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G-STRUCTURES OF HIGHER ORDER
By Koicir Ociue

Introduction.

One of the main problems of local differential geometry is to determine when
a given geometric structure is integrable or flat. The problem of flatness for G-
structures of first order and of finite type has been solved ([1], [7]), and we know
that the vanishing of a finite number of cohomology classes implies the flatness of
a given G-structure. This result covers the problem of flatness for Riemannian
structures and conformal structures. In the paper we shall extend this result to
G-structures of higher order, for example, projective structures.

For affine structures, projective structures or conformal structures, it is the
classical result that if the dimension of the Lie algebra of infinitesimal automor-
phisms is maximal then the structure is flat. We shall also extend these results to
more general G-structures of higher order and of finite type satisfying some
appropriate conditions.

§1. Graded Lie algebras.

In general, by a graded Lie algebra we mean a Lie algebra X 7._.g, which
satisfies the following conditions:

(1) dim g, <oo,

(2) [gp; Qq]Cg1)+q,
in particular [g_i, §_:]1=0,
(3) For every nonzero {€gp, p=0, [£ g-1]10.

The subalgebra }}5.,q, is called the isoiropy algebra of Y y-_,g, and g is called the
linear isotropy algebra.

It is clear that if gx=0 then g,=0 for p>k. A graded Lie algebra }]g, is said
to be of type k if gx_1¥0 and g,=0. It is said to be of infinite type il g,%0 for
all p.

Let V=R" and V* its dual. A Lie subalgebra Y5 .9, of V4+VQ V* TV
RSHV*)+---, g1=V and g;C VRS (V*), is a graded Lie algebra.
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G-STRUCTURES OF HIGHER ORDER 489

Let W be a finite dimensional vector space and ¢ a subspace of W V*., We
set

g(;')):g@Sp( V*) n W®Sp-|—1( V*)

g® is called the p-th prolongation of g.
Let g, be a graded Lie algebra. The smallest integer 7 such that

gr—1+p=gr—1(p) for all p

is called the order of the graded Lie algebra }; g,.
Let 7 and % be the order and the type of a graded Lie algebra respectively.
Then in general r=k+1.

ExAMPLES.

1. Vgln)+gl(n) P +gl(n)®+--- is a graded Lie algebra of order 1 and of
infinite type.

2. V+gln)+8l(n)® +8((n)»+--- is a graded Lie algebra of order 2 and of
infinite type.

3. V+gl(n) is a graded Lie algebra of order 2 and of type 1.

4. V+o(n) is a graded Lie algebra of order 1 and of type 1.

5. V4owm)+owm)®P=V+owmn)+V* is a graded Lie algebra of order 1 and of

type 2.
6. Let p be the invariant complement to &l(z)® in ¢l(%)®. Then V4gl(z)+p
= V+gl(n)+ V* is a graded Lie algebra of order 2 and of type 2.

Given a graded Lie algebra Y g, we define cohomology groups as follows:
CPi=g, ;@ NUV*).
We define the coboundary operator
9: CP 91— Pttt
by
@) (@1, +++y Zgir)= 23 (— D)t (1, =+, &4y -+, Tqs1), Z4) for i, -+, @gpi€ V.

Then 3*=0.
We shall denote the cohomology groups of this complex by H?%

§2. G-structures of higher order.

Let M be a differentiable manifold of dimension » and F?(M) the boundle of
p-frames of M. The structure group of F?(M) is denoted by GP(n). The Lie
algebra g?(n) of G?(n) is VR V*+VRSHV*)+--+VRQSPV*). As to the details
we shall refer to [2].

Let G be a subgroup of G"(n) whose Lie algebra g is the isotropy algebra of a



490 KOICHI OGIUE

graded Lie algebra of order » and of type 4.
A G-structure Pg(M) of ordev v and of type k on M is a reduction of F"(M)

to the subgroup G.

ExAMPLES.
1. Let G be a subgroup of G*(») with Lie algebra g=gl(n). A G-structure

Pg(M) on M is called an affine structure. An affine structure is a G-structure of
order 2 and of type 1.

