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Abstract

This paper reviews the moving frame approach to the construction of the invariant

variational bicomplex. Applications include explicit formulae for the Euler-Lagrange

equations of an invariant variational problem, and for the equations governing the

evolution of differential invariants under invariant submanifold flows.

1 Introduction.

This survey paper describes some aspects of the author’s recent research, done partly in
collaboration with Irina Kogan, [31, 53], into moving frames, the invariant variational bi-
complex, and invariant submanifold flows. These results are based on combining two pow-
erful ideas in the modern, geometric approach to differential equations and the variational
calculus. The first is the variational bicomplex, which is of fundamental importance in the
study of the geometry of jet bundles, differential equations and the calculus of variations.
Its origins can be found in the work of Dedecker, [15], then developed in full detail by Tul-
czyjew, [67], and Vinogradov, [68, 69]. Later contributions of Tsujishita, [66], Anderson,
[2, 3], and Krupka and Janyška, [32, 33], have amply demonstrated the power of the bicom-
plex formalism for both local and global problems in the geometric theory of differential
equations and the calculus of variations.

The second ingredient is a reformulation of Cartan’s method of moving frames, [17, 51].
For a general finite-dimensional transformation group G, a moving frame is defined as an
equivariant map from an open subset of jet space to the Lie group G. Moving frames are
constructed by the process of normalization based on the choice of cross-section to the group
orbits. The moving frame then provides a canonical mechanism, called invariantization, that
allows us to systematically construct the invariant counterparts of all objects of interest in
the usual variational bicomplex, including differential invariants, invariant differential forms,
invariant differential operators, etc. The key recurrence formulae relate the differentials
of ordinary functions and forms to the invariant differentials of invariant functions and
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forms, and thereby lead to the complete structure of the algebra1 of differential invariants,
including the syzygies and commutation formulae, [26, 27, 52]. The equivariant moving
frame method has impacted a remarkable range of subjects, including symmetry methods for
partial differential equations, the calculus of variations, classical invariant theory, computer
vision, numerical analysis, Hamiltonian systems, integrable soliton equations, materials and
micromagnetics, joint invariants, relativity, quantum mechanics, invariants of Lie algebras,
Lie pseudo-groups, symbolic methods, and (non-commutative) differential algebra; see [50,
51] for recent surveys of developments in the field.

A key application of the invariant variational bicomplex is the general solution to an
outstanding problem in the calculus of variations. Every group-invariant variational prob-
lem can be written in terms of the differential invariants. The associated Euler-Lagrange
equations inherit the symmetry group, and so can also be written in terms of the differential
invariants. The problem is to directly construct the invariant form of the Euler–Lagrange
equations from the invariant form of the variational problem. Before the general solution to
this problem appeared in [31], only a few specific examples were known, [3, 22]. A striking
recent application of these techniques is the work of Starostin and van der Heijden, [65], on
equilibrium configurations of flexible Möbius bands.

A second application is to the evolution of differential invariants under invariant submani-
fold flows. Invariant curve flows and surface flows arise in an impressive range of applications,
including geometric optics, [7], elastodynamics, [37], computer vision, [55, 56, 60, 62, 64],
visual tracking and control, [45], vortex dynamics, [25, 36], interface motions, [64], thermal
grooving, [9], and elsewhere. A celebrated example is the Euclidean invariant curve short-
ening flow, [18, 20], in which a plane curve moves in its normal direction in proportion to its
curvature. In computer vision, Euclidean curve shortening and its equi-affine counterpart
have been successfully applied to image denoising and segmentation, [55, 61, 62]. In three
dimensional space, Euclidean-invariant curve flows include the integrable vortex filament
flow, [25, 36], while mean curvature and Willmore flows of surfaces have been the subject
of extensive analysis and applications, [6, 14].

Given an invariant submanifold flow, a key issue is to track the induced evolution of its
basic geometric invariants — curvature, torsion and the like. While a number of particular
examples have been worked out by direct computation, e.g., in [18, 43], many cases of interest
have yet to appear in the literature, owing to their computational complexity. Therefore, it is
worth developing general, practical tools to ameliorate this often tedious task. Mansfield and
van der Kamp, [39], have developed a method based on the differential invariant syzygies.
Here we present a direct approach, applying the invariant variational bicomplex calculus
discussed above. As we will see, the same basic invariant differential operators appearing in
the construction of invariant Euler–Lagrange equations also play a key role in this context.

2 The Invariant Variational Bicomplex.

In this section, we review the basics of prolonged group actions on submanifold jets, moving
frames, and the induced invariant variational bicomplex. Basic references include [48, 49]
for jets, contact forms, and prolonged Lie group actions, [3, 66] for the variational bicom-
plex, [17, 51, 52] for the equivariant approach to moving frames, and [31] for the moving

1Technically, because differential invariants may only be locally defined, we should speak of the “sheaf of
differential invariants”. However, as we work locally on suitable open subsets, this extra level of abstraction
is not required; moreover, experts can readily translate our constructions into sheaf-theoretic language, [70].
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frame construction of the invariant variational bicomplex. For simplicity, we will only deal
with finite-dimensional Lie group actions in this paper, although the general ideas can be
straightforwardly adapted to infinite-dimensional pseudo-group actions using more recent
extensions of the moving frame technology, [54].

Let G be an r-dimensional Lie group, acting smoothly on a m-dimensional manifold M .
We will study the induced action on p-dimensional submanifolds S ⊂M . For 0 ≤ n ≤ ∞, let
Jn = Jn(M,p) denote the n-th order (extended) jet bundle for such submanifolds, [49]. The
action of G on M naturally prolongs to an action on Jn. Since the prolonged group actions
are all mutually compatible under projection Jn → Jk, we will avoid explicit reference to
the order of prolongation, and just use g · z(n) for the action of g ∈ G on the jet z(n) ∈ Jn,
rather than the more traditional notation g(n) · z(n).

