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Abstract

In this paper, we consider the unsteady equations that govern two- and three-dimensional #ows of a perfect gas. We
explicitly characterize various classes of exact solutions by introducing some invertible transformations suggested by the
invariance with respect to Lie groups of point symmetries and using suitable transformations known in literature as
substitution principles. � 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The explicit determination of exact solutions to
systems of partial di!erential equations (PDEs) of
physical relevance is of great interest; besides its
own intrinsic interest, these solutions (especially,
when they contain arbitrary functions) may be used
for modelling asymptotic limits of more complic-
ated solutions, or for testing numerical procedures,
or for solving special initial and/or boundary value
problems.

One of the most powerful methods in order to
determine particular solutions to PDEs is based
upon the study of their invariance with respect to

one-parameter Lie group of point transformations
(see [1}7]). Once the Lie groups that leave assigned
PDEs invariant are known, usually one tries to
determine the corresponding similarity solutions,
by solving the overdetermined system given by the
original system augmented by the invariant surface
conditions.

Moreover, important classes of exact solutions
may be recovered by investigating the compatibil-
ity of a given system of PDEs with some di!erential
and/or algebraic constraints [8,9]. Alternatively,
one may look at the constraints to be imposed to
a given set of PDEs in order to have their invari-
ance with respect to an assigned family of trans-
formations; for instance, this is the case of the result
known in literature as Substitution Principle and
originally introduced for the steady equations of
ideal gas-dynamics [10,11] and ideal magneto-
gas-dynamics [12]. Substitution Principles have
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been also given for the unsteady equations of ideal
gas-dynamics with a separable equation of state
having the pressure steady [13], and for the un-
steady equations of ideal magneto-gas-dynamics
having the total magnetic pressure steady [14].

Quite recently Oliveri [15,16] proved that the
Substitution Principle for unsteady gas-dynamics
can be obtained within the context of Lie group
analysis and found a Substitution Principle for
a class of solutions governing unsteady three-
dimensional #ows of a perfect gas, with adiabatic
index equal to �

�
, having also the pressure unsteady.

Furthermore, in [17], the Substitution Principle to
the unsteady equations of ideal magneto-gas-dy-
namics has been slightly generalized and a Substi-
tution Principle for planar #ows with a transverse
magnetic "eld and adiabatic index equal to 2 has
been found by means of Lie group analysis. Also, in
[18] it has been established a Substitution Prin-
ciple for the solutions of Galilean systems. Finally,
in [19}21], Substitution Principles for n-dimen-
sional #ows of perfect #uids with adiabatic index
�"(n#2)/n have been given, as well as some
examples of application.

Besides the search of similarity solutions, an-
other relevant use of Lie point symmetries admitted
by given PDEs consists in introducing some invert-
ible point transformations that map the original
system to an equivalent one (see for instance
[22}26]), that can be managed (or for which exact
solutions may be determined) more easily.

In the present paper, we shall consider the
equations that govern the unsteady motion of an
anisentropic perfect gas subject to no extraneous
force and determine explicitly various classes of
exact solutions by introducing some transforma-
tions that map the equations at hand to an equiva-
lent autonomous form, and using the
transformation referred to as Substitution Prin-
ciple; in [27] the same techniques used in this paper
have been successfully applied to the steady equa-
tions of perfect gases.

The scope of the paper is twofold: "rst of all, we
want to show that Lie group analysis may be used
not only for determining special symmetry reduc-
tions, but also for transforming the equations at
hand into an equivalent form whose `simplea solu-
tions provide non-trivial solutions when expressed

in terms of the original variables; furthermore, we
want to exhibit physically admissible solutions of
perfect gases that verify the constraints to be re-
quired in order the substitution principles apply (to
the best of authors' knowledge there are no relevant
unsteady solutions to the equations of perfect gases
suitable to be used with the substitution principle).
The plan of the paper is as follows. In Section 2,
we present the Lie group of point transformations
that leave the equations at hand invariant.
In Section 3 we report, for the sake of clarity, the
theorems that will be used through the rest of
paper. In Sections 4 and 5 we consider the unsteady
two- and three-dimensional equations, respectively,
and determine explicitly various classes of exact
solutions. Finally, in Section 6 new (substituted)
solutions containing up to two arbitrary func-
tions are generated by applying the Substitution
Principle.

2. Lie group analysis

The equations of a perfect gas subject to no
extraneous force are

�p
�t

#v ) �p#�p� ) v"0,

p���s�
�v
�t

#(v ) �)v�#�p"0,

�s
�t

#v ) �s"0, (2.1)

where p(t,x) is the pressure, s(t,x) (a function of) the
entropy, v(t,x)"(v

�
(t,x),2, v

�
(t, x)) the velocity

vector, t the time and x"(x
�
,2, x

�
) the spatial

Cartesian rectangular coordinates, �"(�/�x
�
,2, �/

�x
�
) (n"2, 3 in the sequel), and � the adiabatic

index; moreover, �"p���s is the mass density.
By straightforward analysis, it is found that the

Lie groups of point transformations that leave
system (2.1) invariant constitute a ((n�#3n#8)/2)-
dimensional Lie algebra generated by the following
in"nitesimal operators (see also [2]):
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where i, j, k"1,2, n, j'i, and l"1,2,
n(n!1)/2. The operators �

�
,2, �

���
character-

ize time and space translations, �
���

, �
���

and
�
���

stretching transformations, �
���

,2, �
����

the Galilean transformations; "nally, the remaining
operators characterize spatial rotations.

