ∼ Rl

[
− Â

ε2

(
∂u

∂T

)2

eiu/ε

]
,

to lowest order in ε. Now, from (4.21)

∂φ

∂t
= Rl

[−iωAeik·x−iωt
]

and
∂2φ

∂t2
= Rl

[−ω2Aeik·x−iωt
]
,

and so we can identify ∂u/∂T with −ω and Â with A in (4.21). Similarly,
∇̄u can be identified with k in (4.21) to this approximation, where ∇̄ =
(∂/∂X1, ∂/∂X2, ∂/∂X3). Hence, if the dispersion relation is

ω = ω(k),

we can immediately infer that u will satisfy

∂u

∂T
+ ω(∇̄u) = 0, (4.31)

which is a first-order equation for the phase of the far-field solution. It is also
possible to find an equation for the amplitude Â (see Section 4.7). Even for
non-dispersive systems, (4.31) will be a nonlinear partial differential equation;
it only reduces to a linear equation in the case of one space dimension when
ω = ck.

Reverting to our identification of ω with −∂u/∂T and k with ∇̄u, but now
regarding ω and k as dependent variables with arguments X and T , we see
from (4.31) that

−∇̄ω = ∇̄ ∂u

∂T
=

∂

∂T
(∇̄u) =

∂k
∂T

,

or7

∂k
∂T

+
3∑

i=1

∂ω

∂ki
∇̄ki = 0. (4.32)

6 Note that with a conventional power series asymptotic expansion φ ∼∑∞
0 εnφn,

we can define the terms recursively via φ0 = limε→0 φ, φ1 = limε→0[(φ − φ0)/ε],
and so forth. Equally, for an expansion φ ∼ eu/ε

∑∞
n=0 Anεn, where u is real, we

can define u = limε→0 ε log φ. However, in this case with u real, no such definition
is possible because u now measures the oscillations in φ rather than its magnitude.
The best that can be done is to say that |∇u|2 = limε→0(−ε2∇2φ/φ).

7 Note that (4.32) can be thought of as “conservation of wavenumber” if ω is
interpreted as “wavenumber flux.”
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We can most easily analyze this equation in one dimension when (4.32)
reduces to

∂k

∂T
+

dω

dk

∂k

∂X
= 0,

which, since ω is only a function of k, has the general solution

k = F

(
X − dω

dk
T

)

for an arbitrary function F . Thus, k and ω are constant along the lines

X − dω

dk
T = constant,

and so, for large times, we again see that the waves with wavenumber k will
dominate if we travel with the group velocity of the waves. We can also say
that ∂u/∂T and ∇̄u will be constant on these lines and so u/ε = kx − ωt. All
of this can be generalized to three dimensions and confirms, in a more general
setting, the results in Section 4.3 for surface waves.

We will now put these general considerations on one side and consider some
concrete situations in the frequency domain when boundaries are present. It
turns out to be convenient to distinguish between problems that are stationary
(ω = 0) and those that are not, and we will start by considering the latter.

4.5 The Frequency Domain

4.5.1 Homogeneous Media

Thankfully, all of the phenomena to be discussed in this section can be il-
lustrated with reference to the simplest acoustic model for monochromatic
waves of prescribed frequency ω. Then, writing φ = Rl(Φ(x)e−iωt) as usual,
the equation for Φ is (4.13), which we write as

(∇2 + k2)Φ = 0, (4.33)

where k = ω/c. This is Helmholtz’ equation, which is an elliptic partial differ-
ential equation that appears to be a simple generalization of Laplace’s equa-
tion. However, the mathematics associated with (4.33) turns out to be very
different from the usual theories for Laplace’s equation.

The first fundamental classification that must be made of waves in the
frequency domain is the distinction between interior and exterior problems.

In the former case, we expect to have a boundary condition prescribed for
Φ or ∂Φ/∂n, or some combination thereof, everywhere on a closed boundary
and we are confronted with the problem of the solvability of (4.33) in D with,
say, the boundary condition

αΦ + β
∂Φ

∂n
= f on ∂D.
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If f , the forcing term, is identically zero, we have a classical eigenvalue problem
for those values k = ki for which a non-trivial solution Φi exists. A great deal
is known about such problems and much of it is described in Courant and
Hilbert [13]. If, however, the forcing term f is non-zero, then we can use the
eigenfunctions of the unforced problem to establish an integrability condition.
This is another application of the Fredholm alternative mentioned in Section
4.2. Suppose, for example, that

∇2Φi + k2
i Φi = 0 in D and Φi = 0 on ∂D

and
∇2Φ + k2Φ = 0 in D with Φ = f on ∂D.

From Green’s second theorem, which states that∫
D

(Φ∇2Φi − Φi∇2Φ)dV =
∫

∂D

(
Φ

∂Φi

∂n
− Φi

∂Φ

∂n

)
dS,

we see that if k = ki, the solution Φ can only exist if∫
∂D

f
∂Φi

∂n
dS = 0.

If this condition is satisfied, then the solution for Φ will not be unique since it
can only be determined to within a term λΦi, where λ is any constant. This is
simply a more general way of stating the problem of resonance since ωi = cki

are the natural frequencies of the system.
Things are quite different when we examine the exterior problem in which

boundary conditions are still imposed on ∂D but will not be sufficient by
themselves to determine the physically relevant solution. Suppose, for exam-
ple, we consider the problem of an oscillating sphere of radius a so that Φ is
defined in r > a. The boundary condition

φ = Rl(e−iωt) on r = a

implies that Φ = 1 on r = a. Then, solving (4.33) with spherical symmetry
leads to the solution

Φ =
A

r
eik(r−a) +

B

r
e−ik(r−a), (4.34)

where A + B = a. Even if we impose boundedness on Φ as r → ∞, we are
still short of a second equation relating A and B. What we have to remember
is that by posing the problem in the frequency domain, we are considering
a sphere that has been oscillating for a very long time so that the system
has settled down to a solution periodic in time. However, we have implicitly
assumed that while this motion was being set up, no other sources of waves
have been sending disturbances toward the sphere from anywhere in r > a.
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Thus, the waves described by (4.34) can only radiate outward from r = a and
this means that the second term in (4.34), which represents an inward trav-
eling wave in the time domain, is not physically relevant.8 Thus, the solution
is given by taking A = a and B = 0 and the argument which has led to this
conclusion is referred to as “imposing a radiation condition at infinity.”

This example suggests the hypothesis, which can be proved, that exterior
frequency domain problems are well-posed (i.e., the solution exists, is unique,
and depends continuously on the given data) as long as we impose the Som-
merfeld radiation condition

r

(
∂Φ

∂r
− ikΦ

)
→ 0 (4.35)

as r → ∞. The premultiplier r is used in (4.35) because we know from (4.34)
that rΦ is O(1) as r → ∞. The corresponding far-field behavior in one and
two dimensions dictates the radiation conditions

∂Φ

∂x
− ikΦ → 0 as x → ∞

and

r1/2
(

∂Φ

∂r
− ikΦ

)
→ 0 as r → ∞,

respectively (where r is now a two-dimensional polar coordinate) and we will
return to this dependence on dimensionality in Section 4.8 (see also Exercise
4.8).

This analysis of problems in which waves are radiating to infinity from a
finite oscillator or “radiator” can, in principle, be extended to what are per-
haps the most important frequency domain problems where incoming waves
are scattered by a finite obstacle. Such problems arise naturally in applications
ranging from oil exploration to radar and from harbor design to tomography.

4.5.2 Scattering Problems in Homogeneous Media

We suppose that a finite obstacle with boundary ∂D is “irradiated” or “in-
sonified”9 by a plane wave traveling in the positive x direction and given
by Φ = Aeikx. We take the boundary condition on ∂D to be Φ = 0, which
corresponds to a “hard” reflector, but we could equally well model a “soft”
reflector by ∂Φ/∂n = 0. To solve this problem, all we need to do is consider
Φ̂ = Φ − Aeikx and solve Helmholtz’ equation (4.33) for Φ̂ with Φ̂ = −Aeikx

on ∂D and the appropriate Sommerfeld condition at infinity. This is another
problem with a vast literature and we will mention briefly three aspects, each
illustrated by a “canonical” problem.
8 Note that had φ been written as Rl(Φeiωt), the first term would have been unac-
ceptable.

9 The term used depends on whether we are referring to light waves or sound waves.
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(i) Reflection. Suppose that the body in the above problem is smooth and
two dimensional. Locally, near any point on the body, the solution to
(4.33) will consist of a combination of Fourier modes or plane waves so
that

Φ =
∑
l,m

Almeilx+imy,

where l2 + m2 = k2 and we use l and m here rather than k1 and k2 to
avoid “suffix clutter.” Suppose we choose the tangent to the body at the
point (0, 0) along the y axis, with the x axis along the inward normal.
Then, it is clear that for every incoming wave of the form Almei(lx+my),
there must be a reflected wave of the form

−Almei(−lx+my)

if the boundary condition on x = 0 is to be satisfied.10 Hence, every plane
wave whose constant phase lines, or wave fronts, are lx + my = constant
induces a reflected plane wave whose constant phase lines are lx − my =
constant. For Helmholtz’ equation, the normals to the wave fronts are
called the rays; hence, we have specular reflection in which the angle of
incidence of the incoming ray equals the angle of reflection of the outgoing
ray, as shown in Figure 4.3.

θ

θ
x

y

Reflected ray
along (–l, m)

Incident ray
along (l, m)

Fig. 4.3. Wave reflection at a plane boundary.

(ii) Refraction. The phenomenon of refraction occurs when waves in a
medium in which the sound speed is c0 irradiate a body that is ca-
pable of transmitting waves through its interior, where the ambient

10 The amplitude of the reflected wave would be different if the boundary condition
was of the form αΦ+ β(∂Φ/∂n) = 0.
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speed of sound is c1. Again, thinking of the wave Almei(lx+my) imping-
ing on the surface x = 0, we will now have a reflected wave given by
Bei(−lx+my) in x < 0 and a transmitted wave Cei(l1x+m1y) in x > 0.
Here, l21 + m2

1 = ω2/c2
1 = (c2

0/c2
1)k

2, and no matter what other continuity
conditions we impose on x = 0, we must have a “continuity of wavenum-
ber” so that m1 = m. If θr is the angle of refraction and θi is the angle of
incidence, we see from Figure 4.4 that

tan θi =
m

l
=

m√
k2 − m2

, sin θi =
m

k
,

and
tan θr =

m

l1
=

m√
(c2

0/c2
1)k2 − m2

, sin θr =
c1m

c0k
,

and so
sin θr =

c1

c0
sin θi, (4.36)

which is Snell’s law of refraction. This condition leads to the possibility
of total internal reflection if (c1/c0) sin θi > 1, in which case the solu-
tion decays exponentially on x > 0 (see Exercise 4.9). The amplitudes of
the reflected and refracted waves will depend on the exact form of the
boundary conditions that are applied.

x

y

Reflected ray
along (–l, m)

Reflected ray
along (l1, m)

Incident ray
along (l, m)

Fig. 4.4. Refraction at an interface.

The phenomena of reflection and refraction apply locally to all scatterers
that are smooth enough to have a tangent plane to which the irradiation
is not tantential. Hence, they give good intuition as to the way in which
many scatterers respond to incoming waves. Alas, non-smooth scatterers
often radiate most intensely, which is explained by the next phenomenon.
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(iii) Diffraction. Diffraction is a much more complicated phenomenon that
cannot be described simply in terms of a few plane waves, as was possible
for reflection and refraction. It occurs when a plane wave is incident on
an obstacle in a situation where infinitely many new plane waves are
generated. This can happen, for instance, when the obstacle is not smooth
or when the incident wave is tangential to the body.

It is possible, by using ingenious asymptotics, to solve both of these
problems and to write down the intensity of the diffracted field at infinity,
and we have indicated schematically the directions of the scattered field on
the plots in Figures 4.13 and 4.14. In each case, a radiation condition has
to be applied to the solution after the incident field has been subtracted
out. A better idea of the scattering that can be expected will emerge from
the discussion in Section 4.7 on high-frequency waves.

4.5.3 Inhomogeneous Media

One especially interesting phenomenon is the propagation of waves through
materials whose properties vary smoothly. A one-dimensional analysis of the
propagation of waves through a periodic medium reveals some of the effects
that can occur. We consider a conceptual generalization of (3.4) in the form

∂2φ

∂x2 = P (x)
∂2φ

∂t2
,

where P = 1/c2
0(x) is a positive function with period 2π in x. This equation

could, for example, represent waves on a string of variable density or waves
passing normally through a variable elastic medium such as seismic waves in
stratified rock. In the frequency domain, the problem becomes

d2Φ

dx2 + ω2P (x)Φ = 0, (4.37)

which, when P is periodic, is Hill’s equation. If P = a+b cosx, (4.37) becomes
the Matthieu equation, which has been much studied (Arscott [14]). It can be
shown (see Exercise 4.11) that solutions of the Matthieu equation are rarely
periodic and that, depending on the value of ω, solutions will either (i) grow or
decay as x → ∞ or (ii) be quasi-periodic.11 The types of solution possible for
different values of the parameters is illustrated in Figure 4.5, where waves can
propagate only for values of ω in the shaded “pass bands,” where the solution
is quasi-periodic. The key feature is that, in the so-called “stop bands,” which
are the complements of the pass bands in Figure 4.5, the medium causes waves
to decay exponentially if they try to propagate in the x direction.

It can sometimes be instructive to model a one-dimensional smoothly vary-
ing inhomogeneous medium as a composition of parallel layers and use the
11 A quasi-periodic solution consists of a sum of periodic terms with non-
commensurate periods.
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b

1/4 1 49/4
ω 2

Fig. 4.5. Solutions of the Mathieu equation for small b.

ideas of Section 4.5.2 at the interface between each layer. We will just look
at one layer, the analysis of which is important in the transmission and re-
flection of waves through thin coatings. Here, we only consider acoustic waves
propagating in the x direction through a medium of density ρ1 and consider
the effect of introducing a layer of density ρ2 in 0 < x < h. Concerning the
transition from medium 1 to medium 2 at x = 0, if the potentials in the fre-
quency domain are Φ1 in x < 0 and Φ2 in x > 0, the conditions to be satisfied
at x = 0 are

ρ1Φ1 = ρ2Φ2 and
dΦ1

dx
=

dΦ2

dx
,

which represent the continuity of pressure and velocity at the interface. If the
incident wave is given by

Φ1 = eik1x,

we could proceed directly by solving Helmholtz’ equation in the three regions
x < 0, 0 < x < h, and h < x, with appropriate boundary conditions, as in Ex-
ercise 3.10. However, here we use an alternative approach in which the waves
are almost thought of as “particles.” To do this, we note that the incident
wave will engender a reflected wave R12e

−ik1x in x < 0 and a transmitted
wave T12e

ik2x in h > x > 0, where

R12 =
Z2 − Z1

Z2 + Z1
, T12 =

ρ1

ρ2

(
2Z2

Z1 + Z2

)

and where Zi = ρi/ki is called the wave impedance. Similarly, the reflection
and transmission coefficients for a wave going from medium 2 to medium 1
are

R21 =
Z1 − Z2

Z1 + Z2
= −R12 = −R,

say, and

T21 =
ρ2

ρ1

(
2Z1

Z1 + Z2

)
=

ρ2

ρ1
(1 − R).

Now, if the incident wave Φ1 = eik1x impinges on the layer, it will suffer
repeated reflections and transmissions as follows:
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(i) The reflected wave Re−ik1x from the boundary x = 0.
(ii) The transmitted wave T12e

ik2x from x = 0, which will reflect at x = h
as T12e

ik2hR21e
−ik2(x−h) and eventually emerge into x < 0 as the “one-

bounce” reflected wave T12e
2ik2hR21T21e

−ik1x.
(iii) The “two-bounce” reflected wave T12e

4ik2hR3
21T21e

−ik1x

and so on.

Thus, the total reflected wave in x < 0 will be{
R − T12T21Re2ik2h

( ∞∑
n=0

R2ne2ink2h

)}
e−ik1x,

which can be simplified to

R(1 − e2ik2h)
(1 − R2e2ik2h)

e−ik1x.

Thus, we can see that the layer does not reflect at all if k2h = nπ, where n
is an integer; when k2h = π, this is called a “half-wavelength” non-reflecting
layer.

4.6 Stationary Waves

There are two frequency domain situations that are much easier to analyze
than the general cases considered in the previous section. These occur when
the wavelength 2π/k = 2πc/ω is either very large or very small compared to
a typical length scale of interest, and in either case, we can use asymptotic
methods to analyze a number of problems. The first case occurs, for example,
in acoustics, where wavelengths may be a few meters, and the second case
arises frequently in electromagnetism, especially in optics, where the wave-
lengths are about 10−9 m. The case ω = 0 corresponds to stationary waves
and we start by considering a small k since this means that Helmholtz’ equa-
tion (4.33) is a regular perturbation12 of Laplace’s equation. However, this
limit does not usually reveal any very interesting phenomena13 unless there
is a large source of energy that can be tapped, as is the case when the wave-
bearing medium is moving bodily, and all the following problems fall into this
category.

Hence, we will now revisit some examples that were introduced in Chapter
3 and consider surface gravity waves on a uniform stream and acoustic waves
in a pipe of slowly varying cross-section and in a medium flowing past a thin
obstacle. The consideration of problems in which k is large will be left to
Section 4.7.
12 For a definition of a regular perturbation, see Hinch [10].
13 See Exercise 4.12 on the Helmholtz resonator for one interesting case.
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4.6.1 Stationary Surface Waves on a Running Stream

We have seen in Exercise 3.4 that the dispersion relation for two-dimensional
gravity waves on the surface of a stream of depth h moving with constant
speed U is

(ω ± Uk)2 = gk tanh kh,

and it was also shown that stationary waves with ω = 0 can occur only if
U2 < gh, in which case the flow is said to be subcritical. Waves of this type
can often be observed upstream of an obstruction in a river and such waves
will only be independent of time in a fairly sluggish flow.

The parameter U/
√

gh is important in many free surface flows and it is
called the Froude number,14 F . Flows with F > 1 are called supercritical.

The solution is even more interesting in three dimensions when station-
ary waves with wavenumber k1 in the U direction and wavenumber k2 in a
perpendicular direction satisfy the relation

U2k2
1 = g|k| tanh |k|h, (4.38)

where |k| = (k2
1 + k2

2)
1/2 (Exercise 3.5). Now, even in the simplest case of

infinitely deep water, we can find infinitely many real values for k given U
and g. When h → 0, the equation reduces to

(U2 − gh)k2
1 = ghk2

2,

and, as long as k2 	= 0, there will now be real solutions for k only in super-
critical flow, when U2 > gh. We will encounter this dispersion relation again
in Section 4.6.3 when we study stationary waves in supersonic flow.

The beautiful pattern of waves behind a ship can be analyzed using the
dispersion relation (4.38). If a ship is traveling with speed U on deep water,
then the general solution for the wave elevation is

η =
∫ ∞

−∞
F (k1)e−i(k1x+k2y) dk1, (4.39)

where x and y are measured from the ship, along and perpendicular to the
direction of travel and, from (4.38) with h = ∞, k2 is related to k1 by

U2k2
1 = g(k2

1 + k2
2)

1/2; (4.40)

hence, the integral in (4.39) is taken over values of k1 satisfying |k1| > g/U2.
The function F is a function that will depend on the flow in the vicinity of
the ship, but its precise form is unimportant when we look at waves far from
the ship. This is because we can again use the method of stationary phase
(Section 4.3) to estimate the form of η for large values of x and y. On writing
y = λx and letting x → ∞ while keeping λ constant, we can apply (4.19) to
14 This is pronounced “Frowd.”
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see that the dominant contribution to the integral in (4.39) will come from
values of k1 for which

d

dk1
(k1 + λk2) = 0. (4.41)

From (4.40),

k2 = ±k1

(
U4k2

1

g2 − 1
)1/2

,

and so (4.41) leads to

λ = ∓
(

U4k2
1

g2 − 1
)1/2(2U4k2

1

g2 − 1
)−1

. (4.42)

This gives real values for k1 only if |λ| < 1/2
√

2 and so we can see imme-
diately that the waves are all contained in a wedge behind the ship of angle
tan−1

(
1/2

√
2
)

= sin−1( 1
3 ). The angle of this wedge is thus independent of

the speed or any other properties of the ship. The pattern of the wave crests,
sketched in Figure 4.6, can also be calculated. All we need to do is to plot the
level curves of the phase k1x + k2y remembering that k1 and k2 are related
via (4.40) and that k1 is a function of λ = y/x from (4.42). The details are

x

y

Fig. 4.6. Wavecrest pattern for ship waves.

left to Exercise 4.14. The edge of the wedge shown in Figure 4.6 is a kind
of “envelope” of these wave crests or wave fronts, and we will see another
example of this phenomenon in Section 4.7.

4.6.2 Steady Flow in Slender Nozzles

We next consider the homentropic, irrotational, steady flow of a gas along a
pipe or nozzle which is aligned with the x axis and is such that the cross-
sectional area of the pipe A(x) varies slowly with x. We could proceed by
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studying the steady form of (2.6)–(2.8) and linearizing about a unidirectional
flow (Exercise 4.15), but it is easier, if less systematic, to revert to a “control
volume”15 approach for mass conservation. Assuming that the flow is unidi-
rectional to a first approximation, we use conservation of mass on the volume
shown in Figure 4.7 to say that

ρuA = constant. (4.43)

Also, by Bernoulli’s equation (2.25),

1
2
u2 +

γp

(γ − 1)ρ
= constant, (4.44)

where we have used the result

p

p0
=
(

ρ

ρ0

)γ

(4.45)

since the flow is homentropic. Moreover, since the flow is irrotational, u is
approximately a function of x alone and, hence, so are ρ and p. If we now

x

x = x1 x = x2

A(x1) A(x2)

Fig. 4.7. Control volume for flow in a nozzle.

linearize this system by writing A = A0 + Ā, ρ = ρ0 + ρ̄, u = u0 + ū, and
p = p0 + p̄ where A0, ρ0, u0, and p0 are all constants and Ā, ρ̄, ū, and p̄ are
small perturbations, we get

ρ̄

ρ0
+

Ā

A0
+

ū

u0
= 0

and

u0ū +
γ

γ − 1
p̄

ρ0
− c2

0ρ̄

(γ − 1)ρ0
= 0.

15 This is a very useful engineering technique in which the fluid is divided into
regions, possibly large ones, and estimates are made for the global changes in
mass, momentum and energy in these regions in terms of their boundary values.
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Also, from (4.45), p̄ = c2
0ρ̄, where c2

0 = γp0/ρ0, and so, solving for ρ̄ and ū
gives

ρ̄

ρ0
=

M2Ā

A0(1 − M2)

and
ū

u0
=

Ā

(M2 − 1)A0
,

where M = u0/c0 is the Mach number of the basic flow. These formulas show
that our intuition that u increases (decreases) when A decreases (increases),
which is true when M < 1, must be reversed when M > 1. Even worse, they
show that the linear theory will be invalid when M is close to unity. Thus, this
linearized theory needs careful reconsideration and we will return to discuss
the nonlinear system (4.43)–(4.45) for ρ, p, and u in more detail in Section
6.2.3 of Chapter 6.

4.6.3 Compressible Flow past Thin Wings

It was shown in Chapter 3 that the steady linearized equation for a small
disturbance to a uniform flow U i is (3.7), so that

M2 ∂2φ

∂x2 = ∇2φ, (4.46)

where M = U/c0 is the Mach number of the undisturbed flow and εφ is the
correction to the velocity potential of the undisturbed flow. The pressure is
connected to φ via the relation

p = p0 − ερ0U
∂φ

∂x
, (4.47)

where the small parameter ε characterizes the size of the disturbance to the
uniform flow. These equations can now be applied to the flow past a thin
two-dimensional wing which is nearly aligned with the flow. We suppose the
upper and lower surfaces of the wing are given by

y = εf±(x) for 0 < x < l,

so that the boundary condition on the wing is

εf ′
±(x) =

ε∂φ/∂y

U + ε∂φ/∂x
on y = εf±(x),

and the linear approximation reduces this to

∂φ

∂y
= Uf ′

±(x) on y = 0 ± for 0 < x < l. (4.48)
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In order for the linearized model to be valid, we need to assume f ′
±(x) is of

O(1).
As can be seen immediately from equation (4.46), the solution to this

problem depends crucially on whether M is greater or less than 1.

(i) Subsonic Flow, M < 1. When M is less than 1, (4.46) is elliptic and,
writing β2 = 1 − M2, we have to solve

β2 ∂2φ

∂x2 +
∂2φ

∂y2 = 0 (4.49)

subject to the boundary conditions (4.48) and the condition that |∇φ| → 0
at infinity. By rescaling y = Y/β, (4.49) becomes Laplace’s equation, and
if we also write φ = (1/β)Φ(x, Y ), then (4.48) remains

∂Φ

∂Y
= Uf ′

±(x) on Y = 0 ± .

Thus, we see that Φ is the potential for an incompressible flow past the
same thin wing.

It is easy to see that since log(x2 + β2y2) is a solution of (4.49), a
possible form for the solution of this problem is

φ =
∫ l

0
g(ξ) log((x − ξ)2 + β2y2) dξ (4.50)

for some function g, which is equivalent to a “source distribution” along
the x axis. Morever, when we let y → 0+ for 0 < x < l, we find (Exercise
4.16) that

∂φ

∂y
→ 2βπg(x),

and so the choice
g(x) =

U

2πβ
f ′
+(x) (4.51)

will make (4.50) satisfy the boundary condition on the top of the wing.
It is only if the wing is symmetric, however, that the solution of the

form (4.50) with g given by (4.51) will also satisfy the boundary condition
as y → 0− and thus provide the solution we seek. For an unsymmetrical
wing, we need to introduce a distribution of vortices as well as sources
along the x axis (Exercise 4.16).

This idea of using distributions of sources and vortices to represent a
thin two-dimensional wing is exactly the same as that used in incompress-
ible theory and, indeed, we can apply all of the theory of incompressible
flow past thin bodies to this problem. In particular, D’Alembert’s paradox
implies that there will be no forces on the wing if there is no circulation.
Hence, for a symmetric wing, there will be neither drag nor lift on the



70 4 Theories for Linear Waves

wing in subsonic flow. However, for an asymmetric wing with the Kutta–
Joukowski condition applied at the trailing edge, there will be a lift and
we can relate the force in the compressible case to that in the incompress-
ible case. In the linearized approximation, the lift Lc in the compressible
case will be

Lc =
∫ l

0
(−p+ + p−) dx,

where p± are the pressures just above and below the wing. Using (4.47),
we have

Lc = ερ0U

∫ l

0

(
∂φ+

∂x
− ∂φ−

∂x

)
dx =

1
β

Li, (4.52)

where Li is the lift in the incompressible case. For incompressible flow
past a flat plate of length l at a small angle −ε to the flow, it can be
shown (Acheson [5]) that the circulation is πUlε, and, hence, by the
Kutta–Joukowski theorem, the lift on the wing in compressible flow will
be ρ0πU2lε/β, and there will be no drag.16 This result is yet another
manifestation of the breakdown of linear theory when M → 1 and β → 0.

(ii) Supersonic Flow, M > 1. When M is greater than 1, (4.46) is hyper-
bolic and we can write down the general solution of this wave equation
as

φ = F (x − By) + G(x + By),

where B2 = M2−1. However, because the equation is hyperbolic, we need
to impose different boundary conditions compared to the subsonic case.
On physical grounds, we assert that there will be no upstream influence
due to the wing and, therefore, we impose Cauchy data ∂φ/∂x = φ = 0
on x = 0. From this, it follows that

φ = φ+ = F (x − By) in y > 0

and
φ = φ− = G(x + By) in y < 0.

Now, applying the boundary conditions (4.48) gives

−BF ′(x) = Uf ′
+(x), BG′(x) = Uf ′

−(x)

for 0 < x < l, and the solution is

φ+ = −U

B
f+(x − By) for 0 < x − By < l, y > 0 (4.53)

and
φ− =

U

B
f−(x + By) for 0 < x + By < l, y < 0. (4.54)
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Fig. 4.8. Supersonic flow past a thin wing.

These formulas suggest that there will be zones of silence both in front of
and behind the wing, as shown in Figure 4.8, and we will return to this
point shortly.

First, we use formula (4.52) to find the lift explicitly as

L =
ρ0Uε

B

∫ l

0
(−f ′

+(x) − f ′
−(x)) dx

= −ρ0U
2ε

B
(f+(l) + f−(l)),

assuming that f+(0) = f−(0) = 0. Thus, for a flat plate at incidence where
f+(x) = f−(x) = −x, the lift will be non-zero and its value is 2ρ0U

2εl/B,
even without the assumption of a “trailing edge” condition. This is in
marked contrast to the subsonic case, as is the fact that the drag on a flat
plate now comes out to be 2ρ0U

2ε2l/B (Exercise 4.19). The fact that the
forces on the wing increase dramatically as B → 0 or as β → 0 in (4.52)
caused one of the major difficulties in the early days of supersonic flight.

It is well known that in incompressible flow, thin lifting wings leave
wakes of concentrated vorticity behind them either in two-dimensional

16 More generally, the lift on an arbitrary thin wing is ρ0UΓ/β, where Γ is the
circulation around the wing in the incompressible case.
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unsteady flow or in three-dimensional flow. To check that a supersonic
wing does not shed such a wake even in steady flow, we return to the
solution of (4.46) with B2 = M2−1. As remarked after (4.3), the equation
can be written as (

B
∂

∂x
− ∂

∂y

)(
B

∂

∂x
+

∂

∂y

)
φ = 0,

hence, we can say that B(∂φ/∂x) + (∂φ/∂y) is constant on x + By =
constant and B(∂φ/∂x) − (∂φ/∂y) is constant on x − By = constant.17

Now, referring to Figure 4.8, we can see that in regions (1) and (2),
B(∂φ/∂x) + (∂φ/∂y) = 0, so that φ = F (x − By) in (1) (as we already
asserted) and also in (2). Similarly, φ = G(x+By) in regions (4) and (3).
Now, on the line y = 0, x > l, we have to make sure that v = ε(∂φ/∂y)
and p = −p0 − ερ0U(∂φ/∂x) are continuous and we quickly see that this
predicts that F ′(x) = 0 and G′(x) = 0 for x > l. Hence, in the regions
(2) and (3) behind the body, φ is constant and there is no disturbance in
these regions.

