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Preface

This book was based on notes which were prepared as a guide for lectures
of one semester course on Geometric Mechanics. They were written inside
the level of a master course. I started some years ago teaching them at the
“Instituto de Matemética e Estatistica” of the “Universidade de Sdo Paulo”,
and, more recently, at the “Instituto Superior Técnico” of the “Universidade
Técnica de Lisboa”.

The spectrum of participants of such a course ranges usually from young
Master students to Phd students. So, it is always very difficult to decide how
to organize all material to be taught. I decided that the expositions should
be self contained, so some subjects that one expects to be interesting for
someone, result, often, tedious for others and frequently unreachable for a
few ones.

In any case, for young researchers interested in differential geometry and
or dynamical systems, it is basic and fundamental to see the foundations
and the development of classical subjects like Newtonian and Relativistic
Mechanics.

I wish to thank a number of colleagues from several different Institutions
as well as Master and PhD students from Sao Paulo and Lisbon who moti-
vated and helped me with comments and suggestions when I was writing this
text. Among them I mention Jack Hale, Ivan Kupka, Giorgio Fusco, Paulo
Cordaro, Carlos Rocha, Luis Magalhaes, Luis Barreira, Esmeralda Dias, Za-
queu Coelho, Helena Castro, Marcelo Kobayashi, Sénia Garcia, Diogo Gomes
and José Natario. I am also very grateful to Ms. Achi Dosanjh of Springer-
Verlag for her help and encouragement; it has been a pleasure working with
her and her Springer-Verlag colleagues. Thanks are also due to Ana Bor-
dalo for her fine typing of this work and to FCT (Portugal) for the support
through the program POCTTI.

Lisbon, May 2002 Waldyr Muniz Oliva
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Introduction

Geometric Mechanics in this book means Mechanics on a pseudo-rieman-
nian manifold and the main goal is the study of some mechanical models
and concepts, with emphasis on the intrinsic and geometric aspects arising
in classical problems. Topics like calculus of variation and the theories of
symplectic, Hamiltonian and Poissonian structures including reduction by
symmetries, integrability etc., also related with most of the considered mod-
els, were avoided in the body because they already appear in many modern
books on the subject and are also contained in other courses of the majority
of Master and PhD programs of many Institutions (see [1], [27], [46], [47]).

The first seven chapters are written under the spirit of Newtonian Me-
chanics while the two last ones describe the foundations and some aspects
of Special and General Relativity. They have a coordinate free presentation
but, for a sake of motivation, many examples and exercises are included in
order to exhibit the desirable flavor of physical applications. In particular,
some of them show, for instance, numerical differences appearing between the
Newtonian and relativistic formulations.

Chapters 1 and 2 include the fundamental calculus on a differentiable
manifold with a brief introduction of vector fields, differential forms and ten-
sor fields. Chapter 3 starts with the concept of affine connection and special
attention is given to the notion of curvature; E. Cartan structural equations
of a connection are also derived in Chapter 3. Chapter 4 starts with the for-
mulation of classical Newtonian mechanics where it is described the Galilean
space-time structure and Newton equations. Chapter 5 deals with mechanical
systems on a Riemannian manifold including classical examples like the dy-
namics of rigid and pseudo-rigid bodies; notions derived from dissipation in
mechanics and, correspondingly, structural stability with generic properties of
these (Morse-Smale) systems are also discussed. Chapter 6 considers mechan-
ical systems with non-holonomic constraints and describes D’Alembertian ge-
ometric mechanics including conservative and dissipative situations. In Chap-
ter 7 one talks about hyperbolicity and Anosov systems arising in mechanics
and it is also mentioned the so-called non-holonomic mechanics of vakonomic
type.

In the end of Chapter 4 we present some critical remarks on the bases of
Newtonian Mechanics in order to motivate the introduction of Chapters 8 and
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2 Introduction

9 on Special and General Relativity, respectively. To clarify and give sense to
some expressions and concepts usually found in Hamiltonian and Lagrangian
theories, freely used in previous chapters, it is introduced Appendix A with a
short presentation on Hamilton and Lagrange systems as well as few results
on the variational approach of classical mechanics. The book follows with
Appendices B and C, written by José Natario, where are discussed Lorentz
group and the quasi-Maxwell form of Einstein’s equation, appearing as a
complement to Chapters 8 and 9. Finally Appendix D, written by Diogo
Gomes, deals with viscosity solutions and Aubry—Mather theory showing also
the flavor of new areas related to Geometric Mechanics.



1 Differentiable manifolds

A topological manifold @ of dimension n is a topological Hausdorff
space with a countable basis of open sets such that each x € @ has an open
neighborhood homeomorphic to an open subset of the Euclidean space R™.
Each pair (U, ¢) where U is open in R™ and ¢ is a homeomorphism of U
onto the open set p(U) of Q is called a local chart, ¢(U) is a coordinate
neighborhood and the inverse ¢=! : (U) — U, given by y € p(U)
o Hy) = (2'(y),...,2™(y)), is called a local system of coordinates. If a
point x € Q is associated to two local charts ¢ : U — Q and @ : U — Q,
that is € p(U) N@(U), one obtains the bijection 31 oy : W — W where
the open sets W C U and W C U are given by

W=¢ " [o(U)N®(0)] and W=5""[p(U)N5(0)]

Fig. 1.1. Two intersecting charts on a topological manifold.
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4 1 Differentiable manifolds

The charts (¢, U) and (@, U) are said to be C*- compatible if 71 o ¢ :
W — W is a C*-diffeomorphism, k > 1, k = co or k = w.

A Ck-atlas is a set of C* compatible charts covering Q. Two C*-atlases
are said to be equivalent if their union is a C*-atlas. A C* (differentiable
manifold) is a topological manifold @ with a class of equivalence of C*-
atlases. A manifold is connected if it cannot be divided into two disjoint
open subsets (if no mention is made, a manifold means a C*°-differentiable
manifold).

Examples of differentiable manifolds:

Ezample 1.0.1. R"
Example 1.0.2. The sphere S? = {(z,y, 2) € R3|2? +¢% + 22 = 1}.
Ezample 1.0.3. The configuration space S' of the planar pendulum.

Ezxample 1.0.4. The configuration space of the double planar pendulum, that
is, the torus T2 = S! x S,

Ezxample 1.0.5. The configuration space of the double spherical pendulum,
that is, the product S2 x S? of two spheres.

Ezxample 1.0.6. The configuration space of a “rigid” line segment in the plane,
R? x S'.

Ezample 1.0.7. The configuration space of a “rigid” right triangle AOB, O =
90°, that moves around O; it can be identified with the set SO(3) of all 3 x 3
orthogonal matrices with determinant 1.

Ezample 1.0.8. P™(R), the n-dimensional real projective space (set of lines
passing through 0 € R"*1) n > 1.

1.1 Embedded manifolds in RY

We say that Q" C RY is a C* submanifold of (manifold embedded in)
RY with dimension n < N, if Q™ is covered by a finite or countable number of
images (U) of the so called regular parametrizations , that is, C*-maps,
k>1,

0 :U CR* — RY | U open set of R”, such that:

i) ¢ : U — ¢(U) is a homeomorphism where ¢(U) is open in Q™ with the
topology induced by RY;
ii) %2(x0) : R" — RY is injective for all zy € U.
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| ¢(xj/

@

Fig. 1.2. Manifold embedded in RY.

Here (21,...,2n) = (9" (1, 2n), ., 9N (21, ., 2,)) and 92 (o) is the
N x n matrix g—i(xo) = (27“0;(330)).

To show that Q™ is a C* manifold we prove the next two propositions:

Proposition 1.1.1. Let Q™ be a C* submanifold of RN with dimension n
and ¢ : U — RN a regular parametrization in a neighborhood of 1y, €
©(U) € Q. Then, there exist an open neighborhood 2 of yo in RN and a
CF-map ¥ : 2 — RY such that

v(Q"N Q) =¢ 1 (Q"N ) x {0}V

Proof: We may assume, without loss of generality, that the first deter-
minant (n first lines and n columns) of g—f(xo) does not vanish (here
Yo = ¢(z0)). Define the function F : U x RN"" — RN by F(x;2) =
(P (), ..., 0" (x); " T (z) 4+ 21,. ..,V (2) + 2y_n) which is of class C*; we
have, clearly, F(x,0) = ¢(z), for all z € U, so F(x0,0) = p(xo) = yo and

gf; (o) 0
oF i, =1 n
0 — i i )
70, Y
* I

From this it follows that det%(mo, 0) # 0. The result comes, using the

inverse function theorem, that is, F is a (local) diffeomorphism onto an open
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CAp

Fig. 1.3. Proof of Proposition 1.1.1.

neighborhood (2 of yy in RY with an inverse ¥ defined in (2. It is also clear
that ¥ (Q" N N2) = =1 (Q" N N2) x {0}V . n

From the last proposition it follows that any C* submanifold is in fact a
C* manifold.

Remark 1.1.2. Denote by 75 the second projection my : U x RN~ — RN—n
and let f be the composition f = my 0¥ : 2 — RY~" so that, to any

y € Q" that belongs to 2, one associates N — n functions fi,..., fn_n :
2 — R such that f = (f1,..., fn—n) and 2N Q™ is given by the equations
fi = ... = fn—n = 0, the differentials df1(y),...,dfn—n(y) being linearly
independent.

Conversely we have the following;:

Proposition 1.1.3. Let Q C RN be a set such that any point y € Q has an
open neighborhood 2 in RN and N — n C*-differentiable functions, k > 1,

2 —R ... fnen:2—R

such that 2N Q is given by f1 = ... = fy—n =0, with df1(y),...,df N—n(y)
linearly independent. Then Q is a C* submanifold of (manifold embedded in)
RN with dimension n.

Proof: The linear forms dfi(y) : RY — R, i = 1,...,N — n, define a
surjective linear transformation
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(df1(y)s- - dfN—n(y)) : RY — RNV

with a n-dimensional kernel K C RY. Let L : R¥ — R" be any linear
transformation such that the restriction L|K is an isomorphism from K onto
R™. Define G : 2 C RN — R by

whose derivative at y € @ is given by

dG(y)v = (df1(y)v, ..., df N—n(y)v, L(v)).

Then dG(y)v is non singular and so, by the inverse function theorem, G
takes an open neighborhood 2 of y, diffeomorphically onto a neighborhood
G(£2) of (0, L(y)). Note that if f < (f1,..., fx_n), [HON2 =QN Q2
corresponds, under the action of G, to points of the hyperplane (0, R™) since
G takes f~1(0) N 2 onto (0,R™) N G(£2). The inverse ¢ of G restricted to
f1(0) N 2 is a C*-bijection:

0 U™ (0.R)NGO) — pU)=0QNn £

To the point y € @ then corresponds a local chart (p,U), that is, @ is a
C*-submanifold of RY, with dimension n. .

Exercise 1.1.4. The orthogonal matrices are obtained between the real 3 x3
matrices (these are essentially RY) as the zeros of six functions (the orthogo-
nality conditions). This way we obtain two connected components, since the
determinant of an orthogonal matrix is equal to +1 or —1. The component
with determinant +1 is the group SO(3) of rotations of R3. Show that SO(3)
is a compact submanifold of R? of dimension 3.

1.2 The tangent space

Let @ be a n-dimensional submanifold of RY. To any y € Q is associated a
subspace T, of dimension n; in the notation of Proposition 1.1.3, T,,Q is
the kernel K of the linear map

(df1(y),- - dfn—n(y) : RY — RV™

The vectors of T,,QQ = K are called the tangent vectors to () at the
point y € @ and the subspace T, is the tangent space of ) at the point

y. The tangent vectors at y can also be defined as the velocities ¥ (0) of all
Cl-curves v : (—¢,+¢) — RY with values on @ and such that v(0) = y.

In the general case of a manifold @) one defines an equivalence relation at
y € @ between smooth curves. So, a continuous curve v : I — @Q (I is any
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interval containing 0 € R) is said to be smooth at zero if for any local chart
(Us;0),7(0) = y € (U), the curve o~ 0 y|y-1(pwy) : 7~ (0(U)) — R™ is
smooth. Two (smooth at zero) curves 71 : Iy — @ and 72 : Is — @ such
that v1(0) = 72(0) = y are equivalent if %(Lp*l o)|i=0 = %((p,l 0 v2)|t=0-
This concept does not depend on the local chart (U; ). A tangent vector
vy at y € Q is a class of equivalence of that equivalence relation. We write

simply v, =71 (0) =72 (0). One defines sum of tangent vectors at y and
product of a real number by a tangent vector. This way the set T, @ of all
tangent vectors to @ at y € @ is a vector space with dimension n. With
a local chart (U;¢) and the canonical basis {e;}(i = 1,...,n) of R", it is
possible to construct a basis of T,Q at y € ¢(U); if we set zg = ¢~ 1(y),
consider the tangent vectors associated to the curves 7; : t — @(xg +te;) and

let 52 (y) <7 (0),i=1,...,n.

1.3 The derivative of a differentiable function

A continuous function f : Q1 — Q2 defined on a differentiable manifold Q1
with values on a differentiable manifold Q)5 is said to be C”- differentiable at
y € Q if for any two charts (U, ) and (U, %), ¢~ (y) € U and ' (f(y)) €
U, the map 3 .f.o : U — U is C" differentiable at ©(y), r > 0; of course
we are assuming (as we can) f(p(U)) C B(U) (reducing U if necessary), due
to the continuity of f at y € (1. The notion of differentiability does not
depend on the used local charts. One uses to say smooth instead of C°.
The derivative df (y) or f.(y) of a C'- differentiable function f : Q; — Q2

at y € 1 is a linear map

fe() : TyQ1 — Ty, Q2

that sends a tangent vector represented by a curve v : I — @1, v(0) =
y € @1, into the tangent vector at f(y) € Q2 represented by the curve
fov : I — Q2. One can show that f.(y) is linear.

If g: Q3 — Q3 is another C'-differentiable function one has:

Te(y) 9+ (f(y))
TyQ1 =% Ty@2 * == Ty(5())Qs
and it can be proved that

(90 f),(y) =g.(f(y)) o fuly) for all ye€ Q.

A Cr-diffeomorphism f : Q; — Q> is a bijection such that f and f~!
are C"-differentiable, r > 1 .
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1.4 Tangent and cotangent bundles of a manifold

Let Q be a CPk-differentiable manifold, & > 2. Consider the sets TQ =
Uyeo TyQ and T*Q = UycqT, Q@ where T,°Q, y € Q, is the dual of T,Q,
that is, T,,"@ is the set of all linear forms defined on T,Q.

Exercise 1.4.1. Show that TQ and T*Q are C*~'-manifolds if Q is a C*-
manifold, k£ > 2. Show also that the canonical projections:

Tiv, €TQ—yeQ and
" iwy, €T"Q—yeq

are C*~1 maps.
TQ and T*Q are called the tangent and cotangent bundles of Q,
respectively.

Exercise 1.4.2. Prove that the cartesian product of two manifolds is a man-
ifold.

Exercise 1.4.3. (Inverse image of a regular value) Let F : U C R" — R™
be a differentiable map defined on an open set U C R™. A point p € U is
a critical point of F if dF(p) : R — R™ is not surjective. The image
F(p) € R™ of a critical point is said to be a critical value of F'. A point
a € R™ is a regular value of F if it is not a critical value. Show that the
inverse image F~!(a) of a regular value a € R™ either is a submanifold of
R”, contained in U, with dimension equal to n —m, or F~1(a) = 0.

Let @ be a differentiable manifold. @ is said to be orientable if @
has an atlas a = {(Ua,@a)} such that (Us,¢s) and (Ug,¢p) in a sat-
isfying 0o (Us) N 3(Us) # 0, the derivative of ¢s~! o ¢, at any z €
Yo [pa(Us) Npp(Up)] has positive determinant. If one fix such an atlas, Q
is said to be oriented. If () is orientable and connected, it can be oriented
in exactly two ways.

Exercise 1.4.4. Show that T'Q) is orientable (even if @ is not orientable).
Show that a two-dimensional submanifold Q of R? is orientable if, and only
if, there is on @ a differentiable normal unitary vector field N : Q — R3,
that is, for all y € Q, N(y) is orthogonal to T, Q.

Exercise 1.4.5. Use the stereographic projections and show that the sphere
S ={(z1,...,xp41) € R Z?:Jrll x?; = 1} is orientable.

1.5 Discontinuous action of a group on a manifold

An action of a group G on a differentiable manifold M is a map
p0:GxM-—M

such that:
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1) for any fixed g € G, the map ¢, : M — M given by ¢4(p) = ¢(g,p) is
a diffeomorphism and ¢, = Identity on M (e € G is the identity);
2) if g and h are in G then @4, = @4 0 ), where gh is the product in G.

An action ¢ : G x M — M is said to be properly discontinuous if
any p € M has a neighborhood U, in M such that U, N ¢4 (U,) = 0 for all
g#e geaq.

Any action of G on M defines an equivalence relation ~ between elements
of M; in fact, one says that p; ~ ps (p1 equivalent to ps) if there exists g € G
such that ¢4(p1) = p2. The quotient space M /G under ~ with the quotient
topology is such that the canonical projection 7 : M — M /G is continuous
and open. (7(p) € M/G is the class of equivalence of p € M).

The open sets in M/G are the images by 7 of open sets in M. Since M
has a countable basis of open sets, M /G also has a countable basis of open
sets.

Exercise 1.5.1. Show that the topology of M /G is Hausdorff if and only if
given two non equivalent points pi,ps in M, there exist neighborhoods U;
and Us of p; and pe such that Uy Ny (Usz) = ¢ for all g € G.

Exercise 1.5.2. Show that if ¢ : Gx M — M is properly discontinuous and
M /G is Hausdorff then M /G is a differentiable manifold and 7 : M — M/G
is a local diffeomorphism, that is, any point of M has an open neighborhood
2 such that 7 sends (2 diffeomorphically onto the open set 7(§2) of M/G.
Show also that M /G is orientable if and only if M is oriented by an atlas a =
{(Ua; ¢a)} preserved by the diffeomorphisms ¢4, g € G (that is, (Ua, ¢g0¢a)
belongs to a for all (Uy, pa) €a).

Ezxample 1.5.3. Let M = S™ c R™*! and G be the group of diffeomorphisms
of S™ with two elements: the identity and the antipodal map A : z — —zx.
The quotient S™/G can be identified with the projective space P"(R).

Ezample 1.5.4. Let M = RF and G be the group Z* of all integer transla-
tions, that is, the action of g = (ny,...,n%) € Z¥ on x = (21,...,71) € R¥
means to obtain z + g € R*. The quotient R¥/Z* is the torus T*. The
torus 72 is diffeomorphic to the torus of revolution T2, submanifold
of R? obtained as the inverse image of zero under the map f(x,y,2) =

224+ (Va2 +y2—a)? -r2 (0<r<a).

Example 1.5.5. Let S be a submanifold of R? symmetric with respect to
the origin and G = {67£4} be the group considered in example 1.5.3 above.
The special case S = T2 (torus of revolution in R3) gives us the quotient

manifold 72/G wf K, the so called Klein bottle. When S is the manifold
S ={(z,y,2) € R3|22 +y?> =1,—1 < z < 1} then S/G is called the M&bius
band.

Exercise 1.5.6. Show that the Klein bottle, the Mébius band and P?(R)
are not orientable. Show also that P"(R) is orientable if and only if n is odd.
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1.6 Immersions and embeddings. Submanifolds

Let M and N be differentiable manifolds and ¢ : M — N be a differentiable
map. ¢ is said to be an immersion of M into N if v.(p) : T,M — Ty, N
is injective for all p € M.

An embedding of M into N is an immersion ¢ : M — N such that ¢
is a homeomorphism of M onto (M) C N, ¢(M) with the topology induced
by N.If M C N and the inclusion i : M — N is an embedding of M into
N, M is said to be a submanifold of V.

Ezample 1.6.1. The map ¢ : R — R? given by ¢(t) = (t, |t|) is not differen-
tiable at ¢ = 0.

Example 1.6.2. The map ¢ : R — R? defined by ¢(t) = (¢3,t?) is differen-
tiable but is not an immersion because ¢, (0) : R — R? is the zero map that
is not injective.

Ezample 1.6.3. The map ¢ : (0,27) — R? defined by
o(t) = (2cos(t — g), sin2(t — g»

is an immersion but is not a embedding. The image M = ((0,27)) is an
"eight”. Also, the inclusion i : M — R? is not an embedding, so M =
©((0,2m)) is not a submanifold of R2.

Example 1.6.4. The curve ¢ : (—3,0) — R? given by:

(0,—(t+2)) if te(-3,-1)
¢(t) = { a regular curve for te€ (—1,—1)
(—t,—sin%) if te (—%,0)

is an immersion but is not an embedding.
A neighborhood of O = (0,0) has infinitely many connected components
if one considers the induced topology for the set p(—3,0) C R2.

Ezample 1.6.5. ¢ : R — R3 defined by @(t) = (cos2rt,sin2nt,t) is an
embedding. The image ¢(R) is homeomorphic to R.

Example 1.6.6. The image o(R) of the map ¢ : R — R? given by ¢(t) =
(cos 27t,sin 27t) is ST C R2. The map ¢ is an immersion but not an em-
bedding since is not injective. But ¢(R) = S! is a submanifold of R? if we
consider the inclusion map i : S' — R2.

Exercise 1.6.7. Analyze the maps:

1 1
p1(t) = (; cos 27t ;sianf), t € (1,00);

t+1
(L cos 27t
2t

t+1
(1) ; sin2nt), t e (1,00)
m
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1.7 Partition of unity

Let X be a topological space. A covering of X is a family {U;} of open sets U;
in X such that |J, U; = X. A covering of X is said to be locally finite if any
point of X has a neighborhood that intersects a finite number of elements in
the covering, only. One says that a covering {V}} is subordinated to {U;} if
each V, is contained in some U;. Let B, be the ball of R™ centered at 0 € R™
and radius r > 0.

Proposition 1.7.1. Let X be a differentiable manifold, dim X = m. Given
a covering of X, there exists an atlas {(¢}, ' (Vi), px)} where {Vi} is a locally
finite covering of X subordinated to the given covering, and such that ga,;l(Vk)
is the ball Bs and, moreover, the open sets Wy, = pr(B1) cover X.

For a proof see the book [40] ” Differential Manifolds” by S. Lang, Addison
Wesley Pu. Co., p. 33, taking into account that in the last Proposition 1.7.1
X is Hausdorff, finite dimensional and has a countable basis.

The support supp (f) of a function f : X — R is the closure of the set
of points where f does not vanish. We say that a family {f;} of differentiable
functions fr : X — R is a differentiable partition of unity subordinated
to a covering {V}} of X if:

(1) For any k, fr > 0 and supp (fx) is contained in a coordinate neighbor-
hood V;, of an atlas {(¢; ' (Vi), px)} of X.

(2) The family {V}} is a locally finite covering of X.

(3) >, fa(p) =1 for any p € X (this condition makes sense since for each
P, fa(p) # 0 for a finite number of indices, only).

Proposition 1.7.2. Any connected differentiable manifold X has a differ-
entiable partition of unity.

Proof: The idea is the following: by Proposition 1.7.1, for each k one defines
a smooth “cut off” function ¥, : X — R of compact support contained in
Vi such that 1y is identically 1 on Wy and ¢, > 0 on X. From the fact
that {V4} is a locally finite covering of X subordinated to the given initial
covering {U;} of X, the sum ), 1 = v exists; moreover 9 is smooth and
¥(p) > 0 for any p € X. Then the functions fx = /1 have the desired
properties (1), (2) and (3) above. L]

For a complete proof see also the book [16] “Differentiable Manifolds” by
G. de Rham, Springer-Verlag, p.4.



2 Vector fields, differential forms and tensor
fields

We already saw that given a local chart ¢ : U — ¢(U) = V of a differen-
tiable manifold @, to each z = (x!,...,2") € U C R" corresponds the vectors
z+e; € R™, (e;) being the canonical basis. The curves o(x+te;),i =1,...,n,
for |t| <€, (e > 0 small in order that = + te; € U) define the tangent vectors
to Q at ¢(x) denoted by %(cp(x)). We may also write

pula)es = - (pla)), i =L
and 9
8xi(§0(w))1§i§n Span Tw(m)Q'

A vector field X on a C*°-manifold @ is a map y € Q — X(y) €
Q C TQ. It is clear that if ¢ : U — V C @ is a local chart, the maps
% yeVi %(y) are vector fields on V. A vector field X on @ is said to
be of class C*° (or smooth) if given any local chart ¢ : U — V C Q, X is

written as
a;(
Z i amz

with the functions a; : y € V + a;(y) € R being C* -functions. This means
that the map X : Q — T'Q satisfies 7 0 X = id@Q and is a C*°-differentiable
map (7 : TQ — @ is the canonical projection and id@ is the identity map
on Q). Let D(Q) be the set of all C*°-functions f : @ — R and X'(Q) be the
set of all C*°-vector fields on Q. Any X € X(Q) is a derivative of functions,
in the sense that given a C*-differentiable function f: Q — R, f € D(Q),
then X (f) € D(Q) is the C*°-differentiable function defined as

X(f)y) =df (y) [X(y)] for any y € Q.

In local coordinates, if X = > 1 | ala then X(f) = >0, a”9 (this
equality holds in V).

We remark also that a%(f)(cp(a:)) = 8‘; (fop)(z) = gai (p(x)), for all
zeU.

It is easy to see that if f and g are C*°-differentiable functions and «a, 8 €
R we have, for any C*°-vector field X, the equalities:

T,

W.M. Oliva: LNM 1798, pp. 13-21, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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X(af +Bg) = aX(f) + BX(9),
X(fg) = fX(g) +gX(f)

Given two C*°-vector fields X and Y defined on a C'°°-manifold @, they

define the Lie bracket [X,Y] as the unique C'*°-vector field Z such that,

for any C°°-differentiable function f : Q@ — R, one has Zf = [X,Y] def

XY f) =Y (Xf). If, in local coordinates, we have the expressions:

9 )
X:;aia—xi, Y:Zbiaxi

=1

then, a simple computation shows that

- " 8[)] _ ‘80,]' ﬁ

i,j=1

so, the uniqueness follows. To prove the existence of [X,Y] we define, locally

_ N (0,0 045y 0
[X7Y] - Z(alaxi _blaxi)axj7

i,j=1

and show that the definition is coherent in the intersection of two coordinate
neighborhoods.

Exercise 2.0.1. Complete the proof of the existence of [X,Y].

Exercise 2.0.2. Show that if XY, Z are C* vector fields, f, g C*°-functions
and «a, 8 € R one has:

(X, Y] =~[Y,X]; [aX +8Y,Z] = a[X,Z] + B[Y, Z].
[fX,gY] = fglX, Y]+ f(Xg)Y —g(Y [)X.
[X,Y],Z] + [[Y, 2], X]+ [[Z,X],Y] =0 (Jacobi identity).

We want to introduce now, some other machinery used in calculus on man-
ifolds: differential forms, exterior derivative, interior product, tensor fields and
Lie derivative.

Let A*Q be the manifold of all exterior k-forms on Q. This means that

AFQ = Uyeq A" T,Q

where /\kTy*Q is the space of all alternate k-linear forms on T},Q); recall that
A'Q = T*Q and A°Q = D(Q). Denote by 7% : A*Q — @Q the natural
projection and by I'*(Q) the set of all C*°-differentiable k-forms on @Q, that
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is, 0 € I'*(Q) is a cross section, with respect to 7%, of the vector bundle
(A*Q,Q,7%); so o is a C®-map o : Q — A¥Q such that 7F o0 = id Q.

Any smooth map f: Q1 — @2 from a manifold @; into a manifold Q-
has a natural extension f* that acts on the k-forms o € I'*(Q5); in fact,
f*o € I'*(Qy) is defined as follows:

(o)) (Xi(), .- Xi(y)) = o(fW)(f+X1(y), .., [+ Xi(y))
for all y € Q1 and X;,..., X, € X(Q1).
We also write, for simplicity,

FolXe,. . Xy =o(f.X1, ..., £ X5) (2.1)

It is clear that f* is linear.
If % and ¢! are in I'*(Q) and I''(Q), respectively, o* Ao is the (k+1)-form
in I'**1(Q) defined by

def €
oF No' Xy, X)) E D) (D) 0N (X, X (XL X)) (222)
the > being extended to all sequences (iy < ... < ig;j1 < ... < ji) where
(i1, -0k J1,- -+, 1) I8 & sign € permutation of the indices (1,...,k+1) such
that 47 <19 < ... < i and j1 < jo < ... < 7.
Given o* € I'*(Q), ¢! € I''(Q) and f : Q — Q differentiable, one has:
f*(O'k/\O'l) _ f*O'k/\f*Jl

One can also show that:

" Aot + onl) = Aot + oF A aol (2.3)
" A(at No™) = (" Aal) Aa™ (2.4)
of Aol = (=Dl A o® (2.5)
For o* € I'*(Q) and local coordinates (V;x1,...,2,) on Q, we have:

= Y SiW)dziy(y) A Adeg(y),

i1 <...<ig

where I = (i1,...,4) and S;(y) = Sy(z1,...,z,) are differentiable functions
on V. Omitting the point y € V' we set, simply,

of ="V = Z Srdxii Ao A dxgy,. (2.6)

i1 <...<ig
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The exterior derivative d : I'(Q) — I'(Q) is an operation on the

algebra I'(Q) = ) L T'*(Q), where n = dim Q and k > 0, which is linear
0

(1D

and

do* € "1 (Q) for o* e I*Q);

If fel*(Q), df(X) = X(f) foral € X(Q); (2.7)
dicF Aw) = do* Aw 4 (=1)FoF A dw; (2.8)
> = 0. (2.9)

One can show that the operation above exists. In local coordinates
(Vizi,...,zn) on Q, if f € D(Q) = I'°(Q), one has df = > I, gT;fidwi
and by (3.6) if % = Srdziy A ... N\dx;,, then

11 <. <l

do* = > dSrAdmig A Adaig (2.10)

11 <...<ig

The properties of the operation d imply that if f: Q1 — Q2 is differen-
tiable, then

d(f*o) = f*(do) for all o€ I'*Q,. (2.11)

The interior product of o € I'*(Q), k > 1, by a vector field X € X(Q)
is the (k — 1)-form (X )o such that

iX)f=0 if k=0 (f€DQ)); (2.12)
i(X)o = o(X) if k=1; (2.13)
’L(X)O'(Xl,,Xk_l):O'(X,Xl,,Xk_l) if k> 1. (214)

It can be shown that

i(X)(aoy + boy) = ai(X)oy +bi(X)oa, a,beR, 01,00 € T*(Q)(2.15)
i(X)(o* Aw) = [iI(X)o"] Aw + (=1)Fa® ATi(X)w]. (2.16)

2.1 Lie derivative of tensor fields

A covariant tensor field of order r on @ is a multilinear map
D X(Q) x...x X(Q)— D(Q)

that is, @ is D(Q)-linear in each one of the r factors:
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@(Yl,...,fX+gK...,S/T) =fo(Yy,...,X,...,Y,)
+gdj(yla"'7}/7"'7yr)

for all X, Y € X(Q) and f,g € D(Q).

In an analogous way we define a contravariant tensor field using
I'Q instead of X(Q). Also we define a mixed tensor field of type
(r,s) as a D(Q)-multilinear map @ : (I''(Q))" x (X(Q))* — D(Q), so
D(ot,...,0",Y1,...,Ys) € D(Q). One says that the one form o’ occupies
the ith contravariant slot and that the vector field Y; occupies the jth covari-
ant slot of &.

Exercise 2.1.1. Show that the covariant tensor fields of order 1 are naturally
identified with the elements of I''(Q) and the contravariant tensor fields of
order 1 are identified with vector fields.

Exercise 2.1.2. Define the contraction Cj(@) of a tensor field @ of type
(r,s) which is a tensor field of type (r — 1,s — 1). Hint: Start defining the
contraction C(A) of a tensor field of type (1,1) as a function on @, using
local coordinates a1, ..., 2", by C(4) = 3, A(da?, 52), and show that the
definition does not depend on the coordinates. Continue by defining

[CHP)(c",...,0" Y1, Y, )
as the contraction C'(A4) of the following tensor field A of type (1,1):
A:(0,X)—®(ot,...,0,...,0"" Y1, X,... Y1)

where 6 occupies the ith contravariant slot and X occupies the jth covariant
slot of .

Let X € X(Q) be a vector field on Q. The local flow X, of X is a one-
parameter group of diffeomorphisms that acts in a neighborhood V of a point
y € Q, for |t| < e, € > 0 small. Given a covariant tensor field ¢ one can
compute the derivative of @ along integral curves of X; in other words, the
diffeomorphism X; induces a map X;* that acts on covariant tensor fields in
V. So X,"®(X,(y)) is a tensor at y then X,;*®(X,(y)) — $(y) makes sense.
The Lie derivative of @ is another tensor field Lx® of the same type (also
denoted by 6(X)®) defined by

Lx(y) < tim © X B(X, () — B)) = 5 X))o (217)

Let us see some properties of the Lie derivative:
LX((L¢1 + b@g) =alLx® + be¢2, a,beR (218)

If f is a diffeomorphism of @, Lx(f*®)= f"L; x®. (2.19)



18 2 Vector fields, differential forms and tensor fields

When B is a bilinear map of tensors, that is, if B(®1,®P2) is a tensor that
depends linearly on &1 and @5, then

LxB($1,P9) = B(P1, LxP3) + B(LxP1,P). (2.20)
In particular:
Lx(cf Aw) = (Lxa®) Aw® + 0% A Lxw?. (2.21)
For the case in which @ = f is a function (f € D(Q)) one has:
Lxf = X(f). (2:22)

Let & = o* be an exterior differential k-form and take a local system
of coordinates (Viyi,...,y,) for Q where X = 31" | X’a%“ and the local
diffeomorphism X; has the components

Xt(ylv s 7yn> = (th(ylv ce ayn)a v 7th(yla v 7yn))

Each function Xti(yl, ..., Yn) depends, in a differentiable way, on ¢ and
Yy Yn, 50 Xi" (Y1, s yn) = f*(t,y1, ..., yn) and ataj; = angt. Thus, for
% = dy; on has:

, X}
X dy; = dX' = % dyj, and

Jj=1

d ., "/ doXy' "L 9X!
Lxdyi = = (X¢"dyi) =0 = > (dt@yt> =0 dy; =) Tydyj'
; J

j=1 =%
(2.23)

Now, if ® = ¢* is a one form o, locally given by:

O’ZZSidyz ZS Y, Yn dym
=1

applying the properties of the Lie derivative and the fact that (S,dy) €
I°(Q) x I''(Q) — Sdy € I'*(Q) is a bilinear map of tensors, then

n

Lxo = ZLX S dyz) Z((LXSZ)dyZ + SiLxdyi)

i=1 i=1

" (& 08 . toXt o\
:Z ZXjayj dyﬂr;& a d ’
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SO

dS; oX7

Lyo = <X] JrS') dy;. 2.24

;j ayj J 8?]1 ( )

Finally, ¢ = 0% =37, _ _, Srdy;; A...Ady;;, being an exterior differen-

tial k-form, one uses (2.18) and (2.21) and Lxo" is obtained under the usual
rules.

Exercise 2.1.3. Try to define the Lie derivative of a contravariant tensor
field.

Let now @ =Y € X(Q) be a vector field on @ and let us show that LxY =
[X,Y], that is, LxY is precisely the Lie bracket [X,Y] introduced above. In
fact, in local coordinates (V,y1,...,y,) one can write X = > | Xia%i and

y=>>"r, Yi%. We start computing Lx (i) = iX,t* (6%1») lt=0 - The
j-component of the vector field X _;, =~ a -atpe @ is

0 ; 0
) | Xt (0D = a7, | 5|
X7,
o, (Xi(p))
so that,
5, " d |oX7, " 9XI
)’ — il
* (5?/1) =1 dt l Ay ( t(p))] t=0 jz; dyi 33/3
and

S0,
n

oyt X'\ 0
Lx(Y) =) (X o, % 8yj) B [X,Y]. (2.25)

i,j=1
The next formulae that will be derived until the end of this chapter are

useful and relate the notions of exterior derivative, interior product and Lie
derivative.
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Lx(do) =dLxo, o€I(Q); (2.26)

this follows because X;*do = dX,;"o.

Lx[i(Y)o] =i([X,Y]))o +i(Y)Lxo; (2.27)

it is enough to observe that i(Y)o is bilinear in Y and o, so by (2.20) we
have
Lx[i(Y)o] = i(LxY)o +i(Y)Lxo,

and by (2.25) formula (2.27) follows.

2.2 The Henri Cartan formula

Proposition 2.2.1. The so called Henri Cartan formula is the following:
Lxo=1iX)do+d[i(X)o], ocel'(Q), X eX(Q). (2.28)
Proof: To prove (2.28) one remarks that the second member of this last
formula is a derivative on the algebra I'(Q) and then, it is enough to show
that the equality holds when applied to functions and 1-forms.
If f e I(Q) = D(Q) and since by (2.12) i(X)f = 0, formula (2.28)
reduces, due to (2.13), to
Lxf = df(X) = i(X)df (2.29)

If 0 € I''(Q), o is locally the sum o = Y ;" | S;dz; and so, it is enough to
prove now formula (2.28) for the 1-forms of type g.df, f,g € D(Q).
We have Lx(g.df) = (Lxg)df + gLxdf by (2.21), and

Lx(g-df) = X(g)df + g-d(i(X)df) (2.30)
by (2.22), (2.26) and (2.29). On the other hand, (2.8) and (2.9) imply
i(X)d(g-df) + d(i(X)(g-df)) = i(X)(dg A df) + d(i(X)(g-df ))-

Using (2.16), (2.13) and (2.12) we obtain

i(X)d(g.df) + d(i(X)(g-df)) = X (g)df — X (f).dg + d(g-df (X)),
s0, by (2.8) one has

i(X)d(g-df) + d(i(X)(g-df)) = X(g)df — X(f)-dg + dg. X (f) + g-d(X(]))
= X(g)df + g.d(i(X)df);
thus, by (2.30) we finally have
Lx (g.df) = i(X)d(g.df) + d(i(X)(g.df)),

and (2.28) is proved. L]
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Exercise 2.2.2. Prove that Lixy) = [Lx,Ly] where, as usual, the right-
hand side means LxLy — Ly Lx.

Exercise 2.2.3. In the following two examples, which one is a tensor field:
i) (0,X) € I'(Q) x X(Q) — o(X) € D(Q)

i) (X,Y) € X(Q) x X(Q) — X(6(Y)) € D(Q)
where 0 € I''(Q) is a fixed one form.

Exercise 2.2.4. Show that if ¢ is a k-form and Xy, X1, ..., X}, are vector-
fields one has

k
dO'(X()7X1, . ,Xk) = Z(—l)iXi(O'(Xm . ,XZ', .. ,Xk)) +
i=0
D (D) Mo([XX,], Xo, . X X X), (231)

1<j
and
Lxo(X1,...,Xp) = X(0(X1,.... Xg)) = Y _o(X1,... . [X, X],..., Xp).

i=1
(2.32)



3 Pseudo-Riemannian manifolds

A pseudo-Riemannian metric on a differentiable manifold @ is a law that
to each point y € @ associates a non-degenerate symmetric bilinear form (, ),
on the tangent space T}, (@), varying smoothly, that is, given a local system of

coordinates (V;x1,...,2,), y € V, and considered the local vector fields
%,i = 1,...,n, the functions g;; : V' — R defined by g;; = <%, %) are
i i J

smooth. The n x n matrix (g;;) is symmetric and (, ), being non degenerate
means det g;;(y) # 0 for all y € V. If the pseudo Riemannian metric is such
that (, ), is positive definite for all y € @ we say that the law (,) : y — (,), is
a Riemannian metric on Q. In both cases we use to say that (,) is simply
a metric.

A pseudo-Riemannian (Riemannian) manifold is a pair (Q,(,))
where (,) is a pseudo-Riemannian (Riemannian) metric on a differentiable
manifold Q. If one computes the composition g;; o ¢ of g;; with the local
chart ¢ : U — V, one obtains g;; o ¢(x1,...,2,) or simply g;;(z1,...,2n).

Given two pseudo-Riemannian (Riemannian) manifolds (Q1, (,)1) and
(Q2,(,)2), and a diffeomorphism f : Q1 — @2 such that (uy,v,)1 =
(feuy, fivy)o for ally € Q1 and uy, v, € TyQ1, then f is said to be a pseudo-
Riemannian (Riemannian) isometry.

Exercise 3.0.1. Show that the product of two pseudo-Riemannian (Rieman-
nian) manifolds is a pseudo-Riemannian (Riemannian) manifold.

Example 3.0.2. Any submanifold Q C RY has a Riemannian metric induced
by RY with its usual inner product. The flat torus is the manifold S* x ... x
S' with the product metric, provided that S* C R? has the induced metric.

Ezxample 3.0.3. A Lie group is a group G with a structure of differentiable
manifold such that the map

(z,9) EGXxG—ay ' €G

is differentiable. The left and right translations L., R, by an element z € G
are the diffeomorphisms of G given by L.(y) = zy and R,y = yx, respec-
tively. A pseudo-Riemannian (or Riemannian) metric on G is said to be left
invariant if L, is an isometry for all x € G. An analogous definition for right
invariant metric can be introduced using R, instead L,. The left invariant

W.M. Oliva: LNM 1798, pp. 23-53, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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metrics on G are obtained if one introduces at T.G (e is the identity of G) a
non-degenerate bilinear form (,) and defines (, ), for any x € G using L -1,
that is

(u,v), = (d(Lgp—1)(x)u,d(Ly-1)(x)v)
for all u,v € T,G.

Ezample 3.0.4. Immersed pseudo-Riemannian (Riemannian) mani-
folds

Let f : N — @ be an immersion, that is, f is differentiable and f.(p) :
TyN — Ty, @ is injective for all p € N (this implies that dim N < dim Q).
If @ has a pseudo-Riemannian (Riemannian) structure (,), f induces on N
a pseudo-Riemannian (Riemannian) structure by the formula

<L u,v >>pd;f (feu, fyv), for all peN

and all w,v € T,N, provided that <,>, is non-degenerate. If (,), is Rie-
mannian, it is easy to see that f. injective implies that <,>>, is positive
definite (hence non-degenerate), and consequently <, > is always a Rieman-
nian metric on N.

Let @ be a C*° manifold, 7 : TQQ — @ the canonical differentiable pro-
jection and let ¢ : I — @ (I C R an open interval) be a differentiable curve
(not necessarily injective). A vector field V' along a differentiable curve
c: I - @Qisamap V : I — TQ such that to each ¢ € I corresponds
V(t) € Ter)@, that is, 7oV = c. V is said to be differentiable if the map
Vitel— V(t) € TQ is differentiable. This means that given (in @) any
coordinate neighborhood (§2;z1,...,2,) and any t, € I such that c(t,) € {2,
we have V(t) = Y1, ai(t)a%i(c(t)) for ¢ in a neighborhood of ¢, with the

a;(t) being differentiable functions. The vector field ¢ = 4¢ = cx (L) is called

the velocity field or the tangent field of ¢ = ¢(t). “ *

When ¢ : I — Q is of class C?, the velocity field ¢ is of class C'. A
segment is the restriction of a C! curve ¢ : I — @ to a closed interval
[a,b] C I. Tt is possible to compute the length of a segment, provided that
(@, (,)) is a pseudo-Riemannian structure:

1/2

de d
€

dif ac ac
<dt’ dt>

b
length of (c|[a,b]) = 1,"(c) = /

We remark that the integral above makes sense because

1/2

dc dec cR

aa

telab] — ’<

is a continuous map.
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Example 3.0.5. Recall that the torus 7% in Example 1.5.4 is the quotient
R¥/ZF and that R*/Z¥ is diffeomorphic to S* x ... x S'; so, the quotient
map corresponds to the natural projection m(xy,...,x) = (e™1,..., k)
which is a local isometry from R* onto the manifold R*/Z* with a suitable
Riemannian structure. One can show that 7% with that structure and the
flat torus S x ... x S are isometric Riemannian manifolds.

Ezample 3.0.6. The flat torus T? = S' x S! and the torus of revolution
T? C R? (see example 1.5.5) with the induced metric are not isometric
Riemannian manifolds. Why?

Ezxample 3.0.7. Let R be considered as an affine space and G be the Lie group
of all proper affine transformations, that is, g € G means that g : R — R is
given by

gt) =yt +x for all teR,

with y > 0 and = € R being fixed numbers. So G, as a differentiable manifold,
can be identified with the set

{(z,y) eR? |y >0},

with the differentiable structure induced by R?. The left invariant Rieman-
nian metric on G that at the identity e(e(t) =t for all t € R or e = (0, 1)) of
the group G is the usual metric (given by g1 = go2 = 1,g12 = 0), is defined
by g11 = gao = =5 and g2 = 0. That metric (gij) is the Riemannian metric
of the non Euclidean geometry of Lobatchevski.

3.1 Affine connections

Let @ be a C differentiable manifold, X(Q) be the set of C'* vector fields
on @ and D(Q) be the collection of all real valued C'*° functions defined on
. An affine connection on (Q is a map

V:x(Q) x X(Q) — X(Q)

(one denotes V(X,Y) =4 VxY) such that
fo+gyZ = fVxZ+gVyZ, (3.1)
Vx(Y—FZ):V)(Y—I-VXz, (3.2)
Vx(fY) = fVxY + X(f)Y, (3.3)

for all X,Y,Z € X(Q) and all f,g € D(D).

Proposition 3.1.1. Let V be an affine connection on a C*-manifold Q.
Then:
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i) If X orY is zero on an open set 2 of Q then VxY =0 in 2.
i) If X, Y € X(Q) and p € Q, then (VxY)(p) depends on the value X (p)
and on the values of Y along a curve tangent to X at p, only.
1) If X(p) =0 then (VxY)(p) = 0.
Proof: To prove i) when X = 0, one uses (3.1) making f =g=0and Z =Y
when Y = 0 one uses (3.3) making f = 0. (In particular V defines on the
manifold £2 an affine connection V; if X;Y are vector fields on £2 we extend
them to X,Y € X(Q) and define Vy X as the restriction to £ of V¢ X.
It follows from i) that Vy X does not depend on the extensions chosen. To

simplify the notation, Vy X is also denoted by Vy X ). To prove ii) we write
in a coordinate neighborhood (§2;x1,...,2,):

n 8 n a
X:Zajg, Y:Zbi%;
j=1 J i=1 ’

using (3.1), (3.2), and (3.3) one obtains locally:
Y= N , 0
Vx —szaj% Z Dz, —Zaj V% Z B
i F p

0 ob; 0
= Ej:aj [zi:bivfgjaxi—’_zi:@xj 3xi‘| )

One denotes,

0 def s O
I 3.4
Vit - 2l (3.4
where the functions I ﬁ(ml, ...,xy,) are called the Christoffel symbols of
the connection V, relative to the coordinate neighborhood (§2;z1,...,x,).
So, we have:
8bk 0
VXY = ; Z aj + Z GJJ aixk
0
=> Zajbf + X (bp) | =—: (3.5)
axk
k L
Then:

V) = Zaj FO X0 ) (36)
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where X (by)(p) = (X (p))(bx) = dbx(p)[X (p)]-

Formula (3.6) shows that (VxY)(p) depends on the values a;(p) (value
of X(p) in the chosen coordinates) and on (X (p))(bg) only; but (X (p))(bg)
depends on the values of Y along a curve tangent to the vector field X at p,
only. That proves ii). The expression (3.6) also proves iii). (]

Proposition 3.1.2. Let Q be a C* differentiable manifold with an affine
connection V. Then, there exists a unique law % that to each differentiable
vector field V' along a differentiable curve c: I — @Q (I CR an open interval)
associates another vector field % along c, called the covariant derivative of
V along ¢, such that:

a1) D(v+w) =LY 4 2V,

az) 2(fV) = (%)V + fEY, where V. and W are differentiable vector fields
along ¢ and f € D(I).

as) If V is induced by a vector field Y € X(Q), that is, V(t) = Y (c(t)), then
% = V.Y, where ¢ is the velocity field of c.

Remark 3.1.3. In the last condition ag), the expression V.Y makes sense
by condition ii) of Proposition 3.1.1; in fact V.Y is a tangent vector to the
manifold @ at the point ¢(t). When ¢(t) = ¢, € Q, 2Y is the usual derivative
on T, Q.

Proof: Assume there exists such a law verifying a;),as) and as). Let us

assume also that in a coordinate neighborhood (§2;z1,...,z,) of @, the local
expressions of V =V (¢) and ¢(t) are

V(t):Zvi(t)%(c(t)) and  c(t) = (z1(t), ...,z (1)),

for all ¢ in a suitable interval contained in I where v;(t) and z;(¢) are differ-
entiable functions. Using a1) and as) we may write:

-z (Z vi(t);jji(C(t)))

)

-3 b [vi(t)aii(c(t))}

— Z {dvéit) aii (c(t)) + w(t)%ai (c(t))} ;

using a3) we have that



28 3 Pseudo-Riemannian manifolds

D 0 0 )
%8&& (C(t)) - vcaixl - VZ & (t)ﬁ(c(t)) 3x ZxJ ( di_,’ axl) C(t)7

and so

lg:; du() aii@u»w(o;xj(ﬂ (V2 50 ) )| 1)

Last formula (3.7) shows that % is uniquely determined because the
right hand side depends on the curve ¢ = ¢(t), on V = V(¢) and on V,
through (V% a%i)(c(t)), only. To show the existence of the law, one uses,

in the same coordinate neighborhood, the expression (3.7) to define % and

verify that 2 has the desired properties a1), as) and as). If we take another

coordinate nelghborhood (Q,gcl, ..., Zn) on @ such that 2N Q2 + ¢, one
defines, analogously, ﬂ on {2 using again (3.7); clearly the two deﬁnitions
coincide on 2N 2 due to the uniqueness of Ddi/ on £2. In this way 2¥ can

be extended to the entire manifold @), using an atlas. [ ]

Given an affine connection V on a differentiable manifold and a differen-
tiable vector field V' = V (¢) along a differentiable curve c: ¢t € I — ¢(t) € Q,
one says that V is parallel along c if DV =0.

Proposition 3.1.4. (Parallel translation) Let @ be a C differentiable
manifold with an affine connection V, ¢ = ¢(t) a differentiable curve on Q
and V, € T, \Q a tangent vector to Q at the point c(t,) of the curve. Then
there exists a unique parallel vector field V' along ¢ such that V(t,) = V,.

Proof: If ¢: I C R — @ is the given differentiable curve, let [t,,t1] C T
be a closed interval (therefore compact) and assume that the compact image
¢([to,t1]) C @ is covered by a finite number of coordinate neighborhoods
(£2;21,...,2,). For simplicity let us suppose that ¢([t,,t1]) C 2. Using (3.4)
and (3.7) we have that Z¥ =0 on [t,, 1] if, and only if,

dvk + Z k) =0, k=1,...,n (3-8)

The last equations (3.8) is a system of ordinary differential equations in the
unknowns vg(t),k = 1,...,n (i;(t) and I'};(c(t)) are given functions of t).
Since that system is linear with coefficients given by continuous functions
defined on the interval [t,,;], it is well known that it has a unique solution
(vi(t)) defined on [t,, t1] provided that (vg(t,)) are given. In the present case
one can make vi(t,) equal to the k-component of V,,, that is,

Vo - ka a.’Bk (to))'
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So, the vector field along ¢, defined by
_ def 0
V=V) = ijth)a—m(c(t)), L€ [to,t1]

is parallel along ¢ and it is clearly unique. The general case in which ¢([t,, t1])
has to be covered by a finite number of local coordinate neighborhoods can
be easily formalized. n

A geodesic of an affine connection V on @ is a differentiable curve ¢ =
c(t) on @ such that the corresponding velocity field V' = ¢(t) is parallel
along ¢, i.e. £€ = 0 for all ¢. In local coordinates, c(t) = (w1(t),...,za(t)),
the system of ordinary differential equations giving the geodesics is obtained
from (3.8) making vy (t) = & (¢):

B(t) + > @i Dy (ea(t), . an(t) =0, k=1,...,n. (3.9)

Equations (3.9) show that the geodesics are at least of class C2.

3.2 The Levi-Civita connection

Assume it is given a C'*°-pseudo-Riemannian manifold (Q, (,)) with an affine
connection V on ). We say that V is compatible with the metric (,) if
for any differentiable curve ¢ = ¢(t) on @ and all pair of parallel vector-fields
Eq(t), E5(t) along ¢ we have that

(Er(t), E2(t) =k (3.10)
where k does not depend on t.

Proposition 3.2.1. Let (Q,{,)) be a C*®-pseudo-Riemannian manifold with
an affine connection V on Q. Then V is compatible with the metric (,) if,
and only if, for any differentiable curve ¢ = c¢(t) and any two differentiable
vector fields V and W along ¢ we have:

d DV DwW

Loy =2 wy+ v, 20, (311)
Proof: To see that (3.11) implies (3.10) it is enough to choose V = E;(t) and
W = Es(t), both parallel along ¢ so Dglt(t) = D%t(t) =0 and
then £(E(t), Ba(t)) = 0 for all ¢, which implies (3.10). Conversely, as-
sume (3.10) is true and consider an orthonormal basis (E1(t,), ..., En(ts))
for T(;,)@Q (see Exercise 3.2.2 below). Using Proposition 3.1.4 we obtain by

parallel translation an orthonormal basis (Ei(t),..., E,(t)) for all ¢ because
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(Ei(to), Ej(to)) = €ij (€5s = +1 or —1 and €;; = 0 if i # j), and by (3.10) we
also have (Ez(t) E;(t)) = €;;. In particular V and W can be written as

V(t) =Y wE(t),  W()= Z w;(8)E;(t) (3.12)

%

and then

Lvw) = jt@w(t)m(t),;th)Ej(t»

d

== Zz:vz(t)wj (Beig | =+ zi:e,-ivi(t)wi(t). (3.13)
But )
=z (Z w—(t)Ei@)) = S HOB®) + 3 u0 T 0
= > 0 B(t), (3.14)
because 221 = 0; analogously,
oW _ > i () E; (). (3.15)

Replacing (3.12), (3.14) and (3.15) in the right hand side of (3.11) one
obtains

<%’W> v %> - <Z@i<t>Ei<t>,ij@)Eg(t» -

d
The last equality and (313) prove that (3.11) holds. n

Exercise 3.2.2. Show that any finite dimensional vector space with a non-
degenerate and symmetric bilinear form has an orthonormal basis. Give a
counter-example showing that, in this case, is not true, in general, the Gram-
Schmidt method used to obtain orthonormal basis relative to a positive def-
inite symmetric bilinear form.

Exercise 3.2.3. Show that an affine connection V on a pseudo-Riemannian
manifold (Q, (,)) is compatible with the metric (,) if, and only if, for any
X,Y,Z € X(Q) we have

XY, Z2)=(VxY,Z)+(Y,VxZ). (3.16)
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Given two vector fields X,Y € X(Q) one can construct [X,Y] depending
on @ only, and VxY — Vy X that depends on a given affine connection V
on a C'*° differentiable manifold Q). We say that V is symmetric if

VxY —VyX =[X,Y] for all X,Y € X(Q). (3.17)

Exercise 3.2.4. Show that V is symmetric if and only if for any coordi-
nate neighborhood (§2; z1, ..., x,) the corresponding Christoffel symbols (see
(3.4)) are symmetric, that is,

rh=rf igk=1,...,n. (3.18)

Proposition 3.2.5. (Levi-Civita) Given a pseudo-Riemannian metric (,)
on a C* differentiable manifold Q, there exists a unique affine connection V
on Q such that

a) V is symmetric;
b) V is compatible with the metric (,).

Proof: Let us define V by the formula:

AVy X, Z) = XY, Z) +Y(Z,X) — Z(Y, X)
- <[X7Z]»Y>_<[Y72]’X>_<[X7Y]7Z> (3'19)

forall X,Y,Z € X(Q). Since {, ) is non degenerate, Vy X is well defined. Now
it is a simple computation to show that V is an affine connection and that
(3.16) and (3.17) hold, so, there exists such a V. But conversely, given any
affine connection V satisfying a) and b) one can compute X (Y, Z)+Y(Z, X)—
Z(Y, X) using (3.16) for the three terms of that expression; after this one uses
(3.17) and see that Vy X satisfies (3.19), that proves uniqueness. "

The affine connection given by Proposition 3.2.5 is called the Levi-Civita
connection associated to the pseudo-Riemannian metric (,) on Q.

Exercise 3.2.6. If V is the Levi-Civita connection associated to the pseudo-
Riemannian metric (,) on a manifold Q and (§2;x1,...,2,) is a coordinate
neighborhood, show that:

1 g Ogri 09i;
m = Z J _ J km 2
R 2 Zk: [ ox; + Ox; Oz g (3.20)

where I} are the Christoffel symbols of V relative to (£2;x1,...,2,), (see

(3.4)), g5 = (%, £> and (g*™) is the inverse matrix of the matrix (g, ).
i J

Let (@, {,)) be a smooth pseudo-Riemannian manifold and V be the Levi-
Civita connection associated to the pseudo-Riemannian metric (,). We saw
that the geodesics of V are the curves ¢ = ¢(t) such that the vector field V =
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¢(t) is parallel along ¢, i.e. ¢ =0 for all t. Locally c(t) = (21(t), ..., 2,(t))
and the z;(t) must satisfy (3.19), that is the system:

+le @i ()T (21(t), ..., 2a(t) =0,

k=1,...,n. We know that

L)) =25 e §=0
so, the norm |¢&(¢)| f (¢, c')|% is constant. We will assume that ¢(t) # 0, that
is, we will exclude the geodesics given by constant functions (i.e., a geodesic
cannot be reduced to a point) If |¢(t)| = co, the length of ¢ = ¢(¢) from T to t
is given by s( ft u)|du = co(t —1t); this shows that the parameter (t —t)
of any geodesm is proportlonal to the length from ¢ to ¢. If the manifold is
Riemannian then ¢y # 0, and the arclenght can be taken as a the parameter
for the geodesic.

The second order system of ordinary differential equations (3.9) defining
the geodesics, can be written as a first order system:

k= Uk
i 3.21
{'UkZijFi];(xla'-'axn)vivj' ( )

So, in natural coordinates (zg,vr), k =1,...,n, of TQ, corresponding to the
local system of coordinates (z1,...,x,) in @, equations (3.21) describe the

intrinsic condition —c = 0 and it is defined a vector-field on T'Q

S, €TQ = S(vp) € To ) (TQ)

called the geodesic flow of the pseudo-Riemannian metric (,); in the coor-
dinates above we have

vp = (zk, o) and  S(vp) = ((zk, v), (vk, — ZF Vi;

The trajectories of S are projected onto the geodesics by the canonical
projection 7 : TQ — @Q; the condition &} = v; shows that the trajectories of
S are, precisely, the curves t — (c¢(t), ¢(t)) € TQ, derivatives of the geodesics.
By Exercise 3.2.6 we see that (,) € C* k > 2, implies that S is of class C*~1.

The vector S(vp) can be also obtained through the horizontal lifting
operator H,, : w, € T,Q — T,,(T'Q) defined as follows. Take the geodesic
¢(t) characterized by the conditions ¢(0) = p,é(0) = wp, and consider the
curve V( ) as the parallel transport of v, along c(t), that is, such that V(0) =

Up and 2 dt = 0. So, H,,(wp) is, by definition, the tangent vector at t = 0
to the curve (c(t), V(t)) € TQ. We easily see that dr(v,)(H,,wy) = w, and
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that H, is linear and injective. On the other hand S(v,) = H,,(v,). The
elements of H,,(1T,Q) C T,,(TQ) are said to be horizontal vectors at v,,.