If �"(n#2)/n [2] then we also have the invari-
ance with respect to the so-called projective group
that is generated by the in"nitesimal operator
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. (2.3)

The use of the projective group enables us to
generate of unsteady solutions starting from steady
solutions (see [27]).

3. The theorems

As remarked above, the knowledge of the Lie
point symmetries admitted by a system of PDEs
may be employed to characterize classes of invari-
ant solutions. But, one may look for the introduc-
tion of suitable invertible point transformations
allowing one to map the given system of PDEs to
an equivalent form for which classes of exact solu-
tions may be found more simply. The latter task
may be accomplished by means of the following
theorem (for the details of the proof see [23,25]).

Theorem 1. The general xrst-order system of partial
diwerential equations

�
��x�

, u
�
,
�u

�
�x

�
�"0 (i"1,2, n;A,B"1,2,N)

(3.1)

can be transformed by the invertible point transforma-
tion

X
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"X
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, u

�
), ;

�
";

�
(x

�
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�
) (3.2)

to the autonomous form

�)
��;�

,
�;

�
�X

�
�"0, (3.3)

if and only if it is left invariant by n independent Lie
groups of point transformations whose inxnitesimal
operators �

�
(i"1,2, n) satisfy the conditions:

[�
�
,�

�
]"0 (i, j"1,2, n), (3.4)

denoting [ ) , ) ] the commutator of two operators.
Conditions (3.4) mean that the operators �

�
(i"

1,2, n) generate a n-dimensional Abelian Lie algebra.

The invertible point transformation (3.2) is built
by considering the canonical variables associated
to the n in"nitesimal operators. This theorem can
be applied also when the original system (3.1) is
autonomous: in this case we get an equivalent
autonomous system. If we determine solutions
(even simple, for example, constant) of the trans-
formed system (3.3) then we obtain, via (3.2), solu-
tions to the original system (3.1). In what follows,
this theorem will be the "rst tool that we shall use
in order to build the exact solutions.

Also, it is of great importance to determine solu-
tions that contain some arbitrary functions in order
to have more degrees of freedom when solving
initial and/or boundary value problems. To do so,
we shall make use of some results known in litera-
ture as Substitution Principles. Hence, let us give
a brief overview to the involved theorems.

Munk and Prim [10] and Prim [11] derived the
remarkable result named Substitution Principle
and stated as follows:

Theorem 2. The steady equations (i.e., no time
dependence) of an inviscid, thermally non-conducting
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gas are invariant with respect to the following trans-
formation:

pH(x)"p(x), vH(x)"
v(x)

m(x)
, sH(x)"m�(x)s(x),

where m(x) represents a smooth scalar function of the
space variables subjected to the constraint

v ) �m"0,

that is m(x) is constant along each individual stream-
line.

Smith [13] extended this result to the class of
unsteady #ows having steady the pressure. A slight
generalization, that has been given in [21], can be
stated with the following theorem.

Theorem 3. If

�p(t,x), v(t,x), s(t,x)�

represents a solution to the equations of perfect gases,
then another solution is

�[m(x)]	�p(mt#h(m),x), m(x)v(mt#h(m),x),

[m(x)]	�s(mt#h(m),x)�

with

	"
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#2,
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v ) �m"0,
�p
�t

!


p
t#h�(m)

"0,

where m(x) is a smooth scalar function of x, and h(m)
an arbitrary function of its argument if 
"0, or
h(m)"h



m!h



(with h



constant) if 
O0.

A further `mixeda Substitution Principle,
enabling us to provide when �"(n#2)/n un-
steady solutions from steady solutions, has been
also obtained (see [16,21,27]) by using the special
form of the reduced system that is found by looking
for the solutions invariant with respect to the
projective group and the transformation given in
Theorem 2.

4. Unsteady equations in 2D

Here let us focus our attention to the unsteady
two-dimensional equations. By specializing the re-
sults reported in Section 2, we have that the Lie
groups of invariance constitute a nine-dimensional
Lie algebra. Moreover, if �"2, we also have the
in"nitesimal operator of the projective group corres-
ponding to (2.3).

It is easy to verify that the non-commuting oper-
ators are
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Since we have three independent variables, in
order to apply Theorem 1, we need three indepen-
dent commuting operators that we build by taking
three independent linear combinations of the
operators �

�
,2, �

�

:
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a three-dimensional Abelian Lie algebra, we have
to satisfy the following conditions:
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where we have used the notation w
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The application of Theorem 1 leads us to distin-
guish various cases according to the choices of the
parameters �

�
, 


�
and 	

�
(i"1,2,10). In general,

we will be able to introduce a variable transforma-
tion having the form
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vanishing) are suitable constants linked to the con-
stants �

�
, 


�
and 	

�
(k"1,2,10). Moreover,

�
�
(i"1,2, 5) are suitable functions of x

�
, x

�
and

t, whereas, �
�
, �

�
and �

�
are suitable functions of t;

"nally, f
�

and f
�

are constants belonging to the set
�!1, 0, 1� according to the various cases.

