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Abstract. The equivariant method of moving frames is used to specify systems of
generating differential invariants for finite-dimensional Lie group actions.

1. Introduction.

Differential invariants are the fundamental building blocks for constructing invariant
differential equations and variational problems, and determining their explicit solutions
and conservation laws. The equivalence, symmetry and rigidity properties of submanifolds
are all governed by their differential invariants. Additional applications abound in differ-
ential geometry and relativity, computer vision, integrable systems, geometric numerical
integration, classical invariant theory, and many other fields of both pure and applied
mathematics,[17, 20, 24].
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The paper [3] initiated the rapid development of a new and far-reaching generalization
of the Cartan method of moving frames, which exploits their (re-)interpretation as equiv-
ariant maps back to the transformation group. In particular, the equivariant approach has
endowed us with a number of new, powerful tools for producing and classifying the differ-
ential invariants for general Lie group actions. See [20] for a recent survey of progress and
current directions of research. Further applications can be found, for instance, in the work
of Maŕı Beffa, [14, 15, 16], on the Poisson geometry of curves and surfaces in homogeneous
spaces, and Mansfield, [13], on symmetric differential equations.

However, it has recently become apparent that one of the key results claimed in
[3; Theorem 13.3] characterizing the generators of the algebra of differential invariants
is not correct as stated. The goal of this note is to formulate and prove a corrected
version of the theorem that applies to moving frames of minimal order. In addition,
an explicit counterexample to the claimed non-minimal order result, which arises in the
familiar Euclidean geometry of space curves, is presented.

We will assume that the reader has some familiarity with the equivariant approach
to moving frames, as developed in [3, 20]. General results on group actions, jet spaces,
prolongation, and differential invariants can be found, for instance, in [17].

2. Moving Frames and Differential Invariants.

Let G be a Lie group that acts (locally) on an m-dimensional manifold M . We
are interested in the action of G on p-dimensional submanifolds N ⊂ M which, in local
coordinates, we identify with the graphs of functions. For each positive integer n, let
G(n) denote the prolonged group action on the associated nth order submanifold jet space
Jn = Jn(M, p), whose overall dimension equals

dim Jn = q(n) = p+ q

(
p+ n

n

)
. (2.1)

A real-valued function† I: Jn → R is known as a differential invariant if it is unaffected
by the prolonged group transformations, so I(g(n) · z(n)) = I(z(n)) for all z(n) ∈ Jn and all
g ∈ G such that both z(n) and g(n) · z(n) lie in the domain of I. Any finite-dimensional
group action admits an infinite number of functionally independent differential invariants
of progressively higher and higher order. The Basis Theorem for differential invariants
first formulated by Lie, [12], and then extended by Tresse, [26], to infinite-dimensional
pseudo-group actions, states that all the differential invariants can be generated from a
finite number of low order invariants by repeated invariant differentiation. Modern proofs
can be found in [17, 24].

Theorem 2.1. Given a finite-dimensional Lie group G acting on p-dimensional sub-

manifolds N ⊂M , then, locally, there exist finitely many generating differential invariants

† Throughout, functions, maps, etc., may only be defined on an open subset of their indicated
domain.
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I1, . . . , Iℓ, along with exactly p invariant differential operators D1, . . . ,Dp, with the prop-

erty that every differential invariant can be locally expressed as a function of the generating

invariants and their invariant derivatives: DJIκ = Dj1
Dj2

· · ·Djk
Iκ.

The invariant differential operators do not necessarily commute, and so the order of
differentiation is important. However, each commutator can be re-expressed as

[Di,Dj ] =

p∑

k=1

Jk
ijDk, (2.2)

where the coefficients Jk
ij are certain differential invariants, and hence functions of the

DJIκ. Moreover, the differentiated invariants are not necessarily functionally independent,
but may be subject to certain functional relations or differential syzygies of the form

H( . . . DJIκ . . . ) ≡ 0. (2.3)

In [3], it was proved that there are a finite number of generating differential syzygies;
see also [23] for extensions to pseudo-group actions. Together, the commutation relations
(2.2) and syzygies (2.3) completely prescribe the structure of the algebra† of differential
invariants.

A familiar example, is when G = SE(3) is the (special) Euclidean group, consisting
of all rigid, orientation-preserving motions of M = R

3, acting on space curves, i.e., one-
dimensional submanifolds. The differential invariant algebra is generated by the curvature
κ, torsion τ , and their successive derivatives with respect to arc length, [4, 7]. Similarly, the
differential invariants for the action of SE(3) on surfaces S ⊂ R

3 are the Gauss and mean
curvatures and their derivatives with respect to two non-commuting invariant differential
operators, which are closely related to, but not exactly the same as, the standard covariant
derivatives, cf. [17]. In this case, there is a single fundamental differential syzygy among
the curvature invariants: the Gauss–Codazzi formula, [11].

In general, for most‡ Lie group actions on curves, so p = 1, the number of generating
differential invariants is equal to q = m − 1, and there are no syzygies. However, when
dealing with higher dimensional submanifolds, where p > 1, the number of generating
differential invariants can vary with the transformation group, and cannot be bounded in
advance. For example, the three-dimensional Euclidean group action on surfaces requires 2
generating differential invariants, whereas according to [22], the more complicated action
of the equi-affine group SA(3), consisting of all volume-preserving affine maps, on surfaces
in R

3 requires only one generting differential invariant — the third order Pick invariant,

† Technically, because differential invariants may only be locally defined, we should speak of
the “sheaf of differential invariants”. However, as we work locally on suitable open subsets, this
extra level of abstraction is not required; moreover, experts can readily translate our constructions
into sheaf-theoretic language.

‡ More precisely, we require that the group action be “ordinary”, [17], meaning it is transitive
on M and does not pseudo-stabilize when prolonged. Non-ordinary actions on curves require one
additional generating invariant.
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cf. [25]. At the other extreme, the following rather trivial abelian group actions on surfaces
demonstrates that, when the submanifolds have dimension p ≥ 2, there is no universal
upper bound on the required number of generating differential invariants.

Example 2.2. Consider the abelian group GV acting on M = R
3 via

(x, y, u) 7−→
(
x+ a, y + b, u+ ϕ(x, y)

)
, (2.4)

where a, b ∈ R and ϕ(x, y) ∈ V ⊂ R[x, y] is an arbitrary element of a finite-dimensional
subspace of the space of polynomial functions of (x, y). The infinitesimal generators are

w1 = ∂x, w2 = ∂y, vj = ϕj(x, y)∂u, j = 1, . . . , s = dimV, (2.5)

where ϕ1, . . . , ϕs form a basis of V . We are interested in the induced action of this (s+2)-
dimensional transformation group on graphs of functions u = f(x, y), i.e., surfaces.

In the particular case when V = Vn consists of all polynomials of degree ≤ n, then it
is easy to see that the individual derivatives ui,j = ∂i+ju/∂xi∂yj for i + j ≥ n + 1 form
a complete system of functionally independent differential invariants. Since the action on
the independent variables is just translation, the invariant differential operators are the
usual total derivatives:

D1 = Dx, D2 = Dy.

The higher order differential invariants are generated by differentiating the n+1 differential
invariants ui,j of order n + 1 = i + j. Moreover, these invariants clearly form a minimal
generating set for this particular action. We conclude that there is no universal bound on
the number of required generating differential invariants, even for such an elementary class
of group actions.