From the theory of ordinary differential equations applied to (3.21), one
can state the following result:

Proposition 3.2.7. Given a point p € @Q one can find: an open set U in
TQ, U C TV, where (V,x1,...,2,) is a local system of coordinates around
p €V, U containing Op = (p,0) € TV, a number 6 > 0 and a differentiable
map

G:(=6,0)xU =TV,

such that t — ®(t,q,v) it is the unique trajectory of the geodesic flow S that
verifies the initial condition ®(0,q,v) = (q,v) for all (q,v) € U.

We will assume for the remainder of this section that (,) is a Riemannian
metric. If we call ¢ = 7 0 @, Proposition 3.2.7 implies the following

Proposition 3.2.8. Given a point p € Q, there exist an open set V C @Q,
p €V, real numbers §,€ > 0 and a differentiable map

c:(=0,46) xU — Q,

U being the set U = {(¢q,v)|qg € V,v € T,Q, |v| < &}, such that the curve
t — c(t,q,v), t € (—0,40), is the unique geodesic of (Q,{,)) that passes
through q € @Q at the time t = 0 with velocity v, for all g € V and all v € T,Q
such that |v| < &.

It can be seen that it is possible to increase the initial velocity of a geodesic
if one decreases, properly, the interval of definition, and conversely. In fact
we have

Proposition 3.2.9. If the geodesic ¢ = ¢(t,q,v) is defined for t € (=6,+9),
then the geodesic c(t,q,av),a > 0, is defined in the interval (—0/a,+d/a) and
c(t, ¢, av) = c(at, ¢, v).

Proof: Let h:(—d/a,+6/a) — @Q be the curve defined by h(t) = c(at,q,v).
Tt is clear that h(0) = ¢(0,q,v) = g and that h(0) = a¢(0,¢,v) = av. More-
over, h is a geodesic because
Dh d .
v V%C(at’q,v)ac(at, q,v) = a2Vé(at7q7v)c(at, q,v)=0

where in V, %c(at, gq,v) represents an extension of h to a neighborhood of

c(at,q,v), in Q. The uniqueness of geodesics gives finally:

h(t) = c(at,q,v) = c(t,q,av) for t € (—d/a,+d/a).
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From what was said above, one can define a local exponential map:

exp:U — @, given by

exp(q,v) = ¢(1,q,v) =¢ (|U,q, |Uv|) (3.22)

called the exponential map in U, which is a differentiable map. If we fix
g € @, one may consider Bs(0) C U NT,Q where Bz(0) is a ball centered at
0 € T,Q with a suitable radius € > 0, and define

exp, : Bz(0) — @

by exp,(v) = exp(q,v),v € Bz(0). One can see that d(exp,)(0) is non singular
because

d(exp,)(O)[t] = L exp, (t0) |o—o=

d
dt 70(17(]5151)) ‘t:()

d

d
= %c(tvqﬂ))ltio =v
that is, d(exp,)(0) = id T,Q. So, by the inverse function theorem, exp, is a
local diffeomorphism, that is, there exists e > 0 and a ball B.(0) centered at
0 € T,Q with radius € > 0 such that the exponential map at ¢ € Q:

exp, : B:(0) C T,Q — Q

is a diffeomorphism from B.(0) onto an open neighborhood of ¢ in (. Denote
by B.(q) the set B.(q) = exp,(B:(0)) called a normal ball or a geodesic
ball of center g and radius € > 0. ” Geometrically speaking”, equ(v) is the
point of @ obtained on the geodesic passing through ¢ € @ at the time ¢t =0
with velocity v/|v|, after "walking” a length equal to |v|.

Exercise 3.2.10. Show that in a normal ball B.(q) = exp,(Bc(0)) there are
coordinates (z1,...,x,) determined by an orthonormal basis (ej,...,e,) at
T,Q; that is, to each £ € B.(q) the coordinates (z1(£),. .., z,(£)) are given by
exp; '(€) = Yot i(§)e;. Prove that in these coordinates we have gi;(q) = d;;
and Fi’}(q) =0. (Bc(q),21,...,xy) is called a normal coordinate system.

3.3 Tubular neighborhood

We will assume throughout this section that (@, (,)) is a Riemannian man-
ifold. Let N be a manifold embedded in @, n = dim N < dim Q. Let F
be the normal bundle over N, that is, ' is the union UxeNTmJ‘N where
T, - N is the subspace of T,Q orthogonal to T, N in the metric (,). So we have
a direct sum T,* N @ T, N = T, Q for each point x € N. The fiber bundle FE
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is a submanifold of T'Q). Let @ : E — N be the restriction 7|E. Note that E
and () have the same dimension.

A tubular neighborhood of N in @ is a diffeomorphism f : Z — 2
from an open neighborhood Z of the zero section in E onto an open set {2
in @ containing N and such that f(0,) = z for any zero vector 0, € F,
x € N. The neighborhood Z is said to be a tube in E while 2 = f(Z) is a
tube in Q. The composition p = 7o f~1 : 2 — N is a projection (p? = p)
from the tube {2 onto N. In fact, given y € 2, y = f(§,) with g, € E. So,
p(y) = 7f Hy) = 7j, = = and p*(y) = p(z) = 7f ' (z) = 7(0;) = 2. It is
also usual to call the pair (£2,p) a tubular neighborhood of N in Q.

it

Fig. 3.1. Tubular neighborhood.

Proposition 3.3.1. (Tubular neighborhood) Given a Riemannian manifold
(Q,(,)), Q€ C>= ()€ C* k>2 and a submanifold N C Q (N is embedded
in @), n=dim N <dim Q, then there exists a tubular neighborhood f :
Z — 12 of class C*~1 of N in Q.

Proof: To each x € @ one associates an open neighborhood U = U(z) in
TQ and a local exponential map exp : U — Q of class C¥~1 (the class of
the geodesic flow S). It is clear that in D = UzegqlU () it is defined a global
exponential map:

exp: D—Q

extending all the local exponential maps. Let Z = DN E which is an open
neighborhood (in E) of the zero section of E. At each 0, in this zero section,
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f= emp|2 is a local diffeomorphism because its ”vertical” derivative is the
identity of T, N (restriction of d exp,(0) = id(T,Q)) and the ”horizontal”
derivative is also an isomorphism since the restriction of f to the zero section
of E satisfies f(0,) = x. The images in @ of all these local diffeomorphisms
(that are restrictions of f) define a covering of N by open sets of the manifold
Q. So, one can apply the results of Proposition 1.7.1 to the manifold N that
has the induced topology of @ (N is a submanifold of )) and obtain a covering
of N by open sets V; in @ such that to each ¢ we have diffeomorphisms

szz—>‘/z and gi:‘/i—>Zi

(one is the inverse of the other) between V; and open sets Z; in Z, such
that each Z; contains a point 0, of the zero section of E, with x € N;
moreover, the f; act like identities when restricted to the zero section of E
while the g;|N are also identities; but the f; are restrictions to Z; of the
same map f. One can also obtain a locally finite covering {W;} of N by open
sets in @ such that W; C V;. Define W = U;W; and denote by W the set
of all elements y € W such that, if y belongs to an intersection W; N WJ7
one has g;(y) = g;(y). It is clear that W contains N. Let us show that W
contains an open set of () containing N. Take z € N; there exists an open
neighborhood G of  in @ that meets a finite number of the W;, only, say
Wi, N...0W;. . Choosing G, sufficiently small one can (not only) assume that
z is in W N...NW;, and (albo) that G, is contained in each one of the sets
Vigseoos Vir. Smce z e Wi, N...NW;, we have G, C [V;1N...NV;,] (because
W; C V;) and then the maps g;;,...,g; take the same Value 0, at x. Since
the fi,,..., fi, are restrictions of f, one concludes that the corresponding
Giys- - -5 i, have to agree at the points of G, which can be reduced again to
obtain G, C [Wy, N...NW,; ] that is, G, is open and is contained in W. So
we have
WoGY UenG..

The set G is open and one can define g : G — ¢g(G) C Z taking g = g; over
G N W;. The set g(G) is open in Z and the restriction of f to f(G) is an
inverse for g. We get, this way, a tubular neighborhood for N, f: Z — (2,
where Z = g(G) and 2 = G. n

Remark 3.8.2. 1t is interesting to remark that the construction of a tubular
neighborhood does not depend on the used Riemannian metric. (For another
proof se also [10] p.37).

3.4 Curvature

Let (@, (,)) be a pseudo-Riemannian manifold and V an affine connection.
The function R : X(Q) x X(Q) x X(Q) — X(Q) given by
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RxyZ =Vixy)Z—[Vx,Vy|Z
=Vix,y1Z - Vx(VyZ2)+Vy(VxZ) (3.23)
is called the curvature tensor on @ of the connection V. If V is the Levi-

Civita connection, R is said to be the Riemannian curvature tensor.
In fact, to the map R corresponds the map

R:(0,X,Y,2) € I'(Q) x X*(Q) — o(Rx,y Z) € D(Q)
and one has the following:

Proposition 3.4.1. The map R is a mized tensor field of type (1,3).

Proof: Tt is enough to show that the map R is D(Q)-multilinear. But since
the linearity in each variable is quite obvious, we only need to check that one
can factor out functions. For instance:
Ry yvZ = V[X)fy]Z — Vx(nyZ) + ny(VXZ)
=XNVyZ+ fVixy1Z - Vx(fVyZ)+ fVy(VxZ)
= fRxyvZ.

If we fix a point p € @ and take z,y € T, one can also consider the so
called curvature operator, the linear operator:

Ry T,Q — T,Q

sending z € T,Q to R,yz € T,Q.

The reason of this is the fact that any tensor field @ on @, and in particular
the tensor field R associated to R, is a field on @, assigning a value &, at
each point p € Q. The main point is that, when & is computed on one-forms
and vector fields to give a real valued function

oot 0", X1, .., Xs),

the value of this function at p € @ depends on the values of the arguments
at p, only.

Exercise 3.4.2. Prove this last fact.

The tensor product A ® B of a mixed tensor field A of type (r,s) by a
mixed tensor field B of type (17, s') is a mixed tensor field of type (r+7’, s+s’)
defined as

(A®B)(017' e 70'T+T/7Y17' e 7}/S+S') =
=A(o',...,0" Y1, ... Y). B, 0" Y, Y.



38 3 Pseudo-Riemannian manifolds

The case ' = s’ =0 (B is a function f € D(Q)) can be also included in this
definition and get
A f=foA=fA

(the same for A of type (r,s) = (0,0).)

Remark 3.4.3. The tensor product is an associative (but not commutative)

operation. In fact, in a local system of coordinates z!,...,z", we have
o 0
de' @ da?)(=—, =) =
(e © da?) (57, o)
o 0
dz* @ da') (5=, =) = 0.
(2 © da) (57, o)
Using the Exercise 3.4.2 it is an easy matter to show that in a local
system of coordinates (U;z!,...,2") a mixed tensor field A of type (r,s)
has, uniquely defined, its (local) components A%""% | that are real-valued

functions defined in U, by:

. 0 0
Uyennsbr 21 Tr
A ]S—A(da: s, dr ’6$j1"“’8mﬂ's)’
where all the indices run from 1 to n = dim (). One can see also that the
tensor fields

9 , ,
—®... — Qdr’ ®...,®dz7*
8x11® ®8xlr® Q... Qdr
generate all mixed tensor fields of type (r, s) in the sense that
A= panie 0o g Qde @ ... ® da’e
seds G Ozir :

where each index is summed from 1 to n. In particular, for a (0,1) tensor,
that is, a one-form o, we have

o= lolorldat,

=1

and, for a (1,0) tensor, that is, a vector field Y, one can write

Y = Zl [da; (Y M

One can extend the notion of components (25;1’ fjr of a tensor field @
of a type (r,s) with respect to any (local) basm X1,...,X, of vector fields
defined in U and to its dual basis o!,...,o™; they are the coefficients of the
expression of @ when it is written in terms of the local basis for the tensor

fields in U of type (r, s), that is, in terms of the family of tensor fields
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X, ®..0X;, 0" ®...® 0.
Explicitly we write

d = Zqi“’ X, ®... 09X, ®0®...000

VAR

where each index is summed from 1 to n.

Ezample 3.4.4. If A is a type (2,3) tensor field, we know that the contrac-
tion C1(A), or simply C1 A4, is the type (1,2) tensor field given by (see Exer-
cise 2.1.2):

(C34)(0, X,Y) = C{A(-,0,X,Y, ) };

then, relative to a given system of coordinates, the components of Ci A are:

o 0 o 0
1 A k _ 1 A k _ A(- k . —
- 8 Z
— l k
- — Alde’, dz o 3$J 8301 A”l

=1

In generalizing that example, if A is a mixed tensor field of type (r,s),
and for fixed 7,5, 1 <i <r and 1 < j < s, the local components of C;A are

n

E A'Lly 7: ol
J1seesbseess Js

=1

(the I "up” is the ith index, the I "down” is the jth index and A“ . are
the local components of A).

If A is a mixed tensor field of type (r, s) and when we fix two integers a, b,
1 <a<randl <b < s the tensor field A can be identified with a mixed

tensor field A4 % D¢ A of type (r — 1, s + 1) using the isomorphism
piVeX(@Q — uvV)er ()
where p(V) € I''(Q) is given by
p(M)(X)=(V,X), for all X € X(Q). (3.24)

(The inverse isomorphism p=!: 0 € I''(Q) — p~(o) =V € X(Q) is given
by o(-) = (V,) = (u=1(0),"))). More precisely, D A is defined by
D(blA(917 LR 97‘717 Yl; ) }/S+1) =
A(alv"'707"'70T—1,Y17"',n—la}/})+la"';}g+l)
where in the right hand side we lose the bth covariant slot and in the ath

contravariant slot appears the 1-form o = 1(Y}) given by (3.24) with V' =Y,
For example, let A be a (2,2) tensor field and A be the (1,3) tensor field given
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by A = DIA; so A(0,Y1,Ys,Ys) = A(0,0,Y1,Y3) for all § € I''(Q), and all
Y, € X(Q), i = 1,2,3,0 being obtained from Y5 through (3.24), that is,
= p(Y2).
In a local system of Qoordinates ot 2 (3.24) makes % correspond
to the one form X;g;;d27, so, the (local) components of A are

A, 2 22 K

n
E mi

= Gkm N
m=1

The operation D3 uses (,) to turn first superscripts into second subscripts. We
have an isomorphism inverse for the operation Dy, denoted as the operation
Uy, that, analogously, takes the ath one-form and inserts its corresponding
vector field given by (3.24) in the bth slot among the vector fields; Dy acts
lowering an index and U} acts raising an index; they are type-changing
operations.

In local coordinates, L7, g2 5.7 18 the vector field that corresponds to

the one-form dx® ((g%) is the inverse of the matrix g;; = (6‘2” a‘zj )).

For example, as above, if A = DJ}A is the type (1,3) tensor field with

local components A7 ,, then (U;A) is the corresponding (2,2) tensor field
with local components

n
= Z gWA?crl
r=1

So, [U} o DYAJS, = S7,g" AL, = S0, S0y grm A = Al that s,
Us o D} = id. In general Uf o D{ = id.

Using the operations Dj and U;' we can also define contractions either
between two covariant slots or between two contravariant slots; these are
the so called metric contractions. In fact, for instance, if A is a mixed

tensor field of type (1,3) we define the contraction between the 2nd and 3rd

covariant slots; from the components AJ g Of A one obtains X3 _; g’”A; ko
for the components of the contraction CozA. In terms of the operatlons Dy
and U, Ca3A = C3U2A, and we obtain

n
1
(U3 A)]k: = Zg A]kl and (02 U3 Z gr Ajrl

=1 l,r=1
Analogously, it is possible to define a (metric) contraction between con-
travariant slots. For instance if A is of type (3,1) and has components A}’ k
one can obtain the C'?3 contraction between the 2nd and 3rd contravariant
slots: <C23A)f = Z,?,jzulgjkA?k, or equivalently, C?3A = C3D3A, that is,
(DSA)% = Z:L:I grr A" and so (C2D3A)! = Z’;ﬁkzlngAfkr.
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Proposition 3.4.5. If z,y,z,v,w € T,Q and if V is the Levi-Civita con-
nection, then

(a) Ryy = —Rys.

(b) (Rayv,w) = —(v, Ryyw).
(¢) Ryyz+ Ry.x + R.oy =0.
(d) (Ryyv, w) = (Ryw,y).

Proof: Since the operations V x and bracket on vector fields are local opera-
tions, we only need to work locally, that is, on a coordinate neighborhood, and
since the equalities to be proved are equivalent to tensor equations, the vec-
tors x,y, z, v, w can be extended to vector fields X, Y, Z, V, W with constant
components, so their brackets are zero and, in particular, Rx y Z reduces to
Vy(VxZ)—Vx(VyZ). Then:

(a) is immediate.

(b) By polarization of bilinear forms it is enough to show that (R,v,v) =0,
and this follows from the fact that the connection V is compatible with
(,), that is, from (3.16).

(c) follows from the fact that V is symmetric, that is from (3.17), and (d) is
just an algebraic exercise that uses (a), (b) and (c).

(d) From (c) we can write

(BywV, X) + (RyyW, X) + (RwvY, X) =0
(RyxV, W)+ (Ryy X, W)+ (RxvY,W) =0
(RywX, V) + (RxyW,V) + (RwxY,V) =0
(Ryw X, Y) + (RxvW)Y) + (RwxV,Y) = 0.

Using (a) and (b) one obtains, after summation of the four equations:
2RywX,Y) + 2(RxyW,V) =0 or
(RvwX,Y) = (RxyV,W).

n

The last proposition showed the symmetries of the curvature operator,

and also, the considerable skew-symmetry it has. Property (b) says that R,

is a skew-symmetric linear operator; (a) and (c¢) hold for any symmetric

connection A; (c) is called the first Bianchi identity and (d) is said to be
the symmetry by pairs.

Exercise 3.4.6. Show that, in local coordinates (z!,...,2™"), we have

) .0
Roop o505 = 2 B
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where
i 0

% 9 i i m % m
ikl = %ij — o+ Y L Iy — X L 175

8xk b

We remark that R;kl = —R;lk.
As_ we saw above, to the curvature tensor R corresponds the mixed tensor
field R of type (1,3) that is, R: I''(Q) x A3(Q) — D(Q), defined by

R(0,X,Y,Z) = o(Rx.y 2). (3.25)

In order to introduce the notion of covariant derivative of tensors, we
start defining the covariant differential Vo' of a one-form o', that is, of
a tensor field of type (0,1); Vol is a (0,2) tensor field defined as

Vol (Y, W) =W (a*(Y)) — e (VwY)

and the covariant derivative Vi o' of ¢! with respect to W is the (0,1)
tensor field given by

(Vo )(¥) < (Vo) (W) = W(e' (V) =o' (VwY)  (326)
Given any mixed tensor field @ of type (r, s):
b (I'(Q)" * (X(Q)* — D(Q),

one can define its covariant differential , which is a mixed tensor field V@
of type (r, s+ 1), by the equality:

(vgp)(o—lw"70T7Y17"~7}/;7W) :W(@(a’l,,,,,gr,Yl,_,_,Y;))7

— &t 0", VwY,....Y) —...=®(c*,...,0",Y1,...,.VyY,) —
— d(Vwaot, o, ...,0" Y1,....Y) — ... —®(c*,...,.Vwo", Y1,...,Y,),
where Vot i =1,...,r, is the covariant derivative introduced in (3.26).

It is a trivial matter to show that one can factor out functions and so Vo
is really a mixed tensor field of type (r,s+ 1).

We also define Vf = df, for any f € D(Q).

The covariant derivative V@ of @ by the vector field W is the tensor
field defined by

(Vw®)(ot,...,0",Y1,....Ys) =Vd(at,... 0" Y1,..., Y, W).  (3.27)

Exercise 3.4.7. Covariant derivative Vy and covariant differential V of a
mixed tensor field, commute with both contraction and type changing oper-
ations.

To the curvature tensor R, or to the associated mixed tensor field R of
type (1,3), there correspond the covariant differential VR, which is a type
(1,4) tensor field, as well as Vi R, a type (1.3) tensor field.
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More precisely, from (3.23), (3.25) and (3.27) one has

(VwR)(0,X,Y,Z) = W(R(0,X,Y,Z)) — R(o,VwX,Y, Z) —
— R(o, X,VwY,Z) — R(0,X,Y, Vi Z)
— R(Vwo,X,Y, Z),

where Vo is defined in (3.26), so

(VwR)(0,X,Y,2Z) =W (o(Rx,yZ)) —
—0(RxvwyZ+RvywxyZ+Rxy(VwZ)) — (Vwo)(RxyZ).

Using (3.24) we identify o with the vector field V' given by o(-) = (V,-), then
(Vwo)(X) = (VwV, X) for all X € X(Q). We can give an interpretation
to the last equality in the following way: for fixed W, X, Y € X(Q), to each
Z € X(Q) one associates the vector field (Vw R)(X,Y)Z defined by

(V. (VwR)(X,Y)Z) =W({V,Rx,yZ)) —
— (V,RyywxyZ+RxvwyZ+ Rxy(VwZ)) — (VwV,RxvZ)
for all V € X(Q). (3.28)

As before, (3.28) makes sense for individual tangent vectors of T,Q, say
v, w,z,y, z, and then (V,,R)(z,y) is considered as a linear operator acting
on T,Q.

Proposition 3.4.8. (second Bianchi identity) For any x,y, z € T,Q) one has
(VoR)(z,y) + (VaR)(y, 2) + (VyR)(2,2) = 0.

Proof: Apply the first member of the second Bianchi identity to a general
vector w € T,Q. We have to extend z,y, z,w, to vector fields X,Y,Z, W,
respectively, defined on a neighborhood of p € . We choose a normal co-
ordinate system (see Exercise 3.2.10) and let these extensions have constant
components; then all the brackets [ , | vanish and, for instance, Rx y W re-

duces to Vy (VxW) — Vx(VyW) in (3.23); moreover, I'%:(p) = 0 and also

all the covariant derivatives involving only X,Y, Z, W are equal to zero at
p € Q (see (3.5)).
From (3.23) and (3.28) we have at the point p € @:
(VzR)(X, Y YW + (VxR)(Y,Z)W + (VyR)(Z, X)W =
= Vz(nyVV) + Vx(Ryzl/V) + Vy(RZ,XW) =
=Vz(VxVyW = VyVxW)+ Vx(VyVzW —VzVyW) +
+Vy (VzVxW - Vx VW) =
= (V2VX — vaz)VyW + (VyVZ — V2Vy)VXW +
+(vay — VyVX)Vzw =0



44 3 Pseudo-Riemannian manifolds

as for instance (VxVy — VyVx)VzW depends linearly on VzW = 0 at
pEQ. ]

The covariant derivative law % of a vector field V' along a differentiable
curve C' : I — @, introduced in Proposition 3.1.2, can be extended to any
tensor field @ of type (r,s), by the use of the definitions (3.26) and (3.27).
Assume that the vector field W and the curve ¢ satisfy ¢(0) = p € @ and

c(t) = W(c(t)) for all t. From (3.26) we define

Ty (e(e) < (W () (elt) oM (o (el)

and, analogously, from (3.27) we set

def

(Z2) (o!,...,0", Y1,....Y)(c(t) = W(D(c,...,0",Y1,...,Y,)))(c(t))
—®(ot, ... 0", B V) (e(t) — .. = Dot .. 0", Y, B (e(t)

—o (% 0T Y Y) (e(®)) = B(oL, ..., 225 ¥i L V) (e(t)).
(3.29)

If we start with an orthonormal basis (e1,...,e,) at the point p of
a pseudo-Riemannian manifold (@, (,)), and work with the parallel trans-
port of V to construct a basis (ei(t),...,en(t)) along ¢ = c(t), and if
(w'(t),...,w™(t)) is the corresponding dual basis, the restriction ®(c(t)) of

"% (t) relative to
(e1(t),...,en(t)). And it is easy to see that the components of ZZ at c(t) rel-
ative to (e1(t),...,en(t)) are precisely the usual derivatives 45;11;’; (t) with
respect to the real variable ¢.

Another notion to be considered is the sectional curvature that will be a
simpler real-valued function K which completely determines the Riemannian
tensor field R. This function K is defined on the set of all non-degenerate
tangent planes; recall that a tangent plane at p € @) is a two-dimensional
subspace P of T}, and to be non-degenerate means that

q(w,w) < (v,0)w,w) = (v, w)? # 0
for one (hence every) basis {v,w} of P. In fact if {z,y} is another basis of P
we have
v = ax + by
w = cx +dy
with ad — be # 0, and so, g(v,w) = (ad — be)?q(z,y). Since (R, v, w) =
(ad — be)? (R, y), the value

K(P) ™ (R, v, w)/q(v,w) (3.30)
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depends only on the non-degenerate tangent plane P and not on the basis
{v,w} used in the definition (3.30) of the sectional curvature K(P) of P.

Proposition 3.4.9. If the sectional curvature satisfies K(P) = 0 for all
non-degenerate tangent planes P at p € Q, then the tensor field R is zero at

.
We need, for the proof, the following result:

Lemma 3.4.10. If u,v are vectors of a vector space endowed with a non-
degenerate bilinear form (,), there exist vectors u,v arbitrarily close to u,v,
respectively, such that

q(, 17) = <ﬂ,’ﬁ><’l7,17> - <ﬂ’17>2 # 0.

Proof: (of the Lemma 3.4.10). Assume u, v linearly independent (because any
two vectors can be approximated by independent ones) such that g(u,v) = 0.
If there is a neighborhood of (u,v) such that ¢(u,v) = 0 for all (u,?) in that
neighborhood, the analyticity implies that q is identically zero and this is a
contradiction. In fact if (,) is indefinite there exists a vector w # 0 such that
(w,w) = 0 and also = such that (w,z) # 0 (otherwise (,) is degenerate),

then q(w,z) = —(w, z)? # 0; if (,) is definite, we choose non zero orthogonal
vectors a,b; then ¢ = 0 gives (a,b)? = (a,a).(b,b) = 0, so (a,a) = 0 with
a # 0 which cannot be. n

Proof: (of Proposition 3.4.9). The first step is to see that (R, ,v,w) = 0
for all v, w € T,Q; the hypothesis implies that this is true if v, w span a non
degenerate plane. If otherwise v, w span a degenerate plan, the last lemma
together with the continuity of the function (z,y) — (R, 4z, y) imply that
(Ry, v, w) = 0 for all v,w € T,Q. Now, for v,w € T,(Q) and arbitrary = €
T,Q we have 0 = (R, w+o¥, W + ) = (Ry 50, w) + (Ry v, z); the symmetry
by pairs (Proposition 3.4.5 (d)) implies (R, v, %) + (Ry v, z) = 0 and so
Ry v = 0 for all v,w € T,Q. In particular we also have 0 = Ry1qw(v+2) =
R, v + Ry e that together with Proposition 3.4.5 (c¢) imply

0= Ry wv+ Ryt + Ry gw=—Ry & + Ry T — Ry

or Ry wx =0 for all z € T,,Q, that means R, , = 0. Since v,w are arbitrary
one obtains R =0 at p. =

Given a tensor field @ on @ of type (r,s), one considers its covariant
differential V@®; the contraction C?,,(V®) of the (s + 1)th covariant slot
with the ith contravariant slot is a tensor field of type (r — 1, s) called the
ith-divergence of @, denoted by div; P, that is,

div;® = CL, (V). (3.31)

We remark that @ has r divergences (see Exercise 2.1.2).
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Example 3.4.11. A vector field V on @ can be considered as a tensor field
of type (1,0) (see Exercise 2.1.1) so VV is a tensor field of type (1,1). The
divergence of V (in this case VV has one only divergence) is the contraction

divV = CH(VV). (3.32)

From the definition of VV we have (VV)(o,W) = W(V (o)) — V(Vwo) =
W(O’(V)) (Vwo)(V) = a(VwV); in local coordinates (zt,...,2"), V =

Xm Vmﬁ and then
(VV)i = (VV)(da* 9 ) gai(v V)=d i(v _(Zm V™ 0 )
i~ T ggr) = (Vo V) = da o)
9 ovm 9
= dz'[Y,V valj dxrm +&m Oz’ &Em}'

Then divV = X;(%% S 2R TEVE).

When @ = R? with the natural metric, one obtains the usual formula for
the divergence of a vector field on R3.

Ezample 3.4.12. The Hessian H(f) of a function f € D(Q) is the covari-
ant differential of df:

H(f)=V(df). (3.33)
Since df € I''(Q), it can be considered as a tensor field of type (0,1) (see
Exercise 2.1.1) then H(f) is a tensor field of type (0,2). Moreover, H(f) is a
symmetric tensor. In fact

(H(/))X,Y) = (V(d)(X,Y) = Y(df (X)) — df (Vy X)
=Y(X(f)) = (V¥ X)(f);

But since XY — Y X = [X,Y] and the Levi-Civita connection is symmetric,
we have
XY -YX=VxY -VyX;

this last equality, allows us to write
HXY) =YX - VyX)(f) = (XY = VxY)(f) = (H(f) (Y, X).

The gradient of a smooth function [ : @ — R, characterized
by (grad f,X) = df(X) for all X € X(Q), makes sense in any pseudo-
Riemannian manifold (@, (,}). In local coordinates (z!,...,2") we have f =
flat, ... 2") and then df = X7 1axzdx and so grad f Z 179" gg 821'

The Laplacian Vf of a functlon f € D(Q) is the divergence of its

gradient:

Vf =div (grad f) = C{(V(grad f)). (3.34)

To the Riemannian curvature tensor R of (Q,(,)) there corresponds a
tensor field R of type (1,3), (see ((3.25)). The contraction C2(R), also denoted
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C3(R), is a mixed tensor field of type (0,2) called the Ricci curvature
tensor of (Q, (,)), that is

Ric (X,Y) = (C3R)(X,Y). (3.35)

Proposition 3.4.13. The Ricci curvature tensor of (Q,(,)) is a type (0,2)
symmetric tensor.

Proof: In local coordinates (x',...,2™), the components of R are denoted
by R;kl R(dx?, amj , aik , ai and the components of Ci R are
_. 0 0 _. 0 0
, .. 1 — — — . — — .
(R,LC)Z] - (CsR)(BJZ“ axj) - C{R( ’ or i’ or 5 )}
_ o 0 0
_ymn l
= XL R(dx "o Ozl @) 1Rma
SO 5 8
(Ric)i; = ch(a D B j) IRUZ (3.36)
On the other hand, from Proposition 3.4.5 (d), the symmetry by pairs implies
o 0 o 0
Wt atr oo ) = ot ot 90 00
that is,

l l
g'rleij = Rik:rgjl
where repetition of indices means summation of that index from 1 to n.
Equivalently, we have:

ngRLij = gljRikr for all rkii,j=1,...,n
From the last expression we get

9" g Rl = 9% g Rigps

or
ka = g Rzkrgl] (337)
Contracting s and j one obtains R}, ; = Rj, and, using (3.36), we show that
(Ric)ki = (Ric)ik. n

The scalar curvature of (Q,(,)) is the (metric) contraction S of the
Ricci curvature tensor, that is,

S = C}(U} Ric).

In local coordinates (z',...,2"), one can write: (U{ Ric);. = ¢“(Ric);n,

and so, S = ¢"(Ric);; = ¢ Rl jii from this it follows that dS = 8(25" dz™
implies

oS 0 y
= iRl
orm orm (g 74][)'

(3.38)
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Remark 3.4.14. By definition Ric = U} Ric and we have divRic = C3(V Ric).
Since Ric is a symmetric tensor field of type (0,2), the tensor fields U{ Ric
and UJ Ric coincide as type (1,1) tensors; then divRic depends on Ric, only.

Proposition 3.4.15. ~
dS = 2divRic

where Ric = Ui Ric.

Proof: We will fix a point p € @ and choose a normal coordinate system in
a neighborhood of p as we did in Proposition 3.4.8. Since I’ ( ) = 0 for all

z,j,l—1,...,n,wehavevﬁa‘zi( )—Oforallz,j—l,...,nand

(o ) = T2 ) =

On the other hand (3.27) implies

g7*
0 (also ~(p)=0), Vi,jk=1,...,n.
T

(VRic)'y, = (VRic)(dz', %, %) =
5ak (ch) — Ric(dx', V 0 ) ch(V 2 da’, 883)
From (3.26), (3.36) and the definition of U] we obtain
(VRic)ly = %( "R = g™ R+ T g™ R,
so we have
[divRic]; = [C3(VRic)]; = (VRic)}, =
= [aiz( TRL) = Tg " R, + Thg ™™ R .

The choice of a normal coordinate system implies that at p € () we have that

- D 8 r
divRic;(p) = [ -(9" R, ,)l(p) (339)
and then
5. ir 8Rf“jl
[divRic];(p) = 9" (p) — =~ (p)- (3.40)
The second Bianchi identity, for all »,m,s =1,...,n, gives us
0 0 0 0 g 0
(va%R)(axim’ %) + (VﬁR)(%, mim) V. o R(%? %) =0,

(3.41)

and, if we use (3.28) and introduce the notation R% ;s by the condition

Jma
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o 0 0 0

— — )| == =R} . —— 42
(VWR)(axm’ axn) axj R]mT,éaxz (3 )

one obtains, at the point p € Q, RY,,,,.. = %(Rﬁmr) and so
[R;ma T R;rm s T R;sr m](p) =0. (343>

From Exercise 3.4.6, we see that reversing r with s in the last parcel (so,
with change of sign) and making the contraction of indices ¢ and s one gets

(R pior + Rl i — REi)(p) = 0, and then, by (3.36) we arrive to
9 . g %
{ax,« [(ch)jm] + Rjrm;i}( ) ij m( ) (344)

Contracting (metrically) the covariant slots j and =, (3.44) gives us

gj’“(p){air [(Ric)jm]}(p) + (8" Rjpmsi) (0) = (9" Rjrizm) (p)- (3.45)

Using (3.38) and (3.45) we can write

[axim](p) [ jTR;nw r](p) [ JTR;rm z](p) (346>

From (3.40) we have
2[divRiclm(p) = 2[9° Ry pis] (0)- (3.47)

Our point now is to show that the second members of (3.46) and (3.47)
coincide; for that we use (3.37) and write

gthlScij = gSTRzkr’ (348)
that, after derivative, gives us at p € Q:

[ thkzy, ]( )_[ WRzkr t]( ) (349)

By contracting indices (¢,m) and (s,7) one obtains

[ t]szy t]( )_[ ZTRzkr t]( ) (350)

or equivalently o
[ Riijir) (P) = [97" Riril (). (3.51)
The last equation shows that the following permutation between the covariant
indices hold:
(kigr) — (jkri).
Now, using (3.51) and the symmetry of the Ricci tensor, we have the equali-
ties:
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(97" Rliis ) (0) = 97" Ry jiss ) (0) = (97" Ry 1 (0) = 197" Ry (1)

97 Rijrimiil(p) = 97" Rrjmsil (9) = (97" R (0) = 197" Ry (0);
with the last two equalities, (3.46) and (3.47) imply

dS(p) = [2divRic](p)

and the proof of Proposition 3.4.15 is complete. ]

3.5 E. Cartan structural equations of a connection

Given an affine connection V, we put
T(X,Y)=VyX —-VxY +[X,Y]. (3.52)
The mapping
(0,X,Y) € I'(Q) x X*(Q) = o(T(X,Y)) € D(Q)

is a mixed tensor field of type (1,2) called the torsion tensor field of V.
From (2.2) and (2.31), w, o being two one differential forms on ) we have

(WA )X, Y) = w(X)o(Y) — w(Y)o(X), (3.53
dw(X,Y) = X(w(Y)) = Y(w(X)) —w([X,Y])

(3.5
where X,Y € X(Q). The covariant derivative of 1-forms is given in (3.
by (Vxw)(Y) = X(w(Y)) —w(VxY). This last equality together with (3.
and (3.54) imply

dw(X,Y) = (Vxw)(Y) — (Vyw)(X) —w(T(X,Y)). (3.55)

Let p € Q and (X1, X3,...,X,) a basis for the vector fields in some neigh-
borhood N, of p, that is, any vector field X on N, can be written as
X =" 1sz where f; € D(Np).

Let w*, w? ®(1 <i,4,k < n) be the one-differential forms in N,, character-
ized by the equalities

w'(X;) = 6;- and w;-“ = ZFi];-wi,
i=1

the I7% k being smooth functions on N, defined by the formula Vx, X; =
Zk 1 F ka

It is easy to see that the 1-forms w;.“ determine the connection V on N,,.
The structural equations of E. Cartan (see the next equations (3.56) and
(3.57)) relate the differentials dw’ with special 2-forms w’(T) and (Zf asso-
ciated with the torsion T'(X,Y) and with the curvature tensor field Rx y Z,
defined in (3.23) and (3.52), respectively.
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Proposition 3.5.1. (E. Cartan) The following structural equations hold:

do’ =Y WP Awl —W(T) (3.56)
k=1
dcué-f = Zwé Awl — ij (3.57)
=1

where wI(T) and .Q;»“ are 2-differential forms given by
W (T)(X,Y) =w/(T(X,Y)) and 028(X,Y)=w"(RxyX;)

Proof: We start by observing that if Z € X(V,,) we have

n

VzX; =Y (W(2) Xk (3.58)
k=1

From the equalities
(Vzu)(X;) = Z(W' (X)) = ' (V2X;) = —' (V2 X))

n

= 'Y H D)X =~ (2)

k=1

we get

Vzw == (wh(2))w’, (3.59)
j=1

From (3.53) and (3.54) we have

dwl (X,Y) — . (WP AW(X,Y) =
k=1
X (! (V) = Y (o (X)) - w([X,Y]) -

S X (Y) + 3 (Y (X),
k=1 k=1

and using (3.59) we arrive to

d’ (X,Y) =Y (W Awl)(X,Y) =0/ (VxY = Vy X — [X,Y]).
k=1

Taking into account the definition (3.52) of T(X,Y) we obtain (3.56). We
now consider (3.54) applied to the 2-form dwé—€ and use (3.58) twice to get:
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Vy (VxX;) Zn:
k=1
= SV LX) + 3@ CO)(Vy X)X
=1 k=1
- + 3 X)L ()X
=1 k=1

With the last equality one can write the expression of Rx y X; given in (3.23)
and obtain from (3.58):

RX,ij = VY(V)(XJ‘) — VX(Vij) + V[X’y]X] =
= [—dwl(X,Y) 4+ ) (wh Awp) (X, V)X,
=1 k=1

Finally, the definition of Q; gives
QUXY) = (Rxy X)) = —dwh(X,Y) + ) (W Awp)(X,Y)
k=1

and the proof is complete. ]

As a consequence of Proposition 3.5.1 one can analyze the case of a Rie-
mannian manifold (@, (,)) with the Levi-Civita connection V. If we assume
that (Xi,...,X,) is an orthonormal basis, that is (X,, Xs) = d5,r,s =
1,...,n, we obtain T(X,Y) = 0 for all X,Y € X(N,) and then we have
the following

Proposition 3.5.2. The structural equations of E. Cartan for the Rieman-
nian case are

dw! = Zwk Awl (3.60)

dw;C = Zwé Awr — Q]k (3.61)
and the forms wi and Qf satisfy
wh+w] =0 (3.62)

28+ 0l =o0. (3.63)
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Proof: In fact, since (3.58) holds we obtain
Wi (Z) = (V2 X;, X).
But Z(X;, X)) = Z(8]) = 0 and then
(VzX;, Xi) +(X;,VzXy) =0

is true, that is, w! + w? = 0. But, moreover, (3.61) and (3.62) imply (3.63)
so the proof is complete. [ ]



4 Newtonian mechanics

4.1 Galilean space-time structure and Newton equations

Let A be an affine space associated to a finite dimensional vector space
V, that is, it is defined a map

AxV — A

called sum (z 4+ v) € A of a point x € A with a vector v € V, and the
following axioms hold:

a1) + 0=z, for all z € A and 0 the zero vector in V.

as) =+ (v +v2) = (x +v1) + vy, for all z € A and vy, v9 € V.

az) Given z,y € A, there is just one vector u € V such that = +u = y; u is
denoted by (y — z).

Example 4.1.1. Any finite dimensional vector space can be considered as an
affine space associated to itself. Note that the cartesian product A; x Ay of
two affine spaces A; and As is an affine space.

If the vector space V' is Euclidean (in V' is defined an inner product (,)),
we say that any affine space associated to V' is Euclidean. In this last case
one can talk about the distance between two points x,yy € A, by setting

p,y) Cl e —yll= V(@ —y),@—y).

The presentation of this section, follows closely [4] “Mathematical Methods
of Classical Mechanics” by V.I. Arnold, Springer-Verlag, p.3 to 11.

A Galilean space-time structure is a triple (A%, 7, (,)) where A% is a
dimension four affine space associated to a vector space V4, 7 is a non-zero
linear form

T VAR

and (,) is an inner product defined on the three dimensional kernel S =
771(0) of 7. The elements in A* are the world points or events, 7 is the
absolute time and 7(z — y) is the time interval from event z to event
y. When 7(x —y) = 0, x and y are said to be simultaneous events and
then (z —y) € S.

W.M. Oliva: LNM 1798, pp. 55-60, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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The set S, = ¢+ S of all events simultaneous to z is a three dimensional
Euclidean affine space associated to S; in fact S is an Euclidean vector space
with the given inner product (,). Then it makes sense to talk about the
distance between two simultaneous events but does not makes sense to talk
about the distance between two events with a nonzero time interval.

Let A, A> be two affine spaces associated to vector spaces Vi, Vs re-
spectively. An affine transformation (affine isomorphism) between A;
and As is a bijection T : A; — Ay such that there exists a bijective linear
map T* : Vi — Va and T(z) — T'(y) = T*(x — y) for all z,y € A;. When
Ay = Ay = A and V; = V5 = V the affine transformations form a group
called the affine group of A.

One defines the Galilean group of a Galilean structure (4%, 7,(,)) as
the subgroup G 44 of the affine group of A* whose elements preserve the time
intervals of any pair of events and also preserve the distances between two
simultaneous events.

So T € G 44+ means that T is an affine transformation of A* and, moreover:

Gi) T(w—y) =7(T(x) = T(y))  for any x,y € A%
G2) x1,m2 € A* and 7(x1 — x2) = 0 imply || z1 — 2 ||=]| T'(z1) — T(z2) |-

It is clear that conditions G1) and G2) above are equivalent to the follow-
ing:

G1) 7 = 7oT* (this, in particular, shows that T* leaves invariant the subspace
S =77Y0)).

Gg) The restriction of T* to S is an orthogonal transformation on S, that is
(T*v, T*u) = (v,u) for all v,u € S.

Example 4.1.2. Let us consider R x R? as an affine space, 7 : R x R® = R
be the projection 7(¢t,z) = t for all (t,2) € R x R3 and S = 771(0) =
{(0,z)]z € R3) with the inner product (,) induced by R3. The Galilean
space-time structure (R x R3,7,(,))is the so called Galilean coordinate
space and its Galilean group Gry«grs will be denoted by G.

Exercise 4.1.3. Prove that the following affine transformations of R x R3
belong to G:

¢1) Uniform motion with velocity v:
gi((t,z)) = (t,z +tv), (t,z) € RxRY
g2) Translation of the origin(0,0) to (s,w) € R x R3:
@((t,2) =({t+sr+w), (t,x)cR xR
g3) Rotation R of the coordinate axes:
g3((t,z)) = (t,Rx), (t,x) €RxR> and R

is an orthogonal transformation of R? (proper (det R = 1) or not).
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Exercise 4.1.4. Show that any transformation g € G can be written in a
unique way as a composition g = g; o g2 o g3; specify g1*, 92", g3*.

We remark that the group G has dimension 10 and the affine group of R x
R3 has dimension 20 (here dimension means the number of real parameters
that one needs to determine a generic element of the group).

Two Galilean space-time structures (A, 71, (,)1) and (Az,7,(,)2) are
said to be isomorphic if there exists an affine isomorphism 7" : A; — As
such that

i) 71 = 7 o T* (and in particular T* takes 71~ 1(0) onto 72 ~1(0));
ii) The restriction 7|71 =1(0) : 7, 71(0) — 72 ~1(0) preserves the Euclidean
structures, that is, (T*u, T*v)s = (u,v); for all u,v € 71 1(0).

Exercise 4.1.5. Show that any two Galilean space-time structures are iso-
morphic. Start by showing that any Galilean space-time structure is isomor-
phic to the Galilean coordinate space.

Let M be a set and ¢1 : M — R x R? a bijective map (called a Galilean
coordinate system on M). If ¢, is another Galilean system such that
w2001 1 R x R? = R x R? belongs to the Galilean group G, one says that
2 moves uniformly with respect to ¢;.

Using a Galilean coordinate system ¢; on M and the Galilean coordi-
nate space (R x R3,7,(,)), one easily define a Galilean space-time structure
(A1,71,(,)1)- In fact let Vi = 1 7} (RxR3) with the structure of a four dimen-
sional vector space induced by the vector space R xR3 andlet 41 = M =1}
be the four dimensional affine space associated to itself. The map 7 = 703
is obviously a non zero linear map 71 : V73 — R and on the three dimensional
kernel 71 71(0) = 171 ({0} x R?) one defines the inner product (,); induced
by (, ).

It is clear that if po moves uniformly with respect to o1 (that is @9 o
p171 € G), the Galilean space-time structure (As, 7o, (,)2) defined by ¢,
as above, is isomorphic to (41,71, (,)1) and, of course, isomorphic to the
Galilean coordinate space (R x R3, 7, (,)).

A motion in RY isa C? map x : I — RY where I C R is an open interval.
The vectors #(t,) and #(t,) in RY are the velocity and the acceleration
at the point ¢, € I. The image x(I) C RY is called a curve in R".

Let o : I — R? be a motion in R3. The graph {(t,a(t))|t € I} is a curve
in R x R3.

Let us come back to the case of a set M with a Galilean system of coordi-
nates ¢1 : M — R x R3 and the corresponding Galilean space-time structure
induced by ¢; on M. Consider also the atlasa = {¢ : M — RxR3|pop; ! €
G}, that is, this atlas is the collection a = {g o ¢1|g € G}.

A world line on M relative to a is the image v(J) C M of a map ~ :
J — M (J C Ris an interval) such that ¢ (vy(J)) is the graph {(¢, a(t))|t € T}
of a motion a : I — R3,
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Remark 4.1.6. If instead of ¢; we use any ¢ € a, one can show that p(y(J))
is also the graph of a motion in R®. This fact follows from what can be proved
in the next Exercise.

Exercise 4.1.7. Show that the maps ¢1,g2 and gs considered in Exer-
cise 4.1.3 transform graphs of motions in R? into graphs of motions in R3.

Example 4.1.8. Let E? be the affine space whose elements are the points of
the Euclidean geometry; E3 is associated to the set V3 of all translations of
E3 which is a three dimensional vector space. The set M = Rx E3 is an affine
space associated to the four dimensional vector space Rx V3. M = Rx E3isa
model for the so called physical space-time; E3 is said to be the absolute
space and the first projection is the absolute time.

Any Galilean system of coordinates (bijection) ¢; : M — R x R3 induces
on M, as we saw, a Galilean space-time structure and also defines the atlas
a={gopilgeG}.

A motion of a mechanical system of n points defined on M, will give
on M n world lines relative to a and correspondingly n mappings z; : I — R3,
i=1,...,n that define one mapping z : I — R3" called a motion of a system
of n points in the Galilean coordinate space R x R3. The direct product
R3 x ... x R3 = R?" is called the configuration space.

According to the Newton principle of determinacy all motions of a
mechanical system of n points are uniquely determined by their initial posi-
tions z(t,) € RY and initial velocities i(t,) € RV, N = 3n. In particular the
accelerations are determined. So, there is a function F : RV x RV xR — RY
such that & = F(x,,t), the Newton equation, which is assumed to be of
class C'. This second order differential equation is determined experimen-
tally for each specific mechanical system and constitutes a definition of it.
By a classical theorem of existence and uniqueness of solutions, each motion
is uniquely determined by z(t,) and &(t,).

Galileo principle of relativity imposes strong constraints to Newton
equations of a mechanical system. Its statement is the following: ” The physical
space-time R x E® has a special Galilean coordinate system o, and its atlas
a = {gowilg € G} (the elements in a are called the inertial coordinate
systems) having the following property: If we subject the world lines relative
to a of all the n points of any mechanical system to one and the same Galilean
transformation, we obtain world lines relative to a of the same mechanical
system (with new initial conditions)”.

This imposes a series of restrictions on the form of the right-hand side F
of Newton equations written in an inertial coordinate system.

Ezample 4.1.9. Since g2 € G (see Exercise 4.1.7), if x(¢) is a solution of
¥ = F(z,4,t) then x(t + s) is also a solution for all s € R, so we have
Z(t+s) = F(x(t + s),4(t + 8),t). As a consequence we have F(z,&,t) =
F(x,%,t — s) which shows that %—I; =0,s0 F = F(z,%).
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Remark 4.1.10. The invariance with respect to the translations go € G means
that ”space is homogeneous”.

Exercise 4.1.11. Show that the right-hand side of Newton equation de-
pends only on the relative coordinates z; —x) and & ; — &y, that is & = F(x, &)
is written in its components I; as

."L"i:Fi({l'j—.ﬁk,i‘j—fEk}) i,j,kj:L...,n.

Hint: First use g» (with (s,w) = (0, —z2)) and see that the F; depend on
x; — x9 only; after use g1 (with v = —i2) to show that the F; depend on the
relative ©; — @2 only.

Remark 4.1.12. The invariance under g3 € GG means that ”space is isotropic”.

Exercise 4.1.13. Analyze the invariance under g3 € G to see what one
can say about the right hand side F'(x,%) of the Newton equation. After
that, show that if a mechanical system consists of only one point, then its
acceleration (in an inertial coordinate system) is equal to zero (”Newton’s
first law”).

Hint: Use the results of Exercise 4.1.11 and the invariance under g3 € G.

Ezxample 4.1.14. A mechanical system consists of two points. At the initial
moment their velocities (in some inertial coordinate system) are equal to zero.
Show that the points will stay on the line which connected them at the initial
moment.

The two points satisty z1(0) — z2(0) = a # 0, £1(0) = @2(0) = 0 and the
system is

{551=F1(331—152,5U1—332) (4.1)

Zo = Fy(x1 — 29, %1 — d2)
where F} and I, are C'-functions; by the invariance under g3 € G we know
that if (z1,22) is a motion then (Z; = Rx1, T2 = Rxs) is also a motion, that
is,

.’%1 = Rl’l = RFl(l'l — 1’2,551 — QCQ) = Fl(R(£E1 — iEg),R(i-El — irg))
‘%2 = RI’Q = RFQ(I’l — l‘g,i?l — 172) = FQ(R(QZl — :CQ),R(i:l — 562))

Assume, by contradiction, that or x(t) or z3(t) does not remain on the
line defined by x1(0) and x2(0). Then, with a small rotation R() (of angle
6) around that line (we may also assume that 0 € R? is on the same line),
one has Z1(t) # z1(t) or Zo(t) # x2(t). But
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and, then, by uniqueness of solution of system (4.1) one has Z;(t) = x1(t)
and T2 (t) = x2(t), which is a contradiction. So z1(¢) and x2(t) remain on the
line defined by x1(0), 22(0), for all values of ¢.

4.2 Critical remarks on Newtonian mechanics

By the end of the last century, the existence of an absolute space in the model
R x E? of the physical space-time as an example of a Galilean space-time
structure, as well as the existence of a special Galilean coordinate system
that appears in the Galileo’s principle of relativity, became dubious when
highly accurate optical experiments were performed.

On a “human scale”, the account of motion in Newtonian Mechanics is
quite accurate but when it is pushed to extremes, some difficulties arise.
For instance, no material object has been observed to travel faster than the
(finite) speed c of light in a vacuum; but, in Newtonian theory, ¢ plays no
special role. Moreover, light is propagated isotropically (with the same speed
in all directions) in each supposed inertial system; if two inertial systems are
passing one another (one inertial coordinate system is in uniform translation
motion with respect to the other) and assuming a light pulse is emitted
at their common origin at time zero, it is observed that both systems see
their respective origins as the centers of the resulting spherical light pulse for
all time. This phenomenon is known as the light pulse paradox and the
observation was done, essentially, in the Michelson-Morley experiment.

This, together with other electromagnetic considerations, led Albert Ein-
stein and other people to reject the notion of an absolute space. He still
retained, however, the notion of a distinguished (but undefined) class of in-
ertial systems. Einstein then showed that this rejection of an absolute space
and the resulting notion of absolute motion of an inertial system forces us to
abandon also the idea of an absolute time! (see [25], “Gravitational Curva-
ture” by Theodore Frankel, W.H. Freeman and Co., San Francisco).



5 Mechanical systems on Riemannian
manifolds

5.1 The generalized Newton law

Let (Q,(,)) be a Riemannian manifold, ¢ = ¢(t) be a C?-curve on @ and
V be the Levi-Civita connection associated to the given Riemannian metric
(,). The acceleration of ¢(t) is the covariant derivative of the velocity field
G = q(t), that is,
Di
acceleration of ¢(t) ! d—f (5.1)
If V is any (local) vector field extending ¢ = ¢(t), we also write, for simplicity,

% = V44 = V4V. When ¢(t) # 0, there exists such a V' in a neighborhood

of ¢(t).
In local coordinates (£2;q1,. .., gn) of @, the functions g;; = <8%-’ 8%»> and
T J
the I, 5 given by V = 8%7‘, =3 Fﬁ%, are well known C!-functions on

2 and the expressions 3.20 give each FZ;- as a function of the g;;(q1,--.,qn)
and their derivatives, hence as a function of qi,...,q,. If (¢;,q;) are the
corresponding natural coordinates of TQ on 771(£2) (recall that 7: TQ — Q

is the natural projection), one can write:

n
o)
; 90 (5.2)
and so, we have along ¢ = ¢(¢) (see 3.7):
Dg _ <~ |, e
Dq _ P 5.3
= ; qk+;qq] 5| 9ar (5.3)

The kinetic energy associated to the Riemannian metric (,) is the C*-
function K : TQ — R given by K(v,) = 1(vp, vp).

As we will see in some examples, the masses appear in the definition of
the metric (,); the Legendre transformation (see Appendix A) or mass
operator p is a diffeomorphism from 7'Q) onto 7@,

w:TQ —T"Q (5.4)

W.M. Oliva: LNM 1798, pp. 61-110, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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given by u(v,)(.) = (vp,.) for all v, € TQ. TQ is also called the phase space
of velocities and 7@ is called the phase space of momenta. Since (, ), is non
degenerate, we see easily that p takes the fiber T),@ onto the fiber 7},"Q and
w identifies, diffeomorphically, TQ with T*Q. A field of (external) forces
is a C'l-differentiable map

F:TQ—T*Q (5.5)

that sends the fiber 7, into the fiber T%,Q, for all p € Q.

We remark that, by definition, F is not necessarily surjective but sends
fibers into fibers. When F(v,) is constant (for all p € Q and v, € T,Q) the
field of forces is said to be positional. As an example of a positional field of
forces one defines

Fu(vp) = —dU(p) Yo, € T,Q,p € Q,

where U : Q — R, the potential energy, is a given C?-differentiable func-
tion. In that case one says that Fy is a conservative field of forces. It is
clear that Fy; is a positional field of forces. The map p~! o Fyy : TQ — TQ
defines, in this case, a vector field X’ on the manifold @Q:

X:peQr—pu ! o Fu(vy) € T,Q,

that does not depend on v, € T),Q, but on U and p € @, only. In fact X is
equal to —grad U (- gradient of U); take w, € T,,Q) and so:

(X(p),wp) = <N71’7'—U(Up)awp> = ﬂ(ﬂil}—U(vp))(wp)
= Fu(vp)(wp) = —dU(p)(wp), that is X(p) = —(grad U)(p).

Exercise 5.1.1. Show that in local coordinates we have
D " (dOK 0K
—) = ——— — — | dg;. 5.6

A mechanical system on a Riemannian manifold (@, (,)) is a triplet
(@, (,),F) where F is an (external) field of forces. The manifold @ is said to
be the configuration space and the corresponding generalized Newton
law is the relation

Dq .
—) =F(q). 5.7
wlg) =F(a) (5.7)
A motion ¢ = ¢(t) is a C%-curve, with values on @Q, that satisfies

the Newton law (5.7). A conservative mechanical system is a triplet
(Q,(,),F = —dU) where U : Q — R is its potential energy. The function
FE,, = K + U o 7 is the mechanical energy.

Proposition 5.1.2. (Conservation of energy) In any conservative mechani-
cal system (Q, <, >, —dU) the mechanical energy E,, = K+ U o1 is constant
along a given motion q = q(t).
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Proof:
—(dU(q))q + (dU(q))q = 0.

5.2 The Jacobi Riemannian metric

Let (@,{,),—dU) be a conservative mechanical system on a Riemannian
manifold (@, (,)) and U be a C?-potential energy. Let v, € TQ be a crit-
ical point of the mechanical energy E,, = K+ Uo7 : TQ — R, that
is, dEm, (vp) = 0. In local coordinates we have v, = (¢;,¢;) and E,,(vp) =

3 2245 965 (P)d4id; + U(q1(p); - -, 4 (p)), s0

n

az n
m Ql7Qz Z Z aij% ]‘i‘% ko+;

k=1

Zgikqi] dgy =0

i

and that implies the following equations:

> girdi =0, k=1,...n, (5.8)
6ng c’)U
Z aq =0, k=1,...,n. (5.9)

By (5.8) and (5.9), and since det(g;;) # 0, v, € TQ is a critical point of

E,, if, and only if:
ou
q'L 9 7 3 9 n? an aqk ( )

This means that v, is a critical point of E,, if, and only if, p € @ is a
critical point of U and v, = 0, € T),Q.

Let h € R be a (not necessarily regular) value of the mechanical energy
E,, with E_1(h) # 0 and consider the open set of Q:

n={peQ[U(p) <h}. (5.10)

On the manifold @} one can define the so called Jacobi metric g; associ-
ated to (,); for each p € Qp, define gx(p) by
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9n(P) (s vp) = 200 — U (D)) (up, vy), (5.11)

Since (h —U(p)) > 0 for p € Qp,, one sees that gy is a Riemannian metric
on Qh-

Proposition 5.2.1. (Jacobi) The motions of a conservative mechanical sys-
tem (Q,(,),—dU) with mechanical energy h are, up to reparametrization,
geodesics of the open manifold Qp with the Jacobi metric associated to (,).

Before proving the 5.2.1 one goes to show the following (see [54]):

Proposition 5.2.2. Let (Q,{,)) be a Riemannian manifold, p : Q — R to
be a C? function and grad p denote a vector field on Q, the gradient corre-
sponding to (,) of the function p. Let V and V be the Levi-Civita connections
associated to {,) and €*/(,), respectively. Then, for all X,Y € X(Q) we have:

VxY =VxY +dp(X)Y +dp(Y)X — (X,Y)gradp (5.12)
Proof: By the definition of V and making <, >= e2?(,), formula (5.19) gives

2« VXY, Z3>=Y <X, Z>+X <K Z,Y > -Z< XY >
—< V2, X > -<[X,Z,Y > -<[V,X],Z>.