The explicit form of the constants and the func-
tions involved in this transformation will be given
in the sequel. Finally, ¹, X
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represent the new
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S represent the new dependent variables.
Such a transformation allows us to transform

system (2.1), specialized in 2 space dimensions, to
the following equivalent autonomous form:
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Now, let us start by considering the constant
solutions of the transformed system we obtain. Es-
sentially, two cases must be distinguished accord-
ing to the possible choices of the constants therein
involved. In the "rst one, we get a solution that,
expressed in terms of the original variables, is
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Further classes of solutions may be found by
assuming <

�
to be constant, <

�
"0 and P, S non-

constant.
After straightforward integrations and substitu-

tions we are able to recover the solution
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where �(�) is an arbitrary function of �"r�/t. It is
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specialize along with the following conditions:

�
�
"arctan

x
�

x
�

, �
�
"ln�x�

�
#x�

�
, �

�
"t,

�
�
"x

�
, �

�
"x

�
, �

�
"�

�
"0, �

�
"1,

e
�
"e

�
"e

�
"e

�
"0,

f
�
"1, f

�
"0,

"

b
�
c
�
!b

�
c
�

�
�

,

a
�
"


��
	
��
, a

�
"


��
	
�
, a

�
"


�
	
��
,

b
�
"�

��
	
��
, b

�
"�

�
	
��
, b

�
"�

��
	
�
,

c
�
"�

��


��
, c

�
"�

�


��
, c

�
"�

�


��
.

The constant solutions admitted by the trans-
formed system provide, in terms of the original
variables, the solution

v
�
"!v



x
�
, v

�
"v



x
�
,

p"p


r���������	��,

s"
�(2#d)p�	���



(�!1)v�




r�, (4.6)

where v


, p



and d are arbitrary constants.

Other solutions can be obtained by assuming
<

�
"0, <

�
"v



(v



arbitrary constant), P and

S non-constant. In terms of the original variables
we have the solution

v
�
"!v



x
�
, v

�
"v



x
�
,

p"�(r), s"
1

v�


r����

d�
dr

, (4.7)

where �(r) is an arbitrary function of r. It is easy to
ascertain that solution (4.6) is a particular instance
of this one when we assume �(r)"p



r���������	��.

Solutions (4.6) and (4.7) are steady and have been
obtained in [27].

Now, let us consider the case in which
�
�
"�


"0; it also has to be 


�
"	

�
"




"	


"0. As a "rst subcase, we take �

�
, 


�
, 	

�
non-vanishing and as before we continue to neglect
the coe$cients related to Galilean transformation;
transformation (4.1) and system (4.2) then specialize
according to the positions

�
�
"x

�
, �

�
"x

�
, �

�
"ln(�

�
!�

�
t),

�
�
"

1

�
�
t!�

�

, �
�
"0, �

�
"�

�
"0, �

�
"1,

e
�
"e

�
"e

�
"e

�
"0,

f
�
"0, f

�
"1,

"c
�
b
�
!c

�
b
�
,

a
�
"


��
	
��
, a

�
"


��
	
��
, a

�
"


��
	
��
,

b
�
"�

��
	
��
, b

�
"�

��
	
��
, b

�
"�

��
	
��
,

c
�
"�

��


��
, c

�
"�

��


��
, c

�
"�

��


��
.

Unfortunately, the transformed system we "nd
does not possess physically meaningful constant
solutions; nevertheless, we are able to "nd a non-
constant solution by assuming <

�
"!(c

�
/c

�
)<

�
;

what we "nally get in terms of the original

F. Oliveri, M.P. Speciale / International Journal of Non-Linear Mechanics 37 (2002) 257}274 263



variables is

v
�
"!

c
�
c
�

<(�), v
�
"<(�),

p"p


, s"S(�), (4.8)

<(�) and S(�) being arbitrary functions of
�"c

�
x
�
#c

�
x
�
, whereas, p



is a constant. This is

a steady solution that becomes unsteady by using
the invariance with respect to the Galilean trans-
formations.

If we take, besides �
�
"�


"


�
"




"	

�
"	


"0, also �

�
"


�
"	

�
"0 but in-

clude the Galilean transformation, i.e., we take �
�
,



�

and 	
�

(i"7, 8) non-vanishing, we have that
transformation (4.1) and system (4.2) specialize
according to the conditions

�
�
"x

�
!

�
�

2�
�

t�, �
�
"x

�
!

�
�

2�
�

t�, �
�
"t,

�
�
"1, �

�
"0, �

�
"0, �

�
"t, �

�
"1,

e
�
"e

�
"f

�
"f

�
"0,

e
�
"

�
�

�
�

, e
�
"

�
�

�
�

,

"b
�
c
�
!b

�
c
�
,

a
�
"


��
	
��
, a

�
"


��
	
��
, a

�
"


��
	
��
,

b
�
"�

��
	
��
, b

�
"�

��
	
��
, b

�
"�

��
	
��
,

c
�
"�

��


��
, c

�
"�

��


��
, c

�
"�

��


��
.

By considering the constant solutions admitted
by the transformed system we have to require the
conditions

d
�
<

�

#d

�
<

�

#d

�
"0, �

�
d
�
!�

�
d
�
"0,

where we have assumed <
�
"v

�

and <

�
"v

�

.