3. Moving Frames.

The equivariant method of moving frames, inspired by Cartan, [1, 7], and initiated
in [3], provides an effective means of not only constructing the differential invariants and
invariant differential operators for general Lie group actions, but also revealing the struc-
ture of their induced non-commutative differential algebra. More recent extensions of
these methods to infinite-dimensional pseudo-groups can be found in [21, 23], and many
of the techniques and results, suitably interpreted, carry over to this context. However,
for simplicity and brevity, in this paper we deal only with finite-dimensional Lie group
actions.

Assuming that the prolonged action is free† on an open subset of Jn, then one can
construct a (locally defined) moving frame, which, according to [3], is an equivariant map

† A theorem of Ovsiannikov, [24], slightly corrected in [18], guarantees local freeness of the
prolonged action at sufficiently high order, provided G acts locally effectively on subsets of M .
This is only a technical restriction; for example, all analytic actions can be made effective by
dividing by the global isotropy subgroup. Although all known examples of prolonged effective
group actions are, in fact, free on an open subset of a sufficiently high order jet space, there is,
frustratingly, as yet no general proof, nor known counterexample, to this result.
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ρ: Jn → G. Equivariance can be with respect to either the right or left multiplication
action of G on itself. All classical moving frames, e.g., those appearing in [1, 5, 6, 7, 10],
can be regarded as left equivariant maps, but the right equivariant versions may be easier
to compute. Of course, any right moving frame can be converted to a left moving frame
by composition with the inversion map g 7→ g−1.

In practice, one constructs a moving frame by the process of normalization, relying
on the choice of a local cross-section Kn ⊂ Jn to the prolonged group orbits. The corre-
sponding value of the right moving frame at a jet z(n) ∈ Jn is the unique group element
g = ρ(n)(z(n)) ∈ G that maps it to the cross-section:

ρ(n)(z(n)) · z(n) = g(n) · z(n) ∈ Kn. (3.1)

The moving frame ρ(n) clearly depends on the choice of cross-section, which is usually
designed so as to simplify the required computations as much as possible.

Typically, simplification requires that one choose the moving frame to have as low an
order as possible. Such “minimal order” moving frames will be a focus of this paper. Since
the existence of a moving frame requires (local) freeness of the prolonged group action,
the minimal order of any moving frame is just the order of the jet space at which the
group action first becomes locally free. However, for our purposes, this in itself does not
suffice, and we will use the term “minimal order” in a stricter sense, requiring that all the
cross-section normalization equations have as low an order as possible.

Definition 3.1. A cross-section Kn ⊂ Jn, and, hence its induced moving frame
ρ(n): Jn → G, is said to be of minimal order if, for each 0 ≤ k ≤ n, its projection
Kk = πn

k (Kn) ⊂ Jk forms a cross-section to the orbits of G(k) on Jk. Here πn
k : Jn → Jk

denotes the standard jet space projection map, [17].

Remark : From here on, a cross-section will be taken to mean a submanifold Kk ⊂ Jk

of the complementary dimension transverse to the maximal dimension prolonged group
orbits. We do not necessarily require that the cross-section intersect an orbit in a unique
point, and so the normalization construction will only produce a locally equivariant moving
frame and local differential invariants, that may retain certain discrete ambiguities. See
Hubert and Kogan, [9], for further details on the use of semi-regular cross-sections for
invariantization.

As a specific example, consider the familiar action of the Euclidean group SE(2) on
plane curves C ⊂M = R

2. The first order prolonged action is only locally free, because a
180◦ rotation around a point on the curve will preserve its tangent line, and hence has trivial
first order prolongation. Indeed, the classical moving frame, consisting of the unit tangent
and normal†, is only locally equivariant, since the 180◦ rotation will reverse the direction
of the two frame vectors and also reverse the sign of the curvature differential invariant
κ. The second order prolonged action of SE(2) is free on the subset {κ 6= 0} ⊂ J2(M, 1),

† To interpret the classical construction as a left equivariant map to SE(2), we regard the point
on the curve as the translation component, and the two orthonormal frame vectors as forming
the columns of a rotation matrix. See [3, 20] for details. Section 6 below discusses the three-
dimensional counterpart.
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and so one can resolve the sign ambiguity by going to second order. (Classically, the
ambiguity is resolved by assigning an orientation to the parametrized curve.) Incidentally,
the full Euclidean group E(2), which also includes the reflections, introduces a second sign
ambiguity owing to the action of a reflection through the tangent line, which is only fully
resolved at third order. See [19] for a complete discussion.

Classical moving frames are inevitably of minimal order. Indeed, the normalization
procedure advocated in [1, 5, 6, 7, 10] proceeds inductively by order, and one seeks to
normalize as many jet coordinates as possible before proceeding to the next higher or-
der. A key innovation of [3] was to point out the possibility of using non-minimal order
moving frames to generate differential invariants and thereby resolve equivalence problems
even at singularities where the classical minimal order moving frame breaks down, e.g.,
non-degenerate inflection points of space curves, or nondegenerate umbilics of surfaces in
Euclidean geometry.

In general, for each k ≥ 0, let 1 ≤ rk ≤ r denote the maximal orbit dimension† of
the kth order prolonged action of G(k) on Jk. The action is locally free at order n if and
only if rn = r = dimG. A jet z(k) ∈ Jk is called regular if it lies in an rk–dimensional
orbit of G(k). Let V k ⊂ Jk be the open (and necessarily dense if the action is analytic)
subset consisting of the regular jets. A jet z(n) ∈ Jn is called completely regular if it and
its projections z(k) = πn

k (z(n)) ∈ V k are regular for all k = 0, . . . , n.

Assuming local freeness of G(n), every cross-section Kn ⊂ V n has dimension

dimKn = dim Jn − r = q(n) − r. (3.2)

According to Definition 3.1, the moving frame is of minimal order if, in addition,

dimKk = dimπn
k (Kn) = dim Jk − rk = q(k) − rk for all k = 0, . . . , n. (3.3)

In particular, minimality requires that every jet z(n) ∈ Kn be completely regular. Exam-
ples of minimal and non-minimal cross-sections appear below.

To compute, we introduce local coordinates z = (x, u) = (x1, . . . , xp, u1, . . . , uq) on M
— considering the first p as independent variables, and the latter q = m− p as dependent
variables. We locally identify the submanifolds with graphs of functions u = f(x). (This
omits submanifolds that are not transversal to the vertical fibers x = c, but these can
be handled by using an alternative coordinate chart.) The induced local coordinates on
Jn are denoted z(n) = (x, u(n)) = ( . . . xi . . . uα

J . . . ), with uα
J , for 0 ≤ #J ≤ n and

1 ≤ α ≤ q, representing the partial derivatives of the dependent variables with respect to
the independent variables, [17]. Each jet space coordinate xi or uα

J is indexed by either a
single integer 1 ≤ i ≤ p, or a multi-index pair (J ;α) where J = (j1, . . . , jk) is an unordered
multi-index with each 1 ≤ jν ≤ p and 1 ≤ α ≤ q. In particular, the dependent variable uα

corresponds to the pair (0;α), where 0 denotes the empty multi-index. We let T denote
the set of all such indices — i or (J ;α) — and T (n) those of order k = #J ≤ n. (By
convention, the single index i has order 0.) If S ⊂ T is any subset, we set S(n) = S ∩ T (n).