By definition, a moving frame is right-equivariant2 map3 ρ : Jn → G, meaning that
ρ(g · z(n)) = ρ(z(n)) · g−1 for all g ∈ G and all z(n) ∈ Jn where defined. The existence
of a moving frame requires that the prolonged group action be free, meaning the isotropy
subgroups of each individual jet are trivial, and regular, meaning the prolonged group orbits
form a regular foliation, on an open subset V ⊂ Jn. Under these conditions, a moving frame
can be algorithmically constructed by a normalization process based on the choice of a
compatible cross-section Kn ⊂ Jn to the group orbits. Specifically, given z(n) ∈ Jn, we
set g = ρ(z(n)) to be the unique group element such that g · z(n) ∈ Kn, when defined.
Compatibility of moving frames under the jet space projections allows us to also suppress
the order in the notation of ρ. We use ι to denote the invariantization process induced
by the moving frame. The invariantization of a differential form Ω is the unique invariant
differential form ι(Ω) that agrees with Ω when restricted to the cross-section. In particular,
if Ω is an invariant differential form or function, then ι(Ω) = Ω. Invariantization defines an
(exterior) algebra morphism that projects differential functions and forms on Jn to invariant
differential functions and forms.

Let (x, u) = (x1, . . . , xp, u1, . . . , uq) be local coordinates on M . Viewing the x’s as
independent variables and the u’s as dependent variables, we let uα

J = ∂#Ju/∂xJ be the
usual induced local coordinates on Jn. Separating the local coordinates (x, u) on M into
independent and dependent variables naturally splits the differential one-forms on J∞ into
horizontal forms, spanned by dx1, . . . , dxp, and vertical forms, spanned by the basic contact

one-forms

θα
J = duα

J −

p∑

i=1

uα
J,i dx

i, α = 1, . . . , q, #J ≥ 0. (1)

Let πH and πV denote the projections mapping one-forms on J∞ to their horizontal and
vertical (contact) components, respectively. The induced splitting d = dH + dV of the
differential into horizontal and vertical components results in the variational bicomplex4. In
particular, if F (x, u(n)) is any differential function, its horizontal and vertical differentials

2All classical moving frames, [23], are left-equivariant, and can be obtained by composing ρ with the
group inversion g 7→ g−1. We choose to concentrate on the right-equivariant version to (slightly) simplify
some of the calculations.

3All maps, differential forms, differential functions, etc., need only be locally defined; thus, the domain
of ρ is typically a suitable open subset of Jn.

4Since the splitting depends on a choice of independent variables on M , the variational bicomplex is not
intrinsic. A more refined version of this construction, known as the C spectral sequence, [68, 69], relies on
the contact filtration of the algebra of differential forms. However, since all our calculations take place in
local coordinates, we will avoid all the extra complications inherent in this more sophisticated machinery.
Experts will be able to readily translate our results as desired.
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are

dH F =

p∑

i=1

(DiF ) dxi, dV F = DF (θ) =
∑

α,J

∂F

∂uα
J

DJθ
α =

∑

α,J

∂F

∂uα
J

θα
J , (2)

in which Di = Dxi denote the total derivative operators with respect to the independent
variables, DJ = Dj1

· · · Djk
are the higher order total derivatives, θ = (θ1, . . . , θq)T is the

column vector containing the order zero contact forms, while DF = (DF,1, . . . ,DF,q) is the
Fréchet derivative or formal linearization of the differential function F .

We will employ our moving frame to invariantize the variational bicomplex as follows.
First, invariantization of the jet coordinate functions produces the fundamental differential

invariants:

Hi = ι(xi), Iα
J = ι(uα

J ), α = 1, . . . , q, #J ≥ 0. (3)

These naturally split into two classes: The r = dimG combinations defining the cross-section
equations will be constant, and are known as the phantom differential invariants. The
remainder, called the basic differential invariants, form a complete system of functionally
independent differential invariants. Next, let

̟i = ωi + ηi = ι(dxi), where ωi = πH(̟i), ηi = πV (̟i), (4)

denote the invariantized horizontal one-forms. Their horizontal components ω1, . . . , ωp

form, in the language of [49], a contact-invariant coframe for the prolonged group action,
while η1, . . . , ηp supply “contact corrections” that make the one-forms ̟1, . . . , ̟p fully
G-invariant. The corresponding dual invariant total differential operators D1, . . . ,Dp are
defined so that

dH F =

p∑

i=1

(DiF )̟i, dH Ω =

p∑

i=1

̟i ∧ DiΩ, (5)

for any differential function F and, more generally, differential form Ω, on which the Di act
via Lie differentiation. Finally, let

ϑα
J = ι(θα

J ), α = 1, . . . , q, #J ≥ 0. (6)

be the invariantized basis contact forms.
As in the usual, non-invariant bicomplex construction, the decomposition of invariant

one-forms on J∞ into invariant horizontal and invariant contact components induces a de-
composition of the differential. However, now d = dH + dV + dW splits into three con-
stituents, where dH adds an invariant horizontal form, dV adds a invariant contact form,
while dW replaces an invariant horizontal one-form with a combination of wedge products

of two invariant contact forms. In other words, if we let Ω̃r,s denote the space of differential
forms of degree r+s spanned by wedge products of r invariant horizontal one-forms (4) and
s invariant contact one-forms (6), then

dH : Ω̃r,s −→ Ω̃r+1,s, dV : Ω̃r,s −→ Ω̃r,s+1, dW : Ω̃r,s −→ Ω̃r−1,s+2. (7)

The resulting invariant variational quasi-tricomplex is characterized by the formulae

d2
H = 0, dH dV + dV dH = 0,

d2
W = 0, dV dW + dW dV = 0,

d2
V + dH dW + dW dH = 0. (8)
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Fortunately, the third, anomalous component dW plays no role in the applications; in
particular, dW F = 0 for any differential function F .