We also remark that, for a symmetric wing, the supersonic solution
(4.53)–(4.54) is not an obvious extension of the subsonic solution (4.50).
Even though log(x2 − B2y2) satisfies (4.46), if we were to replace β2 in
(4.50) with −B2, we would not be able to satisfy the boundary condition
on y = 0. However, we can write (4.53)–(4.54) as

φ±(x, y) = ∓U

B

∫ l

0
f ′

±(ξ)H(x − ξ ∓ By) dξ, (4.55)

where H is the Heaviside function defined by

H(x) =
{

0, x < 0
1, x > 0.

Note that the upper limit of the integral in (4.55) is x∓By if 0 < x∓By <
l, and there is no velocity perturbation downstream of the characteristics
through the trailing edge.

This question of downstream influence is much more interesting, even
for non-lifting bodies, in three dimensions and we will consider the lin-
earized flow past a slender axisymmetric body such as a rocket in Section
4.6.4. Before doing so, however, we must make two caveats about our lin-
earized two-dimensional model. The first is that our predictions of infinite
forces on aerofoils as M → 1 in both subsonic and supersonic flow means
that the linear model is invalid when M2 − 1 is small. This fact is not
surprising because, in this limit, the term (M2 − 1)(∂2φ/∂x2) in (4.46)
becomes so small as to be comparable with the nonlinear terms that we
have neglected. Quite a complicated asymptotic procedure is needed to

17 B(∂φ/∂x)± (∂φ/∂y) are called Riemann invariants (see Ockendon et al. [9]).
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derive a consistent limit in this case, and because the upshot is a nonlinear
model, we will defer its derivation to Section 6.3.1 of Chapter 6.
A similar caution applies when M is large, even though the slope of the
body is of O(ε), where ε is small. When Mε is of O(1), the region of
influence of the body, which is bounded by x = ±By in two dimensions,
becomes very thin. However, this inevitably introduces nonlinearity into
the problem again and so we leave further discussion to Section 6.3.4 of
Chapter 6.

4.6.4 Compressible Flow past Slender Bodies

In this section, we consider the flow of a uniform stream past a slender ax-
isymmetric body of length l given by r = εR(x) in cylindrical polars (r, θ, x).
We will begin by considering a free stream which is aligned with the axis of
the body and leave the case of a body at a small angle of incidence to the free
stream to Exercise 4.18.

The equation to be solved is still (4.46), which can be written in cylindrical
polar coordinates (r, θ, x) as

(M2 − 1)
∂2φ

∂x2 =
∂2φ

∂r2 +
1
r

∂φ

∂r
+

1
r2

∂2φ

∂θ2 . (4.56)

Since the velocity of the flow is (0, 0, U)+ ε∇φ and the normal to the body is
(1, 0,−εR′(x)), the linearized form of the boundary condition on the body is

∂φ

∂r
= UR′(x) (4.57)

on r = εR(x). In two dimensions, we obtained good results by applying this
condition on the x axis to give (4.48) and this certainly made the mathematics
simpler. Now, we will not be so lucky.

The need for modification becomes apparent when we regard the solution
(4.50) as a distribution along y = 0, 0 < x < l, of simple source solutions of
(4.49) of the form log(x2+β2y2). As shown in Exercise 4.16(i), this distribution
leads to the integral in (4.50) having a power series expansion in y for both
y > 0 and y < 0, and this is what allows the boundary condition (4.48) to be
applied on y = 0. When we try to distribute axisymmetric source solutions
of (4.56), of the form (x2 + β2r2)−1/2, along the line r = 0, 0 < x < l, we
find that ∂φ/∂r inevitably approaches infinity as r → 0. This is because the
integral of ∂φ/∂r around any small circle enclosing the body has to stay finite
as the radius of the circle tends to zero. Thus, we will have to be careful when
we apply the boundary condition (4.57).

(i) Subsonic Flow, M < 1. Having already observed that if β2 = 1 − M2,
there is an elementary axisymmetric solution to (4.56) in the form (x2 +
β2r2)−1/2, we try a source distribution of the form

φ =
∫ l

0

h(ξ) dξ

((x − ξ)2 + β2r2)1/2 . (4.58)
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Now, it is easy to show (Exercise 4.16(i)) that as r → 0,

∂φ

∂r
∼ −2h(x)

r
,

and so, applying the boundary condition (4.57) on r = εR, we find that

h(x) = −ε

2
UR(x)R′(x). (4.59)

Thus, we have obtained the solution to axisymmetric slender body theory
in which the disturbance to the flow variables turns out to be of O(ε2)
compared to the undisturbed quantities in spite of the fact that the body
width is of O(ε) compared to its length.

(ii) Supersonic Flow, M > 1. We recall that in going from subsonic flow
to supersonic flow the two dimensions, we could not simply replace β2 in
(4.50) by −B2. However, the fact that the boundary conditions in slender
body flow have to be applied on r = εR rather than on r = 0 means that
we may now be able to generalize the idea leading to (4.59) in order to
solve the supersonic problem. Since the function

ψ =
{

0, |x| < Br
(x2 − B2r2)−1/2, |x| > Br

(4.60)

formally satisfies (4.56), except when |x| = Br, we try

φ =
∫ x−Br

0

m(ξ) dξ

[(x − ξ)2 − B2r2]1/2 (4.61)

for x > Br. The choice of the upper limit is not only suggested by the
form of solution (4.60) but is also confirmed by Exercise 4.25 and by the
physical expectation that the supersonic solution at P (r, θ, x) will only
depend on the body shape upstream of the point A, where the length OA
is x − Br, as shown in Figure 4.9.

Now, letting r → 0 in (4.61), we find that φ ∼ m(x) cosh−1(x/Br),
which means, following Exercise 4.16(i), that φ ∼ m(x) log r to lowest
order; thus, using (4.57),

m(x) = εUR(x)R′(x). (4.62)

Hence, the solution is

φ =
∫ x−Br

0

εUR(ξ)R′(ξ) dξ

((x − ξ)2 − B2r2)1/2

when 0 < x − Br < l, and the limits of the integral will be 0 and l
if x − Br > l. Thus, we see that although the body has no influence
upstream of the characteristic cone x = Br through the nose of the body,
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Fig. 4.9. Supersonic flow past a slender axisymmetric body.

it does affect the flow everywhere inside this cone, even in x − Br > l.
This is in contrast to the result for two-dimensional supersonic flow past
a thin wing where the flow is influenced by the wing only between the
characteristics or Mach lines through the leading and trailing edges of the
wing. This is an example of Huygens’ principle, which will be discussed
in more detail in Section 4.8.

4.7 High-frequency Waves

4.7.1 The Eikonal Equation

There is one other parameter regime in the frequency domain that is math-
ematically tractable and that is the high-frequency limit as ω or k → ∞ in
Helmholtz’ equation. As explained at the beginning of Section 4.6, this approx-
imation is relevant when the wavelength is small compared with the typical
dimensions L of the region of interest.18 We therefore non-dimensionalize x
with L so that Helmholtz’ equation (4.33) becomes

∇2Φ + k2Φ = 0, (4.63)

where k = ωL/c is now a non-dimensional parameter which is large for light
waves in many everyday situations. We can look at both interior and exterior
18 Of course, if we are interested in waves sufficiently close to a sharp corner of some
boundary, the method we are about to describe will never be useful, because L
can then be arbitrarily small.
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problems, but in any case, we expect that when k  1, there will be rapid
spatial oscillations in some or all of the region. Motivated by this idea, we
again employ the WKB ansatz, which was used in Section 4.4.2, and write

Φ ∼ A(x, y)eiku(x,y), (4.64)

where we restrict ourselves to two dimensions for simplicity. As usual, u is
the phase of Φ and A is the amplitude and we remember that these variables
are only uniquely defined in the limit as k → ∞. In order to save ourselves a
great deal of trouble, we will confine ourselves to situations in which u is real.
Substituting (4.64) into (4.63), we find that

∇Φ ∼ (ikA∇u + ∇A)eiku

and
∇2Φ ∼ (−k2A(∇u)2 + 2ik∇A · ∇u + ikA∇2u + ∇2A)eiku,

so that as k → ∞, the lowest-order terms in (4.63) reveal the eikonal equation

|∇u|2 = 1. (4.65)

The second-order terms will give the so-called “transport equation”

A∇2u + 2∇A · ∇u = 0, (4.66)

which determines A. Hence, we have taken the possibly retrograde step of
transforming a linear second-order equation (4.63) to a fully nonlinear first-
order equation (4.65), whose consideration should perhaps be deferred to
Chapter 5. Assuming the reader has some familiarity with nonlinear first-
order differential equations, however, we will continue here because (4.65) can
give us very helpful insights into high-frequency wave propagation.

We can use Charpit’s method (see Ockendon et al. [9]) to see that the
solution of (4.66) is given by solving the characteristic equations

dx

dτ
= 2p,

dy

dτ
= 2q,

du

dτ
= 2,

dp

dτ
= 0,

dq

dτ
= 0, (4.67)

where p = ∂u/∂x and q = ∂u/∂y, and τ parameterizes the characteristics.
Initial data are required for these equations and will be given by the boundary
conditions imposed on Φ, which may be at infinity for an exterior problem. We
note at once that since p and q are constant from (4.67), the characteristics
will be straight lines.

The simplest solution of (4.65) is u = lx+my, where l2 +m2 = 1, and this
solution represents a plane wave. Note that the relation l2 + m2 = 1 is the
dispersion relation that we found for Helmholtz’ equation in Sections 4.4 and
4.5, although we are now using a different notation. More generally, it can be
shown that if the high-frequency approximation to the dispersion relation for
a problem is given by

ωL

c
= Ω(kL),



4.7 High-frequency Waves 77

where k is the wavenumber as defined in Section 4.4, then the equation for u
in the WKB approximation for the same problem will be

Ω(∇(u)) = 1.

4.7.2 *Ray Theory

Using the terminology of Section 4.5, the nicest interpretation of the char-
acteristics, given by (4.67), of the eikonal equation (4.65) is as rays. For the
plane wave u = lx + my, the rays are straight lines in the direction (l, m),
which is perpendicular to the wavefront, here defined to be the curve on which
u is constant. It can easily be seen from (4.67) that this geometric relation
between the rays and the wavefronts always holds.

In the case of electromagnetism, these rays are the familiar light rays that
are drawn in optics in elementary physics courses. Indeed, the well-known
pictures for light reflected by a mirror (Figure 4.10a) or refracted by a lens
(Figure 4.10b) are easily seen to be simple superpositions of solutions of the
eikonal equation. These simple pictures result from the fact that the plane

(a) (b)

Fig. 4.10. (a) Light rays reflected from a plane mirror. (b) Light rays refracted by
a lens.

wave solution of the eikonal equation is an exact solution of Helmholtz equa-
tion and so it is straightforward to see that once we have imposed suitable
boundary conditions on u, the rays of the eikonal equation reflect in a mirror
exactly as predicted in Section 4.5.2. Similarly, for refraction in a lens, if the
speed of sound in the refractive medium is c1, then, with k = ωL/c1, the
eikonal equation is

|∇u|2 = 1

in the air and

|∇u| =
(

c0

c1

)2
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in the lens. When we impose continuity of u at the interface, this leads to
straight-line rays in each region joined together by using Snell’s law of refrac-
tion (4.36).

A much more interesting solution of (4.65) arises if we consider waves
inside a circle of radius

√
2, say, whose perimeter is being oscillated so that

u = s on x = cos s + sin s, y = sin s − cos s for 0 < s < 2π, (4.68)

and we assume k is an integer for φ to be 2π-periodic in s. It can be seen that
on this circle, either p = cos s and q = sin s, or p = − sin s and q = cos s. Thus,
solving (4.67) and applying these boundary conditions when τ = 0 leads to
two possible solutions:

(i) u = 2τ + s, (ii) u = 2τ + s,
x = 2τ cos s + cos s + sin s, x = −2τ sin s + cos s + sin s,
y = 2τ sin s + sin s − cos s, y = 2τ cos s + sin s − cos s,
p = cos s, p = − sin s,
q = sin s; q = cos s.

These solutions are the two families of straight lines, shown in Figure 4.11,
which intersect the circle in directions making angles ±π/4 with the outward
normal at each point. Thus, when τ = −1

2 , these rays will all touch their
envelope, the circle x2 + y2 = 1, and this curve is called a caustic. We can
verify that the transformation from (x, y) to (s, τ) is singular on the caustic
since J = ∂(x, y)/∂(s, τ) = 0 when τ = − 1

2 .
The fact that caustics like this can be expected to occur in most problems

can be seen without using any mathematics. If we consider planar light waves

y

x

Caustic

Fig. 4.11. Caustics and characteristics for the Eikonal equational with data (4.68).
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with k  1 impinging on a curved surface, then the reflected rays will always
be a family of straight lines which will, in general, have an envelope. If we
consider, for example, the sun shining on the inside of a circular coffee cup,
the caustic which can be seen on the surface of the coffee will be a nephroid,
as illustrated in Figure 4.12.

Fig. 4.12. The nephroid caustic on a cup of coffee.

In both of the above solutions, families of rays apparently stop on the
caustic. Thus, the eikonal equation predicts that there will be a light region
separated from a dark region by the caustic, and an analysis of the equation
for A in (4.66) reveals that |A| → ∞ as the caustic is approached, so that the
maximum illumination is seen on the caustic itself. However, there cannot be
any singularity in the solution Φ of Helmholtz’ equation, which is an elliptic
partial differential equation.

Before we resolve this difficulty, we mention another disturbing conse-
quence of the fact that the eikonal equation can have real characteristics.
This implies that almost any kind of singularity in the boundary data for Φ
will, if k is large, cause a singularity in u to propagate away from the boundary
even though Φ can have no singularities away from the boundary. However,
this observation gives us the key to the success of the WKB approximation
in so many situations in optics or acoustics. If we return to the diffraction
problem mentioned in Section 4.5.2 for rays impinging on a flat plate, then
the eikonal equation simply predicts a shadow with clear-cut edges behind
the plate, as shown in Figure 4.13a. This is not a bad approximation to what
happens in practice when k  1. However, even with large k, Helmholtz’
equation will predict diffraction at the edges A and B of the plate, and by
careful analysis, it can be shown that diffracted fields propagate radially from
A and B as shown schematically in Figure 4.13b. The strength of these fields
in the shadow is of O(k−1/2) relative to the incident wave field. On the other
hand, the diffracted field generated by a smooth body is more subtle. Again,
the high-frequency approximation predicts incident and reflected waves and a
clear-cut shadow region as in Figure 4.14a, but now it can be shown that the
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amplitude of the field in the shadow region is much smaller being of O(e−k1/3
)

compared to the incident field. The shadow indicated in Figure 4.14b needs
to be described by rays which are known as creeping rays rather than the
diffracted rays of Figure 4.13b (see Born and Wolf [15]).

Shadow region

(a)

A C

B D

(b)

A C

B D

Fig. 4.13. (a) Shadow region for a flat plate using ray theory. (b) The effect of
diffraction at the edges of a flat plate.

Shadow
region

(a) (b)

Fig. 4.14. (a) Rays reflected from a smooth body using ray theory. (b) The effect
of diffraction for a smooth body.

Both of the shadow regions can be described by real ray theory if we are
prepared to undertake all of the complicated “singular perturbation” analysis
which is needed to unravel the structure of the solution near the diffraction
points A and B. More importantly, with even more work, thin layers, anal-
ogous to boundary layers, can be constructed along AC and BD to smooth
out the discontinuities between the incoming waves and the refracted field.
This not only resolves the apparent contradiction between the hyperbolicity
or the eikonal equation and the ellipticity of Helmholtz’ equation, but it also
gives us the clue as to what happens in the even deeper shadow within the
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central circle in Figure 4.12, where the wave field appears to end in a caustic.
In this case, a boundary layer analysis close to the caustic reveals that the
field inside the caustic is of O(e−k) as k → ∞ and that the rays in this re-
gion are complex and x, y, p, q, and u all take complex values. Unfortunately,
complex ray theory requires an even more elaborate asymptotic development
than does real ray theory (see Chapman et al. [16]).

We remark that if we solve the eikonal equation with the boundary condi-
tion (4.68) replaced by u = εs on the same circle, where kε is now an integer,
we find that the caustic lies closer and closer to the boundary x2 + y2 = 2
as ε → 0. Now, although the introduction of a boundary layer structure can
smooth out the discontinuity on the caustic, most of the wave field will still
be “trapped” close to the boundary, and this is an example of the famous
whispering gallery waves that can easily be generated inside the dome of St.
Paul’s Cathedral, for example. Another readily observed caustic, but one with
quite a different structure, is the boundary sin θ = ±1/2

√
2 of the ship wave

pattern described in Section 4.6.1.

4.8 *Dimensionality and the Wave Equation

At several points in this chapter, we have remarked on the way in which
the qualitative nature of linear wave propagation as described by the wave
equation (3.6) depends on the number of space dimensions. The most striking
piece of evidence for this has been the observation in Sections 4.6.3 and 4.6.4
that a thin wing moving supersonically in two dimensions leaves behind it no
wake at all, whereas a slender axisymmetric projectile can always be detected
after its passage.

A more familiar scenario concerns the propagation of a disturbance that is
localized near a point in space and time. We know that for the one-dimensional
case of, say, waves on a string, an initial disturbance localized near x = 0
will eventually emerge as two pulses, each propagating without change or
diminution near x = ±ct, and there will be no disturbance anywhere else.
Similarly, using the solution (4.5) in three dimensions, an initial disturbance
near r = 0 will evolve into one that is localized in the space (x, y, z, t) near
the spherical “shell” x2 + y2 + z2 = c2t2, albeit with a decay factor of r−1.
This is in accord with the evidence from our eardrums, but when we look at a
disturbance initially localized on the surface of a drum or created by dropping
a pebble into a pond, the situation is quite different.

To appreciate this difference, we first remark that the localization of the
waves in the string example mentioned earlier is identical to the localization
of the waves emitted by the supersonic wing as given by (4.53) and (4.54) in
the limit l → 0. We simply have to identify x with time and y with distance
along the string to make the problems mathematically equivalent. Hence, we
are in a position to understand the evolution of two-dimensional axisymmetric
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waves satisfying
∂2φ

∂r2 +
1
r

∂φ

∂r
=

1
c2

∂2φ

∂t2
(4.69)

by drawing a similar analogy with the steady axisymmetric supersonic flow
problem described in Section 4.6.4 when M > 1. When we again let the length
of the body tend to zero, which is equivalent to the release of a short pulse of
sound at t = 0 in (4.69), we find that the solution (4.60) gives us

φ =

⎧⎨
⎩

0, r > ct
λ

(c2t2 − r2)1/2 , r < ct,
(4.70)

for some constant λ. Hence, although there is a sharp front at r = ct as in
the one- and three-dimensional cases, in two dimensions the disturbance is
felt everywhere inside the cone r = ct and is not localized near the cone
r = ct. Those who doubt this argument may ask themselves why a lightning
strike, which may be approximated as an instantaneous energy release along
a vertical line, produces rumbles of thunder after the sharp crack at r = ct.

The mathematics can be beautifully unified by the theory of the retarded
potential. It can be shown (Ockendon et al. [9]) that the solution of the three-
dimensional wave equation with an initial distribution ∂φ/∂t = f(x, y, z),
φ = 0 is given by the formula

φ(x, y, z, t)

=
t

4π

∫ 2π

0

∫ π

0
f(x + ct sin θ cosφ, y + ct sin θ sinφ, z + ct cos θ) sin θdθdφ.

(4.71)

It can be verified (after much work) that this function satisfies the wave equa-
tion and, in fact, a linear combination of φ and ∂φ/∂t can be used to satisfy
any given initial conditions. Now, the physical significance of (4.71) is that if
f is zero outside a region D, then the integral will be non-zero only for times
tmin < t < tmax where, as shown in Figure 4.15, tmin is the first time the
disturbance is felt at (x, y, z), and tmax is the last time.

We see at once that if the initial disturbance is very elongated in the z
direction say, then tmax will tend to infinity while tmin remains fixed. Hence
we have Huygens’ principle that there are sharp leading and trailing wave
fronts in one or three dimensions, whereas in two dimensions, there is only a
sharp “leading” wave front.

We must emphasize that the above discussion only applies to the wave
equation with constant coefficients. For waves in inhomogeneous media (in-
cluding three-dimensional waves in a half-space) or for waves governed by
models other than (3.6), there is no reason for Huygens’ principle to hold.
What is true generally is that the waves decay with distance more rapidly as
the number of space dimensions increases. However, it is no easy matter to
estimate this rate of decay for a general wave model.
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D

ctmin
ctmax

(x, y, z)

Fig. 4.15. The effect of an internal disturbance in D.

The above discussion can give us insight into the possible evolution of the
steady wave patterns considered in Sections 4.6.4 and 4.6.5. The expression
(4.71) is the general solution of

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂z2 =
1
c2

∂2φ

∂t2
,

which is sometimes called the wave equation in the acoustic frame. However,
in Section 4.6.4, we set ξ = x − Ut and considered solutions of the wave
equation in the aerodynamic frame, namely(

1 − U2

c2

)
∂2φ

∂ξ2 +
∂2φ

∂y2 +
∂2φ

∂z2 =
1
c2

∂2φ

∂t2
− 2U

c2

∂2φ

∂ξ∂t
,

and we restricted ourselves to the “steady” case where φ = φ(ξ, y, z).
To see how such a steady flow might be set up, let us consider, in the

acoustic frame, what happens when a two-dimensional disturbance is localized
near x = Ut and y = 0 for t ≥ 0 and with U > c. The solution at time t
consists of the superposition of the solutions generated at times τ , where
0 < τ < t, and the above discussion reveals that the contribution from time
τ is contained within the cone (x − Uτ)2 + y2 = c2(t − τ)2 in (x, y, t) space.
From (4.70), the amplitude of this contribution is non-zero inside this cone
and is infinite at the cone surface, which is sometimes called the wavefront
(yet another use of the term). Hence, the solution at time t in the acoustic
frame is contained within the superposition of the cones as shown in Figure
4.16a. The projection of the “tops” of the cones in the aerodynamic (x, y)
plane is simply the sequence of circles shown in figure 4.16b beginning from
the “starting” circle x2 + y2 = c2t2. We thus see the following:

(i) The characteristics in the aerodynamic frame, namely ξ = ±y
√

U2/c2 − 1,
emerge as the envelope of the wave fronts in the acoustic frame.
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(Ut, 0, t)

t

x

x

y

τ = 0 τ = t1
τ = t2

(0, 0, 0)

(Ut1, 0, t1)

(Ut1, 0) (Ut2, 0) (Ut, 0)

(Ut2, 0, t2)

(0, 0)

(a)

(b)

Fig. 4.16. (a) The influence of a supersonic point source of sound at x = Ut, y = 0
in (x, y, t) space. (b) The influence of a supersonic point source in (x, y) space.

(ii) There is a complicated non-zero disturbance between these characteristics
for all finite time. However, as t → ∞, this disturbance decays through
destructive interference, leaving the “no-wake” flow described in Section
4.6.4.

Exercises

4.1 (i) It can be shown that, for steady small two-dimensional disturbances
on a uniform flow in a weakly stratified gas with Mach number M ,
the velocity potential φ of the disturbance satisfies

M2 ∂2φ

∂x2 =
∂2φ

∂x2 +
∂2φ

∂y2 .
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If M = (1 + y)1/2, in which case the equation is called a Tricomi
equation, show that the characteristics are

±2y3/2 = 3x + constant.

Sketch these characteristics and indicate the “region of influence” of
a small obstacle which is put in the flow at a point where y > 0.

(ii) Suppose that, in the same stratified flow, a wave of the form φ =
Rl(eikxA(y)) is incident on y > 0 from above. Show that

d2A

dy2 + k2yA = 0.

This is Airy’s equation and it shows that φ will be oscillatory in y > 0, but that,
in y < 0, it will decay exponentially. Thus, waves from above will not penetrate
far into y < 0 and the disturbance due to the obstacle in part (i) will decay
exponentially in y < 0.

R4.2 In axisymmetric acoustic wave propagation inside a rigid circular cylinder
of radius a, the velocity potential φ(r, t) satisfies

1
c2

∂2φ

∂t2
=

∂2φ

∂r2 +
1
r

∂φ

∂r
for 0 ≤ r < a,

with
∂φ

∂r
= 0 on r = a.

Show that φ can be written as a generalized Fourier series in the form

φ =
∞∑

n=0

(an cosωnt + bn sinωnt)J0

(ωnr

c

)
,

where J0(z) satisfies

d2J0

dz2 +
1
z

dJ0

dz
+ J0 = 0, (†)

with J0(0) = 1, ωn defined by J ′
0(ωna/c) = 0, and an and bn arbitrary

constants. It can be shown19 that∫ a

0
rJ0

(ωnr

c

)
J0

(ωmr

c

)
dr =

{
0, m 	= n
1
2
a2
[
J0

(ωna

c

)]2
, m = n.

Show that if the gas in the tube is initially at rest with a pressure distri-
bution P0(r), then

φ(r, 0) = 0 and
∂φ

∂t
(r, 0) = − 1

ρ0
P0(r).

19 To prove this orthogonality result, put z = ωnr/c in (†) and then multiply by
2r2J ′

0(ωnr/c) and integrate from r = 0 to a, integrating by parts once.
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Hence, show that an = 0 and that

bn =
−2

ρ0a2ωn

∫ a

0 rP0(r)J0(ωnr/c)dr

[J0(ωna/c)]2
.

R4.3 Consider one-dimensional acoustic waves in an organ pipe which is closed
at x = 0 and open to the atmosphere at x = L. Assuming constant
pressure at x = L, show that the velocity potential φ satisfies

∂φ

∂x
(0, t) = 0 and φ(L, t) = 0.

If φ(x, 0) = f(x) and ∂φ(x, 0)/∂t = g(x), show that

φ =
∞∑

n=0

(
an cos

(2n + 1)πct

2L
+ bn sin

(2n + 1)πct

2L

)
cos

(2n + 1)πx

2L
,

where

an =
2
L

∫ L

0
f(x) cos

(2n + 1)πx

2L
dx

and

bn =
4

(2n + 1)πc

∫ L

0
g(x) cos

(2n + 1)πx

2L
dx.

This could be a model for a motor bicycle exhaust; so, suppose, more
realistically, that the open end radiates sound to the environment. One
model for this is to say that at x = L,

∂φ

∂t
+ α

∂φ

∂x
= 0.

Show that if we assume that high pressure in the pipe pumps gas into the
environment and low pressure sucks gas into the pipe, then α > 0.

By separating the variables in (4.1), show that

φ = (A cosωnt + B sinωnt) cos
ωnx

c
,

where

tan2 ωnL

c
+

c2

α2 = 0.

Deduce that ωn is complex and show that for α � c,

ωn =
(2n + 1)πc

2L
± i

α

L
.

Show that the solution of the initial value problem is now

φ �
∞∑

n=0

e−αt/L

(
an cos

(2n + 1)πct

2L
+ bn sin

(2n + 1)πct

2L

)
cos

(2n + 1)πx

2L
,

where an and bn are as given above.
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*4.4 Show that the Fourier transform of ε/(x2 + ε2) is πe−ε|k|. If the impact
of a long stick on a pond is modeled by taking the initial surface profile
to be η0(x) = −aε/π(x2 + ε2), show that

η(x, t) = −a

π

∫ ∞

0
e−εk cos

√
gkt cos kx dk.

Use the method of stationary phase to show that as x, t → ∞, the major
contribution to the integral comes from values of k satisfying

x ± 1
2

√
g

k
t = 0,

and hence that for x > 0,

η ∼ −at

2

√
g

πx3 cos
(

gt2

4x
− π

4

)

when ε is sufficiently small.
Which of the pictures in Figure 4.17 is the more realistic representation

of this long-time behavior?

(a) (b)

Fig. 4.17. Possible waves generated by a localised source.

R4.5 The effect of a constant surface tension T on two-dimensional interfacial
gravity waves is to introduce a pressure drop of T/R across the interface
y = η(x, t), where R is the local radius of curvature of the interface. Show
that, with a sign convention that you should specify, R−1 is approximately
∂2η/∂x2 for small-amplitude waves.

Show that if a liquid of density ρ1, pressure p1 lies above a liquid of
density ρ2 and pressure p2, with the interface being given by z = η(x, t),
then

p1 − p2 = T
∂2η

∂x2 on z = 0,

to lowest order. Deduce that if η = a cos(kx − ωt), the dispersion relation
is

ω2 = g|k| (ρ2 − ρ1)
(ρ2 + ρ1)

+
T |k|3

(ρ2 + ρ1)
.

This implies that surface tension can stabilize such an interface even if
ρ1 > ρ2. Is surface tension more effective as a stabilizing mechanism for
large |k| or for small |k|?
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*4.6 The displacement u in an elastic medium satisfies (3.33). If u is written
as u = Rlu0e

i(k·x−ωt), where u0 = Ak + B ∧ k, with A,k, and B all
constant, show that

either B = 0 and (λ + 2µ)|k|2 = ρω2,
or A = 0 and µ|k|2 = ρω2.

If kp = ω
√

ρ/(λ + 2µ) and ks = ω
√

ρ/µ, and cp and cs are the corre-
sponding wave speeds, it can be shown that cp > cs.