† If any rn = 0, then all rk = 0, and the action is purely discrete. We are not interested in
discrete actions here.
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In most cases, one selects a coordinate cross-section defined by setting a number of
the coordinate functions to specified constant values, so the resulting Kn ⊂ Jn is parallel
to the coordinate axes. (See [13] for examples based on non-coordinate cross-sections;
adapting our constructions to this more general context situation is not difficult, but we
will stick with coordinate cross-section to avoid technical complications.) Each coordinate

cross-section passing through a fixed regular jet z
(n)
0 ∈ V n ⊂ Jn corresponds to a subset

P ⊂ T (n) of cardinality | P | = r = dimG. Assuming transversality, the coordinate cross-
section associated with P is prescribed by the equations

xi = ci, uβ
K = cβK , for all i, (K; β) ∈ P, (3.4)

where ci, cβK denote the values of the corresponding coordinates of the jet z
(n)
0 .

According to Definition 3.1, if the cross-section through z
(n)
0 defined by P is of minimal

order, then the number of normalization equations of each order 0 ≤ k ≤ n, or, equivalently,
the cardinality of P(k) = P ∩ T (k), must be as large as possible, namely | P(k) | = rk, the
maximal prolonged orbit dimension on Jk. Note that P(k) indexes all the normalization
equations of order ≤ k. Therefore:

Lemma 3.2. If the normalization equations (3.4) define a minimal order cross-

section, then the number of equations of order = k is rk − rk−1.

Keep in mind that, to define a bona fide cross-section, there is also a transversality
condition, that will be properly dealt with below.

Once the cross-section has been fixed, the induced moving frame engenders an in-
variantization process, that effectively maps functions to invariants, differential forms to
invariant differential forms, and so on, [3, 20]. Geometrically, the invariantization of any
object is defined as the unique invariant object that coincides with its progenitor when
restricted to the cross-section. In particular, invariantization does not affect invariants,
and hence defines a morphism that projects the algebra of differential functions onto the
algebra of differential invariants.

Computationally, the invariantization of a differential function is constructed by first
writing out how it is transformed by the prolonged group action: F (z(n)) 7→ F (g(n) · z(n)).
One then replaces all the group parameters by their right moving frame formulae g =
ρ(n)(z(n)), resulting in the differential invariant

ι
[
F (z(n))

]
= F

(
ρ(n)(z(n)) · z(n)

)
. (3.5)

Differential forms and differential operators are handled in an analogous fashion — see
[3, 11] for complete details.

In particular, the normalized differential invariants induced by the moving frame are
obtained by invariantization of the basic jet coordinates

Hi = ι(xi), Iα
J = ι(uα

J ). (3.6)

These naturally split into two classes: Those corresponding to the cross-section coordi-
nates (3.4) are constant, and known as the phantom differential invariants. The remain-
der, known as the basic differential invariants, form a complete system of functionally
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independent differential invariants. Thus, the index set P used to prescribe the coordi-
nate cross-section (3.4) also serves to index the phantom differential invariants, and so its
elements will be called phantom indices. The complement B = T \P indexes the basic dif-
ferential invariants, and hence its elements will be called basic indices. Note in particular
that every index (J ;α) of order #J > n strictly greater than the moving frame is basic.
(This property distinguishes finite-dimensional Lie group actions from infinite-dimensional
pseudo-groups, [21].)

We call #J the degree of the differential invariant Iα
J , with the convention that the

Hi also are of degree 0. If the moving frame is of order n, then

orderHi ≤ n, order Iα
J ≤ max{n,#J}. (3.7)

Of course, the phantom invariants are constant, and hence of order 0. We use (H, I) =
( . . . Hi . . . Iα . . . ) to denote the degree 0 differential invariants — all of which are
constant if the group acts transitively on M and we choose to normalize all of the base
coordinates (x, u) — as would be required for a minimal order moving frame — and
(H, I(n)) = (. . .Hi . . . Iα

J . . .) with #J ≤ n to denote the complete system of normalized
differential invariants of degree ≤ n.

Once the normalized differential invariants are known, the invariantization process
(3.5) is implemented by simply replacing each jet coordinate by the corresponding normal-
ized differential invariant (3.6), so that

ι
[
F (x, u(n))

]
= ι
[
F ( . . . xi . . . uα

J . . . )
]

= F ( . . . Hi . . . Iα
J . . . ) = F (H, I(n)). (3.8)

In particular, if we start with a differential invariant, it is not affected by this we recover
the remarkable (but trivial) Replacement Theorem:

I(x, u(n)) = I(H, I(n)) whenever I is a differential invariant. (3.9)

This permits one to straightforwardly rewrite any known differential invariant in terms the
basic invariants, and thereby establishes their completeness.

4. Infinitesimal Generators and the Lie Matrix.

Suppose the vector field

v =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
(4.1)

represents an infinitesimal generator of the action of G on M . Let

v(n) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

0≤k=#J≤n

ϕα
J (x, u(k))

∂

∂uα
J

(4.2)

denote the corresponding prolonged infinitesimal generator of the action of G(n) on Jn. Its
coefficient functions ϕα

J are prescribed by the well-known prolongation formula, [17],

ϕα
J = DJ

(
ϕα −

p∑

i=1

ξi uα
i

)
+

p∑

i=1

ξi(x, u)uα
J,i. (4.3)
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where DJ = Dj1
· · · Djk

is the corresponding iterated total derivative.

From here on, we will fix a basis v1, . . . ,vr for the Lie algebra g of infinitesimal
generators of our transformation group.

Definition 4.1. The Lie matrix of order n is the q(n) × r matrix†

L(n)(x, u(n)) =




ξ11 . . . ξ1r
...

. . .
...

ξp
1 . . . ξp

r

ϕ1
1 . . . ϕ1

r
...

. . .
...

ϕq
1 . . . ϕq

r
...

. . .
...

ϕα
J,1 . . . ϕα

J,r

...
. . .

...




, where 0 ≤ #J ≤ n. (4.4)

Its entries ξi
κ, ϕ

α
κ , ϕ

α
J,κ are the coefficients (4.2) of the nth order prolongations, v

(n)
1 , . . . ,

v(n)
r , of the chosen basis infinitesimal generators.

At a jet z(n) = (x, u(n)) ∈ Jn, the rank of the Lie matrix L(n)(z(n)) equals the
dimension of the prolonged group orbit passing through z(n). In particular, z(n) is a
regular jet if and only if rankL(n)(z(n)) = rn = r = dimG. Moreover, z(n) is completely
regular if and only if rankL(k)(z(k)) = rk for all 0 ≤ k ≤ n, where z(k) = πn

k (z(n)).

The rows of the nth order Lie matrix are indexed by the elements of T (n), and we indi-
cate them by the corresponding bold face symbol: ξi = (ξi

1, . . . , ξ
i
r) or ϕα

J = (ϕα
J,1 . . . ϕ

α
J,r).

The order of a row is that of its associated index, namely order ξi = 0, while orderϕα
J =

#J . Given any subset S ⊂ T (n) of row indices, we let L
(n)
S = L

(n)
S (z(n)) denote the

corresponding | S | × r Lie submatrix formed by the rows indexed by S.