On the other hand we have

Y < X,Z>=Y(*(X,2)) =e*Y(X,Z) + (X, Z)Y (%) =
= *[YV(X, 2) + (X, 2)Y (2p)],
SO,
2 VxY, Z> =P {Y(X,Z)+ (X, Z)Y (2p) + X(Z,Y) +
+{Z,Y)X(2p) - Z(X,Y) — (X,Y) Z(2p)
- <[K Z]>X> - <[X7 Z]7Y> - <[Y7X]7Z>}
From (3.19) one obtains
2« VxY,Z> =2e% < VxY,Z >+ {(X,Z)Y (2p)
=2« VxY,Z>+<X,Z>Y(2)
+ << Z,Y > X(2p)— < X,Y > Z(2p).
Since Y (2p) = 2Y (p) = 2dp(Y) we have

< VxY,Z>=<VxY,Z>+< X, Z>dp(Y)
+ <K Z,Y > dp(X)—- < X,Y > dp(2).
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The definition of grad p gives
dp(Z) = (grad p, Z)
for all Z, thus
(VY. Z) = (VY. Z) + (X, 2)dp(Y) + (Z,Y )dp(X)
— (X,Y)(grad p,Z) for all Z.
So, one obtains (5.12). n

Proof: (of 5.2.1) One defines p : Q, — R by the equality e?’ = 2(h — U) so
e??dp = —dU and then

e*grad p = —grad U  with respect to (,), (5.13)

that is
2(h = U)dp = —dU. (5.14)

Let v = ~(t) be a motion of (@, {(,), —dU) with mechanical energy h and
contained in Q. By (5.7) we have

Vi = —(grad U)(v(t). (5.15)
As
2K (%) = (4,4) = 2(h = U(y(t)) = >0,

that implies 4(¢t) # 0 for all ¢ in the maximal interval of ~.
Using (5.12), (5.15), (5.13) and (5.14) one can write

Vg = Vi + 2dp(¥)y — (¥, 7)grad p
= —(grad U)(y(t)) + 2dp(3)y — 2V grad p, so
Vi = 2dp(4)7- (5.16)
Let s and 5 be the arc lengths in (,) and <> respectively. Call u(s) =
1((s) and ¢(3) = u(s(3)). So () = AUs()) and ¢ (5) = %L —
3(t(s(8))) 45 (5(8)) = 3(t(s(3))). %422 252 Bug

—

dt(s)\o _ ds(t)\_o 0 o1 _op(y(t(s))
() =) =0 =e
and then dt(s)
PNSE) _ =p(1(t(9))) 17
s 2 . (5.17)

Analogously
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(dd“) _ (dd”) —< i (3), 1 () >

T At >

= < A(t(s))

-2
_ (dil(;)> < A(t(s)), 4 (t(s)) >1

that gives

<dz(§§)> ‘ <dgj)> = < A(H(s)), V(t(s)) >/
R ICOIRIUON

).(L(S)) = ¢—20(7(t()) and

¢ (3) = A(t(s(3))).e 2P0, (5.18)

Now compute @C,(g)c’(é) using (5.18) and obtain

Ve = Ve (e_zp"y) = 6_2”@4, (e_QP"y) = 6_2”[6_2”@#’& +d(e” ) (%))
= e VVyy = 2dp(7));

from (5.16) we get Vo =0, so ¢(8) = ~(t(s(5))) is a geodesic in the
Jacobi metric. n

5.3 Mechanical systems as second order vector fields

Let (@,(,),F) Dbe a mechanical system on the Riemannian manifold
(@,(,)) and ¢(t) a motion, that is, a solution of the generalized Newton

)
law () = p (F (@) -
In local coordinates we have (see (5.3)):

- 0 - L0
> q;ﬁz Fdid T%:’;fk(%(ﬁaiqk

k=1

where the fi(q, ¢) are the components of p~1(F(4)), that is, the Newton law
is locally equivalent to the 2nd order system of ordinary differential equations:

Z Faid + fele, @), k=1,...n,

or, to the first order system of ordinary differential equations:
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dk = Uk
) ) 5.19
{Uk ==, T (@)viv; + fil(a, ), o

k=1,...,n
Using (5.6) we also have
d 0K 0K
— e — i=1,..., 5.20
it 96, dq; Zgjkfk .4, j=1....n (5.20)

which are called the Lagrange equations for the system (the free external
forces case can be seen in Appendix A taking K as the Lagrangian function).

This way, in natural coordinates (q,q) = (q,v) of TQ we have, well de-
fined, the vector-field

E: (CLU) — ((q,'U), (qvv))

where the (¢,?) are given by (5.19). The map above is a vector field E on

TQ,
E:v,eTQ+— E(vp) € T(TQ).

The tangent space T'Q is called the phase space and the vector field F
defined on T'Q is said to be a second order vector field because the first
equation (see (5.19)) is ¢ = v. This is equivalent to say that any trajectory of
E = E(v,) is the derivative of its projection on Q. In the special case where
F =0, the vector field F reduces to the geodesic flow S of (,), (see (4.21)),
given locally by

S: (g, v) — ((q,v), (v,7))

where v = (y1,...,7) is given by v, = =3, ; rk SViV;

In order to write an explicit expression for E E (vp), let us introduce
the concept of vertical lifting operator . It is an operator denoted by C,,
associated to an element v, € T,Q. C,, is a map

Cy, : T,Q — T, (TQ)

defined by

d
£(vp + swp) |s=0 - (5.21)

C,, takes w, € T,(Q) into a tangent vector of T(7'Q) at the point v, € TQ.
This tangent vector C,, (w,) is vertical, that is, is tangent at the point v,
to the fiber T, since the curve s — v, + sw), passes through v, at s = 0
and has values on T, for all s. In local coordinates, if v, = (¢;,v;) and
wp = (¢s, w;), we have

Cy, (wp) =

P

C, * (s wi) — ((gi,vi), (0, w;))

because the curve v, + sw, is given, in local coordinates by v, + sw, =
(gi,vi + sw;) and its tangent vector at s = 0 is written as ((g;,vi), (0,w;)).
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The map C,, is linear and injective so is an isomorphism of 7,Q onto its
image

Cvp (TpQ) = Tvp (7-71 (p))

So, the vector field E = E(v,) is given, in local coordinates, by the expression

E(vp) = E((qi,vi)) = (g, ), (vi, i + fi))

where v; = — 3 I'},v,vs and the (f;) are defined by

MWWM=Z£%@~

i=1

Then
E(vp) = ((qi,v3i), (visvi)) + ((gisvi), (0, fi)), or
E(vp) = S(vp) + Co, (1~ (F(vp)))- (5.22)

Proposition 5.3.1. The second order vector field E = E(v,) defined on
TQ and associated to the generalized Newton law of the mechanical system
(Q,(,),F) is given by the expression (5.22) where S = S(v,) is the geodesic
flow of {,}. The trajectories of E are the derivatives of the motions satisfying
1(B8) = F(¢). When F(vy,) = —dU(p), and h is a reqular value of Ey,, the
manifold E,. () is invariant under the flow of the vector field E = E(vp).

5.4 Mechanical systems with holonomic constraints

Let F: TQ — T*Q be a C'-field of external forces acting on a Riemannian
manifold (Q, (,)).

A holonomic constraint is a submanifold N C @ such that dim N <
dim Q. A C?*curve ¢ : I C R — Q@ is said to be compatible with N if
q(t) € N for all t € I. In order to obtain motions compatible with N we
have to introduce a field of reactive forces R : TN — T*(@Q depending
on @, (,), N and F only, and to consider the generalized Newton law

De

W=D = (F+R)(@): (5.23)
The constraint N is said to be perfect (with respect to reactive forces)
or to satisfy d’Alembert principle if, for a given F, the field of reactive
forces R is such that x4~ 'R(v,) is orthogonal to T,N for all v, € TN. Here
orthogonality is understood with respect to (,), p is the mass operator and V
is the Levi-Civita connection associated to the Riemannian structure (@, (, ).
Using the decomposition v, = v,” + v,* for all ¢ € N and v, € T,Q, that is

7,Q =T,N & (T,N)*, gq€N,
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one obtains from (5.23), assuming ¢ # 0, the following relations:
(Ved)" = [ (F(@)]" =0 (5.24)

pHR)G) = (Ved) ™ — [ H(F (@) (5.25)

Denoting by D the Levi-Civita connection associated to the Riemannian
metric <,> induced by (,) on N, Exercise 5.4.1 shows that if N is per-
fect, the C? solution curves compatible with N are precisely the motions of
the mechanical system (without constraints) (N, <, >, Fn) where Fn (vq) =
pn (w1 F (vy))T], vy € T,N, un being the mass operator of (N, <, ).
In fact, since Dyg = (V44)T (by Exercise 5.4.1) one obtains from (5.24)
that
pn(Dgd) = Fn(d) = pn (' F(@IT) (5.26)

which is the generalized Newton law corresponding to (N, <, >, Fy).
Also, from (5.25) we see that

T (R)(G) = Vad — (Ved)" — [u™ ' F()IH,

that is,
P R)(G) = Vad — Dy — [ ' F (@) (5.27)
If X,Y are local vector fields on N and X,Y be local extensions to Q, we

have -
B(X,Y)=VxY —DxY (5.28)

where B is bilinear and symmetric with B(X,Y)(¢) depending only on X (q)
and Y'(q); B is called the second fundamental form of the embedding
i: N — Q (see [17]) So, from (5.27) and (5.28) we can write = 1(R)(¢) =
B(4,q) — [u"YF(4)]*, suggesting that

R(vq) = p[B(vg,vq) — [/i_l}—(”q)]ﬂ eT;Q (5.29)

for all ¢ € N and v, € T;N. The last expression gives the way to compute
the reactive force introduced in (5.23) when the constraint is perfect.

Using (5.6) for un(Dyqg) with ¢ # 0, in local coordinates of NV, and also
(5.26), we obtain the so-called Lagrange equations for obtaining the mo-
tions compatible with the perfect constraints without computing the reaction
force of the constraints.

Exercise 5.4.1. Let N be a submanifold of a Riemannian manifold (Q, (,))
with Levi-Civita connection V. For any pair of vector fields X,Y on N we
define DxY as the vector field on N that at the point p € N is equal to
(DxY)(p) = [(VgY)(p)]T where X,Y are local vector fields that extend X
and Y in a neighborhood of p € Q, respectively, [(V£Y)(p)]T being the or-
thogonal projection of (V ¢Y)(p) onto T, N, under (, ). Show that (DxY)(p)
does not depend on the chosen extensions and that
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D:X(N)x X(N)— X(N)

has the properties of an affine connection. Verify also that D is symmetric
and compatible with the pseudo-Riemannian metric <, >> induced by (,) on
N. So, D is the Levi-Civita connection associated to the pseudo-Riemannian
manifold (N, <, >).

5.5 Some classical examples

The study of a system of particles with or without constraints starts, in
classical analytical mechanics, with the consideration of a manifold of config-
urations @) endowed, in general, with two metrics, (,) and (,); the first one
is called the spatial metric and the second is the one corresponding to the
kinetic energy that defines the mass operator p : TQ — T*Q. With the two
metrics one introduces the tensor of inertia I : X'(Q) — X (Q) characterized
by the relation

(I(X),2)=(X,Z) (5.30)
for all X, Z € X(Q). It is clear that:

i) I is non degenerate with respect to (,) so I~! exists.
ii) I is symmetric with respect to (, ), since:

(I(X),2) =(X,2) = (2, X) = (1(2),X) = (X, 1(Z)).
iii) I is symmetric with respect to (,). In fact,
(I(I(X)), 2) = {I(X), Z) and
(I(I(X)), Z2) = (I(X),1(2)) = (I(I(2)), X) = (I(Z), X)
iv) I~!is symmetric with respect to (,) and (,):
(ITHX),2) = (X,2) = (X, I(I7'(2))) = I(I7(2)), X) = {I7(2), X)
and

(I7H(X), 2) = (I7N(X), I(I71(2))) = (I (X), I7(2))
=(I(I71(X),I71(2)) = (X, I7(2)).

v) Assume (,) and (,) are positive definite. Then I and I~! are positive
definite with respect to the metrics:

(I(X)’X) = <X’X>;

(I(X),X) = (I(X), I"H(I(X))) = (I(X), [(X));
<171(X)’X> :(X’X)v
(IHX), X) = (I HX), I(IH(X)) = (I H(X), TH(X))
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In the applications, the usual forces are given by a map F : TQ — TQ
which is fiber preserving, that is, F(T,Q) C T,,Q for all p € @Q; the notion of
work is introduced using the spatial metric. So, the work of F'(v,) along w,
is defined as (F'(vp), wp). To obtain the external field of forces F : TQ — T*Q
from F we write

FY urr (5.31)

and, then, the generalized Newton law can be written under one of the two
equivalent forms:

Dé

qu —I'F(g) or I(

Dq .
E) = F(q)

(In (5.31), as in the last formulae, I is considered as a fiber preserving map
I1:TQ —TQ.)

Ezample 5.5.1. The system of n mass points

Let k be a three dimensional oriented Euclidean vector space also con-
sidered as affine space associated to itself. A pair (g;,m;) such that ¢; € k
and m; > 0 is said to be a mass point and m; is the mass of point ¢;,i =
1,...,n. To give n mass points is to consider ¢ = (q1,...,¢,) € k™ and
(my,...,my) € RL™

Assume that at each point ¢; € k acts an external force f;**' =
fi*(¢,4) € k and (n — 1) internal forces fi; € k,j € {1,...,n}\{i},
due to the action of ¢; on ¢;. The laws, in classical mechanics, determining
the motions ¢;(t) of the mass points (g;,m;) are the following:

I - Newton laws:

n
. d .
mlqz:fl éf (fiezt+Zfij)7 Z:1,...,’I'L.
iz
IT - Principle of action and reaction:
fi; and (g; — g;) are linearly dependent and f;; = — fj;.
The two laws above imply the following:
(a) Zgzl migi = Y0y fi . .
(b) >y madi X (g —c¢)=>_1 [i"" x (g; — ¢) for any ¢ € k.
(here x means the usual vector product in k).

In fact, case (a) is trivial. Using Newton’s law one proves case (b) under
the hypothesis ¢ = 0, provided that ), j fij xqi = 0; but since fi; x (¢;—q;) =
0, we have

Zfij X q; :Zfij X g :_iji X g :_Zfij x q; =0.
i i i i

The case (b) for arbitrary ¢ € k follows from case (a) and from case (b)
with ¢ = 0.
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ext

fy

(a,,m,)

/ (a5, my)
f

ext 31
f

ext

Fig. 5.1. System of n = 3 mass points.

The kinetic energy of a motion is K = 137" | m;(¢;, ¢;) where (,) is
the inner product of k. The manifold ) = k™ is the configuration space that
can be endowed with two Riemannian metrics: (u,v) = (ug, v1)+. . .4 (tn, vp),
the spatial metric, and (u,v) = mi(ui,v1) + ... + my(tn, v,), the metric
corresponding to the kinetic energy, where the masses appear.

The Levi-Civita connection V associated to (,) has the g;; as constant
functions, so the Christoffel symbols are all zero (see 3.2.6) and then

The mass operator u : Tk™ — T*k™ is defined by p(w,)(.) = (wy,.) for
all w, € T,k™ = k™. If the usual forces are given by F' : Tk™ — Tk™ with
F = (f1,...,fn), one defines F : Tk™ — T*k™, the field of external forces,
using the formula F = pI~'F where [ is given by (5.30). Then one can write:

F(ve)ug = (.UIilF)(Uz)Uz = (IﬁlF(vf),uﬁ
= (IOI?lF(Uw)vuw) = (F(vz), uz),

S0,

n

Flug)uy = Z(fi(vm),uzi), where u, = (ug', ..., u"). (5.32)

i=1
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Then F (v, )u, is the total work of the external forces fi(v,) along u,".
From the generalized Newton law (5.7) we have

n

)uw = pu(G)us = (g, uw> = Z(mlqﬂuwl)

=1

Dq

]:(Q)uw = M(E

and (5.32) implies F(¢)u, = > iy (fi(g,d), us’); so, since u, is arbitrary in
k™ one obtains the classical Newton’s law:
quZ:f’L<Q7q)7 i:17"'7n7

and conversely.

Fig. 5.2. Planar double pendulum.

Ezxample 5.5.2. - The planar double pendulum One may consider two
mass points (q1,m1) and (g2, ms2), ¢; € R%i = 1,2, in the configuration
space @ = R? x R? = R* and a holonomic constraint N defined by the
conditions:

=0 =07 (5.33)
|2 — a1 | = &7, (5.34)
where 0 € R? is the origin. If a,b € R2, a.b denotes the usual inner product
of R2. Let u = (u1,uz2) and v = (v, ve) vectors in R%, that is, u;, v;, € R?,i =

1,2.
The spatial metric in R* is given by

(u,v) = uy.v1 + ug.va,

and
(u, v) = myuy.v1 + Matg.vg
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is the metric corresponding to the kinetic energy

K(¢) = §[m1Q1-ql +mage.¢o], ¢ =(41,42) € R*.

The Levi-Civita connection V associated to the metric (,) gives the acceler-
ation of ¢(t) = (q1(t), g2(t)) € R* with Christoffel symbols equal to zero:
Dq
24 _ i = (i), 535
di G =(q1,G2) ( )

The usual external forces acting on ¢; and gy are
F, =(0,myg) and Fy = (0,mag),
respectively. As in the previous 5.5.1, one defines the field of external forces
F:T(R? x R?) = T*(R? x R?)
using the total work of the physical external forces:

F(q)(ur, uz) = (F1(q),u1) + (F2(q), u2) (5.36)

where F;(¢) = F; = (0,m;g), i=1,2.

Assuming that the submanifold N defined by (5.33) and (5.34) is a perfect
constraint, that is, satisfies the d’Alembert principle, we have by (5.23) that
for any C? curve compatible with N,

R(@) = n(50) ~ Fl@),  R() € Tj)Q,

is such that the vector u=1(R(§)) is, at the point ¢(t) € N, orthogonal to
Ty N with respect to the metric (), for all ¢; that is,

(™ R(G), (v1,02)) =0 (5.37)

for all (v1,v2) € TyyN. But (v1,v2) € Ty N means that vy and vy in R?
have to satisfy:

U1.(ql — 0) =0 (538)

(v2 = v1)-(@2 —q@1) =0 (5.39)

where (5.38) and (5.39) were obtained by differentiation, with respect to time,
of (5.33) and (5.34), respectively. If one denotes

1 'R(9) Y (Ri(4), Ra(d), (5.40)

condition (5.37) and the definitions (5.30) and (5.40) give

0= (b 'R(q), (v1,v2)) = (I~ 'R(q), (v1,v2))
= ((R1(9), R2(q)), (v1,v2)) = (R1(q)).v1 + (R2(q))-v2
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0, R1(¢) and Ra(q) defined in (5.40) satisfy
(R1(q))-v1 + (R2(q))-v2 =0 (5.41)
for all vy, ve in R? that verify (5.38) and (5.39).

From (5.35), and the definition of p we obtain

M(%)(uhm) = (%, (u1,u2)) = (1, d2), (u1, u2))

= migi.u1 + Mag2.uz. (5.42)
From (5.23), (5.36), (5.40) and (5.42) we have

midi.uy +mede.uz = (F1(4))-ur + (F2(q))-ua + R(q) (w1, uz)
= (F1(9))-ur + (F2(q))-u2 + (R1(q))-u1 + (R2(q))-u2;

in fact,

R(G)(ur,uz) = uI " (R1(4), Ra(q)) (u1, uz)
= <171(R1(Q)’R2(q'))7 (u1’u2)>
= ((R1(9), R2(q)), (u1,u2))
= (R1(q))-u1 + (R2(q))-u2

and then

magrur + magius = (F1(q) + R1(d)).u1 + (F2(9) + R2(q)).uz ;
since (u1,uz) € R? x R? is arbitrary (see (5.24)) we have

miGr = F1(q) + R1(q)
mada = F2(q) + Ra(q). (5.43)

Equations (5.43) are the classical Newton law for two mass points;
R1(4), R2(q) are the constraint’s reactions that have to satisfy (5.41) for all
(v1,v2) such that (5.38) and (5.39) hold, that is, "the virtual work of the
reactive forces is equal to zero (classical d’Alembert principle)”.

One can also show that (5.41) for all (vy,v2), under the hypotheses that
(5.38) and (5.39) hold, is equivalent to

Ra(q) = plaz — q1)
Ri(¢) + R2(q) = a(q1 — 0), (p,a € R).

Let us derive now the Lagrange equations (5.20) corresponding to the

generalized Newton law (5.26) for the planar double pendulum. From (5.36)
the field of external forces is given by
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F(4)(ur,u2) = (F1(4), u1) + (F2(q), u2) = (myuj + mauj)g

provided that u; = (uf,uy) and uy = (ug, ul).
The function U : R? x R? — R defined by

Ulqr,q2) = —migyr — magya,

where ¢1 = (z1,31) and g2 = (x2,¥2), are such that F(v,) = —dU(p), v,

S

T,R*. So, F is a conservative field of forces. The manifold N is a torus
with coordinates (i, #), so, the potential energy U and the kinetic energy K

restricted to N are U and K respectively:

U = —mygl cos — mag(fy cos 6 + 62 Cos ®)

— 1
K= 2[m1(Q17Q1)+m2 G2, 42)] Zmz &7+ ;)

where ¢; = (#1,91) and §a = (Z2,92) for 1 = £18in6, y; = {1 cos0,
lisinf + losing, ys = fycos@ + lycosp. Then 1 = ¢16cosb,

To =

U1 =

fﬁlésin 0, o= élécosﬂ + lapcosp, Yz = félésinﬁ — {3 sin p and con-

sequently:

oUu
20 (m1 4 mg)gly sin 0,

= magls sin y;

ou
dp

B—K mma. +m 8' —|—mx8 +m 3y2
121 90 11 —Sq 20 222 90 2U2 - 90

= mql10 cos 0(—5105111 0) + mq 10 sin 9(£1écos )
+ ma (10 cos 0 + L2 cos @) (—¢10 sin )
+ ma (010800 + L2 sin )16 cos 6,

— = mgflﬁgcpé sin(p — 6);

oK _ = maoig—— Ot + Moy —— il
@ I d¢
= m2(£10 cos 8 + Lo cos ) (—Llapsin p)
Mo (10 sin 0 + Lo sin p)la cos p,

ie.,
oK L
% = mal1a0sin(0 — p);
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7
m1l126 cos® 0 + mql20sin? 0 + m2(€19 cos 6 + Uy cos p)lq cos O
+ ms (619 sin 0 + £ sin )¢y sin 6,
ie.,

mali26 + mgﬁfé + malylap cos(f — v);

= My (619 cos 0 + Uy cos p)ls cos @
ie.,

+ ma(£10sin 0 + L2 sin @) lo sin @,

K .
6—_ = mals?p + maolilo0 cos(f — )
op
The two Lagrange’s equations are
doK 0K _ _oU doK 0K __oU
at 99 00 09’ dt 0¢p  0p  Op’
ie.

dt

[mlflzé + moli20 + malilapcos(6 — )] — mgﬁlfggbé sin(f — )

= —(my + mag)gly sin 6
dt

[m2€22¢ + m2€1€29c05(9 — )] — mal1la0 sin(f — )
= —mogls sin .

These two equations determine a second order system of ordinary differ-
ential equations on the torus of coordinates (6, ¢)

(my +m2)l30 + maly fa[@ cos(8 — @) — p(6 — @) sin(0 — )] —
— 777,26162@0. sin(@ - tp) +
+ (mq + ma)gly sind = 0,

(5.44)
mal2$ + molils[f cos(6 — ) — (6 — @) sin(f — )] —
— malylypfsin(d — @) + magly sin g = 0.

(5.45)
One can compute § and @ in (5.44) and (5.45) and get a system of two
ordinary differential equations in the normal form; in fact the matrix
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(my + mo)e? mal1ls cos(f — p)

malils cos(f — ) maol3
is positive definite, with determinant equal to
mimalil3 + m20202 sin? (0 — ) > 0.

The mechanical energy E,, = K + U is a first integral of system (5.44),
(5.45) (see 5.1.2) expressed as:

1 . 1 .
B, = 5(7711 + m2)€f02 + §m2€§¢2 + molila0p cos(0 — ) —

— (mq + ma)gly cos O — magls cos .

The critical points are the zero vectors 0, € T,N such that dU(p) = 0,
that is, %—g(p) = g—g(p) = 0, or, equivalently, p = (6, ) such that sinf =
sin ¢ = 0; so, one has 4 critical configurations on the torus N:

b1 = (070)7 b2 = (O,W), pP3 = (*7(70) and Pa = (’/T,ﬂ').

5.6 The dynamics of rigid bodies

Let K and k be two oriented Euclidean vector spaces also considered as
affine spaces associated to K and k, respectively. Assume that both spaces
have dimension 3 so, each one has well defined the vector product operation
(denoted by x) corresponding to the inner product (,).

An isometry M : K — k is a distance preserving map, that is, | X -Y|| =
|MX — MY for all X,Y € K. The induced map M* : K — k is defined by:
(0 € K is the zero vector)

M*X = M(X)— M(0), for all X eK (5.46)

Proposition 5.6.1. Let M* be the induced map of an isometry M. Then
one has the following:

1. M* is modulus preserving.

M* preserves inner products and is linear.

M* is a bijection, so M is an affine (bijective) transformation.
The inverse of M is an isometry.

If M* is orientation preserving then M™* preserves vector product.

Crds o o

Proof:
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L[ M*X|| = [M(X) - M©O)| = [|X —0[ = [IX].
2. One has

(M*X, M*Y) = S(IM*X|* + | MY — [ M*X — M"Y )

1

2
1

= SUXIP+ 1Y) = 1X = Y]%) = (X, 7).

So, M* preserves inner product. Moreover M™ is linear: for any o € R
and X € K we have

|M*(aX) — aM*X|?
= |M*(aX)|? 4+ 2| M* X |? = 2(M*(azx), aM* X)
= |aX|® 4+ 2| X||* = 20(M*(aX), M*X)
=207 X|]? - 2a(aX, X) = 0;

and

IM*(X = Y) — (M*X = M*Y)|]?
= |M*(X -YV)|?+ ||[M*X — M*Y||* = 2(M*(X —=Y),M*X — M*Y)
=X -YP+|X-Y|?-2(X-Y,X)+2(X -Y,Y)=0.

3. Since M* is linear, it is enough to prove that M* is an injection; but if
M*X =0 (0 € k is the zero vector) one has |M*X| = || X]|| = 0, so
X =0 and M* has an inverse (M*)~L.

4. The map N : k — K defined by

N(z) = (M*) Yz — M(0)) for all z €k, (5.47)
is the inverse of M since by (5.46) and (5.47) we have:
M(N(z)) = M(0) + M*(N(x)) = M(0) + (z — M(0)) ==
But (5.47) gives N(0) = —(M*)~*(M(0)), so,
N(z) = (M*)" 'z — (M*)"H(M(0)) = N(0) + (M*) "'z (5.48)

and N is an isometry with N* = (M*)~! as induced map. In fact (5.48)
shows that N* = (M*)~! and (5.47) implies:

IN(z) = N()|| = (M)~ e — (M) "My
= [[M (M) " e — M (M) Ty = [l =y,

so N preserves distances.

Exercise 5.6.2. Prove property 5. in Proposition 5.6.1.
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An isometry M : K — k is said to be a proper isometry if its induced
map M* : K — k is orientation preserving.
A rigid motion of K relative to k is a C? curve

M :t+— M,

where M; is a proper isometry. If, moreover, M;(0) = 0 for all ¢, then M is
said to be a rotation.

Proposition 5.6.3. Any rigid motion M of K relative to k is such that M;
has a unique decomposition M; = T, o R; where Ry = M, : K — k defines a
rotation and Ty : k — k is given by Tyx = x +r(t), that is, Ty is a translation
in k, for each t.

Proof: From (5.46) we have:

My(X) = M;*X + M(0) = R, X + M,(0)
== Tt(RtX) == (Tt o Rt)X

where T;(z) “oaey r(t) for all z € k,  r(t) = M;(0). If M; = T; o R; is
another decomposition such that T;(x) = z + 7(t) for all z € k and R0 = o
then T3 (R, X) = Ty(M;*X) or Ry X 4+ 7(t) = My X +r(t) for all X € K; in
particular for X = 0 one gets r(t) = 7(¢) and consequently R, = M,*. (]

A rigid motion M is said to be translational if in the (unique) decom-
position My = T; o M;*, the linear isometry M;* does not depend on ¢, that
is, My* = M, * for some t,. In that case we have My (X) = M; *X + r(¢).

We will derive now, the expression that describes the kinematics of a
rigid motion M of a (moving) system K with respect to a (stationary)
system k, that is, for ¢ in some interval I of the real line, M; : K — k is
the corresponding proper isometry. Let us denote by Q(t) € K a moving C?
radius vector also defined in I and let ¢(t) = My (Q(t)) be the radius vector,
in k, corresponding to the action of M; on the moving point Q(t). Let us
denote by 7(t) € k the vector r(t) = M(0).

Taking into account that My(X) = M;*X + M;(0) for all X € K one
obtains:

q(t) = M(Q(t)) = M7 Q(t) +r(t). (5.49)
By differentiating (5.49) with respect to time one has

q(t) = My Q(t) + My Q(t) + i (t). (5.50)

Special cases:

a) If the rigid motion M is tramslational, that is, M;* = M; * for all ¢,
one obtains from (5.50) that
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qt) = My,"Q(t) + 7(t) (5.51)

and so, the absolute velocity ¢(t) is equal to the sum of the rela-
tive velocity M,;,*Q(t) with the velocity 7(t) (of the origin 0) of the
moving system K.

b) If the rigid motion M is a rotation of the moving system K with respect
to the stationary system k, that is, if #(¢) = 0 for all ¢, one obtains from
(5.49):

g(t) = My*Q(t) and  q(t) = My Q(t) + My Q(t). (5.52)
If, moreover, Q(t) = & = constant, (5.52) shows that
q(t) = M;*¢  for all ¢t (5.53)
and the motion of ¢(t) is called a transferred rotation of .

Exercise 5.6.4. Assume it is given a skew-symmetric linear operator A :
V' — V acting on an oriented 3-dimensional Euclidean vector space V. Prove
that there exists a unique vector w € V such that Ay =w x y for ally € V,
and also that w = 0 if and only if A = 0. We use to denote simply A = wx.

Let us consider the induced linear map M;™ associated to a rigid motion
M :t — M, of K with respect to k. One can construct two linear operators
(with C! dependence on time):

My (M :k—k and (M)7'M;: K — K.
From Proposition 5.6.1 (2. and 3.) M,* is a linear isometry:
(M;X,MY) = (X,Y), forall X,Y¢€K. (5.54)
By differentiating (5.54) with respect to time we obtain
(M;X,M;*Y) + (M, X, M;Y) =0, forall XY €K. (5.55)
Since (M;*)~1 is also a linear isometry one gets from (5.55) that
(MH)™IMFX,Y) + (X, (M) "M Y)) =0, for all X,Y € K (5.56)
and also
(M7 (M), y) + (2, M (M) Yy) =0 for all zyek,  (5.57)

where z = M} X and y = M"Y are arbitrary in k. Then (5.56) and (5.57)
show that (M;)~'M; and M;(M;)~' are skew-symmetric linear operators
acting on K and k, respectively. Using the result of Exercise 5.6.4 above one
can state the following:
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Proposition 5.6.5. Let M : t — M; be a rigid motion of K with respect
to k and M;* its induced linear isometry. Then there exist unique vectors
Qt) € K and w(t) € k such that (M,*) "M} = Q(t)x and M;(M,;*)~' =
w(t)x. Moreover w(t) = M;*Q(t).

Proof: 'We only need to prove that w(t) = M;*2(¢). But from the definition
of £2(t) we know that

(My*)"'M;Y = Q(t) x Y for all Y € K;
so, making Y = (M,*)~'y, one obtains
(M) "I M (M) "y = Q(t) x (M) ™y,

and then .
M (M;) ™'y = M [02(t) x (M;*) ™'y

The last expression and Proposition 5.6.1 (5.) show that
MM, 'y = [MQt)] xy for all yek,

thus the definition and the uniqueness of w(t) enable us to conclude the
result. u

We will now give the interpretation of w(¢) and £2(¢) when we are dealing
with the special cases considered above. We start with a rotation M (r(t) =0
for all ¢) such that Q(¢t) = £ = constant, that is, the motion of ¢(¢t) is a
transferred rotation of £ € K. We have the following result:

Proposition 5.6.6. If ¢(t) is a transferred rotation of £, to each time t for
which Mt* # 0 there corresponds an axis of rotation, that is, a line in k
through the origin whose points have zero velocity at that time. Fach point
out of the axis of rotation has velocity orthogonal to the axis with the modulus
proportional to the distance from the point to the mentioned axis; if, other-
wise, we have Mt* =0, then all the points in k have zero velocity at this time
t.

Proof: By (5.53) we have )
i(t) = e, (5.58)
If M; =0, (5.58) shows that ¢(t) = 0. Assume otherwise M; # 0; in this
last case (5.53) and (5.58) imply that
q(t) = My (M:")"*q(t). (5.59)

One sees that the skew-symmetric linear operator J\Z,;*(Mt*)_1 k= k
is non zero: in fact M;(M;*)~! = 0 implies M; = 0 (contradiction). From
Proposition 5.6.5 there exists a unique non zero vector w(t) € k such that
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My (M) = w(t)x; (5.60)
then equations (5.59) and (5.60) imply that

§(t) = w(t) x q(t). (5.61)

The instantaneous axis of rotation at the time ¢ is the line in &
through the origin and direction pw(t), p € R, and (5.61) shows that |§(¢)| =
|w(®)| |q(t)|sinb where |g(t)| sinf is the distance from ¢(t) to the axis of
rotation . u

Another case to be considered is a general rotation (r(t) = 0 for all ¢); so
equations (5.52) imply

q(t) = My (M)~ q(t) + M Q(1) (5.62)

and using Proposition 5.6.5 there exists a unique w(t) € k so that equation
(5.62) can be written

() = w(t) x q(t) + M7 Q). (5.63)

So, for a rotation M, the absolute velocity ¢(t¢) is equal to the sum of

the relative velocity M;*Q(t) and the transferred velocity of rotation
w(t) x q(t).

The dynamics of mass points in a non-inertial frame can be studied
by assuming that k£ is an inertial and that K is a non-inertial coordinate
system subjected to a rigid motion M :t — M. From (5.50) we know that
q(t) = M;Q(t) + M,*Q(t) + 7(t). Let us suppose also that the motion of the
point ¢ € k with mass m > 0 satisfies the Newton’s equation

mq = f(q,4); (5.64)

so we have:

Flg,d) = mg = m[M;Q(t) +2M; Q(t) + M* Q(t) +#(t)]- (5.65)

The special case in which M is translational (M; = M; = constant)
implies that
mM; Q(t) = m(G =) = f(g,4) = mi(t)
or
mQ(t) = (My,") " f(a,4) — (My, ")~ "mi ().
The case in which M is a rotation (r(t) = 0 for all ¢) gives from (5.65):
mQ(t) = (M)~ [f(a,4) — mM; Q(t) — 2mM; Q(1)],

SO

mQ(t) = (M;*) " f(q,4) — 2m8Q(t) x Q(t) — m(M,") ' M Q(t).  (5.66)
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From the definition of (2(¢) we have
(M)TIMFY = Q(t) x Y or
MY = M*(2(t) xY) for all Y € K; (5.67)
The derivative of (5.67) gives
MY = M} (2(t) x Y) + M (2(t) x Y)

and so, ) .
(M) IM]Y = Q(t) x (2(t) < Y) + 2(t) x Y
for all Y € K and, in particular, for Y = Q(¢), that is,

(M) M Q(1) = £2(t) x (2(t) x Q(t)) + £2(t) x Q(1)
and this last equality can be introduced in (5.66) giving, after setting
(Mt*)_lf(qaq') = F(t’qaq) :
mQ(t) = —maA(t) x (2(t) x Q1)) — 2mLA(t) x Q(t)
—m(t) x Q(t) + F(t,q,4)
where one calls
Fy = —m8(t) x (t): the inertial force of rotation,

Fy = —2m82(t) x Q(t): the Coriolis force,
F3; = —mQ(t) x (£2(t) x Q(t)): the centrifugal force.

Q

QxQ

F,=-mQx (2xQ)

Fig. 5.3. Centrifugal force.

Thus one can state the following:

Proposition 5.6.7. The motion in a (non inertial) rotating coordinate sys-
tem takes place as if three additional inertial forces (the inertial force of
rotation Fy, the Coriolis force Fy and the centrifugal force F3) together with
the external force F(t,q,q) = (My*)"1f(q,q) acted on every moving point
Q(t) of mass m.
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For the purposes of giving a mathematical definition of a rigid body, we
start by saying that a body is a bounded borelian set S C K, and a rigid
body S C K is a bounded connected Borel set S C K such that during the
action of any rigid motion M : t — M; of K relative to k, the points £ € S
do not move, that is

Q(t,§)=¢ for any t and any €€ S. (5.68)

The distribution of the masses on S will be considered in the sequel.
Without loss of generality one assumes, from now on, that the origin O of K
belongs to S.

A rigid motion M of K relative to k induces, by restriction, a motion of
S relative to k, and, when S is a rigid body, we have from (5.49) and (5.68):

q(t, ) = My(Q(t,€)) = My(§) = My"E +7(t) (5.69)

for any ¢t and any £ € S.
If a rigid motion is a rotation (r(¢) = 0), its action on the rigid body S is
given, from (5.69), by the equation

q(t, &) = My*¢,  for all £€8, (5.70)

that is, by a transferred rotation of each £ € S; so, a rotation acting on a
rigid body S is said to be a motion of S with a fixed point, the origin
0 € K, since r(t) = M;(0) = 0. At each instant ¢, either the image M;(S5)
of S has an instantaneous axis of rotation passing through 0 € k, the points
q(t, &) € Mi(S) with velocities w(t) x ¢(t, ), or all the points of M;(S) have
zero velocity, according what states Proposition 5.6.6 above.

If M is translational (M;" = M, * for all t), its action on a rigid body S
is given, from (5.69) by the equation

q(t,€) = My,"§ +r(t) = My, "€ + My (0)

s0, ¢(t,&) = r(t), that is, the velocity of any point of M;(S) is equal to the
velocity 7(t) of M(0).

We will introduce now the notions of mass, center of mass, kinetic
energy and kinetic or angular momentum of a rigid body S.

A distribution of mass on a rigid body S is defined through a positive
scalar measure m on K; the following hypothesis is often used:

m(U) > 0 for all nonempty open subset U of S. (5.71)

(Here we are considering the induced topology; in particular m(S) > 0 if
S £ 0).

The center of mass of S corresponding to a distribution of mass m is
the point G € K given by
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1
-5 /S cdm(€) (5.72)

where m(.5) is the total mass of the rigid body S which is a positive number
(see the fundamental hypothesis).

Under the action of a rigid motion ¢ — M;, the center of mass describes
a curve in k given by:

o) < M) = ﬁ /S M&dm(€) = ﬁ /5 at,Odm(&)  (5.73)

Proposition 5.6.8. The velocity ¢(t,§) of a point £ of a given rigid body S
under the action of a rigid motion t — My is given by

q(t, &) = g(t) + w(t) x [q(t,€) — g(t)]
where w(t)x = M;(M;*)~L.
Proof: By (5.68) and (5.69) we have for all £ € K:
q(t,&) = M€ +r(t) and &= (M) [q(t,€) —r(t)];

so, by derivative one obtains:

G(t,€) = M7 &+ () = My (My*) Mq(t, &) — r(H)] +7(t) or
Q(t,€) = w(t) x [q(t,€) — r(t)] + 7(t), for all €€ K. (5.74)

Choosing ¢ = G we get
9(t) = w(t) x [g(t) —r(t)] + 7(t); (5.75)

then (5.74) and (5.75) prove the result. n

The kinetic energy of the motion of a rigid body S at a certain time ¢
is, by definition,

/ d(t,€) 2 dm(€) (5.76)
~ The vectors w(t) and £2(t) = (M) ~'w(t) characterized by the equalities
M; (M)~ = w(t)x and (M;)~ 1M”“ = (2(t)x are called the instantaneous
angular velocities relatlve to k and K, respectively.

The angular momentum relative to & of the motion of S at a certain
time ¢ is the vector

plt) = /S la(t,€) % (¢, Oldm(€) (5.77)

and the angular momentum relative to the body is
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P(t) = (M) ""p(t) (5.78)

Special case: rigid body with a fixed point.
In this case r(t) = 0 for all ¢ and then:

q(t, &) = M€, q(t, &) = w(t) x q(t,§);
K /\w % q(t, ) Pdm(€) /m x ¢2dm(¢)

p(t) = /S M€ x (w(t) x ME)|dm();

P(t) = /S (€ % (2(t) x &)dm(€). (5.79)

The last expression (5.79) suggests how to give a definition for the inertia
operator of a rigid body S:

A:XeKH[/Sfx(Xxf)dm(g)]eK. (5.80)

Proposition 5.6.9. The inertia operator A of a rigid body S C K is sym-
metric and positive with respect to the inner product of K. If, moreover, S
has at least two points whose radii vectors are linearly independent and the
distribution of mass satisfies (5.71), then A is positive definite.

Proof:

(AX,Y) / € x (X x €)dm(€)) = /S (Y,€ % (X x €))dm(€)

and then
(AX,Y) = / (X x €Y x €)dm(€) = (X, AY), (5.81)
S

so A is symmetric. Assume now that (AY,Y) = [¢ |V x £[*dm(§) = 0. This
implies that the set E = {£ € S||Y x £ # 0} has measure m(E) = 0.
On the other hand, if there exist a,b € S linearly independent then there
exist neighborhoods U,,U, in K of a and b, such that vy,vs are linearly
independent for all v; € U, and vy € Up. From the hypothesis on the measure
m we have m(U, NS) > 0 and m(U, N S) > 0; so, there exist v € U, NS and
v € Up N S such that u,v ¢ E, that is, |Y x u| = |Y x v| = 0; since u and v
are linearly independent, Y = 0, that is, A is positive definite. n

If we come back to the special case of the motion of a rigid body S with
a fixed point O € K, we have from (5.79):
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P(t) = AQ(1)
Ke(1) = S(A2(1), 2(1)) (5.82)
In fact,
Ke(t) = 5 [ 196) x ePdm(©) = 5 [ (20,6 x (200) x )am(©)
= 2(20), [ €x (@) x am(©))
S

Another remark on the inertia operator A is the following: since A is
linear and symmetric, there exists an orthonormal basis (Fy, Eq, E3) in K
where E; is an eigenvector of a (real) eigenvalue I; of A; since A is positive,
Ii Z O,i = 1, 2, 3. If Q(t) = Ql(t)El + QQ(t)EQ + Qg(t)Eg we have

Ke(t) = %(11912@) + I62:2(t) + 130232 (t)).

Since AE; = I;E;,i = 1,2,3, and because we had assumed, without loss
of generality, that the fixed point 0 belongs to S, the three lines: 0+ AE;, A €
R,i =1,2,3, are mutually orthogonal, and are called the principal axis of
S at the point 0.

The set {2 € K|(Af2,§2) = 1} is called the inertia ellipsoid of the
rigid body S at the point 0. The equation of such ellipsoid, with respect to
the reference frame (0, E1, Eo, F3), is

L2} +L,02 + 1302 =1
Where Q = QlEl =+ .QgEQ =+ 93E3.

Special case: motion of a rigid body with a fixed axis.
If S C K is a rigid body with a fixed point (r(t) = M¢(0) = 0 for all
t) and if w(t) = w # 0 is constant, we say that S rotates around the axis

e= 1 € k with constant angular velocity w. In this case, the motions

q(t,€) of S satisfy:

q(t,€) = w x q(t,§)
q(0,8) = M.
The solution of that ordinary differential equation, with the initial condi-

tion above, can be easily found. In fact let @ = wx be the skew symmetric
operator corresponding to the vector w # 0; the solution is
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q(t,§) = exp(tw) M€
Since in the present case ¢(t,£) = M;*¢ one has:

M = exp(to)M,*

w

- with con-
[w]

Exercise 5.6.10. Assume that S rotates around the axis e =
stant angular velocity; then show that:

1) The distance p(§) between ¢(t,€) and the axis {\e|]A € R} does not
depend on t.

2) The kinetic energy is given by

Ke(e) = glelol’, where 1= [ p(dm(©

is called the moment of inertia of the rigid body with respect to the axis
{Xe|X € R}.
3) 2(t) = (M;*)"tw = 2 is constant and
1

Ke(t) = 51(2\Q|2, where

o= [ 1B gam(e)

is the moment of inertia of the rigid body with respect to the axis {A\E|X €
R}, E = (&

4) The eigenvalues I, Is and I3 of the inertia operator A are the momenta
of inertia of the rigid body with respect to the principal axis of S.

Exercise 5.6.11. (Steiner’s theorem) The moment of inertia of the rigid
body with respect to an axis is equal to the sum of the moment of inertia
with respect to another axis through the center of mass and parallel to the
first one plus m(S)d? where d is the distance between the two axes.

The dynamics of a rigid body S is introduced for bodies S that have
at least three non-colinear points. Let us fix, from now on, a proper linear
isometry B : K — k. The Lie group SO(k; 3) of all proper (linear) orthogonal
operators of k is a compact manifold with dimension three. The configura-
tion space of a rigid body is a six-dimensional manifold, namely kx SO (k; 3).

Proposition 5.6.12. The set of all proper isometries M of K onto k is
diffeomorphic to the siz-dimensional manifold k x SO(k;3).

Proof: Let us consider the map

&g : M +— (M(0), M*B™") (5.83)
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where B is the linear isometry fixed above and M™* is the linear map associ-
ated to M, that is,

M*(X)=M(X)—M(©O) for all X €K.

It is easy to see that &g is differentiable, injective and has a differentiable
inverse ¥p given by

Up:(r,h) €k x SO(k;3) — N

where N is the proper isometry defined by N(X) =r + hB(X).
By (5.69) the motion of S is given by

q(t,&) = My (§) +r(t), r(t) = Mq(0);

taking into account the map @5 (see (5.69)), to the proper isometry M; there
corresponds a pair (r(t), h(t)) € k x SO(k;3) that is:

Dp(My) = (r(t), h(t) = M;*B™1). (5.84)
So, we can write:
q(t,§) =r(t) + M,"(§) = r(t) + h(t) BS. (5.85)

Let us denote by [ the o-algebra of all Borel sets of K, by A\ a
real-valued measure on (K, () and let f : K — R be a (real-valued)
A-measurable function. The correspondence

viEE s /Ef(g)dx(g) (5.86)

is a real-valued measure on (K, 3). Moreover, for any A-measurable function
g: K — R, one has

def

/g@mwazz/g@ﬁ@mmo. (5.87)
E E

Given a vector-valued A-measurable function G : K — k, one obtains
(taking in k a positive orthonormal basis) its components g;,i = 1,2, 3, that
are (real-valued) A-measurable functions. So, the vector v(E) = [, G(£)dA(€)
has three components:

M@=Am@w@7 i=1,23 (5.88)

It can be also introduced the notion of vector-valued measure on (K, ()
or measure on (K, 3) with values on k, through the utilization of its three
components. In fact if @ is a measure on (K, §) with values on k and @1, @5, P3
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its components in a positive orthonormal basis of k, and given a $-measurable
(real-valued) function f : K — R, one denotes by [, f(£)d®(€) the vector in
k with components [, f(£)d®;(€),i = 1,2,3. Given a d-measurable vector-
valued function v : K — k, we have that [ £ V(£).dP(§) is the number given by
>[5 vi(€)dds(€)) and [, v(€) x dP(€) is the vector in k with components:

/ 02 (€)dbs (€) / v(€)dbs (£);
E E

/ v (€)dB (€) — / o (€)dBs (€);
E FE

/ o (€)dBs (€) — / vn(€)d (€).
E

E

eq If v is the vector-valued measure introduced by (5.88) depending on a
A-measurable function G : K — k with components g; : K — R, we have

[ 0©.av9) = [ ((6.6(6)drE) and
/E 0(€) X di(€) = /E [0(E) x G(E)]AA).

We want to consider now the notion of (physical) fields of forces acting
on a rigid body S. If S is under the action of the gravitational acceleration
g € k,|g| = g, one understands that each m-measurable subset E C S with
mass m(E), is subjected to an external force m(E)g. So, one can define the
weight field of forces as a vector-valued measure on S:

EcS+— m(E)g= / gdm(§). (5.89)
E
In general, a field of forces acting on S C K is a law
w e T(k x SO(k;3)) — fu

where f,, is a vector-valued measure on S with values on k.

Since ¢(t,&) = r(t) + h(t) B¢ (see (5.85) and so:
q(t, &) = i (t) + hBE, (5.90)

we see that to each w = (u,s) € T{, n)(k x SO(k;3)) there correspond the
maps q,v : K — k defined by

q(&) = r+ hB¢, v(€) = u + sBE. (5.91)

It is usual, in Physics, to consider surface forces, volume forces, etc., in
the following way: one defines on S a (real-valued) measure o and a bounded
function « : k X k — k such that the vector-valued measure on S, with values
on k, given by:
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fulE) = /E a(q(€), v(©))do () (5.92)

for any Borel subset E C S, is well defined.

As in the case of a finite system of mass points, it is usual to consider the
field of external forces f,°“’ and the field of internal forces f,""
Given a rigid motion M : ¢t — M; of K with respect to k, from (5.85) and
(5.90) each proper isometry M; is represented by the pair (r(t), h(t)) € k x
SO(k,3) and, at this point, the tangent vector w(t) = (v(¢), h(t)) determines
the measures

£ = fun™ and £ = fum™,  for each t.

We say that two fields of forces f,, and g, acting on a rigid body S C K,
are said to be equivalent with respect to M, if

/S afi(€) = /S dg(¢)  and

/ M€ x dfs (€) = / M€ x dgi(€) (5.93)
S S

As in the case of a finite number of mass points, the fundamental laws,
in classical mechanics, relative to the motions of a rigid body S, are:

I- Newton law
“The sum of the internal and external fields of forces is, at each time t,
equal to the kinematical distribution Dy (assumed to be well defined)”,
that is:

def

i) [ doyime) = [ ano+ [ aro.

for all Borel subsets E of S.

II - Action and reaction principle:
“The field of internal forces f.,"™ is equivalent to zero with respect to any
proper isometry M; of an arbitrary rigid motion M of K relative to k.”

The general equations for the motion of a rigid body S are the equations
EG1) and EG3) below that follow from I and II:
EGh)

/ (. €)dm(€) = / df.et(e) 4 Rt (5.94)
S S
EG,)
/ (at,€) — ) x (1, ©)ldm(€) = / (a(t,€) — o) x dfi(¢)
S S

def Pt,cemt for all ce€ k.

(5.95)
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Exercise 5.6.13. Prove the following formula that gives the variation of the
kinetic energy K°(t) (see (5.76)):

dlf;t(t) = /S(Q(t,§)7dftezt(§)) — (g(t)7Ft€It) + (w(t),Pt,g(t)ewt%

where F;** and P, .°** (for ¢ = g(t)) appear in EG; and EG5.

A rigid body S is said to be free under the action of a rigid motion M : t —
M, of K relatively to k if f,*"" is equivalent to zero with respect to M; for
all t. In particular, if f,“** = 0 that is, in the absence of external forces, the
rigid body is said to be isolated; for an (approximate) example we can think
about the rolling of a spaceship.

If G is the center of mass of S, that is, G = ﬁ Js&dm(), then g(t) =
MG = ks [ Midm(€) = wksy [ alt, )dm(©).

Differentiating twice with respect to time one has:

m(8)ii(t) = /S §(t.€)dm(©);

by EG1) and assuming that S is free, one obtains §(t) = 0 for all ¢:

Proposition 5.6.14. If a rigid body S is free under the action of M : t —
My, its center of mass moves uniformly and linearly. Moreover, the kinetic
momentum and the kinetic energy are constants of motion.

Proof: From (5.77) one obtains

plt) = /S lg(t,€)  ii(t, €)]dm(€)

and EG3) (with ¢ = 0) implies:

B(t) = /S a(t,€) x df; () = /S M (€) x dfi™(©):

but the fact that S is free under the action of M : t — M, together with
(5.93), yields p(¢t) = 0. By an analogous argument with the expression of
deLt(t) given by the result of Exercise 5.6.13 we see that dK(;t(t) = 0; so, p(t)
and K¢(t) are constants of motion. More precisely, since p(t) is a vector-valued
constant of motion, one obtains four (scalar valued) constants of motion for

any rigid body S free under the action of M. [ ]

Assume we are looking at an inertial coordinate system where the center of
mass is stationary. Then
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Proposition 5.6.15. A free rigid body rotates around its center of mass as
if the center of mass were fized.

Let us consider the motion of a rigid body around a stationary point,
in the absence of external forces. In this case, there exist four real valued
constants of motion given by Proposition 13.5. One can also consider the
induced functions

T(SO(k;3)) — R p:T(SO(k;3)) — k, (5.96)
defined by

sn € T(SO(k:3)) —» K°(sn) / s BE2dm(e
sn € T(SO(k:3)) — plsn) = /S (hBE x sBE)dm(E),  (5.97)

respectively. In general (if the rigid body does not have any particular sym-
metry) the four scalar-valued maps (K¢ and the components p; of p in a basis
of k) defined on the six-dimensional manifold T'(SO(k,3)) are independent
in the sense that they do not have critical points, that is, the inverse image
of any value (K,,p,) (if non empty) is a two dimensional orientable compact
invariant manifold, provided that the value K, of K°(s) is positive. More-
over, K, > 0 implies that the vector field induced on the inverse image of
(Ko, o) by (K€, p) has no singular points, that is, each connected component
(K¢, p)~! (K,,p,) is a bi-dimensional torus.

Proposition 5.6.16. The angular momentum P(t) relative to a rigid body
S that is free under the action of M : t — M;, satisfies the Euler
equation: P(t) = P(t) x 02(t). Moreover, Q(t) is given by the relation,
AQ(t) = [AR(t)] x 2(t), A being the inertia operator.

Proof: 1In fact, p(t) = P(t), so by Proposition 5.6.14 we have
p(t) = My P(t) + M; P(t) = 0, and so
Pt) = —(M")" lM P(t) = —0(t) x P(t) = P(t) x 2(¢).
But, since P(t) = Af2(t), we also have AQ(t) = [AR(t)] x 2(t). n

Proposition 5.6.17. In the motion of a rigid body S with a fized point,
subjected to a field of external forces, the kinetic momenta p(t) and P(t)
satisfy the equations

(1) = /S (M,7€) x df.e (),

B(t) = P(t) x 2(t) + /S € x (M) Ldf e (©).
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Proof: From (5.77) one obtains p(t) = [s[q(t,&) x G(t,&)]dm(§) and since
there is a fixed point we can write q(t7 ) = M using EGs) with ¢ = 0 we
have the equation for p(t). Since P(t) = (M;*) " !p(t) and using again (5.77)
one can write by differentiating:

P(t) = (M7)™ /S[Q(tvi) X G(t, €)]dm(€) + (M:")~p(t);

but M;*(M;*)~1 = Id implies, by differentiating, that

(M)t = — (M) M (M) 7Y
S0,

P(0) = [ [6x (M) e €)
s
=20 % (047 [ 4l % d(t.))dm(e)
s

and finally,

Pm=me9®+LsxwwrWﬁWm

In order to relate the properties EG;) and EG3) with the abstract Newton
law, we start by defining the metric (,) on kx.SO(k;3). This metric is induced
by the kinetic energy. Since (see (5.90))

alt,€) = r(t) + h(t) B and
(t,€) = #(t) + h(t) BE,

we have

Ke(t) = /S [#(t) + hBE[Fdm(€); (5.98)

We will assume that the origin 0 € K coincides with the center of mass
= ﬁ Js&dm(&); so, we have [¢£dm(§) = 0, which implies

Ke(0) = gm(S)FO R+ [ 1) Bedm(o).

; in

The last expression suggests the introduction of a metric on k x SO(k; 3)
(k; 3

fact, given two tangent vectors (u, s), (@, 5) at the point (r, h) € k x SO
one defines

def

((u9), (&, »M>:mmwm+émmw&mw
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in which the right hand side defines two inner products,
o, =mS) e wd (55 = [ (sBEsBOdmE). (599)
s

on k and SO(k;3), respectively. Recall that s and § are tangent vectors at
h € SO(k;3). So, we have defined on SO(k;3) a Riemannian metric which
is left invariant, that is, the left translations are isometries. In fact, given
g € SO(k; 3), the left translation L, is defined by the expression Ly (z) = gz,
for all x € SO(k;3) and, since g is a linear transformation acting on k, its
derivative satisfies dL4(x) = Lg; so one obtains

<dLg(h)SvdLg(h)§>gh = <9579§>gh

— [ (gsBe.gsBim(e) = [ (sB6.5BEdm(e)
S S

= <8, §>h-

The acceleration, in the product metric, corresponding to a vector ¢ =
(7, h) tangent to k x SO(k;3) at the point (r, h), is equal to

D _ D . . Dh
— = —(r,h) = (¥, —).
dt  dt dt
The mass operator in the product metric acts on % as

PG ss) = (Fruds + (ot s

Let us introduce now an abstract field of forces F : T'(k x SO(k;3)) —
T*(k x SO(k;3)) in a suitable way such that the generalized Newton law
Dq :
M(E) = F(q)
becomes equivalent to the general equations EG1) and EGsy), for the motion

of a rigid body. The way we define F is the following: for (@, §) and w = (u, s)
in T, 5, (k x SO(k; 3)) we set:

(Flus)@s) = [

S

(@, dfE7(€)) + / (SBE,df<(€)). (5.100)

S

Recall (see (5.94), (5.95)) the general equations:
EG i(t,€)dm(€) = | df™t(€) = Fe™
0 fatom© = [ ae)
BGa) [ (a(t.€) — o) x e dm(©) = [ (a(t.) - o) x dfiH(6) = Pix
s

S
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for all c € k.
It is a simple matter to see that EG1) and EG3) are equivalent to EGy)
and EG’s), where

EG)) : /S(q(t,ﬁ) —g(t)) x §4(t,§)dm(§) = /(q(t,g) — g(t)) x dfe™H ()
— Pexft)

with

9lt) = M,G = M, [m(ls) /S sdm@)] -5 /S a(t, E)dm(¢),

G being the center of mass of S, which we already set equal to the origin 0
of K. Thus we can write:

/ gdm(€) = 0. (5.101)
S

The expression of ¢(t, &) = M;(&) is, in this case, q(t, &) = M(0) + M€ =
g(t) + h(t) B¢, with M} = h(t)B. So we have

q(t,6) = g(t) + MfE and it = (1) + MY,
then EG1) becomes equivalent to
[+ 3 [ cimie) = Fi
and, by (5.101), we have EG;) equivalent to
m(S)(§(t),u) = (FF** a), for all uck. (5.102)

On the other hand EGQ), is equivalent to

Pist = [ Mi€x () + 31 )dm(6)

_ ( /S Mt*gdm(f)) < () + / & (M€ x N €)ydm(e) =
= M; (/Sgdm(g)) x §(t) + ;t/(M & x M;&)dm(8);

again by (5.101) EG)  is equivalent to

(d /(M € x M;&)dm(€), > (Peoty, @) for all  ack.

dt
(5.103)
From what is said in Exercise 5.6.4 there is a linear isomorphism @ be-
tween k and the space s(k) of all linear skew-symmetric operators of k. In
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fact, for any A € s(k), ®(A) is the unique vector in k such that Av = $(A) x v
for all v € k. With that notation, EG3) being equivalent to (5.103) means
being equivalent to

(Pegto @) = 1 [ (7% Nz (A )
= 5 [ < Mze Nz ame)

thus EGs)’ is equivalent to

d

(Pizty, 2(A) = =

g(t)’

/(AM €, MF€)dm(€), for all Aes(k). (5.104)

There is also a linear isomorphism between the tangent space T, SO(k; 3)
and s(k) (see Exercise 5.6.18 below) through the map

h € ThSO(k,3) —s h h~' € s(k) (5.105)

(which is the derivative of the right translation Rj-: defined as Ry-1(x) =
zh™1, for all z € SO(k; 3)).

Exercise 5.6.18. Prove that h h~! € s(k) in (5.104) and that the map
above is a linear isomorphism.