The boundary conditions for a two-dimensional displacement
u = (u(x, y, t), v(x, y, t), 0) in y < 0, with an unstressed boundary at
y = 0, are

∂u

∂y
+

∂v

∂x
= 0 = 2µ

∂v

∂y
+ λ

(
∂u

∂x
+

∂v

∂y

)

(see Exercise 3.12). Show that a solution for a propagating wave in the
form

u = Rl(ape
κpy + ase

κsy)ei(kx−ωt),

where κ2
p = k2 − k2

p and κ2
s = k2 − k2

s , is possible as long as

(
2 − c2

c2
s

)2

= 4
(
1 − c2

c2
p

)1/2(
1 − c2

c2
s

)1/2

,

where c = ω/k < cs. This wave is called a Rayleigh wave.
*4.7 From Exercise 3.1, the perturbation potential φ for small two-dimensional

disturbances in a uniform flow U i satisfies(
1 − U2

c2

)
∂2φ

∂x2 +
∂2φ

∂y2 =
2U
c2

∂2φ

∂x∂t
+

1
c2

∂2φ

∂t2
,

where c is the speed of sound in the undisturbed gas. The gas is in y > 0
and flows past an elastic membrane under tension T which originally lies
on y = 0 and is subject to small displacements y = η(x, t). The boundary
conditions on the membrane are that on y = 0,

∂φ

∂y
=

∂η

∂t
+ U

∂η

∂x

and
p

ρ0
=

T

ρ0

(
∂2η

∂x2 − 1
c2
m

∂2η

∂t2

)
= −
(

∂φ

∂t
+ U

∂φ

∂x

)
,

where c2
m is the speed of sound in the membrane and ρ0 is the ambient

density in the gas.
By writing

φ = Rl(Aei(kx−ωt)−λy), η = Rl(aei(kx−ωt))
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with Rlλ ≥ 0, deduce that

k2 − λ2 =
(

Uk

c
− ω

c

)2

and
λT

ρ0

(
k2 − ω2

c2
m

)
= (Uk − ω)2.

Deduce that, as ρ0 → 0 with k real, ω is complex and the motion is
unstable if U > c + cm.
This is an example of “flutter,” a phenomenon from which aerodynamic surfaces
can suffer.

*4.8 (i) Helmholtz’ equation in cylindrical polar coordinates (r, θ) is

∂2Φ

∂r2 +
1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂θ2 + k2Φ = 0.

To study the far field, write r = R/ε, where ε � 1, and use the ansatz
Φ ∼ Aeiku/ε to show that (

∂u

∂R

)2

= 1

and
2
∂A

∂R
+

A

R
= 0.

Deduce that when waves propagate outward radially for large r,

Φ ∼ A0(θ)
r1/2 eikr,

and hence that r1/2(∂Φ/∂r − ikΦ) → 0 as r → ∞.
(ii) Helmholtz’ equation in spherical polar coordinates (r, θ, ψ) is

∂2Φ

∂r2 +
2
r

∂Φ

∂r
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1
r2 sin θ

∂2Φ

∂ψ2 + k2Φ = 0.

Repeat the scaling in (i) to show that for large r,

Φ ∼ A0(θ, ψ)
r

eikr

and hence that r(∂Φ/∂r − ikΦ) → 0 as r → ∞.
R4.9 In the frequency domain, φ1 and φ2 satisfy

(∇2 + k2
1)φ1 = 0 in y > 0

and
(∇2 + k2

2)φ2 = 0 in y < 0,

and a class of refraction problems leads to the conditions that k2φ and
∂φ/∂y are continuous at y = 0.
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Show that if y = 0 is irradiated from above by a plane wave

φi = Aeik1(y cos θ1−x sin θ1),

so that the incident rays are in the (− sin θ1, cos θ1) direction, then

φ1 = φi + Re−ik1(y cos θ1+x sin θ1)

and
φ2 = Teik2(y cos θ2−x sin θ2),

where k1 sin θ1 = k2 sin θ2.
As long as λ = k1 sin θ1/k2 < 1, this “conservation of tangential wavenumber”
is Snell’s law of refraction. Since ki = ω/ci, it implies that sin θ1/sin θ2 = c1/c2.
The same law holds for optics (see Billingham and King [17] for an analysis
of Maxwell’s equations) and since the speed of light in water is less than the
speed of light in air, Snell’s law shows that light is bent towards the normal on
entering water, making ponds seem shallower than they really are.

If k1 > k2, it is possible for λ to be greater than unity, and in this case
there is “total internal reflection.” Show that if λ > 1,

φ2 = Bek2
√

λ2−1y−iλk2x

and that, in this case, |R| = |A|.
4.10 Elastic waves in a plate can be modeled by the equation

D

(
∂2

∂x2 +
∂2

∂y2

)2

u + ρ
∂2u

∂t2
= 0,

where u(x, y) is the normal displacement of the plate and D is a positive
constant proportional to the Young’s modulus of the material from which
the plate is made. Show that the dispersion relation is

ρω2 = D(k2
1 + k2

2)
2.

In one dimension, the model reduces to the beam equation

D
∂4u

∂x4 + ρ
∂2u

∂t2
= 0

and suitable boundary conditions for a beam which is clamped at both
ends are u = ∂u/∂x = 0 at the ends. Show that the resonant frequencies
for a clamped beam are not rationally related to each other.
Note that this result is in contrast to solutions for the transverse vibrations of
a string for which

−T
∂2u

∂x2 + ρ
∂2u

∂t2
= 0

with u = 0 at x = 0 and l, and the resonant frequencies are (nπ/l)
√
(T/ρ).
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*4.11 (i) The frequency domain model for one-dimensional waves in a periodic
medium in which the inhomogeneity is weak is the Matthieu equation

d2Φ

dx2 + (k2 + ε cos 2x)Φ = 0,

where k= O(1) and ε � 1. Show that a perturbation solution

Φ ∼ A cos kx + B sin kx + εφ1 + ε2φ2 + · · ·
reveals that the terms εφ1, ε2φ2, ε3φ3, . . . cannot all remain small
compared to the lowest-order term for all x if k is an integer.

Suppose that k2 = 1 + κε, where κ is O(1). Show that

d2φ1

dx2 + φ1 = −κ(A cosx + B sinx)

−1
2
(A(cos 3x + cosx) + B(sin 3x − sinx)).

Deduce that Φ can only be periodic to order ε if κ = 1
2 and A = 0, or

if κ = − 1
2 and B = 0.

(ii) If k2 = 1 + κε, as above, but x is large so that x = X/ε, where
X = O(1), show that the WKB solution of the equation is

Φ ∼ AeiX/ε + A∗e−iX/ε,

where

2i
dA

dX
+ κA +

1
2
A∗ = 0 and − 2i

dA∗

dX
+ κA∗ +

1
2
A = 0.

Deduce that A and A∗ grow or decay exponentially in X if |κ| < 1
2

and that they are oscillatory in X if |κ| > 1
2 .

This example shows that waves in such a periodic medium will decay if k is in
the stop band, which is −ε/4 < k−1 < ε/4 approximately. It can be shown that
similar stop bands exist near any integer value of k (including 0) as shown in
Figure 4.5. Hence, over large regions of the (k, ε) parameter space, the material
acts to damp waves exponentially rather than allowing them to propagate. This
is an example of Floquet theory, which, in higher dimensions, is associated with
the names of Bloch and Brillouin.

4.12 A one-dimensional acoustic resonator is closed at x = 0 and is driven at
x = 1 by a piston which oscillates with a frequency which is much lower
than any of the resonant frequencies of the pipe. Show that a suitable
non-dimensional model is

∂2φ

∂x2 =
∂2φ

∂t2
for 0 < x < 1,

with ∂φ/∂x = 0 at x = 0 and ∂φ/∂x = sin εt at x = 1 where ε � 1.
Assuming a periodic response, solve this problem and show that as ε → 0,
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the pressure response has amplitude of O(ε−1), but that the gas velocity
will never be greater than its maximum value at the piston.
This is a very simple example of a Helmholtz resonator, which is driven at a
frequency very much less than any of the natural frequencies.

4.13 (i) Suppose that N is constant in the inertial wave model (3.26) and that
w = Rl(W (x, y, z)e−iωt). Show that if g is sufficiently large, then

(N2 − ω2)
(

∂2W

∂x2 +
∂2W

∂y2

)
= ω2 ∂2W

∂z2

and deduce that waves can radiate to infinity if ω2 < N2.
N is called the Brunt-Väisälä frequency.

(ii) Show from (3.30) that if p = Rl(P (x, y, z)e−iωt) in steady rotating
flow at a high Rossby number, then P satisfies

∂2P

∂x2 +
∂2P

∂y2 +
∂2P

∂z2 =
4Ω2

ω2

∂2P

∂z2 .

Show that waves can radiate to infinity if ω2 < 4Ω2.
Note that in both these cases, there is a cut-off frequency above which waves
cannot radiate to infinity.

4.14 Show that the wave crests and troughs in the far-field ship’s wave pattern
(4.39) are given by the curves k1x + k2y = c, where k1 and k2 are related
by (4.40) and c is a constant. Remembering that y = λx, where λ is given
by (4.42), and putting U4/g2 = 1 for simplicity, show that the crests and
troughs are given parametrically in terms of k1 by

x =
c(2k2

1 − 1)
k3
1

, y = ∓ (k2
1 − 1)1/2c

k3
1

.

Show that for a fixed c, y is maximum when k2
1 = 3/2 and y/x = ∓1/2

√
2.

Show that dy/dx = ∓1/(k2
1 − 1)1/2 and sketch these curves for fixed c.

Hence, show that the crests in a ship’s wake consist of two families of
curves as shown in Figure 4.6.

*4.15 Steady two-dimensional homentropic flow in a slender nozzle is modeled
by (2.6)–(2.8) in the form

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

ρ

(
u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x

and

ρ

(
u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y

with
v

u
= ±ε

2

2
Ā′ on y = ±1

2
(A0 + εĀ(εx)),
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where A0 = constant. Show that if εx = X, u = u0 + εu′, v = ε2v′,
p = p0 + εp′, and ρ = ρ0 + ερ′, where u0, p0, and ρ0 are constant, then,
to lowest order,

ρ0
∂u′

∂X
+ u0

∂ρ′

∂X
+ ρ0

∂v′

∂y
= 0,

ρ0u0
∂u′

∂X
= − ∂p′

∂X
, 0 =

∂p′

∂y

and
p′ =

γp0

ρ0
ρ′,

with

v′ = ±u0

2
dĀ

dX
on y = ±A0

2
.

Deduce that, if ū = 1/A0
∫ A0/2

−A0/2 u′ dy, and similarly for p̄ and ρ̄, then

A0ρ0
dū

dX
+ A0u0

dρ̄

dX
+ ρ0u0

dĀ

dX
= 0,

ρ0u0
dū

dX
+

dp̄

dX
= 0

and
p̄ =

γp0

ρ0
ρ̄.

Hence show that ρ̄ = ρ0ĀM2/A0(1 − M2), where M2 = u2
0ρ0/γp0.

*4.16 (i) Show that if φ(x, y) is given by (4.50), then

∂φ

∂y
= 2β2y

∫ l

0

g(ξ) dξ

(x − ξ)2 + β2y2 .

Noting that, as y → 0, the major contribution to the integral comes
from near ξ = x, show that

lim
y↓0

∂φ

∂y
=
{

2πβg(x), 0 < x < l
0, otherwise

and

lim
y↑0

∂φ

∂y
=
{−2πβg(x), 0 < x < l

0, otherwise.

Use the same type of argument to show that the integral in (4.58)
tends to h(x)[sinh−1(l − x/βr) + sinh−1 x/βr] as r → 0 and deduce
that φ ∼ −2h(x) log r in this limit.

(ii) Show that the potential

φ(x, y) =
∫ l

0
h(ξ) tan−1

(
x − ξ

βy

)
dξ (∗)
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satisfies (4.49), where the function tan−1 is defined to lie between
−π/2 and π/2. Show that as y ↓ 0,

tan−1
(

x − ξ

βy

)
→ ±π

2
− βy

x − ξ
+ O(y2) (∗∗)

according to whether x−ξ > 0 or x−ξ < 0 respectively. Show directly
from (*) that, for 0 < x < l with y fixed,

φ(x, y) = lim
ε→0

(∫ x−ε

0
+
∫ l

x+ε

)
h(ξ) tan−1

(
x − ξ

βy

)
dξ.

Hence, use (**) to show that for small positive values of y, φ is ap-
proximately

∫ x−ε

0
h(ξ)
(

π

2
− βy

x − ξ

)
dξ +

∫ l

x+ε

h(ξ)
(

−π

2
− βy

x − ξ

)
dξ.

Deduce that as y ↓ 0,

∂φ

∂y
→ −β −

∫ l

0

h(ξ)
x − ξ

dξ,

where the Cauchy principal value integral is defined by

−
∫ l

0

h(ξ)
x − ξ

dξ = lim
ε→0

(∫ x−ε

0
+
∫ l

x+ε

)
h(ξ)
x − ξ

dξ.

Show that ∂φ/∂y takes the same value as y ↑ 0 and deduce that the
problem for subsonic flow past an infinitely thin asymmetric aerofoil
y = εfA(x) requires us to solve the singular integral equation

−U

β
f ′

A(x) = −
∫ l

0

h(ξ) dξ

x − ξ
.

Note that an arbitrary wing shape εf±(x) can always be written as ε(±fS+fA),
where fS = 1

2 (f+ − f−) and fA = 1
2 (f+ + f−).

4.17 Solve the problem of subsonic flow past a symmetric thin wing by using
Fourier transforms as follows. If φ̄ is defined by φ̄ =

∫∞
−∞ φ(x, y)eikx dx,

show that (4.49) and (4.48) lead to the problem

d2φ̄

dy2 − β2k2φ̄ = 0 in y > 0,

with
dφ̄

dy
= UF̄ (k) on y = 0,
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where F̄ (k) is the Fourier transform of f ′(x), which is defined to be zero
for x < 0, x > l. Hence, show that

dφ̄

dy
= UF̄ (k)e−β|k|y.

From Exercise 4.4, the Fourier transform of βy/(x2 + β2y2) is πe−β|k|y;
use this result to determine ∂φ/∂y and hence show that

φ(x, y) =
U

2πβ

∫ L

−L

f ′(ξ) log((x − ξ)2 + β2y2) dξ.

*4.18 (i) Solve the problem of subsonic flow past a slender axisymmetric body
at zero incidence by using Fourier transforms as follows. If φ̄ is defined
as

φ̄(r, k) =
∫ ∞

−∞
φ(x, r)eikx dx,

where the velocity potential of the flow is Ux+εφ, show that φ̄ satisfies
the equation

d2φ̄

dr2 +
1
r

dφ̄

dr
− β2k2φ̄ = 0.

The solution of this equation which tends to zero as r → ∞ is the
Bessel function K0(β|k|r). By writing

φ̄ = Ā(k)K0(β|k|r)

and using the fact that K0(β|k|r) ∼ − log r as r → 0 in the boundary
condition (4.57), show that Ā(k) is the Fourier transform of A(x),
where

A(x) = −εUR(x)R′(x) for 0 < x < l.

Given that K0(β|k|r) is the Fourier transform of 1/2
√

x2 + β2r2, show
that

φ(x, r) =
∫ l

0

−εUR(ξ)R′(ξ)
2((x − ξ)2 + β2r2)1/2 dξ.

(ii) A slender body r = εR(x) is now placed in a subsonic stream which
makes a small angle α to the axis of the body. If the free-stream
velocity is

(Uα cos θ, −Uα sin θ, U)

in the (r, θ, x) directions in cylindrical polar coordinates, show that
the boundary condition on the body is

∂φ

∂r
= UR′(x) − Uα

ε
cos θ. (*)
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Assuming that α/ε is of O(1) and using the Fourier transform, as in
part (i), show that

φ̄ = Ā(k)K0(β|k|r) + B̄(k)
∂

∂r
(K0(β|k|r)) cos θ.

If B(x) is the inverse transform of B̄(k), show that

B(x) = −Uαε(R(x))2,

and deduce that the full solution is

φ(r, θ, x) = −εU

2

∫ l

0

R(ξ)R′(ξ) dξ

((x − ξ)2 + β2r2)1/2

−Uαε cos θ

2
∂

∂r

∫ l

0

(R(ξ))2 dξ

((x − ξ)2 + β2r2)1/2 .

R4.19 A thin wing is placed at a small angle of incidence α in a steady supersonic
stream, so that the wing is given by

y = εf±(x) − αx for 0 < x < l,

where α = O(ε). Show that the drag is

ρ0U
2

B

∫ l

0
[(εf ′

+(x) − α)2 + (εf ′
−(x) − α)2] dx.

Hence, confirm that the drag on a flat plate of length l at a small angle
of incidence α is (2ρ0U

2/B)α2l.
Show that if α = 0 and the wing has a cross section

f+ = −f− =

⎧⎪⎨
⎪⎩

mx, 0 < x <
h

m
h(l − x)
l − h/m

,
h

m
< x < l

with a given thickness h, then the drag is minimized for a diamond shape
with h/m = l/2.

4.20 A plane high-frequency wave, given by Φ = e−ikx, is incident from the
right on a parabolic reflector y2 = 4x. If the reflected wave is given by
Φ = eiku, show that

x = tan2
(s

2

)
, y = 2 tan

(s

2

)
, u = − tan2

(s

2

)
, (−π < s < π)

is suitable boundary data for u. By showing that p = cos s and q = − sin s
and solving Charpit’s equations (4.67), show that the reflected rays are
given by

x = 2τ cos s+tan2
(s

2

)
, y = −2τ sin s+2 tan

(s

2

)
, u = 2τ −tan2

(s

2

)
.

Deduce that all the reflected rays pass through the focus (1, 0).
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4.21 Suppose that in (4.71), the function f is spherically symmetric so that
f(x, y, z) = F (r), where x2+y2+z2 = r2. Show that at any point (0, 0, z),

φ(0, 0, z, t) =
t

4π

∫ 2π

0

∫ π

0
F ((z2 + 2zct cos θ + c2t2)1/2) sin θ dθ dφ

=
1

2cz
[g(|z + ct|) − g(|z − ct|)],

where g′(r) = rF (r). By rotating the axes, deduce that

φ(x, y, z, t) =
1

2cr
[g(r + ct) − g(|r − ct|)].

Verify that this gives a spherically symmetric solution of the wave equation
which satisfies φ = 0 and ∂φ/∂t = F (r) at t = 0.

4.22 Suppose that, in (4.71), the function f(x, y, z) is independent of z. Write
ρ = ct sin θ when |ρ| < ct and show that

φ(x, y, t) =
1

2πc

∫ 2π

0

∫ ct

0
f(x + ρ cosφ, y + ρ sinφ)

ρ dρ dφ√
c2t2 − ρ2

=
1

2πc

∫ ∫
S

f(ξ, η) dξ dη

(c2t2 − (x − ξ)2 − (y − η)2)1/2 ,

where S is the interior of the circle (x− ξ)2 +(y −η)2 = c2t2. Hence, show
that there is no sharp termination of the wave in the case when f(ξ, η)
vanishes outside some bounded region in the (ξ, η) plane.

Show also that if f(ξ, η) is localized near ξ = 0, η = 0, we retrieve the
solution (4.70), where, for some constant λ,

φ =

⎧⎨
⎩

λ

(c2t2 − r2)1/2 , r < ct

0, r > ct,

where r2 = x2 + y2.
*4.23 (i) The spherically symmetric wave equation in n dimensions is

∂2φ

∂r2 +
n − 1

r

∂φ

∂r
=

1
c2

∂2φ

∂t2
.

Show that when n is odd, the general solution is

(
1
r

∂

∂r

)n−3
2 f(ct ± r)

r
.

(ii) From (4.61), show that the general solution for outward propagating
axisymmetric waves in two dimensions is

φ =
∫ ct

r

f(ct − s) ds√
s2 − r2

,
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where m(z/c) = f(z).
It can be shown that in an even number of dimensions n, the corresponding
general solution is (1

r

∂

∂r

)(n−2)/2
[∫ ct

r

f(ct − s) ds√
s2 − r2

]
,

which is the same as the result of (1) in terms of pseudo-differential operators.
4.24 By taking the integral in (4.58) from x − ir to x + ir and assuming that

h(ξ) is analytic throughout, show that

φ(x, r) =
∫ x+iβr

x−iβr

h(ξ) dξ

((x − ξ)2 + β2r2)1/2

=
∫ π

0
ih(x + iβr cos θ) dθ

satisfies the axisymmetric equation (4.56). Verify that φ is analytic on
r = 0 and that

φ(x, r) =
1
π

∫ π

0
φ(x + iβr cos θ, 0) dθ. (†)

Note the difference between this result, which holds for axisymmetric potentials
that are analytic at r = 0 for all x, and the representation (4.58), where φ ∼
−2h(x) log r as r → 0.

4.25 Show that

φ(x, r) =
∫ x−Br

0

m(ξ) dξ√
(x − ξ)2 − B2r2

=
∫ cosh−1(x/Br)

0
m(x − Br cosh t) dt

and hence confirm that

∂2φ

∂r2 +
1
r

∂φ

∂r
− B2 ∂2φ

∂x2 = 0.
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Nonlinear Waves in Fluids

5.1 Introduction

We have already encountered several deficiencies in the theories presented
in Chapter 4 that indicate the limitations of the linear approximation. In
particular, we have seen that the linear theory cannot deal with the following
situations:

(i) The transition from subsonic to supersonic flow past a thin wing.
(ii) The strange behavior in a converging–diverging nozzle when sonic condi-

tions are attained.
(iii) The response of a system near resonance.

More generally, we may also ask what happens when bodies which are thick
or “blunt-nosed” are placed in a compressible stream, or when the elevation
of a surface gravity wave is comparable to the depth of the water, or when the
amplitude of the motion of a gas in a resonator is comparable to the length
scale of the system.

In this chapter, we will consider three specific nonlinear models: unsteady
one-dimensional gasdynamics, two-dimensional steady gasdynamics, and shal-
low water theory. However, before we embark on these models, we will discuss
a simple paradigm example of a nonlinear system that will help us to under-
stand the more complicated systems that will follow.

We consider the equation

∂u

∂t
+ u

∂u

∂x
= 0, (5.1)
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defined for −∞ < x < ∞ and t > 0, and with u(x, 0) = u0(x) pre-
scribed.1 This nonlinear equation can be solved exactly. The general solution
is u = F (x − ut) for any function F and so the solution

u = u0(x − ut) (5.2)

describes the solution implicitly. An alternative approach is to note that, along
the characteristics of (5.1),

dx

dt
= u,

du

dt
= 0,

and so u is constant on a characteristic, which is therefore a straight line.
Thus, the characteristics can be drawn just by using the initial slopes, as
given by u0(x), and an example is shown in Figure 5.1.

(a)

(b)

u0(x)

x

t

x

Fig. 5.1. (a) Initial data for equation (5.1). (b) Characteristics of equation (5.1).

We are immediately confronted by one of the fundamental difficulties of
nonlinear hyperbolic partial differential equations, which is that since the slope
of the characteristic depends on the solution, it is possible for characteristics
to intersect, leading to a multivalued solution for u.
1 This is an example of what is often known as the kinematic wave equation, namely

∂u

∂t
+

∂

∂x
(f(u)) = 0

for some function f .
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If u0(x) is smooth and has finite slope everywhere, then the solution (5.2)
will hold for small values of t, but, except in rare situations, such as when
u0 is monotonic increasing for all x, u will eventually become multivalued as
a result of intersecting characteristics. Of course, it may be possible to allow
multivalued solutions if u describes the profile of, say, a water wave, but, in
general, multivalued solutions are not physically acceptable; the remedy for
this situation is the introduction of a discontinuity or shock wave as will be
described in Chapter 6.

5.2 Models for Nonlinear Waves

5.2.1 One-dimensional Unsteady Gasdynamics

We now consider some exact solutions of the full equations for the flow of a
perfect compressible gas. The first case we consider is that of one-dimensional
unsteady flow, and in this case, (2.6), (2.7), and (2.18) reduce to

∂ρ

∂t
+

∂

∂x
(ρu) = 0, (5.3)

∂u

∂t
+ u

∂u

∂x
+

1
ρ

∂p

∂x
= 0 (5.4)

and
d

dt

(
p

ργ

)
= 0. (5.5)

We assume that the flow is homentropic, as it would be if the gas was initially
in a uniform state. This assumption means that, from (5.5), p/ργ is constant,
and since c2 = dp/dρ, we can deduce that

dp

p
= γ

dρ

ρ
=

2γ dc

(γ − 1)c
. (5.6)

Using (5.6), (5.3) and (5.4) can be written in terms of u and c alone as

2
γ − 1

∂c

∂t
+

2u
γ − 1

∂c

∂x
+ c

∂u

∂x
= 0 (5.7)

and
∂u

∂t
+ u

∂u

∂x
+

2c
γ − 1

∂c

∂x
= 0. (5.8)

Adding and subtracting (5.7) and (5.8) leads to(
∂

∂t
+ (u ± c)

∂

∂x

)(
u ± 2c

γ − 1

)
= 0; (5.9)
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hence, we can see that

u ± 2c
γ − 1

is constant on
dx

dt
= u ± c. (5.10)

The quantities u±2c/(γ−1) are called the Riemann invariants, and the curves
dx/dt = u±c are the characteristics2 of the second-order hyperbolic system of
equations (5.9). More generally, for non-homentropic flow, the three equations
(5.3)–(5.5) form a third-order hyperbolic system, to be defined precisely in
Section 5.2.3, with characteristics given by dx/dt = u ± c and dx/dt = u,
where c2 = γp/ρ. The “third” characteristic is the particle path.

5.2.2 Two-dimensional Steady Homentropic Gasdynamics

Our second example is two-dimensional steady compressible flow. We again
assume that the flow is homentropic so that p/ργ is constant and then (2.6)
and (2.7) can be written as

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0, (5.11)

u
∂u

∂x
+ v

∂u

∂y
+

c2

ρ

∂ρ

∂x
= 0 (5.12)

and

u
∂v

∂x
+ v

∂v

∂y
+

c2

ρ

∂ρ

∂y
= 0. (5.13)

We use the same ideas to simplify these equations as we did in the unsteady
one-dimensional case, but because there are three equations now rather than
two, the technical details are more complicated. Nevertheless, we can easily
eliminate ∂ρ/∂x and ∂ρ/∂y from (5.11)–(5.13) to obtain

(c2 − u2)
∂u

∂x
− uv

(
∂u

∂y
+

∂v

∂x

)
+ (c2 − v2)

∂v

∂y
= 0. (5.14)

To get a closed system for u and v, we can note that the flow will be irrota-
tional by Crocco’s theorem (Exercise 2.5); hence, c2 is given from Bernoulli’s
equation (2.25) as

c2 = c2
0 − γ − 1

2
(u2 + v2), (5.15)

where c0 is the value of c when the flow is brought to rest homentropically,
and

∂u

∂y
− ∂v

∂x
= 0. (5.16)

2 For brevity, we will sometimes refer to these two families of characteristics as the
positive and negative characteristic, respectively.
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We could now define a potential function φ and then (5.14) and (5.15)
yield(

c2 −
(

∂φ

∂x

)2
)

∂2φ

∂x2 − 2
∂φ

∂x

∂φ

∂y

∂2φ

∂x∂y
+

(
c2 −
(

∂φ

∂y

)2
)

∂2φ

∂y2 = 0, (5.17)

where c2 = c2
0 − [(γ − 1)/2](∇φ)2. Equation (5.17) is a second-order quasi-

linear equation for φ to which we will return later, but, for now, we work
with the second-order system (5.14) and (5.16) and use the methods of Sec-
tion 5.2.1 to try to write these equations in a more convenient form. Adding
(5.14) and a multiple of (5.16), we find that by choosing the multipliers to
be ±c

√
u2 + v2 − c2, the equations emerge in a form that can be integrated

(Exercise 5.2); however, to proceed, we do have to make the all-important
assumption that u2 + v2 > c2. We find that

(c2 − u2) du − (uv ± c
√

u2 + v2 − c2) dv = 0 (5.18)

on the characteristic curves given by

dy

dx
=

−uv ± c
√

u2 + v2 − c2

c2 − u2 . (5.19)

If we introduce the new variables

µ = sin−1
(

c√
u2 + v2

)
and θ = tan−1

( v

u

)
,

we find that (5.18) can be integrated to give the Riemann invariants

θ ±
[
µ +

1
λ

tan−1(λ cotµ)
]

, (5.20)

where λ2 = (γ−1)/(γ+1); these invariants are constant on the characteristics
given by

dy

dx
= tan(θ ∓ µ), (5.21)

respectively. The angle µ defined above is called the Mach angle, and from
(5.21), we see that the characteristics always make an angle ∓µ with the
streamlines, and these will again be called the negative and positive charac-
teristics, respectively. Note that, as can be seen from (5.18) and (5.19), these
characteristics and Riemann invariants are real in view of our assumption that
u2+v2 ≥ c2, so that the flow is supersonic throughout. Equations (5.11)–(5.13)
are a hyperbolic system as long as u2 + v2 > c2, and the characteristics will
be given by (5.19) and dy/dx = v/u. The third characteristic is, naturally,
the streamline.
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5.2.3 Shallow Water Theory

It would be nice if we could treat nonlinear surface gravity waves as described
by (3.8), (3.10) and (3.11) similarly, but this system is even more difficult to
analyze than the models in Sections 5.2.1 and 5.2.2. The only way we can make
headway here is if we restrict ourselves to analyzing the effect of nonlinearity
on water that is shallow. What we mean by this is that the mean depth of the
water, h, is comparable to the amplitude of the waves but small compared to
their wavelength λ.

To see the implications of these assumptions, we non-dimensionalize the
variables by writing

x = λX, z = hZ, u = Uû, t =
λ

U
T,

where U is a typical horizontal velocity; for the moment, we are only consid-
ering two-dimensional flows with z measured along the upward vertical. From
the continuity equation for an incompressible fluid (2.6), the appropriate non-
dimensionalization for the vertical component of velocity is

w =
(

hU

λ

)
ŵ,

and from the x component of the momentum equation (2.7), the appropriate
scaling for the pressure is

p = p0 + ρU2p̂,

where p0 is the pressure in the atmosphere. Now, (2.6) and (2.7) become

∂û

∂X
+

∂ŵ

∂Z
= 0, (5.22)

∂û

∂T
+ û

∂û

∂X
+ ŵ

∂û

∂Z
= − ∂p̂

∂X
(5.23)

and
∂p̂

∂Z
+

gh

U2 = O

(
h2

λ2

)
. (5.24)

From the last equation, we see that if h � λ, the fluid inertia terms in the
Z direction can be neglected and also that the appropriate choice for U is√

gh. Hence, the pressure is hydrostatic to lowest order. Thus, reverting to
dimensional variables and integrating, we have

p = −ρgz + ρgη + p0, (5.25)

where z = η(x, t) is the equation of the surface of the water. Hence, substi-
tuting for p in (5.23) and writing that equation in dimensional variables, we
obtain

du

dt
= −g

∂η

∂x
, (5.26)
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showing that the convective derivative of u is independent of z. Thus, if u is
initially independent of z, it will remain independent of z for all time.3 Then,
writing u = u(x, t), (5.26) reduces to

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0. (5.27)

Now, we can also integrate (5.22) with respect to z and this leads to

w = −∂u

∂x
z (5.28)

if we assume a flat bottom with w = 0 on y = 0. Now, we finally need to
apply the kinematic boundary condition (3.10) at the surface z = η to get

w =
∂η

∂t
+ u

∂η

∂x
, (5.29)

and (5.28) and (5.29) lead to

∂η

∂t
+

∂

∂x
(uη) = 0. (5.30)

Equations (5.27) and (5.30) can be thought of as statements of conserva-
tion of momentum and mass, respectively, averaged through the depth of the
water; they are two nonlinear equations for u(x, t) and η(x, t). It is convenient
to write s2 = gη and then add and subtract these two equations to obtain(

∂

∂t
+ (u ± s)

∂

∂x

)
(u ± 2s) = 0. (5.31)

We have now arrived at a formulation of the problem which is very like that
obtained in Section 5.2.1 and shows that

u ± 2s = constant

on the characteristics
dx

dt
= u ± s.

