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ABSTRACT.The two-dimensional free boundary problem for incompressible irrota- 
tional water waves without surface tension is proved to have exactly eight nontrivial 
conservation laws. Included is a discussion of what constitutes a conservation law for 
a general free boundary problem, and a characterization of conservation laws for 
two-dimensional free boundary problems involving a harmonic potential proved 
using elementary methods from complex analysis. 

Introduction. The main purpose of this paper is to prove that the free boundary 
problem describing the motion of gravity waves over a two-dimensional irrotational, 
incompressible ideal fluid in the absence of surface tension ("water waves") has 
exactly eight independent conservation laws. Extensions to three-dimensional waves, 
with or without surface tension are indicated, but not explicitly proven. This result 
carries a number of implications for the interpretation of the qualitative and 
quantitative properties of real water waves by soliton models such as the Korteweg- 
deVries equation, which we discuss at length in 52. 

The proof of such a result must incorporate a precise definition of the concept of a 
conservation law for a free boundary problem, which, to my knowledge, has not 
appeared in the literature to date. $3 elaborates on the physical and mathematical 
motivations for the definition proposed here, which is more general than what one 
might, by analogy with the corresponding concept for systems of partial differential 
equations, be tempted to use. The present definition of a conservation law is 
formulated so as to be applicable to a wide class of free boundary problems. 

A second result of more general applicability is an interesting characterization of 
conservation laws for two-dimensional free boundary problems in which the field 
variables consist of a single harmonic potential. In essence, the time derivative of the 
conserved density must equal the sum of a divergence and an analytic contribution, 
the latter being the unusual feature of t h s  result; see $5. 

I would like to thank T. Brooke Benjamin for the vital encouragement needed to 
complete t h s  work. 
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1. The water wave problem. Consider the free boundary problem describing the 
motion of surface waves over a two-dimensional incompressible, irrotational fluid 
flow under the influence of gravity in the absence of surface tension. The fluid 
moves in a fixed container determined by a domain 3, C R2 with boundary r,. The 
domain 3, can have unbounded components, so, for example, 3, = R2 for waves on 
an ocean of infinite depth, or 3, = {(x, y): y a -h)  for the case of waves over a 
horizontal bottom. The free surface S is assumed to be described by a single valued 
function y = q(x, t), so that at any given time the fluid occupies the domain 
3 = {(x, y ) E 3,: y G ~ ( x ,t )). (Ths assumption is in fact inessential, cf. $6, so 
generalizations to parametrically described surfaces are straightforward.) Because 
the motion remains irrotational by Kelvin's theorem, the Eulerian velocity field 
u(x, y, t)  possesses a potential function cp(x, y, t )  defined in 3 with vcp = u. 
Incompressibility requires cp to be harmonic, so Laplace's equation 

(1.1) ~ c p= o in 3 

holds throughout the domain. Boundary conditions on any portion r of the fixed 
boundary To bounding 3 are presumed, usually consisting of the no seepage 
condition 

together with appropriate decay conditions for cp on any unbounded portion of 3 .  
The exact nature of these fixed boundary conditions is not essential for our results. 
Finally the free surface S is determined by two nonlinear equations: a dynamical 
condition 

(subscripts denoting derivatives) reflecting the vanishing of the pressure at the free 
surface ( g  > 0 being the gravitational constant), and a kinematic condition 

prescribing the motion of S to be in the direction of the normal component of 
velocity. (See $3 for an explanation of the use of boldface subscripts for derivatives 
on the surface.) Equations (1.1)-(1.4) constitute the water wave problem; further 
details on their derivation may be found in texts on hydrodynamics, e.g. [12,25]. 

The concept of a conservation law for the free boundary problem (I.  1)-(1.4) will 
be precisely defined in $3, but, in essence, a conservation law is given by an integral 
j,Tdx over the free surface, T being the conserved density, whose time variation 
depends only on the behavior of the solution on the fixed boundary r (or the 
asymptotic behavior at large distances in the case of unbounded domains). Benjamin 
and Olver [4] combined a Hamiltonian formulation of the water wave problem due 
to Zakharov [30] with symmetry group theory to find eight independent nontrivial 
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conservation laws. The eight conserved densities for these laws are 

TI = qxcp (horizontal momentum), 

T 

2 
-' 
- - + in2 (energy),
~ 'P( 'P ,  ~ ~ 9 % )  

T3 = TJ (mass), 

T4 = cp + tT3 (vertical momentum), 

( ) T , = x q - t T l  (centerofmass), 

T6 -1- 2q2 - t~~+ igt2T3 (potential energy), 

T7 = (xqX- q)cp + t(4T2 - 7gq)  - $ g t 2 ~ ,+ $g2t3T3 (virial), 

T, = (x  +qqx)cp+gtT5 -igt2T1 (angularmomentum). 

Of these, the first three are well known. Benjamin and Mahony [3] proved the 
conservation of T5 for a wide class of fluid mechanical problems. Longuet-Higgins 
introduced T, in his study of pressure variations at large depths [13]and, later, T, in 
a study of breahng waves [14].The density T7, which is related to a "virial theorem" 
for water waves, is new. A more thorough discussion of the physical interpretations 
and applications of these laws is done in [4], to which we refer the reader for details. 

In ths  paper it will be shown that the water wave problem has no further 
nontrivial conservation laws. In other words, any other conserved density is equiva- 
lent (in a sense to be made precise) to a linear combination of T,, . . . ,T,. The precise 
statement of this result, which depends on our general definition of conservation 
law, can be found in Theorem 7.1. 

The technique of proof of this result is not very difficult conceptually, but involves 
a lot of hard computational manipulations. The main tool is the characterization 
theorem of conserved densities of harmonic free boundary problems proved in 55. 
Detailed analysis of the dependence of a conserved density on the highest order 
derivatives of cp and TJ occurring shows that ths  dependence must be in some sense 
trivial. This reduces the density to one depending on lower order derivatives of cp 
and q, and the whole process is repeated. Eventually, the density is reduced to one 
depending solely on first order derivatives. A final tedious computation shows that it 
then must be equivalent to a linear combination of the eight known densities. The 
proof is then complete. 

It is somewhat surprising, given the difficulty of proving such a result for systems 
of partial differential equations, that a complicated free boundary problem such as 
the water wave problem should be vulnerable to a direct assault using such primitive 
weapons. The ameliorating factor appears to be the inclusion of complex-analytic 
terms in the characterization Theorem 5.1, which initially seem to hopelessly 
complicate the situation. In essence, all computations reduce to the proposition that 
the derivative of an analytic function is again analytic. This is extremely fortunate, 
since sophisticated techniques for answering questions about conservation laws of 
differential equations are not yet available, so brute force calculations are the only 
resort. (The few general techniques introduced in [la] do not appear to be of any use 
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here.) The method of proof clearly extends to a large variety of harmonic free 
boundary problems, but in the absence of interesting examples I have not pursued 
this direction in any great detail. 