The most important fact underlying the moving frame construction is that the in-
variantization map ι does not respect the exterior derivative operator. Thus, in general,
d ι(Ω) 6= ι(dΩ). The recurrence formulae, [17, 31], which we now review, provide the miss-
ing “correction terms” dι(Ω) − ι(dΩ). Remarkably, these formulas can be explicitly and
algorithmically constructed using only linear differential algebra — without knowing the
explicit formulas for either the differential invariants or invariant differential forms, the in-
variant differential operators, or even the moving frame! The only required ingredients are
the cross-section equations and the formulae for the prolonged infinitesimal generators of
the group action.

Let v1, . . . ,vr be a basis for the infinitesimal generators of our transformation group.
We prolong each infinitesimal generator to Jn. For conciseness, we will retain the same
notation vκ for the prolonged vector fields on any Jn which, in local coordinates, take the
form

vκ =

p∑

i=1

ξi
κ(x, u)

∂

∂xi
+

q∑

α=1

n∑

j=#J=0

ϕα
J,κ(x, u(j))

∂

∂uα
J

, κ = 1, . . . , r. (9)

The coefficients ϕα
J,κ = vκ(uα

J ) can be successively constructed by Lie’s recursive prolonga-
tion formula, [48, 49]:

ϕα
Ji,κ = Diϕ

α
J,κ −

p∑

j=1

uα
Jj Diξ

j
κ. (10)

A straightforward induction establishes the explicit prolongation formula, first written down
by the author in [47]:

ϕα
J,κ = DJQ

α
κ +

p∑

i=1

ξi
κ u

α
J,i, where Qα

κ = ϕα
κ −

p∑

i=1

ξi
κ u

α
i (11)

are the components of the characteristic of vκ.
Strikingly, all the recurrence relations are consequences of a single universal recurrence

formula that prescribes the differential of an invariantized differential function or form.

Theorem 1 If Ω is any differential form on J∞, then

d ι(Ω) = ι(dΩ) +
r∑

κ=1

νκ ∧ ι [vκ(Ω)], (12)

where ν1, . . . , νr are the invariantized Maurer–Cartan forms dual to the infinitesimal gener-

ators v1, . . . ,vr, while vκ(Ω) denotes the Lie derivative of Ω with respect to the prolonged

infinitesimal generator vκ.

The invariantized Maurer–Cartan forms ν1, . . . , νr are obtained by pulling back the usual
dual Maurer–Cartan forms µ1, . . . , µr on G by the moving frame map: νκ = ρ∗µκ. Details
would take us too far afield, [31], but, fortunately, are not required thanks to the follow-
ing marvelous result that allows us to compute them directly without reference to their
underlying definition:

5



Lemma 2 Let I1 = ι(z1), . . . , Ir = ι(zr) be the phantom differential invariants stemming

from our cross-section. Then the corresponding phantom recurrence formulae

0 = dIς = dι(zς) = ι(dzς) +

r∑

κ=1

νκ ∧ ι [vκ(zς)], ς = 1, . . . , r, (13)

can be uniquely solved for the invariantized Maurer–Cartan forms ν1, . . . , νr.

Having solved the linear system (13) for ν1, . . . , νr, we then decompose the resulting
invariantized Maurer–Cartan forms into their invariant horizontal and contact components:

νκ = γκ + εκ, where γκ =

p∑

i=1

Rκ
i ̟

i, εκ =
∑

α,J

Sκ,J
α ϑα

J , (14)

where Rκ
i , S

κ,J
α are certain differential invariants. The Rκ

i will be called the Maurer–Cartan

invariants, [26, 27, 52]. In the case of curves, the Rκ
i appear as the entries of the Frenet–

Serret matrix Dρ(x, u(n)) · ρ(x, u(n))−1, in the case G ⊂ GL(N) is a matrix Lie group, [23].
Substituting (14) back into the universal formula (12) produces a complete system of explicit
recurrence relations for all the differentiated invariants and invariant differential forms.

In particular, taking Ω to be any one of the individual jet coordinate functions xi, uα
J ,

results in the recurrence formulae for the fundamental differential invariants (3):

dH i = ι(dxi) +

r∑

κ=1

νκ ι [vκ(xi)] = ̟i +

r∑

κ=1

ι(ξi
κ) νκ,

dIα
J = ι(duα

J ) +

r∑

κ=1

νκ ι [vκ(uα
J )] = ι

(
p∑

i=1

uα
Ji dx

i + θα
J

)
+

r∑

κ=1

ι(ϕα
J,κ) νκ

=

p∑

i=1

Iα
Ji ̟

i + ϑα
J +

r∑

κ=1

ι(ϕα
J,κ) νκ.

(15)

In view of (14), the coefficient of ̟i in (15) yields the recurrence relations

DiH
j = δj

i +
r∑

κ=1

Rκ
i ι(ξ

i
κ), DiI

α
J = Iα

Ji +
r∑

κ=1

Rκ
i ι(ϕ

α
J,κ), (16)

where δj
i is the usual Kronecker delta. Owing to the functional independence of the basic

(non-phantom) differential invariants, these formulae, in fact, serve to completely character-
ize the structure of the non-commutative differential invariant algebra, [17, 26, 52]. Similarly,
the contact components in (15) yield the vertical recurrence formulae

dV H
i =

r∑

κ=1

ι(ξi
κ) εκ, dV I

α
J = ϑα

J +
r∑

κ=1

ι(ϕα
Kκ) εκ, (17)

while, as noted earlier, dW Hi = dW Iα
J = 0.
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The recurrence formulae (12) for the derivatives of the invariant horizontal forms are

d̟i = d[ι(dxi)] = ι(d2xi) +

r∑

κ=1

νκ ∧ ι [vκ(dxi)]

=

r∑

κ=1

νκ ∧ ι

(
p∑

k=1

Dkξ
i
κ dx

k +

q∑

α=1

∂ξi
κ

∂uα
θα

)

=

r∑

κ=1

p∑

k=1

ι
(
Dkξ

i
κ

)
νκ ∧̟k +

r∑

κ=1

q∑

α=1

ι

(
∂ξi

κ

∂uα

)
νκ ∧ ϑα.