In fact, the model (5.31) is identical with the one-dimensional unsteady gas-
dynamic equations (5.9) if we put c = s and γ = 2 (remember that γ = 1.4
for air).

Reviewing the three sets of equations (5.3)–(5.5), (5.11)–(5.13), and (5.27),
(5.30), we can look at a more general methodology for dealing with these
systems. Each of these sets of equations can be written in the form

A
∂u
∂X

+ B
∂u
∂Y

= 0, (5.32)
3 It is interesting to relate this assumption to that of irrotationality (Exercises 5.4
and 5.7).
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where u is an n-vector and A and B are n × n matrices whose entries are
functions of the components of u(X, Y ). We note that if A is non-singular
and A−1B has an eigenvalue λ and a left eigenvector l, so that

det(λA − B) = 0 and lA−1B = λl,

then
l · ∂u

∂X
+ λl · ∂u

∂Y
= 0.

Thus,
∫
l · du is constant on the curve dY /dX = λ, and this is exactly equiv-

alent to the procedure that we have used already for each of the above prob-
lems. Indeed, this is the starting point for the theory of hyperbolic systems;
(5.32) is called hyperbolic if all n eigenvalues of A−1B are real and distinct,
dY /dX = λ are the characteristic curves, and

∫
l ·du are the Riemann invari-

ants (Ockendon et al. [9]).
Finally, we remark that if we linearize the shallow water equations (5.27)

and (5.30) by assuming that u and η −h are small,4 we are led to the familiar
one-dimensional wave equation

∂2u

∂t2
= gh

∂2u

∂x2 . (5.33)

Solutions of (5.33) are called two-dimensional tidal waves and it is easy to
verify that in most seas and oceans, the tides move along the shore at a speed
of O(

√
gh). It has already been observed in Section 4.4.1 of Chapter 4 that as

h → 0 in the Stokes wave solution (4.25), the dispersion relation reduces to

ω2 = gh|k|2,
exactly as predicted from (5.33). Thus, long, small-amplitude waves on shallow
water are non-dispersive and the phase and group velocities for such waves
are both

√
gh. In fact, most tidal waves propagate in two dimensions and in

this case (5.33) is replaced by

∂2η

∂t2
= gh

(
∂2η

∂x2 +
∂2η

∂y2

)
,

which is also the equation for waves on a membrane.

5.2.4 *Nonlinearity and Dispersion

5.2.4.1 The Korteweg–de Vries Equation

The full model for nonlinear surface waves, described by (3.8), (3.10), and
(3.11), can be simplified in other parameter regimes that are distinct from
4 We can be more precise about how small these quantities are; if we define
(η − h)/h = O(ε), then u will be O(ε

√
gh).
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Stokes waves, shallow water theory, or tidal theory, and a fascinating situation
occurs if we consider the long-time evolution of a tidal wave. To illustrate why
the solution obtained in the last section may not be valid over long times, we
first consider the model equation

∂φ

∂t
+

∂φ

∂x
= ε

∂2φ

∂x2 , (5.34)

where ε is a small parameter. If we write φ ∼ φ0 + εφ1 + · · · and expand in
powers of ε, we find that

φ0 = f(x − t)

and
∂φ1

∂t
+

∂φ1

∂x
= f ′′(x − t),

so that
φ1 = tf ′′(x − t) + g(x − t),

where f and g are arbitrary functions. Thus, we see that when t ∼ O(ε−1),
εφ1 will be of the same order as φ0 and the expansion for small ε is no longer
valid. To find a solution valid for such timescales, we need to rewrite (5.34) in
terms of new independent variables ξ = x − t and τ = εt so that it becomes

∂φ

∂τ
=

∂2φ

∂ξ2 . (5.35)

Now, we need to solve (5.35) with the initial condition φ = f(ξ) at τ = 0 to
get a solution to (5.34) which is valid for all times. It is interesting to note that
for this linear model, we can use Fourier transforms to obtain the long-time
behavior and thereby assess the usefulness of (5.35) (Exercise 5.12).

We now show how the same method can be applied to tidal waves. We
recall that Stokes waves were derived under the assumption that the ratio of
amplitude to depth, a/h = ε, is small. Shallow water theory assumes that the
ratio of depth to wavelength, h/λ = δ, is small, and tidal wave theory assumes
that both ε and δ are small. Using the same scalings as for tidal wave theory
in Section 5.2.3, we non-dimensionalize x with λ, z with h, η with a, t with
λ/

√
gh, and u with ε

√
gh. Then, the appropriate scaling for φ is ελ

√
gh and

(3.8), (3.10) and (3.11) become, in non-dimensional form,

∂2φ

∂z2 + δ2 ∂2φ

∂x2 = 0, (5.36)

with
∂φ

∂t
+ η +

ε

2δ2

((
∂φ

∂z

)2

+ δ2
(

∂φ

∂x

)2
)

= 0 (5.37)

and
∂φ

∂z
= δ2 ∂η

∂t
+ εδ2 ∂φ

∂x
.
∂η

∂x
(5.38)
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on z = εη. The final boundary condition on the bottom is

∂φ

∂z
= 0 (5.39)

on z = −1. We can see at once that we can retrieve Stokes waves by taking
δ = 1 and ε = 0.

When both ε and δ are small, we find that in order to satisfy (5.36) and
(5.39), we must write

φ(x, z, t; ε, δ) ∼ φ0(x, t; ε) + δ2
(

A(x, t; ε) −
(

1
2
z2 + z

)
∂2φ0

∂x2

)
+ · · · , (5.40)

for some function A. Then, writing η ∼ η0(x, t; ε) + δ2η1(x, t; ε) + · · ·, (5.37)
and (5.38) lead to

∂φ0

∂t
+ η0 = O(ε, δ2)

and
∂2φ0

∂x2 +
∂η0

∂t
= O(ε, δ2),

and, hence, when ε � 1, to the tidal wave equation (5.33). When ε = 1 and
δ → 0 we can derive the equations for shallow water, (5.27) and (5.30), in a
similar way (Exercise 5.7). However, the example (5.34) leads us to examine
whether the tidal wave approximation will really be valid for large times. We
see that as t increases, the time derivative in (5.37) will become as small
as some of the neglected terms, and to deal with this, we have to take into
account even more terms in the expansion (5.40) for φ.

Again, using (5.36) and (5.39) but going to the next term in the expansion
in δ2 gives

φ ∼ φ0(x, t; ε) + δ2
(

A(x, t; ε) −
(

1
2
z2 + z

)
∂2φ0

∂x2

)

+δ4
(

B(x, t; ε) −
(

1
2
z2 + z

)
∂2A

∂x2 +
(

1
24

z4 +
1
6
z3 − 1

3
z

)
∂4φ0

∂x4

)
+ · · · .
(5.41)

Then, remembering that the surface condition is applied on z = εη, (5.37) is

∂φ0

∂t
+ η0 +

1
2
ε

(
∂φ0

∂x

)2

+ δ2
(

∂A

∂t
+ η1

)
= O(εδ2), (5.42)

and (5.38) gives

∂η0

∂t
+

∂2φ0

∂x2 + ε

(
η0

∂2φ0

∂x2 +
∂φ0

∂x

∂η0

∂x

)

+δ2
(

∂2A

∂x2 +
1
3

∂4φ0

∂x4 +
∂η1

∂t

)
+ O(εδ2, δ4) = 0. (5.43)
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At this point, we need to rescale t = ε−1τ , and remembering that the tidal
wave generates solutions for η0 and φ0 of the form f(x−t)+g(x+t), we follow
just the right-traveling wave by writing x − t = ξ and keeping ξ of O(1). We
also have to decide on the relation between our two small parameters ε and δ.
It is clear from (5.42) and (5.43) that the most interesting case will be when
ε = O(δ2) and accordingly we write δ2 = κε. We thus write (5.42) and (5.43)
as

−∂φ0

∂ξ
+ η0 + ε

(
1
2

(
∂φ0

∂ξ

)2

− κ
∂A

∂ξ
+ κη1 +

∂φ0

∂τ

)
= O(ε2)

and

−∂η0

∂ξ
+

∂2φ0

∂ξ2 + ε

(
η0

∂2φ0

∂ξ2 +
∂φ0

∂ξ

∂η0

∂ξ

+κ
∂2A

∂ξ2 +
κ

3
∂4φ0

∂ξ4 κ
∂η1

∂ξ
+

∂η0

∂τ

)
= O(ε2).

Hence, η0 = ∂φ0/∂ξ, and by adding the ξ derivative of the first equation to
the second, we finally obtain that

∂η0

∂τ
+

3
2
η0

∂η0

∂ξ
+

κ

6
∂3η0

∂ξ3 = 0 (5.44)

is the condition for (5.42) and (5.43) to be simultaneously valid.5 This is the
Korteweg–de Vries (KdV) equation and it is valid for times of O(λ3/h3)

√
h/g

if we assume that a
h = O

(
(h

λ )2
)
. The equation represents a balance between

the linear “tidal wave” term ∂η0/∂τ , the nonlinear “shallow water” term
η0(∂η0/∂ξ), and dispersive “Stokes wave” term ∂3η0/∂ξ3. The KdV equation
has traveling wave solutions which can be obtained by writing η0 = f(ξ − cτ).
Substituting into (5.44) and integrating once gives

κ

6
d2f

dχ2 = cf − 3
4
f2 + k1, (5.45)

where k1 is a constant and χ = ξ − cτ = x − (1 + cε)t. If we require that, as
χ → ±∞, the solution f and its derivatives tend to zero, then k1 = 0 and
(5.45) can be integrated to give

f = 2c sech2

(√
3c
2κ

(χ + d)

)
, (5.46)

where d is a constant. Because of its behavior as |χ| → ∞, this profile is called
a solitary wave. It is a traveling wave of constant speed and shape which can
easily be observed in either a long straight canal6 or in a laboratory. Even
5 The step leading to (5.44) is yet another example of the Fredholm alternative.
6 Scott Russell famously observed “a great wave of elevation” while riding his horse
along the towpath of a canal in 1845 ([18]).
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more remarkable is the theory of solitons, which was opened up by the study
of the KdV equation. A soliton is a solitary wave that has certain very special
properties in addition to its permanent shape, and (5.46) was the first solitary
wave that was discovered to have these special properties. We will return to
this topic briefly at the end of this section after we have considered another
important example of gradual nonlinear modulation.

We remark that although nonlinearity destroys the predictions of linear
tidal theory for long times, it does not destroy most of the predictions of linear
Stokes wave theory on deeper water. Indeed, as long as we use the stationary
phase arguments of Chapter 4 correctly, Stokes wave theory is uniformly valid
for all times, with just one exception which we will now discuss.

5.2.4.2 The Nonlinear Schrödinger Equation

Another situation in which the linear approximation breaks down for long
times is the periodic solution for Stokes waves on deep water. Once again, we
illustrate the way this happens by considering a simple model equation—in
this case, an ordinary differential equation with a periodic solution in the
linear approximation and a seemingly small quadratic nonlinearity. Thus, we
consider the equation

d2x

dt2
+ x = εx2, (5.47)

and put x ∼ x0 + εx1 + ε2x2 + · · · to obtain the equations

d2x0

dt2
+ x0 = 0, (5.48)

d2x1

dt2
+ x1 = x2

0 (5.49)

and
d2x2

dt2
+ x2 = 2x0x1. (5.50)

Solving (5.48) and (5.49) gives

x0 = Aeit + A∗e−it (5.51)

and
x1 = Beit + B∗e−it − 1

3
A2e2it + 2AA∗ − 1

3
A∗2e−2it, (5.52)

where A and B are complex constants and ∗ denotes complex conjugate.7

Now we find that equation (5.50) becomes

d2x2

dt2
+x2 =

10
3

A2A∗eit +
10
3

AA∗2e−it +constant + terms in e±2it and e±3it.
7 We now use notation (5.51) rather than x0 = Rl(Aeit) in order to avoid con-
fusion in evaluating the nonlinear terms when it is important to note that
Rl(A2) �= (RlA)2.
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Hence, there will be “secular” terms of the form te±it in x2 and these will grow
with time so that our expansion for x will become invalid when ε2t = O(1).
Since the solution will inevitably contain oscillations on a timescale of O(1),
the procedure here is to introduce a slow time variable T = ε2t and regard x
as a function of both t and T . This is called the method of multiple scales and
it is described in detail in Kevorkian and Cole [19] or Hinch [10]. In practice,
all we need to do to use the method is to blithely use the chain rule to replace
d/dt by ∂/∂t + ε2(∂/∂T ) so that equation (5.47) for x becomes

∂2x

∂t2
+ 2ε2 ∂2x

∂t∂T
+ ε4 ∂2x

∂T 4 + x = εx2.

Now, expanding in powers of ε again, x0 and x1 take exactly the same forms
(5.51) and (5.52) as before as long as we now regard A and B as functions of
T . The equation for x2 becomes

∂2x2

∂t2
+ x2 = 2x0x1 − 2∂2x0

∂t∂T

and we can eliminate the offending terms in e±it on the right-hand side if we
make A satisfy the equation

2i
dA

dT
=

10
3

A2A∗. (5.53)

Solutions of this equation for A will give x0 as a slowly modulated oscillatory
function which is a valid asymptotic approximation for x for times of O(ε−2)
(Exercise 5.9).

Now, let us apply these ideas to the periodic Stokes wave trains that we
considered in Chapter 3. We can obtain the non-dimensional form of the
equations by putting δ = 1 in (5.36)–(5.38), and for simplicity, we consider
the case of infinitely deep water.

Schematically, we can write this system as

∂2φ

∂x2 +
∂2φ

∂z2 = 0, (5.54)

with
∂2φ

∂t2
+

∂φ

∂z
= εQ (5.55)

on z = 0, where Q is a power series in ε involving terms that are nonlinear
in φ and η. The precise form of Q will be needed if the subsequent analysis is
to be followed in detail, and a recipe for it is given in Exercise 5.11. However,
readers who simply want the general gist do not need this information if they
are prepared to trust the authors’ calculations!

Taking the wavenumber k to be positive, the linear Stokes wave train for
deep water can be written as

φ0 = (Aei(kx−ωt) + A∗e−i(kx−ωt))ekz, (5.56)
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where ω2 = k and, exactly as in the above model problem, we see that when
we put φ ∼ φ0 + εφ1 + ε2φ2 + · · · , φ2 will grow algebraically in time. Thus,
the expansion is invalid when ε2t = O(1). Because we are now dealing with
functions of several variables, it turns out that we need to introduce the four
“slow” variables X1 = εx, X2 = ε2x, T1 = εt, and T2 = ε2t, but, otherwise,
we proceed as before. If we regard φ as a function of x, z, t, X1, T1, X2, and
T2, the equation for φ0 is unchanged except that A will now be a function of
X1, T1, X2, and T2. However, the equation for φ1 becomes

∂2φ1

∂x2 +
∂2φ1

∂z2 = −2
∂2φ0

∂x∂X1
, (5.57)

with
∂2φ1

∂t2
+

∂φ1

∂z
= −2

∂2φ0

∂t∂T1
− 2

∂φ0

∂x

∂2φ0

∂x∂t
− 2

∂φ0

∂z

∂2φ0

∂z∂t
(5.58)

on z = 0, and so

φ1 =
(

−iz
∂A

∂X1
ei(kx−ωt) + iz

∂A∗

∂X1
e−i(kx−ωt)

)
ekz

+(Bei(kx−ωt) + B∗e−i(kx−ωt))ekz,

where B depends on X1, T1, X2, and T2. Using the boundary condition (5.58),
we find that the elimination of terms in e±i(kx−ωt) requires8

∂A

∂X1
+ 2ω

∂A

∂T1
= 0.

Thus, A is a function of X1 − V T1, X2, and T2, where V = 1
2ω , and remem-

bering that ω2 = k, we can identify V as the group velocity dω/dk. This
observation points to a very general result in the theory of modulated linear
wave trains that says that we can describe the gradual effect of nonlinearity
if and only if we work in a frame moving with the group velocity.

Finally, we set ξ = X1−V T1 and carry on to the next term in the expansion
for φ. We find that

φ2 =
(
−1

2
∂2A

∂ξ2 z2 − i

(
∂A

∂X2
+

∂B

∂ξ

)
z + C

)
ei(kx−ωt)+kz +complex conjugate,

where C is a function of ξ, X2, and T2. When we apply the boundary condition
(5.55) to O(ε2), we find that the terms in e±i(kx−ωt) will balance only if A
satisfies the Nonlinear Schrödinger equation (NLS equation)

i

(
∂A

∂T2
+ V

∂A

∂X2

)
− V 3 ∂2A

∂ξ2 + cA2A∗ = 0, (5.59)

8 Note that if we had introduced the variable T1 = εt in the solution of our model
equation (5.47), we would merely have found that ∂A/∂T1 = 0.
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where c is a real constant (see Exercise 5.11). This equation can be simplified
by transforming to a frame moving with the group velocity on the T2 scale
and writing ζ = X2 − V T2 and τ = T2, so that as a function of ξ, ζ, and τ , A
satisfies

i
∂A

∂τ
− V 3 ∂2A

∂ξ2 + cA2A∗ = 0, (5.60)

which is the more familiar form of the NLS equation.
Despite its apparent complexity, this equation has been much studied and

as much is known about it as is known about the KdV equation. Notice the
following:

(i) If the dispersive term ∂2A/∂ξ2 is absent, the NLS equation effectively
reduces to (5.53).

(ii) If the nonlinear terms are neglected, the NLS equation reduces to what is
effectively the beam equation (Exercise 4.10).

(iii) There is a particular solution of the form

A =
(

−2V 3

c

)1/2

eiβζ−iV 3τ sech ξ, (5.61)

where β is any real constant. This solution can be written in terms of
(x, t) as

A =
(

−2
V 3

c

)1/2

eiε2(βx−(βV +V 3)t)sech (ε(x − V t)),

which illustrates the modulation in phase and amplitude that governs the
eventual fate of the Stokes wave train (5.56).

Although (5.61) can be likened to the solitary wave solution (5.46) of the
KdV equation, we must remember that A is now the modulation of the wave
train (5.56), so we have a so-called “envelope” solitary wave. However, there is
a much more profound mathematical unity between (5.44) and (5.60) because
both equations are suceptible to the theory of inverse scattering (Drazin and
Johnson [20]. In fact, we have uncovered just the tip of an intellectual iceberg,
and (5.46) and (5.61) have far more interesting attributes than simply being
spatially localized solitary waves. Hence, they have earned the sobriquet of
solitons, about which far more can be found in specialized texts such as Dodd
et al. [21], which study partial differential equations that are completely inte-
grable in the Hamiltonian sense. Both the KdV equation and the NLS equation
are completely integrable and their solution can, in principle, be written down
when appropriate data are prescribed at τ = 0 for all ξ. A remarkable fea-
ture is that most reasonable initial data will lead to a universal behavior as
τ → ∞ in which the solution will consist of a series of solitary waves of the
form (5.46) or (5.61).9 Their more specialized name solitons reflects the fact
9 Note that we are, at the moment, unable to make any comparable statement
about the relatively trivial (5.1).
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that, for large times, they move like independent particles, even to the extent
of “passing through” each other while retaining their own amplitude and ve-
locity after each “collision.” The theory of inverse scattering can predict the
size and number of these solitons in any particular situation.

5.3 Smooth Solutions for Nonlinear Waves

We now present prototypical solutions of the three models described in Section
5.2, each of which relies on the existence of a region of simple wave flow. This
concept describes any situation in which the region of interest is adjacent
to a uniform region in which all of the flow variables are constant, and this
enables us to exploit our knowledge of the Riemann invariants. The region
of interest will be the simple wave region that is “spanned” by one family of
characteristics that emanate from the uniform region. Thus, the corresponding
Riemann invariant will take a known constant value everywhere in the region of
interest. Hence, a problem with two scalar dependent variables is immediately
reduced to a single scalar first-order partial differential equation which can be
solved by traditional methods. To make things even easier, we can note that
the constancy of the second Riemann invariant along characteristics of the
second family implies that these characteristics will be straight lines and that
the flow variables will be constant along these lines. We now use this strategy
to obtain exact analytic solutions to three famous problems.

5.3.1 The Piston Problem for One-dimensional Unsteady
Gasdynamics

We suppose that gas is at rest with speed of sound c0 in x < 0 in a tube
−∞ < x < ∞ containing a piston at x = 0. At t = 0, the piston begins
to move in the positive x direction with given velocity Ẋ(t). The flow will
be homentropic and (5.7) and (5.8) will therefore hold in x < X(t) where
x = X(t), is the position of the piston at time t. We first assume that Ẋ(t) is
a monotonically increasing function of t and X(0) = Ẋ(0) = 0.

In the region x < 0, t < 0, u = 0, and c = c0, so that the characteristics
there will be straight lines with slope ±c0. For t > 0, we first consider a point
P (x, t) as shown in Figure 5.2, which is such that it is at the intersection of two
characteristics PA and PB emanating from the region x < 0, t < 0. Along PA,
u + 2c/(γ − 1) = 2c0/(γ − 1), and along PB, u − 2c/(γ − 1) = −2c0/(γ − 1),
so we can deduce straightaway that u = 0 and c = c0 at P and that the
characteristics PA and PB are straight lines with slope ±c0. Hence, P lies in
a uniform region in which u = 0 and c = c0 as long as x < −c0t; this is just
another way of saying that the disturbance caused by the piston propagates
into the gas with speed c0.
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·

Fig. 5.2. The piston problem: − positive characteristics, −−− negative character-
istics.

When x > −c0t, we can use the fact that all of the positive characteristics,
labeled C+ in Figure 5.2, emanate from the uniform region and so

u +
2c

γ − 1
=

2c0

γ − 1
(5.62)

holds everywhere in x < X(t). In particular, since we know that u = Ẋ(t) on
the piston, we can deduce that c = c0 − (γ − 1)/2Ẋ(t) on the piston. This
relation only makes physical sense if c ≥ 0, and so we will, for the moment,
impose the further restriction that

Ẋ(t) ≤ 2c0

γ − 1
.

As described earlier, the region −c0t < x < X(t) is a region of simple wave
flow, and if we consider the solution at the point Q in this region, we may
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use the fact that the negative characteristic through Q will be a straight line
along which u and c are both constant. We suppose that C is the point where
t = τ and x = X(τ), so that along QC,

u = Ẋ(τ) and c = c0 − (γ − 1)
2

Ẋ(τ). (5.63)

Since QC is a negative characteristic, labeled C− in Figure 5.2, on which
dx/dt = u − c, the equation for QC is

x − X(τ) = (t − τ)
(

γ + 1
2

Ẋ(τ) − c0

)
; (5.64)

thus, the solution for u and c is given parametrically by (5.63) and (5.64).
This solution is valid for all points x and t which satisfy

−c0t < x < X(t),

provided that 0 < Ẋ(τ) < 2c0/(γ − 1). If Ẋ(τ) exceeds 2c0/(γ − 1), a vacuum
will form between the piston and the gas, which will expand freely in such a
way that it is bounded by the characteristic with slope 2c0/(γ − 1) on which
c = 0. The solution given by (5.63) and (5.64) will still be valid behind this
characteristic.

By considering functions X(t) such that Ẍ(0) becomes larger and larger
while Ẋ(t) tends to a constant V for t > 0, an analytic solution can also be
found to the problem when the piston is started impulsively and moves out
of the tube with speed V ≤ 2c0/(γ − 1). In this limit, the C− characteristics
more and more nearly fan out from the origin in Figure 5.2 and, in the limit,
there is an expansion fan or centered simple wave between two regions of uni-
form flow, as shown in Figure 5.3. In the expansion fan, the straight negative
characteristics all go through the origin and the solution in the fan is such
that u and c depend only on x/t. This fact can also be deduced directly from
a dimensional argument since there is no length scale in this problem, whose
solution can therefore only involve the parameters V and c0 (Exercise 5.15).

If the piston moves into the fluid, we immediately encounter a completely
different scenario. The slope of the negative characteristics QC is such that
these characteristics will inevitably intersect. This causes the above solution to
break down because u will become multivalued, as described in Section 5.1. We
can then only obtain a single-valued solution by introducing a discontinuity
into u and c which is known as a shock wave and this will be discussed in
Chapter 6.

We conclude with the following observation. Equations (5.9) are of the
form ∂ri/∂t + λi(∂ri/∂x) = 0, where r1, and r2 are the Riemann invariants
and λ1 and λ2 are the slopes of the characteristics. These equations can be
transformed by regarding r1 and r2 as independent variables and this results
in the following linear set of equations for x and t:

∂x

∂r2
= λ1

∂t

∂r2
and

∂x

∂r1
= λ2

∂t

∂r1
.
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Fig. 5.3. Characteristics for the impulsively-withdrawn piston problem.

This formulation is of interest in connection with the hodograph transforma-
tion described in Section 5.4 and can also be used to solve the problem of
intersecting simple waves (Exercise 5.19).

5.3.2 Prandtl–Meyer Flow

The next, slightly less simple, example concerns the flow of a two-dimensional
steady supersonic flow past a continuous convex corner. We suppose that a
uniform supersonic flow with Mach number M1 flows parallel to a wall along
y = 0 in x < 0 and that the corner starts smoothly at x = 0, as shown in
Figure 5.4. The characteristic picture that emerges is exactly analogous to the
piston problem of Section 5.3.1 where now we have to use (5.20) and (5.21)
in place of (5.10).

In the incoming flow, µ = µ1 = sin−1(1/M1) and θ = 0. Thus, the char-
acteristics are straight lines making angles ±µ1 with the x axis, and by the
arguments used in Section 5.3.1, the influence of the corner will not be felt
in the uniform region upstream of the characteristic y = x tanµ1 through the
origin. Again, we can see that the negative characteristics all emanate from
the undisturbed region into the simple wave region between the curved wall
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Fig. 5.4. Prandtl-Meyer flow round a smooth corner.

and y = x tanµ1 and, hence,

θ + f(µ) = f(µ1) (5.65)

there, where, from (5.20),

f(µ) = µ +
1
λ

tan−1(λ cotµ), (5.66)

and, as usual, λ2 = (γ − 1)/(γ + 1). At a point S on the wall where the
slope of the wall is −α, we know that θ = −α and so µ is determined from
(5.65). Moreover, from (5.66), we can see that f(µ) is a decreasing function
of µ with a maximum of π/2λ at µ = 0 and a minimum of π/2 at µ = π/2,
as shown in Figure 5.5. Hence, the maximum angle through which the flow
can be turned will be π/2λ−π/2 and this can only occur when µ1 is π/2 and
the incoming flow is sonic. It is also clear that µ decreases as the flow turns
around the corner, and since M increases as µ decreases, this means that as
long as our assumption that the incoming flow is supersonic is valid, the flow
will stay supersonic throughout. As in Section 5.3.1, we may use the fact that
the positive characteristic through S is a straight line along which θ and µ are
constant to write down enough equations to determine the flow everywhere
(Exercise 5.16).

There is one case in which we can make easy analytical progress and that
is for the supersonic flow past a sharp corner which turns the flow through
an angle α, as illustrated in Figure 5.6. Now, by analogy with the argument
at the end of Section 5.3.1, the flow consists of a Prandtl–Meyer expansion
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Fig. 5.5. The function f(µ).
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Fig. 5.6. Supersonic flow past a sharp corner.

fan in which the positive characteristics are straight lines through the origin
separating a uniform region where θ = 0 and µ = µ1 from a second uniform
region where θ = −α and µ = µ2, where f(µ2) = α + f(µ1). The details of
the flow in the expansion fan are left to Exercise 5.17.

We note that if the corner is concave, we will once again encounter the
problem of intersecting characteristics and we will address this difficulty in
Chapter 6.
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5.3.3 The Dam Break Problem

For the shallow water model, a paradigm problem to consider is that of a dam
breaking suddenly. We assume that water of depth h0 is retained in x < 0 by
a dam which is suddenly removed at time t = 0.

x

t

x = –s0t

x = 2s0t
s = 0

Fig. 5.7. Characteristics for the dam break problem.

Using the fact that, from (5.31), u ± 2s is constant on dx/dt = u ± s,
we see that there will be no disturbance in the uniform region x < −s0t,
where s2

0 = gh0, and that u +2s = 2s0 everywhere in the simple wave region,
as shown in Figure 5.7. Since there is no length scale in this problem, there
will be an expansion fan centered on the origin, and along each characteristic
through the origin,

x

t
= u − s.

Hence,

u =
2
3

(x

t
+ s0

)
and s =

1
3

(
2s0 − x

t

)
(5.67)

within the fan, and since the depth of the water vanishes when s = 0, this
solution will only hold for

−s0t < x < 2s0t.

The depth of the water at time t is shown in Figure 5.8.
This solution is analogous to the instantaneous removal of the piston in

Section 5.3.1. An obvious extension would be to remove a dam between two
reservoirs containing water of different heights, but a quick sketch of the char-
acteristics shows that, inevitably, some positive characteristics will intersect
each other and so this problem will also be deferred to Chapter 6.



5.4 *The Hodograph Transformation 121
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Fig. 5.8. The water depth in the dam break problem.