We recall that M; = h(t)B, so (5.104) and (5.105) imply that EG,) is
equivalent to
d
dt
d
Tt

(Pesty @ b (1) = / (h W= (6)h(t) BE, h(t) BE)dm(€)

(hB€ h(t)BE)dm(€)

for all h € T, SO(k; 3).
From (5.99), (5.102) and the last expression, one can say that EG;) and
EG,)" are equivalent to

(FE ) + (Plgly, P(h h™'(t)) =

4
dt

[m<s><g<t>, 0+ [ (e it Bgan(e)

for all (ﬂ, il) € T(g(t),h(t)) k x SO(/{i; 3). (5.106)
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Notice that if we extend, by parallel transport, the vector (u, l~1) along the
motion ¢(t) = (g(t), h(t)), one obtains a vector field along ¢(t) still denoted

h so that 2 (, h) = 0 and then the right-hand side of (5.106) can be
wrltten as

d,. = Dj - D _:. ,Di,
k) = (L @by + @ @h) = (@), (5107

Let us recall the field of forces
F:T(kxSO(k;3)) — T*(k x SO(k; 3))

given in the following way: if (u,s) € T(,5)(k x SO(k;3)) then we have
F(u,s) € T(*T,h)(k x SO(k,3)) if, and only if (5.100) holds, that is, for (u, s) =
q:

(F(@) (@, h) = (F™, @) + (P, @(hh = (1))). (5.108)

The constructions of h~1(¢), Ff®' and P“(t) are possible because given
(r,h) € k x SO(k;3) and (u,s) € T(nh)(k: x SO(k;3)) we are able to find
q(t,€) and so ¢(t,€) that determine h=1(t), FF® and Pez(t) The conclusion
is then the following result:

Proposition 5.6.19. The general equations EG1) and EG3) that govern the
motions of a rigid body S (see (5.94) and (5.95)) are equivalent to the gener-
alized Newton law ,u( 1) = F(q) on the manifold k x SO(3) with the Rieman-
nian metric given by equations (5.99) and the field of forces F characterized
by (5.100).

Proof: As we saw, the equations EG1) and EGs) are equivalent to (5.106);
using (5.106) and (5.107) we see that

%’” =[F@  for all v e Typlk x SO(k;3)],
and so D
q .
( o) =7

We intend, now, to derive the Lagrange equations for the motion of
a rigid body S. We take a positive orthonormal basis {e1, es,e3} for the
vector space k and denote by (r1,79,73) the coordinates of a vector r € k.
Let (hq, ha, h3) be a local system of coordinates for SO(k; 3) So if (u,5) €
Tirpy(k x SO(k;3)) we have 4 = X2 u;e; and § = X215 50— 0h (h). The force
F defined in (5.100) has the following expression in those local coordinates
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Fem)) = [ @a o)+ [ GBeae) -

S

ia ez,/d ot ( +Zsz/ oz (W BE A7 (€)=

h)BE, df ;™ (€)))dhi(5)5.109)

3
_ Z /dfext 1,d7"2

Then if ¢ — (r(t),h(t)) € k x SO(k; 3) is a motion of S under the external
forces f** and being K¢(t) the kinetic energy along this motion, the Newton
law gives

d aKc aKC — ext . .

a o, o f(/ dfe™ (€))i,  1=1,2,3, (5.110)
doKe OK° [, 9 » .
dt oh;  Oh */S(gh (h)BE, df™(€)), i=1,2,3. (5.111)

We will relate the right hand sides of equations (5.110) and (5.111) above,
with the physical notions of total force and momentum of external forces with
respect to a point.

Since a%i(h)h_l(t) € T.(SO(k, 3)), it follows that, for each ¢, there exist
vectors w;(t) € k such that

wit)x = —(h)h ™1 (t), i=1,2,3. (5.112)

This implies

d OK® OK° ot
o~ g = L x o Be a4 6) =

= (w;(t), /thxdfm(f)L i=1,2,3. (5.113)

Introducing the usual notation Feet = [odfe™t(€) (total force at t) and
Pert = Peity = [sla(t,§) —r(t) x dff™ (&) = [¢ hBE x df™(€) (the mo-

mentum of external forces with respect to r(t) at the time t) we obtain the
Lagrange equations for the motions of a rigid body S:

d 0K¢ O0K°

@on on e =123 (5.114)
d OK®  OK° o
T on " on = il i=1,23. (5.115)

Since K¢(t) = 3m(S)|F]> + 5 [ |hBE|2dm(€) the first Lagrange equation
gives us
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m(S)i(t) = F¢™,

and the hypothesis G = 0 implies 7(¢t) = ¢(t) so we obtain the classical
Newton law for the motion of G. If the rigid body moves with a fixed point,
the second of the Lagrange equations are the only ones to be considered.

Exercise 5.6.20. Let S C K be arigid body with fixed point O € S. Assume
K =k, B =1id, (O, ez, ey,e;) and (O, e, eq,e3) orthogonal positively ori-
ented frames fixed in k and in S, respectively. If e, x es # 0, let ey = |Z §§2|
The nodal line passes through O and has direction ey. The Euler angles
(p,0,1) are defined as follows: ¢ is the angle of rotation along the axis (0, e,)
which sends e, to ex; 6 is the angle of rotation along (0,ex) which sends
e, to es; 1 is the rotation along (0,e3) which sends en to e;. Show that
to each  (p,0,1) satisfying 0 < ¢ < 2w, 0 < ¢ < 27, 0 < 6 < =, corre-
sponds a rotation R(ip,6,1) defining local coordinates for SO(k;3).Denote
by I1, I, Is the moments of inertia of S relative to (e, ez, e3) and prove that
2 = Ae, + Bey + Ces, w = Ae, + Bey +Ce,, K¢ = %(IlA2 + I,B? + I3C?)
where A = ¢sin(¢)sin(f) + Gcos(yh), B = @cos(h) sin(f) — Osin(yp) and
C = ¢cos(f) + . Compute A, B and C.

horizontal plae

nodal line

Fig. 5.4. Euler angles.
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5.7 Dynamics of pseudo-rigid bodies

The present section corresponds to Dirichlet—Riemann formulation of ellip-
soidal motions for fluid masses (also called pseudo-rigid bodies).

As in the previous section, £ and K are two 3-dimensional Euclidean
vector spaces considered as affine spaces; they represent the fixed (inertial)
space and the moving space respectively.

A motion t — M; is a smooth map where each M; : K — k is an
orientation preserving affine transformation (bijection) such that takes the
zero vector O € K (corresponding to the center of mass) into the zero vector
0€k.

If we fix a ball B, € K of radius r and centered in O, a motion of a
pseudo-rigid body is the motion

t— My(B,) Ck

of a solid ellipsoid.

Given My, we call B = M;—¢ and set Q; = M, o B™' : k — k, so
Q: € GL*(k, 3). The derivative Q; = M, o B~! represents the tangent vector
at the point Q; € GL™ (k,3) to the curve t — Q;. Take a point X € B,; then
q(t,X) = M,X is a curve in k with velocity ¢(t, X) = M, X.

The kinetic energy of the motion of the solid ellipsoid is

1 .
K@) =5 [ 1t XF dm(x)
where the positive measure m on K is the distribution of mass. So
1 . 1 .
Ke) =5 [ Qo BXPdm(x) =5 [ Qo BXP pav(x)
B, B,

where p is the density and V is the Lebesgue volume. When p = constant,

Ke(t) = g/B 10, 0 BX[? dV (X).

In order to work with matrices, we fix two positive orthonormal bases
(e1,e2,e3) and (F1, Es, E3) in k and K, respectively. For simplicity, we con-
sider the particular case in which the matrix of B is Id, the identity matrix.
We shall denote by @; and X the corresponding matrices of ; and X with
respect to the fixed bases. Then

KC(t) = g/B QX |?dV (X). (5.116)

Proposition 5.7.1. Any real n x n matriz G has a (non unique) bipolar
decomposition G = LDR, that is L, R are orthogonal matrices and D =
diag(\/a,...,\/fﬁ). Moreover o1 > --- > 0, > 0 are the non negative
eigenvalues of GTG (GT is the transpose of G).
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Proposition 5.7.2. The matriz & = p [, XXTdV(X) is given by & =

4’717;7'5 Id = mld. (Note carefully that X XT is a 3 x 3 matriz).

Proposition 5.7.3. The kinetic energy ((5.116)) is given by
1. )
Ke(t) = 5tr(Qi o Q7).

(Here tr A denotes the trace of the matriz A).

From the propositions above it follows that

Ke(t) = %mtr (Q: QD). (5.117)

Exercise 5.7.4. Prove the three last propositions.

Let us assume, from now on, that m = 1.

Remark 5.7.5. The expression ((5.117)) suggests the following Riemannian
metric for the group GLT(3) of all 3 x 3 matrices of positive determinant:

(A, B)g = tr (ABT), (5.118)
for all Q € GL™(3) and all A, B € ToGL™"(3).

Assume that a smooth motion has a (not necessarily unique) smooth
bipolar decomposition Q; = T{F' A; S; (i.e. three smooth paths: A; diagonal,
and T3, Sy orthogonal paths).

In the case when @) is analytic, this is always possible; also, if the eigen-
values of Q;Q7 are distinct and @Q; is not analytic, the smooth decomposition
is still possible. However, there are examples of C'°° paths @Q; for which there
is no continuous bipolar decomposition (see Montaldi [50], Kato [34] and
Roberts - S. Dias [57]). We have:

Proposition 5.7.6. From the equation of continuity in hydrodynamics and
p = constant, it follows that a smooth path Q; = M; o B=' corresponding to
an ellipsoidal motion satisfies det Q; = 1, that is, Q¢ is a curve in the Lie
group SL(3).

Proof: Assume Q; = T} A;S; and call
xr = th(t, X) = ﬂMtX = TtQtBX

where Ty = (Tk;) means a rotation that takes (e, e, e3) to the orthonormal
3

basis (€1(t), €(t), 3(t)), that is &;(t) = > Thiex, i = 1,2,3.
k=1
Then u := & = (TtQt n TtQt) BX and BX = Q' T« so,
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u = (Tt TtT + ﬂQththT) T

. Ouy, . 1 d . . .
and divu = ('TT: =tr (Q:Q; ") = $t0, 4 (det Q). Finally divu = 0 if
d
and only if — g (det Q) = 0 if and only if det Q; = constant. Thus det Q; = 1

because for ¢ = 0 we have det Qo = det (BB~1) = 1. n

From Dirichlet-Riemann formulation (see Chandrasekhar [15] and Mon-
taldi [50]) the motions of pseudo-rigid bodies are given by a generalized New-
ton law describing a mechanical system on the configuration space GL*(3)
with a holonomic constraint defined by the submanifold SL(3) of GL*(3),
that is: .

DQ

peos = —dV A, Qe SLE). (5.119)

Here f : GL(3) — R is the determinant function and A : TSL(3) — R
is the so-called Lagrange multiplier; also, SL(3) = f~1(1) € GL*(3) is an
analytic 8-dimensional orientable submanifold of GL™(3),

w:TGL(3) = T*GL™(3)

is the mass operator (Legendre transformation) relative to the trace metric,
w(v)(+) == (v, -) (see (5.118)), and ?T? is the covariant derivative of Q(t) (ac-
celeration) along Q(¢) in that metric. The map df : TGL*(3) — T*GL™(3)
is given by

v = df (mv)

where 7 : TGL'(3) — GL™(3) is the canonical bundle projection. We still
denote by df its restriction to T'SL(3). We will show that pu~tdf : TSL(3) —
TGL*(3) satisfies d’Alembert principle. In fact for any A € T'SL(3) we
have

(n~ldf) A =w € Tra)GL*(3)

where w is such that (w, ) = [dfx(a)] (-), so w is orthogonal to Ty (4)SL(3).
Then there exists a unique Lagrange multiplier A : TSL(3) — R, yielding
the reaction force . The function

V:GLY(3) >R

is the potential energy and corresponds to the gravitational potential (see
examples below).

Proposition 5.7.7. The generalized Newton law ((5.119)) is equivalent to
the system

- oV 8f B
Q=-55 Vo det@=1 (5.120)
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Proof: Here Q, Q, gg, gg are 3x 3 matrices: Q = (gi;), Q (Giz), gg (aaq‘;)

and 8f = (-2L), respectively. We also have that (see Exercise 5.1.1):

0qij
DQ d dK°© dK°©
—==>1= dgi;
“( dt ) EJ: th dds; dq,]] i

where 1 )
=@ Q) =5 [dh + ¢+ + ]
Then
DQ . ( v of )
— | = —dV + \df +—— i’di': + A=— dz
() vt = 0 gy g )
and the proof is complete. [ ]

For the Dirichlet—Riemann formulation (see [15]) one considers, from the
smooth bi-polar decomposition Q; = T}F A; S;, the new variables

o =1T1T A* = 88T

which are skew symmetric paths because differentiation of 777 = ST =T

glVGS . . . .
TTT + 17T =0 =887 + SS7.

Thus we obtain:
O=1T (Q*TA +A+ AA*) S
and also, from last Proposition 5.7.7:
O =17 (Q*TA +A+ AA*) S+ 1T (Q*TA + A+ AA*) S+
+TTAS +TT [4 (AA* — 2" A)] S =

_ /\a (det Q)} '
[ aq T 9@ Jg_7ras

So, one obtains the equation of motion:

At 0 (2A-A-AN)+ (~2 A+ A+ AN) A5+ & (A2" - 07 4)

_|_ k1% T d(det Q) T
[ T (3Q)Q:TTAS 5+ AT( 2Q )Q:TTAS s } '
(5.121)
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Exercise 5.7.8. Show that
L If f = detQ, Q € GLT(3), then dfg(B) = (detQ) tr(Q~'B) for any 3 x 3

real matrix B.

II. For any function ¢ : GLT(3) — R then g—g = [d¢q(Bij;)] where B;j is

the matrix with 1 at the (ij)—entry and zero otherwise.
L. 7 O(%LCEQ)ST = A71(detA) for any Q € GLT(3) .

IV. If for any Q € GLT(3), V(Q) = V(TTAS) = V(A) depends only on
A = diag(ay,a2,a3), 0 < a1 < as < ag, then

5’7‘/ ST — @

0Q " g—rr a3 0A

Ezample 5.7.9. (Examples of potentials)
Assume that V : GLT(3) — R is of the form:

T(

V(Q) =V (I(C), I(C), TI(C))

where C = QQT and I(C) = tr C, II(C) = 1 [(tr C)? — tr (C?)], III(C) =
det C.

1. Gravitational potential

e ds
/0 (3 +1(C) s2 +T1(C) s + ITI(C)]/?

V = -27Gp

2. Ciarlet-Geymonat material (see [42])

V= % A(III(C) — 1 — InITI(C)) + %u 1(C) — 3 — In1II(C)).

3. Saint Venant-Kirchhoff material (see [42])

1%

1
3 At (C - 1d))? + p (tr (C — 1d)?).
Remark 5.7.10. For general purposes we write:

V.9V a1(C) N AV BI1(C) N OV Ol (C)
0Q Ol 0Q oIl 9Q oIl 0Q

Proposition 5.7.11. (see [58])

a1(0) _
aqg- = 2Q

AL = 2 [1d4r (QQT) - QQ™] Q

g = 2det (QQT) (7T
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Remark 5.7.12. Using the expression of the gravitational potential and the
results IIT and IV of Exercise 5.7.8, we see that equation (5.121) is precisely
the so-called Dirichlet—Riemann equation (see [15] p.71, eq(57)), provided
that detA =1 and A = 2%

5.8 Dissipative mechanical systems

The results we will present in this section have their proofs in the article
“Dissipative Mechanical Systems”, by I. Kupka and W.M. Oliva, appeared
in Resenhas IME-USP 1993, vol. 1, no. 1, 69-115 (see [38]).

A mechanical system (@, (,),F), is said to be dissipative if the field of
external forces F : TQ — T*Q is given by

F(v) = —dV(p) 4+ D(v) for all v e T,Q;

where V : Q — R is a C"T(r > 1) potential energy and D e C* veri-
fies (D(v))v < 0 for all 0 # v € TQ. D is called a dissipative external
field of forces (or simply a dissipative force) and (—dV) is said to be the
conservative force.

Remark 5.8.1. D(0,) = 0 ¥p € Q (0, is the zero vector of T,Q). In fact,

continuity of D shows that (D(0,))v = limy_o 3 (D(Av))Av < 0 for A > 0

and 0 # v € T,Q implies (D(0,))v = 0 (otherwise (D(ev))v < 0 for small
€ < 0 and then (D(ev))(ev) > 0 which is a contradiction).

Remark 5.8.2. The mass operator p : TQ — T*Q defines D = w D TQ —
TQ and (D(v))v < 0 is equivalent to (D(v),v) < 0 for all 0 # v € TQ.

It is usual to say that D is a dissipative force when D= uD is a dissipative
force.

Let us denote by DMS the set of all vector fields X € C"(TQ,TTQ)
such that X is defined by a dissipative mechanical system, that is, by a pair
(V, D) as above. If z is a trajectory of (V, D) and g its projection on ), then

z= % = ¢ and the motion g = ¢(t) satisfies the generalized Newton law
Dq .
-5 = ~(grad V)(g) + D(9). (5.122)

It is useful to remark that the mechanical energy F,, decreases along non
trivial integral curves of any mechanical system (V, D). In fact, we have:

= SGD+Via®) = (Di.d)

which shows that FE,, decreases on all integral curves not reduced to
a singular point. The singular points of X lie on the zero section O(Q);
moreover 0, € O(Q) is a singular point if and only if p is critical for V.



108 5 Mechanical systems on Riemannian manifolds

A function V € C"1(Q, R) is said to be a Morse function if the Hessian
of V" at each critical point is a non-degenerate quadratic form. It is well known
that the set of all Morse functions is an open dense subset of C"1(Q, R) with
the standard C"*! topology.

A dissipative mechanical system (V, D) is said to be strongly dissipative
if V' is a Morse function and D comes from a strongly dissipative force
that is, satisfies the following additional condition: for all p € @ and all
w# 0, w € T,Q, one has ({(d,D(0,)w,w)) < 0 where d, D denotes the vertical
differential of D.

From now on let us denote by SDMS the set of all X € DMS such that
X = (V, D) is strongly dissipative and by D the set of all strongly dissipative
forces D.

Proposition 5.8.3. Let (V, D) be a strongly dissipative mechanical system.
Then the following properties hold:

i) The singular points of (V, D) are hyperbolic.
it) The stable and unstable manifolds W*(0) and W*(0) of a singular point
0 are properly embedded.
1) dim W*(0) is the Morse index of V at 7(0) € Q.
i) dim W*(0) < dim @ < dim W*(0).

Exercise 5.8.4. Exercise 11.5 Prove property (ii) in the last proposition.

Two submanifolds S; and S of a manifold M are said to be in general
position or transversal if either S1 NS5 is empty or at each point z € S1N.S;
the tangent spaces 1,57 and T,.S5 span the tangent space T, M.

Let us denote by SDMS(D) the set of all C" strongly dissipative me-
chanical systems X = (V, D) with a fixed D. Analogously we introduce the
set SDMS(V).

All the subsets of DM S are endowed with the topology induced by the
C"-Whitney topology of C"(TQ,TTQ).

This topology possesses the Baire property.

Proposition 5.8.5. The set of all systems X in SDMS such that their
stable and unstable manifolds are pairwise transversal is open in SDMS.

Proposition 5.8.6. Assume dim@ > 1, r > 3(1 + dim Q) and let G be
the subset of SDMS(D) (resp. SDMS(V)) of all systems X such that

their invariant manifolds are pairwise transversal. Then G is open dense in
SDMS(D) (resp. SDMS(V)).

As usual, we say that X € SDM S is structurally stable if there exists
a neighborhood W of X (in the Whitney C"-topology) and a continuous map
h from W into the set of all homeomorphisms of TQ (with the compact open
topology), such that:

1) h(X) is the identity map;
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2) h(Y) takes orbits of X into orbits of Y, for all Y € W, that is, h(Y) is a
topological equivalence between X and Y.
If the topological equivalence h(Y) preserves time, that is, if X; (resp.
Y;) is the flow map of X (resp Y) and h(Y)oX; =Y, oh(Y) for all t € R,
then we say that h(Y) is a conjugacy between X and Y.

Recall that the subset of all complete C" vector fields X on a manifold
M (the flow map X; of X is defined for all ¢ € R) is open in the set of all
CT"-vector fields with the Whitney C"-topology.

Proposition 5.8.7. Any complete strongly dissipative mechanical system
where all the stable and unstable manifolds of singular points are in general
position is structurally stable and the topological equivalence is a conjugacy.

If in the last proposition we do not assume the mechanical system to be
complete, the same arguments used in the proof also shows that the corre-
sponding time-one map flow is a Morse-Smale map in the sense presented in
[29], then stable with respect to the attractor A (V, D), which in this case is
the union of the unstable manifolds of all singular points of (V, D).

Example 5.8.8. Let us consider an example of a strongly dissipative mechan-
ical system which does not satisfy the conclusions of Proposition 5.8.6 in
the sense that it does not belong to G; it is the system which describes the
motions of a particle (unit mass) constrained to move on the surface @ of
a symmetric vertical solid torus of R? obtained by the rotation around the
z-axis, of a circle defined by the equations y = 0 and 22 + (2 — 3)? = 1. The
potential is proportional to the height function of @ and the dissipative force
D is given by D(v) = —cv, ¢ > 0, for all v € TQ. These data define a strongly
dissipative mechanical system with @) as the configuration space. The metric
of @Q is the one induced by the usual inner product of R3 and the potential
is a well known Morse function with four critical points. The symmetry of
the problem shows that the unstable manifold of dimension one of a saddle
is contained in the stable manifold of dimension 3 of the other saddle hence
they are not in general position since dim 7'Q) = 4.

A dissipative force D is said to be complete if, for any Morse function
V', the vector field associated to (V, D) is complete, that is, all of its integral
curves are defined for all time.

Ezample 5.8.9. Let us consider a linear dissipative field of forces, that is, a
function D defined by

D(v) = —c¢(r(v))v, for all veTQ

where ¢ : Q — R is a strictly positive C” function and @ is compact. It is a
simple matter to show that D is a strongly dissipative force. We will show that
D is complete. If it were not the case, there would exist a smooth function
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V : Q@ — R and a motion ¢t — ¢(¢) of (V, D) whose maximal interval of a
existence is ], +oo[ with —oo < a < 0. We know that < (E,,(¢)) = (D(4), )
is negative and also that

0 < [(D(4),d)| < pld* < 2u(En(q) + k)

where p > 0 is the maximum of ¢ on @ and k = |v|, v being the minimum of
Von Q. For all t, a < t < 0, we may write

—20(Epn(q) + k) < En(d) < — (En(d) +k) <0

SE

or

d(Em(q) + k)
ORI

which implies
En(q) +k < (En(4(0)) + k)e ™

and then E,,(¢(t)) is bounded and strictly decreasing, so there exists

lim Ep(q(t)) = L < +oc.

t—a_

This shows that |§|*> = 2(Emn(4) — V(q(t)) is also bounded, because V is
bounded; now it is immediate that we have a contradiction.



6 Mechanical systems with non-holonomic
constraints

6.1 D’Alembert principle

Let (@, (,)) be a C*° Riemannian manifold where @ is still called the con-
figuration space. A constraint Y is a distribution of subspaces on @, that
is, a map

YiqgeQQvr— X,

where X, is a (linear) subspace of T,Q with dim ¥, = m < n = dim @), for
all ¢ € Q. Assume also that X' is C'°°, that is, there exist a neighborhood of
each point ¢ € Q and m C™ local vector fields Y!,..., Y™ that generate X,
in all the points x of the neighborhood above. The Riemannian metric (,)
enables us to construct Ej‘, the orthogonal subspace to X, for any ¢ € Q.
We have, then, two complementary vector subbundles

Q=% and ste=U =
9€Q q€Q

with dimensions (n +m) and n + (n — m), respectively.
There are two well defined C'*° projections denoted by

P:TQ — XQ and Pt .TQ — 2+Q

that project each vy € T,(Q into the orthogonal components P(v,) € Xy and
P*(vq) € X, respectively.

Let F* k > 1, to be the set of all C* fields of external forces and F& be
the subset of all G € F* such that G(v) = G(Pv) for all v € TQ. Recall that
any G € F* sends the fiber T,Q into the fiber 7@, for all ¢ € @, and notice
that to define G € F g it is enough to know the values of G on the vectors
v e XQ.

A mechanical system with constraints on a Riemannian manifold
(@Q, (,)) is a set (Q,{,), X, F) of data where F € F* is an external field of
forces and X' is a C'*° constraint.

For our purposes it is convenient to recall now the classical Frobenius
theorem. A C* distribution X of dimension m on the manifold @) admits, at
each point ¢ € @, the local C™ generator vector fields Y!,..., Y™, defined
in a neighborhood U, of q. We use to say that a vector-field Y belongs to

W.M. Oliva: LNM 1798, pp. 111-126, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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Y Y e )ifY, € X, for all p where Y is defined. It is clear, by this
definition, that the Y? € X.i = 1,...,m. A distribution ¥ is said to be
integrable if through each point ¢ € @ passes an integral manifold M,
that is, T, M = X, for all x € M. A leaf of an integrable distribution X is
a maximal integral (immersed) submanifold M (so any leaf is connected).

Theorem 6.1.1. - Frobenius theorem A C*° distribution X' on Q is in-
tegrable if, and only if, Y,Y € X implies that [Y,Y] € X.

To check the integrability of X' it is enough that to each point ¢ € @ and
any corresponding local generators Y1, ..., Y™ we have that [V, Y] € X for
alli,j=1,...,m.

The distribution X is often given locally (in an open set U) by the zeros
(n — m) linearly independent 1-differential forms wy,...,w,—m, that is, a
vector v, € TQ, p € U is also in X'Q if, and only if, w,(p)(v,) = 0 for
all v = 1,...,(n —m). A dual statement for the Frobenius theorem is the
following: The C* distribution is integrable if, and only if, to each point g € @
and (n —m) local forms w,,, defined in a neighborhood of q, whose zeros span
X, we have that dwy, Nwi A ... ANwp_pm =0, foralv=1,....n—m.

When X' is a non integrable distribution the mechanical system is said to
be non-holonomic. If, otherwise, X' is integrable, the mechanical system is
said to be semi-holonomic. A true non-holonomic mechanical system is a
non-holonomic one such that the restriction of X' to any neighborhood of any
point of @ is a (local) non-integrable distribution. If () is a connected analytic
manifold with an analytic distribution X', the concepts “non-holonomic” and
“true non holonomic” coincide.

A C2%-curve t — g(t) on Q is said to be compatible with a distribution
Xif §(t) € Yy for all ¢.

Given a mechanical system with constraints: (@, (,), X, F), and, in order
to obtain motions on ) compatible with X', we have to introduce a field of
reactive forces R € Fg depending on @, (,), X and F and to consider the
generalized Newton law:

w(oh) = (F + R)(@)
A constraint X is said to be perfect (with respect to reactive forces) or to
satisfy d’Alembert principle for constraints if, for any F € F*, the field
of reactive forces R satisfies

p it R(v,) € EqL for any vg € XQ.

Example 6.1.2. A planar disc of radius r rolls without slipping along another
disc of radius R on the same plane. The equality rdf; = Rdf- is the physical
condition corresponding to the motion without slipping, 6; and 65 being
angles that measure the two rotations. One considers Q@ = S' x S and ¥
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spanned by the vector fields v = Aaiel + Baiez such that w(v) = 0, w =
rdf; — Rdf,. Since n = 2 and dim X’ = 1, X' is an integrable distribution on

the manifold of configurations Q.

Ezample 6.1.3. Consider the motion of a vertical knife that is free to slip
along itself on a horizontal plane and also free to make pivotations around
the vertical line passing through a point P of the knife. Let (x,y) to be
cartesian coordinates of P in the horizontal plane and ¢ the angle between
the knife and the z-axis. The manifold of configurations @ is R? x S! with
(local) coordinates (z,y,¢) and there are physical conditions dx = ds cos ¢
and dy = dssinp, ds being the “elementary displacement”; that implies
(sinp)dz = (cos p)dy and so X' on the manifold @ is spanned by the vectors
in the kernel of the 1-differential form

w = (sinp)dz — (cos p)dy.

It can be easily seen that X' is a non integrable distribution.

Z A

Fig. 6.1. Constraints on the motion of a vertical knife.

Ezxample 6.1.4. Consider the motions of a vertical planar disc that one allows
to roll without slipping on a horizontal plane and can also make pivotations
around the vertical line passing through the center. The manifold of configu-
rations @ is R? x St x St with local coordinates (x,vy, ,1) where (z,y) are
coordinates on the horizontal plane for the point of contact between the disc
and the plane, ¢ is the angle between the z-axis and the intersection of the
plane of the disc with the horizontal plane, and 1 measures the rotation of
the disc when rolling. If r is the radius of the disc, the physical conditions
imply that

dx = dscos p, dy=dssing and ds=rdy.



114 6 Mechanical systems with non-holonomic constraints
We define two 1-differential forms w; and wy by
w1 =dx —r(cosp)dyy and wo =dy — r(sinp)dy

and the distribution X' is spanned by the vectors v € TQ such that wy(v) =
wa(v) = 0. So the distribution X has dimension m = 2 and the dimension of
Q is n = 4. This analytic distribution is non-integrable.

Fig. 6.2. Constraints on the motion of a vertical planar disc.

Exercise 6.1.5. Prove, using the Frobenius theorem and also through phys-
ical arguments, that the constraints in Example 6.1.3 and Example 6.1.4 are
non-integrable.

Given a mechanical system with constraints (@, (,), X, F), then a C?-
motion ¢ — ¢(t) on @ is compatible with X' if, and only if|

(4, 7% =0, i=1,....,(n—m), (6.1)

for each t in the interval of definition of the curve, where the local C*°-vector-
fields (Z1,...,Z"=™) form an orthonormal set at each point, are defined in
a neighborhood of ¢(t) and span the distribution X+ in all the points of that
neighborhood.

To prove the existence of the field of reactive forces, we start by introduc-
ing the total second fundamental form of X'
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B:TQ xg ¥Q — X*Q, (6.2)

defined as follows: if { € T,Q,n € X, and z € EqL, let X,Y, Z, three germs
of vector-fields at ¢ € Q, Y € ¥ and Z € X+, such that X(q) = ¢, Y(q) =
and Z(q) = z; one defines the bilinear form B(¢,n) by

(B(&,m), 2) = (VxY, Z)(q). (6.3)
We remark that
<B(€,77)7Z> = _<VXZ5 Y)(Q)> (64)

and that therefore the number (VxY, Z)(q) = —(VxZ,Y)(q) depends on the
values X(q),Y (q), Z(g), only.

Proposition 6.1.6. (See [26].) If (Q,(,),X,F), F € F¥.k > 1 is a me-
chanical system with perfect constraints, there exists a unique field of reactive
forces R € F& such that:

(i) p'R(vg) € X for all vy € XQ;
(i1) for each vy, € XQ, the mazimal solution t — q(t) that satisfies

w00 = (F + R)G) (65)

and initial condition ¢(0) = vy, is compatible with X. Moreover,
(iii) the motion in (ii) is of class C**2 and is uniquely determined by v, € XQ;
(iv) The reactive field of forces R is given by

R(vg) = uB(vg,vq) — p([n™ Fluvg)]*), Vv € XQ  (6.6)
R(wy) = R(Pwy),  otherwise. (6.7)

Proof: Let R € F% be another field of forces in the conditions (i), (ii), (iii)
of the proposition; then by (ii) we obtain

1, Dq - 1y
PH(=5) = Prp  F@) + Prp ' R(4),
and so D
1y 15y q — .
poUR(G) = PRt R(G) = Pr(0) = P F(4): (6.8)
From (6.1) one obtains by covariant derivative:
Dq _
== 7 1, V¢Z') =0 6.9
(D7) 44, V47 (69)
and, since (Z1,...,Z"~™) is orthonormal we have
Dq Dq
L= RVAS 1
(24 = Z«dt) ) (6.10)

=1
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From (6.9) and (6.10) it follows

Pi(%) = i (4, V429 7" (6.11)
i=1
and for ¢t =0 (6.11) implies
Pi(%) =0 = — 7§<vq, Vo, 2" Z" = B(vg, vq). (6.12)
i=1
Then (6.8), for t =0, gives
p R(vy) = B(vg,vg) — Pt F(v,), Yo, €%, (6.13)

and the uniqueness of the field of forces R € F% follows. Conditions (i) and
(iii) with R given by (iv) are trivial ones. It remains only to prove condition
(ii). Using the expression (6.6) of R(v,),v, € XQ, we can look for a C? curve
t — ¢(t) on @, compatible with X' and satisfying (6.5), or, in other words,
verifying

Dq _

o = BTF@) + Bd,) — T F@ = (6.14)
= Plu™'F(9)] + B(4,9).
For that, let (Y'!,...,Y™) be an orthonormal local basis for X, and so we
need to find functions v,(t), r = 1,...,m, such that one has, locally,
q(t) = > we(t)Y*. (6.15)
k=1

S (24 vyt = Pl F ) (6.16)
i <%»Zj>2j = B(4.4). (6.17)

But (6.15) and (6.17) give, for any r = 1,...,m:
m k
B0+ Y oY) = (PO F@LYT). (618)

Equations (6.18) define a system of ordinary differential equations that has
a unique solution (v.(t)),r = 1,...,m, provided that the values v,.(0),r =
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1,...,m, are fixed as the components of the vector v, € X, with respect
to the basis (Y(g),...,Y™(q)) of X,. On the other hand condition (6.1) is
automatically satisfied because it is precisely (6.10). It is clear that (6.15)
can be integrated giving us ¢t — ¢(t), compatible with X, uniquely, since we
can fix ¢(0) = ¢ € Q. The proof of Proposition 6.1.6 is then complete. [

Let us consider again, the vertical lifting operator
Cy, : T,Q — T,,(TQ)
given by the formula (6.21):

def d
Cu, (wg) = %(Uq + swg)|s=o-

In natural coordinates of T'Q), if

Vg = (Q7v) = (QD-"’(Invvla'-'vvn)a

then C,, has the expression

wg = (q,w) = (q1,- -+, Gn, W1, .., wn) — ((q,0), (0, w)). (6.19)

The following formula holds:
Cy,(Pwg) = TP(Cy,wg) for all v, € ¥Q and wyeTQ (6.20)

q

where TP denotes the derivative of the projection P : TQ —— X Q. In fact,

d d
Cy, (Pwg) = %(Uq + 8Pwy)|s=0 = —P(vq + swy)|s=0

ds

d
= TP£(U,I + swq)|s=0 = TPC,, (wg).

In these local coordinates since for any C? curve t — ¢(t) one has % =
Sri i+, i ”qzq]) , the expression (6.19) for C,, implies that

Cy (l;tq) (( Qk + Z QzQJ or
a5 = - 5(0). (6.21)

where we recall the expression of the geodesic flow of { , ):

S(g) = Z kdid;)) (6.22)

and we also have
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G =((¢,9), (4, (Gr))- (6.23)

Since Cy is injective, (6.5) is locally equivalent to the second order ordi-
nary differential equation

i=E@) < S+ Cy((n ' F + p ' Rlg) (6.24)
obtained using (6.5) and (6.21). From (6.20) and (6.1) one obtains
E(§) = 5(q) + CaP (™' F + w ' RIg) + CyPH ([ F + p~ ' Rg)
= TP(S(q) + Cyl["F + p~ ' R)g)) +
+ 5(¢) = TP(S(q)) + C4P*([n~'F + ' RIq). (6.25)

But, by the last proposition the solution ¢t — ¢(t) is compatible with X,
that is, ¢ = P¢, with (6.11) and (6.21) on can write

P ([ F + p RIG) = CyPH (1) =
Cal5h) - (Pl =
i~ S(@) ~ TP — S(@)) = TP(S(@) — S(d) (6.26)

because ¢ = T'P¢ implies ¢ = P§. Then (6.25) and (6.26) give us,

B(¢) = TP(S(q) + Cy([u™' F + n~'R]q)) = TP(E(q)). (6.27)

The last condition shows, in particular, that given a mechanical system
with constraints (@, (,), 2, F) there is well defined a vector field v, — E(v,)
on the vector bundle X@Q C T'Q. In fact we have explicitly:

E(vg) = TP(S(vg) + Co, [(0 ' F + 7 "R)vy]) = TP(E(vy)) (6.28)

for all v, € 3.

The vector field (6.28) defined on the manifold ¥'@ is a second order
vector-field and then any trajectory is the derivative of its projection on the
configuration space Q.

Exercise 6.1.7. Use the proof above to show, from equation (6.1) and fur-
ther considerations, that one has the following: Given a mechanical system
with perfect constraints (@, (,), ¥, F), F € F¥(k > 1), and denoting by
X the vector field on TQ corresponding to the mechanical system (with-
out constraints) (@, (,),F), then the vector field E = E(v,) associated to
(@Q,(,), X, F) is given by E = TP(Xx).

The geometrical meaning of the last statement is that at each point v, of
YQ we have two elements of T, (T'Q): the first one is Xr(v,) and the other
is its projection E(vg) = TP(Xr (vg)) that belongs to T, (XQ), that is, we
have on X'Q the equality E = TP(Xx).
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Ezxample 6.1.8. A rigid body S C K which besides having a fixed point is
constrained to move in a such a way that the angular velocity is always
orthogonal to a straight line ¢ fixed in S passing through the fixed point.
We assume K = k and B = id. In this case @ = SO(k;3) and m = 2. Let
(e1,e2,€3) a positively oriented basis with es in the direction of ¢ then, as
local coordinates in a neighborhood of any given position of S, one can take
the Euler’s angles (¢,0,1) (see Exercise 5.6.20) and the distribution X' is
characterized by the condition C = ¢cosf + ¥ = 0 that is, it has a basis
given by the vector fields

X! 4 2=~ —cosf—,

~ 00 dp Em

or by the zeros of the one form w = d + cosfdp. So, by the Frobenius the-
orem, X' is true non holonomic. In fact [X7, X5] = sin 9%. Assume I, 15, I3
are the moments of inertia with respect to ey, es, e3, respectively, and that
I, = I # I3 > 0. The kinetic energy is given by

1 . .
K¢ = 5(11(@2 sin? @ + 6%) + Is(¢ cos 6 + 1))?).
In the metric of SO(k;3) defined by K¢, the vector field Z = 13_%% is a

unit vector orthogonal to . Let us show that, in the present case, B(q,q) =
0. To compute B(q,q), we recall that o = S2°_ (L IK° _ %—Iq{_c)dqj (here
J

]:1 dt 8(]]
(q1,42,93) = (p, 0,1)) satisfies a(v) = (%, v),v € TQ. Therefore we have
: Dq
_<Q7VQZ> = <E7Z>
~1,.d 0K¢ OK¢
Y N e
- If%(gacoswzb). (6.29)

In the present case equation (6.1) becomes ¢ cos + ¥ = 0 that together
with (6.29) implies B(q,¢) = 0.

6.2 Orientability of a distribution and conservation of
volume

Given a mechanical system with constraints say, with data (@, (,), X, F), we
will come back to the flow defined by the vector field on X'@ of equation
(6.28); such a vector field is also called GMA which stands for Gibbs, Maggi
and Appell, who first derived the equations for mechanical systems with non
holonomic constraints. The statement of Proposition 6.1.6 describes the way
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of finding the C%-motions ¢ — ¢(t) on @, compatible with the distribution
Y. In fact we have to look for a C2-curve on @ such that ¢(0) = p € Q and
4(0) = v, € XQ and satisfying the equation (6.14), that is
Dg _ . ..
— = Pl F(@)] + B(4,4).

Using the E. Cartan structural equations (see section 3.5) it is also possible
to derive the second order ordinary differential equation above. In fact, take
in an open neighborhood N, of p € @, an orthonormal basis (X1,. .., X,,) for
Y and also an orthonormal basis (X,,11,...,X,) for £+. Then they define
the orthonormal basis (X1, ..., Xpm, Xm+1,-..,Xn) of TN),.

Now we are able to introduce the 1-forms w’ on N, by the relations
wi(X;) = 5;, 1,7 =1,...,n, and we obtain the dual basis

of (X1, Xa,...,X,). The corresponding structural equations (3.60) and (3.62)
are:

n
dwi—FZw;/\w”:O, 1=1,...,n,
p=1

w;—l—wf:(), Lwp=1,...,n,
and the distribution X is given in terms of these local forms as
Xq = Mp—myirker w(q), for any gq€ N,. (6.30)

Assume that Y is perfect, that is, for any given field of external forces F
d’Alembert motions t € I — ¢(t) € Q imply, for all ¢ € I:

D¢ .

o H 'F(g) € qu(ty

that is, ¢ = ¢(t) satisfies, for all t € I:

w*(@) =0, a=m+1,...,n, (6.31)
Di
w* (dtq - /flf(q')> =0, k=1,...,m. (6.32)

Let us suppose that ¢(¢t) # 0 and also that a local vector field W extends
q4(t), that is, W(q(t)) = ¢(t). Then by (3.26) we have

(Vww®)(W) = W(w*(W)) —w*(Vw W),
that, computed at ¢(t) gives

(Vo) @) = 4" (@) — o ()
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from (6.31) and (3.59) we obtain

(gf)+2wf‘((j)wi(1j):(), a=m+1,...,n. (6.33)

The total second fundamental form introduced in (6.2) gives us:

n

B(g.d)= > (B(4.q), Xalq(t)Xa(q(t))
a=m-+1

= 3 (VaW)(a(1))., Xala(t) Xa(a(t)
a=m+1

= 3 (B X)) Xala(t)

a=m+1
n .
o (D4
= Z <W (dt))Xa(Q(t))’
a=m-+1
and then

B(4,q) Z Z Wy’ Xa(q(t))- (6.34)

a=m+1 i=1
So, (6.33) and (6.34) imply
Dq

wa(E—B(q',(j))zo, a=m+1,...,n (6.35)
Equations (6.32) also gives:

Dq Dq

PL(E — T F(G) = T pHF@),
and so from (6.35) we have
PL - B(G,d) = 51 - Bla.d).

Adding the two last equalities we obtain (6.14). If, otherwise, ¢(t) = 0 for
some t € I, the reactive field of forces R can be introduced, anyway, by
continuity. In fact we obtain (6.6) since (6.34) makes sense for any v, € XQ:

B(vg,v) Z Z W (vg)w' (V)] Xalq); (6.36)

a=m+1 i=1
then, R is defined by the next two equalities:

def _
R(vg) = pB(vg,vq) — ,LLPJ_PJ 1]—'(1;(1), Vg € X0,

R(w,) & R(Pw,), Yuw, € TQ.
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Thus, the generalized Newton law ,u% = F(¢) + R(¢) has a meaning on TQ
and its flow on T'Q leaves Y@ invariant.
The conservative field of forces F(v,) = —dV (¢) defined by a C? potential
energy V : @ — R allow us to rewrite (6.14) as
D .
- = ~(Pgrad V() + B(d,4) (6.37)

and there is the conservation of energy along trajectories on X'Q. In fact,
if g(t) is such that ¢(0) € Xy« and satisfies (6.37) we know by Proposition
6.1.6 that (t) € Xy for all £ and we have

d d 1 Dj

o Emld@)] = 2 (56, @) + V(@) = (7, d) + [dV(a(2))]4(t)

= (=(P grad V)q(t),q) + ((grad V)(q(t)), ¢) = 0.

The orientability of a distribution X', that is, the orientability of the vector
sub-bundle X', can be understood in the following way (see Definition 4.1 of
[39]): “A distribution X on the Riemannian manifold (@, (,)) is orientable if
there exists a differentiable exterior (n—m)-form ¥ on @ such that, for any g €
Q, and any sequence (21, ..., Zn—m) of elements in X, Wy(z1,..., zn_m) # 0
if, and only if, (21,...,2n—m) is a basis of EqL”. In fact this is equivalent to
saying that X'Q is orientable. In the codimension one case (m = n — 1), D
orientable is equivalent to the existence of a globally defined unitary vector
field N, orthogonal to >_ , Vg € Q.

In ([39] Proposition 4.2) it is proved a necessary and sufficient condition
for the conservation of a volume form in X'Q:

Proposition 6.2.1. (Kupka and Oliva) If X is orientable there is a wvol-
ume form on XQ invariant under the flow defined by the mechanical system
(Q,(,), X, F = —dV) if, and only if, the trace of the restriction of B+ (total
second fundamental form of X+) to X+Q XQ Y1+Q, vanishes.

The conservation of a volume form means that there is a (global) non
zero exterior (n + m)-form w on X@ such that the Lie derivative Lxw = 0,
X being the GMA vector field associated to the data (Q, (,), X, F = —dV).

Finally we remark that Proposition 6.2.1 remains true for the flow defined
on XY@ by the equation

Dq s .
T Pl F()] + B(d, d)
when F is a positional field of external forces that is, 4~ 'F is a vector field
on ) (not necessarily a gradient vector field).
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6.3 Semi-holonomic constraints

Let NC Q,0<n=dmN < dim@ = m, a C* submanifold, that is, a
C* holonomic constraint of a mechanical system (@, (,), F). Take a tubular
neighborhood of N in @ (see Proposition 3.3.1) and p : {2 — N the projection
from the tube {2 onto N (recall that {2 is an open set of @ that contains N).

Fix # € N and consider the fiber p~1(z) C 2 C Q. Take y € p~*(z)
and use the Levi-Civita connection to construct X, as the subspace of T (2
whose vectors are obtained from the elements of T, N by parallel transport
along the unique geodesic v = y(s) passing through z at ¢t = 0 with velocity
4(0) = exp; ! (y); we also have (1) = y. If we make x vary in N one obtains
on §2 a C* distribution. The sequence of data (2, (,), X, F) defines on {2 a
mechanical system with an integrable constraint Y. This way the holonomic
constraint has been considered as a constraint of a semi-holonomic system.

Exercise 6.3.1. Consider Proposition 6.1.6 applied to the mechanical sys-
tem with constraints ({2, (,), X, F); assume the submanifold N C 2 C Q
thought of as a holonomic constraint for the holonomic mechanical system
(@, (,),F); compare the field of reactive forces given by (6.6) and (6.7) with
the reaction of the constraint defined in (5.29). Show that the motions com-
patible with IV are the same in both cases.

6.4 The attractor of a dissipative system

The next notions and results that will be stated in this chapter, appear in the
paper [26] by G. Fusco and W.M. Oliva. We will describe the discussion that
was made there on the qualitative behavior of the flow defined by the vector
field on X'Q given by equation (6.28) (called the GMA vector field). We shall
focus our attention on the set A given by the initial conditions in X'@Q of all
global bounded solutions of (6.28). As we shall see, strictly dissipativeness
implies that A is a global attractor.

For the study and the statements we will present from now on a mechan-
ical system (@, (,), X, F) with  compact and X perfect. Assume the field
of forces F : TQ — T*Q is a C* function, k > 1, given by F = d(V o7)+ D,
such that V : Q — R is a C**! function and D = 1D is dissipative with
respect to X, that is, (PD(v),v) < 0 for each v € XQ, strictly dissipative
if (PD(v),v) = 0 implies v = 0, strongly dissipative if there is a contin-
uous function ¢ : Q — R* \ {0} such that (PDv,v) < —c|v|%2. The GMA is
said to be dissipative (strictly dissipative) if the function V' : Q — R is
C*+1 and D is dissipative (strictly dissipative) with respect to X. A strictly
dissipative GMA is said to be strongly dissipative if V is a Morse function
and D is strongly dissipative. Denote by O : Q — Y'Q C T'Q the zero section
and by Xy the vector field on @) defined as the orthogonal projection on X,
of (gradV)(q), for any ¢ € @, that is, Xy, = PgradV.
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Exercise 6.4.1. Compare these notions of dissipativeness with the ones pre-
sented in section 5.8.

Proposition 6.4.2. (i) The set GF*1 of potential functions V € C*T1(Q, R)
(k > 1) such that Xv(Q) and O(Q) are transversal is open and dense in
CkH (Qv R)7

(ii) If V. € G**1, then the set Cy of the critical points of GMA, or
equivalently, the set ey of the equilibria of the underlying dissipative system
is a C* compact manifold of dimension r = dim Q — dim X;

iii) Oy, ey depend C* continuously on V € GF+1,

From this proposition it follows that, generically, for a holonomic mechan-
ical system (r=0), the set of equilibria is made of a finite number of points;
when 7 = 1 as in the case of the rigid body in Example 6.1.8, the set of
equilibria is generically the union of a finite number of circles.

Proposition 6.4.3. The trajectories t — v(t) of the GMA wvector field asso-
ciated with a dissipative system are globally defined in the future and bounded.
If the system is strictly dissipative all trajectories approach the set Cy of the
critical points as t — oo. Moreover if t — v(t) is defined also for negative
time and bounded, then v(t) approaches Cy ast — —oo.

Strict dissipativeness implies that all trajectories of GMA approach the
set of critical points but it is not a sufficient condition so that the w-limit set
of any orbit contains just one point. For instance, when @ is a circle C' C R3,
s the curvilinear abscissa along C, T' the unit vector tangent to C at s, V = 0,
D(T)(wT) = —v*w for all v,w € R, the equations of motion take the form
$=v, v = —v3. From that, v — 0 as t — oo while s grows unboundedly if
the initial value is not zero. Therefore the w-limit of any orbit through any
point in TC'\ O(C) is all the O(C).

The main point in this example is the nongenericity of V; in fact we know
that for 7 = 0 and V € G**! the critical points of GMA are isolated and then
the w-limit set of any orbit must be a single point if the system is strictly
dissipative. In the case 7 = 1, even for V € G¥*1, the critical points are not
isolated. Using a general theorem in transversality theory have the following
result:

Proposition 6.4.4. Letr = 1. Then there is an open and dense set in GFT1,
k > 2, such that if a function V is in this set, V is a Morse function and there
are at most a finite number of points in Cy for which V|Cy is not strictly
monotonic. Moreover, if the system is strictly dissipative, then the w-limit set
of any orbit of the GMA contains just one point. The same is true for the
a-limit set of any negatively bounded orbit.

The next proposition concerns the case of a generic value of r and gives
conditions in order that the w-limit of any orbit contains just one point. We
state the theorem without specific reference to the GMA because the result
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can be applied to any evolutionary equation that satisfies the property that
the w-limit set of any bounded orbit contains only critical points.

Proposition 6.4.5. Suppose that the w-limit set w(y) of a bounded orbit v of
a vector field X € C1(2,R™) contains only critical points. Then a sufficient
condition in order that w(vy) contains just one point is that the local center
manifold at each critical point coincides locally with the set of critical points.
A similar result holds true for the a-limit set of a negatively bounded orbit.

We now begin the study of A by giving a characterization of the attractor
and some of its properties.

Proposition 6.4.6. If  : D C (XQ) x R — XQ is the dynamical system
associated with a X -strictly dissipative mechanical system and

A={zx € XQ|P(x,t) is defined for t € (—o0,+00) and bounded},

then:

(i) A is compact, connected, invariant and mazimal.
(ii) A is uniformly asymptotically stable for the flow &.
(iii) A is an upper semicontinuous function of the potential V and of the
dissipative field of force D.
(iv) If §1 is the time one map associated with  and B = {x € XQ|E,,(z) <
a} with a sufficiently large a > 0, then A=,~, P? B.

It is interesting to note that, if the a-limit set of any negatively bounded
orbit contains just one point, as for instance in the cases described in Propo-
sitions 6.4.2, Proposition 4.6 and Proposition 5.6, then A = UmGCV W,
W} being the unstable manifold corresponding to the critical point x.

One of the basic questions in the description of the structure of A, which
is a subset of Y@, is to see how its relation with the configuration space @
is. The following theorem says that A is at least as large as Q.

Proposition 6.4.7. Let A be the attractor of a strictly dissipative system.
Then the image of A under the canonical projection T : TQ — Q is all the
(compact) configuration space.

This result implies that given any point g € @ there is a v, € X, such
that the orbit of GMA through v, is globally defined and bounded.

The next proposition gives conditions in order that the attractor and the
configuration space have the same dimension.

Proposition 6.4.8. If the GMA is strongly dissipative (so that' V' is a Morse
function) and A is a differentiable manifold then dim A = dim Q.

In the remaining part of this section we shall discuss some aspects of the

dependence of the attractor on the potential function V and on the dissipative
field of forces D.
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Proposition 6.4.9. Given a strongly dissipative field of forces D € C* (with
the Whitney topology) there is a neighborhood N of 0 € C*¥*+1(Q,R) such that,
if AV s the attractor corresponding to V€ N and the given D, then

(i) AV is a C* differentiable manifold and 7| AV is a C* diffeomorphism of
AV onto Q.
(i5) AV depends C* continuously on V€ N and A° = O(Q).

Since all the orbits of GMA approach the attractor as t — oo, once A
is known, an important step towards understanding the flow is to know the
flow of GMA on the attractor. When, as in the situation of the last theorem,
A is diffeomorphic to @, to study the flow on A is the same as to study a first
order equation on Q. We consider a potential of type €V, V € C?(Q,R),e > 0,
and a strongly dissipative field of forces D € C''; then Proposition 9.6 implies
that the attractor A€ is a C'! manifold diffeomorphic to O(Q) and approaches
O(Q) in the C! sense as € — 0. This implies that 7|.A is a diffeomorphism
of A€ onto @ if € is sufficiently small. It follows that given q € @, there is a
unique point (7|.4°)7!(g) in X, NA°. Therefore ¢ — ¢(t) is an orbit of GMA
in A€ if and only if

Qo) = (7149 (q.(8),

that is, if and only if the corresponding motion ¢ — ¢.(t) is a solution of the

first order equation
def

Ge = X(q) = (1|49} (a).
The vector field X€¢ depends on A€ and cannot be computed explicitly unless
one knows A€ which is not, in general, the case. Since .4¢ approaches O(Q) as
e — 0, we have X¢(q) approaches zero as ¢ — 0, thus we consider the vector

field Y/ e=1 X which has the same orbits as X¢ and study the limit Y° of
Y€ ase— 0.If YO exists and is structurally stable then for e sufficiently small
the flow of X¢ is topologically equivalent to Y. If (¢, ¢) = (g, v) are natural
local coordinates on T'Q then the function o€ := O(Q) — X'Q describing A°
has a local representation ¢ — (G(e, q),9(e, q)), where q(e,.), 9(,.) are C!
functions such that g(e,.) — id, o(e,.) — 0, in the C! topology, as € — 0.

Moreover (¢, .) has a C! inverse because (7|.A¢) is a C! diffeomorphism
and the same is true for o°.

Proposition 6.4.10. If A is a smooth function of € in the sense that q,v
and their derivatives with respect to q are continuously differentiable with
respect to € then, as € — 0, Y converges in the C! sense to the C' vector
field given by YO = —(P o (FD))™'P gradV, FD being the fiber (vertical)
derivative of D.

We remark that Po (FD): X¥Q — XQ is a diffeomorphism because D is
a strongly dissipative field of forces.



7 Hyperbolicity and Anosov systems.
Vakonomic mechanics

7.1 Hyperbolic and partially hyperbolic structures

In Chapter 5, section 5.8, we saw that, generically, holonomic dissipative
mechanical systems have a very simple dynamics with a Morse-Smale flow
and, moreover, they are structurally stable and the topological equivalence
is a conjugacy (see Propositions 5.8.3, 5.8.5, 5.8.6, 5.8.7 and [38]).

During many years the mathematical community believed that structural
stability of flows was generically related with simple structures; in fact, that
is true in two dimensions. But D.V. Anosov ([3]) studied, extensively, special
flows, nowadays called Anosov flows, which are structurally stable and
constitute a class of non trivial and complex dynamical systems. Moreover,
an Anosov flow which is Hélder C! and has an invariant measure (generated
by a volume form) is ergodic.

The structural stability for Holder C' Anosov flows, as well as ergodicity
when there is an invariant measure, were proved by Anosov in his book [3]
where one can also see a proof of the fact that the geodesic flow on the unitary
tangent bundle of a compact Riemannian manifold having all its sectional
curvatures strictly negative satisfies definition 7.1.1 below and, moreover, is
Anosov; other geometrical proofs of this last fact are also available in Arnold
and Avez [5] as well as an analytical proof in Moser [52]. As a matter of
fact, the last result goes back to Hadamard’s work who, essentially, gave a
proof for it; in [31], Hedlund proved the ergodicity of the geodesic flow on
the (3-dimensional) unitary tangent bundle of a closed surface, with constant
and strictly negative curvature, and Hopf in [32], extended the result for the
general case of surfaces with strictly negative curvature.

Definition 7.1.1. Let M be a C* compact Riemannian manifold. A non
singular flow T* : M — M is partially hyperbolic if the variational (deriva-
tive) flow DT : TM — T M satisfies:

i) foranyp e M, T,M=X,&Y,® Z,, where X,), Z are invariant sub-
bundles of TM, dimX, = £ > 1, dimY, =k > 1, Z, D R(&(T*p)|i=o);
i) there exist a,c > 0 such that

W.M. Oliva: LNM 1798, pp. 127-143, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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DT | < aléle™ ", Vt>0, VE€X, peM,
that is |DT'¢| > a e ™, WVt <0, VYE€X, peM;
|IDT u| < alple®, Vt<0, VYu€d, peM,
that is |[DT'u| > a tule®, Vt>0, VYu€), peM,;

X and ) are said to be uniformly contracting and expanding, respectively;
iit) Z is neutral in the sense that it is neither uniformly contracting nor
uniformly expanding;

If, in particular, Z, = R(&(T'p)|i=0) and (iii) is satisfied then the flow
18 said to be hyperbolic or Anosov.

Under that definition one uses to say (see [9] and [56]) that the manifold
M has a partial hyperbolic structure under 7% (hyperbolic structure
in the Anosov case).

The flows with hyperbolic behavior on trajectories, and the structure of
manifolds of non positive curvature were considered in two surveys, respec-
tively, by Pesin in [56], and by Eberlein in [18]; both papers present an exten-
sive and fundamental list of references on the subjects under consideration.

In [14], it is constructed an Anosov flow obtained as the quotient by a
suitable vector field of a partially hyperbolic flow over a codimension one true
non-holonomic orientable distribution of a compact Riemannian manifold.
The distribution is constant umbilical and conserves volume (see the previous
Chapter 6, section 6.2). The manifold is supposed to have sufficiently negative
sectional curvatures on the 2-planes contained in the distribution and only
on them. An explicit example is also presented there.

In [13] the authors presented more examples of partially hyperbolic flows
motivated by the study of D-geodesic flows i.e., dynamic free systems (see
(6.37) with V' = 0) and non-holonomic, that is, leaving invariant a non-
integrable orientable distribution D (of arbitrary codimension). Suitable con-
ditions properly decouple its variational equation and imply hyperbolic prop-
erties of trajectories; the cases of a general Lie group and of a semi-simple Lie
group are also analyzed (remark that in the present chapter the distribution
is considered as a vector subbundle D of T'M while the distribution and the
subbundle D are denoted by X, in [13] as well as in Chapter 6).

More precisely, from (6.37) the equation of motion for D-geodesics ¢ on
the configuration space M with a constraint D is obtained making V = 0

and is given by
Dq
— = B(q,4 7.1
4~ B3.0) (71)

(as a matter of notation, we observe also that the meaning of the total second
fundamental form B in this book there corresponds to —B in [13]). The
variational equation is the one that determines the time evolution A(t)
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of a vector A € T(y,.4o)D1 under the derivative DT of the one parameter
group T? of diffeomorphisms generated by the flow on Dy defined by (7.1). A
solution A(t) of the variational equation, as above, is called a Jacobi field;
the conservation of energy along trajectories on D C T'M implies that the
manifold

Dy ={(q,v) €D: |v| =1}

is invariant under the flow T".
From Lemma 7 and Proposition 1 of [13], each Jacobi field A(t) can be
identified with a pair (J(t), Djt(t)) where J(t) is a vector field along a solution

q(t) of (7.1) and satisfies the differential equation

ViVgd = R(q,J)q+V 1B(q,9), (7.2)

where V is the Levi-Civita connection corresponding to the covariant deriva-
tive D associated to the Riemannian metric on M defined by the kinetic
energy (see [13], Proposition 1).