Lemma 4.2. A subset P ⊂ T (n) containing | P | = r indices defines a cross-section

(3.4) through the regular jet z
(n)
0 if and only if the corresponding r × r Lie minor is

nonsingular:

detL
(n)
P (z

(n)
0 ) 6= 0. (4.5)

We call a row of the Lie matrix L(n)(z(n)) either phantom or basic according to whether
its index belongs to P or B(n) = T (n) \ P. (In linear algebraic terms, the phantom rows
would correspond to the free variables and the basic rows to the basic variables follow-
ing from the appropriate column echelon form that results from (transposed) Gaussian
Elimination.) A straightforward translation of Definition 3.1 yields the following charac-
terization of minimal order moving frames.

† Warning : In many texts, e.g., [18], the transpose of this matrix is known as the Lie matrix.
To avoid unnecessary transpose notation, we will adopt this convention throughout.
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Lemma 4.3. At a completely regular jet z
(n)
0 ∈ Jn, the moving frame defined by

P ⊂ T (n) is of minimal order if and only if, for each k = 0, . . . , n, the rank of the Lie

submatrix consisting of the phantom rows of order ≤ k equals

rankL
(k)

P(k)(z
(k)
0 ) = | P(k) | = rk = rankL(k)(z

(k)
0 ).

Corollary 4.4. The moving frame defined by P ⊂ T (n) is of minimal order if and

only if each basic row of the Lie matrix can be written as a linear combination of the

phantom rows of equal or lower order:

ξi =
∑

l∈P(0)

hi
l(x, u) ξ

l +
∑

(0,β)∈P(0)

hi
β(x, u)ϕβ,

ϕα
J =

∑

l∈P(0)

hα
J,l(x, u

(k)) ξl +
∑

(K;β)∈P(k)

hα,K
J,β (x, u(k))ϕβ

K , where k = #J.
(4.6)

Proof : If a basic row of order k were not a linear combination of phantom rows of

that order or less, this would mean that the rank of L(k)(z
(k)
0 ) would be strictly greater

than the cardinality of P(k), which would contradict Lemma 4.3. Q.E.D.

5. Recurrence Formulae.

Given a moving frame, the associated invariant differential operators D1, . . . ,Dp are
obtained by invariantization of the total derivatives:

Di = ι(Di), i = 1, . . . , p, (5.1)

Equivalently, they can be defined as the dual differential operators arising from the invari-
ant horizontal forms

ωi = ι(dxi), i = 1, . . . , p, (5.2)

obtained by (horizontal) invariantization of the basic horizontal one-forms dx1, . . . , dxp.
Details can be found in [3, 11].

Each invariant differential operator maps differential invariants to differential invari-
ants. Moreover, the differentiated invariants DiH

j and DiI
α
J can be written in terms of

the normalized differential invariants. Understanding these so-called recurrence formulae

is the master key that unlocks the structure of the algebra of differential invariants, the
determination of generators, and the classification of syzygies. Remarkably, [3, 21], the
recurrence formulae can be explicitly determined without knowing the actual formulas for
either the differential invariants, or the invariant differential operators, or even the moving
frame! The only required ingredients are the prolongation formulas for the infinitesimal
generators, or, equivalently, the Lie matrix, along with the specification of the cross-section
normalizations.
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To formulate the construction, we introduce the invariantized Lie matrix

M(n)(H, I(n)) = ι
(
M(n)(x, u(n))

)
=




η1
1 . . . η1

r
...

. . .
...

ηp
1 . . . ηp

r

ψ1
1 . . . ψ1

r
...

. . .
...

ψq
1 . . . ψq

r
...

. . .
...

ψα
J,1 . . . ψα

J,r

...
. . .

...




, where 0 ≤ #J ≤ n, (5.3)

whose entries are obtained by invariantizing the infinitesimal generator coefficients:

ηi
κ(H, I) = ι

[
ξi
κ(x, u))

]
, ψα

κ (H, I) = ι
[
ϕα

κ(x, u)
]
, ψα

J,κ(H, I(k)) = ι
[
ϕα

J,κ(x, u(k)))
]
.

(5.4)
We also employ the corresponding bold face symbols,

ηi = ι(ξi), ψα
J = ι(ϕα

J ), (5.5)

to indicate the individual rows of the invariantized Lie matrix. Keep in mind that the
invariantized and ordinary Lie matrices agree when restricted to the cross-section, and
hence have isomorphic algebraic structure.

Theorem 5.1. The recurrence formulae for the differentiated invariants are

DiH
j = δj

i + ηj(H, I)Ri, DiI
α
J = Iα

J,i +ψα
J (H, I(k))Ri. (5.6)

In these formulas, δj
i is the usual Kronecker symbol, while each Ri = (R1

i , . . . , R
r
i )

T , for

i = 1, . . . , p, is a column vector whose r = dimG entries are certain differential invariants.

The entries Rκ
i of the Ri will be called the Maurer–Cartan invariants, because, ac-

cording to [3], they can be identified as the coefficients of the invariant horizontal one-forms
ωi in the moving frame pull-backs

γκ = (ρ(n))∗(µκ) =

p∑

i=1

Rκ
i ω

i + · · · , (5.7)

where the dots indicate contact forms, while µ1, . . . , µr form the basis of Maurer–Cartan
forms dual to the chosen infinitesimal generator basis v1, . . . ,vr. To explain all this in
any detail would take several paragraphs. Fortunately, this turns out to be completely
unnecessary from an algorithmic viewpoint. The Maurer–Cartan invariants are, in fact,
uniquely prescribed by the recurrence formulae, and so, for computational purposes, one
can remain blissfully unaware of how they arise from the Maurer–Cartan forms! (However,
the proof of the recurrence formulae (5.6) does rely essentially on this identification, [3].)
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Indeed, given a coordinate cross-section prescribed by a set of phantom indices P ⊂ T ,
subject to the transversality constraint (4.5), the full system of recurrence formulae (5.6)
naturally splits into two subsystems. Since the phantom differential invariants are constant,
the corresponding phantom recurrence relations have the form

0 = DiH
l = δl

i + ηl Ri, 0 = DiI
β
K = Iβ

K,i +ψβ
K Ri, for all l, (K; β) ∈ P. (5.8)

For each fixed i, (5.8) forms a system of r linear algebraic equations in the r unknown

entries of Ri. In fact, its coefficient matrix, whose rows are ηl,ψβ
K, is nothing but the

invariantized Lie matrix minor corresponding to the phantom indices:

M
(n)
P (H, I(n)) = ι

[
L

(n)
P (x, u(n))

]
.

Since we are using a bona fide cross-section, Lemma 4.2 implies that the coefficient matrix
is invertible. (Here we are using the fact that the invariantized Lie matrix agrees with the
oridinary Lie matrix when restricted to the cross-section.) We conclude that the phantom
recurrence equations (5.8) can be uniquely solved for the Maurer–Cartan invariants Ri.
They are then substituted into the remaining basic recurrence formulae

DiH
j = δj

i + ηj Ri, DiI
α
J = Iα

J,i +ψα
J Ri for j, (J ;α) ∈ B, (5.9)

that explicitly relate the normalized and differentiated invariants. The resulting fundamen-

tal recurrence formulae serve to completely characterize the algebra of differential invari-
ants, and, through their detailed analysis, allow us to pinpoint the generating differential
invariants and their syzygies. Examples of this procedure can be found in [3, 11, 20, 19]
and below.