5.4 *The Hodograph Transformation

In Section 5.2.2, we have already commented on the difficulty of solving the
equations of two-dimensional steady flow, even in the irrotational case. How-
ever, since the coefficients in (5.17) are only functions of the velocity compo-
nents u and v, the idea of working in the hodograph plane, in which u and v
are the independent variables, suggests itself as a possible route to a linear
model. If we were simply to regard φ as a function of these variables, we would
make little progress and instead we first make the Legendre transformation to
the new variable

ψ(u, v) = xu + yv − φ(x, y), (5.68)

where x and y are now regarded as functions of u and v. There are good
geometric reasons (see Ockendon et al. [9]) for making this transformation
and we will see that it results in a linear equation for ψ. From (5.68), we find
that

∂ψ

∂u
= x +

(
u

∂x

∂u
+ v

∂y

∂u
− ∂φ

∂u

)
= x

and, similarly, ∂ψ/∂v = y. Then,

1 =
∂

∂u

(
∂φ

∂x

)
=

∂2φ

∂x2

∂2ψ

∂u2 +
∂2φ

∂x∂y

∂2ψ

∂u∂v

and

0 =
∂

∂v

(
∂φ

∂x

)
=

∂2φ

∂x2

∂2ψ

∂u∂v
+

∂2φ

∂x∂y

∂2ψ

∂v2 .

Hence,
∂2φ

∂x2 =
1
D

∂2ψ

∂v2 and
∂2φ

∂x∂y
= − 1

D

∂2ψ

∂u∂v
,

where

D =

∣∣∣∣∣∣∣∣
∂2ψ

∂u2

∂2ψ

∂u∂v

∂2ψ

∂u∂v

∂2ψ

∂v2

∣∣∣∣∣∣∣∣
.
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Similarly, differentiation of ∂φ/∂y leads to

∂2φ

∂y2 =
1
D

∂2ψ

∂u2

and it can be seen that ∣∣∣∣∣∣∣∣
∂2φ

∂x2

∂2φ

∂x∂y

∂2φ

∂x∂y

∂2φ

∂y2

∣∣∣∣∣∣∣∣
=

1
D

.

This transformation is valid as long as D is bounded and non-zero.
Eventually, (5.17) becomes

(c2 − u2)
∂2ψ

∂v2 + 2uv
∂2ψ

∂u∂v
+ (c2 − v2)

∂2ψ

∂u2 = 0, (5.69)

where c2 = c2
0 − [(γ − 1)/2](u2 + v2). This equation is linear and it can be

transformed into an even simpler form by writing u = q cos θ and v = q sin θ
to get

∂2ψ

∂θ2 +
q2c2

c2 − q2

∂2ψ

∂q2 + q
∂ψ

∂q
= 0, (5.70)

where
c2 = c2

0 − γ − 1
2

q2;

this is known as Chaplygin’s equation and it is clearly susceptible to separa-
tion of variables. Chaplygin’s equation can be shown to be equivalent to the
equations obtained by using the Riemann invariants as independent variables,
as described at the end of Section 5.3.1.

Unfortunately, two factors limit the usefulness of (5.70). The first is the
condition that D should be bounded and non-zero. In uniform flow, for ex-
ample, ψ = 0 and the flow region maps into a single point on the hodograph
plane because D = 0. Similarly, for simple wave flow, one of the Riemann
invariants is constant and the flow region maps into a single characteristic
curve in the hodograph plane.

Second, and more crippling, is the fact that everyday boundary conditions
in the physical plane can become unmanageable in the hodograph plane. Sup-
pose, for example, there is a fixed boundary y = f(x); then, the boundary
condition is

∂ψ

∂v
= f

(
∂ψ

∂u

)
on v = uf ′

(
∂ψ

∂u

)
,

and unless the boundary is straight, the nonlinearity reappears in the problem
via the boundary conditions.
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Exercises

R5.1 Suppose that ∂u/∂t + u∂u/∂x = 0. Show that if u(x, 0) = u0(x), then
u = u0(x − ut).

When u0 = 1/(1 + x2), sketch the evolution of u as t increases by
translating the graph of u0 in the x direction by a distance that depends on
u and assuming the graph remains smooth. Show that the characteristics
are x = t/(1 + s2) + s, where s is a parameter, and that on the envelope
of these characteristics, 2ts = (1+ s2)2. Deduce that ∂u/∂x first becomes
infinite at x =

√
3 and t = 8

√
3/9.

5.2 From (5.14) and (5.16), show that for any function λ,[
(c2 − u2)

∂

∂x
+ (λ − uv)

∂

∂y

]
u +
[
(−uv − λ)

∂

∂x
+ (c2 − v2)

∂

∂y

]
v = 0.

Show that the two differential operators in this equation are proportional
to each other when λ = ±c

√
u2 + v2 − c2 and deduce (5.18) and (5.19).

Now write u = cr cos θ and v = cr sin θ and show that the slopes of the
characteristics are

dy

dx
=

−r2 sin θ cos θ ± √
r2 − 1

1 − r2 cos2 θ
,

and then set r = cosecµ to derive the equation of the characteristics in
the form (5.21).
[If you feel strong, you can now go on to check that the Riemann invariants
are given by (5.20).]

5.3 Show that if the base of a shallow stream is z = −b(x), then the two-
dimensional shallow water equations are

∂η

∂t
+

∂

∂x
(u(η + b)) = 0,

∂u

∂t
+ u

∂u

∂x
= −g

∂η

∂x
.

Deduce that if b = mx, then

u ± 2s − mgt = constant on
dx

dt
= u ± s,

where s2 = g(η + mx).
Suppose the initial conditions are u = F (x) and s = s0 − 1

2F (x) at
t = 0. Show that the flow is a simple wave flow with u + 2s − mgt = 2s0
and that

u − mgt = F (x − 3
2
ut + s0t + mgt2).
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5.4 The scaling used to obtain (5.22)–(5.24) shows that for two-dimensional
waves on shallow water, the equations reduce to

∂u

∂x
+

∂w

∂z
= 0,

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
,

∂p

∂z
= −gρ.

Show that the rotational flow u = u0(z), w = 0, η = η0 = constant satisfies
these equations. Show also that in tidal waves for which ū = u − u0, w,
and η̄ = η − η0 are small,

∂ū

∂x
+

∂w

∂z
= 0,

∂ū

∂t
+ u0

∂ū

∂x
+ u′

0w = −g
∂η̄

∂x
,

with w = 0 on z = 0 and

∂η̄

∂t
+ u0

∂η̄

∂x
= w on z = η0.

Now, suppose that η̄ = Rl(aeik(x−ct)), where a, k, and c are constants.
Show that w = Rl(f(z)eik(x−ct)), where

(u0 − c)f ′ − u′
0f = igak,

with f(0) = 0, and f(η0) = iak(u0(η0) − c). Hence, show that c satisfies

g

∫ η0

0

dz

(c − u0(z))2
= 1.

Note that this calculation shows that if there are values of z for which c = u0(z),
then nonlinear terms need to be retained locally near these values of z, which
are called critical layers.

5.5 Show that for two-dimensional flow, the shallow water equations (5.27)
and (5.30) generalize to

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −g

∂η

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −g

∂η

∂y
,

∂η

∂t
+

∂

∂x
(uη) +

∂

∂y
(vη) = 0.
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Show further that in steady flow, 1
2 (u

2 + v2) + gη is conserved along a
streamline and that with u = (u, v, 0),

u ∧ (∇ ∧ u) = ∇( 12 (u2 + v2) + gη
)
.

Compare this result with Crocco’s theorem (Exercise 2.5) and show that
if 1

2 (u
2 + v2) + gη varies from streamline to streamline, then ∇ ∧ u 	= 0.

*5.6 Three-dimensional waves on shallow water are modeled by

∂2φ

∂z2 + δ2
(

∂2φ

∂x2 +
∂2φ

∂y2

)
= 0,

with

∂φ

∂t
+ η +

ε

2δ2

((
∂φ

∂z

)2

+ δ2

((
∂φ

∂x

)2

+
(

∂φ

∂y

)2
))

= 0

and
∂φ

∂z
= δ2 ∂η

∂t
+ εδ2

(
∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y

)

on z = εη(x, 0), and
∂φ

∂z
= 0 on z = −1.

(i) Suppose that δ and ε are both small and that δ2 � O(ε). Suppose also
that the waves only vary gradually in the y direction, with a length
scale ε−1/2. Show that over times of O(ε−1), the surface elevation
satisfies the “dispersionless Kadomtsev–Petviashvili equation”

∂

∂ξ

(
∂η

∂τ
+

3
2
η
∂η

∂ξ

)
+

1
2

∂2η

∂Y 2 = 0,

where Y =
√

εy, τ = εt, and ξ = x − t.
(ii) When δ2 = κε and κ is of O(1), deduce that (5.42) and (5.43) gener-

alize to

∂φ0

∂t
+ η0 +

1
2
ε

((
∂φ0

∂x

)2

+
(

∂φ0

∂y

)2
)

+ κε

(
∂A

∂t
+ η1

)
= O(ε2)

and

∂η0

∂t
+

∂2φ0

∂x2 +
∂2φ0

∂y2 + ε

[
η0

(
∂2φ0

∂x2 +
∂2φ0

∂y2

)
+

∂φ0

∂x

∂η0

∂x
+

∂φ0

∂y

∂η0

∂y

+κ

(
∂2

∂x2 +
∂2

∂y2

)(
A +

1
3

(
∂2φ0

∂x2 +
∂2φ

∂y2

))
+ κ

∂η1

∂t

]
= O(ε2),

respectively.
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Now assume the wave motion is in the x direction to lowest order,
so that φ0 and η0 are functions of x − t = ξ, τ = εt, and Y =

√
εy.

Show that, as in the two-dimensional case,

∂φ0

∂ξ
= η0,

and, hence, that the terms of O(ε) give that φ0 and η0 also satisfy

∂η0

∂τ
+

3
2
η0

∂η0

∂ξ
+

1
6

∂3η0

∂ξ3 +
1
2

∂2φ0

∂Y 2 = 0.

This is called the “Kadomtsev–Petviashvili model” (Drazin and John-
son [20]).

5.7 Set ε = 1 in (5.37)–(5.39) and show that as δ → 0,

∂φ0

∂t
+ η0 +

1
2

(
∂φ0

∂x

)2

= 0

and
∂2φ0

∂x2 +
∂η0

∂t
+

∂φ0

∂x

∂η0

∂x
+ η0

∂2φ0

∂x2 = 0,

using the notation of (5.40). Show that these equations are equivalent to
the shallow water equations (5.27) and (5.30).

Note that in the derivation of (5.27) and (5.30), no explicit assumption was
made about irrotationality and yet the above method relies on (5.36), which
assumes irrotationality. From (5.28), we see that ω = ∇ ∧ u = (0, 0, −z ∂2u

∂x2 ),
and using the scalings of (5.36), |ω| = O(δ2

√
g
h
). Hence, in the shallow water

approximation, the vorticity may be taken to be zero.

*5.8 Immiscible fluids of density ρw and ρ0 (perhaps water and oil) flow along a
horizontal channel 0 < y < D with the oil above the water. The interface
is at y = h(x, t). Making the shallow water assumptions in each fluid,
show that the horizontal velocities uw and u0 satisfy

∂h

∂t
+

∂

∂x
(huw) = 0,

−∂h

∂t
+

∂

∂x
((D − h)u0) = 0,

∂uw

∂t
+ uw

∂uw

∂x
+ g

∂h

∂x
+

1
ρw

∂p

∂x
= 0,

and
∂u0

∂t
+ u0

∂u0

∂x
+ g

∂h

∂x
+

1
ρ0

∂p

∂x
= 0,
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where p(x, t) is the pressure at the interface. Show that for small distur-
bances about the uniform state h = H, uw = u0 = U , and p = p0, the
perturbation h̄ = h − H satisfies(

ρ0

D − H
+

ρw

H

)(
∂2h̄

∂t2
+ 2U

∂2h̄

∂x∂t
+ U2 ∂2h̄

∂x2

)
+ g(ρ0 − ρw)

∂2h̄

∂x2 = 0.

Deduce that waves can propagate on the interface as long as ρ0 < ρw.
5.9 With A = reiθ in (5.53), show that

r = r0 = constant,

θ = −5
3
r2
0T + constant.

Deduce that the effect of the nonlinearity over timescales of t = O(ε−2) is
to change the period of the solution (whose amplitude is given by r = r0)
from 2π (as predicted by (5.51)) to 2π/(1 − 5

3ε2r2
0).

Confirm that the solution is, in fact, periodic over all time scales when
r0 = O(1) by sketching the phase plane of (5.47), for which the phase
curves are

y2 + x2 =
2
3
εx3 + constant,

where y = dx/dt.
*5.10 Show that in axes ξ = x−c0t moving with the speed of sound in a station-

ary gas, the equations for the one-dimensional flow of a heat conducting
gas are

∂ρ

∂t
+ (u − c0)

∂ρ

∂ξ
+ ρ

∂u

∂ξ
= 0,

ρ
∂u

∂t
+ ρ(u − c0)

∂u

∂ξ
+

∂p

∂ξ
= 0

and
∂p

∂t
+ (u − c0)

∂p

∂ξ
+ γp

∂u

∂ξ
=

kR

cv

∂2T

∂ξ2 ,

in the usual notation. To study the long-time evolution of a small-
amplitude wave, write t = ε−1τ , u ∼ εu1+ε2u2+ · · ·, p ∼ p0+εp1+ε2p2+
· · ·, ρ ∼ ρ0 + ερ1 + ε2ρ2 + · · ·, and T ∼ T0 + εT1 + · · ·, where p0 = ρ0RT0.
Then, assuming kR/cv = εk̄, derive the system

−c0
∂ρ1

∂ξ
+ ρ0

∂u1

∂ξ

+ε

[
∂ρ1

∂τ
+ u1

∂ρ1

∂ξ
+ ρ1

∂u1

∂ξ
− c0

∂ρ2

∂ξ
+ ρ0

∂u2

∂ξ

]
= O(ε2),

−c0ρ0
∂u1

∂ξ
+

∂p1

∂ξ
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+ε

[
ρ0

∂u1

∂τ
+ ρ0u1

∂u1

∂ξ
− c0ρ1

∂u1

∂ξ
− c0ρ0

∂u2

∂ξ
+

∂p2

∂ξ

]
= O(ε2),

−c0
∂p1

∂ξ
+ γp0

∂u1

∂ξ

+ε

[
∂p1

∂τ
+ u1

∂p1

∂ξ
+ γp1

∂u1

∂ξ
− c0

∂p2

∂ξ
+ γp0

∂u2

∂ξ
− k̄

∂2T1

∂ξ2

]
= O(ε2).

Deduce that ρ1 = (ρ0/c0)u1, p1 = ρ0c0u1, and p1 = R(ρ0T1 + T0ρ1), and
hence combine these equations and eliminate p1, ρ1 to obtain

2ρ0c0
∂u1

∂τ
+ (γ + 1)ρ0c0u1

∂u1

∂ξ
= k̄

∂2T1

∂ξ2 =
k̄T0

c0
(γ − 1)

∂2u1

∂ξ2 .

This equation can easily be reduced to Burgers’ equation (see later, viz. (6.11)
of Chapter 6). Unfortunately, the assumption that thermal conduction can be
retained while viscosity is ignored is not true for a gas like air, but the effect of
viscosity is merely to change the coefficients in Burgers’ equation.

*5.11 (i) Take δ = 1 and show that (5.37) and (5.38) can then be written as

∂φ

∂t
+ η + ε

[
η

∂2φ

∂z∂t
+

1
2

(
∂φ

∂x

)2

+
1
2

(
∂φ

∂z

)2
]

= O(ε2)

and
∂φ

∂z
− ∂η

∂t
+ ε

[
η
∂2φ

∂z2 − ∂φ

∂x

∂η

∂x

]
= O(ε2)

on z = 0. Deduce that, to lowest order, Q in (5.55) is given by

−2
(

∂φ

∂x
· ∂2φ

∂x∂t
+

∂φ

∂z
· ∂2φ

∂z∂t

)

in accordance with (5.58).
(ii) Show that when the terms on the left-hand side of (5.55) are expanded

in terms of the variables given before (5.57), the term of O(ε2) will be

ε2
(

∂2φ2

∂t2
+

∂φ2

∂z
+ 2

∂2φ1

∂t∂T1
+

∂2φ0

∂T 2
1

+ 2
∂2φ0

∂t∂T2

)
,

all evaluated on z = 0. Use the formulas for φ0, and φ1, and φ2 that
are given between (5.56) and (5.59) to show that the terms in this
expression that are proportional to ei(kx−ωt) are(

−i
∂A

∂X2
− i

∂B

∂ξ
+ i

∂B

∂ξ
+ V 2 ∂2A

∂ξ2 − 2iω
∂A

∂T2

)
ei(kx−ωt).

Unfortunately, there are 19 nonlinear terms of O(ε2) which are pro-
portional to ei(kx−ωt), but following the pattern of (i), it is straight-
forward (but tedious) to see that they are all cubic in φ0 and involve
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two t derivatives and three x or z derivatives. Hence, they are all
proportional to ω2k3A2A∗ei(kx−ωt). Use this information to deduce
(5.59).

*5.12 Show that if φ(x, t) satisfies (5.34) with φ(x, 0) = φ0(x), −∞ < x < ∞,
then its Fourier transform φ̄ =

∫∞
−∞ φ(x, t)eikx dx is

φ̄(k, t) = φ̄0(k)e(ik−εk2)t.

Deduce that as ε → 0 for x, t = O(1),

φ =
1
2π

∫ ∞

−∞
φ̄0(k)eik(t−x)−εk2t dk ∼ φ0(x − t).

However, show that when t = τ/ε, where τ = O(1) and ξ = x − t + O(1),

φ =
e−ξ2/4τ

2π

∫ ∞

−∞
φ̄0(k)e−τ(k+iξ/2τ)2 dk.

When φ̄0(k) is well behaved at k = −iξ/2τ , show that

φ ∼ constant√
τ

e−ξ2/4τ

as τ → ∞. To what initial condition for (5.35) does this solution corre-
spond?

R5.13 The equations (
∂

∂t
+ (u ± c)

∂

∂x

)(
u ± 2c

γ − 1

)
= 0

for the gas velocity u and sound speed c are used to model gas flow in a
tube under the action of a piston at x = X(t). The gas is in x < X(t) and
X(0) = 0, Ẋ(t) ≥ 0 and Ẍ(t) ≥ 0. When the gas is initially at rest with
c = c0, show that

u = Ẋ(τ),

where

u +
2c

γ − 1
=

2c0

γ − 1
and

x − X(τ)
t − τ

= u − c

in the region −c0t < x < X(t). Deduce the following:
(i) When Ẋ is a constant greater than 2c0/(γ − 1), the gas expands into

the region

−c0 <
x

t
<

2c0

γ − 1
.

(ii) When X = gt2/2, then

γu =
(

c0 +
γ + 1

2
gt

)
−
[(

c0 +
γ + 1

2
gt

)2

− 2γg(c0t + x)

]1/2

in the region −c0 < x/t < gt/2, for t < 2c0/(γ − 1)g.
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R5.14 Suppose that in the piston problem 5.13, the piston path is x = − 1
2gt2

where g > 0. Show that the negative characteristics are

x + 1
2gτ2

t − τ
= −c0 − γ + 1

2
gτ

and deduce that, for small τ , these characteristics form an envelope at

x = −c0t, t = 2c0/(γ + 1)g.

Verify that ∂u/∂x is infinite at this point.
R5.15 A piston is withdrawn impulsively from a tube containing gas in x < 0.

The model of Section 5.3 is(
∂

∂t
+ (u ± c)

∂

∂x

)(
u ± 2c

γ − 1

)
= 0

with u = 0, c = c0 = constant for t = 0, x < 0, and u = V on x = V t for
t > 0, with V > 0.

Taking L to be an arbitrary length scale, non-dimensionalize this model
by writing

x = Lx′, t =
L

V t′
, u = V u′, c = c0c

′

to give (
∂

∂t′
+ (Mu′ ± c′)

∂

∂x′

)(
Mu′ ± 2c′

γ − 1

)
= 0,

where M = V/c0, and

u′ = 0, c′ = 1 for t′ = 0, x′ = 0,
u′ = 1 on x′ = t′ for t′ > 0.

Now, use the fact that u′ is evidently only a function of x′, t′, and M to
deduce that u/V is only a function of x/V t and M .

Deduce that the solution is

u =

⎧⎪⎨
⎪⎩

0 if x
V t < − 1

M ,

2V
γ+1 (

x
V t + 1

M ) if − 1
M < x

V t < γ+1
2 − 1

M ,

V if γ+1
2 − 1

M < x
V t < 1.

(∗)

Confirm this result by using (5.63) and (5.64) and noting that only small
values of τ are relevant in generating the expansion fan. Use this idea to
show that

x = t

[
γ + 1

2
Ẋ(τ) − c0

]

and, hence, retrieve the solution (∗).
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R5.16 With reference to Figure 5.4, show that on any negative characteristic,

θ + f(µ) = f(µ1),

where f is defined by (5.66). Show also that at the point S where the flow
deflection is −α, µ is given by

f(µ) = f(µ1) + α.

Show further that on the positive characteristic through S,

θ − f(µ) = −2α − f(µ1)

and infer that θ and µ are both constant on this characteristic.
Writing the boundary as y = −F (x), show that the solution at the

point (x, y) in the simple wave region is

θ(x, y) = −α, f(µ(x, y)) = f(µ1) + α,

where α = tan−1 F ′(ξ) and (y + F (ξ))/(x − ξ) = θ + µ.
Now use Figure 5.5 to show that µ → 0 when α increases to π/2λ−f(µ1)

and hence, that the greatest angle through which a flow can be turned is
(π/2)(1/λ − 1).

5.17 Specialize the answer to Exercise 5.16 to the case when F (x) = x tanα to
show that in the simple wave region, θ and µ are given by

tan(θ + µ) =
y

x
, θ + f(µ) = f(µ1).

How could you show that θ and µ are only functions of y/x without
deriving these equations?

Show that the simple wave region is

tanµ1 >
y

x
> tan(−α + f−1(α + f(µ1)).

R5.18 Fluid of depth s2
0/g is contained in a tank −1 < x < 0, and at time

t = 0, the right-hand wall is moved in a positive direction with speed
U(< 2s0) while the left-hand wall is held fixed at x = −1. Assuming
that the shallow water equations are valid in the subsequent flow, draw a
characteristic diagram and show that

u =
2
3

(x

t
+ s0

)
in a region bounded by x + s0t = 0, x + (s0 − 3U/2)t = 0, and
x = 2s0t − 3(s0t)1/3.
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*5.19 Gas at rest with speed of sound c0 is contained between diaphragms at
x = ±a in a long tube. At t = 0, the diaphragms are broken and the
gas flows along the tube in both directions into a vacuum. Sketch the
characteristics of the subsequent flow in the (x, t) plane. Show that in
x > 0, there is an expansion fan (simple wave flow) in which the solution
is

u =
2

γ + 1

(
x − a

t
+ c0

)
, c =

γ − 1
γ + 1

(
2c0

γ − 1
− x − a

t

)
and that this region is bounded by the curves

x = a−c0t, x = a+
2c0

γ − 1
t, x = a+

2c0

γ − 1
t−2νc

1−1/ν
0 a1/νt1−1/ν ,

where ν = γ+1
2(γ−1) .

In order to solve the problem when the expansion fans interact, we
need to change to new variables. By writing 2r = u + 2c/(γ − 1) and
2s = −u + 2c/(γ − 1), show that the equations of the characteristics
(5.10) reduce to

∂x

∂s
=
(

γ + 1
2

r − 3 − γ

2
s

)
∂t

∂s

and
∂x

∂t
=
(

3 − γ

2
r − (γ + 1)

2
s

)
∂t

∂r
.

Hence, show that the equation for t as a function of r, and s is

∂2t

∂r∂s
+

ν

(r + s)

(
∂t

∂r
+

∂t

∂s

)
= 0. (∗)

Show that the boundary conditions on

x = ±
(

a +
2c0t

γ − 1
− 2νc0t

(
a

c0t

)1/ν
)

transform to

t =
a

c0

[
2c0

(γ − 1)(s + c0
γ−1 )

]ν

on r =
c0

γ − 1

and

t =
a

c0

[
2c0

(γ − 1)(r + c0
γ−1 )

]ν

on s =
c0

γ − 1
.

It is possible to solve for t(r, s) explicitly in terms of hypergeometric func-
tions by using the Riemann function technique (see Garabedian [22]).
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However, it is amusing to note that if we set r + s = ξ, and r − s = η,
equation (*) becomes

∂2t

∂ξ2 +
2ν
ξ

∂t

∂ξ
=

∂2t

∂η2 ,

which is just the wave equation in 2ν +1 dimensions if ξ is identified with
the radial direction and η is identified with time. Therefore, we can use
the general solutions of Exercise 4.23 of Chapter 4 whenever 2ν + 1 is an
integer. Taking 2ν + 1 = n implies that γ = n/(n − 2), so for air with
γ = 7/5, we need to solve the wave equation in seven dimensions!

5.20 Show that in unsteady one-dimensional gas flow, the continuity equation

∂ρ

∂t
+

∂

∂x
(ρu) = 0

implies the existence of a function ξ such that

∂ξ

∂x
= ρ,

∂ξ

∂t
= −ρu.

Deduce that with ξ and t as independent (Lagrangian) variables,

∂x

∂ξ
=

1
ρ
,

∂2x

∂t2
= −∂p

∂ξ
, and

∂

∂t

(
p

ργ

)
= 0.

5.21 Suppose that a shallow layer of water flows down an inclined plane that
makes a small angle α with the horizontal. Show that if the x axis is along
the line of greatest slope and the y axis is perpendicular to the plane, then
two-dimensional shallow water flow is governed by the equations

∂u

∂x
+

∂v

∂y
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p

∂x
+ gα,

0 = −1
ρ

∂p

∂y
− g,

if α is suitably small. If the surface of the water is given by y = η(x, t),
show that p = −ρg(y − η) and that on y = η, v = ∂η/∂t + u(∂η/∂x).
Deduce that

∂η

∂t
+

∂

∂x
(uη) = 0

and
∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= gα,

and show that in steady flow with uη = m,

1
2

m2

η2 + gη − gαx = constant.

Show also that there is a possible solution with η constant in which the
flow has constant acceleration gα down the plane.
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Shock Waves

6.1 Discontinuous Solutions

The time has come to face up to the task of making a mathematical model
that can deal with flows containing shock waves or shocks, across which the
various dependent physical variables themselves have discontinuities. Such
discontinuities are often called jump discontinuities, in contrast to situations
in which only the derivatives of the physical variables have discontinuities.

We have already been motivated to study such shock waves in our study
of both resonance in Section 4.2 and nozzle flow in Section 4.6.2 of Chapter 4.
In neither case were we able to find a physically acceptable smooth solution
and we were thus led to postulate the possibility of jump discontinuities. Even
more compelling, however, was the analysis of Section 5.3 of Chapter 5, where
we saw clear evidence that nonlinear wave propagation frequently leads to a
breakdown in the continuity of the flow variables. Not only did we find that
smooth solutions could fail to exist if discontinuities were imposed in either
the boundary or the initial data as, for example, in the impulsively started
piston problem of Section 5.3.1, but, more interestingly, we have seen that
discontinuities could arise spontaneously in certain flows in which the data
are arbitrarily smooth.

Our theory will apply almost exclusively to systems of partial differential
equations that can be written in the form

∂P
∂t

+
∑

i

∂Qi

∂xi
= R,

where P, Qi, and R are functions only of the dependent variable u and the
independent variables. Such systems are called systems of conservation laws,
and we have already seen many examples. Indeed, in our basic gasdynamic
model, (2.6) of Chapter 2 is already such a law for mass conservation and (2.7)
and (2.8) are consequences of conservation laws for momentum and energy.
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6.1.1 Introduction to Weak Solutions

The problem of finding a discontinuous solution to a model which is posed as
a system of partial differential equations may be clarified by consideration of
a paradigm involving just a single variable.

We suppose that in the one-dimensional flow of a “continuum” of density
ρ(x, t), the mass flux, ρu, is a prescribed function f(ρ). An example of such a
situation would be the simplest “continuum” model for traffic flow (Whitham
[23]) and the resulting solution is often called a kinematic wave, as already
encountered in Section 5.1.

For a continuous flow, the equation of conservation of mass (2.6) will be

∂ρ

∂t
+

∂

∂x
f(ρ) = 0, (6.1)

and we have seen already in Section 5.1 that such equations can readily ad-
mit multivalued solutions. We suppose that the single-valued solution to this
problem has a discontinuity at x = X(t), where ρ jumps from ρ1 to ρ2 as
shown in Figure 6.1.

f ( 1) f ( 2)

X
·

(a)

   1X – f( 1)

(b)

·
   2X – f( 2)

·ρ ρρρρρ

Fig. 6.1. (a) A discontinuous solution to (6.1). (b) The fluxes relative to axes moving
with the shock.

We can derive an equation for Ẋ by a simple conservation of mass argu-
ment. We first change to axes moving with the shock (Figure 6.1b) and then,
relative to the now stationary shock, the mass flux on either side of the shock
is f(ρi) − ρiẊ. Thus, the mass flux discrepancy across the shock is

[f(ρ) − ρẊ],

where, as is usual, the square brackets denote the size of the jump of the
enclosed quantity. Thus, if we prohibit any sources or sinks of mass,

[f(ρ)] = [ρ]Ẋ, (6.2)

and this physically derived law will hold across any such shock. We might hope
that this jump condition (6.2) might be sufficient to determine the position
of a shock uniquely, but we will see that this is not necessarily the case.
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However, before we study the uniqueness question more closely, we first think
more generally about how we might have derived the condition (6.2).

The key idea is to generalize the derivation of the equation of conservation
of mass, so that no assumption about the differentiability of the dependent
variables is needed. For our one-dimensional continuum, the mass in the in-
terval a(t) < x < b(t) is

m(t) =
∫ b(t)

a(t)
ρ dx,

where a(t) and b(t) are any functions of t. The mass flux into (a, b) at time t
will be

q(t) = (f(ρ) − ρȧ)x=a(t) − (f(ρ) − ρḃ)x=b(t),

and, hence, in the time interval (t, t+ δt), the mass balance can be written as

δm = m(t + δt) − m(t) = q(t)δt. (6.3)

x

t

t2

t1

x = a(t)

x = b(t)

C

Fig. 6.2. The contour C in the (x, t) plane.