For two-dimensional waves with surface tension there are seven conservation laws. 
The same techniques will undoubtedly prove that these are the only nontrivial 
conservation laws, but I have not yet carried through the details. For three-dimen- 
sional water waves, the analytic function techniques vital to the proof are no longer 
available. However, any conserved density in three dimensions must project to a 
conserved density for a corresponding two-dimensional problem on any two-dimen- 
sional surface. The two-dimensional theorem can then be applied. However it must 
be shown that for each nontrivial three-dimensional density, there is a two-dimen- 
sional problem such that the projection of t h s  density remains nontrivial. Space 
limitations preclude the resolution of t h s  problem here, but t h s  technique should 
certainly prove that the thirteen conservation laws (twelve if surface tension is 
included) found by Benjamin and Olver are the only conservation laws for the 
three-dimensional problem. 

2. Implications for soliton theories. Whle the equations governing the motion of 
water waves are easy to derive from physical principles, the resulting nonlinear free 
boundary problem is of such complexity as to have resisted all attempts at solution 
or even proof of the existence of solutions. (See [17,21,22,24,29] for some recent 
results on the latter problem.) To gain insight into the behavior of water waves, one 
is forced to  replace the full equations by a simpler model system. A model for the 
unidirectional propagation of long waves over shallow water, incorporating both 
nonlinear and dispersive effects, was proposed by Korteweg and deVries [lo] in 
1895. This Korteweg-deVries equation was the first of a number of physically 
relevent model nonlinear wave equations shown to be integrable by the methods of 
inverse scattering, cf. [Ill, a discovery which has sparked a revolution in interest and 
understanding of nonlinear wave interactions. These "soliton" equations share a 
number of remarkable properties, including clean interaction of solitary wave 
(soliton) solutions, an infinite number of conservation laws, Backlund transforma- 
tions, etc., and can be viewed as the infinite-dimensional analogues of the classical 
completely integrable Hamiltonian systems [9,16]. It is significant that all of the 
above properties always appear together in any system, although at present no 
general proof of t h s  commonly accepted principle exists. If, however, one accepts its 
validity, then an equation with soliton solutions must have an infinite number of 
conservation laws. Support for t h s  point of view also comes from the BBM equation 
[2], an alternative model to the Korteweg-deVries equation, which has been shown 
[18] to have only three conservation laws. Numerical work of Bona, Pritchard and 
Scott [6] then showed that its solitary wave solutions do not interact cleanly-a 
small, but detectable, dispersive tail appears subsequent to any interaction. 

The proof here that the full water wave problem has only eight conservation laws 
therefore indicates that solitary water waves, whose existence was established in 
[I,  81, are not solitons, but probably have qualitative behavior more closely modelled 
by the BBM equation. Experimental support for this conjecture is no doubt beyond 
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the capabilities of even the most conscientious experimenter, so we must await (with 
great interest) the implementation of a numerical scheme of sufficient accuracy to 
solve the interaction problem for solitary water waves2 

The situation here might well be compared with the history of finite-dimensional 
Hamiltonian systems, where complete integrability is characterized by a sufficient 
number of first integrals. After a period of great enthusiasm and interest, much of 
the physical motivation for studying completely integrable systems was dealt a fatal 
blow when Bruns and Poincark proved that the n-body problem possessed no 
integrals beyond those of mass, energy and linear and angular momenta and, hence, 
for n 3, could not be completely integrable. (See Whittaker [28] for a complete 
discussion.) These results and the present investigation highlight a seemingly funda- 
mental principle-that the full equations governing nondissipative physical systems 
are almost never integrable, whereas many approximate models for the systems are. 
Preliminary evidence on the Euler equations of inviscid fluid flow [20], where the 
long wave approximation of Benney [5] is integrable [15], lends further support to 
this principle. 

In all cases, the approximation procedure, either linear or nonlinear, introduces 
unnatural symmetries in the resulting model equations. In the absence of any 
rigorous pertubation scheme, a cautious attitude towards the indiscriminate applica- 
tion of results for the model equations to the physical system must necessarily be 
adopted. (For the Korteweg-deVries equation, a rigorous justification of the model, 
including a result .on what, if anything, its infinity of conservation laws imply for the 
original system, is an outstanding problem.) On the other hand, the appearance of 
integrable equations as natural approximations to many physical systems indicates 
that these systems may in some sense be "nearly integrable", so that, for instance, 
the interaction of solitary wave solutions is, as in the BBM equation, almost perfect. 
To place t h s  rather vague idea on any firm theoretical basis is undoubtedly 
extremely difficult, so true understanding of the physical systems lies far in the 
future. 

3. What is a conservation law? For a physical system governed by a system of 
partial differential equations, the mathematical formulation of the physically im- 
portant notion of a conservation law is standard. If x E RP, t E R are the spatial 
and temporal variables and u E R4 the field variables of the system, a conservation 
law is given by an equation of the form 

(3.1) D,T + DivX = 0, 

to be satisfied for all solutions u =f(x,  t )  of the physical system. Here T, the 
conserved density, and X = (X,,. . . ,X,), the associated flux, are, in general, func- 
tions of x, t, u and the various partial derivatives of u. The symbol D, denotes total 
derivative with respect to t (treating u as a function of x, t); similarly Div X = D,, XI 
+ . . . +DxpXp is the total divergence with respect to the spatial variables x = 

(XI,.. . ,xp). 

2 ~ e c e n twork of Mine and Su, J. Fluid Mech. 115 (1982), 475-492, supports this conclusion 
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The reason that an equation of the form (3.1) is a conservation law is that if u is 
any solution of the physical system decaying sufficiently rapidly for large I x I , the 
quantity Q = jR,T(x, t ,  u) dx is, by the divergence theorem, conserved, i.e. indepen- 
dent of t. More generally, considering the solution only over a bounded region 
52 cR*with smooth boundary a i l ,  the corresponding integral Q,  = j,Tdx satisfies 

In other words, the rate of change of the total density Q, over 52 depends only on 
the behavior of the solution on the boundary a52 and in fact equals the total flux 
over the boundary. Clearly this reflects the general form of a conservation law for a 
nondissipative physical phenomenon. 

For a given system, it is of great interest to find and classify all its conservation 
laws. If T is itself a divergence, T = DivY, for all solutions of the equations, then an 
equation of form (3.1) clearly holds. Such densities are called trivial and we need 
only consider the classification of nontrivial conservation laws. Applications of 
conservation laws to problems of existence and decay of solutions are numerous; for 
instance see Strauss [26] for some recent applications to nonlinear wave equations. 

Many important systems in hydrodynamics, such as the equations for water 
waves, are governed, not by a system of partial differential equations, but by a free 
boundary problem. For the general type of problem to be considered here, the 
spatial variables include a distinguished vertical direction y E R as well as one or 
more horizontal coordinates x E RP.The free (p-dimensional) surface S is described 
by a single valued function y = ~ ( x ,t ) whose determination is part of the problem. 
At time t the fluid will occupy a domain 52, = 52 bounded above by the position of 
the free surface S at the given time and below by any fixed boundaries in the 
problem, for example a horizontal bottom. The constitutive relations and properties 
of the fluid will determine a system of partial differential equations 

(3.3) A(x, Y ,  t, u) = 0 

to be satisfied throughout the domain 52. In addition to boundary conditions 

(3.4) O(X,y, t ,  u) = 0 

holding on any fixed boundary in the problein (these may also include decay 
conditions on u for large I x I , 1 y I), the free surface S is determined by a number of 
differential equations 

(3.5) Z(X, t, q, U )  = 0 

holding on S and involving x, t ,  u and its derivatives evaluated on S,  and q and its 
derivatives with respect to x and t.Often, as in the case of irrotational fluid flow, 
equations (3.3)-(3.4) will not involve t or temporal derivatives of u, in which case, as 
detailed in [4], the time evolution can be thought of as taking place exclusively on S 
with (3.3)-(3.4) constituting an additional boundary value problem to be integrated 
at each time so as to determine the values of the derivatives of u on S. Generaliza-
tions to situations where the free surface folds over, and must be described 
parametrically, can, as discussed in [4], be readily incorporated into the theory. 
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A distinction must always be maintained between a function F(x, y, t, u) defined 
over 3and its value on the free surface S, whch is denoted by 

F,(x, t, u) = F(x ,  V(X,  t ) ,  t ,  u.) 