(18)

The resulting two-form can be decomposed into three basic constituents, belonging, respec-
tively, to the invariant summands Ω̃2,0

⊕Ω̃1,1
⊕Ω̃0,2. In view of (14), the terms in (18)

involving wedge products of two horizontal forms, i.e., in Ω̃2,0, yield

dH̟i = −
∑

j<k

Y i
jk ̟

j ∧̟k,

where

Y i
jk =

r∑

κ=1

p∑

j=1

Rκ
j ι(Djξ

i
κ) −Rκ

k ι(Dkξ
i
κ) (19)

are called the commutator invariants, since combining (19) with (5) produces the commu-
tation formulae for the invariant differential operators:

[Dj ,Dk ] =

p∑

i=1

Y i
jk Di = −

p∑

i=1

Y i
kj Di. (20)

Next, the terms in (18) involving wedge products of a horizontal and a contact form yield

dV ̟
i =

r∑

κ=1

[
q∑

α=1

ι

(
∂ξi

κ

∂uα

)
γκ ∧ ϑα +

p∑

k=1

ι(Dkξ
i
κ) εκ ∧̟k

]
. (21)

Finally, the remaining terms, involving wedge products of two contact forms, provide the
formulas for the anomalous third component of the differential:

dW ̟i =
r∑

κ=1

q∑

α=1

ι

(
∂ξi

κ

∂uα

)
εκ ∧ ϑα. (22)

In a similar fashion, we derive the recurrence formulae (12) for the differentiated invariant
contact forms:

dϑα
J = d[ι(θα

J )] = ι(dθα
J ) +

r∑

κ=1

νκ ∧ ι [vκ(θα
J )] = ι

(
p∑

i=1

dxi ∧ θα
Ji

)
+

r∑

κ=1

νκ ∧ ι(ψα
Jκ),

(23)
where

ψα
Jκ = vκ(θα

J ) = dϕα
Jκ −

p∑

i=1

[
ϕα

Jiκ dx
i + uα

Ji dξ
i
κ

]
= dV ϕ

α
Jκ −

p∑

i=1

uα
Ji dV ξ

i
κ (24)

7



is known as the vertical prolongation coefficient of the vector field vκ. For our purposes, we
only require the component of (23) that involves invariant horizontal forms:

dH ϑα
J =

p∑

i=1

̟i ∧ ϑα
Ji +

r∑

κ=1

γκ ∧ ι(ψα
Jκ). (25)

Since5

dH ϑ =

p∑

i=1

̟i ∧ Di ϑ (26)

for any contact form ϑ, we deduce the recurrence formulae

Diϑ
α
J = ϑα

Ji +
r∑

κ=1

Rκ
i ι(ψ

α
Jκ) (27)

for the invariant (Lie) derivatives of the invariant contact forms. The latter can induc-
tively be solved to express the higher order invariantized contact forms as certain invariant
derivatives of those of order 0:

ϑα
J =

q∑

β=1

Eα
J,β(ϑβ) = Eα

J (ϑ), (28)

in which ϑ = (ϑ1, . . . , ϑq)T denotes the column vector containing the order zero invariantized
contact forms, while Eα

J = (Eα
J , . . . , E

α
J ) are certain invariant differential operators.

In view of (17, 28), if K = K(. . .Hi . . . Iα
J . . .) is any differential invariant, we can write

its invariant vertical derivative in the form

dV K =

p∑

i=1

∂K

∂Hi
dV H

i +
∑

α,J

∂K

∂Iα
J

dV I
α
J = AK(ϑ) =

q∑

α=1

AK,α(ϑα), (29)

in which AK = (AK,1, . . . ,AK,q) is a row vector of invariant differential operators. We view
(29) as the invariant version of the vertical differentiation formula dV F = DF (θ), cf. (2),
which motivates the following terminology.

Definition 3 The invariant linearization of a differential invariant K is the invariant dif-
ferential operator AK that satisfies dV K = AK(ϑ).

Remark: In [31], AK was called the Eulerian operator associated with K owing to its
appearance in the differential invariant form of the Euler–Lagrange equations for an invariant
variational problem; see Theorem 5 below.

Similarly, we combine (14), (21), and (28), to produce formulae

dV ̟
i =

p∑

j=1

q∑

α=1

Bi
jα(ϑα) ∧̟j =

p∑

j=1

Bi
j(ϑ) ∧̟j (30)

for the vertical differentials of the invariant horizontal forms, in which Bi
j = (Bi

j1, . . . ,B
i
jq)

is a family of p2 row-vector-valued invariant differential operators, known, collectively, as
the invariant Hamiltonian operator complex, cf. [58], again stemming from its role in the
invariant calculus of variations.

5Warning: The analogous formula is not valid for horizontal forms.
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Example 4 The Euclidean geometry of plane curves is governed by the standard action
y = x cosφ−u sinφ+a, v = x sinφ+u cosφ+b, of the proper Euclidean group g = (φ, a, b) ∈
SE(2) on M = R2. The prolonged group transformations are constructed by applying the
implicit differentiation operator Dy = (cosφ− ux sinφ)−1Dx to v, and so

vy =
sinφ+ ux cosφ

cosφ− ux sinφ
, vyy =

uxx

(cosφ− ux sinφ)3
, etc.