Now, if we consider a closed curve C consisting of the curves x = a(t) and
x = b(t) for t1 < t < t2 in the (x, t) plane as shown in Figure 6.2 and integrate
(6.3) from t1 to t2, we see that

0 =
∮

C

f(ρ) dt − ρ dx, (6.4)

where C is any closed curve1 in the plane. By using the divergence theorem,
this relation is trivially equivalent to (6.1) for flows in which ρ is a differ-
entiable function. On the other hand, if ρ has a discontinuity on the shock
1 If the interior of C is not a convex region, we may have to divide it up into convex
regions in order to do the integration illustrated in Figure 6.3, but the final result
(6.4) will still hold.
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x

t

x = X(t)

A1

A2
A

B

B2

B1

Fig. 6.3. The contour A1A2B1B2A1 for the discontinuity at x = X(t).

x = X(t), then by taking C to be the contour A1A2B2B1A1 shown in Figure
6.3, we can see that as A1, A2 → A and B1, B2 → B, so that A1B1 and A2B2
lie along x = X(t) on opposite sides of the shock, (6.4) gives∫ B1

A1

ρ dx − f(ρ) dt =
∫ B2

A2

ρ dx − f(ρ) dt.

This may be written as ∫ B

A

[ρ] dx − [f(ρ)] dt = 0,

and since AB is any segment of the curve x = X(t),

[ρ] dx = [f(ρ)] dt

on the shock and (6.2) follows immediately.
Note that as [ρ] → 0, (6.2) gives

Ẋ = lim
ρ2→ρ1

{
f(ρ2) − f(ρ1)

ρ2 − ρ1

}
= f ′(ρ1),

and, so in the limiting case of a weak shock, the shock lies along the charac-
teristic of (6.1). We will find later that this is a general result.

This approach, which uses the integral formulation (6.4) of the problem,
means that we can cater for discontinuous as well as continuous solutions and
these more general solutions are known as weak solutions. For our purposes, a
weak solution (this adjective must not be confused with its use in the previous
paragraph!) is a solution that is piecewise smooth and which satisfies (6.2) at
any points of discontinuity. There is an extensive theory for weak solutions of
partial differential equations which are conservation laws, in which the above
arguments are made rigorous by the use of test functions.2 However, because
2 The basic idea of a weak solution to (6.1) is to replace (6.4) by

∫∫
S
(f(∂φ/∂x) +

ρ(∂φ/∂t)) dx dt = 0, where S is an arbitrary fixed region in the (x, t) plane and
φ is any suitably smooth test function (Ockendon et al. [9]).
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the models we consider here are motivated by physical considerations, we can
appeal directly to arguments such as those used above.

We now summarize the above ideas before applying them to more general
situations. If a scalar conservation law can be written in the integral form∮

C

P dx − Q dt = 0, (6.5)

where P and Q are functions of x and t, and C is any smooth closed curve in
the domain in which the solution is sought, then a differentiable solution will
satisfy the partial differential equation

∂P

∂t
+

∂Q

∂x
= 0, (6.6)

and, across a shock x = X(t),

dx

dt
=

[Q]
[P ]

. (6.7)

We still have to be very careful when using physical arguments that we
have the physically acceptable form for the integral formulation (6.5). For
example, (6.1) could equally well be written as

∂

∂t

(
1
2
ρ2
)

+
∂

∂x
F (ρ) = 0,

where F ′(ρ) = ρf ′(ρ), and this would correspond to an integral formulation∮
c

1
2
ρ2 dx − F (ρ) dt = 0

and a jump condition
[ 12ρ2]Ẋ(t) = [F (ρ)],

which is quite different from (6.2). Thus, there may be a number of integral
formulations corresponding to the same basic differential equation, each of
which will give rise to a different jump condition.

Even when we have decided on the correct jump conditions, it may still
be possible to find a number of possible discontinuous solutions. For instance,
let us consider (6.1) and jump condition (6.2) with f(ρ) = 1

2ρ2 and initial
conditions

ρ(x, 0) =
{

0, x < 0
1, x > 0.

It is easy to see that three possible weak solutions are

ρ(x, t) =

{
0, x < 1

2 t

1, x > 1
2 t,

(6.8)

ρ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 1
4 t

1
2 , 1

4 t < x < 3
4 t

1, x > 3
4 t

(6.9)
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and

ρ(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

0, x < 0
x
t , 0 < x < t

1, x > t,

(6.10)

and we can construct many more. In crude terms, the generalization involved
in formulating the problem as (6.5) is dangerous; it allows for discontinuous
solutions, but at the moment, it allows far too many of them. Thus, we will
need to appeal to some extra information in order to decide which of the many
possible weak solutions is relevant to the physical situation.

This problem of non-uniqueness may be resolved in three distinct ways, as
discussed in Ockendon et al. [9]. The first method is to use specific physical
arguments, the second is to use general thermodynamic principles, and the
third is to use the principle of causality, which basically asserts that the future
cannot influence the past. We will return to the latter two ideas later in the
chapter and just employ the first method here.

We suppose that our continuum model (6.1) is generalized to allow for
small diffusional effects. Thus, whenever ρ varies spatially, we assume that
there will be a small diffusion flux, proportional to −∂ρ/∂x, which transports
material from higher to lower densities. This introduces a second-order term
into (6.1), so that in the case when f = 1

2ρ2, we are led to consider Burgers’
equation

∂ρ

∂t
+ ρ

∂ρ

∂x
= ε

∂2ρ

∂x2 , (6.11)

where ε is a small positive constant.
If we suppose that a wave ρ(x, t) advances into ambient material ρ = ρ1

as x → +∞, it is reasonable to seek a traveling wave in which ρ = ρ(x − V t)
and V > 0 is constant. It is easy to see that no interesting smooth traveling
wave can exist when ε = 0, but for ε > 0, we obtain

ερ′ =
1
2
ρ2 − V ρ + constant,

where the prime denotes differentiation with respect to x−V t. Thus, if ρ → ρ2
as x − V t → −∞,

ερ′ =
1
2
(ρ − ρ1)(ρ − ρ2)

and V = 1
2 (ρ1+ρ2) which, with V = Ẋ, is just jump condition (6.2)! Moreover,

by sketching the solutions in the (ρ, x − V t) plane, we can see that a solution
which allows a transition from ρ1 to ρ2 when ε > 0 is only possible if ρ′ < 0
and ρ1 ≤ ρ2. The width of the transition region is O(ε) and the fact that, even
as ε → 0, the density increases as the wave passes leads us to the “selection
principle” that we need to ensure that there is just one physically acceptable
solution satifying the jump condition (6.2). When this principle is applied to
the above example, we find that all of the discontinuous solutions such as
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(6.8) and (6.9) violate this condition and the only acceptable solution is the
continuous “expansion” given by (6.10). Note the importance of the sign of
the diffusion coefficient ε and the choice of f(ρ) = 1

2ρ2 in this argument; had
ε been negative or if f had been a cubic in ρ, say, we would have been led to
a different selection principle.

We now have the beginnings of a systematic theory for (6.1) with f = 1
2ρ2.

This theory eventually leads to the result that, on the whole line −∞ < x < ∞,
all weak solutions tend, as t → ∞, to a combination of N-waves, in which lin-
ear segments of the form (x + x0)/(t + t0) where x0 and t0 are constants, are
separated by jump discontinuities satisfying (6.2) (see Lax[24]).

It can be shown (Ockendon and Tayler [1]; the argument is similar to
that used in Exercise 5.10) that the introduction of weak viscosity into the
equations of gasdynamics leads systematically to (6.11) as the model for the
pressure or density in a weak shock wave. Hence, the requirement that the
shock is compressive, so that the gas pressure increases as the shock passes,
is indeed the appropriate selection principle for a physically acceptable gas-
dynamic shock.

The idea of weak solutions can be generalized to flows in more than one
space dimension. Suppose, for example, that in two dimensions, the conserva-
tion law for a differentiable flow is

∂ρ

∂t
+

∂

∂x
f(ρ) +

∂

∂y
g(ρ) = 0; (6.12)

then (6.4) is replaced by ∫ ∫
S

(ρ, f, g) · dS = 0, (6.13)

where S is any smooth closed surface in (t, x, y) space. Writing S as F (t, x, y) =
0, so that

dS =
(

∂F

∂t
,
∂F

∂x
,
∂F

∂y

)((
∂F

∂t

)2

+
(

∂F

∂x

)2

+
(

∂F

∂y

)2
)−1/2

dS,

and noting that the normal velocity vn of a point on S is

vn = − ∂F/∂t(
(∂F/∂x)2 + (∂F/∂y)2

)1/2 ,

then an argument analogous to that used to derive (6.2) leads to the jump
condition

[ρ]vn = [(f, g) · n], (6.14)

where n = (∂F/∂x, ∂F/∂y)/((∂F/∂x)2 + (∂F/∂y)2)1/2 is the normal to the
projection of S in the x, y plane at time t.



142 6 Shock Waves

We can remark here that the free surfaces in our gravity wave models in
Chapter 3 can be regarded as jumps from ρ = 0 on one side of the boundary
(the air) to ρ = constant in the water. Hence, corresponding to the continuity
equation (2.6), the jump condition derived from (6.14) leads directly to the
free-boundary condition (3.10).

6.1.2 Rankine–Hugoniot Shock Conditions

We now consider one-dimensional unsteady gas flow with shocks. Motivated
by the previous section, we start by writing down integral formulations for
conservation of mass, momentum, and energy.

We can use (6.4) directly to write down conservation of mass in the form∮
C

ρ dx − ρu dt = 0, (6.15)

and thus, from (6.7), across a shock

Ẋ =
[ρu]
[ρ]

. (6.16)

In a similar way, the conservation of momentum is written as∮
C

ρu dx − (ρu2 + p) dt = 0, (6.17)

to give the shock condition

Ẋ =
[ρu2 + p]

[ρu]
. (6.18)

Finally, the energy equation is∮
C

(
1
2
ρu2 + ρe

)
dx −

(
1
2
ρu3 + ρeu + pu

)
dt = 0, (6.19)

and, on putting e = cvT = p/(γ − 1)ρ, this leads to the third shock condition

Ẋ =
[ 12ρu3 + γpu/(γ − 1)]
[ 12ρu2 + p/(γ − 1)]

. (6.20)

Note that in the same way that we were able to go from (6.5) to (6.6), we can
easily derive the equations for one-dimensional flow without shocks from the
integral formulations (6.15), (6.17), and (6.19) and, after some manipulation,
we arrive at (5.3)–(5.5) as expected. However, we emphasize that the shock
relation (6.20) must be derived from the conservation form of the energy
equation and we note that in spite of (5.5), p/ργ will not be conserved across
a shock.
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The three shock relations or jump conditions given by (6.16), (6.18), and
(6.20) are called the Rankine–Hugoniot relations and are usually written in
the form

[ρ(u − Ẋ)] = 0, (6.21)
[p + ρ(u − Ẋ)2] = 0 (6.22)

and [
γp

(γ − 1)ρ
+

1
2
(u − Ẋ)2

]
= 0. (6.23)

Equation (6.21) comes directly from (6.16), but some algebraic manipulation
is needed to obtain (6.22) and (6.23), (Exercise 6.1).

It can be seen from (6.21)–(6.23) that it is the velocity relative to the
shock that appears naturally in the shock relations. This is not surprising
since, as we saw in Section 6.1.1, physically motivated jump conditions are
most conveniently written down by considering the flow relative to the shock.

Further properties of shocks can be understood by rewriting jump condi-
tions in terms of M1, the upstream Mach number relative to the shock. We
use the suffix 1 for upstream variables ahead of the shock and the suffix 2 for
downstream variables behind the shock and put Mi = (Ẋ − ui)/ci. Then, as
shown in Exercise 6.2, the downstream variables may be expressed in terms
of the upstream ones as

p2

p1
=

2γM2
1

γ + 1
− γ − 1

γ + 1
, (6.24)

ρ2

ρ1
=

Ẋ − u1

Ẋ − u2
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

(6.25)

and

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

. (6.26)

Now, following the clue from the end of Section 6.1.1, we demand that the
shock be compressive so that

p2 ≥ p1. (6.27)

Observations reveal that this inequality is satisfied in practice by all purely
gasdynamic shock waves and it implies from (6.24)–(6.26) that

M1 ≥ 1, M2 ≤ 1, and ρ2 ≥ ρ1. (6.28)

Thus, relative to the shock, the flow upstream (ahead) must be supersonic
and the flow downstream (behind) is subsonic. A less immediate implication
of (6.27) is that

p2

ργ
2

≥ p1

ργ
1
, (6.29)
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which shows that the entropy of the gas always increases as it passes through
the shock (Exercise 6.3). Indeed, were we to be guided by thermodynamics, we
could appeal to the Second Law to assert (6.29) and then deduce (6.27). The
equivalence of this approach to the one we have adopted is unsurprising since
the dissipation inherent in asserting that dQ/dt ≥ 0 in (2.16) is also inherent
in asserting that the coefficient of viscosity of the gas, which is analogous to
the diffusion coefficient ε in (6.11), is positive. Note also that the increase in
entropy across a shock depends on the shock speed Ẋ and this means that we
can never have homentropic flow downstream of a genuinely unsteady shock
for which Ẍ 	= 0.

We now illlustrate these results with an example. We reconsider the piston
problem discussed in Section 5.3.1, but now we suppose that the piston is
pushed into the gas in x > 0 with constant speed V . Let us look for a solution
in which a compressive shock travels into the quiescent gas with constant
speed Ẋ so that, behind this shock, the gas moves with the piston at constant
speed V . We assume the pressure and density ahead of the shock are p0
and ρ0, respectively, and behind the shock are p1 and ρ1, respectively. Then,
writing down the three Rankine–Hugoniot equations allows us to determine
the three unknown quantities Ẋ, p1, and ρ1. Eliminating p1 and ρ1, we obtain
the equation

Ẋ2 − (γ + 1)
2

V Ẋ − c2
0 = 0 (6.30)

for Ẋ, where c2
0 = γp0/ρ0. Since Ẋ must be positive,

Ẋ =
γ + 1

4
V +
[
(γ + 1)2V 2

16
+ c2

0

]1/2

,

and the characteristics are as shown in Figure 6.4. The slope of the shock is
between the slopes of the upstream and downstream positive characteristics
and this configuration, which is typical of all evolutionary shocks, can be
shown to be a manifestation of the principle of causality, which is described
in detail in Ockendon et al. [9]. In the limiting case, as V → 0 and the shock
becomes very weak, the shock can again be seen to lie along the positive
characteristic x = c0t.

6.1.3 Shocks in Two-dimensional Steady Flow

It is quite easy to generalize our results for a one-dimensional steady shock
with Ẋ = 0 to a straight oblique shock simply by imposing a velocity parallel
to the shock on the whole system. However, we proceed more systematically
by deriving the shock relations ab initio by using the method of weak solutions
for two-dimensional steady flow.

The integral equations of motion in this case are even easier to write down
than those of the previous section. Conservation of mass of a fluid in steady



6.1 Discontinuous Solutions 145

x

t
x = Vt

x = X(t)

Fig. 6.4. The compressive piston problem: − − −− positive characteristics, − − −
negative characteristics.

flow implies that ∮
C

ρu · n dS = 0

around any contour C, and so∮
C

ρu dy − ρv dx = 0.

Hence, from (6.7), the jump condition is

dy

dx
=

[ρv]
[ρu]

. (6.31)

There are two components of the momentum equation, and in the x and y
directions, we obtain ∮

C

(p + ρu2) dy − ρuv dx = 0

and ∮
C

ρuv dy − (p + ρv2) dx = 0.

Thus, the shock relations for the momentum are

dy

dx
=

[ρuv]
[p + ρu2]

=
[p + ρv2]

[ρuv]
. (6.32)
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Finally, the energy equation is∮
C

(
pu + ρu

( 1
2 (u

2 + v2) + e
))

dy − (pv + ρv
( 1

2 (u
2 + v2) + e

))
dx = 0,

so that
dy

dx
=

[ 12ρv(u2 + v2) + γpv/(γ − 1)]
[ 12ρu(u2 + v2) + γpu/(γ − 1)]

. (6.33)

Let us now choose our axes so that the shock is along the y axis and so
dy/dx is infinite. Then, (6.31)–(6.33) give

[ρu] = 0, (6.34)
[p + ρu2] = 0, (6.35)

[v] = 0 (6.36)

and [
1
2
u2 +

γp

(γ − 1)ρ

]
= 0, (6.37)

which are, as expected, the Rankine–Hugoniot equations normal to a steady
shock as derived in Section 6.1.2, with the extra condition that the velocity
parallel to the shock is conserved.

Since the condition (6.27) that the shock be compressive implies that the
velocity of the gas normal to the shock is decreased as it passes through a
shock, we can see immediately from Figure 6.5 that the effect of the shock is
to turn the flow toward the shock. Note also that it is only the component of
the velocity normal to the shock that must be supersonic ahead of the shock
and subsonic behind it. Thus, although the overall flow must be supersonic
ahead of the shock, so that M1 > 1, we only know that M2 sin(β − θ) < 1.
Hence, the flow downstream could be either subsonic or supersonic. Indeed,
transonic aeroplanes have swept back wings partly to lessen the possibility of
shocks forming at the leading edges of the wings.

θ

β
U1

U2

y

x

Fig. 6.5. Flow deflection due to an oblique shock.
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We remark that (6.31)–(6.33) are all direct consequences of the unsteady
shock relation (6.14). We may also expect the relations (6.34)–(6.37) to hold
across any smoothly evolving shock, straight or curved, as long as the jumps
are taken with respect to axes moving with the shock and aligned so that the
x axis is in the direction of the normal to the shock.

It is often convenient to work with the actual velocities before and after a
stationary oblique shock rather than with the components along and perpen-
dicular to the shock. We therefore rewrite (6.34)–(6.37) in terms of U1 and U2
as indicated in Figure 6.5 to get

ρ1U1 sinβ = ρ2U2 sin(β − θ), (6.38)
p1 + ρ1U

2
1 sin2 β = p2 + ρ2U

2
2 sin2(β − θ), (6.39)

U1 cosβ = U2 cos(β − θ) (6.40)

and

1
2
U2

1 sin2 β +
γp1

(γ − 1)ρ1
=

1
2
U2

2 sin2(β − θ) +
γp2

(γ − 1)ρ2
. (6.41)

We note that using (6.40), (6.41) can be written as

1
2
U2

1 +
γp1

(γ − 1)ρ1
=

1
2
U2

2 +
γp2

(γ − 1)ρ2
. (6.42)

Now, we can once again manipulate these equations in terms of M1 and β so
that instead of (6.24)–(6.26), we have

p2

p1
=

2γM2
1 sin2 β

γ + 1
− γ − 1

γ + 1
, (6.43)

ρ2

ρ1
=

tanβ

tan(β − θ)
=

(γ + 1)M2
1 sin2 β

2 + (γ − 1)M2
1 sin2 β

(6.44)

and

M2
2 sin2(β − θ) =

(γ − 1)M2
1 sin2 β + 2

2γM2
1 sin2 β − (γ − 1)

. (6.45)

Although these shock relations, together with the condition of compression or
entropy increase across the shock, appear straightforward enough, alarming
complexities can arise even in the simplest application. Consider, for example,
supersonic flow into a concave corner, as illustrated in Figure 6.6 in which the
flow is to be turned through an angle θ. This is analogous to the ingoing piston
problem in one-dimensional unsteady flow and we now try to find a straight
shock in the (x, y) plane which will turn the flow through the angle θ. Using
(6.44), we can deduce that the shock angle β is related to M1 and θ via the
formula

tan(β − θ) =
2 + (γ − 1)M2

1 sin2 β

(γ + 1)M2
1 sinβ cosβ

. (6.46)
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θ

β

M1

M2

Fig. 6.6. Supersonic flow past a concave corner.
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β

θ
θ

Fig. 6.7. The shock angle β in terms of the deflection θ.

Note that as θ → 0, β → sin−1(1/M1) and the shock is again a characteristic.
However, when we plot β against θ in Figure 6.7, we find that there are two
possible values for β for each θ < θcrit. Now, it can be argued (but the details
are beyond the scope of this book) that the upper branch, which represents the
stronger shock, is unstable, but in order to decide what happens if θ > θcrit,
we need some experimental evidence. It turns out that the shock is no longer
straight when θ > θcrit and that it also “stands off” from the wedge, as shown
in Figure 6.8.3 Now, we have lost the simple situation of two uniform flows,
each with constant entropy, and since behind the curved shock the flow is no
longer homentropic, the full equations of gasdynamics will need to be solved
there. Note that the shock will be normal to the incoming flow at A and thus
the flow immediately behind the shock is always subsonic.

These ideas may be used to understand the supersonic flow past a two-
dimensional wing with a sharp leading edge (Figs. 6.9a and 6.9b) and this
leads us ultimately to the even more complicated problem of supersonic flow
past a blunt body, as shown in Figure 6.9c.
3 In view of the dimensionality arguments of Section 5.3.1 and Exercise 5.15, this
phenomenon should not occur for a corner in an infinite wall; in practice, the
stand-off distance and shock curvature will be determined by the downstream
geometry.
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θ
A

Subsonic flow, M < 1

Fig. 6.8. Supersonic flow past a concave corner when θ > θcrit.

(a) (b)

(c)

M > 1

M > 1

M < 1

M < 1

Fig. 6.9. (a) Supersonic flow past a slender wedge θ < θcrit. (b) Supersonic flow
past a wedge with θ > θcrit; ..... indicates the sonic line. (c) Supersonic flow past a
blunt body; ..... indicates the sonic line.
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The blunt body clearly creates a curved shock with stand off, and if the
body is also slender enough, one can expect that although there will be a
subsonic region near the nose, the flow will rapidly accelerate to become su-
personic downstream of the sonic line on which M = 1. This change from
subsonic to supersonic flow makes the numerical problem particularly trou-
blesome. However, there is one limiting situation in which such blunt body
flows can be understood analytically and we will return to this in Section
6.3.4.

6.1.4 Jump Conditions in Shallow Water

We motivate our discussion of discontinuous solutions of the shallow wa-
ter equations by making two practical observations. The first is that bores,
which are steep waves separating regions of different but nearly constant wa-
ter depth, can be driven upstream in estuarine rivers at periods of high tide.
Second, the radial jet formed when the jet from a kitchen tap impinges on
a flat-bottomed sink usually suffers an abrupt increase in depth at a definite
distance from the point of impingement. In both cases, the sudden jump is
reminiscent of a shock wave; the water flows from a fast shallow region, which
can be observed to be supercritical, into a slower deeper region, which can
be observed to be subcritical, and we will find a close analogy between such
water flows and supersonic and subsonic gas flows.

Since the shallow water equations (5.27) and (5.30) are only approxima-
tions to the conservation form of the Euler equations, it is dangerous to try to
formulate the equations in integral form directly. Hence, we study these “hy-
draulic” discontinuities using physical concepts to motivate the appropriate
Rankine–Hugoniot relations for shallow water.

Using the notation of Section 5.2.3, conservation of mass across a bore
moving with speed Ẋ will immediately imply that

[η(u − Ẋ)] = 0. (6.47)

The other equation of shallow water flow, (5.27), can be thought of as either
conservation of momentum or conservation of energy, but in a continuous flow,
both these quantities are conserved by this one equation, as was the case for
the inviscid incompressible Euler equation (2.7). Now, because we only have
two first-order equations (5.27) and (5.30), there can only be two Rankine–
Hugoniot conditions and hence, across a bore, it is possible to conserve either
momentum or energy but not both. In most situations, ranging from the
kitchen sink example to a bore on a river, it is more realistic to conserve
momentum, and energy will be dissipated. For weak bores, this energy is
mainly transported away from the discontinuity by a train of waves and this
is known as an undular bore, whereas for a stronger turbulent bore, the energy
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is dissipated in the form of turbulence at a wave crest.4 Either type of bore
may also be referred to as a hydraulic jump, although this term is more usually
reserved for a stationary discontinuity.

It can also happen that momentum can be destroyed by a sluice gate or a
small obstacle on the bed of the river. In this case, a smooth transition can be
created for which it may be more appropriate to conserve energy rather than
momentum. However, for the rest of this chapter, we will study momentum-
conserving bores.

First, we make use of the fact that the change in momentum of the flow on
either side of the bore must be balanced by the pressure forces acting. Thus,

[ρη(u − Ẋ)u] +
[∫ η

0
(p − p0) dz

]
= 0,

and, using (6.47) and remembering that p − p0 = ρg(η − z), we obtain[
ρη(u − Ẋ)2 + 1

2ρgη2
]
= 0. (6.48)

Using the now familiar conservation of mass argument and rewriting (6.47)
and (6.48) in terms of s, where s2 = gη, we obtain the shock relations in the
form

[s2(u − Ẋ)] = 0 (6.49)

and [
s2(u − Ẋ)2 +

1
2
s4
]

= 0. (6.50)

Note that although the partial differential equations for unsteady one-dimen-
sional gasdynamics can be translated into those for shallow water by putting
c = s and γ = 2, the Rankine–Hugoniot shock relations (6.21)–(6.23) are
nothing like (6.49) and (6.50). Hence, although hydraulic tanks can be used
in the laboratory to simulate continuous homentropic gas flow, they cannot
be used to study gas flows with shocks. However, we remark that we could
have obtained (6.49) and (6.50) from the gasdynamic shock conditions (6.21)
and (6.22) for a gas with γ = 2 had we assumed that the entropy, and hence
p/ρ2, was conserved across the shock. We know that entropy is not conserved
across a shock in a real gas but a good model for internal shocks in water
(not hydraulic jumps) is to use the Rankine–Hugoniot conditions (6.21) and
(6.22) together with conservation of entropy [p/ργ ] = 0, with γ � 7 (Glass
and Sislan [4]).

We cannot ignore energy altogether and, indeed, energy considerations
are vital when it comes to selecting physically acceptable solutions of (6.49)
and (6.50). We must make sure that energy is dissipated rather than gained
4 Practical observations indicate that the transition from an undular bore to a
turbulent bore occurs when the ratio of the increase in depth to the original
depth is around 0.3.
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across a momentum-preserving discontinuity, and when we do this, we derive
a condition which is analogous to that derived from the compressive condition
(6.27) for a gasdynamic shock. As a discontinuity converts fluid from velocity
u1 and depth η1 to velocity u2 and depth η2, the rate of increase in kinetic
and potential energy is

∆Ė1 =
[
1
2
ρηu2(Ẋ − u) +

∫ η

0
ρgz(Ẋ − u) dz

]2
1

=
ρ

2g
[(u2 + s2)s2(Ẋ − u)]21.

However, energy is also created by the work done by the pressure forces, and
the rate at which this work is done is

∆Ė2 =
[∫ η

0
(p − p0)u dz

]1
2

= − ρ

2g
[s4u]21.

Thus, on using (6.49) and (6.50), the total rate at which energy is gained is

∆Ė1 + ∆Ė2 =
ρ

g
s2
1(Ẋ − u1)

[
1
2
(u − Ẋ)2 + s2

]2
1
, (6.51)

which can be rewritten as

−ρ(Ẋ − u1)(s2
2 − s2

1)
3

4gs2
2

(6.52)

after further manipulation. Thus, we see immediately that energy cannot be
conserved. Moreover, since energy must be lost, we see that if Ẋ > u1, then
s2 > s1. Hence, for a momentum-conserving turbulent bore on shallow water,
the flow in front of the discontinuity will be shallower than the flow behind
it. In the same way, in a stationary hydraulic jump, the flow can only jump
from fast shallow flow to a slower deeper flow. It can be shown (Exercise 6.11)
that relative to the bore, the flow ahead of the discontinuity is supercritical
and the flow behind is subcritical; this is exactly analogous to the result for a
plane shock in a gas where, relative to the shock, the flow ahead is supersonic
and the flow behind is subsonic.

As an example, we consider a piston being pushed with constant velocity
V into static water of depth s2

1/g. If we assume that a bore runs ahead of
the piston with constant speed Ẋ and that the depth of the water behind the
bore is s2

2/g, we can use (6.49) and (6.50) to get

s2
2(V − Ẋ) = −s2

1Ẋ

and
s2
2(V − Ẋ)2 + 1

2s4
2 = s2

1Ẋ
2 + 1

2s4
1.
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Hence, eliminating s2, the equation for Ẋ is

Ẋ3 − 2V Ẋ2 + Ẋ(V 2 − s2
1) + 1

2s2
1V = 0,

which is very different from (6.30), the equation for the shock speed in the
analogous gasdynamic problem.

6.2 Other Flows involving Shock Waves

In this section, we consider a number of more complicated flows in which
shocks can arise. First, we consider some gasdynamic examples and then one
from shallow water theory, all of the examples being extensions of cases that
have been considered earlier in this chapter.

6.2.1 Shock Tubes

We are now in a position to generalize the instantaneously removed piston
problem of Section 5.3.1 to the more physically realistic case of the sudden
rupture of a diaphragm separating high- and low-pressure gas in a shock tube.
Immediately after the rupture, the low-pressure gas will be compressed by
the high-pressure gas and, at first sight, we are led to conjecture the scenario
sketched in Figure 6.10, where a shock propagates into the low-pressure gas
on the right and an expansion wave propagates into the high-pressure gas on
the left. Thus, we can use the solution in Section 5.3.1 for the expansion wave
and the solution from Section 6.1.2 for the shock wave generated by an ingoing
piston. However, when we try to piece together these two solutions, we find
that it is not possible to construct a solution which is continuous away from
the shock. We need to introduce a new kind of discontinuity at the position
where the low-pressure gas which has traversed the shock meets the expanded
high-pressure gas from the left of the diaphragm. In general, these two regions
of gas will have different entropies and so it will be impossible to make both
the pressure and the density continuous at this point. If we go back to the
Rankine–Hugoniot shock conditions (6.16), (6.18), and (6.20), we can see that
it is possible to have discontinuities in which

[u] = 0, [p] = 0, [ρ] 	= 0 (6.53)

as long as u = Ẋ on both sides of the discontinuity. This special solution of
the Rankine–Hugoniot equations is called a contact discontinuity, and in this
problem, a contact discontinuity will travel with the gas particles which were
originally adjacent to the diaphragm. Hence, the final scenario illustrated in
Figure 6.10 must contain a contact discontinuity along the line OC, as shown
in detail in Exercise 6.17. Note that in the limiting case where there is a
vacuum in the right-hand half of the tube initially, we retrieve the solution
mentioned in Section 5.3.1 when the piston is removed instantaneously.
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Fig. 6.10. A shock tube.