Let us recall Definition 8 and Lemma 11 of [13] and set

Fo(X,N) 1= (((V4B(@,Y) = B@, PYgY))| v+

+(B(X,Yi(0)), B(N, X)))Yi(0), (7.3)

for any unitary X € D, and N € Dp{ where ¢(t) is the unique D-geodesic
such that ¢(0) =p and ¢(0) = X, and Y;(¢) is any orthonormal basis of
Dyy N [¢(t)]*+. From Lemma 11 of [13] it follows that the value of F,(X, N)
does not depend on the orthonormal basis, that is, F is well defined (here,

Pp is the vector bundle orthogonal projection from 7'M onto D).

Definition 7.1.2. We say that the distribution D decouples (or that D is a
DC-distribution) if }

R, (X,N)X + F,(X,N)=0
for any X € Dy,, N € le and p € M, where R is the curvature tensor of
the D-adapted connection (see [13], Definition 5):

V:X(M) x I'(D) — I'(D),

given by ~ ~
V(X,)Y)=VxY =VxY+B(X,Y)=PpVyY.

The properties of V are described in Lemma 8 of [13].
The first main result of [13] is stated as follows

Theorem 7.1.3. Let (M,{ , )) be a compact Riemannian manifold of class
C* and D a smooth DC-distribution on M. Suppose that:
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i) the sectional curvatures of 2-planes contained in D satisfy: —K(X,Y) —
(B(X, X), B(Y,Y)) — | BOX, V)|]? +2(B(X,Y), B(Y, X)) > 2 for some
w>0and adl X, Y €Dy, (X,Y)=0;

ii) the symmetric component of B is zero.

Then the corresponding D-geodesic flow on Dy is partially hyperbolic.

Note that, when the distribution D is involutive (foliation), condition
i) is equivalent to the property that D has leaves with negative sectional
curvature.

The last part of [13] deals with the special case where (M, (, }) is a Lie
group G with a left invariant metric and D is a left invariant distribution.
The authors were able to write conditions for D to be a DC-distribution, as
well as for i) and ii) in the first main Theorem 7.1.3, as algebraic equations,
involving only the structure of the Lie algebra of G.

To explain better the above special case, start by remarking that if
(G,{,)) is a Lie group with a left invariant metric, and D is a left invari-
ant n dimensional distribution on G, then D is completely determined by an
n-dimensional linear subspace of the Lie algebra g of G. Take an orthonor-
mal basis {&1,..,&n, &nt1y - Em} Of g such that {&,...,&,} is a basis of D,
(e = idg) and {&n41, ..., Em} is a basis of DX; the left invariant vector fields
corresponding to these elements of g will be denoted with the same notation.
Denote, as usual, Christoffel symbols by F;k , Vi, j,k € {1,...,m}, where

F}k = <V§j &k, €i). In the sequel, indices when repeated, mean sum over their

ranges. Let X = 2;&; € D, , with || X|| = 1 and ¢ be the D-geodesic (solution
of (7.1)) such that ¢(0) = X and ¢(0) = e; then

q = a;(t)g;.
Define the (m —n) x (m —n) matrix AX by
Af = ar(Ve, &irn + Ve bk Eitn)

and note, from Lemma 26 of [13], that condition [D.,D.] € D} implies AX
to be a constant matrix.

Consider now a Lie group G with a (discrete) uniform subgroup H, that
is, G/H is compact (see [8]). In [8] it is proved that any connected semi-
simple Lie group has always a uniform subgroup. Recall also that SL(n,R)
is a connected semi-simple Lie group.

The second main result in [13] can be stated is the following way:

Theorem 7.1.4. Let (G, (,)) be a m-dimensional Lie group with a (discrete)
uniform subgroup H, the metric being left invariant. Suppose that D is a
left invariant n-dimensional DC-distribution on G satisfying [D.,D.] € D+.
Assume also that:
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i) the sectional curvatures of 2-planes contained in D, verify: —K(X,Y) —
(B(X, X), BY,Y)) — | BX, )2 +2(B(X,Y), BY, X)) = 2 for some
w>0and all X, Y € Dy ,(X,Y) =0;

ii) for any X € Dy, all the eigenvalues of AX have zero real part.

Then the flow, induced on the compact manifold G/H by the D-geodesic flow
on D1, is partially hyperbolic.

The case of semi-simple Lie groups enable us to obtain a series of more
explicit examples because one can use the classical Cartan decomposition for
the corresponding Lie algebras.

Let us recall the following definitions and results (see [35]):

1. Let g be a Lie algebra. Then 6 € Aut(g) is an involution if §2 = 1.
2. If g is a real semi-simple Lie algebra, then an involution # on g is called
a Cartan Involution if the symmetric bilinear form

ke(X,Y) = —k(X,0Y)

is positive definite, where x is the so called Killing form of g.

3. Every real semi-simple Lie algebra has a Cartan involution. Moreover any
two Cartan involutions are conjugate via Int(g).

4. Any Cartan involution yields a decomposition on g; let

£= {X € gl 6(X) = X},

p={Xeg 0(X)=—-X},

then g = ¢ @ p (Cartan decomposition).
5. The following properties hold:

eHce  [Bplce [l CE
ko(t,p) = k(€,p) =0,
ke is negative definite, k|, is positive definite.

On a semi-simple Lie group G with Lie algebra g, let us consider the left
invariant distribution defined by D, = p and an arbitrary metric such that
p and £ are orthogonal, that is, such that D> = €. In this case we will have,
as a consequence of the properties of the Cartan decomposition, that most
of hypotheses of Theorem 7.1.3 are automatically satisfied. In fact, using the
notations above, we have that:

(Ve &5,6) = 5 ({6 651,60 + (1660, 65) + {I6 61,60) =0,

(Ve &) = % (€ &), &) + ([&5: €l &) + ([, 6], 60)) = 0,

for any 7,5, €1,...n ,u,v €n+1,....m.
It can be proved that:
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Proposition 7.1.5. Under the definitions above, the distribution D is a DC-
distribution, B+* = 0 and a;(t) = 0 for all t.

Remark 7.1.6. Using Cartan decomposition, D, = p and an arbitrary metric
such that D} = ¢, the curvature tensor is given by:

R(X,Y,X,Y) =

:_%mmxmmﬂw+mﬂxymm—quuxym,

for all X,Y € D. Also, in the case of matrices with trace metric:
(X,Y) = Trace (XY7T),

we have

R(XY.XY) = S(X, VL IX.Y)

for all X,Y € D. The symmetric part of B satisfies B®* =0 and

K(X,Y)+2(B*X,Y)B(X,Y)) = —(X,Y],[X,Y])

for all XY € Dy, where B® is the skew-symmetric part of B. Finally, if there
exists a basis &1, ..., &, of D, such that {[;,&;]i<;} is a linearly independent
set, then it follows that

K(X,Y)+2(B“X,Y),B(X,Y)) <0

for all X,Y € Dy, X L Y. In particular, for a connected semi-simple Lie
group of matrices, with D, = p, dimD, = 2 and endowed with a metric
which is a positive multiple of the trace metric, D2 = €, then all conditions
of Theorem 7.1.3 are fulfilled if we consider M as the (compact) quotient of
the group G by a (discrete) uniform subgroup.

Proposition 7.1.5 and Remark 7.1.6 show that distributions generated by
the Cartan decomposition of a semi-simple Lie algebra of matrices provide
examples for Theorems 7.1.3 and 7.1.4. In codimension 1 we mention, ex-
plicitly, SL(2,R) and the connected subgroup of SL(3,R) with Lie algebra
spanned by

010
& =1100
000

001
000
100

000
&=1001
0-10

3
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Remark 7.1.7. Tt is interesting to observe that if G = SL(n,R) and the met-
ric is given by the trace, it occurs a left action of the compact group SO(n) on
SL(n,R), and, moreover, SO(n) leaves invariant the metric and the distribu-
tion. Then, SO(n) provides a momentum map (see [47]) for the D-geodesic
flow. When n = 2 the final reduced system is Anosov, and can be identi-
fied with the geodesic flow of a compact surface of negative curvature; that
compact manifold is diffeomorphic to the quotient SO(2)\SL(2,R)/H.

In codimension greater than one, we deal with the family of semi-simple
Lie groups SO(n,1) (see [35]), whose Lie algebra is so(n,1) = {X € gl(n +

1)/ X1+ 1,1 X = 0}, where I,,; = <_OI" (1)

, I, the n-dimensional identity
matrix.

Thus, if we consider the Cartan decomposition so(n,1) = D, ® Dt , we
have D, = q?tg ,v€ M(nx1)and D} = )0(8
to see that the condition in Remark 7.1.6 is fulfilled, which proves that the
family SO(n,1) , n € N, with the trace metric, provides a class of examples
for Theorems 7.1.3 and 7.1.4 if M is the (compact) quotient of SO(n,1) by
a (discrete) uniform subgroup.

In [28], Gouda regarded a magnetic field as a closed 2-form-B on a Rie-
mannian manifold M and defined a magnetic flow which is, in fact, a per-
turbation of a geodesic flow. A sufficient condition is presented there for a
magnetic flow to become an Anosov flow (see [28], Theorem 7.2). The second
order differential system considered in [28] is a holonomic mechanical system;
the closed 2-form B on M defines the Lorentz field of forces:

) , X € so(n). It is easy

Q:TM — T*M,

by 2(v,)(w,) = Bp(w,,v,) for all vy, w, € T,M. The generalized Newton
law (see Chapter 5, section 5.1) defines, for that field of forces, the second
order mechanical system introduced by Gouda:

Dq
s 0 YO YO0
1 ( dt) (4),
where p: TM — T*M is the Legendre transformation (mass operator).
It is our understanding that many interesting questions, especially in the

above non-holonomic context, can be analyzed trying to obtain more exam-
ples giving rise to other kinds of complex and hyperbolic dynamics.

7.2 Vakonomic mechanics

Non-holonomic mechanics has two fundamental approaches for its develop-
ment. One is based in the D’Alembert principle for which we gave the foun-
dations in Chapter 6. It is well known that D’Alembert approach, for (true)
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non-holonomic mechanics, does not have a parallel within the so called vari-
ational principles.

In [6], Arnold, Kozlov and Neishtadt introduced non-holonomic Mechanics
under the Lagrange variational point of view for constrained systems; then
it appeared the so-called Vakonomic Mechanics. Vershic and Gershkovich
also developed that approach including in the survey [60] many of the recent
contributions that appeared in this field of geometric mechanics.

In the paper [39] on non-holonomic mechanics the authors put in evi-
dence the main differences between the D’Alembertian and the vakonomic
approaches. In both cases there is a configuration space represented by
a connected C'*° Riemannian manifold (M",g) and a (non holonomic)
constraint defined by a smooth (not necessarily integrable) distribution
D C TM with constant rank m, 0 < m < n. The metric g, also de-
noted by (, ), defines the Levi-Civita connection and the kinetic energy
K : TM — R given by K(£) = 3(¢,€), € € TM; the potential energy
is a smooth function V' : M — R that will define the conservative field
of external forces. In D’Alembertian non holonomic mechanics the trajecto-
ries satisfy the so called D’Alembert principle that states (see [12], [26],
[48], [11], [36]): the difference between the acceleration of the trajectory
q = q(t) and the external force (—grad V')(q(t)) is orthogonal to D, for all
t € [ag, a1] (here grad V is defined by dV (-) = (grad V,-)). As we will see in
the sequel, vakonomic mechanics deals with the Hilbert manifold structures
of some special sets called D-spaces, mainly H'(M,D, [ag, a1],mg) (resp.
HY(M, D, [ag,a1],mo,m1)) that is, with the set of all absolutely continuous
curves q : [ag,a;] — M, compatible with D such that g(ag) = mg € M
(resp. g(ag) = mo, ¢(a1) = my € M), and it is also considered the corre-
sponding evaluation map evy : H*(M, D, [ag, a1],mo) — M, evi(q) = q(a1).
The regular and critical points of the smooth map ev; lying in evy ' (m;) =
HY(M, D, [ag,a1],mg, m1) are called regular and singular curves, respec-
tively, associated to the value my of evy. The singular curves are characterized
properly and it is remarkable that they do not depend on the Riemannian
metric g but only on D.

The variational non holonomic (vakonomic) mechanics works with trajec-
tories that are determined by a variational approach; in fact each vakonomic
trajectory corresponding to the data (M, K,D,V) is an stationary point of
a Lagrangian functional £ given by

£l = [ |Gl = Vo) ar

L is defined on the Hilbert manifold H(M, [ag,a1]) and restricted to
Hl(M,’D7 [aOa al]amo,ml)

where g(ag) = mg, g(a1) = mq. The regular stationary points of £ are the
vakonomic trajectories and correspond to presentations already consid-
ered, recently, in the literature (see [6], [60], [11] and [63]). The second order
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ordinary differential equation for the regular vakonomic trajectories defines
a flow of a Hamiltonian vector field on the manifold TM = D x; D+, so
the solutions of that vector field are, then, of the type (¢(t), P(t)) where
§(t) € Dy and P(t) € D;-(t) , for all t € [ag,a1], ¢ = q(t) being a regu-
lar vakonomic trajectory. Locally, the components of P(t) correspond to the
classical Lagrange multipliers. For a sake of notation we have the direct sum
decomposition TM = D@D~ and Pp, Pp. denote the associated orthogonal
projections on D, D+, respectively.

For the sake of motivation and completeness we would like to mention
that if we restrict ourselves to a free dynamics i.e, if the potential energy
function V is zero, the non holonomic mechanics is related with some ge-
ometric studies and concepts: d’Alembertian mechanics with the so called
D-geodesic flows and vakonomic mechanics with sub-Riemannian geometry.
For an exposition on sub-Riemannian geometry and its relation with other
domains of mathematics, see [37]; for a survey on singular curves see [51]. We
remark that some of the definitions and techniques already mentioned can be
extended to more general Lagrangian functionals and also to affine and non
linear constraints (see [6], [48], [36], [60], [11], [63]).

Since Mechanics is not just an abstract mathematical theory but is rele-
vant to many practical problems, it is appropriate to ask the following ques-
tion: does the nature follow D’Alembert or vakonomic mechanics? Lewis and
Murray have performed careful experiments to address this question. They
present their results in [41] and show that with the addition of friction terms
to the D’Alembertian (non-holonomic in their terminology) model, there is
a reasonable agreement between the experimental data and theoretical com-
putations.

7.2.1 Some Hilbert manifolds

H (M) will denote the space of all curves ¢ : J — M, J an interval, which
are absolutely continuous and the function ¢t € J — K (%(t)) is locally
integrable.

For ag,a; € R, ag < ay, let H*(M, [ag,a1]) denote the subset of H(M)
of all curves q : [ag,a1] — M contained in H(M). Given mg,m; € M,
HY(M, [ag,a1],mo) (resp. HY(M, [ag, a1],mg,m1)) is defined as the subset of
H' (M, lag, a1]) of all ¢ such that g(ag) = mo (resp. g(ao) = mo, g(a1) = m1).
Clearly

H'(M, [ag, a1],mo,m1) C H' (M, [ag, a1],mq) -

It is well known that H'(M, [ag,a1]) is a Hilbert manifold and the subsets
HY(M, [ag,a1],mo) , HY(M, [ag,a1],mg,m1) are submanifolds of it. If ¢ €
H'(M,[ag,a1]), the tangent space T,H'(M,[ag,a1]) to H'(M,[ag,a1]) at
q is the space of all H' sections 1 of the vector bundle ¢*TM — [ag,a1]
where ¢*TM is the pull back of the tangent bundle wyy, : TM — M by
q. This corresponds to the set of all H! curves n : [ag,a;] — TM such



136 7 Hyperbolicity and Anosov systems. Vakonomic mechanics

that 77 o = q. If ¢ € H' (M, [ag, a1],mo) (vesp. H' (M, [ag, a1],m0, m1)),
then T, H' (M, [ag, a1],mo) (vesp. T,H'(M, [ao,a1],mo,m1)) is the subspace
of all n € T,H' (M, [ag,a1]) such that 1(ag) = Oy(aq) (resp. 7(a0) = Og(ao)s
n(a1) = Og(ay)). Here Oy, for m € M, is the zero of the space T,,M. The
manifold H!(M, [ag,a;]) is endowed with the Riemannian metric G: if n €
Tqu(Mv [ao, a1]), then G(n) = f;; g(n(t))dt.

7.2.2 Lagrangian functionals and D-spaces

The Lagrangian function L : TM — R defines a Lagrangian functional
L : HY(M,[ag,a1]) — R by the expression L(q) = f:ol L (%) dt. Remark
that £ is smooth.

Let us define the subset H'(M, D, [ag, a1])of H(M, [ag,a1])as:
24
dt

T
{q € H'(M,lag,a1]) | = (t) € Dy for almost all ¢ € [ao,al]} .

We define also:

Hl(Mv Da [a07a1]7m0) = Hl(M7 [a07a1]7m0) N Hl(Mapa [a07a1D )
H1<M7 Da [a07a1]5m07m1) = HI(M7 [a()aal]am()?ml) N Hl(M;Da [a0>a1]) .

Finally if ¢ € H*(M, [ag,a1]) we introduce H'D, ([ao, a1])given by

{n e T,H" (M, ao,a1],q(ao),q(a1)) | n(t) € Dy for all t € [ag,a1]} .

7.3 D’Alembert versus vakonomics

We start with the definitions of D’Alembertian and vakonomic trajectories
and after that we make a comparison between them.

A curve g € HY(M, D, [ag, a1]) is called a D’ Alembertian trajectory of
the mechanical system with constraints (M, K, D, V) if the differential d£(q)
of £ at ¢ annihilates the subspace

H'D, ([ag, a1]) € T,H' (M, [ag, a1], q(ao), q(ax)).

Let ¢ € H'(M,D,[ag,a1]); then ¢ is called a vakonomic trajectory of
the mechanical system with constraints (M, K,D,V) if ¢ is a stationary
point for the restriction of £ to the subset H(M, D, [ag,a1],q(ao),q(a1))
of HY(M, [ag,a1],q(ag),q(a1)). Note that this means:

for any C! curve \ €] — ¢, e[~ Qx € HY (M, [ag, a1], q(ao), q(a1)), € > 0, such
that

1. Qo =g, and
2. QA S Hl(M7D7 [a07a'1]aQ(a0)7q<a‘l))a
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then % (E(QA)) |)\:0 =0.

As we will see below, it may happen that H*(M, D, [ag, a1], q(ao), q(a1)) is
not a submanifold of H'(M, [ag,a1],q(ao),q(a1)). But if q is a smooth point
of HY(M, D, [ag,a1], q(ao), g(a1)) then T,H' (M, D, [ag, a1], q(ao), q(a1)), tan-
gent space of H! (Mv Dv [a()v al}v Q(G“O)v q(al)) at g is not Hqu ([a()v al]) un-
less D is integrable. In that case H'(M,D, [ag,a1],q(ag),q(ar)) is always
a submanifold and for any ¢ € HY(M,D,[ag,a1],mg,m1) we have that
Tqu(M, D, [ao, al], mo, ml) = Hlpq ([ao, al]).

7.4 Study of the D—spaces

In order to characterize the non-holonomic trajectories, we need a few facts
about the Hilbert manifolds associated to distributions that we already called
the D-spaces.

7.4.1 The tangent spaces of H!(M, D, [ao, a1], mo)

For the determination of the tangent structure to Hl(M, D, lag, a1], mg) we
need an explicit determination of it as a submanifold of H*(M, [ag,a1],mo).
To do this the most convenient way is to embed the Riemannian manifold
(M, g) isometrically into (RN, || ||) where || |2 = I~ dz2. This is possible
with a suitable N, by the Nash—-Moser embedding theorem. For simplicity
of notation we may assume M C RY and, in this case, TM, D and D+ are
subsets of M x RY. Let E be the normal bundle over M, that is, the union
E = UpenTiM C M x RN where T:- M is the subset of RY orthogonal
to Ty, M with respect to the Riemannian manifold (R¥,|| ||). So we have the
direct sum T}, M ® T--M = RY for each m € M, and dim E = N. Take now
a tubular neighborhood (T, f) of M in RY (see section 3.3) that means a
smooth diffeomorphism f : T"— {2 from a open neighborhood T of the zero
section in E onto an open set 2 in RY, 2 D M, such that f(0,,) = m for
any zero vector 0,, € E, m € M. If 7 : M x RV — M is the first projection,
the map p = (7|E)o f~1: 2 — M is a projection (p? = p); the pair (§2,p)
also represents the tubular neighborhood of M in RY™. The set £ is called
the tube in RN and T is said to be a tube in E; they play the same role and
can be identified by the diffeomorphism f. The open set 2, M C £2 C RY,
can be endowed with a distribution D where f)y, y € {2, is obtained from

Dy(y) C TpyyM by translation (in RY). One can also define on {2 another
distribution D+ such that DL C R¥ is the orthogonal complement to D with
respect to (RN, || |), that is, D, @ ’D;- RY. Denote by P(y) : RN — D;-

the orthogonal projection. It is clear that 75|M = D and that D*NTM = DL.
Given qo € H(£2,[ag,a1],mq), the compactness of qo([ag,a;]) implies that
there exists a number r > 0 such that if ¢ € [ag,a;1] and = € 2 are such
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that ||go(t) — =|| < r, then the restriction of P(go(t)) to DL < RV induces
an isomorphism DY — Dl( »- Let us denote by H'L2(D*, [ag, a1], mo) the

space of all equivalent classes of curves (q,2) : [ag,a1] — DL such that
q : lag,a1] — .Q belongb to H($2,[ag,a1],mp), and that ¢ € [ag,a1] —
lz(t)]], 2(t) € (t) C RN, is in L? (we also set that z € L*(Dy, [ag,a1])).

Consider U ¢ H'L?(D*, [ag, a1],mo) as the subset of all classes (¢, z) such
that ||q(t) — qo(t)]] < r for all ¢ € [ag, a1]. Define

v:U— Hl(RN, [ao,al],O) X L2(Dq0, [(10,(11])

s: Py(q,2) = (¢',7') where ¢ = ¢ — qo and for a.e t € [ap,a1], 2'(t) =
P(qo(t))2(t) € Dyyry (s0 2" € L*(DL, [ag,a1])). Clearly the image of Oy

in the Hilbert space H'(RY [ag,a1],0) x LQ(D(%, [ap,a1]) is an open sub-
set and the &y provide an atlas of charts of the manifold structure on

H'IL2(D*, [ag, a1], mo). Define a mapping
IT: HY (12, ]ag, a1],mo) — H'L*(D*, [ag, a1], mo)

as follows: if ¢ € H($2,]ag,a1],mo), II(q) is the equivalence class of

(q,P(q)%) where z = P(q)% is the equivalence class of the curve t €

[ag,a1] — z(t) = P(q(t))dqd—(tt). One can see that H{(Q,f), [ag, a1], mo) =
II=Y(Z) where Z is the “zero section”; Z C H'L?(D*,[ag,a1],mg) is the

manifold defined as
Z = {(anq) HAS Hl(Q7 [ao, a1], mo), OQ(t) = OQ(t)}

where 0g4(;) is the zero of @;-(t). For simplicity we set as jlq the equivalence
class of (¢, P(q) %). Again let g0 € H'($2, [ag, a1],mp) and let

Ty IT = Ty H(£2, [ag, a1], mo) — Tjig HL? (D, [ag, a1], mo)

J 490

be the tangent mapping of II at go. The local chart (U, @y ) identifies the
vector space Tji,, H'L?(D4, [ag, a1], mo) with the Hilbert space

HY(RY, [ag,a1],0) x L*(D*, [ag, a1]).

Let
Vz]o : TQOHl(Qv [a07 al]vmo) - LQ(,DL7 [a07a1])

be the composition of Ty, II with the canonical projection. Let us compute
Voo (x) for x € T, H' (Q [ao,al] ) take a C! curve A €] — ¢,¢[— Qy €
H'(£2,]ag, a1],mo), Qo = qo and T3 N o = X € Too H' (92, [ag, a1],m0) =
HY(RY [ag, a1],mp). Then

dqo

Voo (X) = P(qo)d—+dp( q0)[X] -

dt
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Cauchy’s theorem tells us that given n € L2(Dy,, [ao, a1],mo) there exists a
x such that

d d
Plao) 5 + dP(qo0) x| = =

and x(ag) = 0; then V,, is surjective. Let, qo € Hl(Q,ﬁ, [ag, a1],mo).
Then II(qp) € Z. But it is easy to see that the space normal to Z at
II(qo) is L*(Dy;, [ag, a1]) in the identification of Tji, H'L?(Dy: , [ao, a1], mq)

J 90 q0’
with H'(R™, [ao, a1],0) x L*(Dy;, [ao, a1]). Hence IT is transversal to Z. This
shows, since mg € M, that

Hl(Qvﬁv [a()val]amo) = HI(M;,[)\Mv [G'Oa al]vmo)
is a submanifold of H'($2, [ag, a1],mo) (see Remark 7.4.2). If
@ € H' (M, D, [ag, a1],mo) = H'(2,D, [ao, a1], mo)

and if A €] — ¢,e[— Qx € H'(2,D,[ag,a1],mp) is a C curve such that
Qo = o and TT?\Ah:o = X, then P(go)%X = Pp.V,x and dP(qo)[x] %L =

—Bp(x, %), where as set, Pp.1 is the orthogonal projection from the tangent
bundle TM of M onto the subbundle D+ = DL N TM. Hence we get that

T, H (M, D, [ag, a1],mo) = Ty H' (2, D, [ag, a1], mo).

Proposition 7.4.1. The D-space H*(M, D, [ag, a1],mo) is a submanifold of
HY (M, [ag,a1],mo) and the tangent space Ty, H*(M, D, [ag, a1],mo) at qo €
HY(M,D,[ag,a1],mo) is the set of all J € Ty, H*(M, [ag,a1],mq) (which is
isomorphic to the H' sections of the pull back ¢*TM of TM by qo) such that

Pp.VJ = Bp(J, L.

Remark 7.4.2. Let 2 be an open subset of RY | endowed with a distribution
D with constant rank m. Let M C 2 be a closed submanifold such that for
any point y € M, f)y C TyM. Thenifq € HY(2,D,[ag, a1],m¢) and mg € M,
q has values on M. It is clear that H(M, ﬁm, [ag, a1],mp) is contained in
HY(2,D, [ag, a1], mo), so H (M, ﬁle [ag,a1],mo) = H(2,D,[ag, a1],mo).
Let Tas = {t € [ao,a1] : q(t) € M}. Since M is closed and ¢ is continuous,
Ty is closed in [ag,a1]. T contains ag since g(ag) = mo € M. Assume
that Thy # [ao,a1]. Let ¢ = inf {t € [ap,a1] : t & Tps},a0 < t < aj. We
can choose a (curvilinear) chart of RN, (O, 21,..., T, Y1y -+ Yss 21, - - -5 2u)
where m = rank D, m 4+ s = n = dim M, such that:

i) q(t) € O, zi(q(t)) = 0, y;(q(t)) = 0, 2x(q(t)) =0, 1<i<m,1<j<
5, 1<k <u,;

i) MNO={z=---=2,=0}

iii) Doy = {dy1 =+ = dys = dz1 = -+ = dz, = 0}.

Restricting O, if necessary, we can assume that D= {dy = Adz,dz = Bdz},
where A : O — Mat (s x m) and B : O — Mat (u X m) are two smooth
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matrix valued functions. The fact that @y C TyM for all y € M can be
expressed as B(x,y,0) = 0 for all (z,y,0) € O. Restricting O again, there
exist smooth matrix valued functions By : O — Mat (u x m) such that

B = Z 2By Let @ be a closed ball centered at q(¢) of positive radius, such
k=1

that @ C O. There exists ¢ > 0 such that ¢(t) € Q if t € [t — €, + €.

Let £(t) = (q(t))7 n(t) = y(q(t)) and z(t) = n(t) for t € [t — €, + ¢|. Then if

telf—ei+d, 2(t) = [/ {zk L 2 (T)Br(E(r), n(7), 2(7)) L2 dr. (Since Ty

is closed, t € TM and z(t) = 0). Since Q is compact, there exists a constant

C > 0 such that || Br(p) v|. < %Hv”m foralll1 <k <u,peQ,velR™

here || || (resp. || ||lm) means the Euclidean norm in R* (resp. R™). Hence
on [t — €g,t + €g] we have
] dr

<e|f [nz(r) d(:)nm} df\.

- 1
t+eo
€ = min 60’411<C2_/ dg()||2 )
t

and take p = sup {||z(t)||w, t <t <+ €}. Therefore for all t € [{, ¢+ €]:

e )\
2(t)]le < Cuve (/t ||?H72n dT) < 5

and so we get p < 5. Hence p = 0 and ¢(t) € M for all ¢ € [t, + ¢]. This
contradicts the definition of .

)

128l < [ ZI

Let

7.4.2 The D-space H'(M, D, [ag, a1], Mg, m1). Singular curves

As we already said, H'(M, D, [ag, a1],mg, m1) is the subset of all curves g €
HY(M, D, [ag, a1], mo) such that g(a;) = m; and

evy : HY (M, D, [ag, a1],mg) — M
is the smooth map given by ev;(q) = g(a1). It is clear that
evfl(ml) = Hl (M7 D7 [a07 al]a my, ml)a

so HY (M, D, [ag, a1], mg,m1) is closed in H(M, D, [ag, a1],mo) and we want
to study when evy !(m;) is a smooth submanifold of H'(M,D, [ag, a1],mg).
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For a given qo € H*(D, [ao, a1], mg, m1), qo is a regular point of ev; (which
implies that ev; 1(m1) will be a submanifold in an open neighborhood of ¢g
in H'(D, [ag,a1],mo)) if, and only if, the derivative of ev; at qo, Ty ev: :
T, H' (M, D, [ag, a1],mg) — Tyo(ar)M, is a surjection. If go is not regular it is
called a critical point of ev; and we say often that ¢ is a singular curve
(see Remark 7.4.4, below). Then Ty ev; is not a surjection if, and only if,
there exists a vector w # 0 in Ty (q,)M = T,n, M such that (J(a1),w) =0
for all J € T, H'(M,D,[ag,a1],mp). In order to analyze this condition we
need some notation: J = J' +J", J' = Pp.J, J’ = PpJ; for Y € D,,, let
us denote by Bp(Y) : T;,M — D;- the operator Bp(Y)X = Bp(X,Y) and
B5(Y) : Dt — T,,,M the adjoint of Bp(Y') with respect to (,), that is, for
any P € Dt and any X € T,,,M, we have (B5(Y)P,X) = (P, Bp(Y)X).
Call B*' = Pp. B}, B*" = PpBj. We also have w = v’ + w”, w' € D;;,
and w” € D,,, . Let P be the vector field along qo € H'(M, D, [ag, a1],mo)
with values on D+, solution of the Cauchy problem :

Pp.ViP +B*(§)P =0, P(ay)=w'

Then
(J(ar),w') = (J(a1), P(ay)) = /: [(Vid, P) + (J,V,P)] dt.
But
(Ve P) = (Pp.(ViJ), P) = (Bp(J,do), P) = {J,Bp(do) P)
and, so,

(J(ar), P(ar)) = / (J.V.P + Bp(do) Pt
:/ (J", PpVP + B3 (o) P)dt,
ao

where ¢y = %. Since
0= (J(a1),w) = (J(a1),w" +w") = (J(a1), P(ar)) + (J"(a1),w"),

we have, for all J € T,  H(M, D, [ag, a1],mo):

ay
0= (J"(ay),w") + / (J", PpV,P + B*"(4o) P)dt. (7.1)
ag
But, the J € T, H'(M,D,ag,a1],mo) are characterized by J(ag) = 0,
Pp.ViJ = Bp(J,qo) and this last equation can be written as

Pp.ViJ" — Bp(go)J' + PpiViJ” — Bp(do)J" =0
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that shows that J” can be chosen arbitrarily such that J"”(ag) = 0 and J' is
then solution of a Cauchy problem. Condition (7.1) above shows that

w” =0 and PpV,P+ B*(4)P=0.
Finally, P is a vector field along gy with values on D+ such that
P(a1) =w'" and VP + Bx(¢o)P =0.

Conversely, if for a non zero P, then for all J € T,  H'(M, D, [ag, a1], mg) one
has (J(a1), P(a1)) = 0. Then T, ev; is not a surjection. One can state:

Proposition 7.4.3. A curve qo € HY(M,D, lag,a1],mg,m1) is a critical
point of the evaluation map evy if, and only if, there exists a non zero vector
field P along qo with values on D+ such that VP + B(do)P = 0.

Remark 7.4.4. The curves defined in Proposition 7.4.3 as critical points of
the evaluation map ev; are the so called singular curves (see [51]). One can
show that they do not depend on the metric ¢ = (, ) but only on D. To
see this let us introduce the subbundle D° of the cotangent bundle 7™M,
annihilator of D: for m € M, DY = {z € T M : z(v) = Ofor all v € D,,}.
D is a submanifold of T*M of dimension 2n — m where m is the rank of
D. For each z € DY, let K. denote the subspace of the tangent space T,D°
of DV at z defined as the kernel of wy(2), wo being the canonical symplectic
2-form on T*M: p € K, if for every u € T,D° one has wo(z2)(p,u) = 0. A
curve ¢ € HY(M, D, |ag,a1],mg, my) is singular (that is ¢ is a critical point
of ev) if, and only if, there exists a curve z : [ag,a1] — D°, ¢ = 7p-pr 0 2,

such that for a.e t € [ag, a1], ngt) € K.

7.5 Equations of motion in vakonomic mechanics

Let gg be a vakonomic trajectory of a mechanical system with non holonomic
constraints (M, K, D, V). Assume that the curve gq is a regular point of ev; in
H(M, D, [ag, a1], mg,m1). Then in [39] one can see the proof of the following
result (see also [60]):

Proposition 7.5.1. A regular curve qo € H'(M, D, [ag,a1],mo,m1) is a
vakonomic trajectory provided that there is a field P € HY(M, D, [ag, a1])
such that

Vigo — VP — BL(4o)P + grad V o gqo = 0. (7.1)

Moreover P is unique.

Remark 7.5.2. One can see, from the last Proposition 7.5.1, that equation
(7.1) induces on TM = D x; D+ a flow whose trajectories are of the type
(¢(t), P(t)). As we see the motions satisfying (7.1) that start at (¢(0), P(0)) €
D x p; D+ will be compatible with D (in the sense that (t) € Dy for all t)

and also P(t) € Dql(t) for all .
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The next result states that the above flow on D x,; D~ is, in fact, the
flow of a Hamiltonian vector field.

Proposition 7.5.3. The equation Vi §+gradVoq=V,P+B%(q)P defines
on T*M a Hamiltonian vector field of Hamiltonian function H : T*M — R,
given by

H(a) =V (rrpa) + %sup {a(v)2/<v,v> veD— {0}} , Voo e T* M.

Proof: Tt is enough to consider the vector field Xy defined on TM =D X,
DL by equation (7.1) and show that wo(p.Xv,-) = dH(-) where wy is the
canonical symplectic form of T*M and p : TM — T* M is the diffeomorphism
given by u(v)(:) = (v,-), for all v € TM. L]

As we saw, the (global) second order ordinary differential equation for
regular vakonomic trajectories defines a flow of a Hamiltonian vector field on
the tangent bundle considered as the Whitney sum D @ D+, on the configu-
ration space. The solutions of that vector-field are, then, of type (¢(t), P(t))
where G(t) € Dy and P(t) € Dql(t), q = q(t) being a regular vakonomic
trajectory. The component ¢(t) is compatible with the distribution induced
by D, but the bundle D is not invariant under the flow; the component
P(t) gives, locally, the classical Lagrange multipliers.

It is particularly interesting, to analyze the hyperbolic and all the ergodic
aspects of vakonomic flows; some of them, already appear in [60] and this
investigation still remains as a very nice field of research.

After concluding this chapter, I had a chance to look at a book edited by
J. Baillieul and J.C. Willems (see [7]) called “Mathematical Control Theory”
dedicated to Roger W. Brockett on the occasion of his 60th birthday. The
book, written by some of his former students and close collaborators, contains,
specially in chapters 5, 7 and 8, a large amount of information and research,
very much related with the present chapter. Its setting is more Control Theory
while most of my book has been written in the spirit of Newtonian Mechanics.
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As we already said in Chapter 4, the first difficulty that arises in Newtonian
mechanics is the fact that no material object has been observed traveling
faster than the speed c of the light in a vacuum. The way to eliminate that
is to consider the tangent vector (1,&(t)) to the particle’s world line (¢, a(t))
in (R x R3) (relatively to an inertial coordinate system), and compare |é(t)]
with c. Since one needs to obtain |&(t)| < c, it is enough to observe that
the tangent directions of pulses of light, always at constant speed c, define a
circular cone at each point of R x R3, with vertex in that point, semi-angle
p equal to arctanc and axis parallel to the time axis R; then we require
the motion «(t) be such that, for each ¢, the vector (1,&(t)) is inside the
corresponding cone at the point (¢, «(t)) of the world line.

In the context of pseudo-Riemannian geometry, the idea is to change the
sign in the time coordinate of the metric tensor on R x R3; with this idea one
constructs some special quadratic cones to argue with, as above. As we will
see, this is a starting point to introduce special relativity.

From now on we will assume that units were chosen so that the funda-
mental constant, the speed of light, is unity, that is, we shall assume ¢ = 1,
so ¢ = m/4.

This Chapter 8 has its presentation based in part on chapter 5. and 6. of
the book [53] ”Semi-Riemannian Geometry - with applications to Relativity”
by B. O’Neill, Academic Press, 1983.

8.1 Lorentz manifolds

Let (@, {,)) be a pseudo-Riemannian manifold. The index of (,) at p € @
is the largest integer which is the dimension of a subspace W C T,Q) such
that the restriction of the quadratic form (, ), to W is negative definite. Since
Q is supposed to be connected and the bilinear form (u,,v,) is symmetric
and non degenerate, the index is constant with respect to p € Q. So, one
can talk about the index v of (@, (,)). We have 0 < v < n = dim @ and it
is clear that v = 0, if, and only if, (,) is a Riemannian metric. If we fix an
orthonormal basis (e1,...,e,) for T,Q (with respect to (,)), for each vector
Vp = Y or, Vi€; one can write v, = >, £;(vp, €;)e; where ; = (e;,¢;) = +1
or —1. The number of ¢; equal to —1 is the index v.

W.M. Oliva: LNM 1798, pp. 145-163, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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Fig. 8.1. Light cone.

Example 8.1.1. Q = R?, (v,w) = vjw; — vawsy for v = (v1,v2),w = (W, ws).
In this case v = 1.

Example 8.1.2. Q = R"™! and (,) is such that v = (vq,...,v,41) implies
(v, 0) = —(VF + ...+ VD) + vl . R (8.1)

In this case the index of (R"*1,(,)) is equal to v and the pseudo-Riemannian
manifold (R"*1,(,)) is simply denoted by R?*1.

Definition 8.1.3. A Lorentz manifold is a pseudo-Riemannian manifold
with index v = 1. The Lorentz manifold R} is called the Minkowski n-
space.

Let (@, (,)) be a Lorentz manifold. There are three categories of tangent
vectors:

Definition 8.1.4. A vector v € T,Q is said to be

(1) spacelike if (v,v) >0 or v =0;
(#) lightlike or null if (v,v) =0 and v # 0;
(#1) timelike if (v,v) < 0.

The set of null vectors in T,Q is called the null cone at p € Q.

Proposition 8.1.5. Let V be the Levi-Civita connection associated to (,) in
the Lorentz manifold (Q, (,)). Then, the tangent vectors to a geodesic of V
belong always to one and the same category.
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Proof: If t — q(t) is a geodesic and % is the covariant derivative associated
to V one obtains:

d, . . . Dq Dg
—_— = 2 — ) = 3 —0-
dt <qa Q> <Qa dt > 0, because i 0,

s0, (G(t),q(t)) does not depend on t. n

Exercise 8.1.6. The last proposition is not true for a general smooth curve
on @; show this with a counter-example.

8.2 The quadratic map of R}
The quadratic form ¢ on R defined with (,) and v = 1 in (8.1) is given by
q(u) = (u,u) = —uf +ud +...+ud,y, u=(ur...unq1) €R™ (8.2)

and is called the quadratic map of the Minkowski space R?H. If u =
(u1,...,Upt1), ONE can write: u = Efjlluiei, (e1,...,ent1) being the canon-
ical basis of R**1. So,

n+1

q(u) = Z Gijuil; (8.3)

ij=1
where g;; = (e, €;) = gji-

Proposition 8.2.1. The symmetric matriz (g;;) of the bilinear form (u,v),
associated with the quadratic map (8.2) of R™™ is diagonal with g1 = —1
and g;; = +1,1=2,...,n+ 1.

Proof: In fact, as usually, the formula

(u~+v,u+v) = (u,v) + (v,0) + 2{u,v) (8.4)
gives
(u,v) = %{(u +v,u+v) — (u,u) — (v,v)}. (8.5)
Since by (8.2) we have
(u,u) = (w1, ooy Ung1)s (U1, ooy Unp1)) = —u% + u% +...+ uiﬂ, (8.6)
and because g;; = (e;,e;), we use (8.5) and (8.6) and one completes the
proof. n

The only critical point of the map ¢ in (8.2) (or (8.6)) is the origin in
R"™*1: g0, any real number (except zero) is a regular value of q. The vector
gradient of ¢ at w € R™™! is, by definition, given by
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((grad q)(w),v) = [dg(w)](v), Vv € T, RFT = R, (8.7)
Using (8.2) we see that dg(w) = —2w1duq + 22?;21 w;du;, SO
[dg(w)](v) = —2v1w1 + 2vawa + ... + 2054 1Wp 1. (8.8)
Since (8.7) and (8.8) imply

((grad q)(w),e1) = —2wy, ((grad q)(w),e;) =2w;, i=2,...,n+1,

then
n+1
(grad q)(w) = 2wie1 + 2 Z w;e; = 2w (8.9)
i=2
and

((grad q)(w), (grad q)(w)) = —4w} +4w3 + ...+ 4w? , = 4g(w). (8.10)

Given r > 0 and ¢ = =+1, the number er? is a regular value of ¢; so,

or q~!(er?) is an embedded n-dimensional submanifold of R™*! called a
central hyperquadric. Take w € Q™; by (8.7) and (8.10) we have

q(w) = —wi +wi +...+wi,, =er?

and
dg(w)[(grad q)(w)] = 4g(w) = 4er?.

But the tangent space T,,Q" is the set T,Q" = {v € R""}|[dg(w)]v = 0},
that is, by (8.7), T,,Q" = {v € R"™|{(grad q)(w),v) = 0}.

If one considers an orthogonal basis (v1, ..., v,) of T,Q™ (with respect to
the metric induced on Q™ by (,)), then (3= (grad q)(w),vy,...,v,) is an
orthonormal basis of T,,R"*! = R"*!, Since (8.8) and w € Q™ imply

(grad q)(w) (grad q)(w) 1
( 5 ; o )= gataw) =e,

we have the following result:

Proposition 8.2.2. Let r be a positive number. Then if € = +1, the central
hyperquadric ST (r) = ¢~ (er?) = q~1(r?) is a Lorentz manifold (the Lorentz
sphere). If ¢ = —1, ¢~ (er?) = ¢~ 1(—r?) is a Riemannian manifold.

Proposition 8.2.3. Let o be a nonconstant geodesic of the Lorentz sphere
ST (r). Then:

(i) If « is timelike, o is a parametrization of one branch of a hyperbola
in R

T

(ii) If o is lightlike, o is a straight line, that is, a geodesic of RTT!.

(i4i) If «v is spacelike, o is a periodic parametrization of an ellipse in er“.
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Proof: Let p € ST(r), that is, q(p) = 72, so p is spacelike. Consider a 2-plane
™ C R?‘H through the origin of R®*! and p. Now one considers the restriction
of g, the metric of RT™!, to the plane m. We have three possibilities: (a) g|r
is nondegenerate with index 1. Let (eg, e2) be an orthonormal basis of 7 with
respect to g|m such that e; = 2, so e; is necessarily timelike. A generic point
(aeq + bez) € N SP(r) satisfies 72 = —a? + b%. This implies that =N S7(r)
is a hyperbola in 7 and the branch through p can be parametrized by

a(t) = rsinh(t)e; + rcosh(t)es, t€R;
so,  &(t) =rcosh(t)e; + rsinh(t)es,

and then (d&, &) = —r2 cosh?(t) + 72 sinh?(t) = —r2, that means, « is timelike.
On the other hand é&(¢) = a(t) and from (8.9) we obtain

(1) = 3 (grad q)(a(n),

so, &(t) is orthogonal to S7(r) at the point «(t). Then «(t) is a timelike
geodesic (see 5.4.1) that proves (i). The second possibility is: (b) g|. is positive
definite. In this case we take an orthonormal basis (es, e3) for 7 then a point
aez + bez on m belongs to SP'(r) = {v € Ry |(v,v) = r?} if, and only if,
a®+b? = r?. Thus, the parametrization a(t) = r(cost)es + r(sint)es satisfies
(a(t),a(t)) = r? and « is spacelike. But é@(t) = —a(t) = —igrad a(t),
so «a(t) is a spacelike geodesic of ST (r), that proves (iii). The third and last
possibility is: (c) g|7 is degenerate with a null space of dimension 1. If v # 0 is
a null vector, the pair (p, v) is an orthogonal basis for 7 and ap+bv € 7NST (1)
if, and only if, g(ap + bv) = r? or {ap + bv,ap + bv) = a®r? = r? that gives
a = £1. The set © N ST (r) is the union of two parallel straight lines, one of
them containing p, parametrized by

alt)=p+tv

and such that &(t) = v; so « is lightlike and since &(t) = 0, « is a lightlike
geodesic of ST (r) that proves (ii). Finally, any other geodesic of S7'(r) passing
through p € S7(r) is in one of three classes considered above. In fact, if
B = B(t) is such that 8(0) = p and [(0) is its tangent vector at p, we
construct the 2-plane 7 passing through the origin 0 € R™*! and p, and
also containing the vector B(O); by uniqueness, ((t) is in one of the classes
above. [

The set ¢~1(0) is the union of the null cone N' = ¢~1(0) — {0} with the
origin {0}. In coordinates we have that

q_l(O) ={ue R”+1|u§ = u% —&—...—l—uiﬂ}.

Remark 8.2.4. The null cone A has two connected components and is a sub-
manifold of codimension one of R™*!, because 0 € R is a regular value of ¢
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restricted to R"*! — {0}. A is invariant under multiplication by a real num-
ber A # 0; moreover, it is diffeomorphic to (R — {0}) x S"~! (where S"~! is
a (n — 1)-dimensional sphere) and is not a pseudo-Riemannian manifold (in
fact, any u € N is, at the same time, tangent and orthogonal to A, so the
restriction of (,) to A is degenerate).

8.3 Time-cones and time-orientability of a Lorentz
manifold

We will introduce, in the sequel, the notion of time-orientability of a
Lorentz manifold (@, (,)) of dimension n > 2. Fix a point p € @ and consider
a subspace W C T,,Q. As in the case of vectors, there are three categories of
subspaces:

Definition 8.3.1. (i) W is spacelike if (,)|w is positive definite;
(ii) W is timelike if (,)|w is non degenerate of index 1;
(iii) W is lightlike if (,)|w is degenerate.

Observe that the category of a vector v € T,Q is the category of the
subspace Rv, spanned by v.

Let W+ denote the linear subspace of all vectors v in T,Q such that
(v,u), = 0 for all u € W. It is easy to show that dim W+ =n — dim W and
that W = (W)L, The standard identity

dim W + dim W+ = dim(W N W) + dim(W + W)

implies that W N W+, = {0} if, and only if, W + W' = T,Q and that W is
non degenerate if, and only if, W N W+ = {0}. As a counter-example, take
in R? the subspace W spanned by the vector v = (1,1). Since (v,v) = 0 we
have W N W+ # {0} and then W + W+ # T,Q.

Proposition 8.3.2. If z € T,Q is a timelike vector ((z,z) <0), then 2+ =
{u € T,Q|{u, z) = 0} is a (n — 1)-dimensional spacelike subspace such that
T,Q =Rz a2t

Proof: Since z is a timelike vector, the subspace Rz is a nondegenerate. Then
we only need to check that z* is spacelike. But this follows because the index
of (@, (,)) is equal to 1. "

Corollary 8.3.3. A subspace W C T,Q is spacelike if, and only if, W=
is timelike. Since W = (W)L then W is timelike if, and only if, W= is
spacelike.
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Let us denote by 7 the set of all timelike vectors of T,Q, that is u € 7
means that (u,u) < 0. For a given u € 7, the set

C(u) ={v € 7|{u,v) <0} (8.11)

is called the time cone of T),@Q containing w. It is clear that v € C'(u) implies
Av € C(u) for all A > 0; also C(—u) = —C(u) is the opposite cone to C(u).

Proposition 8.3.4. 7 is the (disjoint) union of C(u) and C(—u).

Proof: In fact v € 7 implies either (u,v) <0 (v e C(u))or (u,v) >0 (ve
C(—u)), because (u,v) = 0 means v € u* and u is spacelike by Proposition
8.3.2, that is, (v,v) > 0 (contradiction). Then 7 C C'(u)UC(—u). Conversely,
v € C(u) UC(—u) means v € T that follows from (8.11). L]

Proposition 8.3.5. Two timelike vectors v, w belong to the same time cone
if, and only if, (v,w) < 0.

Proof: Use Proposition 8.3.2 and write for u € 7:

v = au+ 0, veut

w=bu+w, ®weut.

The time cone being C(u) = C(ﬁ)7 one assumes, for simplicity, that
|u| = 1. But v and w are timelike, and so (v,v) = (a®(u,u) + (9,9)) < 0, or
|v]? = —a?+|v]?, because © is spacelike and u € 7. Then |a| > |9]; analogously,
|b| > |w|. Since (v, w) = —ab+(v,w) and v+, Wt are spacelike (so, for then one
can apply Schwarz inequality), we have |(, w)| < |0]|w| < |ab|. Assume now,
by hypothesis, that v and w are in C'(u); then (v,u) and (w,u) are strictly
negative numbers and that implies ¢ > 0 and b > 0 and by consequence
(v,w)y < 0. Conversely, if (v,w) < 0, the condition (—ab + (v,w)) < 0
implies ab > 0. So if @ > 0 (then b > 0) we have:

(v,u)=—a <0 so wveC(u),
(wyu) ==b<0 so weC(u);

the case a < 0 (and consequently b < 0) gives, analogously: (v,u) = |a| > 0
and (w,u) = |b] > 0 that means w and v belong to C(—u). L]

Corollary 8.3.6. If u,v are timelike vectors then
u € CWw) <= veCu) <= Cu) =Cv).

Moreover, time cones are convex sets.
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Proof: 'We only prove convexity; if v,w are in C'(u) and a > 0, b > 0 with
a® +b? > 0, then ((av + bw),u) <0 or av + bw € C(u). L]

Proposition 8.3.7. Let v,w € 7. Then setting |v| = (—(v,v))?:

(1) (v, w)| > |v|.|w]|, with equality if, and only if, v and w are linearly depen-
dent (backwards Schwarz inequality ).

(11) If v,w belong to the same cone of T,Q, there is a unique ¢ > 0 (the
hyperbolic angle between v and w) such that (v,w) = —|v||w| cosh .

Proof: (i) By Proposition 8.3.2 we have w = av + W, w € v*; and, since w is
timelike we have (w,w) = (a®(v,v) + (w,w)) < 0. Then

(v,w)* = a*(v,0)* = ((w,w) — (@, w)).(v, v)

> (w,w).(v,v) = |w|2.|v|2

(because (w,w) > 0 and (v,v) < 0). The equality holds if, and only if
(w,w) =0 (or w = 0), that means w = av.

(ii) By Proposition 8.3.5 we have (v,w) < 0, hence —(v,w)/|v|.]w| > 1 and
so, by the definition and elementary properties of the hyperbolic cosine one
has the result. [

Corollary 8.3.8. (backwards triangle inequality)
If v and w € T and are in the same time cone, then |v| + |w| < v+ w|, with
equality if, and only if, v and w are linearly dependent.

Proof: Since (v, w) < 0 (see Proposition 8.3.5), backwards Schwarz inequality
gives |v||w| < —(v,w) then

(Il + [w))® = [of* + [w]? + 2Jv]-|w] < —(v +w, v +w) = |[v+w]*.

The equality comes if, and only if, |v|.|w| = —(v,w) = |(v, w)|; then, Propo-
sition 8.3.7 gives the result. n

Remark 8.3.9. 1t is against our Euclidean intuition that a straight line seg-
ment is no longer the shortest route between two points. As we will see, this
result (see Corollary 8.3.8) is fundamental in some applications to relativity
theory.

Remark 8.8.10. In each tangent space T,() of a Lorentz manifold (Q, (,))
there are two time cones (see Corollary 8.3.6) and there is no intrinsic way
to distinguish them. When we choose one we are time orienting 7,Q.

Time orientability of a Lorentz manifold is related with the choice of
a time cone in each tangent space T,@, in a continuous way. So, let C' be a
function on @ that, to each p € Q) assigns a time cone C), in T,,Q); we say that
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C' is smooth if for each p € @ there corresponds a smooth (local) vector field
V defined in a neighborhood U of p such that V;, € C, for each ¢ € U. Such a
smooth function C is said to be a time orientation of Q. If (Q, (,)) admits
a time orientation we say that (@, (,)) is time orientable and if we choose
a specific time orientation we use to say that (Q,(,)) is time oriented.
The Minkowski space R”H is time orientable; the usual time orientation is
the one of a cone containing a corresponding to the natural coordinates
(u1,ug,...,upt1). On the other hand the Lorentz manifold obtained from
R x [0,1] by identifying (¢,0) with (—¢,1) (with the natural metric) is not
time orientable.

Proposition 8.3.11. A Lorentz manifold (Q, (,)) is time orientable if, and
only if, there exists a timelike vector field X € X(Q).

Proof: If X € X(Q) satisfies X,, € 7 C T,Q, one defines the map C by
C, = C(X,), for all ¢ € Q. Conversely, let C' be a time orientation of (Q, (,)).
Since C' is smooth we have a covering of @) by neighborhoods U and in each
one of which there exists a vector field Xy and Cy = C(u) where u is the
value of Xy, at ¢, for all ¢ € U. Now let {f,]a € A} be a differentiable
partition of unity subordinate to the covering of () by the neighborhoods U
(see Proposition 1.7.2). Thus, the support of each f,, is contained in some
element U(«) of that covering. The functions f, are non negative and time
cones are convex sets. Thus X = X' f, Xy(q) is timelike and X, € C; for all

q€ Q. n

Exercise 8.3.12. The Lorentz sphere S7(r) = ¢~ (r?) introduced in Propo-
sition 8.3 is time orientable. Hint: use the projection to ST (r) of 621

8.4 Lorentz geometry notions in special relativity

Let (@, (,)) be a Lorentz manifold and p € Q.

Definition 8.4.1. An element v € T),Q is said to be a causal vector if it
is not spacelike (so, either null or timelike). For a timelike vector (u € T),
the set C(u) of all causal vectors v such that (u,v) < 0 is the causal cone
in T,Q containing u. A causal curve t — «(t) in Q is a smooth curve such
that &(t) is a causal vector, for all t.

Exercise 8.4.2. Show that for vectors in T,,Q of (@, (,)):

(a) Causal vectors v, w are in the same causal cone if and only if either (v, w)
< 0 or v and w are null such that w = av, a > 0.

(b) If u € 7, C(u) = closure of (C(u)) — {0}.

(¢) Causal cones are convex.
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(d) The components of the set of all causal vectors in T,() are the two causal
cones in T,,Q.

Definition 8.4.3. A space-time is a connected time-orientable four-dimen-
sional Lorentz manifold (Q,(,)). A Minkowski space-time @ is a space
time that is isometric to the Minkowski 4-space Rf.

If the space-time (@, (,)) is time oriented, the time orientation is called
the future and its negative is the past. A tangent vector v € T,,Q) in a future
causal cone is said to be future pointing. A causal curve is future pointing
if all its velocity vectors are future pointing.

Definition 8.4.4. Any isometry taking a time oriented space-time (Q,{,))
onto the Minkowski {-space R} and preserves time orientation is called an
inertial coordinate system of (Q,{(,)).

Proposition 8.4.5. Given a basis (eg, €1, e2,e3) in a tangent space T,Q) of
a time oriented space-time (Q, (,)) such that eq is future pointing, then there
is a unique inertial coordinate system & of (Q,(,)) such that 8(2: (p) = ey,
i=0,1,2,3. '

Proof: The existence of the isometry & : Q — R{ is obtained from a normal
coordinate system (see Exercise 3.2.10). The uniqueness of such an isome-
try follows from the fact that two local isometries of a connected pseudo-
Riemannian manifold whose differentials coincide at a single point are neces-
sarily equal. [ ]

As we did in the case of Newtonian mechanics (see Chapter 1) we keep
ourselves, here, calling events the points of the space-time ) and particles
will correspond to parametrized curves. We do not have a canonical time
function as in the case of a Galilean space-time structure but we go on as-
suming the existence of inertial coordinate systems. Particles are defined as
follows:

Definition 8.4.6. A lightlike particle is a future null geodesic of a time
oriented space-time (Q, (,)). A material particle (also called an observer)
is a timelike future pointing smooth curve o : s € I — a(s) € Q such that
o/ (s)| = 1 for all s € I; its image o(l) is the world line of « and the
parameter s is called the proper time of the material particle. A material
particle which is a geodesic is said to be freely falling.

Remark 8.4.7. The world line of a material particle is a one-dimensional sub-
manifold of Q).

Remark 8.4.8. We can think that each material particle has a “clock” in
order to measure its proper time.

Remark 8.4.9. The fact that light moves geodesically is a fundamental hy-
pothesis in Relativity; since in this case (,4) = 0 (see Definition 8.7 above),
the parametrization by proper time is impossible (although one does have an
affine parameter). One says that “it cannot carry a clock”.
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8.5 Minkowski space-time geometry

From 8.4.3 there is an isometry £ between a given Minkowski space-time
(Q,(,)) and R}; it is usual to denote a Minkowski space-time by (Q, (,),&).
At this point it is clear that given two points p,q in @, there is a unique
geodesic « such that a(0) = p and a(1) = g. Also there is a natural linear
isometry identifying 7,Q and T,Q called the distant parallelism and the
exponential map exp,, : T,() — () is an isometry. In fact between the points
£(p) and &(q) of R} there is a unique (straight line) geodesic going from &(p)
to £(gq) and a translation of the affine space R} taking £(p) into £(q). The
manifold (@, (,),&) is viewed from p in the same geometric way as T,Q is
viewed from zero. Also @ is a normal neighborhood of each of its points. The
vector &(0) is called the displacement vector, it satisfies exp, &(0) = ¢ and
it is denoted by pq. One can move the notion of causality from the tangent
spaces of M to M itself. For an event p € ), the future time cone of p is
the set

{g€Q | paeT,Q is time like and future pointing}.
The future light cone of p is the set
{g€Q | paeT,Q is null and future pointing}.

The union of these two sets is the future causal cone of p. Past analogues
are defined similarly. Of course all these notions depend on the isometry £.
From now on one assumes that £ is an inertial coordinate system of (@, (,)),
that is, £ preserves time orientation.

In order to give a clear understanding of the term “causal” used in defini-
tion 8.4 it is usual and natural to say that an event p can influence an event
q if, and only if, there exists a particle from p to ¢ (see definition 8.7). It can
be proved the following;:

Exercise 8.5.1. The only events that can be influenced by event p are those
in its future causal cone. The only events that can influence an event p are
those in its past causal cone.

Definition 8.5.2. For two points p, q in a Minkowski space-time (Q, (,),§),
the square root of the absolute value of (pq,pq) is called the separation
between p and q, and is denoted by pq, that is

pq = |(pa, pa)|/?.