Remark : It is well known, [17], that the coefficients of the prolonged infinitesimal
generators of any group action are polynomial functions of the jet coordinates uα

J for all
#J ≥ 1. Therefore, the Maurer–Cartan invariants, being solutions to a linear system
with polynomially varying coefficients, are rational functions of the generating invariants,
except possibly those of index 0, namely Hi, Iα. In particular, if the action is transitive
on M , and we normalize all the order zero coordinates — or, more generally, the infinites-
imal generators on M depend rationally on the coordinates (x, u) — then we conclude
that the Maurer–Cartan invariants, and hence all the higher order normalized differential
invariants, are rational functions of the generating differential invariants. The same holds
for a large class of pseudo-group actions, [23]: the differential invariant algebra is intrinsi-
cally rational , in the sense that all recurrence formula, commutation relations and syzygies
involve rational functions of the basic differential invariants (of order ≥ 1).

Definition 5.2. Given phantom indices P ⊂ T , we define the set of edge indices

E ⊂ B = T \P to consist of all zeroth order basic indices i, (0;α) ∈ B(0), if any, along with
all basic indices of the form (J, i;α) ∈ B with (J ;α) ∈ P a phantom index.

Remark : The edge indices lie on the “edges” of the subset B ⊂ T of all basic indices,
meaning that they appear next to a phantom index of lower order. For instance, if p =
2, q = 1, the edge indices corresponding to P =

{
1, 2, (0; 1), (1; 1), (2, 2, 2; 1)

}
are E ={

(2; 1), (1, 1; 1), (1, 2; 1), (1, 2, 2, 2; 1), (2, 2, 2, 2; 1)
}
.
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In this terminology, Theorem 13.3 in [3] states that the edge differential invariants,
meaning those normalized differential invariants indexed by the elements of E , form a
generating set. In the following section, we present an explicit counterexample to this
claim, which is based on a non-minimal order moving frame for the Euclidean geometry of
space curves.

6. An Instructive Example.

Consider the standard action of the r = 6 – dimensional Euclidean group SE(3) on
space curves C ⊂ M = R

3. We use coordinates z = (x, u, v) and, to avoid having to
deal with the infinite-dimensional reparametrization pseudo-group, restrict our attention
to curves given by the graphs of functions u = u(x), v = v(x). However, all our results

remain valid for general parametrized curves z(t) = (x(t), u(t), v(t) )
T
. We use

zt =



xt

ut

vt


 =




1
ux

vx


 , ztt =



xtt

utt

vtt


 =




0
uxx

vxx


 , zttt =



xttt

uttt

vttt


 =




0
uxxx

vxxx


 ,

(6.1)
and so on, to denote the derivative vectors along the curve, where the second expression
can be used in the special case of a graph, parametrized by t = x.

A basis for the infinitesimal generators is provided by the vector fields

v1 = ∂x, v2 = ∂u, v3 = ∂v,

v4 = v∂u − u∂v, v5 = −u∂x + x∂u, v6 = −v∂x + x∂v.
(6.2)

The Lie matrices are easily computed; at order 4, say, L(4) equals




1 0 0 0 −u −v
0 1 0 v x 0
0 0 1 −u 0 x
0 0 0 vx 1 + u2

x uxvx

0 0 0 −ux uxvx 1 + v2
x

0 0 0 vxx 3uxuxx 2uxxvx + uxvxx

0 0 0 −uxx uxxvx + 2uxvxx 3vxvxx

0 0 0 vxxx 4uxuxxx + 3u2
xx 3uxxxvx + 3uxxvxx + uxvxxx

0 0 0 −uxxx uxxxvx + 3uxxvxx + 3uxvxxx 4vxvxxx + 3v2
xx

0 0 0 vxxxx 5uxuxxxx + 10uxxuxxx

4uxxxxvx + 6uxxxvxx +

+ 4uxxvxxx + uxvxxxx

0 0 0 −uxxxx

uxxxxvx + 4uxxxvxx +

+ 6uxxvxxx + 4uxvxxxx
5vxvxxxx + 10vxxvxxx




(6.3)
Its rows are indexed by the jet variables x, u, v, ux, vx, uxx, vxx, uxxx, . . ., while each column
represents a prolonged infinitesimal generator. The corresponding index set T consists of

13



the single index 1, corresponding to x, and the multi-indices† (k ; 1), (k ; 2) representing,
respectively, the jet coordinates uk = Dk

xu and vk = Dk
xv.

The classical moving frame, [7], relies on the equations

x = 0, u = 0, v = 0, ux = 0, vx = 0, vxx = 0,

which serve to define a coordinate cross-section provided uxx 6= 0. (Indeed, the classical
moving frame is not defined at inflection points of the space curve, [4, 7].) The classical
cross-section is of minimal order, because the maximal prolonged orbit dimensions (or,
equivalently, Lie matrix ranks) are r0 = 3, r1 = 5, r2 = 6, and, in agreement with
Lemma 3.2, we are normalizing all 3 = r0 zeroth order variables, 2 = r1 − r0 additional
first order variables, and 1 = r2 − r1 second order variable. This particular coordinate
cross-section corresponds to the phantom indices

P =
{

1, (0; 1), (0; 2), (1; 1), (1; 2), (2; 2)
}
,

while the complementary set of basic indices

B =
{

(k ; 1), (l ; 2) for all k ≥ 2, l ≥ 3
}

serves to index the complete system of functionally independent basic differential invari-
ants. The edge indices in this case are

E =
{

(2; 1), (3; 2)
}
,

and represent the jet coordinates uxx, vxxx as well as their invariantizations.

For this particular cross-section, the left moving frame has the form

ρ(x, u, v, ux . . . , vxx) = (R, z) ∈ SE(3) = SO(3) ⋉ R
3,

where the translational component z = (x, u, v) is the point on the curve, while the columns
of the rotational component R = [t,n,b ] ∈ SO(3) are the unit tangent, unit normal, and
unit binormal frame vectors at z. However, keep in mind that these explicit identifications
are not required to generate the recurrence formulae for the differential invariant algebra.
The resulting invariantization map ι produces the phantom invariants

H = ι(x) = 0, I0 = ι(u) = 0, J0 = ι(v) = 0,

I1 = ι(ux) = 0, J1 = ι(vx) = 0, J2 = ι(vxx) = 0,

along with the independent normalized differential invariants

I2 = ι(uxx), I3 = ι(uxxx), J3 = ι(vxxx), I4 = ι(uxxxx), . . . ,

† Technically, to be in accord with our general index notation, we should write (1

k 1′s
z }| {

· · · 1; α)
instead of (k ; α), but this is, of course, a less convenient notation in this situation.
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and so on. One can identify the edge invariants: I2 = κ is, up to a sign, the curvature†,
while J3 = κ τ is the product of curvature and torsion, [19]. The non-edge basic invariants,

I3 = κs, I4 = κss + 3κ3 − κ τ2, J4 = 2κsτ + κ τs,

and so on are all obtained by invariant differentiation with respect to arc length, and
so will not be required in the generating system; this is well known, and can be readily
deduced from the recurrence formulae derived below. Thus, with this choice of minimal
order cross-section, the edge invariants do generate the rest. We note the classical formulas

κ =
‖ zt × ztt ‖

‖ zt ‖
3

=

√
(uxvxx − uxxvx)2 + u2

xx + v2
xx

(1 + u2
x + v2

x)3/2
,

τ =
zt × ztt · zttt

‖ zt × ztt ‖
2

=
uxxvxxx − uxxxvxx

(uxvxx − uxxvx)2 + u2
xx + v2

xx

,

(6.4)

which can be obtained by fully implementing the moving frame construction, [4]. The first
expression is valid for arbitrary parametrized curves, and the second is for graphs.