From a mathematical point of view, it is always helpful to think of jump
discontinuities in the limit as they become vanishingly weak. We have already
seen in Section 6.1.2 that as the jumps tend to zero, the shock tends to either
the positive or negative characteristic. However, when we take the same limit
for a contact discontinuity, its path remains the particle path dX/dt = u,
which is the third characteristic of the system of equations (5.3)–(5.5).

A similar analysis can be performed for a sudden dam break in which
there is originally water at different levels on both sides of the dam. A bore
will travel into the shallower water and an expansion wave will travel into the
deeper water, but in this case, there will be no contact discontinuity since
the original system of (5.27) and (5.30) has just two characteristics (Exercise
6.14).

6.2.2 Oblique Shock Interactions

We can use the Rankine–Hugoniot conditions for an oblique shock to construct
another composite flow, this time in two dimensions. Suppose we consider the
flow generated by two corners, as shown in Figure 6.11, and ask what happens
downstream of the shock interaction.

Since, from (5.21), we know that the characteristics make angles ± sin−1( 1
M

)
with the flow direction and that the shocks become characteristic when they
are weak, it is tempting to postulate, at least for small flow deflections, the
existence of two crossing “transmitted” shocks, as shown in Figure 6.12. These
shocks must be arranged so that the ultimate flow deflection is the same for all
incoming fluid particles. This is indeed possible for certain parameter regimes
of the variables M1, β1, and β2, but it is only possible at the expense of
admitting a “two-dimensional” contact discontinuity along OP, as shown in
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M1

Fig. 6.11. Flow generated by two concave corners.
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Fig. 6.12. Shock interaction; case 1: incident shocks I1 and I2 are at angle β1 and
β2 to the free stream.

Figure 6.12 (see Exercise 6.18 for details). Note that the velocity perpendicular
to the contact discontinuity must be zero on both sides and the jump in p
must also be zero, but that from (6.31)–(6.33), the discontinuity can allow
both

[ρ] 	= 0 and [v] 	= 0,

where v is the component of velocity parallel to the discontinuity. Thus this
discontinuity is a vortex sheet and we recall from Section 4.4 that a vortex
sheet is always subject to the Kelvin–Helmholtz instability. Hence, we expect
it to rapidly “smear out” into a turbulent layer that mixes the gas on either
side of the sheet.

However, this is not the end of the story because it is sometimes possible
for two “incoming” shocks to generate just one outgoing shock and a contact
discontinuity as shown in Figure 6.13. When the lower shock is normal to the
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oncoming stream, this is the so-called Mach reflection phenomenon, which is
often observed when shocks interact with viscous boundary layers (Liepmann
and Roshko [24]).

Vortex sheet

θ

θ
φ

'β

β

'

Fig. 6.13. Shock interaction; case 2.

Finally, we mention the possibility of achieving shock attenuation as a
result of impact with a vortex sheet, as shown in Figure 6.14. As detailed in
Exercise 6.20, the strength of the transmitted shock T is less than that of
the incident shock I, and this has been proposed as a method of ameliorating
sonic boom. In this context, we note that annoying oblique “bow shocks”

M2

T

T

R
M1

Vortex sheet

θ

θ

φ

'

Fig. 6.14. Shock reflection and transmission from a vortex sheet.

are inevitably generated by supersonic aircaft with the one exception of the
Busemann biplane, which generates a finite system of shocks, as shown in
Figure 6.15, and is described in Liepmann and Roshko [25]. Alas, this biplane
is only of academic interest since it generates no lift!
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M1

p1

Fig. 6.15. Shock waves generated by the Busemann Biplane.

6.2.3 Steady Quasi-one-dimensional Gas Flow

In Section 4.6.2 we showed how, by using a control-volume argument, the
equations of gasdynamics can be reduced to three algebraic equations (4.43)–
(4.45) in the case of flow in a nozzle of slowly varying cross-section A(x). Such
flows are called quasi-one-dimensional and our knowledge of shock waves now
enables us to understand the flow through a converging–diverging nozzle more
fully.

We first use (4.43)–(4.45) to write A and the pressure p in terms of the
Mach number M = u/c as

A =
m

ρ0c0M

{
1 +

γ − 1
2

M2
}(γ+1)/2(γ−1)

(6.54)

and

p = p0

{
1 +

γ − 1
2

M2
}−γ/(γ−1)

. (6.55)

Here, p0, ρ0, and c0 are the pressure, density, and speed of sound, respectively,
in a large reservoir which feeds the nozzle. Plotting A against M as in Figure
6.16, we see that the minimum value Ac of this function can only be attained
when M is unity and the flow is sonic.5 Hence, we are led to consider the flow

A

M

Ac

1

Fig. 6.16. Variation of A with M from (6.54).

from a high-pressure reservoir into a converging–diverging nozzle, known as a
Laval nozzle, as shown in Figure 6.17.

If the minimum cross-sectional area of the nozzle, Amin, is greater than
Ac, and the flow entering the nozzle is subsonic, then the flow will always be
5 Note that we have implicitly assumed that the flow is compressible. Clearly, an
incompressible flow can flow smoothly through any slowly varying nozzle.
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p0
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Amin p1

Fig. 6.17. A Laval nozzle.

subsonic, whereas if we can arrange for Amin to equal Ac, it might be possible
for the flow to become supersonic in the divergent part of the nozzle. If this
can be done, it leads to a design for a supersonic wind tunnel. The flow rate
m will be controlled by the downstream pressure p1 imposed at the end of
the nozzle, and by decreasing p1 from p0, we will arrive at an exit pressure
pc for which Amin = Ac. The question then arises as to “what happens when
p1 < pc?”

A

P

x

p0

Amin

p1 = p0

p1 = pc

p1 = pe

p1 = ps

M = 1

Subsonic branch (1)

Subsonic
branch (2)

Fig. 6.18. Pressure variation in a nozzle for varying values of the downstream
pressure p1.

In Figure 6.18, we show how the pressure along the nozzle varies for differ-
ent values of p1. We can see that if p1 is between p0 and pc, then the flow will
remain subsonic throughout. When p1 = pc, the Mach number will be unity
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at the throat, although the flow will revert to being subsonic in x > 0, as
indicated by branch (1) in Figure 6.18. However, the key observation is that
there is another possible smooth solution with M = 1 at the throat; this will
correspond to branch (2) with supersonic flow in x > 0 and it occurs when
p1 = ps, which can be found from (6.54) and (6.55). When p1 < pc, the flow
is said to be choked, and the new phenomenon in such flows is the presence
of a shock wave in the supersonic flow downstream of the throat; the flow
upstream of the throat is the same for all p1 < pc. As p1 decreases from pc,
this shock moves to the right and eventually reaches the end of the nozzle
when p1 attains yet another critical value pe. For values of p1 between ps and
pe, the shock wave is ejected into the downstream atmosphere in a compli-
cated three-dimensional flow involving multiple shock waves. Furthermore, if
p1 < ps, the flow downstream will contain a series of Prandtl–Meyer expansion
fans as discussed in Chapman [26].

6.2.4 Shock Waves with Chemical Reactions

The violence inflicted on gas particles as they pass through a shock wave can
frequently induce chemical reactions, the most awesome of which is when a
combustible gas undergoes an intense exothermic reaction as it encounters the
temperature, pressure, and density rise at the shock. Such a configuration is
called a detonation and here we mention the simplest model for such detona-
tions. We simply sweep all of the chemistry aside and assert that although
the mass and momentum conservation laws still apply at the shock, energy is
gained at a prescribed rate E per unit mass. Thus, (6.23) becomes[

γp

(γ − 1)ρ
+

1
2
(Ẋ − u)2

]
= E. (6.56)

This makes our mathematical analysis, which is complicated enough when
E = 0, even more difficult to present lucidly. However, great insight can be
obtained by noticing that, from (6.24) and (6.25), when E = 0, the ratios
p̃ = p2/p1 and ρ̃ = ρ2/ρ1 satisfy

p̃ =
(γ + 1) − (γ − 1)/ρ̃

(γ + 1)/ρ̃ − (γ − 1)
, (6.57)

where the suffix 1 is upstream in the unreacted gas. Thus, the point (p̃, ρ̃−1)
lies on a hyperbola in the (p̃, ρ̃−1) plane called the Chapman–Jouguet curve,
as shown in Figure 6.19. The point (1, 1) corresponds to the upstream con-
dition, and the unique compressive solution satisfying the Rankine–Hugoniot
condition lies on the part of the hyperbola indicated by the solid line.

Now, let us reintroduce E. Equation (6.57) becomes

p̃ =
γ + 1 − (γ − 1)/ρ̃ + 2γ(γ − 1)E/c2

1

(γ + 1)/ρ̃ − (γ − 1)
, (6.58)
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Fig. 6.19. The Chapman-Jouguet curve.
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Detonation

Deflagration

Fig. 6.20. The Chapman-Jouguet curve with constant energy addition.

so that the Chapman–Jouguet curve is displaced as shown in Figure 6.20. The
point (1, 1) still represents the upstream condition, but our selection criteria
that led us to reject the dashed segment of the hyperbola in Figure 6.19 is
no longer available; even the simplest entropy argument would be difficult
in the presence of the reaction. It is easy to see that the dashed segment
where p̃ > 1 and ρ̃ < 1 cannot satisfy the Rankine–Hugoniot conditions, but
the lower branch where p̃ < 1 and ρ̃ < 1 cannot be ruled out. This branch
represents a deflagration and it can be observed in certain circumstances.
Further details about this theory can be found in Courant and Friedrichs [27].

6.2.5 Open Channel Flow

Our last example concerns the steady flow of shallow water along a straight
channel with a horizontal bottom, but having slowly varying width. This
problem is very similar to the gas flow studied in Section 6.2.3 if we make
the usual shallow water assumptions that pressure is hydrostatic and that the
flow is quasi-one-dimensional. If the width of the channel is b(x), the depth
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of the water is η, and the horizontal velocity is u, conservation of mass in a
control volume gives

ubη = q, (6.59)

where q is the constant flux along the channel. In addition, Bernoulli’s equa-
tion on the surface streamline leads to

1
2u2 + gη = gH, (6.60)

where H is the pressure head which is the depth of the water in a large
reservoir which feeds the channel. We write these equations in terms of the
Froude number

F =
u√
gη

(6.61)

to get

η =
H

1 + 1
2F 2

,

u = F

(
gH

1 + 1
2F 2

)1/2

and

b =
q

g1/2H3/2F

(
1 +

1
2
F 2
)3/2

.

Plotting b as a function of F in Figure 6.21 shows that b has a minimum when
F = 1.

1

b

F

Fig. 6.21. Variation of b with F .

As for the quasi-one-dimensional gas flow, it is interesting to consider flow
in a channel whose width first converges and then diverges. From Figure 6.21,
we see that it is possible to have a flow that changes from subcritical (F < 1)
to supercritical (F > 1) as long as F = 1 at the point of minimum width,
and in that case, the depth will be a decreasing function of distance along
the channel. As in Section 6.2.3, it may be necessary to introduce a steady
hydraulic jump into the supercritical flow in the divergent part of the channel
in order to satisfy the downstream conditions.
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6.3 *Further Limitations of Linearized Gasdynamics

In this section, we first revisit the linear theory for thin wings in transonic
and supersonic two-dimensional steady flow that were derived in Section 4.6.3.
We will show how we can (i) discuss the transonic case when M � 1 and (ii)
extend the supersonic theory to the far field. We then give a brief description
of how to deal with shocks that are extreme enough to drive the gas out of
thermodynamic equilibrium and hence invalidate the gas law (2.9). Finally,
we return to study the flow past a thin wing when M  1.

6.3.1 Transonic Flow

In Section 4.6.3, we have already anticipated trouble with our thin wing theo-
ries when the free-stream Mach number M is close to unity. To derive a small
disturbance theory that is valid in the transonic regime, we have to return to
(5.17). Writing the velocity potential as Ux + φ, (5.17) becomes(

c2 −
(

U +
∂φ

∂x

)2
)

∂2φ

∂x2 −2
(

U +
∂φ

∂x

)
∂φ

∂y
· ∂2φ

∂x∂y
+

(
c2 −
(

∂φ

∂y

)2
)

∂2φ

∂y2 = 0,

where

c2 = c2
0 +

γ − 1
2

U2 − (γ − 1)
2

((
U +

∂φ

∂x

)2

+
(

∂φ

∂y

)2
)

.

We can still assume that φ and its derivatives are small, but we must remember
that c2

0 − U2 is also small now. Thus, the coefficient of ∂2φ/∂x2 is

c2 −
(

U +
∂φ

∂x

)2

� c2
0 − U2 − (γ + 1)U

∂φ

∂x
,

and we are led to deduce that, for small disturbances in transonic flow,

(1 − M2)
∂2φ

∂x2 +
∂2φ

∂y2 =
(γ + 1)M

c0

∂φ

∂x

∂2φ

∂x2 . (6.62)

This equation is nonlinear, and its qualitative properties are much less well
understood than are the corresponding subsonic and supersonic equations.
The basic difficulty is that when M = 1, (6.62) changes from being hyperbolic
to elliptic when ∂φ/∂x changes sign. This equation is said to be of mixed type;
some idea of the possible behavior of solutions of such equations can be gained
by considering the linear mixed-type Tricomi equation as in Exercise 4.1 (see
Garabedian [22]).

We should also mention that we must be prepared for solutions of (6.62)
to contain shocks. Indeed, experimental evidence for slightly subsonic flow
past a thin wing shows both a supersonic region and a shock, as illustrated in
Figure 6.22. Fortunately, these shocks are weak enough for the entropy jump
across them to be neglected and hence for the assumption of irrotationality
to be justified.
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(a) Lower transonic regime

(b) Upper transonic regime

M < 1
M < 1

M < 1

M > 1 M > 1

M > 1

M > 1

Fig. 6.22. Transonic flow past a thin wing.

6.3.2 The Far Field for Flow past a Thin Wing

The linearized theory of Section 4.6.3 showed that in supersonic flow past a
thin wing, the disturbance is confined between characteristics emanating from
the leading and trailing edges of the body and that this inevitably entailed
some sort of discontinuity across these characteristics. A calculation can be
performed to show that weak shocks or expansion fans will, in fact, lie near
these characteristics. However, such discontinuities may be neglected when
calculating the aerodynamic forces. However, from an environmental point of
view, the effect of these discontinuities needs to be understood in the “far
field” of the wing in order to assess noise at ground level due to supersonic
aircraft.

We first need to assess the region of validity of the linearized solution
(4.53), and so we go to the next term in the expansion for the velocity potential
by writing φ ∼ Ux+ lU(εφ0 + ε2φ1 + · · ·) in (5.17). Then, φ0 will be given by
(4.53) so that above the wing,

φ0 = −B−1f+(x − By) for y > 0,

where B2 = U2/c2
0 −1 and x and y have been made dimensionless with l. The

equation for φ1 is

B2 ∂2φ1

∂x2 − ∂2φ1

∂y2 =−M2
(
2
∂φ0

∂y

∂2φ0

∂x∂y
+ (γ + 1)

∂φ0

∂x

∂2φ0

∂x2 + (γ − 1)
∂φ0

∂x

∂2φ0

∂y2

)
.

Now, substituting for φ0 and changing to variables ξ = x−By and η = x+By
leads to

4B2 ∂2φ1

∂ξ∂η
= −M4

B2 (γ + 1)f ′
+(ξ)f ′′

+(ξ)
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in y > 0, and the solution is

φ1 = − M4

8B4 (γ + 1)ηf ′
+(ξ)2 + F (ξ) + G(η),

where F and G are arbitrary functions. Thus, as x and y increase along the
lines where ξ is constant, ε2φ1 will inevitably be comparable in size with εφ0
when x and y are O(ε−1). Physically, what is happening is that nonlinearity
is, inexorably, modulating the linear theory, as we have already seen in Section
5.2.4 and in Exercise 5.10. A manifestation of this modulation is that to second
order in ε, the characteristics are no longer straight, but curved, as sketched
in Figure 6.23. The divergence of the characteristics which intersect the wing
is negligible on length scales of O(l), but cannot be ignored in the far field at
distances of O(ε−1l) (see Van Dyke [28]).

Fig. 6.23. The farfield flow past a thin wing in supersonic flow.

To get a quantitative description of the far-field flow, we can use the same
method as that of Section 5.2.4. Guided by the analysis above, we change to
variables ξ = x − By and Y = εy in (5.17) before writing φ = Ux + lUεΦ
which leads directly to

2B
∂2Φ

∂ξ∂Y
= −(γ + 1)M4 ∂Φ

∂ξ

∂2Φ

∂ξ2 + O(ε).

Thus, the perturbation velocity u = ∂Φ/∂ξ satisfies the now familiar kinematic
wave equation

∂u

∂Y
+

(γ + 1)M4

2B
u

∂u

∂ξ
= 0, (6.63)

with the initial condition u = −(1/B)f ′(ξ) on Y = 0. We can even write down
the explicit solution (shock waves and all!) in the case where the wing profile is
parabolic and at zero incidence (Exercise 6.22). In this case, both the leading
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and trailing characteristics are weak shocks6 and this solution reveals the
famous “N -wave” solution, which can be shown to be the “generic” solution
as Y → ∞ and gives a pressure profile as shown in Figure 6.24 (see Whitham
[23]). The shocks weaken as O(Y −1/2) at the same time as the expansion wave
spreads parabolically in ξ. This explains the “double bang” that is sometimes
heard on the ground when an aircraft flies supersonically at altitude, but
possibly many kilometers away horizontally.

p

x

0(Y1/2)

0(Y–1/2)

Fig. 6.24. The pressure in the far field.

6.3.3 Non-equilibrium Effects

It is possible for a strong shock to cause a gas such as air to cease to be
in thermodynamic equilibrium. There are several mechanisms that can be
involved, the commonest being dissociation (in which the molecules are split)
and ionization. The latter takes us into the realms of plasma physics, so here
we give a brief account of a simple model for dissociation. In both cases, the
spirit of the modeling is the same, with the gas being regarded as having two
temperatures: its equilibrium temperature T and an internal temperature Ti.
The temperature Ti measures the energy in the molecular vibrational state
of the dissociating gas and is only equal to T in thermodynamic equilibrium.
The state furthest from equilibrium is when Ti = 0 and this is called the
frozen state.

As in traditional models for chemical reactions, we postulate a rate equa-
tion

τ
dTi

dt
= (T − Ti), (6.64)

which governs the relaxation of the internal temperature to its equilibrium
value; τ is the timescale for this relaxation process. We also assume that the
internal energy is given by

e = cvf
T + cvi

Ti, (6.65)
6 Depending on the aerofoil shape and angle of incidence, the leading edge could
emit either two weak shock waves or a weak shock and a weak expansion wave.
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where cvf
is the specific heat of the frozen gas and cvf

+ cvi
= cve

is the
specific heat in equilibrium. When we use (6.64) and (6.65) with the perfect
gas law (2.9) to eliminate T and Ti, we see that(

τ
d

dt
+ 1
)

e =
τ

γf − 1
d

dt

(
p

ρ

)
+

1
γe − 1

p

ρ
, (6.66)

where γe and γf are defined by cvf
= R/(γf − 1) and cve = R/(γe − 1). Now,

we can use the energy equation (2.8) with (6.66) to get(
τ

d

dt
+ 1
)(

p

ρ2

dρ

dt

)
=

d

dt

(
τ

γf − 1
d

dt

(
p

ρ

)
+

1
γe − 1

p

ρ

)
.

After some manipulation, this becomes

ρτ̄
d

dt

(
1
ρ

(
dp

dt
− c2

f

dρ

dt

))
+

dp

dt
− c2

e

dρ

dt
= 0, (6.67)

where cf =
√

γfp/ρ and ce =
√

γep/ρ are the speeds of sound in the frozen
and equilibrium gas respectively, and τ̄ = ((γe − 1)/(γf − 1)) τ .

As in conventional gasdynamics, it is easiest to see the general properties
of the solution for acoustic waves and we also restrict our discussion here to
one dimension for simplicity. Following our usual linearizing procedure, we
write (2.6) and (2.7) in the form (3.1) and (3.2), respectively, and then use
(6.67) to get

τ̄
∂

∂t

(
∂2u

∂t2
− c2

f0

∂2u

∂x2

)
+

∂2u

∂t2
− c2

e0

∂2u

∂x2 = 0, (6.68)

where cf0 and ce0 are the undisturbed speeds of sound. Thus, the model has
reduced to a generalized wave equation in which, for small times, the first term
dominates and waves propagate with speed cf0 , but eventually these waves
transform into ones traveling with speed ce0 . The equilibrium speed ce0 will
always be less than the frozen speed cf0 since cve > cvf

.
Just as in Section 6.3.2, nonlinearity, however small, will ultimately mod-

ulate many linear propagating waves. A somewhat tedious generalization of
the argument leading to (6.63) shows that when relaxation occurs, the very
far field of a wave is described by Burgers’ equation (6.11), (as in Exercise
5.10).

6.3.4 Hypersonic Flow

In Section 4.6.3, we drew attention to the fact that the linearized approxima-
tion is no longer valid when Mε = O(1). When this happens, the slope of the
characteristic at the leading edge of the wing is comparable with the slope
of the body; hence, the shock that is generated there will no longer be weak.
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Thus, we need to reconsider the shock relations in this situation in order to
determine the magnitudes of the various flow quantities between the shock
and the body.

Suppose a two-dimensional steady shock is generated by flow past a sym-
metric wedge as illustrated in Figure 6.25, where 2ε is the small angle of the
wedge and α, the angle of inclination of the shock, is also small. Now, from the
Rankine–Hugoniot condition (6.46), with β = α and θ = ε, the assumption
that α and ε are both small implies that

(γ + 1)M2α(α − ε) = 2 + (γ − 1)M2ε2,

and, hence,

α =
γ + 1

4
ε

⎛
⎝1 +

[
1 +
(

4
(γ + 1)εM

)2
]1/2
⎞
⎠ .

U, p0, 0

y

x

v1 U + u1
p1, 1ρ

ρ

α

ε

Fig. 6.25. Hypersonic flow past a thin wedge.

Thus, α is of O(ε) as long as Mε ≥ O(1). On the body, the boundary condition
is

v1 = (U + u1)ε,

and parallel to the shock, the condition (6.36) gives

u1 cosα + v1 sinα = 0,
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so that we can deduce that v1/U = O(ε) and u1/U = O(ε2). Furthermore,
from the Rankine–Hugoniot conditions (6.43) and (6.44), it is easy to show
that

p1 − p0 = O(ρ0U
2ε2) and

ρ1

ρ0
= O(1).

Using these estimates, we can now scale the variables in the flow between
the shock and a more general body whose slope is of O(ε) by writing

u = U(1 + ε2ū), v = Uεv̄, p = p0 + ρ0U
2ε2p̄,

ρ = ρ0ρ̄, y = εlȳ, x = lx̄,

where l is the streamwise lengthscale of the body. Then, we can expect that the
barred variables will all be O(1) behind the shock and the first approximation
to (2.6)–(2.8) will be

∂ρ̄

∂x̄
+

∂

∂ȳ
(ρ̄v̄) = 0, (6.69)

∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p̄

∂x̄
, (6.70)

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ
= −1

ρ̄

∂p̄

∂ȳ
(6.71)

and (
∂

∂x̄
+ v̄

∂

∂ȳ

)(
p̄

ρ̄γ

)
= 0. (6.72)

Equations (6.69), (6.71), and (6.72) do not depend on ū, even though they
model a two-dimensional flow; hence, they are exactly equivalent, with a suit-
able change of notation, to the one-dimensional unsteady equations (5.3)–
(5.5). Moreover, the approximate boundary condition for a body given by
ȳ = f(x̄) is v̄ = f ′(x̄) on ȳ = f(x̄), and this also translates into the boundary
condition for a piston moving with velocity f ′(t). Better yet, Exercise 6.23 re-
veals that shock conditions turn out to be such that the problem for p̄, ρ̄, and
v̄ is mathematically identical to that of the unsteady flow caused by such a
piston. This analogy is called hypersonic similitude and a similar analog exists
between the steady three-dimensional hypersonic flow past an axisymmetric
slender body and a two-dimensional unsteady gasdynamics problem. Thus,
we have found a class of gasdynamic flows in which time and space can be
identified.

If Mε  1, then the shock is strong enough for the shock relations to
simplify still further. Suppose, in particular, that we consider such a flow past
a two-dimensional power-law body given by ȳ = Cx̄k. Thus, as shown in Ex-
ercise 6.24, the shock relations are simple enought for us to find a similarity
solution which depends only on the variable ȳ/x̄k. The principle of hyper-
sonic similitude now states that the problem of a strong shock driven by a
piston whose position is proportional to tk also reduces to ordinary differential
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equations in the single variable x/tk; happily, a similar reduction to ordinary
differential equations also occurs for radially or spherically symmetric pistons
whose position is proportional to tk.

A dramatic example of such an unsteady flow which can be solved explicitly
is that of the blast wave caused by a sudden explosion at t = 0 at a point O.
Such an explosion results in the sudden release of a large amount of energy E
and causes a strong shock to expand into the initially quiescent surrounding
gas. If the shock position is given by r = R(t) and the density, pressure,
and velocity of the gas just behind the shock are ρ1, p1, and v1 respectively,
then since the shock is strong, the Rankine–Hugoniot conditions (6.24)–(6.26)
reduce to

ρ1 = ρ0
(γ + 1)
(γ − 1)

,

v1 =
2Ṙ

γ + 1

and

p1 =
2ρ0Ṙ

2

γ + 1
,

where ρ0 is the ambient density. Thus, the only physical quantities that enter
this problem are r, t, E, and ρ0. In the three-dimensional case, the only non-
dimensional quantity that can be constructed from these quantities is

ξ = r
( ρ0

Et2

)1/5
.

Hence, ρ/ρ0 will be a function of ξ, and since ρ/ρ0 is constant at the shock,
we retrieve the famous result that an atomic bomb blast grows such that
R/t2/5 = K = constant. In order to find K, we must solve the equations
of unsteady gas flow behind the shock, which we know reduce to ordinary
differential equations in ξ with boundary conditions given on the shock. One
integral of the motion can be found immediately by observing that the total
energy behind the shock remains constant and equal to E, and this leads us
to a relation between E and K. Thus, one can estimate the energy release in
an atomic explosion by observing the growth of the emitted blast wave. This
theory also reveals that such blast waves could be generated by a spherical
piston expanding so that the radius grows like t2/5.

Going down a dimension, we can consider a cylindrical blast wave caused
by a line explosion releasing a fixed amount of energy per unit length. Then,
the dimensional argument shows that the blast wave expands so that its radius
is proportional to t1/2. Using hypersonic similitude, we can deduce that the
same solution holds for the hypersonic flow past a slender axisymmetric body
whose radius is proportional to x1/2. There is one caveat: this body has a
blunt nose and the flow near the nose will not be susceptible to hypersonic
small disturbance theory. An asymptotic analysis reveals that there is a thin
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entropy layer near the body where a new solution is needed, but, luckily, this
does not affect the position of the shock to first order. For this case, it is
also possible to show that the energy release in the cylindrical blast wave is
directly related to the drag on the nose of the blunt body in hypersonic flow
(Anderson [29]).

Happily, we can end our discussion of nonlinear waves on a less warlike
note by remarking that high-speed ocean transportation can benefit from a
very similar kind of similitude. As shown in Exercise 6.25, the waves caused
by a high-speed (high Froude number) slender ship moving with constant
velocity are equivalent to the unsteady waves produced by a wavemaker at the
end of a one-dimensional water tank. Whereas hypersonic similitude demands
that Mε = O(1), it transpires that the slender ship theory is valid when
Fε2 = O(1), where F is the Froude number and ε is the slenderness parameter.

Exercises

R6.1 Derive (6.21) from (6.16) and deduce that for any function f ,

[fρu] − Ẋ[fρ] = [f ]m,

where m = ρ(u − Ẋ). Then, put f = Ẋ to derive (6.22) from (6.18).
Finally, put f = p/ρ to show that (6.20) implies that

mγ

γ − 1

[
p

ρ

]
+
[
1
2
ρu3
]
+ Ẋ[p] = Ẋ

[
1
2
ρu2
]

.

Using (6.22) for [p] and writing
[

1
2ρu2(u − Ẋ)

]
= m
[ 1
2u2
]
, deduce (6.23).

R6.2 Writing Mi = (Ẋ − ui)/ci, show that (6.21) implies that [ρ2M2c2] = 0,
where c2 = p/ρ. Deduce that p2ρ2/p1ρ1 = M2

1 /M2
2 .

Show that (6.22) implies that [p(1 + γM2)] = 0 and, hence, that

p2

p1
=

1 + γM2
1

1 + γM2
2

.

Show that (6.23) implies that [(p/ρ)(1 + [(γ − 1)/2]M2)] = 0 and, hence,
that

p2ρ1

p1ρ2
=

1 + [(γ − 1)/2]M2
1

1 + [(γ − 1)/2]M2
2

.

Combine these results to show that

(M2
2 − M2

1 )[M2
2 (2γM2

1 − (γ − 1)) − ((γ − 1)M2
1 + 2)] = 0

and, hence, derive (6.24)–(6.26).
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R6.3 Show that the entropy jump across a shock is

[S] = cV

[
log

p

ργ

]
.

Use (6.24)–(6.26) to write this as

[S] = cV

(
log(2γx − (γ − 1)) + γ log

(
2
x

+ γ − 1
)

− (γ + 1) log(γ + 1)
)

,

where x = M2
1 . Show further that

1
cV

d[S]
dx

= 2γ(γ − 1)
(x − 1)2

(2γx − (γ − 1))(2/x + γ − 1)x2 .