Certain formulae will hold over all of 3 ,  while others only hold on the free surface. 
Often, to avoid unnecessary cluttering with S-subscripts, the latter will be indicated 
by the phrase "on S" appended to them. It is also important to distinguish between 
two types of differentiation-that taking place in the region 3 ,  denoted by usual 
subscripts, and that taking place on the free surface S, denoted by boldface 
subscripts. For instance 

ux = Ux + V x U y  on S 

for u = u(x, y, t)  defined in 3 .  In 56 it will be seen that for the water wave problem, 
the function q(x, t )  itself can be thought of as the value on the free surface of a 
function q(x, y, t )  defined over all of 3 ;  for this reason it is important to maintain 
the distinction between these two modes of differentiation even for q. Total 
derivatives are denoted by capital D's, boldface or not, depending on whether or not 
t h s  takes place on the free surface. Note that for functions defined in 3 ,  

(3.6) D ~ = D ~ + ~ ~ D , ,D , = D , + ~ ~ D ,o n s  

so that, for example, 

Dx(u2)= 2uuX= = 2u(uX+ qXuy) on S. (D, + q x ~ y ) ( ~ 2 )  

To understand how the notion of a conservation law is to be properly adapted to 
the situation of a free boundary problem, it is helpful to begin by discussing a simple 
example. For the water wave problem, assuming unit density, the mass 

M =  Lqdx,  

has the time variation 

where we have used the usual notation for line integrals in the plane. Since cp is 
harmonic, g4 dx - cp,dy is a closed differential. Therefore, by Green's theorem, 

expressing the self-evident fact that the rate of change of mass is equal to the integral 
of the (outward) normal component of the velocity over the fixed boundary T. 

In general, a conservation law will be such that its rate of change over any 
bounded region equals the total corresponding flux over the boundary of that region. 
Moreover, since the free surface moves with the fluid, this flux can take place only 
on the fixed component of the boundary which lies within the volume occupied by 
the fluid. Since we are interpreting the time evolution of the system as taking place 
on the free surface (subject to the auxiliary conditions (3.3)-(3.4)), the conserved 
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quantity will be an integral Q = j,Tdx over the free surface, where the conserved 
density T is defined just on the free surface itself. The conservation law is local if T 
depends on x, t, 11 and its derivatives and u and its derivatives (evaluated on S )  at 
each point of S-these are the only types of conservation laws to be considered here. 

Consider a bounded domain D C R2, and let D C D be the part of D filled with 
fluid at time t. The boundary of D consists of two pieces: the component S of the 
free surface bounding D and a fixed component r = aD n aD within the total 
volume occupied by the fluid. The boundary of S, whch is aS = S n r, consists of 
a finite number of points. Since S moves with the fluid, flux can only occur at r and 
as.  Therefore, the total flux, i.e. the time derivative of Q, must be expressed as the 
sum of a line integral over the fixed boundary and, possibly, a finite sum over the 
points of aS. In order that dQ/dt be equal to a sum of fluxes over r and over aS, it 
is necessary and sufficient that the form DtTdx be expressible as the sum of a closed 
differential defined over the region D and a total x-derivative. Thus if DtT = U -
qxV+ DxW on Swhere U, V are defined over D and W is defined on S, then 

(3.7) ( U ~ X- vdy) + / D , W ~ X  
S 

provided Udx - Vdy is closed. (Here the summation over aS has appropriate signs 
attached to each point.) We are thus led to the following definition. 

DEFINITION3.1. A function T depending on x, t, q, u and the derivatives of q and 
u over the free surface S is a conserved density for the free boundary problem 
(3.3)-(3.5) if there exist functions U, V depending on x, y, t, u and the derivatives of 
u in the region !J and a function W depending on x, t, 11, u and their derivatives on S 
such that for all solutions u = f(x, y, t), q = g(x, t)  of the free boundary problem 

(3.8) 

with 

If T is a conserved density, then formula (3.7), equating the rate of change of the 
total density in terms of the total flux (as defined by U, V, W), will hold for all 
solutions of the free boundary problem. 

Note that conditions (3.8)-(3.9) include, but are more general than, the naive 
condition 

arising from a direct analogy with partial differential equations. Although the 
introduction of a stream function will put the conservation of mass result for the 
water wave problem in the above form, other examples discussed in [4] and the 
general characterization theorem of $5 show that it is overly restrictive to take (3.10) 
as the definition of conservation law. 
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If the density T can itself be written as the sum of a closed differential and a 
surface x-derivative, i.e. 

(3.11) T = 0- q x v+ D,W on S,  

with D,U + DXP= 0 in a, for all solutions of the free boundary problem, then 
clearly T is conserved. Indeed (3.8) holds with 

Such densities are called trivial, and two densities will be called equivalent if their 
difference is a trivial density. Since we are 'only interested in nontrivial densities, it is 
of great importance to know when a given density is trivial. 

For problems in higher dimensions the definition is similar. If x = (x, , .  . . ,x,) 
then the free surface S and the fixed boundary r will be p-dimensional submanifolds 
of RP", with intersection i3S a ( p  - 1) dimensional submanifold. For T to be a 
conserved density, we require the existence of functions U, V = (V, , .. . , G )  defined 
in 3 and W = (W,,. . . ,W,) defined on S such that 

(3.12) DtT= U - v q . V  + DivW onS .  

Stokes' theorem then shows that 

where 
o = V,dyA d x , A . . . A d x , + . . .  + % d y A  AX, dxP-, 

-Udx, A . . . A dx, 

and 

p = W, dx2 A . . . A dxp - . . . 2 Wp dx, A . . . A dxp-l, 

again expressing the fact that the rate of change in total density equals the sum of 
the fluxes over the fixed boundary r and the boundary of the free surface as .  

4. Volume and surface derivatives in'harmonic free boundary problems. By abuse of 
language, a free boundary problem of the general form of $3 will be called harmonic 
if the field functions u consist just of one potential function cp(x, y, t), and the 
constitutive equation (3.3) is just Laplace's equation 

(4.1) ~ c p= o i n 3 .  


From here on, we restrict attention to the two-dimensional case (i.e. x E R) but we 

leave the form of the boundary conditions open for the time being. 


Introduce the harmonic conjugate $ to cp, the stream function, so that the 
Cauchy-Riemann equations 

are satisfied. Let 

cp,"=DfmD,"cp, $,"=DfmD,"$, 
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so that cp," and $," are also harmonic conjugates, satisfying 

We are thus justified in introducing the complex potentials 

(4.4) or = cpr + i+," 

satisfying 

D,o,"=o,",,, Dp,"=O. 