Two cases may be distinguished. If �
�
"0 (and

d
�
"0), we have, in terms of the original variables,

the solution

v
�
"

d
�
d
�

#

�
�

�
�

t, v
�
"v

�

,

p"p


exp�

a��
�!1�,

s"!

�
�
a�p�	���



�
�
(�!1)

exp(a�), (4.9)

where

�"x
�
!

d
�
d
�

t!
�
�

2�
�

t�,

p



and a being arbitrary constants such that the
"eld variables s and p result positive. On the con-
trary, if �

�
O0 (d

�
"(�

�
/�

�
)d

�
), then the solution

we recover is

v
�
"v

�

#

�
�

�
�

t, v
�
"

d
�
d
�

!

�
�

�
�

v
�


#

�
�

�
�

t,

p"p


exp�

a��
�!1�,

s"!

�
�
a�p�	���



�!1

exp(a�), (4.10)

where

�"�
�
x
�
#�

�
x
�
!�

�

d
�
d
�

t!
��
�
#��

�
2�

�

t�

and p


, a are arbitrary constants such that p and

s are positive.
Now we look for non-constant solutions. By

assuming �
�
<

�
#�

�
<

�
"c, with c constant, and

taking �
�
O0 we get the solution

v
�
"�(�)#

�
�

�
�

t, v
�
"

c!�
�
�(�)

�
�

#

�
�

�
�

t,

p"�(�), s"!

�
�

����
d�
d�

, (4.11)

where �(�) and �(�) are arbitrary functions of

�"�
�
x
�
#�

�
x
�
!ct!

��
�
#��

�
2�

�

t�.

In particular, when c"�
�
d
�
/d

�
, �"p



exp(a��/

(�!1)) and �"v
�


we obtain solution (4.10).
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4.2. The case �"2

Now we consider the case �"2; therefore, we
take in the expression of �

�
, �

�
and �

	
the con-

stants �
�


, 

�


and 	
�


di!erent from zero.
Also, to simplify the calculations, we neglect

space translations, and the Galilean transforma-
tions, i.e., we take �

�
"


�
"	

�
"0 (i"2, 3, 7, 8).

Transformation (4.1) and System (4.2) specialize
along with the conditions

�
�
"arctan

x
�

x
�

,

�
�
"ln��

x�
�
#x�

�
�
�

t�#(�

�
!�

�
)t#�

�
�!�,

�
�
"�,

�
�
"

(�
�
!�

�
)x

�
�
�

t�#(�

�
!�

�
)t#�

�

,

�
�
"

(�
�
!�

�
)x

�
�
�

t�#(�

�
!�

�
)t#�

�

,

�
�
"0,

�
�
"

t

�
�

t�#(�

�
!�

�
)t#�

�

,

�
�
"

�
�
!�

�
��

�

t�#(�

�
!�

�
)t#�

�

,

e
�
"e

�
"e

�
"e

�
"0,

f
�
"1, f

�
"!1,

"

b
�
c
�
!b

�
c
�

�


,

a
�
"


��
	
��
, a

�
"


�
	
��

!

�

	
��
, a

�
"2


��
	
�
,

b
�
"�

��
	
��
, b

�
"�

��
	
�

!�
��

	
�
, b

�
"2�

��
	
�
,

c
�
"�

��


��
, c

�
"�

�


��

!�
�



��
, c

�
"2�

��


�
,

where

�"

�
�
!�

�
�4�

�
�
�


!(�
�
!�

�
)�

arctan

��
2�

�
�
�

t#�

�
!�

�
�4�

�
�
�


!(�
�
!�

�
)��,

along with the constraints �
�


'0, 4�
�
�
�


!(�
�
!�

�
)�'0.

The constant solution of the transformed system
provide the following solution to the original sys-
tem:

v
�
"

(2at#b)x
�
!2v



x
�

2(at�#bt#c)
,

v
�
"

2v


x
�
#(2at#b)x

�
2(at�#bt#c)

,

p"

b�p



(at�#bt#c)��
r�

at�#bt#c�
������

,

s"
16b�(1#d)�p



b�(4v�



#1)!4ac�

r�

at�#bt#c�
�
, (4.12)

where a"�
�


, b"�
�
!�

�
, c"�

�
, v



and

p



are arbitrary constants, whereas r"

�at�#bt#c exp(�
�
). Also, the solution is phys-

ically meaningful (i.e., the entropy s and the pres-
sure p are positive) provided that (1#d)/
(b�(4<�



#1)!4ac)'0.

Another more general class of solutions may be
obtained by assuming <

�
and <

�
to be constant,

while P and S non-constant. The solution we get,
when written in terms of the original variables, is

v
�
"

(2at#b)x
�
!2v



x
�

2(at�#bt#c)
,

v
�
"

2v


x
�
#(2at#b)x

�
2(at�#bt#c)

,

p"

b��(�)

(at�#bt#c)�
,

s"
8b�

b�(4v�


#1)!4ac

1

��

d�
d�

, (4.13)

where �(�) is an arbitrary function of

�"

r�

at�#bt#c

and (b�(4v�


#1)!4ac) with the same sign as

d�/d�. It is noticed that solution (4.12) is re-
covered as a particular case of solution (4.13) when
�"p



�������.
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Moreover, if all the "eld variables are non-con-
stant, we "nd the following solution to the original
system:

v
�
"

(2at#b)x
�
!2x

�
�(�)

2(at�#bt#c)
,

v
�
"

(2at#b)x
�
#2x

�
�(�)

2(at�#bt#c)
,

p"

b��(�)

(at�#bt#c)�
,

s"
8b�

b�(4��#1)!4ac

1

��(�)

d�
d�

, (4.14)

where �(�), �(�) are arbitrary functions of the
argument

�"

r�

at�#bt#c
.

