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G-STRUCTURES OF HIGHER ORDER

BY KOICHI OGIUE

Introduction.

One of the main problems of local differential geometry is to determine when
a given geometric structure is integrable or flat. The problem of flatness for G-
structures of first order and of finite type has been solved ([1], [7]), and we know
that the vanishing of a finite number of cohomology classes implies the flatness of
a given G-structure. This result covers the problem of flatness for Riemannian
structures and conformal structures. In the paper we shall extend this result to
G-structures of higher order, for example, projective structures.

For afrine structures, projective structures or conformal structures, it is the
classical result that if the dimension of the Lie algebra of infinitesimal automor-
phisms is maximal then the structure is flat. We shall also extend these results to
more general G-structures of higher order and of finite type satisfying some
appropriate conditions.

§1. Graded Lie algebras.

In general, by a graded Lie algebra we mean a Lie algebra Σp=-ιflp which
satisfies the following conditions:

(1) dim

(2) [fl

in particular [Q_I, Q_ι]=0,

(3) For every nonzero / €Q P , ^i^O, |Y, Q_ι

The subalgebra ΣP=O£P is called the isotropy algebra of ΣP-=-IUP and do is called the
linear isotropy algebra.

It is clear that if Q&— 0 then $P=Q for p>k. A graded Lie algebra Σ$P is said
to be of type k if g^-i^O and α& = 0. It is said to be of infinite type if Q^O for
all p.

Let V=Rn and F* its dual. A Lie subalgebra Σ£=-ι0* of F+F(x)F*-hK
(x)S2(F*)+ , β_ι=Fand ^c. F(x)Sl+1(F*), is a graded Lie algebra.
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Let W be a finite dimensional vector space and Q a subspace of T7® F*. We
set

CJ(P) is called the ^>-th prolongation of Q.
Let Σ 9p be a graded Lie algebra. The smallest integer r such that

αr-.ι+3,=flr-ιcp) for all p

is called the order of the graded Lie algebra Σ 8p
Let r and k be the order and the type of a graded Lie algebra respectively.

Then in general r^

EXAMPLES.
1. F+QΪ(«)+QΪ(w)cl)+Ql(w)C2)H — is a graded Lie algebra of order 1 and of

infinite type.
2. F+flΐ(«)+§ϊ(w)α)+3ϊ(»)C2) + is a graded Lie algebra of order 2 and of

infinite type.
3. F-f-gί(n) is a graded Lie algebra of order 2 and of type 1.
4. F+o(«) is a graded Lie algebra of order 1 and of type 1.
5. F4-co(n)+co(n)(1) = F+co(n)+F* is a graded Lie algebra of order 1 and of

type 2.
6. Let p be the invariant complement to §ί(n)ci) in βϊ(>z)α). Then

= F+βϊ(«)+F* is a graded Lie algebra of order 2 and of type 2.

Given a graded Lie algebra Σ &?» we define cohomology groups as follows:

C^-β

We define the coboundary operator

by

Then 52-0.
We shall denote the cohomology groups of this complex by Hp'q.

§2. (^-structures of higher order.

Let M be a differentiate manifold of dimension n and FP(M) the boundle of
^-frames of M. The structure group of FP(M) is denoted by Gp(n). The Lie
algebra QP(W) of Gp(w) is F(x)F*+F(x)S2(F*)+ -|-F®Sp(F*). As to the details
we shall refer to [2].

Let G be a subgroup of Gr(ri) whose Lie algebra β is the isotropy algebra of a
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graded Lie algebra of order r and of type k.
A G- structure P<?(M) of order r and of type k on M is a reduction of Fr(M)

to the subgroup G.

EXAMPLES.
1. Let G be a subgroup of G\n) with Lie algebra 0=QΪ(w). A G-structure

Pa(M) on M is called an affine structure. An affine structure is a G-structure of
order 2 and of type 1.

2. Let G be a subgroup of G2(n) with Lie algebra g=gΐ(^)+p, (cf. Example
6, § 1). A G-structure PG(M) on M is called a projective structure. A projective
structure is a G-structure of order 2 and of type 2.

3. Let G be a subgroup of G2(n) with Lie algebra β=co(«)+co(«)α). A G-
structure P<?(M) on M is called a conformal structure. A conformal structure is a
G-structure of order 1 and of type 2.