Then if pq is timelike future pointing, pq represents the time from the event
p to event g computed as the proper time of the unique freely falling material
particle from p to g. It is also clear that if pg = 0 the displacement vector pq
is lightlike and there is a lightlike particle going from p to q.
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If three events p, ¢, o belong to a Minkowski space-time (Q, (,),&) and
p,q are in the same time cone of o, then the hyperbolic angle ¢ = poq is, by
definition, the hyperbolic angle between the timelike tangent vectors op and
oq (see 8.3.7 - (ii)).

Proposition 8.5.3. Let p,q € Q in the same time cone of o € Q. Then if
op is orthogonal to pq we have:

(i) (0q)* = (op)* — (pg)?
(i4) (op) = (oq) cosh ¢ and (pq) = (oq) sinh .

Proof: From Proposition 8.3.2 we see that pq is spacelike. Now, moving
pq by distant parallelism to o we can write oq = op + pq and then scalar
products yield

(0oq,0q) = (op,op) + (pq,pq) + 2(op, pq) =
= (op,op) + (P4, PQ)

that is —(og)? = —(op)? + (pq)? that proves (i). Condition (ii) follows from
the fact that op and oq are timelike, that is, from Proposition 8.8 we have

(op,0q) = —(0p)(0g) cosh ¢ = (op,op + pq) = —(op)?, with ¢ >0,

then (op) = (oq) cosh ¢ and (pq)? = —(0q)? + (op)? = (oq)z[cosh2 p—1]=
(0q)? sinh? ¢; but
e¥ —e ¥ e¥

=—(1-¢%)>0, so, (pg)=(og) sinh ¢.

inh o —
sinh ¢ 5 5

In a Minkowski space-time (@, {, ), ) the (time) x° axis of £ through p € @
is the world line of a freely falling observer w; the natural parametrization of
w has t = 2°(w(t)) and ¢ is the proper time of w. We have to keep in mind
that w depends on &.

To p € Q there corresponds &(p) given by

&(p) = (2°(p), = (p), 2% (p), 2%(p)) € RY.

The first component x°(p) is said to be the {-time of p and
p = (z'(p),2*(p). 2°(p)) € R®

is the £-position of p.

Now if a: I — @ is a particle of a space-time (Q, (,)) and s € I, the &-
time of a(s) is t = x°(a(s)) and its &-position is (z! (a(s)), 2%(a(s)), 23 (a(s))).
Since « is timelike and future pointing (see Definition 8.7) then

dt  d(z°oa) , 0
ds ds B <a’8oj°

) #0,



8.5 Minkowski space-time geometry 157

s0, (2° o @) is a diffeomorphism of I onto some interval J C R with inverse
u:J — I. At a {-time t € J, the -position of « is

a(t) = (a' (a(u(t)), 2* (a(u(t)), 2°(a(u(?)))).

The curve a(t) is the £-associated Newtonian particle of « and one uses to
say that o is what the observer w observes of «.

One main point in special relativity is to relate the Newtonian concepts
applied to a with the relativistic analogues for a.

If the particle o : I — @ is lightlike in (@, (,)) and £ is an inertial
coordinate system, the associated Newtonian particle « of « is a straight line
in R? with speed ¢ =1. In fact, « is a future null geodesic in (Q, {,)) so £ o«
is a geodesic in R}. Thus

' (a(s)) =ais+b; i=0,1,2,3.

Then a(s) = (z(a(s)),z%(a(s)), z®(a(s))) is a straight line in R3 and its
reparametrization a(t) follows this straight line and the vector 42 is null

with % > 0. It follows that the speed v of « is

—1
| (‘“) 1
ds

Proposition 8.5.4. Light has the same constant speed v =c= 1 relative to
every inertial coordinate system & and then relative to every freely falling
observer.

do
dt

d7a
ds

Proposition 8.5.5. If the particle o : I — @Q is material, we have that
(i) the speed Z—ﬂ of the &£-associated Newtonian particle o is v = “2—‘;‘ =

tanh ¢ where @ is the hyperbolic angle between o' = Cfl—z‘ and the time coordi-

nate vector aio of €&, which implies, in particular, that 0 < v < 1.

(i) The proper time s of a and its {-time t are related by

o
dt  d(z°oa) _ cosh 1 o1

ds ds 90:\/171)2_

Proof: 1In fact, o/ = ‘fl—‘;‘ and the time coordinate 8% of £ are timelike and

future pointing, so there is a unique hyperbolic angle ¢ > 0 determined by

(o, 525) = cosh > 1. Since o/ = 327 d(xd;a) -2 we have

dt
5= —{d/, %) = cosh @
and (o/, o'y = —1 gives
(AN [def
ds ds|




158 8 Special relativity

Since ¢ > 0 it follows

da = y/cosh? p — 1 =sinh ¢ > 0;
ds
thus «(t) has speed
da da AN sinh ¢
= |—| = _— _ = =t h .
dt ( ds ) <ds) cosh ¢ anite
Finally one obtains that coshy = \/1%7 [

The so called time dilation effect of Larmor and Lorentz is inter-
preted through Proposition 8.5.5-(ii) for a particle with proper time (s); the
faster the particle is moving relative to the observer, that is, the larger v is,
the slower the particle’s clock (s) runs relative to the observer clock ().

We saw that to an inertial coordinate system £ of a Minkowski space time
(Q, (,),&) there corresponds a freely falling observer w. But, conversely, given
a freely falling observer w = w(t) of a time oriented space-time (@, {,)) such
that w(0) = p € @, one can talk about the spacelike (Euclidean) tridimen-
sional subspace E, = (&(0))* and define an isometry ¢ provided that we
choose an orthonormal basis of F, (see Proposition 8.10). The subspace FE,
is the same for all choices of £ and the image of F, on () under the exponen-
tial map exp, : T,Q — @ is called the rest space of w at p; it is the set
of events in @ that the observer w considers simultaneous with p. One can
argue, analogously, with the spacelike subspace E; = (W(t))* C T, @ and
talk about the rest space of w at w(t) which is formed by the events in Q
that w considers simultaneous with w(t). The Euclidean rest spaces E, and
FE; are canonically isometric.

The relativistic addition of velocities is another effect that holds in a
Minkowski is space-time (@, (, ), &) when one considers two material particles
on Q : a = a(r) and B = B(c). We can define the hyperbolic angle ¢
between o/ (7) and ('(¢) if we make use of the distant parallelism and also
define v = tanh ¢ as the corresponding instantaneous relative speed.
Assume that a rocketship p leaves a space station a and also that both are
freely falling particles. Let v; > 0 be their instantaneous relative speed. A
space-man p is ejected from p in the plane of p and « with constant speed
vg relative to p. Let us compute the speed v of the space-man relative to a.
Let v; = tanh ¢ and ve = tanh 5. One can argue on R} using the isometry
£. So, if vo > 0, by distant parallelism the tangent vector p is between the
vectors o and i/ and the angle ¢ defined by o’ and y’ is given by ¢ = o1 +¢2
(prove that this is so!), and then

tanh @1 + tanh @9 V1 + U

v anh ¢ an (<P1+<P2) 1 4 tanh ;. tanh @ 1+ vivo

Exercise 8.5.6. Prove that the same formula holds if vy < 0.
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u

Fig. 8.2. Relativistic addition of velocities.

Ezample 8.5.7. (twin paradox)

This is a next classical example and is described as follows: “On their 215
birthday Peter leaves his twin Paul behind on their freely falling spaceship
and departs at the event o with constant relative speed v = 24/25 for a
free fall of seven years of his proper time. Then he turns and comes back
symmetrically in another seven years. Upon his arrival at the event g he is
thus 35 years old, but Paul is 71”. We have to drop a perpendicular px from
the turn p to the world line of the spaceship. By Propositions 8.5.3 and 8.5.5

we have .

or =op coshyp = 1= (242512 = 25.
If the separations ox and xq are equal (symmetry) then xg = 25. Thus Paul’s
age at Peter’s return is 21 + 2(25) = 71 years.

Definition 8.5.8. The energy-momentum vector field of a material particle
a: I — @ of mass m is the vector field P = m% on « (s is the proper
time of «).

For an associated Lorentz coordinate & corresponding to a freely falling
observer w, the components of P are

d(z o )
ds '

If ¢ is the proper time of the observer, we have

Pi=m i=0,1,2,3.

d(z' o) dt

pi= —
dt ds
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Paul Pete

Fig. 8.3. Twin paradox.

a1
where ds = Ui

The space components P!, P2, P3 define a vector field

and v is the speed of the £-associated Newtonian particle.

m  da
V1 — 2 dt
on the associated Newtonian particle « in Ey = R3.
The time component PY is given by
d(z o« dt m 1
P° :m! =M = ———— = m+ —mv* + O(v?).
ds ds 1 — 92 2
Einstein identified P° as the total energy E of the particle as measured by
w, concluding, in particular, that mass is merely one form of energy, the rest
energy E,.;;. Converting to conventional units we have the famous formula

P=

2
Erest =mc,

where c is the speed of light.
The force acting on a particle is defined as
dp
F=—.
dt
This can be taken as the motion equation for a relativistic particle, as the
value of P° can always be obtained from
da da
P,P) =m?*(—, —) = —m?
(P.P)=m*( T, T = —m
ie.,
(P°)? = P? +m?.



8.5 Minkowski space-time geometry 161

Example 8.5.9. Consider the case in which F is constant. This corresponds
for example to a particle with electric charge e moving in a constant electric
field E, F = eE. Assume further that the particle is moving in the direction
of the force, say the z-direction. Then the motion equation reduces to

d dzx
° Y _p
dt(mds>
(e _
ds \ds )~ ds’
(AN (N de (AT
ds ds n ds ds
A (da _ (g ()
ds \ ds - ds

and this equation is readily solved to

or, setting a = F/m,

Since

we have

d
d—i = sinh(as)

(where we’ve chosen s such that % = 0 for s = 0). Consequently,

dt
o= cosh(as)

and then

1 1
t = —sinh(as),z = — [cosh(as) — 1] + o
a a

(where we’ve chosen ¢t = 0 for s = 0). Furthermore,

de %
v=— = <% = tanh(as).

dt

dt o

Notice that |v| < 1, and that v — £o00 as ¢ — *oo. For small velocities
(v << 1) we must have as << 1, and consequently we obtain the approximate

formulae
as (as)? at
t>~ — =50 +To = a0+ =
a 2a 2

which are the classical Newtonian formulae for the motion of a particle under
a constant force.
Notice that
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2 2 247\ 2 2.\ 2
<CciiTg’ %) =— (2;;) + (;l;;) = —a?sinh®(as) + a® cosh?(as) = a?.

Therefore a has the intrinsic meaning of being the particle’s proper accel-
eration, i.e., the acceleration measured in the particle’s instantaneous rest
frame. Thus if, say, a spaceship accelerates in such a way that the accelera-
tion measured by an astronaut on board has the constant value a, then the
spaceship’s motion is described by the formulae above.

If we take years as our time unit (and hence light-years as length unit, in
order to keep ¢ = 1), Earth’s gravitational acceleration is g ~ 1.03 year—! !
So if a spaceship could accelerate for, say, 11 years, (measured on board), it
would transverse a distance

11

x ~ cosh(11) ~ % ~ 30000 light — years,

about the distance from Earth to the center of the Milky Way!

Definition 8.5.10. The energy momentum vector field of a lightlike particle
~v: I — Q is its f-velocity P = v = ‘é—z.

Any freely falling observer w splits P into energy E and momentum P
(both relative to w) by setting P = E% + P with P orthogonal to 8—‘20, just
as in the case of material particles; in this case E = |P| = —(v/, 0—%) But
~ and w are both geodesics then E = |P| is constant and P is parallel. For
a material particle we have that E? = m? + |P|?, so one concludes that, by
analogy, a lightlike particle does not have mass.

The wave character of light follows from the next observation; for instance,
a photon of energy FE, relative to some observer, has frequency v = % where
h is the constant of Planck. Usually one says that frequency times wave
length X is speed c. In geometric units Av = 1. Since frequency and wave
length derive from energy, they too depend on the observer. Thus, “visible
light” for one observer is “radio waves” for another and “x rays” for a third
observer.

8.6 Lorentz and Poincaré groups

The set of all linear isometries of R} is called the Lorentz group; it is a
subgroup of the group of all isometries of R}. The translation T, : v € R} —
v+ 2 € RY, defined by an element x € RY, is also an isometry of RY; in fact
the set of all translations of R} is an Abelian subgroup of the group of all
isometries. The group of all isometries of R} is called the Poincaré group.

Proposition 8.6.1. Fach isometry @ of RY(n > 2) has a unique decom-
position ® = T, o 0 where T, is the translation defined by an element
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x € R} and 0 is a linear (homogeneous) isometry of RY. Furthermore
T,01Ty0> = Tyyg,y0102. In particular the group of all isometries of RY is
a subgroup of the group of all affine transformations of R}.

Proof: Start with @ such that #(0) = 0. Let us show that, necessarily, &
is linear (and homogeneous). In fact d®(0) is a linear isometry of T,(RY)
and, so, of R}, because T,(R?) is canonically linearly isometric to R}. Let
6 be the linear isometry of R} corresponding to d®(0); since df(0) = d®(0)
we have § = & (see the proof of Proposition 8.10). If #(0) = = # 0 we
have (T_;®)(0) = 0 and by the same argument, T_,% is equal to some
linear isometry 6 of R} then & = 7,6 and the decomposition follows. The
uniqueness of the decomposition is trivial because if 7,0 = Tyé then x =
(T0)(0) = (T,,6)(0) = y and also § = 6. Finally, for all v € R} we have
(0T)(v) = 0(y+v) = 0(y) +8(v) = (Tyy0)(v). Hence 0T, = Ty, 0 that makes
true the multiplication rule. [ ]

The last result shows that given a Minkowski space-time (Q, (, ), £), all the
possible inertial coordinate systems are obtained by making the composition
of ¢ with all the elements of the Poincaré group of Ri. As one can see, in
Special Relativity we do not consider absolute time anymore and no speed
is larger than the speed of light. But we cannot avoid inertial coordinate
systems.
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Special relativity does not encompass gravity. Einstein found out how to do it
including spacetimes (Q, (,)) of arbitrary curvature instead of flat Minkowski
spacetimes; so appears general relativity. Special relativity is a particular
case of general relativity; in fact special relativity is the general relativity
of a Minkowski spacetime. On the other hand the general theory opens the
way to study global questions, taking into account, for instance, the fact that
completeness and simple connectedness of ) may not necessarily hold.

If p € Q is an event, special relativity makes sense in the tangent space
T, and the exponential map exp,, : T, — @ provides a comparison; a time-
like future pointing unit vector v € T,Q is said to be an instantaneous
observer at p. The orthogonal decomposition 7,Q = [u] & ut gives the
observer’s time axis R, = [u] and the rest space u’. If « is a particle
through a(t,) = p, then o/(t,) = au + =, * € u; and, correcting x by the
time dilation effect a, one obtains the instantaneous velocity z/a of « as
measured by w. As usual, the speed |z|/a is 1 for light and less than 1 for
material particles. Similarly, if P is the energy momentum of « at p, then
P = Fu+ P, with P € u'; this defines the energy E and the momentum
P of a at p as measured by wu.

The quadratic form ¢(v) = (v, v) is called the line element and is denoted
by ds?; so ds?(v) = (v,v) for all v € TQ. It is a quadratic form at each
tangent space T,Q. In local coordinates, say (xo, z1,z2, x3), it is represented
by ds2 — Eg”d(ﬂld{ﬂj where gij(l'(),xl,(ﬁg,xg) = <%, 62j>.

9.1 Einstein equation

Matter is an undefined term; but one of the main ideas of Einstein is that
matter curves the spacetime ). The notions introduced in 8.4.6 hold for our
time oriented spacetime (@, (, )). The way matter is modeled in @ corresponds
to the consideration, in each case, of a stress energy tensor 7 on Q. Let u
be an instantaneous observer at p € Q. On u', the spatial part of T" typically
generalizes the classical stress tensor, as measured by u. So T is a symmetric
(0,2) tensor; the energy density measured by u is T'(u,u) and for most of
forms of matter it is non-negative. The conservation of energy-momentum is
expressed, infinitesimally, by the condition divT = 0 where T = U{ T.

W.M. Oliva: LNM 1798, pp. 165-181, 2002.
© Springer-Verlag Berlin Heidelberg 2002
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For the relation between T and the curvature tensor of (@, (,)), Einstein
proposed the formula G = kT where G is some variant of the Ricci curva-
ture and k is a constant. Of course if we want divT = 0 we also need to
have divG = 0 where G = ULG. Then if one recalls the definition of scalar
curvature, S = C1 (U} Ric), we have the following:

Definition 9.1.1. The Finstein gravitation tensor G of the space-time
(Q,(,) = g) is the (0,2)-tensor field defined by G = Ric — %Sg and the
equality G = 8T is called the Einstein equation.

In the above equation it is assumed that we are using units such that
Newton’s universal gravitation constant is equal to 1.
The next result tell us how matter G = 87T determines Ricci curvature:

Proposition 9.1.2. The FEinstein gravitation tensor G is symmetric and
G = U}G has divergence zero. Moreover, Ric = G — $C(G)g where C(G) =
CIUIG.

Proof: Both Ric and g are (0, 2) symmetric tensor fields, hence G = Ric— %S g
is symmetric. It is well known that for any function f we have:

divfUlg=df (see Exercise 9.1.3, below);

on the other hand, by Proposition 3.4.15 we have divRic = %dS. Then

_ 1
divG = divU} G = divU} Ric — idivaSg, that is,

_ _ 1 1 1
divG = divRic — 5dz’vSU}g = 5d5 - 5dS =0.
But we also know that C(g) = CiUig = dimQ = 4, so C(G) = C(Ric) —
3C(Sg) = C1U{ Ric — 28 = S — 25 = —5; finally, from definition 9.1.1 we
have:

1 1
Ric =G+ 559 =G - §C(G)g.

Exercise 9.1.3. Show, using local coordinates, that divfU}g = df.

9.2 Geometric aspects of the Einstein equation

The next two sections follow, closely, chapters 4. and 5. of the book [25],
“Gravitational Curvature”, by Theodore Frankel, with natural adaptations
of notation and style.

Let (eq, e1,e2,e3) be an orthogonal basis of T,,Q such that:
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<6i,6j>:—1 if i:j: s
<6i,€j> =41 if i=4j+#0,

Set e¢ = (£,€) = ||¢]|?, the indicator of a unit vector £, which is equal
to +1 or —1. Let us write ¢; = €.,, s0 g = —1 and ¢, = +1 for a = 1,2, 3.
As we saw, a two-dimensional subspace P (spanned by v and w) of T,,Q is
nondegenerate if

q(v,w) =[ v |* [l w[* —(v,w)* #0.

The sectional curvature (see (3.23), (3.30)) K(P) of P is well defined for
non degenerate planes, by

K(P) = (Rypv,w)/q(v,w).

For the orthonormal basis considered above we have g(e;,e;) = €;6; when
i # j. If P;; is the two plane spanned by {e;, e;} we have

K(Pz ) = €i€j<R€i€jei? ej>7 for all i #j.

K (P;;) is the Gaussian curvature at p € Q of the two-dimensional manifold
formed by all the geodesics through p that are tangent to P;;.

The Ricci tensor defines a quadratic form Ric(€, €) for a vector &; it can be
proved that Ric(€,€) is equal to minus the trace of the linear transformation
A :m = Rye€ (see [53] p. 219), so

R’L'C(f, g) = _2i5i<Reif§a 67;>.
Then, applying Ric to the vectors e;, we have
Ric(ej, ej) = ;22 K(Pyj), S = Xig; K(Py). (9.1)

So Ricci and scalar curvature are sums of sectional curvatures. If u is an
instantaneous observer, A, leaves u" invariant and A, : vt — u’, the tidal
force operator, is the way under which u measures gravity.

The Einstein gravitational tensor is also a sum of sectional curvatures; in
fact G = Ric — %S g. A simple computation shows that

G(ei; €i) = _5i2k¢iij(ij)~ (92)

k<j

So, —e;G(e;, e;) is the sum of the sectional curvatures of the three coordinate
2-planes not containing e;. For example, since ¢g = —1 we have

G(eo, 60) = K(Plg) —+ K(Plg) + K(ng)
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Using the Einstein equation G = 87T we are able to obtain another equation
relating the stress energy tensor with sectional curvatures; in fact:

—8me;T(e;,e;) = XK (P;h) (9.3)

where P;- is any plane of the form Py, for j #i and k # 1.

Let V3 be a 3-dimensional submanifold of the space-time (Q, (,) = g) and
let N be a smooth field of unit vectors orthogonal to V3. If p € V3, a linear
map b : T,V? — T,V? is defined by b(X) = —VxN, where the covariant
derivative takes place in @) (here N represents a local extension of N(p) to a
neighborhood of p). Of course that (VxN)(p) € T,V? since (VxN,N) = 0.
If Y € T,V? one computes (b(X),Y) = —(VxN,Y) = (N,VxY) and, also,
the second fundamental form of the embedding i : V3 — Q (see (5.28)) gives

<B(X3Y)7N> = <VXY - (VXY)T3N> - <VXY>N> = <b(X)aY>

(we use the same notation to represent tangent vector or its local extension
as vector-field).

The above equality shows the relation between B and the linear map b.
So b is also called the second fundamental form of the hypersurface V3, at p.
It is easy to see that b is self-adjoint; in fact,

(b(Y), X) = (Vy X,N) = (VxY - [X,Y],N) = (Vx Y, N) = (b(X),Y)

(because [X,Y](p) € T,V?)).

Since the scalar product in TpV3 need not be positive definite, the eigen-
values of b need not to be real. If one assumes that b does have three real
eigenvalues (in particular this will happen if V3 has spacelike tangent vectors,
so the induced scalar product is positive definite), the eigendirections can be
chosen to be orthogonal. Take X and Y to be unitary eigenvectors associated
to eigenvalues kx and ky. A generalized Gauss egregium theorem can
be stated using the equality of the next exercise.

Exercise 9.2.1. Prove the equality:
K(Pxy) = Kv(Pxy) — enkxky (9.4)

where K (Pxy) is the sectional curvature in @ of the plane Pxy spanned by
X and Y, Ky (Pxy) is the sectional curvature in V? with the induced metric
and ey = (N, N) is the indicator of the unitary normal N.

Take now V3 being a hypersurface of Q with spacelike tangent at p € V3.
Let eg = N be unitary and normal to 7,3 and let (eq, ez, e3) an orthonormal
basis of T,V3. Then we have from (9.3):

87TT(60’60) = K(P8182) + K(Pele3) + K(P€263)'

We may choose a basis (e, es, e3) corresponding to the principal curvatures
(k1, ks, ks3), eigenvalues of the second fundamental form b : T,V3 — T,V3.
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Using the generalized Gauss egregium theorem (Exercise 9.2.1) we get from
(9.1) and the last equation:

87TT(607€0) = KV(P6162) + KV(Peles) + KV(Pezes)
4 Eeyky + yks + koks

1
= 55\/ + k1ko + k1ks + koks, (9.5)

where Sy is the scalar curvature of V3 at p, in the induced metric. The mean
curvature of V3 C Q at the point p € V3 is H = trace(b) = ki + ka + k3.
Let us set trace(b A b) = ki1ka + k1ks + koks, because this is the trace of the
natural extension of b to a linear transformation of bi-vectors. Then

1
8T (eo,ep) = §SV + trace(b A D). (9.6)

Remark 9.2.2. Consider now the case in which V3 is a totally geodesic
space-like hypersurface, that is, every geodesic of V3 in the induced metric
is also a geodesic of (@, (,) = g¢); this is equivalent to say that the second
fundamental form b is identically zero. So ky = ko = k3 = 0 and

Sy = 167T(eg, e0) = 2G(eg, €p). (9.7)

9.3 Schwarzschild space-time

A region of a space-time (@, (,) = g) is said to be empty if the stress energy
tensor T is zero there; from Einstein equation, G = 87T is also zero and by
Proposition 9.1 we have that Ric vanishes in that region. But the region itself
need not be flat; it can be curved because of matter elsewhere and when is
flat the region is called a vacuum.

A very important case is concerned with a spherically symmetric
mass-energy distribution, like an idealized “sun” in an otherwise empty
universe. One may try to find such a universe as a space-time of the form
Q = R x R3, with matter centered at 0 € R3, and (,) = g defined by
ds? = goo(w)dt? + Zle(gOi(x)dtdxi) + dI? where goo, go; and dI? are in-
dependent of ¢t = z°, that is, the universe is stationary; if moreover
go1 = 9oz = gos = 0, the universe is said to be static. It is natural to
introduce spherical coordinates (r, 6, ) in R?; spherical symmetry does im-
ply that the 2-spheres r= constant, in the spatial sections V;3, carry a metric
of constant Gauss curvature, the constant depending on r. We shall also
normalize the coordinate r in order that the 2-spheres S2? ,r= constant,
have Gauss curvature 1/72 (just like the Euclidean sphere of radius 7 and,
of course, with 4772 as area). So, we have, on Q = R x R3, a pseudometric
given by the line element
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ds* = goo(r)dt* + gy (r)dr? + r2d$2?,
df2 = db? + sin® Odp?.

The point, now, is to proceed with the determination of goo(r) and g, (r),
that is, we have to exhibit the pseudo-Riemannian metric (,) = g for (Q, (,) =
9)-

Schwarzschild discovered his spacetime in 1916, very soon after the ap-
pearance of general relativity; in the beginning, only half of it, the exterior,
seemed to be physically significant. However, a (non-rotating) black hole
could be modeled by the neglected half, suitably joined to the exterior.

The flatness (Minkowski) at infinity and vacuum looks to be the way of
saying that the only source of gravitation, in the Schwarzschild universe, is
the “sun”; sufficiently far away from the source of gravitation, that is, as r
goes to infinity, the metric of line element

ds® = goo(r)dt? + gp (r)dr® 4+ 12 (d6* + sin® 0dp?) (9.8)

has to approach the Minkowski metric of an empty spacetime, that is, we
have to obtain the limit line element

—dt? + dr? + r?(d6? + sin® 0dp?).

So, goo(r) — —1 and g.(r) = 1, as r — oo.

Each spatial section V> of @ is an isometric copy of V3 = V¥ since the
coefficients of the metric ds? do not depend on time. We shall try to consider
V3 embedded as a submanifold V3 of R* given by a simple equation

w=w(r,0,p) =w(r).

The original spatial section V3 is the set of fixed points of the isometry
(t,z) — (—t,z) of @ = R*, so V3 is totally geodesic (isometries take geodesics
into geodesics and any geodesic is determined by its initial velocity). So, from
the remark at the end of section 9.2 (see (9.7)) we have

Sys = 167T(&, &) = 2G(&,¢€)

where £ is the unit normal to V3. Since V3 and V3 are supposed to be
isometric and V3 is given by w = w(r), one can write Sy = 16mp(r), where
p = p(r) depends on T

The metric on V3 has line element

di? = g, (r)dr? + 2 (d6? + sin® Odp?)

while the one on V3, induced from the Euclidean metric, has line element
di? = dw? + dr? + r?(d6? + sin? fdp?); then we obtain

grr(r) =1+ (%)2 (9.9)
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To the embedded submanifold V3 of the flat space R* with unit normal N,
can be applied the generalized Gauss egregium theorem and we have

1
787TT(N, N) = 5 ‘73 — (klk‘g + klkg —+ kgkg)
with Gga (N, N) = 87T(N, N) = 0, then
Sys = 2(k1ko + k1k3 + kak3)

where k1, ko, ks are the principal curvatures of V3 C R%. A simple computa-
tion ([25] p.48 and 49) shows that

1
k1 = ko = ;[1 —1/g(r)]Y?  and

3/2
d?w dw\ 2
kgfw/ l1+(dr) ] .

From the relations above one obtains

2 7"7"*1 drrd
Sys = = (gr +g/7’

s =
rg'f g’l"”

> = 167p(r)

so, one arrives to the Bernoulli ordinary differential equation:

Agrr 1 . 1.,
dr ;grr - (87’(’7‘p(7’) T)grra

that gives the solution

« being a constant; we put a = 0 to prevent g,., from vanishing at the origin.
Define

m(r) = /07‘ 4rs®p(s)ds (9.10)

Grr = {1 - Zm(r)] _1. (9.11)

then

r

Assume now that the spherical ball of mass-energy has “radius” r¢ and
so p(r) = 0 for r > rg. If m = m(ry) we have m(r) = m for r > rg, and the
spatial metric can be given by

dr?
1— 2m(r)

(s

di? = +r2(d6? + sin® 0dp?).
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We must find now the coefficient ggo(r) of the metric. The vacuum (or
Ricci flat) condition together with the Minkowski condition at infinity will
be enough. In fact we use an equation that we will derive in Proposition

9.3.2 below. Let e, be a unit vector in the radial direction %. The Einstein
equation involving T'(e,, e,) becomes, in empty space:
1 1 2 0
O=——5+— — logv/— 9.12
2 TQQTT TGrr or & go0 ( )
that we combine with (9.11), that is, with
—1
2m(r
Grr = |:1 - ( ):| 5
r
where, for r > ro one has m(r) = m.
Then, we obtain for r > rg:
9 V=900 = M\/Grrv/=goo
—+v—Ggoo =m —J00-
N or goo Grr goo
Now, we integrate the last identity taking into account that g.. = [1 —

M}_l tends to 1 as r — oo and that ggo tends to —1 as 7 — oo0; we
then obtain g,..goo = —1, that furnishes ggo(r).
We arrive, finally, to the famous Schwarzschild exterior solution in

the region r > r, exterior to the ball:

Proposition 9.3.1. The pseudo-Riemannian metric of the Schwarzschild
exterior solution has line element ds? = —(1 — 22)dt? + (1572;) + r2ds2?,
where i

d$2* = d6* + sin® Odp?.

To derive equation (9.12) we start by making a general discussion about
the solution of a static spherically symmetric mass-energy distribution.
The metric is in the usual form:

ds® = goo(r)dt? + gpr(r)dr® + 12 (d6? + sin® Odp?).

Consider the orthonormal frame

o 0/0t o a/or .

0 V _900’ ! Grr "
_0/00 _ 9/9¢p

“2= = ¢ rsin 6 ks

It is easy to see that these vectors are eigenvectors of the linear transfor-
mation induced by the Einstein tensor G. This follows because that linear
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transformation is invariant under isometries. The isometry (¢,2) — (—t, )
has the spatial section V? as the set of its fixed points, so each tangent space
of V3 is invariant under the above linear transformation which is, also, self
adjoint and positive definite on the tangent space.

From spherical symmetry we use special isometries to show that e, e, g
are eigenvectors so two by two orthogonal. Let p; = p,, p» = pg, and p3 = p,
be the eigenvalues corresponding to T = G//8w. Again spherical symmetry
implies p, = pg and we have

T(e'r‘aeT‘) :pTa T(egvee) :p9 :pcp = T(69076L,0)'

Of course, eg is also an eigenvector.

We will proceed with the study of T'(e,,e.) = p,.. Let W = W32 be the
submanifold of @) defined by r = constant # 0.

One can show that eq, e and e,, are principal directions of W3.If ko, ke, ke,
are the principal curvatures, Einstein equation, (9.1), (9.2) and (9.4) give (as
in the derivation of (9.5)):

1
G(er,e.) = 8nT (e, e.) = 8mp, = —§SW + koko + koky + koky.  (9.13)

Denote by by, the second fundamental form of the embedded submanifold
W3, so by (X) = —Vxe, for any tangent vector X to W2. The principal
curvatures of W32 are the eigenvalues of by,. But V. ey = 0 because each
V;3 is totally geodesic in @ and so its unitary normal e is parallel displaced
along V2. As a consequence, since t does not appear explicitly, we can write

a/ot a/ar}
V=900 \/Grr

veoer = ve,,.eO + [60; er] = |:

__1 9 ( 1 ) 9
B vV Grr or vV —900 at’
SO,

L a

/Grr dr

The last formula shows that e is eigenvector of by, with eigenvalue (see [25])
p. 135 for more details)

(log v/—goo0)eo-

bw (eo) = —

1 d
v Grr dr

Since by is self-adjoint, the other two eigenvectors are orthogonal to ey, that
is, tangent to a 2-sphere S? = W2 N V3. By symmetry one can choose ep
and e, to be the two eigenvectors with equal eigenvalues. The submanifold
p=constant is a totally geodesic surface (the metric does not depend on
) of the totally geodesic V3. The radial lines in that surface are geodesics

ko =

(log v/=9g00)- (9.14)
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tangent to e, and since e,,ep are orthogonal, one concludes that ey is a
parallel displacement along the radial lines, so V., ey = 0. Then

1
b = T Vey€r = — Ve T = [Er; = - 5
w(ep) Ve, € Ve, eo+ [er, e0] = [er, €] r\/g?ee
that is 1
ky,="Fky = — T and
1 2 d
koko + koky + koky = —— + ——(log v/—goo).

r gTT rgTT d’r

To have the right hand side of (9.13) we need to compute the scalar
curvature Sy that, by (9.1), is equal to

1
§SW = Kwleo, eg] + Kweo, ep] + Kwles, e,),

for the metric, induced on W = W2, of line element
di2 = goo(r)dt* + r?(d6? + sin® 0dp?),

where 7 is constant. Consequently, W3 carries a product metric for R x S2.
Thus the cylinder r=constant, § = 7/2, is a totally geodesic surface in W}
because its projection on S? is a geodesic (the equator) of S2. The metric in
this cylinder is flat (r=constant), so

9oo (r)dt2 + r2dg?.

Thus Ky [eo,e,] = 0 and by symmetry Ky [eg,eg] = 0. Also, S? is totally
geodesic in W3 = R x S2 so the metric on S? is the standard one, that is

1
Kwles, ey] = 2
Then, we arrive to
87T (er, 0r) = 8 Lo b2 40 /=50 (9.15)
a ry€r) = OTPyr = —— - — — . .

Proposition 9.3.2. In a space-time with a static, spherically symmetric
mass-enerqy distribution, with line element written in the usual form ds®> =
Goo(r)dt? + grp(r)dr? + r2(d6? + sin® 0dp?), then p, = T(e,,e,) is given by
(9.15). In particular, if the space-time is empty one obtains (9.12).

From equations (9.11) with m(r) = m and (9.9) one arrives to 1+ (42)? =
(1- 277”)_1. If we specify, for example, that w = 0 when r = 2m, we arrive
to w?(r) = 8m(r — 2m) which exhibits the exterior spatial universe as a
paraboloid of revolution, the Flamm paraboloid.
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9.4 Schwarzschild horizon

The coefficients goo(r) = ;Ti(r) and g,.(r) = [1—22]~! become unacceptable
at r = 2m. For most normal bodies the “Schwarzschild radius” 2m occurs
inside the mass, that is, 2m < ry and so there is no contradiction with the
exterior solution given by Proposition 9.3.1. If, however, the ball is so massive
that happens 2m > 7, then the exterior solution has to be restricted to the
region r > 2m > rg. This happens in the case of a (non-rotating) black hole.
The value r = 2m is called the Schwarzschild horizon; at this point g,, be-
comes infinity and ggg is equal to zero. It can be proved that the sectional cur-
vatures of (@, (,)) at the planes [e,, eg], [er, €,], [€a, €], [er, €], [er, er], [er, €]
are well-behaved at » = 2m ([25] p. 52, 53). This suggests that r = 2m
might be only a singularity of the coordinate system. A nice question is how
to introduce new coordinates into the region r < 2m and how to extend
the Schwarzschild exterior solution. For more informations on this and other
related questions see [25] and [53].

9.5 Light rays, Fermat principle and the deflection of
light

We start this section with the definition of a Killing vector-field. Let X €
X(Q) be a vector-field on a pseudo-Riemannian manifold (@Q, (,)). For each
peQ,let p:(—e,e) xU — M, e =¢e(p), be the (local) flow of X defined in
an open neighborhood U of p, that is, for [t| < e,t — ¢(t,q) is the trajectory
of X passing through ¢ € U at the time ¢ = 0. X is Killing (or infinitesimal
isometry) if, for each fixed t € (—¢, €), the local diffeomorphism ¢; : U — Q,
given by ¢:(q) = ¢(t,q), is an isometry.

Exercise 9.5.1. X € X(Q) is Killing if, and only if, (Vy X, Z)+(Vz X,Y) =
0 for all Y, Z € X(Q), V being the Levi-Civita connection corresponding to

()

If T is the tangent vector -field to a geodesic C of the metric, so V7T = 0,
and given a Killing vector-field X on @, we have that (X, T) is constant along
C. In fact

T(X,T)= (Ve X,T) + (X, V1T) = (VrX,T)

and, by the last exercise, one arrives to T(X,T) = 0.

As an application, consider the motion of a planet around the sun. Neglect
all other matter in the universe and assume that the planet is so small that
we may consider it moving as a material particle of the Schwarschild metric.

Then, we have, in fact, a static metric of line element

2 2
ds? = —(1— a2y -

. . Y dr? + r2(d6? + sin® dp?) = goodt® + dI>.
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It is clear that Ot and % are Killing vector-fields because this metric does
not depend on t and .

As for special relativity, the motions of free-falling particles are repre-
sented by timelike geodesics. Denote by 7 the proper time along the time-like
geodesic C which represents the material particle with tangent vector-field T

S0
ad g drd dd o dp 0

“drot Tdror Taroe drog

We then have two constants of motion (T, 8t> and (T, 5 e ) along a geodesic
C of the static metric. In particular, for the Schwarzschlld case, one has:

0 dt 0 0 dt 2m

and (T,T) = —

<T, §> = E<&, §> = —%(1 — T) = const = —l;7 (916)
0 0 0 dp P2 gin2 0 — B
(T, 8<p> dT <(‘3<p (9<p> p sin” § = const = h. (9.17)

If the planet has an initial spatial velocity vector tangent to the spatial surface

2dp _
0 = 7/2, by symmetry it will remain there; equation (9.17) gives r*%2 =

2dap_r2dapd7_£( Qm)

which replaces the classical angular momentum r=2£ il )5
which is not constant, except in motions with » = const. If we consider a
radial motion of such a planet, that is, if the motion is initially radial (d“" =

at a certain time), then r2 ‘:l‘p = h = 0 so ¢ must be constant. One concludes
that df = dp = 0 and then, since ds? is negative for time-like curves we

obtain

() e (F) == (-%) (%) (5)
R T AT PR PER o

If we assume that the particle satisfies d’ =0atr =R > 2m, (9.18) implies
that £? = (1—22) and also shows that a Spatlally fixed observer (the spatial
coordinates are constants along his worldline) would see the particle taking
an infinite time ¢ to reach the Schwarzschild horizon (that follows because
v (r — 2m) as r — 2m). But, an observer falling with the particle and

dt
using the proper time 7 would observe that

dr\? dr\?% [ dt\? 2m 2m
DY () (L) =2 (1-22) 512 2
<d7> (dt) (dT) ( - >_> R ®rTem

and the particle takes only a finite amount of its proper time to cross the
horizon.

The general relativistic treatment of the orbit of a planet around the sun
leads to Einstein’s famous explanation of the precession of Mercury’s classical
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elliptical orbit. The analysis was made with the use of the two constants of
motion (9.16) and (9.17) derived above (see [2]).

Recall now some basic facts about geodesics under the point of view of
the Calculus of Variations. Start with a one-parameter family of smooth
curves C. : [0,1] — Q,C.(A) € Q (the space-time), |e| < e&g. Each C; is
called a variation of the basic curve Cy. One assumes that this family of
curves is given by a C?-differentiable function z = z(e, \). Let us denote by
T(e,\) = % the tangent vector-field along the curve C. and by X (g, \) = %
the tangent vector-field along the curve x(., ), with A fixed.

The “energy” integral of C. is given by

Ale) = 1 / 1(T(5, ), T(e, \))dA. (9.19)
0

2
It is a simple matter to show that VxT = VX, so, by derivative of (9.19)
we arrive to

/ d

24 (c) = £/0 <T,T>d>\:/0 %@,Tm

1 1
= 2/ (VXT>d)\:2/ (Vo X, T)dA
0 0

1 9 1
:2/0 a<X,T>dA—2/O (X,V 5 T)dA, so

’

Ae) = (X, T)|§ - /01<X, VrT)dA. (9.20)

Then, if A'(0) vanishes for all variations whose variation vector X (0, )
is such that X(0,0) = X(0,1) = 0, so [,(X(0,A),VzT)dA = 0 and
we have VpT = 0 along Cp, otherwise we can choose X(0,A) such that
(X(0,X),VoT) > 0 but positive in a subset of (0,1) with positive measure,
leading to a contradiction.

Then Cy must satisfy the geodesic equation V7T = 0. Along such a
geodesic we have -L(T,T) = 2(V7T,T) = 0, and so, T must have con-
stant length (T, T') over Cy. If Cy is light-like (resp. time-like; resp. space-like)
we have (T,T) = 0 (resp. < 0; resp. > 0).

According to one of the fundamental hypotheses of general relativity, a
light ray traces out a geodesic world line in the space-time ). When we are
in a universe @@ with coordinates (¢, 2!, 22, 2%) the spatial slices are given by
t=constant and the spatial trace of the light ray is not necessarily a geodesic
in the spatial metric. We shall investigate the spatial curvature of the ray.

Consider a universe with line element ds? = goodt® + di?; then since the
path of a light ray satisfies ds*> = 0, we have % = /=ggq. Let P and S be

dt
nearby points in the spatial section V3 =2 V# and consider a one-parameter
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family C. of spatial curves joining P to S and traversed with the local speed
of light, % = /—goo- Each of the curves C. has a unique lift to a light-
like curve Ce, all starting at P = (0, P.) in the spacetime Q but ending
perhaps at different times ¢. over S, that is C. goes from P = (0, ]5)

(t.,S). Parametrize C. by A € [0,1] and get, analogously equations (9.19)
and (9.20). Since C. is light-like we have A(e) = 0 and then

0=A4(0)=(X,T)|p - /01<X, VrT)dA. (9.21)

The way we constructed the lift curves implies that X = % is zero at P and

also that X has no spatial component at S = (ty, 5). Call X = 5t% at S and
from (9.20) we obtain (making € = 0):

1
51&(%, T) = /0 (X, VoT)dA

Since T is light-like we know that <8t’ T) # 0 then
b 1
5t = (= o0 , 7)1 / (X,VrT)d\. (9.22)
0

If, moreover, Cp is a light ray, then Co is the spatial path of a light ray
from P to S and the fact that Cy is a geodesic one obtains V7T = 0. That is
precisely Fermat principle of stationary time for our universe: The spatial
path of a light ray gives an extremal for the time necessary to go from P to
S while traveling at the (local) speed of light v —900-

Using a classical notation we can express Fermat principle as ¢ [dt =

\/flio = 0 for the spatial trace of the light ray.

If moreover the universe is static , the spatial trace of the light ray is a

C 3 « EXt) _ dl : « :
geodesic in V° with the “Fermat metric” dlp = e (not in the “spatial

metric” dl). )
Coming back to one of the constants of motion along the geodesic Cy,
choosing A to be an affine parameter:

<§7 ) = <&, d>\> constant = k = goo—

d\
that is, dt = 2% along Co, or
[
dX\  dt goo g00 goo v/ —goo & o

From this one concludes that the parameter A is such that one moves
along the spatial path Cy with A-speed % inversely proportional to the local

speed of light /—gqo.
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The spatial path of a light ray is a geodesic in the “Fermat metric” dlg
which is con formally related with the induced “spatial metric” dl (in partic-
ular, angular measurements are the same in both metrics). How is the spatial
path of a light ray “curved” in the metric dl? Recall that if T is the unit
vector field tangent to a curve, then Vo1 = k,N, where k4 is the geodesic
curvature for the curve and N is the unit principal normal vector to the
curve.

Proposition 9.5.2. Let dl and dlp = fdl(f > 0) define conformally re-
lated Riemannian metrics for a manifold. Let C be a dlp-geodesic. Then the
geodesic curvature of C in the dl-metric satisfies k; = N(log f), where N is
the dl-unit principal normal vector to C, when kq # 0.

Proof: In fact, from Proposition 5.2.2 applied to X =Y =T and ¢ = log f
one obtains through (5.12):

VT = VT + 2dp(T)T — (T, T)gradp (9.23)

where V is the Levi-Civita connection of the dl p-metric.But @TT = 0,
(I,T) =1 and VT = kN, so from (9.23) we obtain

0 = (ky N, N} + 2dp(T) (T, N} — (gradp, N)
or
ky = (gradp, N) = dp(N) = N(p) = N(log f),
as (VrT,T) = ky(N,T) =0 and kg # 0 implies (N,T) = 0. n

To finish this chapter we will see two applications of the last Proposition
9.5.2. One to the Poincaré metric in the upper half plane and the other to
the deflection of light.

The Poincaré metric is given by the line element

A A g dy?
F=—=—-—

Y Y

, ¥y >0,

that is, f(z,y) = i in the notation of Proposition 9.4. Let C be a geodesic of
the Poincaré metric with Euclidean curvature
1 0 0 1 1 0

= N(log =) = —N*(—(1 —Nv 2 — _NYZ = —_Z(N, 2.
kg (Ogy) (ax(ogy) ay(ogy) " y< ’ay>

Under a Z-rotation we see that (N, g) = (T, g) where T is the Euclidean
Y x

unit tangent to Cy. Since (A, B)p = y%(A,B> and yT is the Poincaré unit
tangent T, we see that kg = —(Tp, %ﬁ. But % is a Killing vector-field and

C is a geodesic (both for the Poincaré metric) then k&, is constant along C, and
so, C is contained in an Euclidean circle. Since (Tr, 8%) r 7 0 at the highest



180 9 General relativity

point of C, it must be like that when C has vertical tangent; also (T, 8%) =0
when y = 0. Then the Poincaré geodesics are circular arcs that cut the z-axis
orthogonally (the circular arcs can degenerate to vertical lines).

The deflection of light can be estimated when a spatial path of a
light ray emanating from a distant star passes near the sun and strikes
the earth, which again is considered as a material particle. We first write
the Schwarzschild ds? in an isotropic form, which exhibits the “spatial
metric” dI? as conformally related with the flat “Euclidean metric” di? =
dp? + p?(d6? + sin® 0dp?) = da? + dy? + dz* of R®. This is accomplished by
making the coordinate transformation corresponding to

(1—2%)2_ 2m
wrpe 4T

Exercise 9.5.3. Prove that in these coordinates the line element ds? has the
expression
_ m)Q m B
ds? = ——22_at> + (14 —)*di>.
(1+3)? 2p
We wish to compare the spatial light path with a y=constant line which
is a geodesic in the flat metric. The light ray traces out a geodesic in the
Fermat metric for the spatial sections, so

di% = f2(p)d,  f(p) = (1+ 2%3(1 - 2—”;>-1.

We have written the Fermat metric conformally related to the flat metric di?
of R3.

The path of the light passing near the sun may be taken very close to a
horizontal line y = R > 0 in the flat (z,y) plane, the sun centered at the
origin of R2. Since the deflection is very small, we approximate the flat unit
normal by N ~ —6%. From Proposition 9.5.2 applied to dlp = f(p)dl one
obtains, for the flat-space curvature of the light ray path, at radial coordinate

p:

0 my 3 1
kg = N(log f) ~ ——-(log f) = 5~ =t =
I Ay 20 [1+5. 1-34
mR|_3 1 | _mR| 475
20 |14+45  1-48| 203 (1-rm))

Discarding terms involving m? we arrive to

_ 2mR

k
g S
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Then for the total angular change of the tangent vector to the light ray one

obtains
- +o0o +oo dx
a:/ kgdlw/ kdwamR/
path —o00

and, also, using the approximation p* ~ (22 + R?)%/2 we get

Foo dx 4m
o~ QmR/OO 7(:172 n R2)3/2 = f’

which is the classical expression obtained by Einstein in 1915.

For much, much more on this and other questions on general relativity
one can start by reading, carefully, references [25] and [53] (chapters 12, 13
and 14). More detailed treatments can be found in [61] and [30].



A Hamiltonian and Lagrangian formalisms

A.1 Hamiltonian systems

Let M be an even dimensional differentiable manifold. A symplectic man-
ifold is a pair (M, w), where w is an (alternate) non degenerate and closed
2-form on M. (We will assume enough differentiability for the data).

If (M,w) and (N,v) are symplectic manifolds and f : M — N is a
diffeomorphism such that f*r = w, that is f is a symplectic preserving dif-
feomorphism, f is said to be a canonical transformation.

Ezample A.1.1. M =R?" = {(q,p)} with the natural 2-form
w=dpy Ndqy + ...+ dp, Ndg,
is a symplectic manifold.

Example A.1.2. The cotangent bundle M = T*(@Q, of an arbitrary differen-
tiable manifold @, is a symplectic manifold. The 2-form w will be, in this case,
the derivative df of a 1-form described below. Let 77+g : p, € T*Q — z € Q)
be the natural projection; for all p, € T*Q and o, € T, (T*Q), one defines

0(p2)(0p,) = pa(drreg(0p,))-

Any local coordinate system U(di,...,qG,), on @ induces a natural systems
of coordinates TJT}Q(U)(q,p), ¢ =g oT, i =1,...,n on T*Q. In these
coordinates, an element p, € T*(Q represented by p, = (a;,v;) means that
r = (a;) and p; = X' v;dg;(x). Also the 1-form 6 locally given by 6 =
X1 pidg; implies w = df = X7 dp; N dg;.

A pair (M?",w) is called an exact symplectic manifold if w = df
where 6 is a 1-form defined on M. In the last example we saw that (T*Q,w)
is exact.

Given a symplectic manifold (M,w) and a C?-function H : M — R, one
defines the Hamiltonian vector field Xy by the condition w(n, Xg) =
dH (n) for all vector fields n defined on M. We remark that Xy is well defined
since w is nondegenerate; the function H is usually called a Hamiltonian
function.

An important result due to Darboux gives us local coordinates (called
Darboux coordinates) for which w and X have useful expressions:

‘W.M. Oliva: LNM 1798, pp. 183-193, 2002.
© Springer-Verlag Berlin Heidelberg 2002
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Theorem A.1.3. (Darboux) Let (M,w) be a symplectic manifold. Every
point of M has a coordinate neighborhood U = U(q1,- -, Gn, D1, - - -, Pn) Such
that

wly =dpi Ndqr + ... + dpp A dg,.

(For a proof see [1], [4])
Using these coordinates, also called canonical coordinates, the local
expression of Xy assumes the classical form:
. OH | OH

;= ;= — 1=1,...,n
qi 31?/ Di 86]1" , s

called a system of Hamilton equations

Remark A.1.4. The following facts will be mentioned without proofs. For
details see [4] and [1].

a- Every symplectic manifold (M,w) is orientable since it admits the
following volume form 22" = w A ... Aw (n times).

b- If ¢}, denotes the one parameter pseudogroup of local diffeomorphisms
generated by Xy, then (¢%)"w = w and the flow ¢!, preserves the volume
form 2%n.

¢- The Hamiltonian function H is constant along trajectories of Xy, that
is,

This is the so called conservation of energy law. The subset {H = h} is
an invariant set for Xg.

d- The Poisson bracket (H,G) of two C*°- functions H and G on
(M?" W) is the C°°-function defined by

(H,G) =w(Xq, Xn).

This operation turns the set C*°(M) of all C*° real valued functions defined
on M into a Lie algebra because the Jacobi identity

(F,G),H)+ ((G,H),F)+ ((H,F),G) =0

holds true. Moreover, the map H — Xy is a homomorphism of Lie algebras
because (H.G) — [Xpu,X¢], where [.,.] is the Lie algebra bracket for two
vector fields on M. When (H,G) = 0 the functions H and G are said to be
in involution and, since [Xp, Xg] = 0, Xy and X are commuting vector
fields. This also means that the local flows ¢}, and ¢f, satisfies

-G = OG- -

When ¢! is defined for all t € R, X is said to be complete.
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Example A.1.5. According to Newton’s law, the motion of a particle under a

potential V = V(z) is given by the second order equation & = —%—‘;, r e R"™,
equivalent to the equations £ =y and gy = —%—‘; (z,y) € R™ x R™. This

system is associated to the Hamiltonian function

Blw,y) = 5lyl2 + V().

A.2 Euler—Lagrange equations

In the next two sections we summarize some basic ideas for the calculus of
variation in mechanics and present the foundations of the canonical formalism
for the time dependent systems. Technicalities involving infinite dimensional
manifolds prevent us for present all the needed details and we refer the reader
to [19].

Given a manifold @, let us consider a C*-function (k > 3)

L:TQxR—R

called a Lagrangian function. As in Example A.1.2, there exists a natural
(local) system of coordinates (q,q,t) for TQ x R corresponding to a given
coordinate neighborhood V=V (gy,...,§y) of the configuration space Q. In
these coordinates (g, ¢,t) one constructs the matrix

0L B ( 0%L )

9¢* 94:04; )
A regular Lagrangian is defined by the condition det ‘gzq.é # 0 everywhere
and the Lagrangian function L is said to be convex or to satisfy the Leg-

2

endre condition (LC) if the matrix %5 is positive definite everywhere.
The first notion clearly does not depend on the given system of coordinates
V = V(q1,...,qn). The second notion means that for (Gi,...,Gn,t) fixed
in V x R, the function L = L(q, ¢,t) is convex in the variables (¢1,...,¢n)
(see [4]).

Exercise A.2.1. Show that the two notions considered above do not depend
on the coordinates V =V (g, ..., qn) used in their definitions.

Let (to,qo) and (t1,q1) be two points of R x Q. Denote by 2'(qo, 1, [to,1])
the path space, that is, the set of all C'- paths v : [to,t1] — @ such
that y(to) = qo and v(t1) = ¢1. If one considers the 1-norm for ~y, the path
space is a Banach manifold (see [19], [1] for details) and the tangent space
at a fixed v (the Banach space of variations of ), denoted by T, 2!, is the
set of all Cl-maps v : [to,t1] — TQ such that 7rg.v = 7 and v(tg) =
v(t1) = 0 where g : w, € TQ — x € Qis the natural projection. To
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a given C* (k > 3) Lagrangian function L : TQ x R — R one associates
the actlon of L, that is the functional Az : 2%(qo, q1, [to, t1]) — R defined
by Ar(y ft A(t),t)dt. We will define what means for v € 2! to
be a solutlon of L to satlsfy the Euler-Lagrange equation associated to L
and we want to characterize these properties through the Fréchet derivative
of Ap. Assume that a local system of coordinates V = V(q1,...,qn) on Q
satisfies y([to, t1]) C V. Each tangent vector v at + is then characterized by
a pair v(t) = (y(t),h(t)) € V x R", t € [tg,t1], h in class C! and h(tg) =
h(t1) = 0. The functions h = h(t) represent the variations of v € 2! in these
natural local coordinates in which the Lagrangian function L has a local
representation L = L(q, ¢,t).

Proposition A.2.2. Given a Lagrangian function (of class C*, k > 3), the
action Ay, is differentiable and its Fréchet derivative dAr(7y) is given by

aan= [ I[ijm(t),t) / O (o)) |

for all variations h in the class considered above.

Proof: For an arbitrary O variation h one has:

A h)— A d [ :
dAL(Y)h = lims_o L”*SS) (v) :%/ L(y + sh, % + sh, t)dt| 4o,
to

SO

oL .
dAL(y)h = /[ (1,41 +8q<mt)h}dt,

which exists in a neighborhood of v € 21, is continuous at v and is continuous
in h at h =0. Then Ay, is differentiable at v and the above limit is dAr(y)h.
Integrating by parts and using h(tg) = h(t;) = 0 we obtain the result. [ ]

We say that v € 2! is an extremal of Ay, relatively to the variations of v
in the path space 2! if dAp(y)h = 0 for all h.

Theorem A.2.3. (Hamilton variational principle) A path ~ in the space
2 (qo, q1, [to, t1]) is an extremal of the functional Ay if, and only if, v = ~(t)
satisfies the Fuler—Lagrange equations

oL . oL .
dt{a (7, %t)] 8%(%%0—0,

Yt € [to,t1] and j=1,...,n

Proof: If v = ~(t) is an extremal of Ay, then from Proposition A.2.2 we have

t1 8L ' taL . .
0_/t0 {aq(v(t)w(t),t) /t %(V(T),W(T),T)dr hdt,
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for all h € C* such that h(ty = h(t1) = 0. If &(t) denotes the continuous
vector function between brackets, we will conclude that &(t) is constant.
In fact, if £ € R™ is any constant vector, the condition above shows that

o (9(t)—k)hdt = 0; let h(t) be such that i = &(t)—k, then j“ k)zdt =
0 which implies &(t) = k. So it is enough to choose h(t ft — k)dr
with k = :1 &(7)dr. Since

oL t oL
—(v(t),~(t),t) — T ,T)dT| =k
[aqw() (0.0~ [ o) 50.7)

one sees that %(’y(t), 4(t),t) is C! in t then (t) satisfies the Euler- Lagrange
equations
oL oL
.t A, t) =0, Vt € [to, t1].
dt[a (.7 )} aqj(vv ) [to, t1]
The converse is easy and we leave it to the reader. [ ]

Remark A.2.4. a- If L is C® and regular (deta(?an # 0), and () is an
extremal, then %(v(t), A(t),t) = ¢(t) is C* in t. Consider the equation
%—S(q, G,t) — ¢(t) = 0 and use the implicit function theorem to obtain ¢ as a
C! function of ¢ and ¢; in particular % is a C! function of ¢, then ~(t) is in fact
C?. b- If L is C? and regular, so vy is C?, one can develop the Euler-Lagrange
equations to obtain:

O?L 0?L . 0’L . 0L

— + —Qr + ——— —— =0,
0toq; " 0q,0q; " 9geog; " o,

and the regularity of L implies that these equations constitute a smooth
2nd-order C! system of differential equations in normal form:

q}ﬁt:Wk(tha‘"a(bwq'la"'aq.n% kzla"'vn'

c- The value Af(y), the formula for dAp(y) and the expressions of the
Euler-Lagrange equations depend on the local system of coordinates V' =
V(q1,--.,qn) on Q satisfying v([to, t1]) C V; as a matter of fact, we only con-
sidered the restriction of Az to the (open) set 21(V) = {7 : §([to, t1]) C V}.
The facts “Ay, be differentiable” and “ -« be an extremal of A;” do not de-
pend on the local system of coordinates V' = V(g,...,qdn) on Q satisfying
Y([to,t1]) C V. So, if 7 satisfies the Euler-Lagrange equations correspond-
ing to all local systems of coordinates V = V(qi,...,q,) on Q satisfying
v([to,t1]) C V, we use to say that « is a solution of the C3 regular Lagrangian
L. Moreover, the Euler-Lagrange equations have a covariant character under
this kind of local coordinates.
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Ezample A.2.5. The motions of the mechanical system of particles (m;, ;)
under potential forces, coincide with the extremals of the Lagrangian function
L =T —U where U = U(r) is of class C*, (k > 3) and 2T = 3 m;#;%. In

d ) — _oU. oL _ or _ . ..
f;z:t by lgT[(Jawton law we have 5 (m;7;) = ore but 5 = gm = Ml and
81"1 == 67‘7; :

Let (M?" w) be a symplectic manifold and H : M?" x R — R be a C?
function; this kind of function is called a time-dependent Hamiltonian
function. For each t € R define H : M?" — R by H,(P) = H(P,t), P €
M?" and let Xp, be the Hamiltonian vector field on M?" of Hamiltonian
function H; and symplectic form w. Then Xy, is, as before, characterized by
the condition

w(n, Xu,) = dH(n), Vn,

n a vector field on M?2". This way it is defined a time-dependent C'
Hamiltonian vector field Xz on M?" by the formula X (t, P) = Xg, (P),
for all P in M?". Given canonical coordinates U = U(q1,...,qn,P1,---,Pn)
on M?", such that w|y = Y_;_, dp; A dg;, one can write for Xg, (orXp) the
classical equations:

g = Milap) _OH

OH
; 7ta )y = ——o— ) 7ta ':17"'7 .
op; 8pi(qp ), Pi (¢:p,t), i n

dq;

If we add the equation { = 1 we obtain a vector field Xz on the manifold
M2 x R.