A subcase of the previous may be obtained when
we also assume �

�
"


�
"	

�
"0, i.e., we also ne-

glect time translations. Transformation (4.1) and
System (4.2) specialize along with the conditions

�
�
"arctan

x
�

x
�

,

�
�
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�
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�
t �,

�
�
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�

t#�
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,
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"

�
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�
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�

x
�
t

,

�
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"

1

�
�

t
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�
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"
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�
t

,

e
�
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�
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�
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�
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f
�
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"
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�
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,
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,

b
�
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c
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�
"�

�


��

!�
�



��
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�
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.

If we assume that all the "eld variables involved
in the transformed system are non-constant, we
"nd the following solution to the original system:

v
�
"

(2at#b)x
�
!2x

�
�(�)

2t(at#b)
,

v
�
"

2x
�
�(�)#(2at#b)x

�
2t(at#b)

,

p"

b��(�)

t�(a#bt)�
,

s"
8

(4��#1)��

d�
d�

, (4.15)

where �(�), �(�) are arbitrary functions of the
argument �"r�/(t(a#bt)). This solution is re-
covered from (4.14) when c"0.

Di!erent results are obtained when �
�
"�

�
; if

this is the case, in order to have an explicit trans-
formation, we have to choose also 


�
"


�
and

	
�
"	

�
; moreover, we include time translation.

Transformation (4.1) and system (4.2) specialize ac-
cording to the positions (provided that �

�
�
�


'0):

�
�
"arctan

x
�

x
�

,

�
�
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x�
�
#x�

�
�
�
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�
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,

�
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"
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�
"

x
�

�
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�
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,

�
�
"

t

�
�
#�

�

t�

, �
�
"0,

�
�
"

1

��
�
#�

�

t�

,
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e
�
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f
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�
"0,

"

b
�
c
�
!b

�
c
�

�


,

a
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c
�
"�

��


�
�

, c
�
"�

�


�
�

, c
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.

By searching for the constant solutions to the
transformed system we obtain the following solu-
tion to the original equations:

v
�
"

ax
�
t!v



x
�

at�#b
, v

�
"

v


x
�
#ax

�
t

at�#b
,

p"

p



(at�#b)��
r�

at�#b�
�����

,

s"
2(2#d)�p



v�


!ab �

r

t�
�

(4.16)

with r"��
�
#�

�

t� exp(�

�
). Another class of

solutions may be found by assuming
<

�
"0, <

�
"v



(v



constant) and P and S non-

constant; in this case we obtain, in terms of the
original variables, the following solution:

v
�
"

ax
�
t!x

�
v



at�#b
, v

�
"

x
�
v


#ax

�
t

at�#b
,

p"

p


�(�)

(at�#b)�
, s"

2

v�


!ab

1

��

d�
d�

, (4.17)

where �(�) is an arbitrary function of
�"r�/(at�#b). We can note that solution (4.16) is
an particular instance of (4.17) when we choose
�"p



������.

On the contrary, if we neglect time translation,
transformation (4.1) and system (4.2) specialize ac-
cording to the positions
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.

A class of solutions may be found by assuming
<

�
"0, whereas,<

�
, P and S non-constant; in this

case we obtain, in terms of the original variables,
the following solution:

v
�
"

x
�
t!x

�
�(�)

t�
, v

�
"

x
�
�(�)#x

�
t

t�
,

p"

�(�)

t�
, s"

1

�����

d�
d�

, (4.18)

where �(�) and �(�) are arbitrary functions of
�"exp(�

�
).

Now we look for the exact solutions when we
assume �


"�

�
and �

�
O0, 


�
O0. In this case,

if we want an explicit transformation we need to
choose �

�
"


�
"	

�
"0, �

�
O0, and 


�
O0 (i"

2, 3). Transformation (4.1) and system (4.2) special-
ize according to the positions
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.

Like in the case �O2, the transformed system
does not admit physically acceptable constant
solution. Nevertheless, we may "nd the following
solution obtained by assuming the velocity non-
constant whose components are linked by <

�
"

!(c
�
/c

�
)<

�
(c

�
and c

�
constants) in terms of the

original variables, we "nd

v
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�

x
�
#�

�
)

c
�
(�
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, s"S(�), (4.19)

where p



is a constant and <(�) and S(�) are
arbitrary functions of
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x
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.

The subcase of the previous one that we must
analyze to cover all the situations is the case in
which �

�
"


�
"	

�
"0. Transformation (4.1) and

system (4.2) specialize according to the positions
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,

e
�
"�

�
, e

�
"!