Here the complex derivatives are given by 

When m = 0, we usually drop the extra superscripts, so on= o:, etc. 
As discussed in $3, for a free boundary problem there are two types of derivatives 

-volume and surface. In thls section we derive important formulae relating the 
volume derivatives onof the complex potential to its surface derivatives on= D,"o = 
cp, + i$,,. To begn, we introduce some differential polynomials of independent 
interest. 

Let u(x), v(x) be smooth, complex valued functions of a real variable x, with 
u = dv/dx, and un = dnu/dxn. Define Y ,~(u )  to be the coefficient of the derivative 
Flk)(v) in the Faa-di-Bruno formula 

The polynomials Y , ~  are known as the Bell polynomials [23] and have the general 
formula 

the sum being over all multi-indices I = (i,, . . . , in), i, 2 0, with i, + . . . + i ,  = k ,  
i ,  + 2i,  + . . . S n i ,  = n.  In particular, 

Similarly, define X,k(u) to be the coefficient of F ( k ) ( ~ )  in the formula 

The polynomials ~ , khave been studied by Comtet in [7], in which explicit formulae 
and recursion relations for them are found. Here we need only note the special case 
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PROPOSITION4.1. Let 

Then the volume and surface derivatives of the complex potential o are related by the 
formulae 

(4.11) 

valid for n 2 1 .  ( I n  the polynomials T ~ ,x:, the derivatives of l ,8 used are the surface 
derivatives Cn ,  On.) 

PROOF.Note first from (3.6) since q, and $, are harmonic conjugates 

Therefore, 

The recursion relation for Tkis 

hence (4.11 )  is established by induction. Similarly, applying D, to (4.12), 

hence 

whch proves (4.12) by induction using an obvious recursion formula for the x,k. 
In particular, from (4.7)-(4.9), the highest order terms occurring in (4.1 1)-(4.12) 

are 

(4.14) on= {"on + + . . .  , 
and 

(4.15) U ,  = 8"on + 8n-1en-lol  + . . . = {-,an - l -n- l{n- lO1 + . . . . 

If we let 

(4.16) { " = a n + i b n ,  O n = { - " = c , + i d , ,  

SO that a,, bn, c,, dn  are real valued functions of 11, only, then the real and imaginary 
parts of (4.14)-(4.15) yield the formulae 
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and 

These formulae hold for any pair cp, 4 of harmonically conjugate variables and will 
be of great use in the proof of the main theorem. 

We conclude this section by reexpressing the free surface conditions (1.3)-(1.4) of 
the water wave problem entirely in terms of surface derivatives. We first have 

which was used in [4] to find the Hamiltonian form of the water wave problem. 
However, we can further use (4.12) to reexpress this: 

5. A characterization of conserved densities of two-dimensional harmonic problems. 
For a two-dimensional harmonic free boundary problem, the general conditions 
(3.8)-(3.9) for a conserved density can, by elementary techniques from complex 
analysis, be simplified. Note that the coefficients U, V of the exact differential in 
(3.7) are now functions of x ,  y ,  cp,", 4,".The basic characterization theorem then 
states that either U, V arise from a total x-derivative along the free surface S, or they 
are the real .and imaginary parts of an analytic function of the complex variables 
z = x + iy and a,".Specifically: 

THEOREM T is a conserved density for a two-dimensional harmonic 5.1. The function 
free boundary problem, i f  and only i f  there is a complex analytic function Z = X + i Y 
depending on the complex variables z, a,", m ,  n 2 0, and a real valued function W 
defined on the free surface S satisfying 

where { = 1 + iq,. In other words, only those closed differentials arisingfrom analytic 
functions make nontrivial contributions to the flux over the fixed boundary I?. 

To prove t h s  theorem, it suffices to show that (3.9) holds for functions U, V of 
x ,  y, cp,", 4,"if and only if U = X + DxW, V = Y - DyW for X, Y,W satisfying the 
conditions of the theorem. A priori, it is somewhat surprising to find just one-half of 
the "total derivative" Cauchy-hemann equations for U, V sufficient to ensure 
analyticity up to a potential function W, but this is indeed the case. 

Note that the theorem also serves to characterize all trivial conserved densities. 
That is, T is trivial if and only if 

(5.2) T = Re({Z) + DxW 

for Z, W as above. This will be important in the classification of conservation laws 
for the water wave problem. 

For the next two lemmas, z = x + iy and w = u + iv will denote independent 
complex variables. 



365 CONSERVATION LAWS OF FREE BOUNDARY PROBLEMS 

LEMMA5.2. Suppose f and g are complex valued functions of z and w which are 
analytic in z,  but not necessarily analytic in w. Then 

(5.3) Im(Fa,f + g )  = o 
(where 3,- = a/aiV, etc.) i f  and only i f  

where h is analytic in both z and w, a is a real valued function of u ,  v and /3 is any 
complex-valued function of u ,  v .  Moreover, h ,  a ,  P are uniquely determined by the 
conditions h(0, w )  = 0 = a, h(0, w) .  

PROOF. Let f = a + ib, g = c + id,  where a ,  b ,  c,  d are real valued functions. 
Then (5.3) reads 

$ x ( a ,  + b,) - t y ( a ,  - b,) + d = 0 .  

Now a ,  b,  c, d are all harmonic in x ,  y ;  hence, applying the Laplacian a: + a; to the 
above equation we find a,, + b,, + by, - a,, = 0. This simplifies to 

since a and b are conjugate harmonic in x ,  y. T h s  in turn implies that a,,, b,,; a,,, 
b,,; and a,,, by, all satisfy the Cauchy-hemann equations in u ,  v ;  hence 

where k is analytic in both z and w. Then 

f ( z ,  W )  = z t ) k ( z t ,  w )  dz' + Z Y ( ~ ,L(,z- 0 )  + P ( u ,  0 )  

where y and /3 are complex valued. Finally, (5.4) implies that y = a,a for some real 
valued a ,  completing the proof. 

LEMMA5.3. Suppose a ( x ,  y ;  u ,  v )  is real valued. Then a,a is analytic in z i f  and 
only i f  a,a = h ( z ,  w )  + aw/3, where h is analytic in both z and w, and /3 is real valued 
and depends only on u ,  v .  

-PROOF. The Cauchy-Riemann equations in x ,  y for a,a read a,, = -a,,, a,, -
:,. Differentiation with respect to u and v shows that a ,  and a,  are both harmonic 
u ,  v ,  hence a = y ( x ,  y ;  u ,  v )  + P(u,  v ) ,  where y is harmonic in u ,  v ,  y(0,O; u ,  v )  

= 0. Then a,y is analytic in w, and the lemma follows. 
It clearly suffices to prove Theorem 5.1 for a single series on= cp, + irl;, of 

harmonically conjugate variables, so we drop the extra index m .  The theorem is then 
implied by the following proposition. 

PROPOSITION5.4. Suppose U and V depend on x ,  y and the harmonic conjugate 
variables cp,, $,,,which satisfy (4.3). Then 

(5.5) D,U + D,V = 0 

i f  and only i f  

(5.6) U = X +  D,W, V =  Y - D,W, 
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where Z = X + i Y  is an analytic function of z = x + iy, on= cp, + irl;, and W is 
arbitrary. Moreover Z and W a r e  uniquely specified by the additional conditions 

(5.7) awnZlo=O, n = 1,2,3,..., 
where 1, denotes evaluation at w, = 0 for k 2 n. 

