On the Geometry of G-Structures of Higher Order 58.

By Koichi OGIUE

Department of Mathematics, Tokyo Institute of Technology, Tokyo (Comm. by Zyoiti SUETUNA, M.J.A., April 12, 1967)

Let $V = R^n$ and V^* its dual. Let M be a differentiable manifold of dimension n and $F^{r}(M)$ the bundle of r-frames of M. The structure group of $F^{r}(M)$ is denoted by $G^{r}(n)$. The Lie algebra $\mathfrak{g}^{r}(n)$ of $G^{r}(n)$ is $V \otimes V^{*} + V \otimes S^{2}(V^{*}) + \cdots + V \otimes S^{r}(V^{*})$.

A transitive graded Lie algebra is, by definition, a Lie subalgebra $\tilde{\mathfrak{g}} = V + \mathfrak{g}_0 + \mathfrak{g}_1 + \cdots$ of $V + V \otimes V^* + V \otimes S^2(V^*) + \cdots$, with $\mathfrak{g}_i \subset V \otimes S^{i+1}(V^*)$, satisfying

$$[\mathfrak{g}_i,\mathfrak{g}_j]\subset\mathfrak{g}_{i+j}$$

where $g_{-1} = V$.

We call that \tilde{g} is of order r if

$$\mathfrak{g}_{i+i} \cong \mathfrak{g}_i^{(j)}$$
 for $i+j < r$

and

$$\mathfrak{g}_{i+i} = \mathfrak{g}_i^{(j)}$$
 for $i \ge r$ and $j \ge 0$.

If $g_{k-1} \neq 0$ and $g_k = 0$ then \tilde{g} is said to be of type k. In general $r \leq k+1$.

Let $M_0 = \widetilde{G}/G$ be a homogeneous space of dimension *n*. Suppose \widetilde{G} is a finite dimensional Lie group whose Lie algebra $\widetilde{\mathfrak{g}}$ is a transitive graded Lie algebra of order r and of type k:

where
$$s = Max \{r, k\}$$
.

We also suppose that G is a closed subgroup of \widetilde{G} whose Lie algebra g is given by

 $\tilde{\mathfrak{a}} = V + \mathfrak{g}_0 + \cdots + \mathfrak{g}_{s-1}$

$$g = g_0 + g_1 + \cdots + g_{s-1}$$
.

Then G can be considered as a subgroup of $G^{s}(n)$.

Definition. Let M be a differentiable manifold of dimension nand G a subgroup of $G^{s}(n)$ as above. A G-structure $P_{g}(M)$ of order r and of type k on M is a reduction of $F^{s}(M)$ to the group G.

Example 1. Affine structure. Let \tilde{G} be the affine group and G the isotropy subgroup at the origin so that \tilde{G}/G is the affine space. Then $\tilde{\mathfrak{g}} = V + \mathfrak{gl}(n) = V + V \otimes V^*$ and $\mathfrak{g} = \mathfrak{gl}(n)$. An affine structure on M is, by definition, a reduction of $F^2(M)$ to the group G. Affine structure is a G-structure of order 2 and of trpe 1.

Example 2. Projective s⁺ructu e. Let \tilde{G} be the group of projective transformations of a real projective space of dimension n and G the isotropy subgroup at the distinguished point so that \widetilde{G}/G is

No. 4]

the real projective space. Let $\mathfrak{p} \cong V^*$ be the invariant complement to $\mathfrak{Sl}(n)^{(1)}$ in $\mathfrak{gl}(n)^{(1)}$. Then

 $\tilde{g} = V + gl(n) + p$ and g = gl(n) + p.

A projective structure on M is, by definition, a reduction of $F^2(M)$ to the group G. Projective structure is a G-structure of order 2 and of type 2.

Example 3. Conformal structure.

Let \tilde{G} be the group of Möbius transformations of a Möbius space of dimension n and G the isotropy subgroup at a point so that \tilde{G}/G is the Möbius space. Then $\tilde{g} = V + co(n) + co(n)^{1} \cong V + co(n) + V^*$ and g = co(n) + co(n).¹⁾ A conformal structure on M is, by definition, a reduction of $F^{2}(M)$ to the group G. Conformal structure is a Gstructure of order 1 and of type 2.