�
�

�
�


,

f
�
"f

�
"0, "

b
�
c
�
!b

�
c
�

a
�


,

a
�
"


��

	
��
, a

�
"


��
	
�
�

, a
�
"


��
	
��
,

b
�
"�

��

	
��
, b

�
"�

��
	
�
�

, b
�
"�

��
	
��
,

c
�
"�

��


�
�

, c
�
"�

��



��
, c

�
"�

��


��
.

The constant solutions (<
�
"v

�

, <

�
"v

�

and

P"p


, v

�

, v

�

, p



being arbitrary constants) to

the recovered transformed system have to satisfy
the following conditions:

d
�
v
�


#d
�
v
�


#d
�
"0, �

�
d
�
!�

�
d
�
"0.

Two cases must be distinguished. If �
�
"0 (d

�
"0),

in terms of the original variables we have

v
�
"

d
�

d
�
t
#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,

v
�
"

v
�


t
#

�
�

x
�
#�

�
�
�

t

,

p"

p


t�

exp(2a�),

s"!

2�
�

a�p



�
�

exp(a�), (4.20)

where

�"

x
�
t

#

�
�

2�
�

t�

#

d
�

d
�
t

and a, p



and v
�


arbitrary constants such that
s and p are positive.

If �
�
O0 (d

�
"!d

�
�
�
/�

�
) it is found

v
�
"

v
�


t
#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,

v
�
"

d
�

d
�
t
!

�
�
v
�


�
�
t

#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,
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p"

p


t�

exp(2a�),

s"!2�
�

a�p



exp(a�), (4.21)

where

�"

�
�
x
�
#�

�
x
�

t
#

�
�
�
�
#�

�
�
�

�
�

t

#

�
�
d
�

d
�
t

#

��
�
#��

�
2�

�

t�

and a, v
�


, p



arbitrary constants such that s and
p are positive.

Finally, looking for the non-constant solutions
and assuming �

�
<

�
#�

�
<

�
"c, we "nd

v
�
"

�(�)

t
#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,

v
�
"

c!�
�
�(�)

�
�
t

#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,

p"

�(�)

t�
, s"

�
�


��

d�
d�

, (4.22)

where �(�) and �(�) are arbitrary functions of

�"

�
�
x
�
#�

�
x
�

t
#

�
�
�
�
#�

�
�
�

�
�

t

#

c

t
#

��
�
#��

�
2�

�

t�

.

This solution, for particular choices of �(�), �(�)
and c, contains as a particular case solution (4.20).

5. Unsteady equations in 3D

In this case, the "eld equations (2.1) are left
invariant by 13 Lie groups of point transformations
whose operators are given by specifying with n"3
in (2.2). Moreover, if �"�

�
, we have also the in"ni-

tesimal operator of the projective group corre-
sponding to (2.3). By following the same procedure
of the last section, i.e., by applying Theorem 1, we
need to consider four linear independent combina-
tions of the operators �

�
(i"1,2,14) admitted by

our equations and then require that these four
operators (say, �

�
, �

�
, �

	
and �


) generate a four-

dimensional Abelian Lie algebra.

Unfortunately, the constants �
�
, 


�
, 	

�
and

�
�
(i"1,2,14) involved in the operators �

�
, �

�
,

�
	

and �

, do not allow the operators to be such

that the 4�4 matrix with entries given by the
in"nitesimal generators of the independent vari-
ables has maximal rank: this implies that the trans-
formation of variables cannot be explicit.

Nevertheless, it is possible to construct classes of
solutions by simply extending to the three-dimen-
sional case the solutions found in the previous
section.

5.1. The case � arbitrary

The "rst solution is obtained by extending solu-
tion (4.5); what we get is

v
�
"

2

3�!1

x
�
t

(i"1, 2, 3)

p"

�(�)

t������	��
,

s"
(3�!1)���	�����	��

12(�!1)

1

����
d�
d�

, (5.1)

where �(�) is an arbitrary function of �"

(x�
�
#x�

�
#x�

�
)���	����/t.

By extending solution (4.7) we "nd

v
�
"!v



x
�
#w



x
�
,

v
�
"v



x
�
#z



x
�
,

v
�
"!w



x
�
!z



x
�
,

p"�(r), s"
1

r����
d�
dr

, (5.2)

where �(r) is an arbitrary function of

r"((v�


#w�



)x�

�
#(v�



#z�



)x�

�
#(w�



#z�



)x�

�

#2w


z


x
�
x
�
#2v



z


x
�
x
�
!2v



w


x
�
x
�
)���.

In the same way, starting with solution (4.11), we
obtain

v
�
"!

c
�
�

�
(�)#c

�
�

�
(�)

c
�

,

v
�
"�

�
(�), v

�
"�

�
(�),

p"p


, s"S(�), (5.3)
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where �
�
(�), �

�
(�) and S(�) are arbitrary func-

tions of �"c
�
x
�
#c

�
x
�
#c

�
x
�
.

Finally, from solution (4.11) it is found

v
�
"�

�
(�)#

�
�

�
�

t,

v
�
"

c!�
�
�

�
(�)!�


�

�
(�)

�
�

#

�
�

�
�

t,

v
�
"�

�
(�)#

�


�
�

t, p"�(�),

s"!

�
�

����
d�
d�

, (5.4)

where �
�
(�), �

�
(�) and �(�) are arbitrary func-

tions of

�"�
�
x
�
#�

�
x
�
#�


x
�
!ct

!

