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Abstract

Within the framework of inverse Lie problems we give some non–trivial ex-
amples of Lie remarkable equations, i.e., classes of partial differential equations
that are in correspondence with their Lie point symmetries.
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1 Introduction

Symmetries of differential equations (DEs), either ordinary or partial, are (finite or in-
finitesimal) transformations of the independent and dependent variables and derivatives
of the latter with respect to the former, with the further property of sending solutions
into solutions[2, 3, 4, 9, 15, 16].

The simplest symmetries one may consider are those coming from a transforma-
tion of the independent and dependent variables: point symmetries. The set of all
infinitesimal point symmetries of a given DE has the structure of a Lie algebra.

The “direct” problem of finding the symmetries of a given DE can be complemented
by a natural “inverse” problem, namely, the problem of finding the most general form of
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a DE admitting a given Lie algebra as subalgebra of its infinitesimal point symmetries.
There are different ways to consider this inverse problem.

A first contribution[3] aimed at characterizing all DEs admitting a given symmetry
group. In Ref. [17] the problem whether there exist non–trivial DEs in one–to–one
correspondence with their Lie symmetries has been considered: the equation for the
surfaces in R

3 with vanishing Gaussian curvature has been recognized to be uniquely
determined by its Lie point symmetries.

Many relevant DEs can not be characterized by their Lie point symmetries since the
dimension of the admitted Lie algebra is too small: KdV equation, Burgers’ equation,
Kepler’s equations, . . . are just some examples. Some authors[17, 10] studied the prob-
lem of finding, for a given equation, an extension of the algebra of point symmetries for
which the equation at hand can be determined. In Ref. [17] contact symmetries have
been considered, whereas in Ref. [10], where the notion of complete symmetry group

has been introduced to completely characterize the Kepler’s equations, non–local sym-
metries have been used. The notion of complete symmetry group for second and third
order ODEs has been also considered in Ref. [1].

The general approach to the inverse problem of constructing differential equations
by using abstract Lie algebras requires to classify all possible realizations of the con-
sidered Lie algebra as algebra of vector fields on the space of independent and depen-
dent variables. Then, looking for the differential invariants of the realization under
consideration[8], under suitable hypotheses of regularity, the most general DE admit-
ting a given Lie algebra as subalgebra of point symmetries is locally given as a zero set
of smooth functions of the differential invariants.

In this paper we present an overview of recent results[12, 13] about the charac-
terization of DEs by means of their Lie algebras of point symmetries (Lie remarkable

equations). More in detail, we report some examples of DEs which are determined by
their symmetries (Monge–Ampère equations, minimal surface equations) and we con-
struct differential equations uniquely determined by some relevant Lie algebras of vector
fields on R

3.
In section 2, we introduce a DE of order r as a submanifold of a suitable jet space[4,

15] (of order r). Symmetries of a given DE will be interpreted as particular vector fields
on the jet space tangent to the DE. Then we introduce two distinguished classes of
Lie remarkable equations: strongly and weakly Lie remarkable equations. Strongly Lie
remarkable equations are uniquely determined by their point symmetries in the whole
jet space; weakly Lie remarkable equations are equations which do not intersect other
equations admitting the same symmetries.

We find necessary and sufficient conditions for a given DE to be (strongly or weakly)
Lie remarkable by analyzing the dimension of the Lie algebra of point symmetries and
the regularity of the local action that these symmetries induce on the jet space where the
DE is immersed. Our viewpoint reverses and generalizes the Lie determinant method
[16].

In the remaining sections we give various examples of DEs that are strongly or weakly
Lie remarkable. Such examples are derived in two ways. In section 3 we consider the
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Lie algebra of point symmetries of a given DE and prove that the equation is (strongly
or weakly) Lie remarkable with respect to its symmetry group. We obtain two main
classes of examples: Monge–Ampère equations and minimal submanifold equations. In
section 4, we find strongly Lie remarkable equations associated with isometric, affine,
projective and conformal algebra of R

3, with respect to metrics of various signatures.
Since we start from concrete algebras and not from abstract ones, we do not have
the problem of realizing them as vector fields. In particular, with regard to the affine
algebra in R

3 we recover the homogeneous second order Monge-Ampère equation [5],
and a third order PDE that, to the author’s knowledge has not been described heretofore
in literature. Also in the case of conformal algebra in R

3, an interesting second order
PDE is recovered, i.e. the equation for a surface u(x, y) having the square of the (scalar)
mean curvature equal to the Gaussian curvature.

2 Theoretical setting

Here we recall some basic facts regarding Lie remarkable equations[12, 13]. The theory is
carried out in the geometric framework of jet bundles (for more details, see Refs. [4, 15]).

All manifolds and maps are supposed to be C∞. If E is a manifold then we denote
by χ(E) the Lie algebra of vector fields on E.

Let E be an (n + m)-dimensional smooth manifold. We make use of local charts of
the form (xλ, ui), λ = 1 . . . n and i = 1 . . . m, and we describe (locally) an n-dimensional
submanifold L ⊂ E as the graph of a vector function ui = f i(xλ). In what follows,
Greek indices run from 1 to n and Latin indices run from 1 to m unless otherwise
specified.