The invariant differential operator is the usual arc length derivative:

D =
1√

1 + u2
x + v2

x

Dx = ι(Dx). (6.5)

To establish the recurrence formulas for the arc length derivatives of the normalized invari-
ants, we implement the algorithm of Section 5. The invariantized Lie matrix is obtained
by replacing each jet coordinate in (6.3) by the corresponding normalized differential in-
variant, and so

M(4) = ι
(
L(4)

)
=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −I2 0 0
0 0 0 J3 3I2

2 0
0 0 0 −I3 0 0
0 0 0 J4 10I2I3 4I2J3

0 0 0 −I4 6I2J3 0




. (6.6)

† As in the planar version, there is an ambiguous sign resulting from a 180◦ rotation, and one
usually sets κ = | I2 | to ensure full invariance. To avoid technicalities, we shall ignore this minor
complication here, and refer the reader to [19] for further details.
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Therefore, the recurrence formulae (5.6) are given by

0 = DH = 1 +R1,

0 = DI0 = I1 +R2 = R2, 0 = DJ0 = J1 +R3 = R3,

0 = DI1 = I2 +R5, 0 = DJ1 = J2 +R6 = R6,

DI2 = I3, 0 = DJ2 = J3 − I2R4,

DI3 = I4 + J3R4 + 3I2
2R5, DJ3 = J4 − I3R4,

DI4 = I5 + J4R4 + 10I2I3R5 + 4I2J3R6, DJ4 = J5 − I4R4 + 6I2J3R5,

and so on. Note that we do not require the explicit formulas for either the moving frame or
the differential invariants in order to write out these formulas. The six phantom recurrence
relations are to be solved for the Maurer–Cartan invariants:

R1 = −1, R2 = 0, R3 = 0, R4 = J3/I2, R5 = −I2, R6 = 0.

Substituting these expressions into the remaining basic recurrence formulas leads to the
explicit recurrence relations

DI2 = I3, DI3 = I4 − 3I3
2 + J2

3/I2, DJ3 = J4 − I3J3/I2,

DI4 = I5 − 10I2
2I3 + J3J4/I2, DJ4 = J5 − 6I2

2J3 + J3I4/I2,
(6.7)

and, in general,

DIk = Ik+1 +
1

I2
Pk(I2, . . . , Ik, J3, . . . , Jk),

DJk = Jk+1 +
1

I2
Qk(I2, . . . , Ik, J3, . . . , Jk),

for all k ≥ 3, (6.8)

where Pk, Qk are certain polynomials whose precise forms are not difficult to determine,
but are not required here. With these in hand, it is easy to see that the two edge invariants
I2 and J3 do indeed generate all higher differential invariants.

On the other hand, suppose we were to construct the non-traditional moving frame
based on the equations

x = 0, u = 0, v = 0, vx = 0, vxx = 0, vxxx = 1,

which define a coordinate cross-section provided uxuxx 6= 0. In this case, the phantom
indices are

P =
{

1, (0; 1), (0; 2), (1; 2), (2; 2), (3; 2)
}
;

the basic indices are

B =
{

(k ; 1), (l ; 2) for all k ≥ 1, l ≥ 4
}
;

while the edge indices are

E =
{

(1; 1), (4; 2)
}
.
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The resulting moving frame invariantizations produce the phantom invariants†

H̃ = ι̃ (x) = 0, Ĩ0 = ι̃ (u) = 0, J̃0 = ι̃ (v) = 0,

J̃1 = ι̃ (vx) = 0, J̃2 = ι̃ (vxx) = 0, J̃3 = ι̃ (vxxx) = 1,
(6.9)

along with the independent basic differential invariants

Ĩ1 = ι̃ (ux), Ĩ2 = ι̃ (uxx), Ĩ3 = ι̃ (uxxx), Ĩ4 = ι̃ (uxxxx), J̃4 = ι̃ (vxxxx),
(6.10)

and so on. Let D̃ = ι̃ (Dx) denote the associated invariant differential operator.

We will show that, in contradiction to the general claim in [3], the edge invariants

Ĩ1, J̃4 in this case do not generate the complete system of differential invariants through
invariant differentiation. To this end, we need to write out the recurrence formulae asso-
ciated with this choice of cross-section. In view of (6.9–10), the invariantized Lie matrix
is

M(4) = ι̃
(
L(4)

)
=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 + Ĩ2

1 0

0 0 0 −Ĩ1 0 1

0 0 0 0 3 Ĩ1Ĩ2 0

0 0 0 −Ĩ2 0 0

0 0 0 1 4 Ĩ1Ĩ3 + 3 Ĩ2
2 Ĩ1

0 0 0 −Ĩ3 3 Ĩ1 0

0 0 0 J̃4 5 Ĩ1Ĩ4 + 10 Ĩ2Ĩ3 Ĩ1J̃4 + 4 Ĩ2

0 0 0 −Ĩ4 4 Ĩ1J̃4 + 6 Ĩ2 0




. (6.11)

Thus, the phantom recurrence formulae are

0 = D̃H = 1 +R1,

0 = D̃ Ĩ0 = Ĩ1 +R2,

0 = D̃ J̃0 = J̃1 +R3 = R3,

0 = D̃ J̃1 = J̃2 − Ĩ1R4 +R6 = − Ĩ1R4 +R6,

0 = D̃ J̃2 = J̃3 − Ĩ2R4 = 1 − Ĩ2R4,

0 = D̃ J̃3 = J̃4 − Ĩ3R4 + 3 Ĩ1R5.

Since Ĩ1Ĩ2 = ι̃ (uxuxx) 6= 0 by virtue of our cross-section condition, these equations can be
solved for the Maurer–Cartan invariants:

R1 = −1, R2 = −Ĩ1, R3 = 0, R4 =
1

Ĩ2

, R5 =
1

3 Ĩ1

(
Ĩ3

Ĩ2

− J̃4

)
, R6 =

Ĩ1

Ĩ2

.

† We use tildes to distinguish these from the classical differential invariants derived above.
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Substituting these expressions into the basic recurrence formulae

D̃ Ĩ1 = Ĩ2 + (1 + Ĩ2
1)R5,

D̃ Ĩ2 = Ĩ3 + 3 Ĩ1Ĩ2R5,

D̃ Ĩ3 = Ĩ4 +R4 + (4 Ĩ1Ĩ3 + 3Ĩ2
2)R5 + Ĩ1R6,

D̃ Ĩ4 = Ĩ5 + J̃4R4 + (5 Ĩ1Ĩ4 + 10 Ĩ2Ĩ3)R5 + (Ĩ1J̃4 + 4 Ĩ2)R6,

D̃ J̃4 = J̃5 − Ĩ4R4 + (4 Ĩ1J̃4 + 6 Ĩ2)R5,

and so on, leads to the fundamental recurrence formulas

D̃ Ĩ1 = Ĩ2 +
1 + Ĩ2

1

3 Ĩ1

(
Ĩ3

Ĩ2

− J̃4

)
, D̃ Ĩ2 = 2 Ĩ3 − Ĩ2J̃4,

D̃ Ĩ3 = Ĩ4 +
4 Ĩ1Ĩ3 + 3Ĩ2

2

3 Ĩ1

(
Ĩ3

Ĩ2

− J̃4

)
+

1 + Ĩ2
1

Ĩ2

,

(6.12)

and, in general,

D̃ Ĩk = Ĩk+1 +
1

Ĩ1Ĩ2

Pk(Ĩ1, . . . , Ĩk, J̃4, . . . , J̃k),

D̃ J̃k = J̃k+1 +
1

Ĩ1Ĩ2

Qk(Ĩ1, . . . , Ĩk, J̃4, . . . , J̃k),

(6.13)

in which Pk, Qk are certain polynomials whose precise forms are not required here. The

higher order formulae (6.13) imply that the normalized invariants Ĩ1, Ĩ2, Ĩ3, Ĩ4, J̃4 of de-
gree less than 4 serve to generate all the higher order differential invariants, which is in
accordance with the general result given in Theorem 7.1 below.