PROOF.Let O = U + iV,  so that (5.6) can be rewritten as O = Z + 2D2W. 
Suppose by reverse induction on n we have established that O = Z"  + 2DzWn, 
where Z"  is analytic in o, for k a n and uniquely determined by the conditions 
awkZnl o  = 0, k 2 n + 1. Since cp,,$" are harmonically conjugate, 

hence 

where 

Then (5.5) can be written as 

since D,DzWh is real. Lemma 5.2 implies that 

where 2"-I is analytic in o,, k 2 n - 1, k" is real valued, and k" and B" are 
independent of cp,, $,,; Z " ' ,  k n ,  B" are uniquely determined by the conditions 

Next apply awnto (5.8) to find 

so by Lemma 5.3, 

where 2 " ~ '  is analytic in o, for k a n - 1, and An does not depend on o, for 
k a n;  these are also uniquely determined by the condition that 2"-I = 0 when 
o, = 0 for k 2 n. Therefore 

where 2"-1 = 2"-1 + onzn-I ,  and WnP1, B" are determined from An, B". 

Finally, to eliminate Bn in the expression for Z n  and so complete the induction 
step, note that 

0 = Im D,Zn ~m(w,a ,~- ,B~= + c n ) ,  
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where Cn= O/(ZnP'+ Bn).Again using Lemma 5.2, we find 
-

cn= B" ; 

hence 
aZn-,Bn= 3, 0;(Zn- '  + B n )= D , ( ~ , ~ z ~ - ' )= 0, 

when w ,  = 0 for k 3 n. Therefore aZn-,Bn= 0, so Bn is actually analytic in an-,  
and can be incorporated into Z n P ' .  

It remains to discuss the dependence on x and y. Now if O = Z O+ O,wO,with 
Z O= x0+ i y Oanalytic in wn for all n, (5.5) implies that a,x0+ axyo= 0. Thus 
Z 0 = a,A0 for some real valued A'. Lemma 5.3 then proves that 

which completes the proof of the proposition. 

6. Formulations of the water wave problem. To correctly distinguish trivial from 
nontrivial conservation laws, it is of primary importance to determine a complete set 
of independent variables and to describe the system in terms of these variables. In 
t h s  paper, we will take a somewhat unconventional view of the nature of 'the free 
boundary problem for water waves. The motivation for this viewpoint is the 
recurrent difficulty in any attempt to classify conservation laws that the function 
q(x, t )  describing the free surface is only defined as a function of the horizontal 
coordinate x and time t, whereas the potential function rp is defined over the entire 
domain Q.  We propose to obviate this difficulty by extending the domain of 
definition of 77 from the free surface S to the entire domain Q .  

The dynamical surface condition 


c p , + & I ~ r p / 2 + g ? l = 0 
o n S  

arises from Bernoulli's equation, gven vanishing of the pressure on the free surface; 
within the body of the fluid, Bernoulli's equation reads 

where p denotes pressure and p the density of the fluid. (An arbitrary function of t 
which would ordinarily appear [12] has been normalized to zero through the 
dynamical surface condition.) Comparing these two versions of Bernoulli's equa-
tion, it seems reasonable to define the function q(x, y, t )  over the domain Q as the 
variable part of the pressure; in other words, 

The dynarnical free surface condition is now replaced by the implicit relation 

defining y as a function of x, t, namely y = q(x, t )  = q(x, y, t) Is. 
Formula (6.1) permits us to define volume derivatives q,, q,, qt, etc. of 7 in terms 

of volume derivatives of v. On S ,  formulae (3.6) for the surface derivatives lead to 
the relations 
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for the surface derivatives of q in terms of its volume derivatives. In (6.3) we can 
further substitute for the volume derivatives according to (6.1). The spatial derivative 
becomes 

where + is the stream function and 

(6.5) " = cpX(P,, + J/,+xx, P = %kc;,-Lcp,, - g. 


Substituting the corresponding expression for the temporal derivative 7, into the 

kinematic boundary condition (1.4), we are led to an equation for the second time 

derivative of cp solely in terms of cp and 4: 


(6.6) c p t l = F , 2 ( c p x l ~ r c . , l ~ c p , ~ + x ; i , c p x x ~ + x x )  

= -2rp,cpx, - - cp(Px2)'~x~- on S .  2+X+X, + (+i? 2cpxlC;+xx+ g+x 

In our formulation, then, a solution to the water wave problem is gven by a 
harmonic function ~ ( x ,  y, t ) ,defined in a domain G whose free boundary y ~ ( x ,= t )  
is the implicit solution of (6.2) (q(x, y, t )  being given by (6.1)) satisfying boundary 
or decay conditions on fixed boundaries of L?, and the second order differential 
equation (6.6) on the free boundary. Note that parametrically described surfaces also 
fall within t h s  formulation. 

From thls point of view, a complete set of independent variables for the water 
wave problem in the domain G is gven by the collection 

(6.7) 5k = {x, y , t , e , + , " :  m 2 0 , n  2 0 1 ,  

where 

cp," -- D,"D,"cp, Grim r DImD: +. 

In general, if Y i s  any set of variables, C(T) will denote the space of functions 
depending smoothly on the variables in Yr. 

We will consistently use lexicographc ordering of the indices (m, n), so that 
( j , k ) < ( m , n ) i f j < m , o r j = m a n d k < n . L e t  

?;ln,n= {x, y , t , cpk, +A: ( j ,  k )  < (m,  n ) ) ,  

and define Cnm= C(?T,","). Thus F E Enmif and only if F depends on variables rp;G, 
4; of order less than (m, n). 

On the free surface S, (6.6) and its surface derivatives reduce the above collection 
of independent variables to 

(6.8) % =  { ~ , t , c p , , + ~ , c p ~ , + ~ , + , " : m 2 2 , n ~ 0 ) .  

Indeed, since D,cpr = cprt ' - qt+;", the (m - 2)nd surface t-derivative of (6.6) leads 
to an equation of the form 

(6.9) c p r = ~ ~  m 2 2 ,onS ,  

where 4;"E fr.Taking surface x-derivatives of (6.9) leads to 

(6.10) ( g = D ; F ? r F n m  onS ,  m 2 2 , n 2 0 ,  
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Furthermore, (4.17) shows that 

where a,, b,, are defined in (4.16) and F," E enm.Clearly no other relations between 
cp," and I/,(" on S exist, and hence the above collection is an independent set of 
variables. In particular, surface derivatives of 77 can be found from surface deriva- 
tives of (6.4), using the definition (6.1) of 7, and finally using (6.10) to eliminate 
hgher order t-derivatives of rp. The exact form of the resulting expression will never 
be required here. 

If F E C(CIT,), then F will restrict on the free surface to a function Fs E C(Vs), 
whch is found merely by substituting for the variables cp,",m 2 2, according to (6.9), 
(6.11) wherever they occur in F. In any equation holding on S involving such a 
function, it is always assumed that such a substitution has been made. Let VSm'" C ?i;. 
be the subset of independent surface variables obtained by restricting Ir,","to S.  We 
will also write Cnm for C(1.Lm'"). 