��
�
#��

�
#��


2�

�

t�

with c constant, where we assumed �
�
O0.

5.2. The case �"�
�

When �"�
�

(which is a physical case) other
solutions can be obtained. By extending solution
(4.13) (taking v



"0) to the three-dimensional case,

we get the solution

v
�
"

(2at#b)x
�

2(at�#bt#c)
(i"1, 2, 3),

p"

b��(�)

(at�#bt#c)���
, s"

2b�

b�!4ac

1

����

d�
d�

, (5.5)

where �(�) is an arbitrary functions of the argu-
ment �"(x�

�
#x�

�
#x�

�
)/(at�#bt#c); moreover,

by extending solution (4.15) (with �"v


) we

obtain the solution

v
�
"

(2at#b)x
�
!2bv



x
�
#2bw



x
�

2t(at#b)
,

v
�
"

2bv


x
�
#(2at#b)x

�
#2bz



x
�

2t(at#b)
,

v
�
"

!2bw


x
�
!2bz



x
�
#(2at#b)x

�
2t(at#b)

,

p"

b��(�)

t���(a#bt)���
, s"

8

����

d�
d�

, (5.6)

where �(�) is an arbitrary function of
�"r�/(t(a#bt)), where

r"((1#4v�


#4w�



)x�

�
#(1#4v�



#4z�



)x�

�

#(1#4w�


#4z�



)x�

�

#8w


z


x
�
x
�
#8v



z


x
�
x
�
!8v



w


x
�
x
�
)���.

Another solution (that generalizes solution (4.18)
is

v
�
"

x
�
t!v



x
�
#x

�
w



t�
,

v
�
"

v


x
�
#x

�
t#x

�
z



t�
,

v
�
"

!w


x
�
!x

�
z


#x

�
t

t�
,

p"

�(�)

t�
, s"

1

�����

d�
d�

, (5.7)

where �(�) is an arbitrary function of �"r/t with

r"((v�


#w�



)x�

�
#(v�



#z�



)x�

�
#(w�



#z�



)x�

�

#2w


z


x
�
x
�
#2v



z


x
�
x
�
!2v



w


x
�
x
�
)���.

Furthermore, we build the following solution as
extension of (4.18):

v
�
"

!x
�
�(�)#x

�
�(�)#x

�
t

t�
,

v
�
"

x
�
�(�)#x

�
�(�)#x

�
t

t�
,

v
�
"

!x
�
�(�)!x

�
�(�)#x

�
t

t�
,

p"

�(�)

t�
, s"

1

2�������

d�
d�

, (5.8)

where �(�) and �(�) are arbitrary functions of
�" (x�

�
#x�

�
#x�

�
)/t.
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The third solution (extension of (4.19)) is

v
�
"!

c
�
�

�
(�)#c

�
�

�
(�)

c
�
(�

�

t!�

�
)

#

�
�

x
�
#�

�
�
�

t!�

�

,

v
�
"

�
�
(�)#�

�

x
�
#�

�
�
�

t!�

�

,

v
�
"

�
�
(�)#�

�

x
�
#�


�
�

t!�

�

,

p"

p



(�
�

t!�

�
)�

, s"S(�), (5.9)

where �
�
(�), �

�
(�) and S(�) are arbitrary func-

tions of

�"

c
�
(�

�

x
�
#�

�
)#c

�
(�

�

x
�
#�

�
)#c

�
(�

�

x
�
#�


)

�
�

t!�

�

.

Finally, starting from (4.22), another solution is

v
�
"

�
�
(�)

t
#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,

v
�
"

c!�
�
�

�
(�)!�

�
�

�
(�)

�
�
t

#

(�
�

x
�
#�

�
)t#�

�
�
�

t�

,

v
�
"

�
�
(�)

t
#

(�
�

x
�
#�


)t#�

�
�
�

t�

,

p"

�(�)

t�
, s"

�
�


����

d�
d�

, (5.10)

where �
�
(�), �

�
(�) and �(�) are arbitrary func-

tions of

�"

�
�
x
�
#�

�
x
�
#�

�
x
�

t

#

�
�
�
�
#�

�
�
�
#�

�
�


�
�

t

#

c

t
#

��
�
#��

�
#��

�
2�

�

t�

.

6. New substituted solutions

In this section we construct new classes of exact
solutions by means of the Substitution Principle
established in Section 3.

6.1. The 2D case

By applying Theorem 3 to solution (4.7), pro-
vided that

!x
�

�m
�x

�

#x
�

�m
�x

�

"0, (6.1)

by which m is an arbitrary function of

r"�x�
�
#x�

�
, we "nd the new unsteady solution

(where we make use also of the invariance with
respect to the space translations and Galilean
transformations):

v
�
"!(x

�
!k

�
t!k

�
)�(r( )#k

�

v
�
"(x

�
!k

�
t!k

�
)�(r( )#k

�
,

p"�(r( ), s"
1

r(������
d�
dr(

, (6.2)

where �(r( ) and �(r( ) are arbitrary function of

r("�(x
�
!k

�
t!k

�
)�#(x

�
!k

�
t!k

�
)�.