Let us now show that the edge invariants Ĩ1 and J̃4 do not generate the complete
system of differential invariants. Indeed, while the second and third formulas in (6.12)
allow us to express both

Ĩ3 = 1
2 D̃ Ĩ2 + 1

2 Ĩ2J̃4, Ĩ4 = D̃ Ĩ3 −
4Ĩ1Ĩ3 + 3Ĩ2

2

3 Ĩ1

(
Ĩ3

Ĩ2

− J̃4

)
+

1 + Ĩ2
1

Ĩ2

, (6.14)

in terms of derivatives of Ĩ1, Ĩ2 and J̃4, the resulting initial recurrence formula

D̃ Ĩ1 = Ĩ2 +
1 + Ĩ2

1

6 Ĩ1

(
D̃ Ĩ2

Ĩ2

− J̃4

)
(6.15)

is a differential equation for Ĩ2, and cannot be used to express Ĩ2 algebraically in terms of

Ĩ1 and J̃4 and their invariant derivatives. Also, the higher order recurrence formulae (6.13)
are of no help, since they always introduce a new, higher order functionally independent
differential invariant, namely Ĩk+1 or J̃k+1, and this precludes any further syzygies among

the lower order invariants. (On the other hand, one can solve (6.15) for J̃4 in terms of
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Ĩ1, Ĩ2 and their derivatives, and hence the latter pair of differential invariants do form a
generating system.)

To reconfirm our conclusion, let us rewrite the lower order normalized differential
invariants in terms of the classical curvature and torsion invariants. Applying the invari-
antization map ι̃ defined by our non-traditional moving frame, as specified by (6.9–10), to
the classical differential invariants (6.4), and invoking the Replacement Rule (3.9), we find

κ = ι̃

( √
(uxvxx − uxxvx)2 + u2

xx + v2
xx

(1 + u2
x + v2

x)3/2

)
=

| Ĩ2 |

(1 + Ĩ2
1)

3/2
,

τ = ι̃

(
uxxvxxx − uxxxvxx

(uxvxx − uxxvx)2 + u2
xx + v2

xx

)
=
Ĩ2

Ĩ2
2

=
1

Ĩ2

.

(6.16)

Solving, we find†

Ĩ1 =
√

(κτ)−2/3 − 1 , Ĩ2 =
1

τ
. (6.17)

In particular, we discover that this cross-section and resulting moving frame are only valid
for curves with κτ > 1. (Changing the last cross-section equation in (6.9) to vxxx = c will
produce a moving frame with a somewhat wider range of validity.) Thus, the invariants

Ĩ1, Ĩ2 are essentially equivalent to the classical curvature and torision, which explains why
they serve to generate the full differential invariant algebra.

The corresponding invariant differential operator is expressed by applying invarianti-
zation to the arc length derivative (6.5):

D = ι̃ (D) = ι̃

(
1√

1 + u2
x + v2

x

Dx

)
=

1√
1 + Ĩ2

1

D̃ ,

and hence, using (6.16),

D̃ = (κτ)−1/3D = (κτ)−1/3 d

ds
. (6.18)

Substituting (6.17–18) into (6.15) produces

J̃4 =
2κsτ + κτs

(κτ)4/3
+ 6

κ2/3

τ1/3

√
(κτ)−2/3 − 1 . (6.19)

Obeserve that J̃4 depends on τs and κs, and hence we cannot generate both κ and τ by

differentiating the edge invariants Ĩ1, J̃4, reconfirming our earlier observations. We also
note that

Ĩ3 =
κs

(κτ)4/3
+ 3

κ2/3

τ4/3

√
(κτ)−2/3 − 1 , (6.20)

† There is a sign ambiguity in the square root throughout.
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which results from substituting (6.17–19) into the first recurrence formula in (6.14). An
alternative means of deriving these formulae (or for checking the preceding computations)
is to differentiate the classical formulae (6.4) with respect to arc length, and then apply
the invariantization map ι̃.

7. Generating Differential Invariants.

Let us now present corrected, rigorous results on generating differential invariants,
for both minimal and non-minimal order moving frames. Theorem 13.3 in [3] claims that
the edge differential invariants, meaning those normalized differential invariants indexed
by the elements of E , form a generating set. The justification relied on an induction
argument, which was based on the erroneous claim that the Maurer–Cartan invariants,
being solutions to the phantom recurrence equations (5.8), only depended on the edge
invariants. First, it was correctly noted that the leading terms Iα

J,i in (5.8) are all either
phantom invariants, and hence constant, or, if non-constant, edge invariants. However, the
rows ψβ

K of the coefficient matrix can, in certain scenarios, depend on some of the non-
edge basic differential invariants — as we witnessed in the preceding example — thereby
precipitating a breakdown of the proposed inductive argument. However, the following
less powerful result does follow from the original argument.

Theorem 7.1. Given a moving frame of order n, the normalized differential invari-

ants corresponding to indices in B(n) ∪ E form a generating system.

Proof : Indeed, the linear system (5.8) determining the Maurer–Cartan invariants only
involves the basic invariants of order ≤ n and the edge invariants of order n + 1, and
hence the Maurer–Cartan invariants can be expressed as functions of the listed generating
invariants. Moreover, the higher order basic recurrence formulae

Iα
J,i = DiI

α
J −ψα

J Ri for (J ;α) ∈ B, k = #J ≥ n,

express the invariants of order k + 1 in terms of generating and lower order differential
invariants. A straightforward induction argument completes the proof. Q.E.D.

Thus, to find a complete system of generating differential invariants, one may require
all basic differential invariants of order ≤ n along with any edge invariants that appear
at order n + 1. Theorem 7.1 is a slight improvement on the classical result, [24], that
requires all differential invariants of order n+ 1. Keep in mind that it is not claimed that
the differential invariants indexed by B(n) ∪ E form a minimal generating system. Indeed,
in practice, many of these invariants can be generated by lower order invariants, and so are
not required in a generating system. However, as the example in Section 6 makes clear,
the edge invariants by themselves may not suffice.

But, if a minimal order moving frame is employed, Theorem 13.3 in [3] does remain
valid as originally formulated.