7. The main theorem. We are now in a position to precisely state the main theorem 
on conservation laws of the water wave problem. Definition 3.1 says that a 
conserved density T will be a smooth function, depending on the surface variables 
CV,,which satisfies the equation 

where W E C('Vi) is defined on S, whereas U,V E C('V^,) are defined over all of the 
fluid and satisfy the additional closure condition 

If T itself is of t h s  form, 

(7.3) T =  o-qxv+W, 

0,v, w as above, then (7.1) holds trivially. The goal is to classify all inequivalent 
nontrivial conserved densities, two densities being equivalent if their difference is 
trivial, i.e. of the form (7.3). 

THEOREM7.1. Let T be a smooth function of the surface variables Vs. Then T is a 
conserved density for the water wave problem if and only if 

8 

(7.4) T =  2 c i T +  To, 
i =  l 

where ci are constants, T,, . . . ,T, are the conserved densities in (1.5) and To is trivial. 

In other words, the eight densities in the introduction are the only nontrivial ones. 
The remainder of th s  paper is devoted to a proof of this theorem. The key 
ingredient in the proof is the characterization theorem 5.1 for conservation laws of 
harmonic free boundary problems. It states that condition (7.1) can be replaced by 
the stronger condition 

(7.5) D,T= Re( l2)  + DxW, 
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where W E C(YS) is real valued, while Z E C(%) is a complex valued analytic 
function of the variables z = x + iy, o,"= rp," + i+,y. Uniqueness criteria for Z and 
W inherent in Proposition 5.4 will also occasionally be used to avoid duplication of 
characterizations of the same density. 

The proof proceeds by eliminating nontrivial dependence of Ton  the variables 
in descending lexicographc order. Then dependence on hgher order surface x-de- 
rivatives of cp and, finally, higher order surface x-derivatives of q are in turn 
eliminated, so that we are left with nontrivial densities depending only on the first 
order variables x, t ,  cp, cp,, +, q, q,. The final calculation is somewhat eased by the 
form of the dependence on those last variables gleaned from previous reductions. At 
each stage, the basic idea of proof is the same, but the detailed computations 
necesarily change. 

8. Discussion of variables. In the course of the proof of Theorem 7.1, a number of 
subsets of the collection of surface variable 1;,arise, and it is convenient to list and 
briefly discuss them here. 

(i) First order t-derivatives: ?Tsf = {x, t, cp,, lJn, cp;, 4:: n 3 0). 
(ii) Surface x-derivatives of cp, +, q: ?i? = {x, t, cp,, #n, qn: n 2 0). 
(iii) Surface x-derivatives of cp, q: Y: = {x, t ,  cpn, qn: n 3 0). 
(iv) Surface x-derivatives of q: CI;? = {x, t ,  qn: n 2 0). 
Note that the first set of variables 'Iy is equivalent to the set = {x, t, cp,, qn, 

cp;, 4;: n 2 0). Indeed, to express cp,,, rC/,, in terms of cp,,, &, we solve the equations 
-

c p  - 1 ,  - t 4[fx = 4, + 77,9)1x, 

and (6.4) to find that 

where a, f l  are given by (6.5) and 

In turn, (6.4) expresses q, in terms of cp,,, &,, and hence the surface derivatives qn in 
terms of the surface derivatives cpk, 4::of cp,, &. Finally, (4.12) gives the full 
expressions for cp;, +.,' in terms of the surface derivatives cp;, +;. The explicit 
formulae will never be required here. A similar argument using (4.11) shows that the 
variables 9;' are equivalent to usJ.= {x, t, cpn, Gn, qn: n 2 0). 

The proof of Theorem 7.1 proceeds in four stages. At each stage, it is shown that 
the dependence of T on variables not in the next subset is trivial. Thus, for instance, 
the first stage of the proof is to show that if T E C(?i,), then T - T +  To, where 
T E ~( 'Vs f )and To is trivial. The essential feature of the water wave problem that 
permits us to proceed in this fashion is that the t-derivative of any density always 
depends on more variables than the density itself does. Analysis of the dependence 
of D,T on these additional variables allows us to conclude that the dependence of T 
itself on the highest order variables is necessarily trivial. In the proof, however, this 
simple idea is somewhat obscured by the necessarily messy details of computation, 
for which I apologize in advance. 
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9. Higher order t-derivatives. 

LEMMA9.1. Suppose T E C(Vs)  is a conserved density for the water wave problem. 
Then 

(9.1) T = T +  To, 

where T E C ( y )  and To is trivial. 

PROOF. The proof will be done by reverse lexicographc induction. Suppose 4," 
( m  2 2) is the highest order derivative that T depends on; in the notation of 56, 
T E enm+,. Then by (4.18), 

n n 

where R, ,  R 2  E C r f '  and subscripts on T denote partial derivatives. Integrating 
each summand by parts and using (6.9),we find for some well-defined X, 

where A = 2(-D,)*(c,T+?) and R3 are in C r i ' .  Next look at the highest order terms 
in A. Since each c, E C i ,  by (4.17), 

for certain B, E CL,j = 1,2,3,4. By (6.11 )  we find that 

a2 
T+?+;$2mn+ B4 = (-l)n*T+r+,m$ + B4,

a,' - b, 

where we have used the fact that 

a2, + ib2, = 12" = ( a ,  + ib,) 2 , c, = a,/(az + b:). 

If T is to satisfy the identity (7.5),the term A$r+' in DtT can only arise from the 
contribution of the analytic function Z,  hence Z = Z1o,"+' + Zo,  where Z',  Z,, E 

C r + ' .  Moreover the highest order terms in A involve $,", linearly, hence 2' = 
(-l)"Zt'o?, + Z;, where Z", Z; E Cz.Then 

for Z*, Z** E CL. Equating the highest order terms in DtT with the highest order 
terms in Re({Z),we are led to the condition 



372 P.  J. OLVER 

Suppose z is an analytic function satisfying 

Note that by (6.1 l), 

Therefore 

hence 

a 2 ~ /(a+,")2 = a 2 ~ e ( ~ 2 ) / ( a + , " ) 2 .  

Thls implies that 

T = Re(@,) + PIC/," + Q on S ,  

where P,  Q E enm.Note that the first term is a trivial conserved density; hence all 
that remains to be proven is that the linear term P+T can be incorporated into an 
x-derivative term. 

If n 3 1, let 2 satisfy the equation 

= ( I  + qx(bn/an))-'P on S .  

Then by (6.1 l), 

= + Ytt, 

where Y', Y" E Enm. Then 

where T E Er .  If, finally, n = 0, then the only nontrivial ( m + 1,O) order term in 
D,T is PI&"+', and thls can only arise from the analytic contribution in (7.5). An 
argument similar to the above shows that 

hence 

~ $ 0 "= Re(@*@,") + Y** on S ,  

where Y*, Y** E Cr. In either case the induction is complete, in that 

T = T + Re(lZ) + DxW 

for T E Cr, Z analytic. This completes the proof of Lemma 9.1. 