2. Let G be a subgroup of G*n) with Lie algebra g=gl(n)+p, (cf. Example
6, §1). A G-structure Py(M) on M is called a projective structure. A projective
structure is a G-structure of order 2 and of type 2.

3. Let G be a subgroup of G*#) with Lie algebra g=co(n)+con)®¥. A G-
structure Pg(M) on M is called a conformal structure. A conformal structure is a
G-structure of order 1 and of type 2.

Let Mozﬁ/H be a homogeneous space of dimension #. Suppose that Hisa
finite dimensional Lie group whose Lie algebra h is a graded Lie algebra. H oper-
ates transitively on M, and H can be considered as the isotropy subgroup of H at
z0€ M, so that M0=]7/H. M, has a G-structure as follows:

We fix a local diffeomorphism 2 of a neighborhood of the origin 0 of R™ onto
a neighborhood of xo€M,, that is, a chart at xz, Let j7: H—F?(M,) be defined by

7P(@)=j%(a-4)  where z=(a-A)0).

Let » be the smallest integer such that j” is injective. LetNeT:j;,(id.oX) be the
distinguished element of j7(H). Then the tangent space T.,(j"(H)) to j7(H) at e, is
a subspace of V+VRV*+V@SHV*)+---:

T, (G D)= Vb gobout s

where g, VR SHH(V*).

Let g,=g®7"" for p=r. Then there exisls an integer £ such that g,=0 for
p=k since f is of finitc dimension. VAd-got-@ri-Faot+- e is a graded Lie
algebra of order » and of type 2. We shall denote j7(/1) by G. G can be considered
as a subgroup of G’(n). We set Pu(My)=i"(H), then Ps(M,) is a subbundle of
F"(M,) with structure group G, that is, a G-structure of order » and of type % on
M,. The G-structure Pg(M,) can also be considered as follows: Let I' be the
pseudogroup of transformations of M, induced by the action of f1. Then M, has
a I-structure and I’x(M,) is the G-structure determined by the I[-structure. The
G-structure is called the standard flat G-structure. Let s=Max {r, k}. Then we

I~
can associate canonically a subbundle Py(M,) of I5(M,) with the standard flat G-
NS
structure Pg(M,). Let igi/jéa(id.ol) be the distinguished element of Pg(M,). Then

the tangent space to Pe(M,) at es is Vgt +ar1+g-+ - +8e1.
A G-structure is said to be flat if it is locally isomorphic with the standard

flat G-structure.
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Let Pg(M) be a G-structure of order » and of type 2 on M. Let 6 be the
canonical form of F"(M) restricted to Pg(M). Then 6 is a V-+go+-+4g,_o-valued
1-form on Ps(M). Let w; be the g;-component of 6, then 0=(w_y, wy, wy, -+, Wr_s).
For each wePg(M), let G, be the subspace of Tu(Pz(M)) consisting of vectors
tangent to the fibre through #. Then G, is isomorphic with g, the Lie algebra of
G. A complement to G, in Ty(Pe(M)) on which the forms w,, ®y, -+-, w,_, all vanish
is called a horizontal space at u.

Let H be a horizontal space at #, then H=V.

Now let & and » be elements of V, and X and Y the corresponding elements
in H. We define

CyeHom (VAV, V4ot +8r-2)
by
Cut,p)=di(X,Y).

We shall denote the Hom (VA V, g;)-component of Cx by C.
ProrosiTiON 2. 1. 4=0 for i<r—2.

Proof. Let % be the horizontal projection determined by the horizontal space
H. Then our assertion is equivalent to

dwich=0 for i<r—2.