In the case �"2, starting from (4.14) in which
we choose �"0 and �"�



�	�, �



being an

arbitrary positive constant, we are able to use The-
orem 3. The function m has to satisfy the constraint

x
�

�m
�x

�

#x
�

�m
�x

�

"0,

whence m"M(x
�
/x

�
) (M arbitrary function of its

argument); the solution we obtain is

v
�
"

(2a(Mt#H)#b)x
�
M

2(a(Mt#H)�#b(Mt#H)#c)
,

v
�
"

(2a(Mt#H)#b)x
�
M

2(a(Mt#H)�#b(Mt#H)#c)
,

p"

b��



r�
,
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s"
16b���



4ac!b�

(a(Mt#H)�#b(Mt#H)#c)�

r�M�
,

(6.3)

where also H(x
�
/x

�
) is an arbitrary function of its

argument. Of course, we may include space transla-
tions and the Galilean transformations and get the
solution

v
�
"

(2a(MK t#HK )#b)(x
�
!k

�
t!k

�
)

2(a(MK t#HK )�#b(MK t#HK )#c)
MK #k

�
,

v
�
"

(2a(MK t#HK )#b)(x
�
!k

�
t!k

�
)

2(a(MK t#HK )�#b(MK t#HK )#c)
MK #k

�
,

p"

b��



r( �
,

s"
16b���



4ac!b�

(a(MK t#HK )�#b(MK t#HK )#c)�

r( �MK �
,

(6.4)

in which also the pressure p is unsteady, where r( has
the same expression of the previous solution, and
MK and HK are arbitrary functions of (x

�
!k

�
t!

k
�
)/(x

�
!k

�
t!k

�
).

6.2. The 3D case

By applying Theorem 3 to solution (5.2), pro-
vided that

(!v


x
�
#w



x
�
)
�m
�x

�

#(v


x
�
#z



x
�
)
�m
�x

�

!(w


x
�
#z



x
�
)
�m
�x

�

"0, (6.5)

by which m is an arbitrary function of q
�
"

�x�
�
#x�

�
#x�

�
, and q

�
"z



x
�
!w



x
�
#v



x
�
,

we "nd the new unsteady solution (where we make
use also of the invariance with respect to the space
translations and Galilean transformations):

v
�
"!v



(x

�
!k

�
t!k

�
)�(q(

�
,q(

�
)

#w


(x

�
!k

�
t!k

�
)�(q(

�
,q(

�
)#k

�
,

v
�
"v



(x

�
!k

�
t!k

�
)�(q(

�
,q(

�
)

#z


(x

�
!k

�
t!k

�
)�(q(

�
,q(

�
)#k

�
,

v
�
"!w



(x

�
!k

�
t!k

�
)�(q(

�
,q(

�
)

!z


(x

�
!k

�
t!k

�
)�(q(

�
,q(

�
)#k

�
,

p"�(r( ), s"
1

2r(������
d�
dr(

,

where �(q(
�
,q(

�
) and �(r( ) are arbitrary functions,

respectively, of

q(
�
"((x

�
!k

�
t!k

�
)�#(x

�
!k

�
t!k

�
)�

#(x
�
!k

�
t!k

�
)�)���,

q(
�
"z



(x

�
!k

�
t!k

�
)!w



(x

�
!k

�
t!k

�
)

#v


(x

�
!k

�
t!k

�
),

r("((v�


#w�



)(x

�
!k

�
t!k

�
)�

#(v�


#z�



)(x

�
!k

�
t!k

�
)�

#(w�


#z�



)(x

�
!k

�
t!k

�
)�

#2w


z


(x

�
!k

�
t!k

�
)(x

�
!k

�
t!k

�
)

#2v


(x

�
!k

�
t!k

�
)(z



(x

�
!k

�
t!k

�
)

!w


(x

�
!k

�
t!k

�
)))���.

When �"�
�
, starting from the solution (5.5)

where we assume �"�


�	���, we may apply

Theorem 3. The function m has to satisfy the con-
straint

x
�

�m
�x

�

#x
�

�m
�x

�

#x
�

�m
�x

�

"0,

whereupon, it follows m"M(x
�
/x

�
,x

�
/x

�
), M be-

ing an arbitrary function of its arguments. The new
substituted solution arises:

v
�
"

(2a(Mt#H)#b)x
�
M

2(a(Mt#H)�#b(Mt#H)#c)

(i"1, 2, 3),

p"

b��



r�
,

s"
20b�����



(4ac!b�)M�

(a(Mt#H)�#b(Mt#H)#c)�

r�
,
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where also H(x
�
/x

�
,x

�
/x

�
) is an arbitrary function

of the indicated arguments. Also in this case, we
may include space translations and the Galilean
transformations, and obtain a solution in which the
pressure is unsteady

v
�
"

(2a(MK t#HK )#b)(x
�
!k

��	�
t!k

��
)

2(a(MK t#HK )�#b(MK t#HK )#c)
MK

#k
��	�

(i"1, 2, 3),

p"

b��



r( �
,

s"
20b�����



(4ac!b�)MK �

(a(MK t#HK )�#b(MK t#HK )#c)�

r( �
,

where r( has the same expression as above, whereas
MK and HK are arbitrary functions of the arguments:
(x

�
!k

�
t!k

�
)/(x

�
!k

�
t!k

�
) and (x

�
!k

�
t!

k
�
)/(x

�
!k

�
t!k

�
).
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