Let Q be a smooth manifold. Given a C® Lagrangian function L : TQ x
R — R one introduces a C? map FL : TQ x R — T*Q x R as follows: take
wy € T,Q, fix t, consider the restriction L, , of the map L; : TQ — R to the
fiber T,,@Q (here Li(w,) := L(w,,t)) and define the map

Wy € TpQ — dLy 4 (wy) € THQ.

The extension FL to TQ x R introduced by the formula FL(w,,t) =
(dLy 5 (wy),t) is also called the Legendre transformation associated to
L; here we remark that, usually, one defines the Legendre transformation
when we are dealing with autonomous systems, that is, when L = L, is
independent on time. In natural coordinates (g, q,t) of TQ x R correspond-
ing to a coordinate neighborhood V' = V(q1,...,qn) of z € Q, we have
L = L(qiaq.iat)v Wy = Z?:l qlaiq*l and st,:E(ww) = Z?:l %(qz7QZ»t)ddz<x)
This means that the vector w, € T, is sent into the one-form dL; ,(w,) =
Yo piddi(z) € TrQ where p; = g—i(q, g,t). In this computation we have ¢
and = = (¢;) fixed. Moreover, if the Legendre condition (LC) holds, that is,

. 2
if 9°L

53 is positive definite everywhere, we have that the map

oL
~ Od;

/LZ((_]'Z‘)ER"—)(])Z‘ )ER”
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is injective. In fact, let v1,v2 € R™, v1 # v9 and assume L;(v1) = Ly(v2). Call
f(A) = L(Avz+ (1 —=XNv1), A € R, and then f'(A) = Ly(Ava+ (1 —A)v1).(v2 —
v1). The function f’()) is increasing because vy # v9 and
" 0*L
"N = ((TqQ)()\Uz + (1 = Av1)(vz — v1)).(v2 — v1) > 0.
This means that f/(0) < f'(1); but
£(0) = Ly(vi)(v2 — v1) = Lg(v2)(v2 — v1) = f'(1)

which is a contradiction. On the other hand, u is a local diffeomorphism if,
and only if, L is regular. The final conclusion is that when L satisfies the
Legendre condition, F'L is a diffeomorphism between T'QQ x R and its image
FL(TQ xR) C T*Q x R.

Ezample A.2.6. Let (Q, (,)) be a smooth pseudo-Riemannian manifold and
U : Q — R a smooth potential function. Consider the Lagrangian function
given by L(w;) = 1/2(w,, w,) — U(z). One can show that FIL: TQ xR —
T*Q x R is a surjective diffeomorphism (that is, onto T*Q x R). In fact, the
map (¢;) € R" — (p; = g—(ﬁ) € R™ does not depend on U = U(z) and since

1/2(wy, wy) = 1/2<Z q‘iiv ZdjiJ =1/2 Zgij($>6ji4j7
T 04 =7 9q; o
we have p; = >, gi;j(x)q; with the matrix (g;;) = ((%, (%j» being symmet-
ric and non singular. Then it is clear that F'L is a surjective diffeomorphism.
Remark that in this example L is regular but not necessarily satisfies the
Legendre condition which occurs if, and only if, (,) is a Riemannian metric.

A Lagrangian function L is called a hyperregular Lagrangian if L is
regular and F'L is a diffeomorphism from 7'Q) x R onto T*@Q x R. The La-
grangian function of ExampleA.2.6 is a hyperregular Lagrangian. A technical
condition which implies that a C3-Lagrangian is hyperregular is the following:
for each fixed (¢, q), there exists ¢ = ¢(¢,q) > 0 such that

((9*L/0d*)(q, ¢, t).w).w > c(t, q)(w,w) Y§,w € R™,t € R.

(for a proof see Proposition 2.2 of [44]).

Assume it is given a C® hyperregular Lagrangian L : TQ x R — R. One
can associate to L a C?-map H* : T*Q x R — R; to each (p,,t) € T*Q x R
there corresponds (wy,t) = (FL)™*(ps,t) € TQ x R and define

HL(pI7t) = py(wy) — L(wg, t).

To any C? hyperregular Lagrangian L : TQ x R — R there correspond
Euler-Lagrange equations and it is well known that they are equivalent to
Hamilton equations of Xg:r defined on T*@Q x R
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Theorem A.2.7. Let L : TQ x R = R be a C® hyperregular Lagrangian,
HT : T*QxR — R be the associated Hamiltonian function and Wy ) € Ty @
be the tangent vector-field to a C?-path ~(t) € Q, t € [to,t1]. Ifpy) € Tj:(t)Q
is characterized by FL(wy),t) = (py@),t) then (t) satisfies the Euler—
Lagrange equations associated to L if, and only if, p,() s an integral curve
Of XHL .

Proof: Let us choose a local system of coordinates V = V(¢1,...,¢n) on Q
such that y([to,t1]) € V and consider two natural systems of coordinates:
(¢, Gi,t) on TQ x R and Darboux coordinates (p;,¢;,t) on T*Q x R. In
these coordinates, if w, = > | q'ié%_ and p, = > ., p;idg;, the condition
FL(wg,t) = (pg,t) means that p; = g—é(q,q,t), or simply, p = g—é(q,q,t),
which also determines ¢ = &(p, q,t) from the fact that L is hyperregular. But
HY(p,,t) = ps(ws) — L(wy,t) and so we obtain in these coordinates:

H"(p,q,t) = pg — L(q,4,t) = p® — L(q, D, t).

Remark that H” is C?, then we write:

OHL OHL OHL OL OL OL
dH" = d d dt = &d AP — —dq — —dt — —dP
ap P oy M1 o R P A T 7
that implies
. OHL oHL oL OHEL oL
Gg=® = , =—— and =——.
dp Jq dq ot ot

Taking into account the Euler-Lagrange equations

,_doL oL omt

“a'o)) "o ag

one obtains the Hamilton equations. Then, if ¢(¢) satisfies the Euler-Lagrange
equations it follows that (p(t),¢(t)) is a solution of the Hamilton equations.
The converse is analogous. [ ]

Remark A.2.8. Let H : T*Q x R — R be a C? Hamiltonian function. We
say that H is regular (resp. satisfies the Legendre condition (LC)) if, in
a natural system of coordinates, H = H(p, q,t) admits %212{ = (agjgaj
non singular (resp. positive definite) matrix. As before, these notions do not
depend on natural coordinates. If, now, L : TQ xR — R is a C? hyperregular
Lagrangian and H” : T*@Q x R — R its associated C? Hamiltonian function,
we claim that L satisfies (LC) if, and only if, H” satisfies (LC). In fact, in

natural coordinates we have the identity in (g, ¢, t):

) as a

oL .OL .
HL(Q) aiqvt) = q87q - L(Qaq7t)
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Then, by derivative with respect to ¢; one obtains

” . OH" OL
Z 8‘17’3% apr (q’ %’t)) =0

Since L is regular it follows that ¢ = %(q, 56 t). Again, by derivative one

sees that the matrix 92L/d¢? is the inverse of
oL
O*H" |op®(q, 7=, 1).
/0p*(q, 9’ )

This last fact proves the claim.

Remark A.2.9. Starting from a C? hyperregular Hamiltonian function H :
T*Q x R = R and, by using the C'- Legendre transformation FH : T*Q x
R — T**Q x R, one obtains a C''-Lagrangian function L:T*Q xR — R.
Since TQ and T**Q have a natural identification we may think L as a function
defined on T'Q x R. A main point is what follows. If an initial C® hyperreg-
ular Lagrangian L is given, then it induces H” which is a C? Hamiltonian
obtained with the diffeomorphism FL; we know that H” is regular (but not
necessarily hyperregular) then FH’ is not necessarily injective, besides the
fact that FH™ is a local diffeomorphism. Then, the relevance of condition
(LC) appears. In fact, if L is C3 and satisfies (LC), FL is a diffeomorphism
onto its image U* C T*Q x R and H” : U* — R satisfies also (LC); then
FHL . U* - T**Q xR = TQ xR is a diffeomorphism onto its image and L is
defined on this last image. But we will show, now, that the image FH L)
is equal to T7Q x R and that L is precisely L. In particular L is C3. To check
this we recall that the study of FL on TQ x R goes back to the study, in
(local) natural coordinates, of the map:

oL
GeER" - p=—

i 1) € R"
aq(q,% ) €

that gives the C? inverse ¢ = ®(p,q,t), and so p = %(q,@(p,q,t),t) is an
identity. The C? Hamiltonian H” is given in natural coordinates by

The definition of FH” depends, analogously, on the map

a L
= t
Pey=—5 (p,q.t)

which has an inverse: p = ¥(q,y,t) (p runs in an open set of R™). But

OH gy 0P OLOD
ap p,q,t) = pap aq Ip
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and then SHE 5
H L L
ap(aq’q’) (q’aq’) q

This shows that FHY : U* — T'Q x R is the inverse of FL and then FH is
a C? diffeomorphism. Finally the expressions

L=y —H"¥,q,1)

and
L(qadja t) = p@ - HL(pv q, t)v

show that L is defined on TQ x R and coincides with L.

Remark A.2.10. Let Q be a smooth differentiable manifold. Given L : TQ —
R, a C? regular (autonomous) Lagrangian, the (autonomous) Legendre trans-
formation FL : TQ — T*Q defines a symplectic (exact) structure (T'Q,wr,)
with the 2-form w;, = (FL)*df induced by the natural 1-form 6 introduced
in Example A.1.2; in this case the C? map E : TQ — R defined as

E(wg) = FL(wy)(ws) — L(wy)

is called the energy of the Lagrangian L. It can be proved that the pair
(E,wr) defines a C'- Hamiltonian vector-field on the symplectic manifold
(TQ,wr) equivalent to the Euler-Lagrange equations corresponding to L.

Even if we have the C® Lagrangian L : TQ — R, not necessarily regular,
it makes sense to consider a map called the Euler—Lagrange differential FL
taking a C'-vector field X on TQ into a C' one-differential form on 7'Q :

X = EL(X) := i(X)FL*w — dE

where w = df is the canonical symplectic 2-form on T*Q. The elements X
such that EL(X) = 0 (when they exist) are called the Lagrangian vector
fields for L. A second order vector field on T'Q is a C'-vector field X that
satisfies dTg X, = v for all v € T'Q. The following result is Theorem 3.5.17 of
[1].
Theorem A.2.11. Let X be a Lagrangian vector field for a C® Lagrangian
function L : TQ — R (not necessarily reqular) and assume X is second order.
Then, in natural coordinates of TQ we have L = L(q, q) and if (u(t),v(t)) is
an integral curve of X, it satisfies Euler—Lagrange equations:
d d oL oL
= — | = (u(t t = —(u(t t)).

i e 000 = Gt o0
Moreover, if L is reqular, there exists one only Lagrangian vector field X for L
and, since i(X)FL*w = dE, X is the (second order) Hamiltonian vector field

on the symplectic manifold (TQ,wyr) associated to the Hamiltonian function
E.
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Remark A.2.12. Lagrangian systems may have external forces; in fact if F :
TQ — T*Qis a C* field of (external) forces and L : TQ — R is a C? regular
Lagrangian, there is one only second order vector field X such that

EL(X)(vz) = 75(Fvg),  for all v, € TQ.

Taking natural coordinates as in the theorem above we obtain the Lagrange
equations for the so called unconstrained Lagrangian system with external
forces and immediately prove the remark. It is also possible to derive the
Lagrange equations for constrained systems (with or without external forces)
but we leave this as an exercise to the reader.

Remark A.2.13. Let us come back to a non-autonomous C? Hamiltonian
function H : M?" x R — R and construct the manifold M?" x (R x R) which
is an even dimensional manifold. If M2 is symplectic with 2-form w (M be-
ing T*Q for example) and since RxR = {(e, s)} has defined the 2-form deAds,
one defines on M?" x (R x R) the symplectic form & = 7w + 75 (de Ads), m
and 7o being the first and second projections. Associated to a local system of
Darboux coordinates p, q) for M?" (see Example A.1.2 for the natural coordi-
nates of T*Q), we have that M?" x (R xR) has local coordinates (p, e, q, s). We
permute them, properly, and obtain Darboux canonical coordinates (p, ¢, e, s)
because @ is locally given by dp Adq+de Ads. Define K : M?" x (RxR) — R
to be the function K (P, (e,s)) = H(P,s) +e, P € M?", and let Xx be the
(autonomous) Hamiltonian vector field of Hamiltonian function K and sym-
plectic form @. The local expressions for X with Hamiltonian K(p, g, e, s)
are

. 0K OH

0K 0H . 0K 1 0K 0H
g - - — — —

“op op P Toq T ag TT 9 T T Tas T os

which is a decoupled system because the first three equations do not depend
on the variable e. The last equation can be integrated after the determination
of motions given by the first three ones. The function K does not have critical
points because %—I; = 1; then for any number k, the submanifold given by
K =k is an invariant manifold for the flow on M>?" x (R x R). The motions
on this invariant manifold are the same as those of the extension of a time-
dependent Hamiltonian vector-field considered above: Xg (s, P) = Xu, (P),
P € M?", with § = 1, that is, the extended Hamiltonian vector-field
X g defined on M2" x R.



B Mobius transformations and the Lorentz

group
by José Natario

B.1 The Lorentz group

Recall that the group of all isometries of a Minkowski spacetime is the so-
called Poincaré group . The Lorentz group is the subgroup of the Poincaré
group formed by all linear isometries, or, equivalently, all isometries which fix
the origin. Consequently the Lorentz group determines the relation between
the observations of two inertial observers at a given event in a general curved
spacetime.

If {eg, e1,e2,e3} is an orthonormal basis for the Minkowski 4-spacetime
and

v = voeo + v1e1 + 02e2 + v3e3

is a vector, then

(w,0) = — ()" + () + (1?)° + (0%)°
~1000\ /o°

0100 [ ot

= (et ) Lo || e
0001/ \o®

= a'nx

where z is the column vector of v’s components and n = diag (—1,1,1,1). If
L is a Lorentz transformation and A its matrix representation with respect
to the chosen basis, then one must have

(Lv, Lv) = (v,0) < (Az)' 5 (Az) = 2z < 2! (A'nA) z = z*na.

Since this must hold for all € R* and both A’npA and 7 are symmetric
matrices, we conclude that

Proposition B.1.1. The Lorentz group is (isomorphic to)

03,1)={AcGLM): A'nA=n}.

W.M. Oliva: LNM 1798, pp. 195-221, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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Ezample B.1.2. If R € O (3) then

satisfies

/(=1 0\ _ (-10
“\0RR) 01
and thus R € O (3, 1). It is easy to see that in fact
0(3) = {Ee 0(3,1):Re 0(3)}
is a subgroup of O (3, 1) isomorphic to O (3). For instance, since
cosf 0 —sinf
00 0 |eom

sinf® 0 cos®

for any 0 € R, we know that

1 0 0 O
0cosf 0 —sinf

0sinf 0 cosé
this Lorentz transformation is said to be a rotation about es by an angle 6.

Example B.1.3. Not all Lorentz transformations are rotations. For instance,
defining
coshu 0 0 sinhu
0 10 O
0 01 O
sinhw 0 0 coshu

B =

one sees that
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coshu 0 0 sinhw —-1000 coshu 00 sinhu
‘ 0 10 O 0100 0 10 O
BB 0 01 0 0010 0 01 0
sinhw 0 0 coshu 0 001 sinhu 0 0 coshu
—coshu 00 sinh u coshu 0 0 sinhu
- 0 10 0 0 10 O
0 01 O 0 01 O
—ginhu 0 0 coshu sinhu 0 0 coshu
sinh? u — cosh?u 0 0 0
_ 0 10 0 _
- 0 01 0 =N
0 00 cosh? u — sinh? u

and therefore B € O(3,1). This Lorentz transformation is said to be a boost
in the es direction by a hyperbolic angle u.

Let us now recall briefly what is meant by active and passive transfor-
mations. Setting
E = (eo €] ey eg)

it is clear that
V= voeo +ole; +vles + v3e3 = FEzx

and consequently
Lv=L(Ez)=F (Az).

In particular,
LE = (Leg Ley Le; Leg) = L(EI) = E(AI) = EA.

Thus in the new orthonormal frame E' = LE the same vector v has new
coordinates =’ such that

v=FExr=F171 < FEx=FEAx
ie.,
2 = Az

Thus if A represents an active Lorentz transformation L, A~' represents
the corresponding passive transformation, yielding the coordinates of any vec-
tor on the orthonormal frame obtained by applying the active transformation
to the vectors of the initial orthonormal frame.

Ezxample B.1.4. Let B represent a boost in the e3 direction by a hyperbolic
angle u; then an event with coordinates

SIS
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in the initial frame E will have coordinates

t coshu 00 sinhu t
| 0 10 O x
y | 0 01 0 Y
z sinhwu 0 0 coshu z
coshu 00 —sinhu t

B 0 10 0 x
= 0 01 0 y
z

—sinhu 00 coshwu

tcoshu — zsinhu
T

Yy
zcoshu — tsinh u

in the transformed frame E’. In particular,
Z' =0« zcoshu — tsinhu = 0 < 2 = ttanhu

and we see that the transformed frame corresponds to an inertial observer
moving with speed v = tanhu with respect to the inertial observer repre-
sented by the initial frame.

If A€ 0O(3,1) then
A'nA =n = det (A'nA) = detn = —1 < — (det A)? =—1odetd==+1.

Now consider the four matrices

I0 -10
1,2(0_1>,(9<0 I>,92@,

all of which are trivially in O(3,1). We see that
det/ = —det X = —det@ =det2=1

and consequently there are matrices in O (3,1) with either value of the de-
terminant. Since the determinant is a continuous function, it follows that
O (3,1) has at least two connected components.

Also, if I, S, T, U are the Lorentz transformations represented by I, X/
O, (2 then

Ieo = Seo = —Teo = —er = €y.

Now if L is a Lorentz transformation then define

f(L) = (eo, Leo) .

Since
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<L60,Le()> = (eo,e0> =-1
one gets from the backwards Schwarz inequality,
|f (L) = |{eo, Leo)| = |eo||Leo| = 1.

Since
f)y=fO&)=-fT)=-fU)=-1

we see that I and S cannot belong to the same connected component of the
Lorentz group as T' and U. Thus O (3, 1) has at least four distinct connected
components. We summarize this in the following

Proposition B.1.5. O (3,1) is the disjoint union of the four open sets

1}
1}

0l (3,1)={A€0(3,1):detA=—f(A
(

)
0L (3,1)={A€0(3,1):det A = f(A)

Ol (3,1)={A€0(3,1):det A = f(A) = —1};
OF (3,1)={A€0(3,1): —det A= f(A) =1},
Informally, 01 (3,1) is the set of Lorentz transformations which pre-

serve both orientation and time orientation; Oer (3,1) is the set of Lorentz
transformations which preserve orientation but reverse time orientation (and
consequently must reverse space orientation as well); o' (3,1) is the set of
Lorentz transformations which reverse orientation but preserve time orienta-
tion (hence reversing space orientation); and o+ (3,1) is the set of Lorentz
transformations which reverse both orientation and reverse time orientation
(hence preserving space orientation).

Exercise B.1.6. Show that (i) O (3,1) = 7Ol (3,1); (i) O' (3,1) =
SOL (3,1); (iii) O (3,1) = UOL (3,1).

Of these disjoint open subsets of the Lorentz group only 01 (3,1) contains
the identity, and can therefore be a subgroup.

Exercise B.1.7. Show that Ol (3,1) is a subgroup of O (3,1) (O_T|r (3,1) is
called the group of proper Lorentz transformations).

It is possible to prove that OI_ (3,1) is connected (but not simply con-
nected; as we will see, 7y (Ofr (3, 1)) =7Zs).

B.2 Stereographic projection

Recall that
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S? ={(z,y,2) eER*: 2® +y* + 2> = 1}.

The points N = (0,0,1) and S = (0,0, —1) are said to be the North and
South poles of 52, and will play special roles in what follows.
We define
a= {(m,y,z) eR?:z= 0}

and identify « with C by identifying (z, y,0) with ¢ = x+iy. The stereographic
projection ¢ : S*\ {N} — C is the map that to each (z,y,z) € S?\{N}
associates the intersection ¢ of the line through (0,0,1) and (z,y, z) with .
Thus

C(m,y,z) :)‘Lly;
(22 +y2)?
where )
)\ (x2+y2)§
1 - 1—2
ie., .
T +1y
C(x’y7z) = 172 *

Introducing spherical coordinates (r,6, ) in an appropriate open set of
R3 through the inverse coordinate transformation

x = rsinfcosy
y = rsinfsin g
z =rcosf

we see that S? is the level set » = 1 and hence (6, ) are local coordinates in
the corresponding open set in S2. Thus we can write

sin 6 cos ¢ + i sin 6 sin sinf
= e,

C(0,p) =

1 —cos@ " 1—cosf

One can think of this as a coordinate transformation in S2. The derivative
of this transformation is seen to be given by

) .
dC = cos@(lfcosﬁ);sm eedeJri sin 0 ¢Pdip
(1 — cosf) 1 —cosf
1 ; sinf |
=———¢"Ydi+i———e'?d
1—cosf° JrZ1—cos€e ?
and hence
- 1 in” 0
dCde = ————dp® + — 72
(1 —cos®) (1 — cosb)
1
= ds*
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where ds? is the usual line element of S2. Since

L4 (T=1+ sin?0  1—2cosf+cos?f+sin’0 2
(1 — cosh)? (1 —cos )’ 1—cos#d
we see that
4 _
d52 = deCdC
(14¢C)
I S 2
BCETEreT) (da® + dy?) .

Thus if one sees the stereographic projection as a map ¢ : S?\ {N} —
C ~ o ~ R? we see that it is a conformal map , i.e., it satisfies

<upa”p>sz = (7 (p) <<*up7 C*%>R2

for all u,,v, € T,5% and all p € S?\ {N}. Another way of putting this is
to say that the stereographic projection maps circles on 73,52 to circles on
T<(p)R2 (or that it maps infinitesimal circles to infinitesimal circles).

A circle in S? is just a geodesic sphere, i.e., the image through the expo-
nential map of a circle on some tangent space. It is easy to see that any circle
is the intersection of $? C R? with some plane 8 C R3.

Proposition B.2.1. Ify C S? is a circle then ¢ (v) C C is either a straight
line or a circle depending on whether or not N € .

Exercise B.2.2. Prove proposition B.2.1.

B.3 Complex structure of S?

Obviously one can define another stereographic projection E S\ {S} = C
by associating to each (z,y, z) € 52\ {S} the intersection ¢ of the line through
(0,0,1) and (z,y, z) with «. Crucially, however, one now identifies o with C
by identifying (z,y,0) with E: x — 1y. Thus

C(ayyz)=a—
(22 4 y2)2
where )
)\ - (132 +y2)§
1 14z
ie., ‘
~ T — 1y
C(2,y,2) =

1+2°
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Notice that on S?\ {N, S} one has

and consequently ¢ o (7! : C\ {0} — C\ {0} is the map ¢ ~ % In addition
to being smooth, this map is complex analytic.

Definition B.3.1. The set

a- e fe))

is said to be an analytic atlas for S2, which is then said to possess the struc-
ture of a (1-dimensional) complex manifold .

Clearly having a complex structure is a stronger requirement than having
a differentiable structure. When a manifold possesses this kind of structure
the natural functions to consider are no longer smooth functions:

Definition B.3.2. A map f : S? — S? is said to be complex analytic if and
only if both complex functions of complex variable (o fo (™! and (o fo C
are complex analytic .

Let f : S2 — 52 be a complex analytic automorphism . If f(N) =
then g = C o f o ("' must be holomorphic in C and

lim g (¢)] = +oo.

[¢l—=+o0
If f(N)=p"# N, then f(p"”) = N for some p”" # N.If ¢ = ((p’) and
¢" = ¢ (p") then g will have a singularity at (" as we must have

lim =400
Jim, 9 ()]

and will necessarily satisfy

lim g (¢)]=¢".

[¢l=+o0

We conclude that any complex analytic automorphism of S? can be rep-
resented by an analytic function on C with at most one singularity and with
a well defined limit as |{| — +o00. This is often summarized by extending g
to CU {oo} and writing g (00) = oo in the case f(N) = N and g (c0) = ¢/,
g (¢") = oo in the case f(IN) # N. Notice that one can identify S? with
CU {0} and hence f with g. This could have been done by using the South
pole chart, and one should be careful to stress which chart is being used.
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Example B.3.5. Let f : S? — S? be represented by g : CU {oc} — C U {c0}
given by ¢ (¢) = ¢ + b, with b # 0 (thus g (c0) = 00). Clearly f is bijective
and (o fo (™! = g |¢ is holomorphic. As for Eo fo 2*17 it is given on the
overlap of the North and South pole charts by

~ 1 1 ¢
h(o:g(%) T Iab 41

and since f(N) = N and ¢ (N) = 0 the above expression is valid also for

¢ =0. Thus
~ 4 1 1
Cofo( (C\{ b} C\{b}

is seen to be holomorphic on its domain, and hence f is a complex analytic
automorphism. Notice by the way that h can be extended to C U {oco} by
setting h (f%) = 00, h(o0) = % These are the South pole chart versions of

g(=b)=0,9(0) =0

Exercise B.3.4. Show that the functions represented by al (a # 0) and %
are complex analytic diffeomorphisms.

Clearly any composition of complex analytic automorphisms is a complex
analytic automorphism. Let g represent a complex analytic automorphism.
If g (00) # oo then g (a) = oo for some a € C. Consequently

g1(<)=g(a+z>

represents a complex analytic automorphism satisfying ¢; (c0) = oo. If
g1 (0) = b #0, then
92()=91(¢)—b

satisfies g2 (00) = 0o and go (0) = 0. Thus g must be holomorphic in C. On
the other hand, the function

must also be holomorphic in C. If £ > 1 is the order of the zero of go at
the origin, then g% has a pole of order k at the origin, and consequently its
Laurent series is

1 +oo )
m @ 2

Thus the Laurent series of hq is
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k

ha (g) = Z a_ifi

1=—00
and we conclude that a; = 0 for ¢ > 1. Consequently,

Ot
92 _%+...+ao_a,k+...+aogk

and in order for this function to be holomorphic one must have a_;1 = ... =
ag = 0. Thus

92 (¢) = e¢*

for some ¢ € C\ {0}, and since g, must be bijective in C we conclude that
k = 1. Notice that

yields

and hence hs is indeed holomorphic.
It is now easy to prove

Proposition B.3.5. Any complex analytic automorphism of S? is a compo-
sition of automorphisms represented by % and al +b (a £0).

Exercise B.3.6. Use this and proposition B.2.1 to prove that any complex
analytic automorphism of S? sends circles to circles.

B.4 Mobius transformations

Definition B.4.1. The group of Mobius transformations is the group M
of all complex analytic automorphisms of S? .

To understand the importance of this group notice that

ds? = Ld dg

(9(¢)) (1+g§)2 gag
4 _
- OF () dd
Trg@ap’ 7O«

1=/ =\ 2

_9TOH) 4
(1+g9)° (1+¢0)

1=/ 1 =\ 2
= i1(+29€§) e
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In other words, complex analytic automorphisms are conformal. Indeed,
it can be shown that the group of all complex analytic automorphisms of 52
is the same as the group of conformal orientation preserving differentiable
automorphisms of S2.

As we’ve seen, the Mobius group is generated by compositions of auto-
morphisms represented by % and a + b (a # 0). All of these are of the

form
aC+b
e +d

with ad — bc # 0 (notice that if ad — be = 0 the above expression yields a
constant function). Conversely, all automorphisms represented by functions
of the kind above can be obtained as compositions of the automorphisms
which generate the Mobius group. This is obvious if ¢ = 0; if ¢ # 0, on the
other hand, one has

a(+b acC+bc+ad—ad

cC+d o +d
bc — ad

Yl rd

Consequently all of the above functions represent Mobius transformations.
Consider the map H : GL (2,C) — M defined by

ab) al+b
H<cd)c<+d'

Exercise B.4.2. Show that H is a group homomorphism.

In particular this proves that the set of all complex analytic automor-
phisms represented by the functions of the kind we’ve considered is in fact
M.

To compute the kernel of H we solve the equation

ab) aC+b o _
H(Cd>_(@CC_Fd—(@b—C—Oanda—d.

Thus ker H = {al : a € C\ {0}}.
We know that M is isomorphic to

GL (2,C)
ker H

Let A be a representative of an equivalence class in this quotient group.
Since det (aA) = a?det A and det A # 0 (as A € GL(2,C)) we see that each
equivalence class has at least one representative F with determinant 1. In
fact, since det (aE) = a?, we see that each equivalence class has exactly two
such representatives, £ FE. Since
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SL(2,C)={A € GL(2,C):det A =1}

is trivially a subgroup of GL (2,C), we therefore conclude that M is isomor-
phic to
SL(2,C)
{1} -

From now on we can represent any Mobius transformation by a function

aC+b

g@)=C<+d

satisfying ad — bc = 1.

Exercise B.4.3. Show that given such a representation every Mdbius trans-
formation with @ + d # +2 has exactly 2 fixed points, and every Mobius
transformation with a + d = +2 has exactly 1 fixed point. (Consider the
cases ¢ # 0 and ¢ = 0 separately).

Suppose that (p, ¢; and (5 are three distinct complex numbers. Then the
Mobius transformation represented by

_ G =G (=G
-G (-G

satisfies g ({p) =0, g (¢1) = 1 and g (¢2) = oo. Furthermore, if h is the repre-
sentation of any other Mdbius transformation satisfying the same conditions
then i = h o g~! represents a Mdobius transformation satisfying i (0) = 0,
i(1) =1 and i (00) = 0o. Setting

g(¢)

aC+b
c+d

i(Q) =

we see that
i(0)=0=b=0;
i(00) =00=¢c=0;
=1

i (1)

1=

a
d
i.e., 7 is the identity, and hence h = g.

Exercise B.4.4. Use this to prove that any Md&bius transformation is com-
pletely determined by the three (distinct) images of three distinct points in

S2.
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B.5 Mobius transformations and the proper Lorentz
group

If {eg,e1, e2,e3} is an orthonormal basis for Minkowski spacetime and
V= ero + vlel + U2e2 + v3e3

is a vector, then we associate to v (and to this basis) the matrix
I (09403 vl +iv?
V=5 (m T aa et (B.1)

(we shall explain the % factor in identification (B.1) later). Notice that

V € Hy (here Hy is the set of all Hermitian 2 X 2 complex matrices, i.e.,
all 2 x 2 complex matrices V satisfying V* = V); in fact, the map defined
above is a bijection between Minkowski spacetime and Hy. This map is useful
because

detV = 2 (097 = (%) = (0!)” = (7)%) = 5 (w,v).

As is well known GL(2, C) acts on Hy through the so-called adjoint action,

9-V=9Vyg
for all g € GL(2,C), V € Hy, as
(9Vg™) =(97)" Vg =gVyg"
On the other hand,
det (¢Vg*) = det gdet V det g* = \detg|2 det V'

and thus this action preserves the determinant iff |det g| = 1. Now any matrix
g € GL(2,C) satisfying |det g| = 1 is of the form
g= et h
where '
det g = e
and h € SL(2,C), and

g-V=gVg* = (ei%h) 1% (ei%h) — e R VelSh=h*Vh=h-V.

Thus one gets all determinant-preserving adjoint actions of GL(2,C) on
Hy from the elements of SL(2,C).

Notice that Hy is a vector space, and the identification (B.1) is clearly
a linear isomorphism. On the other hand, the adjoint action of SL(2,C) on
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H is easily seen to be by linear determinants-preserving maps (or, using
the identification (B.1), by linear isometries). We therefore have a map H :
SL(2,C) — O(3,1). This map is a group homomorphism, as

H (gh)v = ghV (gh)" = ghVh*g" = g(hVh") g" = H (9) H (h) v

for all V' € Hy, g,h € SL(2,C) (we use our identification to equate vectors
on Minkowski space to Hermitian 2 x 2 matrices).

Exercise B.5.1. Prove that ker H = {+1}.

We now prove that SL(2,C) is simply connected. In order to do so we’ll
need the following quite useful

Lemma B.5.2. Any matriz g € GL(n,C) with det g > 0 may be written as
g = RDS, where R,S € SU (n) and D is a diagonal matriz with diagonal
elements in RT.

Recall that
SU(n)=SL(n,C)NnU (n)={R € GL(n,C): RR* =1 and det R =1}.

To prove this lemma we notice that if g € GL(n,C) then ¢g*g is a nonsin-
gular positive Hermitian matrix, as
(9°9)" =9"(9") =9"9g
and
v g gu = (gv)" gv >0

for all v € C™\ {0}. Thus there exist S € SU (n) and a diagonal matrix A
with diagonal elements in R™ such that

g g =S*AS.

Moreover, we can write A = D? with D is a diagonal matrix with diagonal
elements in R*. Therefore
g'g = S*DDS
& g*gS*D' = S*DDSS*D™!
& gS Dt = (¢")'S*D
s gSTID7 = (gfl)* S*D
= (DSg‘l)f1 = (DSg_l)*
ie.
DSg ' eU(n).
If det g > O then clearly det (DS g_l) > 0 and consequently
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DSg e SU(n)< R= (DSg_l)f1 € SU (n)

with
gS™'D™' =R & g=RDS.

In particular if g € SL (2,C) then we must have det D = 1 and hence

x 0
D:(os)

for some x € R*. Notice that since x and % are the eigenvalues of ¢g*g, they
are uniquely determined up to ordering.

Let g : [0,1] — SL (2,C) be a continuous path satisfying g (0) = g (1) = I.
For each value of ¢ one can use the decomposition above to get

s0=ro ("5 1) s
x(t)
and it is clear that x (t) is continuous and x (0) = z (1) = 1. Since RT is simply
connected we can continuously deform this closed path into the constant path
x (t) = 1, thus continuously deforming g (¢) into R (t) S (t) € SU (2) (which
consequently is a continuous closed path, even if R (t) and S (¢) by themselves

are not). We conclude that if SU (2) is simply connected then SL (2,C) is
simply connected as well.

Exercise B.5.3. Show that
a b 9 2 2
SU(2)={<_ba> : (a,b) € C* and |a|” + |b] :1}

and that therefore SU (2) is a smooth manifold diffeomorphic to S®. Conclude
that SU (2) (and hence SL (2,C)) is simply connected.

A similar technique can be employed to show that 01 (3,1) is pathwise
connected: if L is a proper Lorentz transformation then clearly

Leg = coshueqy + sinh ue

for some u > 0 and e € (eo)J‘. If R is any rotation (i.e., any proper Lorentz
transformation preserving eg) sending es to e, we have

R~ 'Ley = cosh ueg + sinh ues.
Thus if B is a boost in the ez direction by a hyperbolic angle u, we have
B_lR_lLeo =€

and consequently S = B~'R™'L is a rotation, and L = RBS.
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Exercise B.5.4. Use the decomposition above to show that Ol (3,1) is
pathwise connected. However, one cannot use this decomposition to conclude
that 01 (3,1) is simply connected (in a similar fashion to what was done for
SL(2,C)). Why not?

Exercise B.5.5. Show that H (SL(2,C)) C Ol (3,1) (hint: start by showing
that H is continuous).

We now compute the dimension of SL (2,C) by computing its tangent
space at the identity. Let g : (—e,¢) — SL(2,C) be a path satistying g (0) =
1. If we set

we have

=a(t)dt)+at)d(t)—c(t)d(t)—c(t)d(t)=0
=a(0)+d(0)=0

(where the dot represents differentiation with respect to t), indicating that
T7SL (2,C) can be identified with the vector space of traceless 2 x 2 complex
matrices. This vector space has real dimension 6, and therefore we conclude
that SL (2,C) is a 6-dimensional real manifold.

Analogously we determine the dimension of 01 (3,1) by computing its
tangent space at the identity. If A : (—e,e) — OIF (3,1) is a path satisfying
A(0) = I then

A () nA(t) =1
= A WA + A (O A () =0
= A (0)n+n4(0)=0

and we then see that TIOl (3,1) can be identified with the vector space of
4 x 4 real matrices A satisfying

Alp+nA=0s nA)' +9A =0

i.e., such that nA is skew-symmetric. Since 7 is nonsingular, we conclude that
the dimension of TIOI_ (3,1) is equal to the dimension of the vector space of
4 x 4 real skew-symmetric matrices, i.e., 6.

Both SL (2,C) and Ol (3,1) are connected Lie groups, and the map H :
SL(2,C) — Ol (3,1) is a Lie group homomorphism (i.e., is a smooth map
which is a group homomorphism). Because they have the same dimension



B.6 Lie algebra of the Lorentz group 211

and ker H is finite it follows that H is surjective in a neighborhood of the
identity, i.e., is a local isomorphism.

It is a theorem by Lie that up to topology all locally isomorphic connected
Lie groups are the same. More accurately, two locally isomorphic connected
Lie groups have the same universal covering, where the universal covering of a
connected Lie group G is the unique Lie group U which is locally isomorphic
to G and simply connected. In that case there exists a surjective projection
homomorphism h : U — G extending uniquely the local isomorphism.

In our case one then has that SL(2,C) is the universal covering of
01 (3,1), H is surjective and

~ SL(2,C) SL(2,C)

+ _
0y (3,1) = ker H — {£I} =M

We summarize this in the following

Theorem B.5.6. The group of proper Lorentz transformations 01 (3,1) is
isomorphic to the group of Mobius transformations M.

It may sound a bit strange that transformations between proper inertial
observers are the same thing as conformal motions of the 2-sphere. Actually
this relation is surprisingly natural, as we shall see.

B.6 Lie algebra of the Lorentz group

If G is a Lie group, its tangent space at the identity g = TG can be given
the structure of an algebra (called the Lie algebra of G) by introducing the
so-called Lie bracket. In all the cases we’'ve seen G was a group of matrices,
and hence g was a vector space of matrices. In this case the Lie bracket is
just the ordinary commutator of two matrices: if A, B € g then

[A, B] = AB — BA.

It is a theorem by Lie that two Lie groups have the same Lie algebra
iff they are locally isomorphic. Thus to study the Lie algebra o(3,1) of
the Lorentz group O (3,1) we can simply study the Lie algebra sl(2,C) of
SL(2,C). We saw that sl(2,C) is the space of all traceless 2 x 2 complex
matrices, and thus it is not only a real vector space of dimension 6 but also
a complex vector space of complex dimension 3. A convenient complex basis
for s1(2,C) is given by the so-called Pauli matrices ,

o= (03),
(:9):
(65)

02

03
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These are Hermitian traceless square roots of the identity: one has
(00)* =1

for k =1,2,3. In fact, ¥ = {I, 01, 02,03,il,i01,i09,i03} form a group under
matrix multiplication.

Exercise B.6.1. Check that the multiplication table

01 02 03
g1 I iUg —iO'Q
09 7’L'O'3 I iJl
g3 iO’Q —iUl I
is correct. Use it to show that X is indeed a group and complete its multipli-
cation table, and to check that the commutation relations

[01,02] = 2i0s;
o2, 03] = 2ioy;

[0'37 0'1] = 2i0’2
hold.

To get a real basis for s[(2,C) we can take the matrices

1
By, = 50k

)
Rk = _50-16

(k=1,2,3), where the % factors were introduced to simplify the commutation
relations. The elements of a basis of a Lie algebra are often called generators
of the algebra.

Exercise B.6.2. Show that the commutation relations

[B1, Ba] = —R3; [Ba, Ba] = —Ry; [Bs, Bi] = —Ry;
[R1, Ro] = R3; [Ra, R3] = Ri; [R3, R1] = Ry;
[B1, R2] = Bs; [B2, R3] = Bi; [Bs, Ri| = Ba;
[R1, Ba] = Bs; [Ra, B3] = Bi; [R3, Bi] = B

hold.

Notice in particular that the real space spanned by {R1, Ra, R3} is closed
with respect to the Lie bracket, and thus forms a Lie subalgebra of s((2,C).
This corresponds to the Lie subgroup SU(2,C) of SL(2,C) (or alternatively
to the Lie subgroup SO (3) of Ol (3,1)), as we shall see.
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If G is a Lie group of matrices and g is its Lie algebra then e4t € G for
all A€ gandt € R, and in fact all elements of G are of this form. Then the
entire Lie group can be obtained from its Lie algebra by exponentiation (this
is the basic fact underlying Lie’s theorems).

The Lie algebra s((2,C) can thus be made to act on Minkowski space
through the so-called infinitesimal action

A-vzi(e‘qtm) lt=0

dt
_ % (eAtV (eAt)*) o

d .
— @ (eAtVeA t) |t:0
_ (AeAtVeA*t —|—eAtVA*eA*t) le—o
= AV + AV*

(where once again we use identification (B.1)). In particular if A is one of the
above generators, and noticing that since the Pauli matrices are Hermitian
one has

(B)" = By;
(Rp)" = — Ry

(k=1,2,3), we see that

Bk-UZBkV+VBk={Bk,V};
R, -v=R,V+VR, = [Rk,V]

Ezample B.6.3. One then has
B -v—l 1oy 1 00 4+ 03 vl 4 40?
3 “2\0-1 V2 vl — w2 9 — 3
+1 0 4+ 03 ol 4 0? 1 10
vl —?2 9 =03 J 2\ 0—-1

V0403 ol 402 n 1 0 03—l — 40
o —vl +iv? = 03 2v2 \ vt —iv? =0 + o3

00 + 03 0
0 —00 03

- %

-2

3 0001 20
|0 _fo0000 vl
o | foo000 v?

20 1000 v3

and it is therefore clear that
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corresponds to the Lorentz transformation represented by

0001
0000
0000
1000

e 1000 oo

:Z u=" 0000 +Z

— (2n)! 1 0000 o
0001

1000
0000
0000
0001

exp | u

= coshu

i.e., a boost in the ez direction by a hyperbolic angle « (which can then be
identified with the M&bius transformation e*(). For this reason one says that

B3 generates boosts in the es direction.

Exercise B.6.4. Use the same method to show that B; and Bs generate
boosts in the e; and —e, directions, respectively, and that R, Rs and R3 gen-
erate rotations about —ej, e and —e3. Show that the elements of SL (2, C)
corresponding to these Lorentz transformations by a hyperbolic angle u or

an angle 6 are

+oo

:Z%

u2n+1

(2n+1)!

+ sinh u

0001
0000
0000
1000

n

0001
0000
0000
1000

0001
0000
0000
1000

coshu 0 0 sinhu

0
0

00 O
00 O

sinhu 0 0 coshu
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Notice in particular that the Ry generators do generate the subgroup of
rotations of 01 (3,1). Notice also that a rotation about es by an angle 6 is
the same thing as a rotation about —e3 by an angle —6@, and hence can be
identified with the Mobius transformation e*?(.

B.7 Spinors

If we take a column vector

(e

o §) - (£3)

is Hermitian, as (kk*)* = kk*. Thus it represents a vector in Minkowski
space. Since

the matrix

det (k&™) = £&n7 — EqnE

we see that it represents a null vector. More explicitly, such vector v satisfies
1 0+ 03 vl 4i?\ (€&
V2 \vt —iv? =0 ) &y

v’ = (££ +17) 3

and thus

S\

vt = (577 + 7€) ;

S\

<
| |

7(677 né) ;
v = (66 ) -

S\
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We see that v > 0 for any choice of & € C?\ {0}, and thus C?\ {0}
parametrizes (non-injectively) a subset of the future light cone of the origin.
In fact, it parametrizes the whole future light cone: if we take v > 0, the
vectors in the light cone with this ey component satisfy

and thus the point
1,2 .3
vt vt v
<O,O,O> € R?
07 07y

is in S2. If v3 # o0 its stereographic projection is

’U2

UT)—F’L'UT) vl 4 02
172% 0 — 3

and consequently any vector v in the future light cone is represented by

k:(£>e<c2
n

where £ and 7 are two complex numbers satisfying

vl +iv?

2 2 5
|£‘ + |7]| = \/§IUO and = = 0 3
Ui vt — v

which can always be arranged.

Exercise B.7.1. Show that if v® = v° then v! = v? = 0 and
= (V)
0

Exercise B.7.2. Show that if k,1 € C?\ {0} then they parametrize the same
null vector if and only if & = ¥l for some # € R. Conclude that the future

parametrizes v.

2
light cone of the origin is bijectively parametrized by %.

Now if g € SL(2,C) its action on the null vector parametrized by k €
C?2\ {0} is given by
g9 (kk*) " = (gk) (gk)"

i.e., is the null vector parametrized by gk.
Definition B.7.3. A vector k € C? plus the map
k—kk*=V =v

(where v is a null vector in Minkowski space) is called a spinor.
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As we’ve seen, nonvanishing spinors can be thought of as ”square roots”
of future-pointing null vectors plus a phase factor. Notice that the way in
which spinors parametrize future-pointing null vectors depends on identifica-
tion (B.1), which itself depended on the choice of a basis for Minkowski space.
Hence spinors are always associated with a basis for Minkowski space. It is
also possible to define spinors in General Relativity if the spacetime we are
considering is non-compact and has a (smoothly varying) orthonormal frame
at each tangent space (which one can identify with a basis of Minkowski
space). In that way one gets a vector bundle with fiber C? called the spin
bundle, in which it is possible to define a spin connection. Using this con-
nection one can write Einstein’s equations in spinor form. Partly because of
the simple way in which a Lorentz transformation acting on a null vector
parametrized by a spinor is represented by multiplication of the correspond-
ing matrix in SL (2, C) by the spinor, these equations are particularly simple.
Many times very complicated solutions of Einstein’s equations can be found
by using spinor methods (particularly spacetimes possessing certain kinds of
congruences of null geodesics). For more details see [55].

Finally, notice that the spinors

= (2) ()

correspond to the null vectors

1
l=—(ep+e3) and n =

V2

and these satisfy the normalization condition

% (eo —e3)

(Il,n) = —1.

This is the reason for the \% factor in (B.1).

B.8 The sky of a rapidly moving observer

Let us now think of a light ray through the origin. All nonvanishing (null)
vectors v in this light ray are multiples of each other, and thus

vl 0?3 9
e = (1}07 0*07 ’UO> S S
is the same for all of them. Thus the set ST of all light rays through the
origin is a sphere S?, which we can identify with C U {oo}.

” ()
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is a spinor parametrizing a future-pointing null vector in the light ray, we
saw that the stereographic projection of e is

(provided that v3 # v°). Thus to get the point in C U {oo} corresponding to
a light ray containing the null vector parametrized by a spinor k£ using this
stereographic projection we have but to divide its components.

If
ab
g= <cd> € SL(2,C)

the corresponding Lorentz transformation takes the null vector parametrized
by k to the null vector parametrized by

p (@ b &\ [(a&+bn
I=\cd n)  \c+dn
i.e., takes the light ray represented by ( to the light ray represented by

a§+b77:ac+b
cE+dn cC+d

(a Mébius transformation!). Thus we have proved the following

Proposition B.8.1. Any proper Lorentz transformation is completely de-
termined by its action on the set ST of light rays through the origin. More
specifically, the group of proper Lorentz transformations can be thought of as
the group of orientation-preserving conformal motions of the 2-sphere S™.

To understand how the skies of two observers are related, one must have
two things in mind: the first is that if ¢ € SL(2,C) represents the active
Lorentz transformation relating the two observers then this change is accom-
plished by the corresponding passive Lorentz transformation (represented
by g~!). The second is that the sky of an observer is not actually ST, but
the image S~ of ST under the antipodal map, for the simple reason that an
observer places an object whose light is moving in direction e in position —e
of his celestial sphere.

As we’ve seen, using spherical coordinates (6, ¢) in (an appropriate open
subset of) S2, the stereographic projection is given by

sin 6

— 1
= ——¢'".
1 —cosf

C(0, )

Consequently, the antipodal map (8, ¢) — (m — 0, ¢ + 7) is given by

sin 6

_ ip
1+ (:0596

(= A(Q) =
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and hence )
- sin” 6 1
AQ)=—7———F5=-10 A1) =—-=.
A =~ ©)
Consequently if the active Lorentz transformation relating the two ob-
servers corresponds to the Mobius transformation

_aC+b
g(C)—C<+d

U

of ST, then the corresponding change of the observer’s celestial sphere cor-
responds to the Mobius transformation

Aoglo A(Q)
of S~. Since

we have

——1
Aog—loA«):A(‘dCl‘b)
c +a
e« t+a
d¢=t+0b
al +¢
bC+d

Thus we have proved the following

Theorem B.8.2. If the active Lorentz transformation relating two observers
is represented by g € SL (2,C) then the observers’ celestial spheres are related
by the Mobius transformation corresponding to g*.

Ezxample B.8.3. Recall that

i% 0
fhs — (e ) € SL(2,C)

-0
0 e 2

corresponds to a rotation about e3 by an angle #. Consequently the sky of
the rotated observer is given by applying to the sky of the initial observer
the Mobius transformation corresponding to

* e_ig 0
(") :< 0 ei§>

i.e., e7"¢. This clearly corresponds to rotating the celestial sphere by an
angle —f about e3, as should be expected (if an observer is rotated one way,
he sees his celestial sphere rotating the opposite way).
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Exercise B.8.4. Show that the sky of an observer moving in the es direction
with speed tanhwu is obtained from the sky of an observer at rest by the
Mobius transformation e“(. Thus objects in the sky of a rapidly moving
observer accumulate towards the direction of motion, an effect known as
aberration.

Exercise B.8.5. As seen from Earth, the Sun has an angular diameter of
half a degree. What is the angular diameter an observer speeding past the
Earth at 96% of the speed of light would measure for the Sun?

Because any proper Lorentz transformation can be decomposed in two
rotations and one boost, we see that the general transformation of the sky
of an observer is the composition of this aberration effect with two rigid
rotations. In addition to the aberration, there is also a Doppler shift due
to the fact that the energy of the photon correspondent to the null vector
v = kk* as measured by the two observers is different. The ratio of these
energies (which equals the ratio of their frequencies) is

5 L°

9

where L is the active Lorentz transformation relating the two observers. If L

is represented by
ab
g= (c d) e SL(2,C)

then on S one gets

I €1* + Inf?
gkl |a& + byl? + |c€ + dn|®

N ¢)? +1

Ja¢ + b + [e¢ +d*

Exercise B.8.6. Show that if L is a rotation then § = 1 (hint: recall that L
is a rotation iff g € SU (2)).

Exercise B.8.7. Show that if L is a boost in the e3 direction by a hyperbolic
angle v > 0 then

_ g+t
e \C|2 + e u
Show that in S~ this becomes
KP4+
e |¢[* + ev

so that the Doppler shift ratio is maximum for { = oo and minimum for

¢=0.
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In addition to this Doppler shift, one also gets intensity shifts, as both
observers get different numbers of photons per unit time from a given direc-
tion. This is due not only to the difference in their proper times but also to
the fact that their motions differ; however, we shall not pursue this matter
any further.

Theorems about Mobius transformations can be readily transformed into
theorems about skies. For instance, the theorem stating that any Mobius
transformation is completely determined by the image of three distinct points
translates as

Theorem B.8.8. If an observer sees three stars in his sky and specifies a
new position for each star, there exists a unique observer who sees the three
stars in these positions.

The fact that Mobius transformations are conformal transformations
translates into

Theorem B.8.9. Small objects are seen by different observers as having the
same exact shape. If h € SL(2,C) represents the active Lorentz transforma-
tion relating the two observers and g (¢) is the Mobius transformation corre-
sponding to h* then the magnification factor at each point of the observer’s
sky is given by the formula

g7 (1+¢0)°
(1+ g9)°

Exercise B.8.10. Show that for a boost in the ez direction by a hyperbolic
angle v > 0 the magnification factor is given by the formula

e 2)?
ds* (9 (¢)) = Wdf (©)

(14 e i)

so that it is e for ( = oo and e* for ¢ = 0.

ds? (9 (C)) = ds? ().

Perhaps the most surprising statement of this kind is the sky version of
the theorem stating that Mdbius transformations take circles into circles:

Theorem B.8.11. If an observer sees a circular outline for any object on
his sky then any observer sees a circular outline for this object.



C Quasi-Maxwell form of Einstein’s equation
by José Natario

C.1 Stationary regions, space manifold and global time

Definition C.1.1. A region U of a spacetime (Q, {,) = g) is said to be sta-
tionary if there exists a timelike Killing vector field T defined in U.

Recall that T is a Killing vector field if and only if £7g =0, or, equiva-
lently, if and only if
<VXT7 Y> + <VYT3 X> =0

for all vector fields X,Y.
Exercise C.1.2. Show that if T is a Killing vector field then
T(T,17)) =0

(i.e., the norm of T is constant along its integral lines). Deduce that if T is
timelike in some region then T cannot vanish along any of its integral lines
leaving that region. Show that if fT is also a Killing vector field for some
nonvanishing smooth function f then f is constant along the integral lines
of T', and that if T is timelike then f must be a constant function. Conclude
that a timelike Killing vector field T' is determined by its integral lines up to
multiplication by a constant.

We shall assume that U contains a 3-dimensional submanifold X' such that
each integral line of 7" intersect X' exactly once (so that X' coincides with the
quotient of U by the integral lines of T'). This can always be achieved by
restricting U conveniently.

Definition C.1.3. We will call X the space manifold .

Notice that the integral lines of T provide a natural projection 7 : U — X
(corresponding to the quotient map).

We can now define a global time function t : U — R by setting ¢ (p) equal
to the parameter corresponding to p € U along the integral line of 7" through
p, where we assign ¢t = 0 to the intersection of the integral line with X' (hence
X is the level hypersurface ¢ = 0).

W.M. Oliva: LNM 1798, pp. 223-244, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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We will have to consider tensor fields defined both in the space manifold
X} or in all the stationary region U. For that reason we shall take Latin
indices to run from 1 to 3, and Greek indices from 0 to 3. We shall also use
Einstein’s summation convention that whenever a repeated index occurs it is
understood to be summed over its range.

If {xl} are local coordinates in X', we can use the integral lines of T to
extend them as functions to the whole of U.

Exercise C.1.4. Show that {t, mi} are local coordinates on U and T = %.

Exercise C.1.5. Show that in these coordinates one has

agaﬁ _

ot 0

corresponding to the intuitive idea that in a stationary region the metric
should not depend on time.

In the coordinates {t, xl} the line element is written
ds® = goodt? + 2go;dtdz’ + Gij dztda?
2
= goo (dt + gozdxi) — 900903 i g + gijdacidxj
goo goo

= —e2¢ (dt + Aidxi)2 + yida’dz?

where the definitions of ¢, 4; and ~;; should be obvious. Here we’ve used the
fact that T is timelike and therefore

goo = (T, T) < 0.

Exercise C.1.6. Use the time independence of the components g,g to show
that ¢, A = A;dz’ and v = 7;;dz’ ® dz’ satisfy

p=m"(¢|x);
A=7"(A|x);
y=1"(v]s).

Conclude that ¢, A and v can be interpreted as tensor fields defined on the
space manifold.

We are using the timelike Killing vector field T' to identify a special class
of observers , namely those whose worldlines are the integral curves of T
(to whom we shall refer as stationary observers), and a special global time
function. From this point of view, the space manifold is just a convenient
way to keep track of these stationary observers, and we might as well have
picked a different space manifold. Also, there’s no reason why we should pick
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T among all the Killing fields e“T (¢ € R) with the same integral curves. Now
the equation of any other space manifold is

t=f (xl,:cz,x?’)

and picking this space manifold and the Killing vector field e“l" amounts
picking a new global time function, i.e., to making the coordinate transfor-
mation

t'=e°(t—f).
(obviously one can use the same local coordinates {z’} on the new space
manifold). With these new coordinates the line element is written
ds® = =2 [d (et + f) + A]® + yijda’da’
= —¢2(¢F0) [dt' + e (A+df)] *y ijda'dz?

and hence
¢ =0+c
A= e (A+df);
7 =7

In particular, we see that the differential forms

G = —do
H = —¢%dA

(which can be thought of as defined on the space manifold) have an invariant
meaning associated to the given family of stationary observers (i.e., do not
depend on the choice global time function).

Exercise C.1.7. If u,v € T, X C T{ )@, show that

~ (u,v) = <uJ‘,vJ‘>

where u™ is the component of u orthogonal to 7. Conclude that (X,7) is a
Riemannian manifold.

Notice that v has the physical meaning of being the (local) distance mea-
sured by the stationary observers using, say, radar measurements. The fact
that T is a Killing vector field means that

i
ot
i.e., distances between stationary observers do not change with time. This is

just about as close as General Relativity gets to the notion of a ”global frame
of reference”.

=0
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C.2 Connection forms and equations of motion

Having chosen a global time ¢ (and hence a space manifold X' = {t = 0}), an
orthonormal coframe defined in the stationary region U is

W = e? (dt + A)
wt = T*R"

where {@Z} is an orthonormal coframe for (X,v) (we shall, for simplicity,
drop 7* out of the equations).
The corresponding orthonormal basis {e,} satisfies

<eou eﬁ> = Nap

(where nqp is —1if a = 3 =0,11f a = # 0and 0 if « # ), and
consequently it is easy to check that the connection forms satisfy

Naswl + 1gswd, = 0

rather than the more familiar identity for the case of a Riemannian manifold.
This plus Cartan’s first structure equations

dw® = WP A wg
completely determine the connection forms. Now we have

dw® = dop A0 + e?dA
= -GN —H

; 1 . )
= -G AW — §Hijwz Aw?

, 1 )
=w'A (—Giwo — 5 iij)

=wiA w?
and
dw' = di*
=0 A
=wl A &3;

:wo/\wé—i—wj/\w;-

(where @; are the connection forms corresponding to the orthonormal coframe
{@Z} in the space manifold). Consequently, if we make the obvious ansatz

) 1 .
0 _ i __ 0 Y
w;, =wp=—Gw —iHmw
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we will have
IAW =W AGE = WO A 7G0f1H..j
wAw; =w AW —w iw 5 W
oA i 1 0 j
= w /\wj—i—EHijw A w!
=w’ A wjfi ijw

ie.,

. ] 1
i _ ~Nv_ gy, ,0
w; = Wj 2H”w

which indeed satisfy the required skew-symmetry properties.
Consider a timelike geodesic representing the motion of a material parti-
cle, and let
u=u'ey+u'e;
be its unit tangent vector. Clearly u® is the energy per unit rest mass that a
stationary observer measures for the particle, and

u=u'e;

(which can be interpreted as a vector on the space manifold, as {m.e;} is an
orthonormal frame for (X, ) - we shall, for simplicity, stop worrying about
the projection and freely identify e; and 7.e;) is just u’v, where v is the
velocity measured by the stationary observer for the particle. We have

(u,u) = —1@—(u0)2—|—u2 =-1l¢& (u0)2 =1+u?

where

u2:g(u,u):uiui:'y(u,u).

Recalling that
Vieo = w? (v) eg

we can write the geodesic equation as

Vuu = 0V, (u'eq +u'e;) =0

u? , u’ , o
& e+ uwl (u) e; + Zeit u'w) (u)ep +u'w! (u)e; =0
and hence the component along eg is
du® . du® . 1 L
e +u'w) (u) = 0= yr u'Giu® — §Hl-julu3 =0
d 0
= w er
dr

whereas the component along e; is
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du’ i i
o + uOw (u) + w!wi (u) =0
dut 1 : . : 1
& d:L_ —° (Giuo + 2Hiju3> + u’ <fu; (u) — 2Hiju0> =0

@ i_ N2 @ O H
@<d7> —(u) G +u Hju

(here dﬁt refers to the Levi-Civita connection ¥ on (X,7))-
We now use the fact that (X, ) is a three dimensional Riemannian man-
ifold, and that consequently

dim 7T, Y = dim T} Y = dim A*TF X =3

for all x € Y. The Riemannian metric provides a bijection iy : 17,2 — T} X
defined through i; (v) =7 (v,-), i.e.,

i (vlel +v2ey + vgeg) = 0'o! + 0252 + 353,
Similarly, one can define a bijection is : T,,X — A>T} X through
1o (vlel + veq + v3e3) =0 B2 ADP + 2B A + 030 A D2

Exercise C.2.1. Show that iy is well defined, i.e., that it does not depend
on the choice of the orthonormal basis {e1, ez, es}.