Let $P_{d}(M)$ be a *G*-structure of order r and of type k on M. Let θ be the canonical form of $F^{s}(M)$ restricted to $P_{d}(M)$. Then θ is a $V+g_{0}+\cdots+g_{s-2}$ -valued 1-form on $P_{d}(M)$. Let ω_{i} be the g_{i} -component of θ , then $\theta = (\omega_{-1}, \omega_{0}, \omega_{1}, \cdots, \omega_{s-2})$. For each $u \in P_{d}(M)$, let G_{u} be the subspace of $T_{u}(P_{d}(M))$ consisting of vectors tangent to the fibre through u. Then $G_{u} \cong g$. A complement to G_{u} in $T_{u}(P_{d}(M))$ on which the forms $\omega_{0}, \omega_{1}, \cdots, \omega_{s-2}$ all vanish is called a *horizontal space* at u. Let H be a horizontal space at u, then $H \cong V$. Now let ξ and η be elements of V, and X and Y the corresponding elements in H. We define

$$c_{\scriptscriptstyle H} \in \operatorname{Hom}(V \wedge V, \ V + \mathfrak{g}_{\scriptscriptstyle 0} + \dots + \mathfrak{g}_{s-2})$$

by

$$c_{H}(\xi,\eta) = d\theta(X, Y).$$

We shall denote the Hom $(V \wedge V, \mathfrak{g}_i)$ -component of c_H by c_H^i . Then c_H^i is a cocycle. Let H and H' be two horizontal spaces at u. It is easily seen that

 $c_{H}^{i}, -c_{H}^{i} \in \partial \operatorname{Hom}(V, \mathfrak{g}_{i+1})$ for $i = -1, 0, 1, \dots, s-2$. Hence the cohomology class c^{i} of c_{H}^{i} is independent of the choice of the horizontal space H. c^{i} is an element of the Spencer cohomology group $H^{i+1,2}$ associated with the bigraded chain complex

$$\sum_{i,j} \mathfrak{g}_{i-1} \otimes \wedge^{j}(V^*).$$

We call $c = (c^{-1}, c^0, c^1, \dots, c^{s-2})$ the structure tensor of the G-structure $P_{g}(M)$. c is a $\sum_{i=0}^{s-1} H^{i,2}$ -valued function on $P_{g}(M)$. $P_{g}(M)$ is said to be *l*-flat if $c^i = 0$ for $i \leq l-2$.

 \tilde{G} operates transitively on M_0 and G can be considered as the isotropy subgroup at a point of M_0 so that $M_0 = \tilde{G}/G$. M_0 has a natural G-structure. The G-structure is called the *standard flat G*-structure.

A G-structure is said to be *flat* if it is locally isomorphic with the standard flat G-structure.

If s=k+1 we set G'=G. If s=k, let G' be a semidirect product of G and the nilpotent Lie group generated by $g_k+g_{k+1}+\cdots/g_{k+1}+\cdots$. Then G' can be considered as a subgroup of $G^{k+1}(n)$ and whose image under the projection $G^{k+1}(n) \rightarrow G^s(n)$ is just G.

There exists a reduction of $F^{k+1}(M)$ to G' which is identical with $P_d(M)$. We shall denote the reduced bundle by $P'_d(M)$. Let θ' be the canonical form of $F^{k+1}(M)$ restricted to $P'_d(M)$. Then θ' is a $V+g_0+\cdots+g_{k-1}$ -valued 1-form on $P'_d(M)$. Let c' be the structure tensor of $P'_d(M)$. Then $c'=(c^{-1}, c^0, c^1, \cdots, c^{k-2}, c^{k-1})$, that is, $H^{i,2}$ components of c' for $i \leq s-2$ are identical with those of c.

Theorem 1. A G-structure $P_{\sigma}(M)$ of order r and of type k is flat if and only if it is (k+1)-flat, that is, c'=0.

Let $P_{d}(M)$ be a *G*-structure of order r and of type k and \mathfrak{L} the sheaf of germs of infinitesimal automorphisms of $P_{d}(M)$. Let \mathfrak{L}_{x} be the stalk at $x \in M$. Then dim $\mathfrak{L}_{x} \leq \dim P_{d}(M)$. We have the following

Theorem 2. Let $P_{d}(M)$ be a G-structure of order r and of type k on M. Suppose \mathfrak{A}_{0} contains the identity element. Then $P_{d}(M)$ is flat if and only if dim $L_{x} = \dim P_{d}(M)$ at every point x of M.

References

- [1] V. Guillemin: The integrability problem for G-structures. Trans. Amer. Math. Soc., 116, 544-560 (1965).
- [2] S. Kobayashi: Canonical forms on frame bundles of higher order contact. Proc. Symposia in Pure Math., 3, Differential Geometry, Amer. Math. Soc., 186-193 (1961).
- [3] S. Kobayashi and T. Nagano: On filtered Lie algebras and geometric structures III. J. Math. Mech., 14, 679-706 (1965).
- [4] ----: On projective connections. J. Math. Mech., 13, 215-236 (1964).
- [5] K. Ogiue: Theory of conformal connections, to appear in Kōdai Math. Sem. Rep.
- [6] ——: G-structures of higher order (to appear).
- [7] I. M. Singer and S. Sternberg: The infinite groups of Lie and Cartan. J. d'Analyse Math., 15, 1-114 (1965).