The r-jet of n-dimensional submanifolds of E (also known as extended jet bundles
[15], or manifold of contact elements), Jr(E, n), is the set of equivalence classes of
submanifolds having at p ∈ E a contact of order r. It has a smooth manifold structure:
the charts are (xλ, ui

σ
), where ui

σ
◦ jrL = ∂|σ|f i/∂xσ, and σ is a multiindex such

that 0 ≤ |σ| ≤ r. Hence we have dim Jr(E, n) = n + m
(

n+r
r

)

. On Jr(E, n) there
is a distribution, the contact distribution, which is generated by the total derivatives
Dλ

def

= ∂/∂xλ + uj
σλ∂/∂uj

σ
and ∂/∂uj

τ
, where 0 ≤ |σ| ≤ r − 1, |τ | = r and σλ denotes

the multi-index (σ1, . . . , σr−1, λ). Any vector field X ∈ χ(E) can be lifted to a vector
field X(r) ∈ χ(Jr(E, n)) which preserves the contact distribution. In coordinates, if
X = Xλ∂/∂xλ + Xn+i∂/∂ui, then we have the well known formula X(k) = Xλ∂/∂xλ +
Xn+i

σ
∂/∂ui

σ
, where Xn+i

τ ,λ = Dλ(X
n+i
τ

) − ui
τ ,βDλ(X

β) with |τ | < k.
A differential equation E of order r on n-dimensional submanifolds of a manifold

E is a submanifold of Jr(E, n). An infinitesimal point symmetry of E is a vector
field of the type X(r) which is tangent to E . If E is locally described by {F i = 0},
i = 1 . . . k with k < dim Jr(E, n), then point symmetries are the solutions of the system
X(r) (F i) = 0 whenever F i = 0. We denote by sym(E) the Lie algebra of infinitesimal
point symmetries of the equation E .

Now we summarize the definitions and the main properties, contained in Ref. [12],
of DEs which are characterized by their point symmetries, that we call Lie remarkable.
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1 Definition. Let E be a manifold, dim E = n + m, and let r ∈ N, r > 0. An
l-dimensional equation E ⊂ Jr(E, n) is said to be

1. weakly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) passing at any θ ∈ E and admitting sym(E) as
subalgebra of the algebra of its infinitesimal point symmetries;

2. strongly Lie remarkable if E is the only maximal (with respect to the inclusion)
l-dimensional equation in Jr(E, n) admitting sym(E) as subalgebra of the algebra
of its infinitesimal point symmetries.

Of course, a strongly Lie remarkable equation is also weakly Lie remarkable. Some
direct consequences of our definitions are in order. For each θ ∈ Jr(E, n), let us denote
by Sθ(E) ⊂ TθJ

r(E, n) the subspace generated by the values of infinitesimal point
symmetries of E at θ. Let us set S(E) def

=
⋃

θ∈Jr(E,n) Sθ(E). In general, dim Sθ(E) may

change with θ ∈ Jr(E, n). It is clear that dim sym(E) ≥ Sθ(E), for all θ ∈ Jr(E, n). If
the rank of S(E) at each θ ∈ Jr(E, n) equals dim sym(E), then S(E) is an involutive
(smooth) distribution. The points of Jr(E, n) of maximal rank of S(E) form an open
set of Jr(E, n) (Ref. [12]). It follows that E can not coincide with the set of points of
maximal rank of S(E). The following statements (see Ref. [12]) can be proved.

1. A necessary condition for the differential equation E to be strongly Lie remarkable
is that dim sym(E) > dim E .

2. A necessary condition for the differential equation E to be weakly Lie remarkable
is that dim sym(E) ≥ dim E .

3. If S(E)|E is an l-dimensional distribution on E ⊂ Jr(E, n), then E is a weakly Lie
remarkable equation.

4. Let S(E) be such that for any θ 6∈ E we have dim Sθ(E) > l. Then E is a strongly
Lie remarkable equation.

Several examples of strongly and weakly Lie remarkable equations are provided in
next sections. In the sequel, to make notation lighter, when n = 2, we will use x and y
instead of x1 and x2, respectively.

3 DEs characterized by their Lie point symmetries

Minimal surfaces in R
n+m. Let E = R

n+m endowed with the standard Euclidean
metric. In the case n = 2, m = 1, the mean and Gaussian curvatures are the real
functions on J2(R3, 2) defined by

H =
1

2

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy

(1 + u2
x + u2

y)
3/2

, G =
uxxuyy − u2

xy

(1 + u2
x + u2

y)
2
.
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The mean curvature can be generalized to surfaces in R
2+m, with m ≥ 2. The minimal

surface equation E is then the equation {H = 0}. A computation shows that the point
symmetries of {H = 0} are the isometries and the homotheties of R

2+m for 1 ≤ m ≤ 4.
A more sophisticated computation proves that S(E) has maximal rank on an open
subset of E .