Exercise C.2.2. Show that
io(uxv) =11 (u)Aiy (v).

Definition C.2.3. On the space manifold X we define the gravitational vec-
tor field G and the gravitomagnetic vector field H through

G:il(G);
H =i, (H).

It should be clear that
0 H? —H? ul

(Hyw')=|-H* 0 H' u?
H? —H' 0 u?
u2H3 —U3H2
= [ w*H' —u'H? | = (ux H)’
U1H2 —U2H1

and consequently the component of the motion equation along e; can be
written as
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— = (u0)2G+u0u><H

(1+u2)% ((1+u2)%G+u><H>.

Thus when all stationary observers compare their local observations they
conclude that the particle moves in the space manifold under the influence
of a gravitational field G and a gravitomagnetic field H in a way that closely
resembles electromagnetism. To check how accurate this analogy is we now
take a short detour.

Exercise C.2.4. Show that the component of the motion equation along e
may be written as

(ziozuou-G
.

and is a simple consequence of the motion equation in the space manifold.
Also, show that this equation can still be written as

du® 0S
i A

and deduce the energy conservation principle

d d 1
— 06¢):O<:>E((1+u2)26¢) =0

holds.

Notice that u®e? is just (T,u). For low speeds and weak gravitational
fields this conserved quantity is

uoe¢:(1,vz)—%e¢z <1+;v2) (1+¢)21+%v2+¢

i.e., is just the rest energy plus the Newtonian mechanical energy (per unit
rest mass).

Exercise C.2.5. Show that in general stationary observers are accelerated
observers, and that their proper acceleration is

D .

e (e79T) = G'e;

(this is the acceleration measured by, say, an accelerometer carried by a sta-
tionary observer).
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C.3 Stationary Maxwell equations

Recall that the motion equations for a particle of rest mass m and electric
charge e under the influence of an electric field E and a magnetic field B are

dp _

7 =e(E+vxB)

where p is the particle’s (relativistic) momentum and v is its velocity. If 7 is
the particle’s proper time and x = x (7) its spatial path, then one has

dx
= m— = mu
p dr
and )
dt 9 dt o 1
Consequently,
dx dt 1
- — 1 2\ 2
T SR A

and the motion equation may be written as

du e 1
—:—<(1+u2)2E+u><B).
dr m
Thus we see that the motion equation for a free falling particle in the
space manifold of a stationary region is the curved space generalization of this

1
equation with the ratio ;= replaced by (1 + u2) 2. This is reasonable to expect,

as (1 + u2)% is the ratio between the particle’s total energy as measured by
a stationary observer (which is what one would expect the gravitational field
to couple to) and the particle’s rest mass.

It is interesting to see how far this analogy goes, and in particular whether
Einstein’s equation in a stationary region in any way mirrors Maxwell’s equa-
tions. Recall that in natural units (¢ = g = 1) Maxwell’s equations for
stationary (i.e., time-independent) electric and magnetic fields are written

where p is the electric charge density and j is the electric current density.

Assuming these equations hold in a contractible region of space, the ho-
mogeneous equations imply (due to Poincaré’s lemma) the existence of an
electric potential ¢ and a vector potential A such that
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E = —grad(¢);
B=—curl(A).

Clearly ¢ is defined up to the addition of a constant function, whereas A
is defined up to the addition of a gradient field.

It is possible to show that Maxwell’s equations are fully relativistic, and
that electromagnetic fields carry energy and momentum. The energy den-
sity, energy density current and stress of the electromagnetic field are given,
respectively, by

1
Pield = 5 (E*+B?);
Jfieta = E X B;
1
Tieta = 5 (E*+B?) I -E@E-B@B.

C.4 Curvature forms and Ricci tensor

We will now try to write Einstein’s equation as a set of equations in the space
manifold involving the vector fields G and H. We start by noticing that

i1 (G) = —-dop & G = —grad(¢)
in an exact analogue of the corresponding electrostatic formula.

Exercise C.4.1. Show that in R? with the usual Euclidean metric one has
io (curl (v)) = d (i1 (v)).

Definition C.4.2. If (X,~) is an arbitrary 3-dimensional Riemannian man-
ifold and v is a vector field defined on X we define curl (v) as the unique
vector field satisfying

io (curl (v)) = d (i1 (v)).

Thus we have
H=—c’curl (A)

closely resembling the corresponding magnetostatic expression. Thus the
equations defining the gravitational and gravitomagnetic fields G and H
parallel the homogeneous Maxwell equations.

In order to write Einstein’s equation in the orthonormal frame {e,} we
will have to compute the components of the Ricci tensor in this frame. These
can be obtained from the curvature forms 27, which in turn are given by
Cartan’s second structure equations

Qg:dwgfwg/\w?.
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Before computing these forms, we notice that since

Vo' = -0 @0}
we have
VG = (V,6:) 3" 0 o =V (Gio)
=o' ®dG; — G’ @
= &' @ (dGi - G,@))
and

VH = (ViHy; ) &' 0 & 00" =V (Hyo' 0 &)

'@ ®dH;; — Hijdo" @ 0 @0, — Hijo' @ 0F @ 0
= &}l ® bAdj ® (dHij — ijb/\dl]'c — sz&}f)

(where we’ve taken the chance to introduce the notation @iGj and @iH ik
for the components of the covariant differential of G and H). In other words,
one has R _

(V5G:) & = dG; - ;]

and R
(Vi) 08 = dHy; — Hyof — Had,

Exercise C.4.3. Use the formulae above and the known expressions

in Cartan’s second structure equations

0 _ 0 j 0.
2] = —dw; +w; Nwy;

, o e
2 = —dw! + Wi Nw] +wi Awi

to show that the curvature forms are given by

K2

2= 6 = <_§jGi + GGy — %Hikaj) WO AW

+% (ﬁjHlk — Giij> wI /\wk;
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ol =-2=0+1 (ﬁkHij - GjH, + GiHjx — GkHij) WO AWk
+1 (HijHpu + HiHj) ok Aol

Since
WA W =w @’ — WP R w

the independent components of the Riemann tensor in this orthonormal frame
are given by

RY; = —V,G,i + GG, — 1 Hi Hyj;
7, -1 (ﬁkﬂij ~ G Ha + GiHe — GiHy )
ngz — }?{kl + - (QHUHM + HyHj — HyHjy) ,

where ﬁzkl are the components of the Riemann tensor of the space manifold
on the corresponding orthonormal basis.

Exercise C.4.4. Show that because of the Riemann tensor symmetries one
has _
Rz]k RiOi’

Deduce that G and H must satisfy
ﬁiij + ﬁiji + ﬁkHZ‘j + Giij + Giji + GkHij =0.

Rewrite this condition as
dH+GANH =0

and show that it follows trivially from
H = —e®dA.

It is now a simple task to compute the components of the Ricci tensor in
our orthonormal frame. For example, one has

; 1
(Ric)yy = Ryg; = VG + GiG; — ~ Hyj Hy,

—div (G) + G? + iHikHik

1
—div (G) + G* + §H2

and
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, j 1/
(Ric)o; = Rig; = 5 (Vsz‘j —GjHij + GiHj; - GjHi')
1

5 (Vi —2H,G;).

- ~ o 0 3 H3 _f{2
(ijij) = (*Vjsz‘) =— (Vl Va Vg) —Ifz _2[1 Ié
= (VoH® — V3, V3H' ~ V\HP, ¥, H? ~ Vo)
((d (i1 (), (d (i1 (H)))yy , (d (i1 (H))),5)
((curl (H))", (curl (H))?, (curl (H))S)
we see that
(Ric)y; e = (;curl (H) - G x H) .

Finally, we have

Ric).. = RV, + R*
ij

ijo T fijk
=V,;Gi — GG + iHikaj + RY,
—i (2H;xHyj + HixHyj — HijHyr)
= <§z\c)” + %iGj - G,Gj — %Hikaj

where (Ez\c) ~are the components of the Ricci tensor of the space manifold
ij

on the corresponding orthonormal basis and we’ve used the fact that V,;G)

is minus the Hessian of ¢ (hence symmetric). As

0 H? —H? 0 H® —H>
(HipHy) = | —H® 0 H! ~H? 0 H'
H? —H' 0 H? —H' 0
—(H2)2—(H3)2 HYH? HH3
= H'H? — (HY)? = (H?)? H2H3
H1H3 HQHS 7(H1)27 (H2)2
= H'H’ — Hy,;

we can write

(Ric),, = (fz?c)

P

~ 1 . . 1
A ViGy — GiGy — SHU 4 SHy,.
J



C.5 Quasi-Maxwell equations 235

C.5 Quasi-Maxwell equations

Definition C.5.1. A perfect fluid is defined as a fluid such that the only
stresses measured by a comoving observer correspond to an isotropic pressure.

So if {e,} is a orthonormal frame associated to a comoving observer, the
energy-momentum tensor of a perfect fluid is by definition

T = peg R ey + pe; @ e;

where p is the rest energy density of the fluid and p is the rest pressure (note
that there are no components in ey ® e; as the observer is at rest with respect
to the fluid and therefore must measure zero energy current density). Since
the raised indices metric tensor clearly is

g=—¢€e Qe t+e e
we see that

T =pey®ey+p(g+e®ep)
= (p+p)eo®ep+pg

or, since eq is just the 4-velocity u of the fluid,
T=(p+p)u®u+pg.
Exercise C.5.2. Show that Einstein’s equation implies the motion equation
(p+p) Vuu+div((p+p)u)u = —grad (p)
for a perfect fluid (here div and grad refer to the full spacetime metric g).

Exercise C.5.3. A perfect fluid satisfyingp = —p = 8% is said to correspond
to a cosmological constant A (notice that such fluid does not possess a rest
frame). Show that the motion equations imply that A is indeed constant.

Recall that )
Ric:G—iC(G)g

where G is Einstein’s tensor. Since Einstein’s equation is
G =8nT
we conclude that )
Ric=8n (T— 2C’(T)g) .

Since
C(T)=—(p+p)+4p=3p—p
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we have

1
Ric = 8t ((p+p)U®U+pg—2(3p—p)g>

1
=8 {(ptp)uduts(p-p)g
In the stationary orthonormal frame, we have
U= uoeo +u
and consequently
L 0)2 0 0
Ric =387 (p+p) ((u") eo®eq+u’ep@u+r’u®ey+uwu
+dm(p—p) (—eo @ eo +7)

(Ric)” = 8r ((p +p) (u0)? - % (p— p))
=ar (2" = 1) p+ (2(*)* +1) )
(Ric)* e; = 87 (p+ p) u'u;
(Ric)? = 8 <(p +p)u'! + % (p—p) 7“) :

Since we are using an orthonormal frame, it is simple to equate these
components to those obtained from the expression of the line element:

~div (G) + G2+ 1H2 = dr ((2(u*)" = 1) p+ (2(u)" +1) p);

feurl(H) -G xH = —-87(p+p)u'u;
— ~ 1 . . 1
(Ric) +ViG; = GiG; — SH'HY + SH,
ij

= 8 ((p+p)uiuj +;(p—p)7ij) :

Rearranging these equations slightly, and remembering we are using an
orthonormal frame, we can finally write

) 1 2 2
div (G) = G? + §H2 — A ((2 (uo — 1) p+ (2 (uo) + 1) p) ; (C.1)
curl (H) = 2G x H — 167 (p + p) v’u; (C.2)
(Ei\c) VG, = GGy + §HH; — H?
ij
+87 ((p+ p) wiu; + 5 (p — p) ij) -

These equations are now either tensor equations or the components of
tensor equations on the space manifold, and therefore hold in any frame.

(C.3)



C.5 Quasi-Maxwell equations 237

Definition C.5.4. Equations (C.1), (C.2) and (C.3) are called the quasi-
Maxwell equations corresponding to the given family of stationary observers.

Notice that on contraction equation (C.3) yields

3

PN 1
S+div(G)G2+2H22H2+87r<(p+p)u2+3(pp)>

2

where S is the scalar curvature of the space manifold; using (C.1), one gets

53 3
§ = H" +87 <(p+p)u2+2(pp)>

+4m ((2 (u0)2 - 1) p+ (2 (u0)2 + 1) p)

:—%H2+47r (202 +3+2 ()" = 1) p+am (20 =342 ()" +1) p

= —%HQ + 167 (u0)2p—|— 167 ((u0)2 - 1) P
= 7%H2 + 167TT00

where Ty is the fluid’s energy density as measured by the stationary ob-
servers.

Equations (C.1) and (C.2) are analogues of the non-homogeneous Maxwell
equations for stationary fields. They basically state that the source of the
gravitational field G is proportional to

Pmatter = <2 (U0)2 - 1) p+ (2 <U0)2 + 1) p
whereas the source of the gravitomagnetic field H is proportional to

Jmatter = (,0 + p) u'u.

For low speeds one usually has p << p in our units; therefore, to first order
in v one has ppatter = p and jmatter = pv. In other words, the gravitational
field is basically generated by the fluid’s mass, whereas the gravitomagnetic
field is basically generated by the fluid’s mass current with respect to the
stationary observers. This completely parallels the situation in electrostatics
and magnetostatics.

More interestingly, nonlinear terms occur in equations (C.1) and (C.2)
(reflecting the fact that the Einstein equation is highly nonlinear), in such a
way that G and H act as a source of themselves. These terms are

1
prica = G* + §H2

and
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Jfieta = 2G x H,

strikingly similar to the expressions for the energy density and energy current
density of the electromagnetic field. With these definitions, equations (C.1)
and (C.2) are written

div (G) = Pfield — 47Tpmatter;
curl (H) = jfield — 16Tjmatters

clearly bringing out their resemblance to the non-homogeneous Maxwell equa-
tions. Notice that the source terms corresponding to the fields occur with an
opposite sign to the source terms corresponding to the fluid; this is in line
with the general idea that the gravitational field is always attractive and
hence should have negative energy. (Actually, the energy of the gravitational
field in General Relativity is much more subtle: it is a nonlocal concept, as
any observer can eliminate his local gravitational field by being in free fall).
The analogy between the quasi-Maxwell form of the Einstein equation
and Maxwell’s equations for stationary fields is remarkable, but there are also
important differences, the most obvious of which is the existence of equation
(C.3), with no electromagnetic analogue. Notice that this equation, which
is a kind of Einstein equation for the space manifold, has 6 independent
components (as many as 2 vector equations), and can be written as

Ric+ VG = Smeatter - Tfield

with

~

1
Tmatter:(p+p)u®u+§(p—p)’7

and

~ 1 1
TfieldziHZ’Y—G(@G—gH@H

(notice again the similarity with the stress tensor of the electromagnetic field).

In a way, it is hardly surprising that the analogy breaks down at some
point. Electromagnetism and gravity are fundamentally different interactions
(for example, they correspond to fields of different spins). What is surprising is
that the analogy is so good in the first place. It is also essential to the existence
of the analogy that we are dealing with stationary fields: gravitational waves
essentially correspond to time-varying space metrics.

The quasi-Maxwell formalism allows one to get an immediate grasp of the
physical meaning of a stationary metric from the point of view of the family
of stationary observers (although if more than one such family exists the
picture may change quite considerably, as we shall see). Also, it provides an
alternative way of solving Einstein’s equation: one postulates a metric for the
space manifolds (eventually depending on one or more unknown functions)
and tries to solve for the fields (eventually imposing some sort of relation
between the fields’ directions and the space manifold geometry). We shall see
this at work presently.
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C.6 Examples

We will now analyze a number of examples of application of the quasi-Maxwell
equations.

The simplest example is clearly Minkowski spacetime . In the usual
{t,x,y, z} coordinates the line element is

ds? = —dt* + dz® + dy? + d=?

and thus % is a timelike Killing vector field. For the global time coordinate ¢
we have ¢ = 0, A = 0 and the space manifold is just Euclidean 3-space, with
line element
di? = da* + dy? + d2*2.
Thus for this family of stationary observers G = H = 0.
Interestingly, however, Minkowski spacetime has many different Killing
vector fields.

Exercise C.6.1. Show that the Killing equation £xg = 0 in Minkowski

space reduces to

oy Ok, _

oz 9xB
Show that this equation implies that k, is an affine function of the coordinates
2%, and then solve it. Prove that the space of all Killing vector fields is 10-

dimensional, and that a basis for it is

o 8 8 B ) o 9 o 0 )
{a,%,afy,a, l’a"‘t&,ya‘Ftafy,Z&“‘tE,
) o) ) ) o) )
Notice that the one-parameter families of isometries generated by these
Killing fields are (respectively) translations along each of the axes, boosts
along each of the spatial axes and rotations about each of the spatial axes.

Exercise C.6.2. Show that making the coordinate transformation

t = asinhu
x = acoshu
in the ¢ < |z| region of Minkowski spacetime one gets the so-called Rindler
spacetime line element
ds? = —a?du® + da® + dy?* + dz°.
Show that the timelike Killing vector field 8% is just

o _ 0,0
o Tot ot

and corresponds to a family of stationary observers who measure and Eu-
clidean space manifold and G = —%%, H = 0. Check that the quasi-Maxwell
equations hold in this example.
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Thus we see that stationary observers may measure gravitational fields
in a flat spacetime. This happens when the orbits of the timelike Killing
vector field corresponds to accelerated motions, which in General Relativity
are locally indistinguishable from observers accelerating to oppose gravity in
order to remain stationary. The stationary observers of Rindler spacetime
are the relativistic analogue of an uniformly accelerated frame. Notice that
while the distances between them remain constant, each observer measures
a different acceleration.

Another simple kind of accelerated motion is uniform circular motion.

Exercise C.6.3. Take the Minkowski line element in cylindrical coordinates,
ds? = —dt* + dr® 4 r2dp? + dz2?,

and make the coordinate transformation § = ¢ —wt. Check that in these new
coordinates % is a timelike Killing vector field for r < %7 corresponding to
a family of uniformly rotating observers with angular velocity w, and that in
fact it is just

0 g 0 0 0

E-Fw% = a—kw (xay _yﬁx)
in the old coordinates. Check that for this family of stationary observers the
space manifold line element is

2
di2 = dr? + ﬁd% +d22,

1
that
B w?r 0
T 1 —w2r2 o’
2w 0

T 129z
and that the quasi-Maxwell equations hold.

Thus again accelerated stationary observers in flat spacetime measure
nonzero fields. From the equations of motion one easily sees the gravitational
field corresponds to the centrifugal acceleration, whereas the gravitomagnetic
field is responsible for the Coriolis forces.

Notice that )

G B 68
2 (1 —w?r?)
and hence the space manifold is curved, although the full spacetime is flat
(Einstein used this example, which he analyzed in terms of length contraction
of rulers in the tangential direction, to start thinking of curved geometries
in connection with gravity). We now investigate whether the reverse is also
possible:
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Exercise C.6.4. Show that if the space manifold is Euclidean 3-space and
no fluid is present then H = 0 and hence the quasi-Maxwell equations reduce

to
P ¢ I¢
0xidxi  Oxt 0z’

Show that the appropriate initial data for these equations is the value of ¢ and
its first partial derivatives at a point, and argue that it suffices to solve the
equation for the particular case when this point is the origin and all partial
derivatives but one vanish. Solve such equation and prove that all stationary
vacuum spacetimes with Euclidean space manifolds are either Minkowski or
Rindler spacetime.

Thus to get curved spacetimes with Euclidean space manifolds we must
introduce matter.

Exercise C.6.5. Assume that the space manifold is flat but there is a fluid
present. Make the ansatz

0
G=0G—_.
G(‘)x’

0
H=H",
oy’

u:'ll/a

where G, H and u are constants. Show that for each p > 0 the quasi-Maxwell
equations have a unique solution of this form given by

G = 4./mp;
H = 4+/2mp;

u=1;
p=p

and show that the corresponding spacetime metric is
2
ds? = —e 8VTPT (dt + \/§€4dez) + dz® + dy? + d2?
2
=— (dz + \/56_4\/”7“”dt) + e 8VTPR A2 1 da? + dy?.

Conclude that % is also a timelike Killing vector field and that for the
corresponding family of observers

0
H=4.\/27mp—;
”pay’
u=_20.



242 C Quasi-Maxwell form of Einstein’s equation

Thus these observers are comoving with the fluid. Show that the 2-dimensional

line element
e SVIPT 2 1 g

is that of a hyperbolic plane (and thus the comoving observers’ space manifold
is just a hyperbolic plane times R).

This is the line element for the so-called Gédel universe , which was
discovered by Kurt Godel in 1949. It describes a fluid which is rotating about
each of the comoving observers. This solution caused considerable unrest
among physicists at the time, as it was shown by Godel to contain closed
timelike curves (see [30]).

This feature could already be found in an exact solution discovered by
Von Stockum in 1936:

Exercise C.6.6. Show that setting G = u = 0 and p = 0 in the quasi-
Maxwell equations turns them into

H = grad (¢);
1
= _—H2
p Sa

(Rie) = %HiHj.

ij
Take as line element for the space manifold
di* = F (r) (dr* + d2°) + r?dp?
where F' is an arbitrary function satisfying F' (0) = 1, and set
P = 2az

so that -
Ric = 2d%dz @ dz.

Show that the quasi-Maxwell equations have the unique solution

F=e®"

and that consequently one has the rest density

and the line element

ds* = — (dt — ar2d<p)2 +e @7 (dr2 + dz2) T r2dp?.
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This solution describes a rigidly rotating cylinder such that the gravita-
tional attraction is exactly balanced by the centrifugal acceleration. Notice
that ai becomes timelike for r > é, thus leading to closed timelike curves. In
1974, Tipler matched Von Stockum’s solution to an exterior vacuum solution
atr=R< %, thus obtaining the field outside a rigidly rotating cylinder of
finite radius, and also got closed timelike curves there (see [59]). Using these
he was able to prove that any two events outside the cylinder could be joined
by a timelike curve.

The quasi-Maxwell formalism can be successfully employed to get other
kinds of stationary solutions of Einstein’s equation:

Exercise C.6.7. Consider a spherically symmetric space manifold,
di*> = C? (r) dr® + r* (d6? + sin® 0dy?)

and radial gravitational and gravitomagnetic fields,

0
G*G(T)E»
0

Show that there exists a two-parameter family of asymptotically flat solutions
of the quasi-Maxwell vacuum equations given by

€2¢=1—%(q2+M(T2—q2)%);

yielding the line element
2y —1
ds?® = —e®? (dt — 2q cos Od)” + (1 - 7({2) e 2%dr? 4+ 1% (d6? + sin® 0dp?) .

This is the so-called Newman—Unti-Tamburino (NUT) solution (see [30]),
and represents a gravitational monopole. Notice that for ¢ = 0 it reduces to
the Schwarzschild solution.

Exercise C.6.8. On a five-dimensional spacetime let 8%4 be a spacelike

Killing vector field with constant norm and write the line element as
ds* = gy dada” + Gaa (da* + A,da?) .

Use a similar method to that used to obtain the quasi-Maxwell equations to
show that the 5-dimensional Einstein tensor has the components
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1

a,uél = 5?44vaFa,u;
~ 1/\ « 1 a3
GHV = GHV — 5944 FHQF v =+ ZF(yﬁF gluy )

where F = dA.

Setting g44 = 167 we see that the vanishing of these components is equiva-
lent to simultaneously satisfying the coupled Einstein and Maxwell equations
(F being interpreted as the Faraday electromagnetic tensor) This observation
is the starting point of Kaluza—Klein theory unifying gravity and electromag-
netism in a geometric framework.



D Viscosity solutions and Aubry—Mather
theory
by Diogo Gomes

D.1 Optimal control, viscosity solutions and time
independent problems

The terminal cost problem in optimal control consists in minimizing the func-
tional

Jlt, z;u] = /t 1 L(z,2)ds 4+ ¥(x(t1)),

where L : R?® — R, and ¥ : R® — R are continuous functions, among
all Lipschitz paths z(-), with initial condition z(t) = x and satisfying the
differential equation & = wu.
The infimum of J over all bounded Lipschitz controls u € L*[t, ;] is the
value function V
V(z,t) = igf J(x,t;u). (D.1)

Suppose L(z,v) is convex in v, and satisfies the coercivity condition

lim ————= = co.
|[v| =00 |’U|

The Legendre transform ! of L, denoted by L*, is the function
L*(p,x) = sup [—v-p— L(z,v)].

L*(p,x) is the Hamiltonian and is frequently denoted by H (p,x).
Next we list some important properties of the Legendre transform.

Proposition D.1.1. Suppose that L(x,v) is convex and coercive in v. Let
H = L*. Then

1. H(p,x) is convex in p;

2. H* = L;

! This definition simplifies the treatment of the terminal value problem and is the
usual in optimal control problems [24]; however, it is different from the customary
in classical mechanics. The latter one is L*(p, ) = sup, v-p— L(x,v), as defined,
for instance, in [4]. The relation between them is L*(p, z) = L*(—p, z).

W.M. Oliva: LNM 1798, pp. 245-257, 2002.
(© Springer-Verlag Berlin Heidelberg 2002
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: H
3. For each x, limp|_, % = 00;

4. Define v* by the equation p = —D, L(x,v*), then
H(p,z) = —v* -p— L(z,v");
5. Similarly define p* by the equation v = —D,H(x,p*), then
L(z,v) = —v-p* — H(z,v");
6. If p=—D,L(z,v) orv=—Dy,H(z,p), then Dy L(x,v) = —D,H(p, x).

Let 1 be a continuous function. The superdifferential D )(x) of ¢ at
the point x is the set of values p € R™ such that

i sup PET V)~ V@) —p-v
|v|—0 |v]

<0.

Consequently, p € D} (z) if and only if ¢(z 4+ v) < ¥(x) + p- v + o(v), as
|[v| = 0. Similarly, the subdifferential D, (x) of 1 at the point x is the set
of values p such that

fing Y@ V)~ U@) —peo

> 0.
[v]—0 |v]

These sets are one-sided analog of derivatives. Indeed, if 1 is differentiable

Dz i(x) = DF(z) = {Dytp()}
More precisely,

Proposition D.1.2. If D ¢(x), D}y(z) # 0 then Dy(z) = Dfp(x) =
{p} and ¢ is differentiable at x with Dy = p. Conversely, if ¥ is differen-
tiable at x then

Dy ¥(x) = Df¢(z) = { Dt ()}

A point (z,t) is called regular if there exists a unique trajectory x*(s)
such that z*(¢t) = z and

Via,t) = / L (), () ds + (e (1)),

We will see that regularity is equivalent to differentiability of the value func-
tion.

The next theorem collects the main results about the optimal control
problem. Namely, whether V' is finite, what are the optimal controls (if they
exist), how the value function relates to the optimal trajectory, the regularity
of V' and uniqueness of optimal trajectory.
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Theorem D.1.3. Suppose x € R™ and tg < t < t1. Assume L(x,v) is
a smooth function, strictly convexr in v (i.e., D% L positive definite), and
L(z,v)
thermore suppose L bounded below (without lo‘ss of generality, we may take
L(z,v) > 0); assume also L(x,0) < ¢1, |D,L| < eaL + c3 for suitable con-
stants c1, ca2,and cg; finally suppose that there exist positive functions Co(R),
C1(R) such that |D,L| < Co(R) and |D?,L| < C1(R) whenever |v| < R.
Then for any bounded Lipschitz function 1:

1. 'V satisfies

satisfying the coercivity condition lim|,_ = oo, for each x. Fur-

—[Yllee £V < crlts = [ + ||[¢¥]loo-
2. Suppose to <t <t <ty. Then

t,
V(z,t) = inf inf / L(x(s), #(s))ds + V(5. 1) |
vekn 20y | J,

where x(t) =z and z(t') = y.

3. Suppose Y1 (x) and Y2(x) are bounded Lipschitz functions with 11 < 1.
Let Vi(x,t) and Va(z,t) be the corresponding value functions. Then
Vi(x,t) < Va(a,t). In particular this implies that for any 1 (x) and e (x)

sup [Vi(z,t) = Va(x, 1)] < sup [¢h1(z) — ¢a(2)].

4. There exists a control u* € L*°[t,t1] such that the corresponding path z*,
defined by the initial value ODE

satisfies
V(z,t) :/t L(z"(s), " (s))ds + ¢ (a7 (t1)).

5. There exists a constant C, which depends only on L, ¥ and t; — tg but
not on x ort such that |u(s)| < C fort < s <ty. The optimal trajectory
x*(+) is a C2[t,t,] solution of the Euler-Lagrange equation

iDvL —-D,L=0
dt

with initial condition x(t) = x.
6. The adjoint variable p, defined by

p(t) = =D, L(x*, &%),
satisfies the differential equations

p(s) = Do H(p(s),2"(s))  @"(s) = —DpH(p(s),2"(s))
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with terminal condition p(t1) € D (x*(t1)). Additionally
(p(s), H(p(s),2*(s))) € D~V (z"(s), s)

fort < s <t.

7. The value function V is Lipschitz continuous, thus differentiable almost
everywhere.

8. (p(s),H(p(s),z*(s))) € DYV (a*(s),s) fort < s < t1, so DV (xz*(s),s)
exists fort < s < tj.

9. V is differentiable at (x,t) if and only if (x,t) is a regular point.

When the value function V' is smooth it satisfies the Hamilton—Jacobi
equation
~V, 4+ H(D,V,z) =0, (D.2)

as corollary to Theorem D.1.3. However, it is not true that V' is differentiable
at any point (z,t). It satisfies (D.2) in a weaker sense - it is a viscosity
solution. More precisely, a bounded uniformly continuous function V is a
viscosity subsolution (resp. supersolution) of the Hamilton—Jacobi-Belmann
PDE (D.2) if for any smooth function ¢ such that V — ¢ has a local maximum
(resp. minimum) at (x,t) then —D;¢p+ H(Dzp, z) < 0 (resp. > 0) at (z,t). A
bounded uniformly continuous function V' is a wiscosity solution of equation
(D.2) provided it is both a subsolution and a supersolution.

Another useful characterization of viscosity solutions is given in the next
proposition.

Proposition D.1.4. Suppose V is a bounded uniformly continuous function.
Then V is a wviscosity subsolution of (D.2) if and only if for any (p,q) €
D™V (x,t), —q+ H(p,z;t) < 0. Similarly V is a viscosity supersolution if
and only if for any (p,q) € D~V (x,t), —q+ H(p,z;t) > 0.

A corollary of this proposition is that any smooth viscosity solution is, in
fact, a classical solution.

The separation of variables method applied to (D.2) motivates us to look
for solutions of

H(P + D,u,x) = H(P); (D.3)
here the parameter P is introduced artificially, but it will be extremely useful
in the following sections.

Any viscosity solution of (D.3) satisfies the fixed point property

t1

u(z) = 1I(1f)/ L(z(s),3(s)) + P - @(s) + H(P)ds + u(x(t)). (D.4)
z() J¢

The existence of such fixed points requires additional hypothesis on L (or H).

For instance, if H is Z™ periodic in z, i.e., H(z + k,p) = H(z,p) for k € 2™

then there exists a periodic viscosity solution of (D.3). More precisely [43],
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Theorem D.1.5 (Lions, Papanicolaou, Varadhan);Suppose that H is
Z" periodic in x. Then there exists a unique number H(P) for which the
equation

H(P + Dyu,z) = H(P)

has a periodic viscosity solution u. Furthermore H(P) is convex in P.

D.2 Hamiltonian systems and the Hamilton—Jacobi
theory

Let H : R?" — R ( we write H(p,z) with z,p € R") be a smooth func-
tion. The Hamiltonian Ordinary Differential Equation (Hamiltonian ODE)
associated with the Hamiltonian H and canonical coordinates (p,x) is

= (D,H)" p=—(D.H)T. (D.5)

When changing coordinates in a Hamiltonian system one must be careful
because the special structure of the Hamiltonian ODE is not preserved under
general change of coordinates. To overcame this problem we study the theory
of generating functions.

Proposition D.2.1. Let (p,x) be the original canonical coordinates and
(P, X) be another coordinate system. Suppose S(x, P) is a smooth function
such that

p=(D.S(z,P))’ X =(DpS(x,P))"

defines a change of coordinates. Furthermore assume that D2pS is non-
singular. Let H(P,X) = H(p,x). Then, in the new coordinate system, the
equations of motion are

X =(DpH)' P=—(DxH)T, (D.6)

i.e., (P, X) are canonical coordinates. In particular, if H does not depend on
X, these equations simplify to

X =(DpH)T P=0.
Proof: Observe that
~(DoH)" = p = D2, S(DyH)" + D3, SP,

and so )
D},SP = — [D2,S(D,H)" + (D, H)"] (D.7)

Since H(P,DpS) = H(D,S, ),

DxHD?,S = D,HD? S+ D, H.
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Transposing the previous equation and comparing with (D.7), using the fact
that D2,S = (D%_S)7 is non-singular and D2_S is symmetric,

P=—(DxH)T.
We also have
X =D, X&+ DpXP = D2pS(D,H)T + D%pSP.
Again using the identity H(P, (DpS)T) = H((D,S)T,z), we get
DpH + DxHD?}pS = D,HD?,S.
Again by transposition,we get
X = (DpH)" + (D}pS)" (P + (DxH)T),

which implies X = (DpH). [

The function S in the previous proposition is called a generating function
(see, for instance, [4] for details)

Proposition D.2.2. Suppose S(x, P) is a smooth generating function such
that in the new coordinates (X, P), H(X,P) = H(P). Then S is a solution
of the PDE

H(D,S,z) = H(P). (D.8)
Proof: 1If p= D,S then H(D,S,z) = H(P). n

When such a generating function is found, we say that the Hamiltonian
ODE is completely integrable. However, in general, the PDE (D.8) does not
have global smooth solutions.

Note that in the last proposition we have, in general, two unknowns, S
and H(P). Finding H(P) is as important as finding S!

Suppose for each P we can find H(P) such that there exists a periodic
smooth solution u of the PDE H (P + D,u,x) = H(P). Then the generating
function S = P -z + u yields a periodic (in x) change of coordinates. Assume
further that

p=P+ D,u Q=z+ Dpu

defines a smooth change of coordinates. In the new coordinates

P=0 Q=DpH.

The rotation vector w = lim;_, @ of the orbits x(t) exists and is
t t —
wetim 28— @O b
t—oo t t—oo t

since Dpu is bounded (under smoothness and periodicity assumptions).
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D.3 Aubry—Mather theory: invariant sets, rotation
vector and invariant measures

In the previous chapter we proved that, given a smooth periodic solution of
the time independent Hamilton—Jacobi equation

H(P + Dyu,xz) = H(P), (D.9)

it is possible construct an invariant set: the graph (z, P + D,u). Usually this
set is identified with a n dimensional torus. Since, in general, there are no
smooth solutions of (D.9), we would like to be able to prove an analogous
result using viscosity solutions.

Suppose that u is a periodic viscosity solution of (D.9). Then u is Lipschitz
in z, and so, by Rademacher theorem, it is differentiable a.e.. Let G be the
set

G = {(z, P+ D,u) : uis differentiable at 2} .

This set is not invariant, at least in general, but we will see that it is back-
wards invariant. Let =} be the flow associated with the backwards Hamilto-
nian ODE

p=DzH(p,x) & =—-D,H(p,x). (D.10)

Proposition D.3.1. G is backwards invariant under Zy; more precisely, for
all t > 0, we have Z¢(G) C G.

Proof: Let u be a viscosity solution of (D.9). Consider the time dependent
problem
-Vi+ H(P+D,V,z) =0,

with terminal condition V(¢1,2) = u(P,x). The (unique) viscosity solution is
V(z,t) = u(x) + H(P)(t — t1).

If u is differentiable at a point z¢ then, by theorem D.1.3, (t,z) = (0, z0)
is a regular point. Thus there exists a unique trajectory x*(s) such that
2*(0) = zo and

V(zo,0) = /0 1 L(z*(s),%(s)) + P - &*(s)ds + u(z*(t1)).

Along this trajectory the value function V' is differentiable. The adjoint vari-
able is defined by
p*(s) = P+ D,V (z*(s),s).

We know that the pair (z*, p*) solves the backwards Hamilton ODE (D.10).
Therefore
(@%(s), P+ D V(27(s), ) = (27(s), p(s)) = Zs(2,p(0))
= Z(z, P+ D,V(z,0)).
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This implies
Es(x, P+ Dyu) € G,

for all 0 < s < t71. Since t; is arbitrary the previous inclusion holds for any
s> 0. n

Lemma D.3.2. If G is an invariant set then its closure G is also invariant.

Proof: Take a sequence (x,,p,) € G and suppose this sequence converges to

(z,p) € G. Then, for any t, Z¢(xn,pn) — Zi(x,p). This implies Z¢(z,p) €

g. n

_ Define G; = Z; (G). Note that G; is, in general, a proper closed subset of
G. Let
T = Ni>0G:-

Theorem D.3.3. T is a nonempty closed invariant set for the Hamiltonian

flow.

Proof: Since G, is a family of compact sets with the finite intersection prop-
erty, its intersection is nonempty. Invariance follows from its definition. [ ]

This theorem generalizes the original one dimensional case considered by
Moser et al. [33] and W. E [62]. A. Fathi has a different characterization of
the invariant set using backward and forward viscosity solutions [20], [21],
[22], and [23].

In the proof of theorem D.3.3 we do not need to use the closure of G.
Even if 2z € G\G we have Z}(z) € G, for all t > 0. Indeed, by theorem D.1.3,
the only points in an optimal trajectory that may fail to be regular are the
end points.

It turns out, as we explain next, that the dynamics in the invariant set 7
is particularly simple. Suppose there is a smooth (both in P and ) periodic
solution of the time independent Hamilton—Jacobi equation (D.9). Define
X =z + Dpu. Then, for trajectories with initial conditions on the set p =
P + D, u we have

X = DPF(P)a
or, equivalently, X (t) = X(0) + DpH(P)t. Therefore the dynamics of the
original Hamiltonian system can be completely determined (assuming that
one can invert X = 2 + Dpu).

We would like to prove an analog of this fact for orbits in the invariant
set Z. A simple observation is that, in the smooth case,

lim @ =DpH(P) = w, (D.11)

t—o0
the vector w is called the rotation vector. The next theorem shows that

(D.11) holds, under more general conditions, for all trajectories with initial
conditions in the invariant set Z, provided DpH exists.
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Theorem D.3.4. Suppose H(P) is differentiable for some P. Then, the tra-
jectories x(t) of the Hamiltonian flow with initial conditions on the invariant
set Z(P) satisfy

lim @ = DpH(P).

t—o0

Proof: Fix P and P’ and choose any (x,p) € Z. By (D.4)

H(P) = — lim f(f L(z*(s),2*(s)) + P - &*(s)ds + u(z*(t), P)

t—o0 t ’

for some optimal trajectory x*. Furthermore

AP = — tim g Jo L)) + P d(s)ds + u(a(t), P)

t—00 z(-):z(0)=x t

(D.12)
Thus

F(P) > liming B L CLE () + P (5)ds + (P (1)

t—00 t

The right hand side is equal to
[H(P' = P)-i*(s)ds —

_n . 0
htrglogf . + H(P).
Therefore
t .
— — P—P)-i*(s)d P—P)-z*(t
H(P') — H(P) > limsup Jo( )- & (s)ds = lim sup w
t— o0 t t— 00 t

This implies immediately that for any vector {2

—DpH(P) - 2 > limsup Q%(t)

t—o0

Replacing {2 by —{2 yields

_ 02-x*(t
_DpA(P) - 2 < liminf 2D
t—00 t
Consequently
iy pen T
~DpH(P) = lim —=.

Note that the optimal trajectory z*(s) with initial conditions (z*(0), p*(0)) €
7T solves the backwards Hamilton ODE. So, any solution z(t) of the Hamilton
ODE with initial conditions on 7 satisfies

DpH(P) = lim &1

t—oo L ’

as required. [ ]
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Corollary D.3.5. Suppose x(t) is an optimal trajectory with initial condi-
tions in I. Then, for any subsequence t; such that

t,
w = lim —I( i)

exists, o o
H(P)>H(P)+(P-P) - w,

i.e. w € DpH(P).
Proof: By taking t; — +o0 instead of ¢ — 400 in (D.12) we get
H(P')—H(P)>(P—-P)-w,

which proves the result. [

J. Mather [49] considered the problem of minimizing the functional

Alp) = / Ldy,

over the set of probability measures p supported on T™ x R™ that are invariant
under the flow associated with the Euler-Lagrange equation

don oL _
dt v Ox
Here L = L(x,v) is the Legendre transform of H, and T” the n-dimensional

torus, identified with R™/Z™ whenever convenient.
One can add also the additional constraint

/vduzw,

restricting the class of admissible measures to the ones with an average rota-
tion number w. It turns out [44] that this constrained minimization problem
can be solved by adding a Lagrange multiplier term:

Aplp] = /L(x,v) + Pudp.

The main idea is that instead of studying invariant sets one should con-
sider invariant probability measures. The supports of such measures corre-
spond to the invariant sets (tori) defined by P = constant given by the
classical theory. We show next how these measures appear naturally when
using viscosity solutions.

Let V(x,t) be a periodic viscosity solution (periodic both in = and t) of
the Hamilton—Jacobi equation



D.3 Aubry—Mather theory 255
~D,V + H(P+ D,V,z,t) = H(P).

For each ¢, let ¢(-) be a minimizing trajectory for the optimal control problem
and p¢(-) the corresponding adjoint variable. Then, for any s and ¢

V(z(s),s) = / [L(xﬁ(r),gice(r),r) —P-if(r)— F(P)] dr + V(z(t),t).

Theorem D.3.6 (Mather measures). For almost every 0 <t <1 there
exists a measure (Mather measure) v, such that for any, smooth and periodic
iny and T, function &(p,y,,t)

1.6
©
with ®(t = [D(p,y,7,t)dv(p,y,T). More precisely, for any smooth function

o(t) X
/Ocp(t)@( ‘%z dt—>/

as € — 0 (through some subsequence, if necessary).

Proof: In general, the sequence (%e, L) is not bounded. However if we consider
2 mod Z" and E mod 1, this sequence is clearly bounded, and since, by
hypothesis, @ is periodic this does not change the result. Also p° can be
uniformly bounded independently of e. Thus, by the results of the previous

section, we can find Young measures v; with the required properties. [ ]
We now prove that these measures are supported on the invariant set.

Proposition D.3.7. Let V be a periodic (in x and t) solution of —D;V +
H(P+ D,V,z,t) = H(P) and v; an associated Mather measure. Then p =
P+ D,V v a.e..

Proof: The measure v; was obtained as a weak limit of measures supported
on the closure of p = P + D,V, for some fixed V. Thus the support of the
limiting measure should also be contained on the closure of p =P+ D, V. m

Theorem D.3.8. Suppose p a Mather measure, associated with a periodic
viscosity solution of

H(P + D,u,x) = H(P).
Then p minimizes

/L—|—P-Ud77,

over all invariant probability measures 1.
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Proof: If the claim were false, there would be an invariant probability measure
v such that

—F:/L+Pvdu>/L+PvdV:f)\.

We may assume that v is ergodic , otherwise choose an ergodic component of
v for which the previous inequality holds. Take a generic point (z,v) in the
support of v and consider the projection z(s) of its orbit. Then

w(z(0)) — F(P)t g/o L(w(s),#(s)) + P - &(s)ds + u(x(t)).

Ast — o0 .
%/o L(z(s),z(s)) + P - x(s)ds — =\,

by the ergodic theorem. Hence

—H< -\

)

which is a contradiction. n

Next we prove that any Mather measures (as defined originally by Mather)
is “embedded” in a viscosity solution of a Hamilton—Jacobi equation. To do
so we quote a theorem from [45].

Theorem D.3.9. Suppose u(P) is an ergodic minimizing measure. Then
there exists a Lipschitz function W : supp(u) — R and a constant H(P) > 0
such that

—L—Pv=H(P)+ D,Wv+ D,WD,H.

By taking W as initial condition (interpreting W as a function of x alone
instead of (z,p) - which is possible because supp p is a Lipschitz graph) we
can embed this minimizing measure in a viscosity solution. More precisely
we have:

Theorem D.3.10. Suppose p(P) is a ergodic minimizing measure. Then
there exists a viscosity solution u of the cell problem

H(P + Dyu,z) = H(P)

such that w = W on supp(u). Furthermore, for almost every x € supp(u)
the measures vy obtained by taking minimizing trajectories that pass trough x
coincides with (.

Proof: Consider the terminal value problem V'(x,0) = W(z) if = € supp(p)
and V(z,0) = 400 elsewhere, with

—D,V + H(P+ D,V,z) = H(P).

Then, for € supp(u) and t > 0
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Also if x ¢ supp(u) then
V(xa _t) < V(ﬂ?, _5)7

if s < t. Hence, as t — oo the function V(x, —t) decreases pointwise. Since V'
is bounded and uniformly Lipschitz in z it must converge uniformly (because
V is periodic) to some function u. Then w will be a viscosity solution of

H(P + Dyu,x) = H(P).

Since u = W on the support of u, the second part of the theorem is a
consequence of the ergodic theorem. [ ]
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aberration, 220 — second identity, 43

absolute bipolar decomposition, 103

— motion, 60 black hole, 170, 175

— space, 58, 60 boost, 197, 214

— time, 60 Borel set, 90

— velocity, 81, 83 bracket

acceleration, 61, 74, 96 — Poisson, 184

— proper, 229 bundle

action — cotangent, 9

— adjoint, 207 — tangent, 9

— discontinuous, 9

— infinitesimal, 213 canonical

— of a Lagrangian, 186 — coordinates, 184

— properly discontinuous, 10 — transformation, 183

adjoint action, 207 Cartan

affine — formula, 20

— connection, 25 — structural equations, 50, 52, 120, 226,

— space, 55 231

angle causal

— hyperbolic, 157 — cone, 153

angular momentum, 85, 86 — curve, 153

Anosov flow, 127, 128 — vector, 153

atlas, 4 celestial sphere, 218

attractor, 125 Christoffel symbols, 26

— of a dissipative system, 123 coercivity, 245, 247

Aubry-Mather theory, 251 complete vector field, 184

automorphism condition

— complex analytic, 202 — Legendre, 185, 190

axis, 88 cone

— principal, 88 — causal, 153

— time, 165 — future causal, 154, 155
— future pointing, 154

backwards triangle inequality, 152 — future time, 155

ball — null, 146

— geodesic, 34 — opposite, 151

— normal, 34 — time, 151

Bianchi conformal, 205

— identity, 41 — map, 201
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connection

affine, 25, 31

compatible with the metric, 29, 31
geodesic of an affine connection, 29
Levi-Civita, 29, 31, 69, 228
symmetric, 31

conservation

energy, 229
of energy, 122, 184
of volume, 119, 122

conservative

field, 62
force, 107

constraint, 111

holonomic, 68
perfect, 68, 112
reaction, 75
semi-holonomic, 123

contraction, 17, 39

metric, 40

contravariant tensor field, 17
convex Lagrangian, 185
coordinate

canonical, 249
local system of, 3
neighborhood, 3
normal system, 34

coordinate system

Galilean, 57
inertial, 154, 157, 163

cosmological constant, 235
cotangent bundle, 9
covariant

derivative, 27, 42, 44
differential, 42
tensor field, 16, 17

covering, 12

universal, 211

critical

point, 9
value, 9

curvature

Gaussian, 167
geodesic, 179
mean, 169
operator, 37
principal, 171
Ricci, 47, 166

scalar, 47, 174, 237
sectional, 44, 167
tensor, 37, 166

curve

causal, 153
closed timelike, 242

d’Alembert

classical principle, 75
principle, 68, 74, 104, 111, 112

Darboux coordinates, 183
derivative

covariant, 27, 42
exterior, 16

differential

covariant, 42

Dirichlet—Riemann

equation, 107
formulation, 102, 104

dissipative

force, 107, 109
mechanical system, 107, 109, 125
strongly, 108

distant parallelism, 155
distribution

integrable, 112, 113

leaf of an integrable, 112

non integrable, 113

non-holonomic, 112

of mass, 85

orientability of a, 119, 122
spherically symmetric mass-energy,
169

divergence, 45
Doppler shift, 220

Einstein

equation, 165, 166, 169, 231
gravitation tensor, 166, 167
tensor, 172

ellipsoid of inertia, 88
ellipsoidal motion, 102
embedding, 11

energy, 165

conservation, 122, 229

integral, 177

kinetic, 61, 72, 86, 89, 102, 103, 119
mechanical, 62

of a Lagrangian, 192
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equation

— of continuity, 103
— variational, 128
equivalent with respect to, 92
Euler

— angles, 101

— equation, 94
Euler-Lagrange

— differential, 192

— equation, 247
event, 55, 154, 165
— simultaneous, 55
exponential map, 34
— global, 35

extended Hamiltonian vector-field, 193

exterior

— derivative, 16
— k-forms, 14
extremal, 186

Fermat

— metric, 180

— principle, 175, 178
field
— conservative, 62

— Lorentz, 133

— magnetic, 133

— of external forces, 92

— of forces, 62, 91

— of internal forces, 92

— of reactive forces, 112

— positional, 62

Flamm paraboloid, 174
flat torus, 23, 25

flow

— Anosov, 127, 128

— structural stability, 127
force

— abstract field of, 96

— centrifugal, 84, 240

— complete dissipative, 109
— conservative, 107

— Coriolis, 84, 240

— dissipative, 107

— external, 71, 74

— field of, 91, 92

— field of external, 92

— field of internal, 92
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— field of reactive, 112

— inertial, 84

— internal, 71

— physical fields of, 91

— reactive, 69

— strongly dissipative, 108
— tidal, 167

form

— second fundamental, 69
— total second fundamental, 114
frame

— non-inertial, 83
frequency, 162

Frobenius theorem, 112
function

— A-measurable, 90

— differentiable, 8
generating, 249

— global time, 223

— Hessian of, 46

— measurable, 90

value, 245

Godel universe, 242

Galilean

— coordinate space, 56

coordinate system, 57

— group, 56

— space-time structure, 55, 60, 154

Galileo principle of cvrelativity, 58

Gauss generalized egregium theorem,
168

geodesic

— ball, 34

— curvature, 179

— flow, 32

— of Poincaré metric, 179

— surface, 173

totally, 170

geometry

— Lorentz, 153

— Minkowski space-time, 155

— of Lobatchevski, 25

GMA

— strongly dissipative, 125

gradient of a function, 46

gravitation

— source of, 170

gravity, 165, 167
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group — sets, 251
— discontinuous action of, 9 isometry, 78, 162
— Galilean, 56 — proper, 80
— Lie, 23
— Lorentz, 162, 195 Jacobi
— Mobius, 204 — metric, 63, 64
— Poincaré, 162, 163, 195 — Riemannian metric, 63
Hamilton equations, 184 Kaluza—Klein theory, 244
Hamilton—-Jacobi kinetic
— equation, 248 — energy, 61, 72, 85, 86, 89, 102, 103,
— theory, 249 119
Hamilton—Jacobi-Bellman equation, — momentum, 85

248 Klein bottle, 10
Hamiltonian, 245
— function, 183 Lagrange
— system, 183, 249 — equations, 67, 69, 75, 99, 100
Hessian of a function, 46 — multiplier, 104
holonomic constraint, 68 Lagrangian
horizontal — function, 185
— lifting, 32 — vector field, 192
— vector, 33 Laplacian, 46
hyperbolic, 108 Larmor
— angle, 157 — time dilation effect of, 158
— partial, 127, 128 Legendre
— partial structure, 128 — transform, 245
— structure, 127 — transformation, 61
hyperquadric length of a segment, 24
— central, 148 Levi-Civita connection, 29, 31, 69, 228
hyperregular Lagrangian, 189 Lie
hypersurface — bracket, 14, 211
— totally geodesic space-like, 169 — derivative, 16

— group, 23

immersion, 11 light
index, 145 — deflection of, 175, 180
— lowering an, 40 — pulse paradox, 60
— raising an, 40 — ray, 175, 181
indicator, 167 — speed of, 60, 145, 163
inertia light ray
— ellipsoid, 88 — spatial trace of, 177
— moment of, 89 lightlike particle, 154
— operator, 87, 88, 94 Lions—Papanicolaou—Varadhan
inertial theorem, 249
— coordinate system, 58, 154, 157, 163 Lobatchevski geometry, 25
— force, 84 locally finite, 12
— space, 102 Lorentz
interior product, 16 — field, 133
invariant — geometry, 153

— measures, 251 — group, 162, 195



— manifold, 145, 146, 148
—— space-time, 154

—— time orientability, 152

— proper transformation, 199
sphere, 148, 153

— time dilation effect of, 158

Mobius
— band, 10
— group, 204

— transformation, 204, 218
magnetic field, 133
magnification factor, 221
manifold

— complex, 202

— differentiable, 4

— embedded, 4, 6

— immersed pseudo-Riemannian, 24
— immersed Riemannian, 24
— Lorentz, 145, 146, 148

— pseudo-Riemannian, 23

— Riemannian, 23

— space, 223

— stable, 108

— topological, 3

— transversal, 108

— unstable, 108

map

— complex analytic, 202

— exponential, 34

— quadratic, 147

mass, 85

— center, 85, 93, 94, 97

— distribution of, 85
operator, 61, 96

point, 71

— total, 86

mass-energy

— static spherically symmetric, 172
matter, 165

Maxwell

— equations, 230

— quasi-Maxwell equations, 237
measurable function, 90
measure

— admissible, 254

— ergodic, 256

— ergodic minimizing, 256
— invariant probability, 255
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Mather, 255

— positive scalar, 85

— real-valued, 90

— vector-valued, 90

Young, 255

mechanical system, 62

— conservative, 62

— holonomic dissipative, 127
— semi-holonomic, 112

— strictly dissipative, 125

— true non-holonomic, 112
— with constraints, 111

— with holonomic constraints, 68, 111
— with perfect constraints, 118
Mercury classical elliptical orbit, 177
metric

— contraction, 40

— Jacobi, 63, 64

— Poincaré, 179

metric

— Fermat, 180

Minkowski

— condition, 172

— space, 146, 147

— space-time, 158, 163, 239
Minkowski manifold

— 4-space, 154

— space-time, 154
Minkowski space-time

— geometry, 155

— orientation, 153
momentum, 165

— angular, 85, 86

— kinetic, 85

monopole, 243

Morse function, 108
Morse-Smale map, 109
motion

— ellipsoidal, 102

— with a fixed point, 85

Newman—Unti—Tamburino solution,
243

Newton

— classical law, 75

— equation, 58

— generalized law, 62, 68, 71, 75, 99,
104, 112

— law, 92, 100
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— laws, 71

— principle of determinacy, 58
Newtonian mechanics, 145
nodal line, 101

non-holonomic mechanics, 134

observer, 154, 158

— clock, 158

— freely falling, 158

— instantaneous, 165

— stationary, 224
optimal control, 245, 246

particle

— lightlike, 154

— material, 154
particles, 154
partition of unity, 12
Pauli matrices, 211
pendulum

— double, 73

perfect fluid, 235
photon, 220

physical space-time, 58
Poincaré

— group, 162, 163, 195
— metric, 179

position

— ¢-position, 156
potential energy, 62, 104
precession

— Mercury’s classical elliptical orbit,

177
principle
— action and reaction, 71, 92
— d’Alembert, 74, 75
projection
— stereographic, 199, 216
proper
— Lorentz transformation, 199
pseudo-Riemannian
— immersed manifold, 24
— isometry, 23
— manifold, 23
metric, 23
pseudo-rigid body dynamics, 102

ray
— spatial curvature of, 177

reaction constraint, 75
region

— empty, 169

regular

— Hamiltonian, 190

— Lagrangian, 185

— parametrization, 4

— value, 9

regularity, 246
relativity

— general, 165

— special, 145, 157, 165
Ricci

— curvature, 166

— curvature tensor, 47
— flat condition, 172

— tensor, 167, 233
Riemann tensor, 233
Riemannian

— curvature tensor, 37
— immersed manifold, 24
— isometry, 23

rigid body, 93, 119

— dynamics, 78, 89

— free, 93, 94

isolated, 93

motion, 94, 99, 100

— with a fixed axis, 88
— with a fixed point, 87
rigid motion, 85

— relative to, 80

— translational, 80
Rindler space-time, 239
rotation, 81, 196, 214

— instantaneous axis of, 83
— transferred, 81, 82

— transferred velocity of, 83
— vector, 250

Schwarz

— backwards inequality, 152, 199
— inequality, 151

Schwarzschild

— exterior solution, 172, 175

— horizon, 175

— space-time, 169, 170

— universe, 170

separation, 155

sky, 217



smooth, 8

— vector field, 13

space

— affine, 55

— configuration, 89, 111
— inertial, 102

— moving, 102

— phase, 67

— rest, 158, 165

space time

— Minkowski, 163
space-time

— Lorentz manifold, 154
— Rindler, 239

speed

— instantaneous relative, 158
— light, 163

spinor, 216

stability

— structural, 127

stable

— uniformly asymptotically, 125
Steiner, 89

structurally stable, 108
structure

— partially hyperbolic, 127
subdifferential, 246
submanifold, 4, 6, 11

— in general position, 108
— transversal, 108
subordinated, 12
subspace

— lightlike, 150

— spacelike, 150

— timelike, 150
superdifferential, 246
supersolution, 248
support of a function, 12
surface

— totally geodesic, 173

symmetry

— by pairs, 41
— spherical, 173
system

— conservative mechanical, 62
— Hamiltonian, 249

— mass point, 71

— moving, 80

Index

— stationary, 80

tangent

— bundle, 9

— non-degenerate plane, 44
— space, 7

— vector, 7, 8

vertical vector, 67

tensor

— curvature, 37, 166

— Einstein, 172

— Einstein gravitation, 166
— Einstein gravitational, 167
— product, 37

— Ricci, 167

— Riemannian curvature, 37
— stress energy, 165, 235
tensor field

— contravariant, 17

— covariant, 16, 17

— mixed, 17

— torsion, 50

time

— &-time, 156

— absolute, 163

— orientable, 153

— orientation, 153

—— future, 154

— past, 154

— proper, 157

time dependent Hamiltonian
— function, 188

time independent problems, 245
time-cone, 150
time-orientability, 150
Tipler, 243

topological equivalence, 109
topological manifold, 3
torsion tensor field, 50
torus, 10

— flat, 23, 25

— of revolution, 10
transformation

— active, 197, 218

— Legendre, 188

— passive, 197, 218

tubular neighborhood, 34
twin paradox, 159

269
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universe
— static, 178

vacuum, 169

— condition, 172

vakonomic mechanics, 133, 134
variation, 177

vector

— causal, 153

— displacement, 155

— horizontal, 33

— lightlike, 146

— principal normal, 179

— rotation, 250

— space like, 146

— time coordinate, 157

— timelike, 146, 150

— vertical, 67

vector field, 13

— along a curve, 24

— along a differentiable curve, 27
— energy-momentum, 159, 162
— energy-momentum vector field
— of a lightlike particle, 162
— of a material particle, 159
- GMA, 123

— gravitational, 228

— gravitomagnetic, 228

— Killing, 175, 223, 239

— parallel, 28

— second order, 66

— smooth, 13

— strictly dissipative, 123
— strongly dissipative, 123
velocity

— absolute, 81, 83

— angular, 88

— field, 24

— instantaneous angular, 86
— of moving system, 81

— relative, 81, 83

— relativistic addition of, 158
— transferred, 83

vertical

— lifting operator, 67, 117
— tangent vector, 67
viscosity

— solution, 245

— subsolution, 248

Von Stockum solution, 242

wave length, 162
work, 71