Let MQ=H/H be a homogeneous space of dimension n. Suppose that H is a
finite dimensional Lie group whose Lie algebra $ is a graded Lie algebra. H oper-
ates transitively on M0 and H can be considered as the isotropy subgroup of H at
#o€Mo so that Mo=H/H. Mo has a G-structure as follows:

We fix a local diffeomorphism λ of a neighborhood of the origin 0 of Rn onto
a neighborhood of x0€M0, that is, a chart at #0 Let jp: H->FP(M0) be defined by

i*(a)=fϊ(a X) where Λ?=(0°Λ)(0).

Let r be the smallest integer such that f is injective. Let £r=Λ0(id.°/0 be the
distinguished element of f ( H ) . Then the tangent space TGr(f(H)) to f ( H ) at er is
a subspace of V+ K(x)F*+ F(g)S2(F*) + :

where fcc l/(g)SA l l(F*).
Let fl2j=0r-Ίrl"1) for p^r. Then there exists an integer k such that fl/,-^0 for

/>Ξ^& since // is of finite dimension. F-f-Q<H ----- i-Q? -ι+flrH ----- hίU-i is a graded Lie
algebra of order r and of type k. We shall denote / "(//) by G. G can be considered
as a subgroup of Gr(n). We set PG(M0) = jr(H)ί then PG(Mo) is a subbundle of
Fr(M0) with structure group G, that is, a G-structure of order r and of type k on
Mo. The G-structure Po(M0) can also be considered as follows: Let Γ be the
pseudogroup of transformations of Mo induced by the action of //. Then M0 has
a Γ-structurc and PG(MQ) is the G-structure determined by the Γ-structure. The
G-structure is called the standard flat G-structure. Let s^Max {r, k}. Then we

can associate canonically a subbundle P<?(M0) of FS(M0) with the standard flat G-

structure PG(M0). Let £s=.;\(id.°Λ) be the distinguished element of PG(M0). Then

the tangent space to PG(M0) at es is F+9oH ----- hδr-i+GrH ----- hfl*-ι
A G-structure is said to be y?^i if it is locally isomorphic with the standard

flat G-structure.
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Let PG(M) be a G-structure of order r and of type k on M Let θ be the
canonical form of Fr(M) restricted to PG(M). Then θ is a F+Q<H ----- hβr-2-valued
1-form on PG(M). Let ωt be the ^-component of θ, then θ=(ω_1, ωQί ωly •••, <wr_2).
For each usPG(M}, let Gw be the subspace of TU(PG(M)) consisting of vectors
tangent to the fibre through u. Then Gu is isomorphic with g, the Lie algebra of
G. A complement to Gu in TU(PG(M)) on which the forms ω0, α>ι, •••, ωr_2 all vanish
is called a horizontal space at .̂

Let # be a horizontal space at u, then #= V.
Now let £ and η be elements of F, and X and F the corresponding elements

in H. We define

by
c*(£,

We shall denote the Horn (FΛ F, &)-component of CH by C*H.

PROPOSITION 2. 1. C^=0 for i<r—2.

Proof. Let /z be the horizontal projection determined by the horizontal space
H. Then our assertion is equivalent to

dωi°h—0 for

This follows from the identities

dωi°h=dωi+ — ([ω-ι, <Ui

for i<r— 2 and the fact that 0=(ω_ι, o>0, •••, o>r_2) is the restriction of the canonical
form of Fr(M) to the subbundle Pa(M). Q.E.D.

From the proof of Proposition 2. 1 we have

By applying exterior differentiation to this equation and composing with the hori-
zontal projection h we have

[J(o7._2°//, ω_ι]— 0.

This implies that Cy is a cocycle.

Let // and IΓ be two horizontal spaces at u. It is easily seen that

Hence the cohomology class Cr~2 of C^2 is independent of the choice of the hori-

zontal space H.
Cr~2 is an element of the cohomology group Hr~^2 associated with the graded

Lie algebra F+flo+βH hflr-i
We call C=Cr'2 the structure tensor of the G-structure PG(M). C is a H*"1'2-
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valued function on PG(M).
Pa(M) is said to be r-flat if C-0.
Then problem of flatness for G-structure PG(M) has following three cases:
(I) If r=k+l, it is clear that PQ(M) is flat if and only if C=0.

EXAMPLE. Affine structure.

(II) (i) If r=k and PG(M} is &-flat, then there exists a canonically associated
subbundle P'G(M) of F*+1(M). The structure group of P'G(M) is isomorphic with
G. Let Cr be the structure tensor of P'G(M).