If d is the dimension of the minimal surface equation in R
2+m and i is the dimension

of the group made by isometries of R
2+m and homotheties, then it turns out that, for

m = 2 and m = 3 we have d > i while for m = 1 and m = 4 we have d = i.
The above two arguments, together with the necessary and sufficient conditions of

the previous section, allow us to prove the following theorem.

2 Theorem. The equation of minimal surfaces in R
4 and R

5 is neither strongly nor

weakly Lie remarkable, whereas it is weakly Lie remarkable in R
3 and R

6, provided that

we remove a singular equation.

Monge-Ampère equations. We start with the following Monge–Ampère equation

uxxuyy − u2
xy = κ, (1)

which, in the case κ = 0, is just the equation G = 0 for surfaces. If κ 6= 0, then
Eq. (1) admits a 9-parameter group of point symmetries which span a 7-dimensional
distribution on the jet space except for a singular lower-dimensional submanifold. On
the other hand, if κ = 0 then Eq. (1) admits a 15–parameter group of point symmetries
whose associated distribution is 8-dimensional (provided that we remove a singular
lower–dimensional submanifold). Hence the following result arises.

3 Theorem. Eq. (1) is weakly Lie remarkable if κ 6= 0, whereas it is strongly Lie

remarkable if κ = 0.

As shown by Boillat [5], Eq. (1) has the property of complete exceptionality. The
use of such a property permitted to Boillat[6] to introduce higher order equations that
are called generalized Monge–Ampère equations. Among them one can find several
Lie remarkable equations[11, 12]. Just as an example, the third order Monge–Ampère
equation

(uxxyuyyy − u2
xyy) + λ(uxxxuyyy − uxxyuxyy) + λ2(uxxxuxyy − u2

xxy) + µ = 0,

where λ and µ are constants, is weakly Lie remarkable.

4 DEs which are uniquely determined by Lie alge-

bras of vector fields on R
n+m

In what follows we shall consider only scalar partial differential equations in two inde-
pendent variables, i.e., n = 2, m = 1, E = R

3. We denote by I(R3), A(R3), P(R3) and
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C(R3), respectively, the isometric, affine, projective and conformal algebras of R
3 with

respect to the metric g = k1dx⊗dx+k2dy⊗dy+du⊗du, where k1, k2 are non-vanishing
real constants.

The problem that we will recall here (see Ref. [13]) consists in finding the strongly Lie
remarkable equations associated with the previous Lie algebras of infinitesimal trans-
formations.

The case I(R3). The algebra I(R3) has dimension 6. Then, in view of the necessary
conditions, there can be strongly Lie remarkable equations only of order 1. In order to
find them one prolongs the vector fields to the first jet space and computes the rank of
the generated distribution. Such a rank decreases only on the singular submanifold

1 +
u2

x

k1

+
u2

y

k2

= 0, (2)

which turns out to be a strongly Lie remarkable equation. Of course, the equation is
nonempty if and only if the constants ki are not all positive.

The case A(R3). The algebra A(R3) has dimension 12. By using the necessary
conditions, we see that there can be strongly Lie remarkable equations of order 2 or 3.

A computation[13] shows that the strongly Lie remarkable second order equation is
the homogeneous Monge–Ampère equation G = 0, and that there exists also a strongly
Lie remarkable equation of third order which has the following local expression:

u3
xxu

2
yyy + u2

xxxu
3
yy + 6uxxuxxxuxyuyyuyyy − 6uxxxuxxyuxyu

2
yy (3)

−6uxxuxxxuxyyu
2
yy − 6u2

xxuxyuxyyuyyy − 6u2
xxuxxyuyyuyyy

−8uxxxu
3
xyuyyy + 9uxxu

2
xxyu

2
yy + 9u2

xxu
2
xyyuyy

+12uxxxu
2
xyuxyyuyy + 12uxxuxxyu

2
xyuyyy − 18uxxuxxyuxyuxyyuyy = 0.

To the authors’ knowledge, equation (3) has not been heretofore described in literature.

The case P(R3). The algebra P(R3) has dimension 15. Then, as in the previous
case, equations G = 0 and (3) are strongly Lie remarkable.

The case C(R3). The algebra C(R3) has dimension equal to 10. We have to look for
second order strongly Lie remarkable equations. By analyzing the rank of the matrix
of 2-prolongations of the vector fields we realize that the unique second order equation
which is strongly Lie remarkable with respect to the conformal algebra is G = H2. By a
direct computation, we realize that the unique second order scalar differential invariant
I of the algebra formed by I(R3) with the addition of homotheties1 is I = H2/G.

1We recall that a differential invariant is a function on a jet space which is invariant under the
prolonged action of the vector fields of the given Lie algebra.
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Then I = k, with k constant, is a weakly Lie remarkable equation. Therefore we could
look for strongly Lie remarkable equations among the equations I = k. From the above
discussion, it follows that I = 1 is the strongly Lie remarkable equation we were looking
for.
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