Deduce the following:
(i) [S] > 0 when x > 1.
(ii) [S] = O((x − 1)3) when x ↓ 1.

6.4 From (6.21) and (6.22) show that across a normal shock wave

(u1 − u2)2 = (p2 − p1)
(

1
ρ1

− 1
ρ2

)
,

where, as usual, the suffix 1 is ahead of the shock and the suffix 2 is
behind.

From (6.24) and (6.25) show that

ρ2

ρ1
=

(γ − 1)p1 + (γ + 1)p2

(γ + 1)p1 + (γ − 1)p2
.

Now, suppose that a normal shock with pressure ratio π(= p2/p1) is re-
flected from a plane parallel rigid boundary. Show that the pressure ratio
of the reflected shock is p, where

p =
(3γ − 1)π − (γ − 1)
(γ − 1)π + (γ + 1)

.

6.5 A plane shock wave is reflected from a parallel plane wall. Show that if
U1 is the speed of approach and U2 the speed of departure, then

(U1 − u)2 − c2 = −
(

γ + 1
2

)
u(U1 − u),

(U2 + u)2 − c2 =
γ + 1

2
u(U2 + u),

where u and c are the velocity and speed of sound, respectively, behind
the incoming shock. Deduce that

U1 > U2

as long as γ < 3.
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R6.6 Rearrange (6.46) to show that

tan θ = 2 cotβ
M2

1 sin2 β − 1
(γ + cos 2β)M2

1 + 2
.

Show that θ = 0 when β = π/2 and when β = sin−1(1/M1). Deduce that
for fixed M1, θ(β) has at least one maximum (which can be shown to be
close to, but not quite equal to, the value of β for which M2 = 1). Show
also that when θ is small and β is near sin−1(1/M1),

θ ∼ 4(M2
1 − 1)

(γ + 1)M2
1

(
β − sin−1 1

M1

)
.

Deduce that, for such weak shocks, the downstream pressure, Mach num-
ber, and velocity are given by

p2

p1
= 1 +

γM2
1 θ√

M2
1 − 1

,

M2

M1
= 1 − θ

(
1 +

γ − 1
2

M2
1

)(√
M2

1 − 1
)−1

and
u2

u1
= 1 − θ√

M2
1 − 1

,

respectively, where u1 is the velocity in front of the shock and u2 is the
component of the velocity in the same direction behind the shock.

*6.7 A gas with speed u1 and sound speed c1 flows homentropically to a state
where the Mach number is unity and its sound speed is c∗, which is called
the critical speed of sound. Show that

(γ + 1)c2
∗ = (γ − 1)u2

1 + 2c2
1

and hence use (6.42) to show that the critical speeds of sound on either
side of an oblique shock are the same.

Suppose a gas with velocity (u1, 0) and sound speed c1 passes through a
shock, inclined at an angle β to the x axis, to a state with velocity (u2, v2):
Show that

u1 cosβ = u2 cosβ + v2 sinβ,

ρ1u1 sinβ = ρ2(u2 sinβ − v2 cosβ),
p1 + ρ1u

2
1 sin2 β = p2 + ρ2(u2 sinβ − v2 cosβ)2

and

1
2
u2

1 sin2 β +
c2
1

γ − 1
=

1
2
(u2 sinβ − v2 cosβ)2 +

c2
2

γ − 1

=
γ + 1

2(γ − 1)
c2
∗ − 1

2
u2

1 cos2 β.
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Eliminate p1, ρ1, p2, ρ2, and β from these equations to show that

v2
2 =

(u1 − u2)2(u1u2 − c2
∗)

([2/(γ + 1)]u2
1 + c2∗ − u1u2)

.

Sketch this curve in the (u2, v2) plane for given u1 and c∗ and show that
only the segment c2

∗/u1 < u2 < u1 is physically relevant. Confirm that
there are two values of (u2, v2) for any given value of v2/u2 less than the
maximum possible deflection.
The curve in the (u2, v2) plane is called the shock polar.

6.8 Show that if the Prandtl–Meyer expansion (5.65)–(5.66) is weak, the flow
deflection θ, which is now negative, is approximately related to the down-
stream Mach number M2 by

θ ∼ (µ1 − µ)f ′(µ1)

∼ (M2 − M1)
M1
√

M2
1 − 1

(
1 − (γ + 1)M2

1

2 + (γ − 1)M2
1

)
.

Deduce that

M2

M1
∼ 1 − θ

(
1 +

γ − 1
2

M2
1

)(√
M2

1 − 1
)−1

,

which is the same as the formula obtained for a weak shock in Exercise
6.6.
However, remember θ is now negative and M2 is now greater than M1 and that
weak shocks and weak expansions refract the flow in opposite directions.

6.9 Suppose that a weak shock making an angle β to the positive x axis
impinges on a wall y = 0 from below. Using Exercise 6.6, show that a
weak shock reflects from y = 0, making an angle −β with the positive x
axis.
This specular reflection is only true for weak shocks. The reflection angle may
be greater or less than β depending on the strength of the shock.

6.10 A circular cone is placed in a uniform supersonic stream with its axis
parallel to the stream. Show that if the resulting shock wave is a concentric
circular cone, then there is a velocity potential Φ such that the radial and
transverse velocities between the shock and the body are

ur =
∂Φ

∂r
, uθ =

1
r

∂Φ

∂θ
,

where r and θ are spherical polar coordinates. Given that

∇ · ρ(ur, uθ, 0) =
1

r sin θ

∂

∂θ
(sin θρuθ) +

1
r2

∂

∂r
(r2ρur),

show that there is a similarity solution in which Φ = rφ(θ) with(
1 − 1

c2

(
dφ

dθ

)2
)

d2φ

dθ2 −
(

φ

c2

dφ

dθ
− cot θ

)
dφ

dθ
+ 2φ = 0,
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where

c2 = − (γ − 1)
2

(
φ2 +

(
dφ

dθ

)2
)

+ constant.

R6.11 Write Fi = (ui − Ẋ)/
√

gηi in (6.49)–(6.50) and show that

[s3F ] = [12s4 + F 2s4] = 0.

Deduce that

F 2
1 =

s2
2

s2
1

1 + (s2
2/s2

1)
2

and use (6.52) to infer that |F1| ≥ 1 and |F2| ≤ 1.

Note the analogy between these inequalities for the Froude number in shallow
water theory and the inequalities (6.28) for the Mach number in gasdynamics.

6.12 A bore invades water originally at rest in a straight horizontal channel of
uniform rectangular cross section. The depth of the water increases from
H to 2H by the passage of the bore. Show that the velocity behind the
bore is

√
3gH. The bore is reflected at the closed end of the channel. Show

that, after reflection, the depth of water at the closed end is 1
2 (1+

√
33)H.

*6.13 Show that for the two-dimensional shallow water equations of Exercise
5.5, the steady shock (bore) relations for the conservation of mass and
momentum are

dy

dx
=

[ηv]
[ηu]

=
[ηuv]

[ 12gη2 + ηu2]
=

[ 12gη2 + ηv2]
[ηuv]

.

Show that the energy dissipation across the bore depends on dy/dx and
use the result of Exercise 5.5 to deduce that if a uniform stream encounters
a curved bore, the downstream vorticity ∂u/∂y − ∂v/∂x will be non-zero.

R6.14 Water of depth s2
l /g is contained in −∞ < x < 0 and is separated by a

sluice gate from water of depth s2
r/g in 0 < x < ∞, where sr < sl. At

time t = 0, the sluice gate is suddenly removed. Show that the solution
comprises the following:
(i) An expansion fan in −slt < x < (u1 − s1)t.
(ii) A region of uniform flow where s = s1 and u = u1 for (u1 − s1)t <

x < V t.
(iii) A hydraulic jump at x = V t.
Write down sufficient equations to determine u1, s1, and V and show that
if u1 > 2sl/3, and t > 0, then the water depth at x = 0 is 4s2

l /9g and the
discharge rate is 8s3

l /27g.
R6.15 Gas flows steadily out of a reservoir, where the density is ρ0 and the sound

speed c0, into a duct of slowly varying cross-section A(x). The duct area
initially decreases to a minimum at x = X and then increases. Show that
if the Mach number is M and the mass flow in the duct is Q, then

ρ0c0

Q

dA

dx
=
(
1 − 1

M2

)(
1 +
(

γ − 1
2

)
M2
)(3−γ)/2(γ−1)

dM

dx
.
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Deduce that if the duct is choked so that M = 1 at x = X, then

Q =
(

2
γ + 1

)(γ+1)/2(γ−1)

ρ0c0A(X).

6.16 Water flows into an open channel from a reservoir where the total head
is gH. Show that if the channel breadth b(x) decreases to a minimum b∗
downstream before increasing again, then if the Froude number F attains
the value unity, it does so when b = b∗. Prove that in such a choked flow,
the flow rate is

q = ( 2
3 )

3/2g1/2H3/2b∗.

6.17 (i) Show that the density and pressure ratios across the expansion fan
generated by a piston moved impulsively out of a tube with velocity
Up, as in Exercise 5.15, are given by

ρ2

ρ1
=
(
1 − γ − 1

2
|Up|
c1

)2/γ−1

,
p2

p1
=
(

ρ2

ρ1

)γ

,

where |Up| is the piston speed, assumed less than 2c1/(γ − 1), and
subscripts 1 and 2 refer to conditions ahead of and behind the fan,
respectively.

∗(ii) Inviscid gas is contained in an infinite shock tube lying along the x
axis. An impermeable membrane at x = 0 separates gas with pressure
pl and sound speed cl in x < 0 from the same gas at conditions pr and
cr in x > 0, where pl > pr. At time t = 0, the membrane is ruptured.
Show that the subsequent flow comprises the following:
(a) An expansion fan in −clt < x < (V − c2)t.
(b) A uniform flow region in (V − c2)t < x < V t, in which u = V ,

p = p1, c = c2.
(c) A uniform flow region in V t < x < Ut, in which u = V , p = p1,

and c = c1.
(d) A shock at x = Ut, where the unknowns satisfy

c2 = cl − γ − 1
2

V,
p1

pl
=
(
1 − (γ − 1)

2
V

cl

)2γ/(γ−1)

,

(U − V )ρ1 = Uρr,

p1 + (U − V )ρ2
1 = pr + ρrU

2

and
c2
1

γ − 1
+

1
2
(V − U)2 =

c2
r

γ − 1
+

1
2
U2,

where ρr and ρ1 are the densities ahead of and behind the shock
respectively. Show that

V

cl
=

2
γ − 1

(
1 −
(

p1

pl

)(γ−1)/2γ
)
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and that

V

cr
=
(

p1

pr
− 1
)(

2/γ

(γ + 1)p1/pr + (γ − 1)

)1/2

and, hence, deduce the shock tube equation

pl

pr
=

p1

pr

(
1 − (γ − 1)(cr/cl)(p1/pr − 1)

[2γ(γ + 1)p1/pr + γ − 1)]1/2

)−2γ/(γ−1)

.

Which of the flow variables is continuous at the contact discontinuity
x = V t?

6.18 Suppose that two unequal weak shocks make angles β and β′ with a stream
of Mach number M1 as in Figure 6.12.

Show that the deflections satisfy

θ − φ = −θ′ + φ′

and use the results of Exercise 6.6 to show that

θ + φ = θ′ + φ′.

Show that the flow deflection is

θ − θ′ =
4(M2

1 − 1)
(γ + 1)M2

1
(β − β′)

and that, in general, there will be a contact discontinuity (in this case,
a vortex sheet) separating the downstream flow into parallel gas streams
with unequal speeds.

6.19 Suppose that instead of the configurations in Figure 6.12, two weak shocks
intersect as in Figure 6.13. Show that the shocks can merge to form a third
shock with φ = θ + θ′ and that there will again be a contact discontinuity
in the downstream flow.

In this situation, it can be shown that when the shocks are stronger, an ex-
pansion fan will also be formed near the negative characteristic through the
intersection point.

6.20 A weak shock Si impinges on a vortex sheet ABC which separates two
supersonic streams with Mach numbers M1 and M ′

1, as shown in Figure
6.14.

Show that if the deflections θ, φ, and θ′ are measured as shown in Figure
6.14, then using the results of Exercise 6.6,

θ − φ = θ′

and

(θ + φ)
M2

1√
M2

1 − 1
= θ′ M

′2
1√

M
′2
1 − 1

.
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Show further that there will be a contact discontinuity in the down-
stream flow.

If M1 > M ′
1 >

√
2, show that φ < 0, so that the second shock S2 above

the vortex sheet will be replaced by an expansion fan for which the above
results still apply (see Exercise 6.8). Show that the strength of the shock
T transmitted by the vortex sheet is always less than the strength of the
incident shock I.
This idea has been proposed for attenuating sonic boom from supersonic aircraft.

6.21 Suppose gas flows steadily down a slowly-varying channel with walls given
by

y = ±S(εx),

where ε � 1. Assuming that u = O(U), v = O(εU), x = O(L) and
variations in y are of O(εL), show that the equations of continuity and
momentum are approximated by

∂

∂x
(ρu) +

∂

∂y
(ρv) = 0,

∂

∂x
(ρu2) +

∂

∂y
(ρuv) +

∂p

∂x
= 0,

∂p

∂y
= 0,

with
V = ±εuS′ on y = ±S(εx).

Show that
d

dx

∫ S

−S

ρu dy = 0

and
d

dx

∫ S

−S

ρu2 dy + 2S
dp

dx
= 0.

Assuming additionally that the flow is, to lowest order, irrotational and
homentropic, show that u, ρ, and p are all approximately functions of x
alone and that their averages over the channel width satisfy

ρ̄ūS = constant,
1
2
ū2 +

γp̄

(γ − 1)ρ̄
= constant, p̄/ρ̄γ = constant.,

where ρ̄ = (1/2S)
∫ S

−S
ρ dy and similarly for p̄ and ū.

*6.22 (i) Show that the far field of a supersonic stream past a thin wing is
modeled, in Y > 0, by

∂u

∂Y
+

γ + 1
2B

M4u
∂u

∂ξ
= 0

in the notation of Section 6.3.2, with u = −(1/B)f ′(ξ) on Y = 0.
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Show also that the Rankine–Hugoniot condition for this equation is
that the leading-edge shock slope in (ξ, Y ) coordinates is

dξ

dY
=

(γ + 1)M4

4B
[u2]
[u]

=
(γ + 1)M4

4B
u+,

where u+ is the value of u just downstream of the leading shock. Check
this result by using Exercise 6.6 to show that

εu+ = − 4B
(γ + 1)M2 (β − sin−1 1

M
),

where dξ/dY = (1/ε)(cotβ − B).
(ii) Suppose the wing is such that f(ξ) = l2 − ξ2 for −l < ξ < l. Show

that the leading-edge shock wave is given by

dξ

dY
=

(γ + 1)M4

4B
u0(ξ0),

where u0(ξ0) is the value of u on the characteristic

dξ

dY
=

(γ + 1)M4

2B
u0(ξ0),

with ξ = ξ0 when Y = 0. Deduce that

ξ0 =
ξ

(1 + ((γ + 1)M4/B)Y )

and, hence, show that the shock wave is the parabola

(γ + 1)M4Y

B
+ 1 = αξ2

for some constant α. Consider the flow as Y ↓ 0 to show that α = 1/l.
Remark: A similar calculation reveals the existence of a parabolic shock from
the trailing edge, so that the far field pressure is an “N -wave.”

*6.23 (i) Show that if β and θ are small, (6.44) implies that

θ ∼ 2β
γ + 1

(
1 − 1

M2
1 β2

)
. (6.73)

(ii) In hypersonic flow, the variables (p̄, ρ̄, v̄, x̄, ȳ) in (6.69), (6.71), and
(6.72) are identified with the variables (p, ρ, u, t, x) in the one-dimen-
sional unsteady isentropic gasdynamic equations.

If a piston is pushed into a gas at rest with pressure p1 and density
ρ1, show from (6.24) and (6.25) that the pressure p2, velocity u2, and



Exercises 179

density ρ2 just behind the shock, whose position is given by x = xs(t),
are given by

p2

p1
=

2γM2
1 − (γ − 1)
(γ + 1)

,
ρ2

ρ1
=

(γ + 1)M2
1

2 + (γ − 1)M2
1

,

u2 =
2ẋs

γ + 1

(
1 − 1

M2
1

)
,

where M1 = ẋs/c1 and c2
1 = γp1/ρ1.

For the hypersonic problem, show that if the shock is given by
ȳ = Ys(x̄), then β = εY ′

s , and from (6.43) and (6.44), the shock
relations are

p2

p1
=

2γM2
1 β2 − (γ − 1)

γ + 1
and

ρ2

ρ1
=

(γ + 1)M2
1 β2

2 + (γ − 1)M2
1 β2 ;

deduce from (6.73) above that, at the shock,

v̄ =
2Y ′

s

γ + 1

(
1 − 1

M2
1 β2

)
.

Hence, complete the identification that leads to the principle of hy-
personic similitude.

*6.24 Show that if gas streams with Mach number M past a thin wing with
slope O(ε) and Mε  1, then, in the notation of (6.69)–(6.72) and using
the results of Exercise 6.23, the shock conditions on ȳ = Ȳs(x̄) are

p̄ =
2

γ + 1
Ȳ ′1/2

s , ρ̄ =
γ + 1
γ − 1

and v̄ =
2Ȳ ′

s

γ + 1
.

Deduce that if the wing is ȳ = bx̄k for x̄ > 0, then there is a similarity
solution

Ȳs = sx̄k, p̄ = x̄2(k−1)P (ζ), ρ̄ = R(ζ), v̄ = x̄k−1V (ζ),

where ζ = ȳ/x̄k, which satisfies

−kγR′ + (RV )′ = 0,
(k − 1)V − kγV ′ + V V ′ = −P ′/R

and (
2k − 2 + (V − kζ)

d

dζ

)
(P/Rγ) = 0

with

P (s) =
2k2s2

γ + 1
, R(s) =

γ + 1
γ − 1

, V (s) =
2ks

γ + 1
,

and
V (b) = kb.
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*6.25 The equation of a ship moving in the z direction with velocity V is given
by F (x, y, z − V t) = 0. Show that in steady flow, with ξ = z − V t, the
potential for the flow generated by the passage of the ship satisfies

∂2φ

∂x2 +
∂2φ

∂y2 +
∂2φ

∂ξ2 = 0,

with

−V
∂φ

∂ξ
+ gη +

1
2

((
∂φ

∂x

)2

+
(

∂φ

∂y

)2

+
(

∂φ

∂ξ

)2
)

= 0

and
∂φ

∂y
= −V

∂η

∂ξ
+

∂φ

∂x

∂η

∂x
+

∂φ

∂ξ

∂η

∂ξ

on the free surface y = η and

V
∂F

∂ξ
=

∂φ

∂x

∂F

∂x
+

∂φ

∂y

∂F

∂y
+

∂φ

∂ξ

∂F

∂ξ

on the ship F (x, y, ξ) = 0; also, |∇φ| → 0 at infinity since there are no
incoming waves.

Now suppose the ship is narrow and of length l, so that F (x, y, ξ) =
F̃ (X, Y, ξ), where x = εlX, y = εlY , and ξ = lζ. Also, suppose that the
Froude number is so large that εV 2/gl = f = O(1) as ε → 0. Show that
if φ = ε2lV φ̃, η = εlη̃, then, to lowest order in ε,

∂2φ̃

∂X2 +
∂2φ̃

∂Y 2 = 0

with, on Y = η̃,

−∂φ̃

∂ζ
+ f−1η̃ +

1
2

⎛
⎝( ∂φ̃

∂X

)2

+

(
∂φ̃

∂Y

)2
⎞
⎠ = 0

and
∂φ̃

∂Y
=

∂η̃

∂ζ
+

∂φ̃

∂X

∂η̃

∂X

and, on F̃ = 0,
∂F̃

∂ζ
=

∂φ̃

∂X

∂F̃

∂X
+

∂φ̃

∂Y

∂F̃

∂Y
.

Show that when −ζ is identified with time t, these are the equations of
surface gravity waves in two dimensions, driven by a surface penetrating
wavemaker F̃ (X, Y,−t) = 0.
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Epilogue

As explained in Chapter 1, this book has changed the emphasis of its progen-
itor “Inviscid Fluid Flows” [1] by reorganizing much of the material in such
a way that the applicability of the analysis can be demonstrated as widely as
possible. Indeed, it is striking that so many mathematical methods that seem
to be intimately connected with compressible flow are equally useful in areas
ranging from solid mechanics to electromagnetism.

However, this is by no means the end of the story as far as the math-
ematical theory of wave propagation is concerned. In recent decades, there
has been a spectacular blossoming of theory associated with traveling dis-
turbances in chemical and biological systems as distinct from mechanical or
electromagnetic ones. Such waves are described in detail by Lighthill [30] and
especially by Billingham and King [17], where they are placed side by side
with the waves we have discussed here. As is evident from these works, these
“less classical” waves can exhibit many of the features that we have encoun-
tered in the preceding pages: steepening, dispersion, reflection, diffraction,
and so forth. However, there is something formally distinctive about waves
that are governed by systems whose linearization yields real dispersion rela-
tions between the wave number k and frequency ω. This, of course, includes
the high-frequency behavior of every hyperbolic system. This means that these
systems have a robustness in that they can exist without relying on any input
or loss from their surroundings. On the other hand, when the wave is governed
by a parabolic system, whose linearization can only yield a complex disper-
sion relation in which disturbances decay temporally, then its very existence
requires a compensating steepening mechanism (usually via nonlinearity) and
the wave propagates as a balance between the two. We have encountered this
kind of delicate balance just once in this book, namely in Burgers’ equation
(6.11). However, without Burgers’ equation, we would never have been led to
our selection mechanism for shock waves, and the whole theory of nonlinear
gasdynamics would be in ruins. The parabolicity in Burgers’ equation comes
about through the presence of viscosity, which is itself a result of molecu-
lar forces acting within the gas. Viscosity is a difficult concept that we have
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studiously tried to avoid in this book, so as not to expose the reader to the
complexities of the compressible Navier–Stokes equations.

This is a familiar story in applied mathematics; although we may have
hoped for a comprehensive self-contained theory of compressible flow based
on macroscopic principles of conservation of mass, momentum, and energy,
we have not been able to escape entirely from consideration of the intermolec-
ular forces that determine not only the equation of state but also the correct
macroscopic model for gasdynamics, especially in extreme configurations such
as shock waves.
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acoustic frame, 83
acoustic oscillations, 33
acoustic resonator, 46
acoustic waves, 28, 33, 36, 37, 53, 85, 86
aerodynamic frame, 83
Airy’s equation, 85
angular momentum, 18
asymptotic, 49
atomic bomb, 169

barotropic fluid, 10
beam equation, 90
Bernoulli’s equation, 17, 24, 67, 102
biological systems, 181
blast wave, 169
blunt body
flow past, 148

bore
turbulent, 151
undular, 151

bores, 150
Brunt-Väisälä frequency, 92
Burgers’ equation, 128, 140, 182
Busemann Biplane, 156

capillary waves, 55
Cauchy data, 42
Cauchy problem, 41, 44
Cauchy’s equation, 15
causality, 140, 144
caustic, 78
centred simple wave, 116
channel flow, 160
Chaplygin’s equation, 122

Chapman-Jouguet curve, 159
characteristic manifold, 41
characteristics, 41, 102, 105, 114, 117,

138, 164
Charpit’s equations, 76, 96
chemical reactions, 159
chemical systems, 181
choked flow, 159
circulation, 15, 16
conservation laws, 135
conservative force, 14
contact discontinuity, 153, 154
continuity equation, 8
continuum, 5
control volume, 67
convective derivative, 6
Coriolis term, 30
creeping rays, 80
critical layers, 124
Crocco’s theorem, 19, 102
cut-off frequency, 47, 92

D’Alembert’s paradox, 69
D’Alembert’s solution, 42, 43
dam break problem, 119
deflagration, 160
detonation, 159
diffraction, 62, 80
dispersion, 51
dispersion relation, 52, 56
dissociation, 165
domain of dependence, 41
Doppler shift, 39
downstream influence, 73
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drag, 69, 96

eigen modes, 44
eikonal equation, 76
elastic waves, 31, 38, 54, 90
electromagnetic waves, 30, 53
elliptic models, 41
energy
internal, 9

entropy, 12, 144, 148
entropy layer, 170
equilibrium temperature, 165
Euler’s equation, 9
Eulerian variables, 6
expansion fan, 116, 119
exterior problem, 46

far field flow, 163
First Law of Thermodynamics, 9
Floquet theory, 91
flow in a nozzle, 157
flow in slender nozzles, 66
flow in the far field, 163
flow past a blunt body, 148
flow past slender bodies
subsonic, 73
supersonic, 74

flow past thin wings, 68
subsonic, 69
supersonic, 70

flutter, 89
Fourier series, 43, 85
Fourier Transform, 87, 95
Fourier transform, 47
Fourier’s Law, 9
Fredholm alternative, 46, 58
free boundary problem, 24
frequency domain, 47, 57
Froude number, 65, 161, 170
frozen state, 165

gravity waves, 24, 48, 53
group velocity, 51, 55

half-wavelength layer, 64
Hamiltonian systems, 114
heat exchanger, 36
Helmholtz resonator, 92
Helmholtz’ equation, 57, 59, 64, 89

Hill’s equation, 62
hodograph plane, 121
homentropic, 148
homentropic flow, 12, 14, 16, 101
Huygens’ principle, 75, 82
hydraulic jump, 151
hyperbolic system, 41, 102
hypersonic flow, 166
hypersonic similitude, 169

ideal gas, 11
impedance, 37, 63
incompressible flow, 17
inertial waves, 26, 53, 92
interior problem, 46
internal energy, 9
internal temperature, 165
inverse scattering, 114
irrotational, 15, 24
isentropic flow, 12

Jacobian, 6
jump conditions, 137, 141
jump conditions in shallow water, 150
jump discontinuities, 135

Kadomtsev-Petviashvili equation, 125
Kelvin’s theorem, 16, 17, 23
Kelvin-Helmholtz instability, 55, 155
kinematic condition, 13, 24
kinematic wave equation, 99, 136
kinetic theory of gases, 5
kitchen tap, 150
Korteweg-de Vries equation, 106, 113
Kutta-Joukowski condition, 70

Lagrangian variables, 6, 15, 16, 18, 19
Lamé constants, 31
Laplace’s equation, 24, 57, 64
Laplace’s method, 49
Laval nozzle, 157
Legendre transformation, 121
lift, 69
lightning, 82
linearisation, 21, 22
linearization, 30
longitudinal waves, 32

Mach angle, 103
Mach number, 23, 68
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Mach reflection, 156
material volume, 7
Matthieu equation, 62, 91
Maxwell’s equations, 31, 38
method of stationary phase, 50
motor bicycle exhaust, 86
multiple scales, 110

N -wave, 165
natural frequencies, 45
nephroid, 79
non-dimensionalization, 22
non-equilibrium effects, 165
nonlinear Schrödinger equation, 110
normal frequencies, 45
normal modes, 44
nozzle flow, 157

oblique shock, 147
oblique shocks, 154

passband, 62
perfect gas law, 10
phase velocity, 52
piston problem, 114, 147
plane wave, 59
polarisation, 32
Prandtl–Meyer flow, 117

quasi-periodic solutions, 62

radiation condition, 59
Rankine–Hugoniot conditions, 142, 146,

153, 159, 167
Rayleigh wave, 88
Rayleigh-Taylor instability, 55
rays, 77
creeping, 80

reduced pressure, 30
reflection, 60
specular, 60, 173
total internal, 61, 90

reflection coefficient, 37
reflector
hard, 59
soft, 59

refraction, 60, 78
region of influence, 41
relaxation, 165

resonance, 45, 58
resonator, 46
retarded potential, 82
Riemann invariants, 72, 102, 103, 114
Rossby number, 30, 37, 92
Rossby waves, 53
rotating flows, 29, 53

salinity, 26
scattering problems, 59
Second Law of Thermodynamics, 12
secular terms, 110
shallow water theory, 26, 103, 108, 119
ship waves, 65, 92
shock
oblique, 147

shock polar, 173
shock tubes, 153
shock waves, 135
shocks
oblique, 154

simple wave flow, 114
slender ship theory, 170
Snell’s law of refraction, 61, 78, 90
solitary waves, 109
solitons, 109
Sommerfeld radiation condition, 59
sonic boom, 28
sonic line, 150
source distribution, 69
specular reflection, 60, 173
speed of sound, 22
critical, 173

stationary phase, 50, 66, 87
Stokes waves, 25, 35, 108, 111, 113
stopband, 62, 91
stratified fluid, 27, 53
subcritical, 65, 150
subsonic, 23
flow past slender bodies, 73
flow past thin wings, 69

supercritical, 65, 150
supersonic, 23
flow past slender bodies, 74
flow past thin wings, 70

surface tension, 25, 87

Taylor column, 37
Taylor-Proudman Theorem, 37
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temperature
equilibrium, 165
internal, 165

test functions, 138
thermodynamic equilibrium, 10
Thermodynamics
First Law, 9
Second Law, 12

thunder, 82
Tidal waves, 106
time domain, 47
total internal reflection, 61, 90
transmission coefficient, 37
transonic flow, 162
transport equation, 76
Transport Theorem, 7, 10
transverse waves, 32
traveling waves, 109, 140
Tricomi equation, 85, 162
turbulent bore, 151

undular bore, 151
upstream influence, 71, 75

velocity potential, 17
viscosity, 144, 182
vortex distribution, 69
vortex lines, 15
vortex sheet, 155

vorticity, 14, 19

wavefront, 60, 77, 83
waveguide, 46
wavemaker, 34
wavenumber, 48, 51
waves
acoustic, 28, 33, 36, 37, 53, 85, 86
behind a ship, 65, 92
capillary, 55
elastic, 31, 38, 54, 90
electromagnetic, 30, 53
gravity, 53
inertial, 53, 92
longitudinal, 32
on a running stream, 65
plane polarized, 32
Rossby, 53
solitary, 109
tidal, 106
transverse, 32
traveling, 109, 140
whispering gallery, 81

weak solutions, 138, 139, 144
weather maps, 30
whispering gallery waves, 81
WKB approximation, 55, 75, 77, 91

zone of silence, 71
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