Then Pβ(M) is flat if and only if it is (k+I)-flat, that is, C' = 0. In other
words, let θ' be the canonical form of Fk+1(M) restricted to Pf

G(M}. θf is considered
as a 1-form on PG(M) with values in F+QoH hQfc-i and it defines a Cartan
connection on PG(M). The condition C7=0 is equivalent to the flatness of the
Cartan connection.

EXAMPLE. Riemannian structure.

(ii) If r=k and it is possible to associate canonically a Cartan connection with
PG(M\ then PG(M) is flat if and only if the Cartan connection is flat.

EXAMPLE. Projective structure.

(III) If r<k and PG(M) is r-flat, then there exists a canonically associated
subbundle Pβω(M) of Fr+1(M), where Gcυ is the semidirect product of G and
the nilpotent Lie group generated by flr+Ori-i + /f lrn + . Pa(M) is said to be
(r-hl)-flat if the structure tensor of PGw(M) vanishes.

If PG(M) is (r-fl)-flat, then there exists a canonically associated subbundle
PG(2}(M) of Fr+2(M), where GC 2 ) is the semidirect product of GC1) and the nilpotent
Lie group generated by βr+ι+βr+2+ /9r+2+ . Po(M) is said to be (r+2)-flat if
the structure tensor of PGw(M) vanishes.

(i) Assume PG(M) is β-flat. Then there exists a canonically associated sub-
bundle Pσc*+ι-r>(M) of Fkn(M). The structure group Gα+1"r) is isomorphic with
Gα"r). Po(M) is flat if and only if the structure tensor of PG(k+ι~r}(M) vanishes.

(ii) Assume PG(M) is (k—l)-flat. Then there exists a canonically associated
subbundle PG(k-n(M) of Fk(M). We also assume that it is possible to associate
canonically a Cartan connection with PG(k-n(M). Then PG(M) is flat if and only
if the Cartan connection is flat.

EXAMPLE. Conformal structure.

These results may be stated as follows.

THEOREM. A G-siructure PG(M) of order r and of type k is flat if and only
if it is (k+ϊ)-flat.

§ 3. Infinitesimal automorphisms of a (^-structure.

Let PG(M) be a G-structure of order rand of type k on M. Let 5=Max { r , k } .
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We can associate canonically a subbundle PG(M) of FS(M) under the assumption
that PΘ(M) is (fe-l)-flat if r<k.

Let 8 be a FH-βoH ----- hβfc-i-valued 1-form on PG(M) defined as follows (cf. §2):
(I) If s=r=k+l, then 8 is the canonical form of Fk+1(M) restricted to

(Π-i and IΠ-i) If s=k and PG(M) is &-flat, then there exists a canonically
associated subbundle of Fk+l(M). The canonical form of Fk+1(M) restricted to the

subbundle can be considered as a 1-form on PG(M). We shall take the 1-form as 8.

(Il-ii and IΠ-ii) If there exists a canonical Cartan connection on PG(M\ let 8
be the 1-form defining the Cartan connection.

In every case 8 gives rise to a complete parallelism on PG(M). Let ωt be the
grcomponent of θ, then

For each ύ£PG(M), there exists a unique complement # to the vertical space at u
on which the forms ω0, G>!, •••, ω fc_ι all vanish. We call H a horizontal space at .̂

Let 77 be a horizontal space at £, then 77^ F. Let h be the horizontal pro-
jection determined by H. With each element f€F, we can associate a unique

vector field ζ* of PG(M) satisfying

We call f* the standard horizontal vector field corresponding to ξ.

PROPOSITION 3. 1. d8*h=d3+^ [d, θ\
ΔJ

that is,

dθ(hX,hY)=dθ(X, Y)Λ-~[Θ(X\Θ(Y)}

for any vectors X and Y at u.

Proof. Every vector of PG(M) is a sum of a vertical vector and a horizontal
vector. Since both sides of the above equality are bilinear and skew-symmetric, it is
sufficient to verify the equality in the following three special cases:

(1) X and F are horizontal.
Let ξ, ηζV and <?*, ^* the corresponding elements in H. Then

since [F, F]=0. Thus the equality clearly holds.
(2) X and F are vertical.
Let X=A* and Y=B* where A, £(=βoH ----- hα*-ι Here A* and B* are the

vertical vectors corresponding to A and J5 respectively. We have
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since ff(A*)=A, 8(B*)=B and [A*, B*]=[A, B]*. On the other hand

dff(hA*,hB*)=Q.

(3) X is vertical and Y is horizontal.
Let X=A* where A e β o H ----- hg*-ι and F=f* where f€F. We extend f* to a

horizontal vector field which will be also denoted by £*.