This follows from the identities
1 :
dwioh:dwi+ _2_ ([(1)__1, wi+l]+ [(l)o, wl]+ o + [a)i+l: a’—lJ)

for i<7—2 and the fact that 0=(o_;, 0, -+, ®,_s) is the restriction of the canonical
form of F"(M) to the subbundle Pz(M). Q.E.D.
From the proof of Proposition 2.1 we have

dw,_s-+ % ([w—1, @r_z]+[@o, ®r_s] 4+ +[@r—s, ©_1])==0.
By applying exterior differentiation to this equation and composing with the hori-
zontal projection # we have
[dwy_z00t, w_;]=0.
This implies that C7%? is a cocycle.
Let H and H’ be two horizontal spaces at u. It is easily seen that
Cr2—C%%ed Hom (V, gr-1).

Hence the cohomology class C™% of C7? is independent of the choice of the hori-
zontal space H. _ .
C™? is an element of the cohomology group H’~!+* associated with the graded
Lie algebra V4-got+gi+---+@r-1. _ ,
We call C=C"? the structure tensor of the G-structure Ps(M). Cis a H™**
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valued function on Pg(M).
Py(M) is said to be r-flat if C=0.
Then problem of flatness for G-structure Py(M) has following three cases:
(I) If r=Fk+1, it is clear that Pe(M) is flat if and only if C=0.

ExamMmpLE. Affine structure.

dD) (i) If r=k and Ps(M) is k-flat, then there exists a canonically associated
subbundle P4L(M) of F**'(M). The structure group of P4(M) is isomorphic with
G. Let C’ be the structure tensor of P(M).

Then Pg(M) is flat if and only if it is (k+1)-flat, that is, C’=0. In other
words, let 8’ be the canonical form of F**(M) restricted to P4(M). ¢’ is considered
as a l-form on Pg(M) with values in V+go+---+qr-1 and it defines a Cartan
connection on Pg(M). The condition C’=0 is equivalent to the flatness of the
Cartan connection.

ExampLE. Riemannian structure.

(i) If r=Fk and it is possible to associate canonically a Cartan connection with
Po(M), then Po(M) is flat if and only if the Cartan conmection is flat.

ExaMmpLE. Projective structure.

dII) If <k and Pg(M) is r-flat, then there exists a canonically associated
subbundle Pyw(M) of F™' (M), where G is the semidirect product of G and
the nilpotent Lie group generated by @gr+4qriit-/gri1+-. Pa(M) is said to be
(r++1)-flat if the structure tensor of Psm(M) vanishes.

If Peo(M) is (r+1)-flat, then there exists a canonically associated subbundle
Pgay(M) of F™*M), where G® is the semidirect product of G and the nilpotent
Lie group generated by griitgrizt/griat--. Po(M) is said to be (r42)-flat if
the structure tensor of Ps@(M) vanishes.

(i) Assume Pg(M) is k-flat. Then there exists a canonically associated sub-
bundle Pgwr-n(M) of F*'*(M). The structure group G%*-" is isomorphic with
G%=n, Pa(M) is flat if and only if the structure tensor of Pgw+i-n(M) vanishes.

(i) Assume Pg(M) is (k—1)-flat. Then there exists a canonically associated
subbundle Pgw-n(M) of F*¥(M). We also assume that it is possible to associate
canonically a Cartan connection with Pga-n(M). Then Pg(M) s flat if and only
if the Cartan connection is flat.

ExamprLe. Conformal structure.
These results may be stated as follows.

TueoreEM. A G-stvucture Pu(M) of order v and of lype k is flat 1) and only
if it is (k+1)-flat.

§ 3. Infinitesimal automorphisms of a G-structure.

Let Pe(M) be a G-structure of order » and of type £ on M. Let s=Max {7, k}.
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N
We can associate canonically a subbundle Pz(M) of F’(M) under the assumption
that Pg(M) is (k—1)-flat if r<k. —~

Let § be a V—f—g0—|—~~—|—gk_1-va1ued 1-form on Pg(M) defined as follows (cf. §2):

(I) If s=r=k+1, then € is the canonical form of F¥**(M) restricted to
_—

Po(M)=Pa(M).

(II-i and III-i) If s=k and Pg(M) is k-flat, then there exists a canonically
associated subbundle of F**(M). The canoni%orm of F* (M) restricted to the
subbundle can be considered as a 1-form on Pg(M). We shall take the }-\ﬂ)jm as @.