Solving the normalization equations y = v = vy = 0 for the group parameters produces the
right moving frame

φ = − tan−1 ux , a = −
x+ uux√

1 + u2
x

, b =
xux − u√

1 + u2
x

. (31)

(The classical moving frame, [23], is the left counterpart obtained by inverting the group
element given in (31).) Invariantization of the coordinate functions, which is done by substi-
tuting the moving frame formulae into the prolonged group transformations, produces the
fundamental normalized differential invariants

ι(x) = H = 0, ι(u) = I0 = 0, ι(ux) = I1 = 0,

ι(uxx) = I2 = κ, ι(uxxx) = I3 = κs, ι(uxxxx) = I4 = κss + 3κ3,

and so on. The first three, arising from the normalizations, are called phantom invariants.
The lowest order non-trivial differential invariant is the Euclidean curvature I2 = κ =
uxx(1 + u2

x)3/2, while κs, κss, . . . denote the derivatives of κ with respect to the arc-length

form ω =
√

1 + u2
x dx. The invariant horizontal one-form

̟ = ι(dx) =
dx+ ux du√

1 + u2
x

=
√

1 + u2
x dx+

ux√
1 + u2

x

θ (32)

is a sum of the contact-invariant arc length form along with a contact correction. In the
same manner we obtain the basis invariant contact forms

ϑ = ι(θ) =
θ√

1 + u2
x

, ϑ1 = ι(θx) =
(1 + u2

x) θx − uxuxxθ

(1 + u2
x)2

, . . . . (33)

To obtain the explicit recurrence formulae, we begin with the prolonged infinitesimal
generators of SE(2):

v1 = ∂x, v2 = ∂u, v3 = −u ∂x + x∂u + (1 + u2
x) ∂ux

+ 3uxuxx ∂uxx
+ · · · .

The one-forms γκ, εκ governing the correction terms are found by applying the recurrence
formulae (12) to the phantom invariants. From the first equation in (12), we obtain

0 = dHH = ι(dHx) + ι(v1(x)) γ
1 + ι(v2(x)) γ

2 + ι(v3(x)) γ
3 = ̟ + γ1,

0 = dH I0 = ι(dHu) + ι(v1(u)) γ
1 + ι(v2(u)) γ

2 + ι(v3(u)) γ
3 = γ2,

0 = dH I1 = ι(dHux) + ι(v1(ux)) γ1 + ι(v2(ux)) γ2 + ι(v3(ux)) γ3 = κ̟ + γ3,

and hence γ1 = −̟, γ2 = 0, γ3 = −κ̟. Similarly, applying dV to the phantom invariants
and using the second equation in (12) yields ε1 = 0, ε2 = −ϑ, ε3 = −ϑ1. We are now ready
to substitute the non-phantom invariants into (12). The horizontal differentials dH Ik of

9



the normalized differential invariants In = ι(un) are used to produce the explicit recurrence
formulae

κ = I2, κs = DI2 = I3, κss = DI3 = I4 − 3I3
2 , . . .

relating them to the differentiated invariants Dmκ. Similarly, the second equation in (12)
gives the vertical differential

dV I2 = dV κ = ι(θ2) + ι(v3(uxx)) ε3 = ϑ2 = (D2 + κ2)ϑ, (34)

where the final equation follows from the invariant contact form recurrence formulae Dϑ =
ϑ1, Dϑ1 = ϑ2 − κ2 ϑ, which are found by applying dH to the invariant contact forms
and using the first equation in (12). Thus, we deduce the following invariant linearization
operators:

Aκ = D2 + κ2, Aκs
= D3 + κ2D + 3κκs,

Aκss
= D4 + κ2D2 + 5κκsD + 4κκss + 3κ2

s,
(35)

etc. In fact, one can recursively construct the higher order operators starting with Aκ via

Aκn
= D · Aκn−1

+ κκn, (36)

where κn = Dnκ. Finally, applying the second formula in (12) to ̟ yields

dV ̟ = −κϑ ∧̟,

and hence the invariant Hamiltonian operator is

B = −κ. (37)

3 Invariant Variational Problems.

We now apply our construction to derive the formulae for the Euler-Lagrange equations
associated with an invariant variational problem. Let us recall the variational bicomplex
construction of the Euler-Lagrange equations.

A variational problem I[u ] =
∫
L[u ] dx is determined by the Lagrangian form λ =

L[u ] dx ∈ Ωp,0. Its differential dλ = dV λ ∈ Ωp,1 defines a form of type (p, 1). We
introduce an equivalence relation on such forms, so that Θ ∼ Ω if and only if Θ = Ω+ dH Ψ
for some Ψ ∈ Ωp−1,1. The quotient space F1 = Ωp,1/ ∼ is known as the space of source

forms. Integration by parts proves that every source form has a canonical representative∑q
α=1 ∆α(x, u(n)) θα ∧ dx, and so can be identified with a q-tuple of differential functions

∆ = (∆1, . . . ,∆q). In applications, a source form is regarded as defining a system of q

differential equations ∆1 = · · · = ∆q = 0 for the q dependent variables u = (u1, . . . , uq).