We have

and

Hence the both sides of the equality vanish. Q.E.D.
Let Q=dθ°h. Then we have

PROPOSITION 3. 2. dΩ=[Ω, #].

. From Ω=rf#+(l/2)[#,#] we have

This, together with the Jacobi identity, implies

<7Ω=[Ω,#]. Q.E.D.

Let Ωp be the gp-component of Ω. Then we have

PROPOSITION 3. 3. // QO contains the identity element E, then LE*Ωp=pQp, where

E* denotes the vertical vector field on P<?(M) corresponding to E.

Proof. We have

by Proposition 3. 2. This implies
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(LE,Ώ)(X,Y)=[Ω(X,Y),E]

for every X and Y.
On the other hand, from the definition of the bracket operation of the graded

Lie algebraυ we have

[A,E]=pA for AG$P.

Hence

Q.E.D.

Every vector field X on M generates a 1 -parameter local group of local trans-
formations.

Let PQ(M) be a G -structure of order r and of type k on M We call X an
infinitesimal automorphism of PG(M) if the local 1-parameter group of local trans-
formations generated by X in a neighborhood of each point of M consists of local
automorphism of P0(M). The local group generated by X, prolonged to FS(M\
induces a vector field on F'(M), which will be denoted by X.

PROPOSITION 3. 4. For a vector field X on M, the following conditions are
mutually equivalent:

( i ) X is an infinitesimal automorphism of PG(M);

(ii) X is tangent to PG(M) at every point of Po(M);
(iii) Z,f#=0;
(iv) Lgξ*=Q for every ξζV.

Proof. (i)=>(ii). Let φt and φt be the local 1-ρarameter group of local trans-
formations generated by X and X respectively. If X is an infinitesimal auto-

morphism of Pa(M\ then φt is a local automorphism and hence ψt maps PG(M)

into itself. Thus X is tangent to PG(M) at every point of PG(M).

(ii) => (i). If X is tangent to PG(M) at every point of PG(M\ the integral curve

of X through each point of PG(M) is contained in PG(M) and hence each φt maps

PG(M) into itself. This means that each φt is a local automorphism and X is an
infinitesimal automorphism of PG(M).

(i)=>(iii). Since Θ is canonically associated with PG(M\ every automorphism,

1) The bracket operation of the graded Lie algebra Σ£L-ι90 is defined as follows:
If AfQp and BeQq, then

for
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prolonged to PG(M), leaves Θ invariant.
(iii)=>(iv). If L^=0, then

On the other hand, θ defines a complete parallelism on PG(M). Hence we have

L^*=° ^̂(iv)=>(i). Let P(UQ) be the set of points in PG(M) which can be joined to ύn
by an integral curve of a standard horizontal vector field. Then

From L^f*=0, we see that φt leaves each P(u0) invariant and hence leaves PG(M)
invariant, that is, φt is a local automorphism of PG(M). Hence X is an infinitesimal
automorphism. Q.E.D.

Let X be the sheaf of germs of infinitesimal automorphisms of PG(M\ Let
Xx be the stalk of JC at xeM. Then

PROPOSITION 3. 5. // g0 contains the identity element and dim J?x = dim PG(M)
at every point x of M. Then Ω = 0.

Proof. Let E be the identity element in g0 and E* the vertical vector field

on PG(M) corresponding to E. Let ί* and r;* be the standard horizontal vector

fields on PG(M). Then we have

[£*,£*]=£* and [E*, η*]=r}*.

This, together with Proposition 3. 3, implies

(̂ , r;*)

On the other hand, if X is the vector field of PG(M) induced by an infinitesimal
automorphism X of PG(M\ then from Proposition 3. 4 we have

This, together with Proposition 3. 4, implies

X Q(ξ*, ?*) = (Z*Ω)(£*, >?*)+Ω([i, f*], ^*)H-Ω(f*, [X, 37*])=0.
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Since dimJ?x=dimPG(M), for every point ύ of PG(M) there exists an infinitesimal
automorphism X of PG(M) such that Xu =E*u. We have therefore

Since w is an arbitrary point of P<?(M), we have Ωp=0 and hence Ω=0. Q.E.D.
Thus we have the following

THEOREM. Let Pa(M) be a G-structure of order r and of type k on M. Let

s= Max {r, k}. If it is possible to associate canonic ally a subbundle PG(M) of FS(M)
and if the linear isotropy algebra QO contains the identity element, then PG(M) is

flat if and only if dimJ?x=dimPG(M) at every point x of M.
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