10. A key lemma. In the following stages of the proof, we will often need to know 
when a function depending on surface derivatives of rp, 77 is a trivial density. The 
following lemma answers a more general such question. 
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LEMMA10.1. Let K be a constant. A function T E C(V$) can be written as 

(10.1) T = X + K ~ , Y  on,S, 


where Z = X + iY is analytic in a::, z, if and only if 

(10.2) T = k(t)cpx + (y + ~ q , 6 )  on S ,  


where k is a real-ualuedfunction oft, k = 0 unless K = -1, and y + it3 is a function of 

x, y, t, analytic in x + iy = z. 

PROOF. Define the differential operator 

= bn(a/a~!) + a,(a/a$!), 

where a, + ibn = l n .  T a l n g  spatial derivatives of (6.4), we find that 

q n = ( $ x t + ~ ) - l ~ e ( b n a ~ ) + H n ,n 2 2 ,  

where Hn E CA. From (4.14) we have 

(~ , ,=Re( l "w , ) -q , , $~+G~,  rial, 

where G, E C i  n C:. From these we conclude that 

(10.3) 	 vnqn= 0 = on%, n 2 2 .  

Let n 2 2 be the highest order surface derivative of q and cp occurring in T. 
Applying onto (10. I), we find (using the analyticity of Z) 

0 = (b, + ~q,a,)X,; + (a, - ~q,b,)X+;; 

hence 

where k, is real, Z,  E Ci. However, the dependence of q, (hence l )  on (c?,, a,, as 
given in (6.4) immediately implies that Z cannot be analytic in these variables unless 
k, = 0. 

Thus by induction T only depends on first order derivatives of cp and q. Let 

which annihilates T;hence 

For K # -1, (6.4) shows that X must be a function of the invariants x ,  y, cp and 
(qi2 + 1). (R,+ a)2"/("+') of this first order partial differential equation, and it is 
easy to see that the only such analytic function Z with this property is Z = y + is 
satisfying the conclusion of the lemma. For K = -1, (10.4) shows that Z = k(t)axt+ 
Z,(x, y, t), which proves (10.2) in this case. 

In the course of the proof of the lemma, we have shown the following. 

LEMMA 10.2. Let K be a constant. Suppose T is a smooth function of one of the 
following sets of variables: 

( a ) ; l r  = {x, t,cpn,J.,,cpj,,$;,qk: n 2 0 , O G j < m ,  k a m l ,  
(b) ?TF= {x, t, cp,, $,, cpk, 7%: 0 G j  < m, k 2 m). $;, cpj, 



374 P. J .  OLVER 

and satisfies (10.1). Then T is independent of 
( a ) v n ,  n 2 m ,  
(b) qn,Vn, n 2 m ,  

respectively. 

The same proof also shows the following: 

LEMMA10.3. A function T E c('V$) satisfies T = X + K ~ , Yon S where Z = X + 
i Y  is analytic and K is a constant i f  and only i f  T -- wherek(t)cp,, + ( X o  + K ~ , Y ~ ) ,  
k = 0 if^ # -1 ,  a n d X o  + iYo is analyticin z ,  w,, n a 0 .  

11. Reduction to surface derivatives. 

LEMMA1 1.1.  Suppose T E C ( Y i )  is a conserved density. Then 

( 1 1 . 1 )  T = T +  kcp,x+f + To, 

where T E c(Y$), To is trivial, and k ( t )  is a function o f t  only. 

PROOF.Define the intermediate set of variables 

'VT={ ~ , t , ~ , + , , c p ~ , + ~ , c p ~ : n ~ O , O ~ j < r n ,k 2 m ) .  

Note that Yp = Ti, 'V: = 'V2.By the arguments of $8, CV," is equivalent to the set 

Suppose by induction we have shown that T is equivalent to a density (which we also 
call T )  in c(V',"+'), n 3 1 .  Letting R, denote various functions in Ci ,  integration by 
parts, (4.18) and (6.9) show that 

where 

Abbreviate u = cp; , v = 4;. Then 

for B, E C;,, and 

( 1  1.3) P = T,, + b,c,AT, Q = T,, - ,,,,AT, 

with A = a t  + a:. 
Only the analytic terms in (7.5) can contribute to the term A h ,  in D,T; hence 

Z = (-l)"iw:,w,, + Z o ,where Zo  E C;,. Also 

( 1  1.4) P = - Y - 7  X Q = R - ~ , ? ,  
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where 2 = 2+ i?. Since 2 is analytic, P and Q satisfy the Cauchy-Riemann 
equations in u, v ,  so from ( 1  l.3), 

( 1  1.5)  A(b,T, + anTti)= 0.  

We infer that T = T'  + T ~ ,where T'  E c(?) and T~ is harmonic in u, v ,  
satisfying ( 1  1.4) with P = T,',, Q = T:. Therefore if z2is an analytic function such 
that a 2 ~ 2 / ( a u A ) 2= -2, then T~ and Re(Zz2)agree up to linear terms in cpA and 4;. 
Hence 

T 2  = R ~ ( z z ~ )+ A2cpA + B2$; + C 2 ,  

where A2, B2,  C2  E c(?), with A2, B2 independent of cp:. Note further that from 
Lemma 10.2(a),z2is independent of cp!,, for m 2 n. Finally, to eliminate the linear 
4: term, represent B2 as an element of C(?T,") and choose R2 E c(~T)satisfying 
aR2/a$;-, = B2. Then 

The first group of terms is in C(?T,"), the second group is trivial. Thus by induction 
we can assume T E c(T:). 

The above argument must be slightly modified when n = 1 .  Replacing ( 1  1.2), we 
have 

A = -Pcp,xx + Qtctxx + B2, 

where B2 E Ci,alid 

where u = cp,,, v = $x,, A' = -d,T, + c,T,. The analogue of ( 1  1.5) then holds since, 
from ( 1  l.4), 

From this it is easily checked that the rest of the proof goes through. 
Finally, we must deal with the case T E ~ ( 3 ; ' ) .  inThe only term involving $,, 

D,T is T+,$,,, hence T+,= ~ e ( Z 2 )for some analytic function 2. By a slight 
modification of Lemma 10.3, 

where 2' is analytic in z ,  w,, n 2 = -it.0, and a,. Let a,,Z* Then 

where T E c(T:), which completes the proof of the lemma. 

12. Elimination of the stream function. 

LEMMA12.1. Suppose the density T + k(t)cp,,+, is conserved, where T E c(?;$). 
Then k = 0, and T = T+ kqX$ + To, where TE C(?TT), To is trivial, and kdepends 
only on t. 
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PROOF. The proof is very similar to that of the preceding lemma, so we omit most 
of the details. Introduce the sets of variables 

v={ ~ , t , c p , , + , , ~ ~ , q ~ : n ~ O , O ~ j < m ,k a m } ,  

or, equivalently, 

$m = { x , t, cp,, q,, +j: n 2 0 , 0  G j im}. 

Assume by induction that T E C(?i;rf I) for n 2 2. Analysis of the lughest order 
terms in DtT leads to equations of the same form as (1 1.4), (1 IS), but with u = cp,, 
v = 4". The rest of the proof proceeds word for word as before, only Lemma 10.2(b) 
must now be invoked. Thus we are reduced to the case T E c ( T ~ ) .  