Composing the differential d:Ωp,0 → Ωp,1 with the projection π∗:Ω
p,1 → F1 produces the

variational differential δ = π∗ ◦d that takes a Lagrangian form λ = L[u ] dx to its variational

derivative source form

δ λ ≃

q∑

α=1

Eα(L) θα ∧ dx, where Eα(L) =
∑

J

(−D)J

∂L

∂uα
J

(38)

are the classical Euler-Lagrange expressions for the Lagrangian L.
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According to Lie, [38, 49], as long as we work on the open subset V ⊂ Jn where G acts
regularly and freely, any G-invariant variational problem is given by an invariant Lagrangian
form λ = L̃ω, where ω = ω1 ∧ · · · ∧ ωp is the contact-invariant volume form, and the
invariant Lagrangian L̃ is an arbitrary differential invariant, and hence a function of the
fundamental differential invariants I1, . . . , I l and their invariant derivatives DJI

α. The
associated Euler-Lagrange equations E(L) = 0 admit G as a symmetry group, and so,
under suitable nondegeneracy hypotheses, [49, Theorem 6.25], can themselves be written in
terms of the differential invariants. The main problem is to go directly from the differential
invariant formula for the variational problem to the differential invariant formula for the
Euler-Lagrange equations.

Not surprisingly, the required calculations rely on an invariant version of integration by
parts. For this purpose, given invariant differential forms α, β, let us write α ≡ β whenever
α = β + dH γ. If F is a differential function and ψ is a contact one-form, then6

dH F =

p∑

i=1

(Di F )̟i dH ψ =

p∑

i=1

̟i ∧ Di ψ. (39)

To effect the computation, we begin by replacing our Lagrangian λ = L̃ω by the fully
invariant version λ̃ = L̟̃, noting that, since they differ by contact forms, they have identical
Euler–Lagrange equations. We then compute

dV λ̃ =
∑

α,K

∂L̃

∂Iα
,K

dV I
α
,K ∧ ̟ + L̃ dV ̟, (40)

Introduce the (p− 1)–forms

̟(i) = Di ̟ = (−1)i−1̟1 ∧ · · · ∧̟i−1 ∧̟i+1 ∧ · · · ∧̟p ∈ Ω̃p−1,0.

If F is any differential function and ψ any contact one-form, then

dH (F ψ ∧ ̟(i)) = dH F ∧ ψ ∧ ̟(i) + F dH ψ ∧ ̟(i) − F ψ ∧ dH ̟(i). (41)

Since dH ̟(i) ∈ Ω̃p,0, it must be a multiple of the invariant volume form, and we write
dH ̟(i) = Zi ̟, where Z1, . . . , Zp are certain differential invariants, which we will call the
twist invariants. Using (39) we can rewrite (41) as

F dH ψ ∧ ̟(i) = F (Diψ) ∧ ̟ ≡ −
[
(Di + Zi)F

]
ψ ∧ ̟ = (D †

i F )ψ ∧ ̟, (42)

where D †
i = − (Di + Zi) is called the twisted invariant adjoint of the invariant differential

operator Di. If we choose ψ = dV H where H is a differential function, then (42) results in
the multivariate invariant integration by parts formula

F d(DiH) ∧ ̟ = (D †
i F ) dV H ∧ ̟ −

p∑

j=1

F (DjH) dV ̟
j ∧ ̟(i). (43)

We use (43) repeatedly to integrate the first term of (40) by parts, leading to

dV λ̃ ≡

q∑

α=1

Eα(L̃) dV I
α ∧ ̟ −

p∑

i=1

Hi
j(L̃) dV ̟

j ∧ ̟(i), (44)

6Warning: The second identity is not true for a general one-form.

11



where

Eα(L̃) =
∑

K

D †
K

∂L̃

∂Iα
,K

, Hi
j(L̃) = − L̃ δi

j +

q∑

α=1

∑

J,K

Iα
,J,j D

†
K

∂L̃

∂Iα
,J,i,K

, (45)

are, respectively, the invariant Eulerian and invariant Hamiltonian tensor of the invariant
Lagrangian L̃. In (45), we use the twisted adjoints

D †
K = D †

k1
· · ·D †

km
= (−1)m(Dk1

+ Zk1
) · · · (Dkm

+ Zkm
), K = (k1, . . . , km),

of the repeated invariant differential operators.
The second phase of the computation requires the vertical differentiation formulae

dV I
α =

q∑

β=1

Aα
β (ϑβ), dV ̟

j =

q∑

β=1

Bj
i,β(ϑβ) ∧̟i, (46)

where A =
(
Aα

β

)
denotes the Eulerian operator, which is an m × q matrix of invariant

differential operators whose rows are the invariant linearizations of the fundamental differ-
ential invariants I1, . . . , I l, while the p2 row vectors Bj

i =
(
Bj

i,β

)
of invariant differential

operators form the invariant Hamiltonian operator complex. This allows us to write (44) in
the vectorial form

dV λ̃ ≡ E(L̃) A(ϑ) ∧ ̟ −

p∑

i,j=1

Hi
j(L̃) Bj

i (ϑ) ∧ ̟.

We now apply (42) to further integrate both terms by parts. The final result is written in
terms of twisted adjoints of the Eulerlian and Hamiltonian operators,

dV λ̃ ≡ δλ̃ =


A † E(L̃) −

p∑

i,j=1

(Bj
i )

† Hi
j(L̃)


 ϑ ∧ ̟.

Theorem 5 The Euler-Lagrange equations of the invariant Lagrangian form λ̃ = L̃(I(n))̟

Have the following invariant form:

A † E(L̃) −

p∑

i,j=1

(Bj
i )

† Hi
j(L̃) = 0. (47)

In the case of curves, when p = 1, there are no twist invariants, and so the general formula
(47) reduces to

A∗E(L̃) − B∗H(L̃) = 0, (48)

where A∗ and B∗ are the ordinary formal adjoints of the invariant Eulerian and Hamiltonian
operators, respectively.