(II-ii and III-ii) If there exists a canonical Cartan connection on Pg(M), let §
be the 1-form defining the Cartan connection. ~

In every case q gives rise to a complete parallelism on Pg(M). Let w; be the
g;-component of f, then

0 =(w_y, wy, Wy, *++, W_1).

For each delg;;(\M/), there exists a unique complement H to the vertical space at #
on which the forms w,, w, -+, wz_y all vanish. We call H a horizontal space at .

Let H be a horizontal space at #, then H=V. Let 2 be the horizontal pro-
jection determined by H. With each element £eV, we can associate a unique

N
vector field &% of Pg(M) satisfying

Gen=e.
We call &* the standard horizonial vector field corresponding to &.
ProPOSITION 3. 1. dfoh=db +%[5, N,
that is,

ddrX, hY)=d0(X, Y)+ -;—[(%X), 108!

for any vectors X and Y at .

Proof. Every vector of P;(?W/) is a sum of a vertical vector and a horizontal
vector. Since both sides of the above equality are bilinear and skew-symmetric, it is
sufficient to verify the equality in the following three special cases:

(1) X and Y are horizontal.

Let & 9eV and &*, y* the corresponding elements in /. Then

[4(&%), (7)1=[&,71=0

since [V, V]=0. Thus the equality clearly holds.

(2) X and Y are vertical.

Let X=A* and Y=B* where A, Begy+---+gr_1. Here A* and B* are the
vertical vectors corresponding to A and B respectively. We have

2d0(A*, B¥)=A*.0(B*)— B*-0(A*)— ([ A*, B*])
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=—[4, B]
=—[6(A%), 0(B*)]
since §(A*)=A, §(B*)=B and [A*, B¥]=[A, B]*. On the other hand
df(hA*, hB*)=0.

(38) X is vertical and Y is horizontal.
Let X=A* where Aego+--+gr1 and Y=£&* where ée¢V. We cxtend & to a
horizontal vector field which will be also denoted by &*.

We have
2d0(A*, £%)= A* - ((&%)— &% - (A% — ([ A%, £4])
=—0([A*, &)=—[4, €]
and
[6(A%), 0(e9]=[4, &1

Hence the both sides of the equality vanish. Q.E.D.
Let Q=df+h. Then we have

PrOPOSITION 3. 2. aQ=[Q, 4.
Proof. From Q=d0+(1/2)d,8] we have
dQ=[dd, 4]

~ 1 &~ & o~
=[Q, '9]—5[[5,0],0]-
This, together with the Jacobi identity, implies
dQ=[Q, 1. Q.ED.

Let Q? be the g,-component of Q. Then we have

PrROPOSITION 3.3. If qo contains the identity element E, then LpQP=pQP, where
NS
E* denotes the vertical veclor field on Pe(M) covresponding to F.

Proof. We have
LpQ—=(tgrod+docy)Q
= tpdQ—= 5[ Q, (7]

by Proposition 3.2. This implies
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L)X, V)=[QX, V), E]

for every X and Y.
On the other hand, from the definition of the bracket operation of the graded

Lie algebra® we have
[A, El=pA for Aegp.

Hence
L. Q7 =pQP, Q.E.D.

Every vector field X on M generates a 1-parameter local group of local trans-
formations.

Let Pg(M) be a G-structure of order » and of type 2 on M. We call X an
infinitesimal automorphism of Pg(M) if the local 1-parameter group of local trans-
formations generated by X in a neighborhood of each point of A consists of local
automorphism of Ps(M). The local group generated by X, prolonged to F*(M),
induces a vector field on F5(M), which will be denoted by X.

ProprosiTION 3. 4. For a vector field X on M, the following conditions are
mutually equivalent.
(i) X is an infinitesimal automorphism of Pg(M);
~ NS N
(i) X is tangent to Pg(M) at every point of Pg(M);
(iii) Lgd=0;
@iv) Lgt*¥=0 for every £eV.