Analysis of the first order terms is slightly complicated by the k(t)cp,,& term. It is, 
however, reasonably easy to prove that k = 0 before analyzing the other terms. Note 
that if DtT is expressed in terms of the variables in Ti, then quadratic terms in +A 
can only arise from the kcp,,lC/, term. We have 

(12.1) Dt(kcp,,lC/,) = k(cp,,rCt + cp,,lC/,t) + k,cp,,rC;9 

which must be expressed in terms of surface derivatives of q and k. (For the 
derivatives of cp,, recall the definition (6.1) of q.) From (6.6) and (4.13) we have 

1
(12.2) cp,, = -2(1 + 72,)- (cp,,cp, + +,/,,+,) + G = -2trCts + H ,  

where t = (1 + q2,)-'+,, G E Ch, and H does not depend on IC/, or its surface 
derivatives. Then from (3.6), (4.20), 

91, = Ds(cptt + +s+rx) 

H of the same form as H. Furthermore, 

ICtt = ICtt - t ( ~ t s+ qstC;s); 

hence only cp,,&, in the second term of (12.1) makes a contribution to the quadratic 
& terms. Since 

Re(-ilo,,o,,) =cp,,rCt,+IC',,cp,,, 

we find that 

(12.3) Dt(kcptx+,)= k[t(2+; - +,=#I) - ts+fs+f]+ L ,  


where L is a sum of terms linear in rl; and its x-derivatives, and a trivial density. 

On the other hand, the uniqueness results in Proposition 5.4 imply that the only 

nonduplicative quadratic terms in Z and W which can contribute to (7.5) are 

z = z , ( w , ) ~+ Z ~ ( W , ~ ) ~  w =  w1(+J2 + w2+t+r, + wo,+ zo, 

where Zo, W, are linear in +,and its derivatives. Note that from (4.13), 

~ e ( @ ~ ( o , , ) ' )= ~e( l - 'Z~(w, , ) ' )= - ~ e ( l - ' Z , ) ( + , , ) ~+ . . . ; 
hence the quadratic terms in Re(lZ) + D,W are 

',+-Ds(tIC/rx)= 
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Equating t h s  to (12.3) we find, in particular, that W2= - k t ,  and, hence, Re({ - 'Z , )  
= -3k5. This is equivalent to 

x2 + vxY2 = - 3 w x  = -3kk($X + 17,%)> 

where Z ,  = X2 + iY2.  But t h s  would mean that Z ,  = -3k(41; + icpX),which is not 
analytic. Therefore k = 0. 

The remaining first order terms in T are treated much the same way as the first 
order terms were in the proof of Lemma 1 1 . 1 .  For brevity we omit the details. 

13. Higher order surface derivatives. 

LEMMA13.1. Suppose T + k(t)cpx$, where T E C ( ' I F ) ,  is conserved. Then 

(13.1) T = r + ( y + 1 7 x 8 ) c p  o n S .  

where T E C ( Y 2 )  and y + i8 is a function of x ,  y ,  t ,  analytic in x + iy. 

PROOF. Let E ,  = 2(-Dx)na,n denote the variational derivative with respect to c p ,  
and similarly for E,. Let 

D ~ T= E,(T)cpt + E,(T)17t + T, 

so that DtT = D,T + D,X for some X.  
Consider the operator 

(13.2) a+x = ( 1  + ?:)-'(a,X + s,a,J 
From (4.20) we have 

(13.3) a,jvt)  = -1, a+jvt)= 4x> 

and 

Therefore 

( 1  3.5) a z x & ( ~+ kcp.4) = ( 1  + ~ : ) - ' E , ( T ) .  

On the other hand, since (7.5) reads 

(13.6) D*(T+ kcpx$) = R e ( { Z )  + D,W, w = W - X ,  


for some analytic Z ,  by the uniqueness results of Proposition 5.4, W must be 

independent of +x since I&, does not appear on the left-hand side of (13.6), or 

linearly in Re({Z) .  Therefore 


Also, an easy computation shows: 

(13.8) a + J R e l Z )= -Yvx, 

Therefore, applying to (13.6)and using (13.5), (13.7), (13.9) we find that 
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Now from Lemma 10.1, with K = + 1 ,  we conclude that 

E, (T)  = y + 7,s on S ,  

where y + I S  is analytic in x + iy. The well-known property of the variational 
derivative that 

kernel E,  = c ( V ~ )+ image D, , 

see for instance [19],completes the proof of Lemma 13.1. 

LEMMA13.2. If the expression 

(13.10) T =  T $ -  ( Y  + 7 , s ) c ~+ k ( t ) ( q X #$- m2), 
where T E C(V?),  and y, S depend only on x, y,  t ,  is a conserved density, then T is a 
function of x ,  y ,  t only, harmonic in x ,  y ,  and 

(13.11) y + i s  = ( I  + i i k , ) ( x  + i y )  + m + in ,  

where 1, m ,  n are real-valued functions of t. 

PROOF.Note first that since i(cpx$+ gq2)  represents the energy density T2, its 
time derivative is already of the form (7.5) 141. The only other term in D,T involving 
# is kt%$; hence 

k,cpx = R~(.(z+) + D,w+. 

By the uniqueness results on Z and W , we must have 

W = (k,cp - E ) $  + W 0  on S ,  Z = 2 i o a , ~+ Z O ,  

where E ( X ,  y ,  t )  is harmonic, W 0  is independent of # and Z 0  = X 0  + i Y O  is 
independent of o. 

Next apply a+x to (13.6)and use (13.3), (13.8) to find that 

-y#, + ST, - (6 ,  + y,)cp - E , ( T ) = -Y:~ + k,cp - E on S .  

Let Z O  = - + . 2 O ,+ ( y+ i 8 ) ( ~ , ) ~  SO 

E + P:x = E, (T)  + ( k ,  + 2y,)cp on S .  

From Lemma 10.1 with K = 0 ,  and the uniqueness properties, 

?ppPP=O, E ? ( T ) = E ,and k ,=-2y , .  

This completes the proof of the lemma. 

14. First order conservation laws. Recapping 559-13, it has been shown that the 
only nontrivial conserved densities for the water wave problem are of the form 

(14.1) T = ( Y  $- 7,S)cp + T +  k ( % #  $- g q 2 )  on S ,  

where y, 6 ,  T depend on x ,  y ,  t ,  y + i s  is of the form (13.11), and E = 7 is 
harmonic in x ,  y. It remains to prove that all densities of this form must be 
equivalent to a linear combination of the eight known conserved densities. 

A closer look at the proofs in the previous sections reveals that 
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where W O  depends on x ,  t ,  77,  cp. Substituting (14.1), (14.2) into (7.5) and equating 
the coefficients of the various derivatives of cp, 7 ,we are led to the final conditions 

(14.3) 13,= E, ,  y, = -E ,, W:=O, W:=-gSq, 

W,O = T,- g77~+ k,gv2 on S .  

The general solution of (14.3) is given by (14.2),with 
-

T 
-

= n,xq - t m t v 2+ rq + To, 

W O  = -'k X772 - 1 1 3 + 1, 22g 1 3g 77 2 77 + (r,- gmIx77, 

where is trivial, and 

where c, ,. . . ,c, are arbitrary constants. But then 

where T I , .. . ,T, are the densities in (1.5). This completes the proof of the main 
theorem; only these eight densities are conserved. 
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