Example 6 In the context of the Euclidean group acting on plane curves in Example 4,
any Euclidean-invariant variational problem corresponds to a contact invariant Lagrangian
λ = L̃(κ, κs, κss, . . .)ω. Both the Eulerian operator (35) and the Hamiltonian operator (37)
are invariantly self-adjoint: A = A∗ and B = B∗. Thus, the invariant Euler-Lagrange
formula (48) reduces to the known formula, [3, 22],

(D2 + κ2) E(L̃) + κH(L̃) = 0

for the Euclidean-invariant Euler-Lagrange equation.
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Example 7 Consider the standard action of the Euclidean group SE(3) on surfaces S ⊂ R3.
We assume that the surface is parametrized by z = (x, y, u(x, y)), noting that the fi-
nal formulae are, in fact, parameter-independent. The classical (local) left moving frame
ρ(x, u(2)) = (R, a) ∈ SE(3) consists of the point on the curve defining the translation com-
ponent a = z, while the columns of the rotation matrix R contain the unit tangent vectors
forming the Frenet frame along with the unit normal to the surface. The fundamental dif-
ferential invariants are the principal curvatures κ1 = ι(uxx), κ2 = ι(uyy). The mean and

Gaussian curvature invariantsH = 1
2 (κ1+κ2), K = κ1κ2, are often used as convenient alter-

natives, since they eliminate some of the residual discrete ambiguities in the moving frame.
Higher order differential invariants are obtained by repeatedly applying the dual invariant
differential operators D1,D2 associated with the diagonalizing Frenet coframe ̟1 = ι(dx1),
̟2 = ι(dx2). The resulting differentiated invariants are not functionally independent, owing
to the Codazzi identity

κ1
,22 − κ2

,11 +
κ1

,1κ
2
,1 + κ1

,2κ
2
,2 − 2(κ2

,1)
2 − 2(κ1

,2)
2

κ1 − κ2
− κ1κ2(κ1 − κ2) = 0. (49)

The Codazzi syzygy can, in fact, be directly deduced from our infinitesimal moving frame
computations by comparing the recurrence formulae for κ1

,22 and κ2
,11 with the normalized

invariant ι(uxxyy).
Any Euclidean-invariant variational problem has the form

∫
L̃(κ(n))ω1 ∧ ω2, where ω1 ∧ ω2 = π2,0(̟

1 ∧̟2)

is the usual intrinsic surface area 2-form. The invariant Lagrangian L̃ is an arbitrary dif-
ferential invariant, and so can be rewritten in terms of the principal curvature invariants
and their derivatives, or, equivalently, in terms of the Gaussian and mean curvatures. The
former representation leads to simpler formulae and will be retained. Since

dH ̟(1) = dH̟2 =
κ2

,1

κ1 − κ2
̟, dH ̟(2) = − dH̟

1 =
κ1

,2

κ2 − κ1
̟,

the twist invariants are

Z1 =
κ2

,1

κ1 − κ2
, Z2 =

κ1
,2

κ2 − κ1
.

These invariants appear in Guggenheimer’s proof of the fundamental existence theorem for
Euclidean surfaces, [23, p. 234]. The denominator vanishes at umbilic points on the surface,
where the moving frame is not valid. The Codazzi syzygy (49) can be written compactly as

K = κ1κ2 = D †
1 (Z1) + D †

2 (Z2) = − (D1 + Z1)Z1 − (D2 + Z2)Z2,

which expresses the Gaussian curvature K as an invariant divergence. This fact lies at the
heart of the Gauss–Bonnet Theorem. The invariant vertical derivatives of the principal
curvatures are straightforwardly determined from (12),

dV κ
1 = ι(θxx) =

(
D2

1 + Z2 D2 + (κ1)2
)
ϑ, dV κ

2 = ι(θyy) =
(
D2

2 + Z1 D1 + (κ2)2
)
ϑ,
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where ϑ = ι(θ) = ι(du−ux dx−uy dy) is the fundamental invariant contact form. Therefore,

the Eulerian operator is A =

(
D2

1 + Z2 D2 + (κ1)2

D2
2 + Z1 D1 + (κ2)2

)
. Further,

dV ̟
1 = −κ1 ϑ ∧̟1 +

(
D1D2 − Z2D1

)
ϑ ∧̟2

κ1 − κ2
,

dV ̟
2 =

(
D2D1 − Z1D2

)
ϑ ∧̟1

κ2 − κ1
− κ2 ϑ ∧̟2,

which yields the Hamiltonian operator complex

B1
1 = −κ1, B2

2 = −κ2,

B1
2 =

1

κ1 − κ2

(
D1D2 − Z2D1

)
=

1

κ1 − κ2

(
D2D1 − Z1D2

)
= −B2

1.

Therefore, according to our formula (47), the Euler-Lagrange equation for a Euclidean-
invariant variational problem is

0 =
[
(D1 + Z1)

2 − (D2 + Z2) · Z2 + (κ1)2
]
E1(L̃)

+
[
(D2 + Z2)

2 − (D1 + Z1) · Z1 + (κ2)2
]
E2(L̃) + κ1 H1

1(L̃) + κ2 H2
2(L̃)

+
[
(D2 + Z2)(D1 + Z1) + (D1 + Z1) · Z2

]
·

(
H1

2(L̃) −H2
1(L̃)

κ1 − κ2

)
.

As before, Eα(L̃) are the invariant Eulerians with respect to the principal curvatures κα,

while Hi
j(L̃) are the invariant Hamiltonians. In particular, if L̃(κ1, κ2) does not depend on

any differentiated invariants, the Euler-Lagrange equation reduces to

[
(D †

1 )2 + D †
2 · Z2 + (κ1)2

] ∂L̃
∂κ1

+
[
(D †

2 )2 + D †
1 · Z1 + (κ2)2

] ∂L̃
∂κ2

− (κ1 + κ2)L̃ = 0.