Theorem 7.2. The edge differential invariants arising from a minimal order moving

frame form a generating system of differential invariants.
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Proof : According to Corollary 4.4, we can rewrite every non-phantom row of the Lie
matrix as a linear combination of phantom rows. Applying the invariantization process to
the resulting linear dependencies (4.6) leads to similar dependencies amongst the rows of
the invariantized Lie matrix:

ηi =
∑

l∈P(0)

hi
l(H, I)η

l +
∑

(0,β)∈P(0)

hi
β(H, I)ψβ, (7.1)

ψα
J =

∑

l∈P(0)

hα
J,l(H, I

(k))ηl +
∑

(K;β)∈P(k)

hα,K
J,β (H, I(k))ψβ

K , where k = #J.

Substituting these formulae into (5.9) and then using the phantom recurrence formulae
(5.8) leads to

DiI
α
J = Iα

J,i +ψα
J Ri

= Iα
J,i +

∑

l∈P(0)

hα
J,l(H, I

(k))ηl Ri +
∑

(K;β)∈P(j)

hα,K
J,β (H, I(k))ψβ

K Ri

= Iα
J,i −

∑

l∈P(0)

hα
J,l(H, I

(k)) δl
i −

∑

(K;β)∈P(k)

hα,K
J,β (H, I(k)) Iβ

K,i.

(7.2)

We conclude that, for any basic index (J ;α) ∈ B,

Iα
J,i = DiI

α
J +

∑

l∈P(0)

hα
J,l(H, I

(k)) δl
i +

∑

(K;β)∈P(k)

hα,K
J,β (H, I(k)) Iβ

K,i, #J = k.
(7.3)

To complete the proof, we use induction on the degree of the differential invariant,
noting that all basic degree zero invariants Hi, Iα (which only appear if the group acts
intransitively on M) are automatically included in our generating set. The only differential

invariants of degree > k = #J that appear on the right hand side of (7.3) are the Iβ
K,i

for phantom indices (K; β) ∈ P(k). But, in this case, either (K, i; β) ∈ P(k+1) is another

phantom index, in which case Iβ
K,i is constant, or (K, i; β) ∈ E is an edge index, in which

case Iβ
K,i is one of the generating differential invariants. Thus, by our induction hypothesis,

any degree k+ 1 non-edge normalized differential invariant Iα
J,i can be written in terms of

the generating edge invariants of degree k+ 1 and the differential invariants of degree ≤ k
and their invariant derivatives. This completes the induction step. Q.E.D.

Remark : Since, according to [17; Theorems 5.37 and 5.49], the order at which the
prolongation of a locally effective r-dimensional Lie group action becomes locally free is
bounded by r, Theorem 7.2 can be used to bound the number of differential invariants in
terms of the dimension of the group. Details will appear elsewhere.

The edge invariants may still not form a minimal generating system. In general,
given an edge index of the form (J, i;α) ∈ E with (J ;α) ∈ B basic, then (5.9) relates
the edge invariant Iα

J,i to the differentiated basic invariant DiI
α
J . Let us call the edge

indices/invariants that are not of this form essential . Thus, one might expect that only
the essential invariants are needed in a generating set. Unfortunately, while often true,
this is not always the case as the following example demonstrates.
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Remark : As in [23], we can identify each index (J ;α) ∈ T with a monomial sJS
α in

the R[s] polynomial module

S =

{
σ(s, S) =

q∑

α=1

σα(s)Sα

}
≃ R[s] ⊗R

q,

consisting of polynomials in variables s = (s1, . . . , sp), S = (S1, . . . , Sq), that are linear
in the latter. A cross-section and its associated moving frame are called algebraic if the
subspace spanned by the basic monomials sJS

α for (J ;α) ∈ B forms a submodule. In this
case, the essential indices correspond to a (Gröbner) basis for the monomial submodule.
See [23] for further developments in this direction.

Example 7.3. Consider the group action GV on R
3 discussed in Example 2.2, in

the special case when the subspace V is spanned by the polynomials

ϕ1(x, y) = 1, ϕ2(x, y) = x, ϕ3(x, y) = y, ϕ4(x, y) = xy − 1
2 x

2,

ϕ5(x, y) = xy − 1
2 y

2, ϕ6(x, y) = − 1
6 x

3 + 1
4 x

2y + 1
4 xy

2 − 1
6 y

3.
(7.4)

The cross-section normalizations

x = y = u = ux = uy = uxx = uyy = uxxx = 0 (7.5)

serve to define a minimal order moving frame, since the rank of the second order Lie matrix
is r2 = 7. The basic differential invariants are

Ixy = ι(uxy), Ixxy = ι(uxxy), Ixyy = ι(uxyy), Iyyy = ι(uyyy),

Ijk = ι(ujk) for all j + k ≥ 5.

The edge invariants are Ixy, Ixxy, Ixyy, Iyyy, Ixxxx, Ixxxy, while the essential invariants are
Ixy, Iyyy, Ixxxx.

The recurrence formulas are readily established:

D1Ixy = Ixxy + Ixyy, D2Ixy = Ixxy + Ixyy + Iyyy,

D1Ixxy = 1
2 Ixxxx + Ixxxy, D2Ixxy = 1

2 Ixxxy + Ixxyy,

D1Ixyy = 1
2
Ixxxx + Ixxyy, D2Ixyy = 1

2
Ixxxy + Ixyyy,

D1Iyyy = −Ixxxx + Ixyyy, D2Iyyy = −Ixxxy + Iyyyy,

(7.6)

while
D1Ijk = Ij+1,k, D2Ijk = Ij,k+1, whenever j + k ≥ 4. (7.7)

In accordance with Theorem 7.2, we can generate all higher order differential invariants
from Ixy, Ixxy, Ixyy, Iyyy, Ixxxx. However, we cannot generate both Ixxy, Ixyy from Ixy, and
so the essential invariants do not form a generating system in this particular case.

The cause of the difficulty in this example appears to be that we are not paying proper
attention to the algebraic structure associated with this group action. We are not able to
fully develop this remark here, but will make the following preliminary observations. The
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polynomial subspace spanned by (7.4) is the solution space to the following overdetermined
system of partial differential equations

ϕxx + ϕxy + ϕyy = 0, ϕxxy − ϕxyy = 0. (7.8)

The symbol module associated with this system is generated by the polynomials

s2 + st+ t2, s2t− st2.

The arguments in [23] inspire us to choose an “algebraic” coordinate cross-section pre-
scribed by the set of complementary monomials to the prolonged symbol module relative
to some term ordering, [2]. For example, using lexicographic ordering based on s < t, the
complementary monomials are 1, s, t, s2, s t, s3, leading to the cross-section equations

x = y = u = ux = uy = uxx = uxy = uxxx = 0, (7.9)

which also define a minimal order moving frame. (In contrast, the monomials 1, s, t, s2, t2,
s3, corresponding to (7.5) do not form a complementary set with respect to any term
ordering.) In this case, the basic differential invariants are

Iyy = ι(uyy), Ixxy = ι(uxxy), Ixyy = ι(uxyy), Iyyy = ι(uyyy),

Ijk = ι(ujk) for all j + k ≥ 5.

But in this case, the essential invariants Iyy, Iyyy, Ixxxx do generate all higher order differ-
ential invariants. Indeed, the first two recurrence formulas are

D1Iyy = Ixxy + Ixyy, D2Iyy = Ixxy + Ixyy + Iyyy, (7.10)

while all the rest are exactly the same as in (7.6–7). Observe that we are now able to write
the non-edge invariants Ixxy, Ixyy in terms of Iyy, Iyyy.
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