Proof. (i)=>(ii). Let ¢, and Pt be the local 1-parameter group of local trans-
formations generated by X and X respectively. If X is an infinitesimal auto-

morphism of Pg(M), then ¢, is a local automorphism and hence @ maps }/)‘[IZ/W)
into itself. Thus X is tangent to ]5(-;(\114[/ ) at every point of @\/4 ).

()=>a). If X is tangent to lga(\]\//l) at every point of PGW ), the integral curve
of X through each point of })G’W ) is contained in ﬁg\(]\j ) and hence each @ maps

~
Ps(M) into itself. This means that each ¢, is a local automorphism and X is an
infinitesimal automorphism of Pgs(M).

~ NS
(i)=>(iii). Since 6 1is canonically associated with Pg(M), every automorphism,

1) The bracket operation of the graded Lie algebra Yip=—10p is defined as follows:
1{ Aegp and Begy, then
1
[A, B](xq, -+, Tpiq)= m- 2 A(B(xje - :ch), Zigrty 0 Tipaq)

1
C(p+DI! L B(A( &y s Tiph Tipyys s Thpigh

for zy, -+, Zpigeg—=V.
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N ~
prolonged to Pg(M), leaves # invariant.
(i) =>(iv). If Lz =0, then
0=X-G(&%)=(Lel) &) +0 (Lg%
=5(L;z§*).
~ N
On the other hand, ¢ defines a complete parallelism on Pg(M). Hence we have
Lz&*=0.
. . . /\/ . .
(iv)=>(i). Let P(i,) be the set of points in Pg(M) which can be joined to #,
by an integral curve of a standard horizontal vector field. Then

~
~— P(it,) = Ps(M).

@y€ePEC)

From Lzé*=0, we see that @ leaves each P(i#,) invariant and hence leaves @\/4 )
invariant, that is, ¢, is a local automorphism of Ps(M). Hence X is an infinitesimal
automorphism. Q.E.D.

Let £ be the sheaf of germs of infinitesimal automorphisms of Pg(M). Let
L be the stalk of £ at zeM. Then

A~
dim _Lr=dim Pe(M).

I~
ProprosITION 3.5. If g0 contains the identity element and dim _£,=dim Ps(M)
at every point x of M. Then Q=0.

Proof. Let E be the identity element in ¢, and E* the vertical vector field
I~
on Pg(M) corresponding to E. Let &* and »* be the standard horizontal vector
SN
fields on Pg(M). Then we have

[£% 8= and  [I* 7¥]=p*
This, together with Proposition 3. 3, implies
E*-QP(E*, ¥)=(Lp:QT)(&¥, 7*)+QP([I2*, &¥], n*) QP (e, [E*, *])
=pQP(EX, %)+ QP(EX, %)+ QP(E*, 9*)
=(p+2)Q"(EX, 7).

~ ~ .
On the other hand, if X is the vector field of Py(M) induced by an infinitesimal
automorphism X of Ps(M), then from Proposition 3.4 we have

L,;Q:Lf<d0~ +%[0~, 5]):0.
This, together with Proposition 3. 4, implies

X-Q(ex, 7= (L), 70 +Q( X, &1, 7)4-Q(E*, [ X, 7D =0.
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N NS
Since dim _Ly,=dim Pg(M), for every ch)int 7 of Pg(M) there exists an infinitesimal
automorphism X of Pg(M) such that Xy=FE*;. We have therefore

(DH2QU(E*, 7%z = (E* - QP(EX, 7))a
=(X-Qr (&, 74)x =0.

Since # is an arbitrary point of PZ(TW/), we have Q?=0 and hence Q2=0. Q.E.D.
Thus we have the following

THEOREM. Let Pg(M) be a G-structure of order v and of type k on M. Let

~
s=Max {r, k}. If it is possible to associate canonically a subbundle Pz(M) of F*(M)
and if the linear isotropy algebra wnmins the identity element, then Pg(M) is

flat if and only if dim _L,=dim Pe(M) at every point x of M.
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