For example, the problem of minimizing surface area has invariant Lagrangian L̃ = 1, and
so has the well-known Euler-Lagrange equation E(L) = − (κ1 + κ2) = − 2H = 0, and
hence minimal surfaces have vanishing mean curvature. The mean curvature Lagrangian
L̃ = H = 1

2 (κ1 + κ2) has Euler-Lagrange equation

1
2

[
(κ1)2 + (κ2)2 − (κ1 + κ2)2

]
= −κ1κ2 = −K = 0.

For the Willmore Lagrangian L̃ = 1
2 (κ1)2 + 1

2 (κ2)2, [3, 8], the Euler-Lagrange equation is

0 = E(L) = ∆(κ1 + κ2) + 1
2 (κ1 + κ2)(κ1 − κ2)2 = 2 ∆H + 4(H2 −K)H,

where ∆ = (D1 + Z1)D1 + (D2 + Z2)D2 = −D †
1 · D1 − D †

2 · D2 is the Laplace–Beltrami
operator on our surface.

4 Invariant Submanifold Flows.

In this section, we shift our attention to invariant submanifold flows. Let us single out the
m = p+ q invariant one-forms

̟1, . . . , ̟p, ϑ1, . . . , ϑq (50)
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consisting of the invariant horizontal forms ̟i = ι(dxi) and the order 0 invariant contact
forms ϑα = ι(θα). Each is a linear combination of the coordinate one-forms dx1, . . . , dxp,
du1, . . . , duq on M , whose coefficients are certain n-th order differential functions, where n
is the order of the underlying moving frame.

Let S ⊂ M be a p-dimensional submanifold. Evaluating the coefficients of (50) on the
submanifold jet (x, u(n)) = jnS|z produces a basis for the cotangent space T ∗M |z of the
ambient manifold at z = (x, u) ∈ S, which we continue to denote by (50). By construction,
the resulting cotangent space basis is equivariant under the action of G on S ⊂M .

Let t1, . . . , tp,n1, . . . ,nq, denote the corresponding dual tangent vectors, which form
a G–equivariant basis of the bundle TM → S, or frame on S. Since the contact forms
annihilate the tangent space to S, the vectors t1, . . . , tp form a basis for the tangent bundle
TS, while n1, . . . ,nq form a basis for the complementary G–equivariant normal bundle

NS → S induced by the moving frame. In classical geometrical situations, [23], they can
be identified with the classical moving frame vectors.

Example 8 Let us return to the case of planar Euclidean curves C ⊂M = R2. According
to Example 4, the invariant coframe is given by the invariant horizontal form (32) and the
order 0 invariant contact form in (33). The corresponding dual frame vectors are the usual
(right-handed) Euclidean frame vectors — the unit tangent and unit normal:

t =
1√

1 + u2
x

(
∂

∂x
+ ux

∂

∂u

)
, n =

1√
1 + u2

x

(
−ux

∂

∂x
+

∂

∂u

)
. (51)

In general, let

V = V |S= VT + VN =

p∑

j=1

Ij tj +

q∑

α=1

Jα nα (52)

be a section of the bundle TM → S, where VT ,VN denote, respectively, its tangential and
normal components, while Ij , Jα are differential functions, depending on the submanifold
jets. We will, somewhat imprecisely, refer to V as a vector field, even though it is only
defined on S. Any such vector field generates a submanifold flow:

∂S

∂t
= V|S(t), (53)

which forms an n-th order system of partial differential equations, where n refers to the
larger of the order of our moving frame and the coefficients Ij , Jα. Assuming local existence
and uniqueness, a solution S(t) to the submanifold flow equations (53) defines a smoothly
varying family of p-dimensional submanifolds ofM . On the other hand, one typically expects
singularities to appear if the flow is continued for a sufficiently long time. The submanifold
flow (53) is called G-invariant if G is a symmetry group of the partial differential equation,
which requires that its coefficients Ij = 〈V ;̟j 〉, Jα = 〈V ;ϑα 〉, be differential invariants.

The tangential components VT do not affect the extrinsic geometry of the submanifold,
but only its internal parametrization. Thus, if we are only interested in the images of S(t)
under the flow, and not their underlying parametrizations, we can set VT = 0 without loss
of generality. Therefore, the normal component

VN =

q∑

α=1

Jαnα (54)
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serves to characterize the same invariant submanifold flow as V, modulo reparametrization.
We will say that the vector field VN generates a normal flow, since it only moves the
submanifold in its G-equivariant normal direction — as prescribed by the moving frame.

Example 9 The most well-studied are the Euclidean-invariant curve and surface flows. A
plane curve flow is generated by a vector field of the form

V = I t + J n or, equivalently, VN = J n, (55)

if we are not concerned about the tangential component’s effect of the parametrization of
the curve. In this case, n denotes (one of the two) Euclidean normals to the curve; by
convention, we use the inwards normal n when the curve is closed. Particular cases include:

i) V = n: this induces the geometric optics or grassfire flow, [7, 61];

ii) V = κn: this generates the celebrated curve shortening flow, [18, 20], used to great
effect in image processing, [55, 61];

iii) V = κ1/3 n: the induced flow is equivalent, modulo reparametrization, to the equi-
affine invariant curve shortening flow, also effective in image processing, [4, 55, 61];

iv) V = κs n: this flow induces the modified Korteweg–deVries equation for the cur-
vature evolution, and is the simplest of a large number of soliton equations arising in
geometric curve flows, [13, 19, 42];

v) V = κss n: this flow models thermal grooving of metals, [9].

A second important class are the invariant curve flows that preserve arc length. Remarkably,
in many classical geometries, certain basic intrinsic curve flows induce integrable, soliton evo-
lutions for the differential invariants. The prototypical example is the Euclidean–invariant
vortex filament flow studied by Hasimoto, [25, 35, 36]. The curvature and torsion invariants
of the evolving filament satisfy an integrable dynamical system, which can be mapped to
the completely integrable nonlinear Schrödinger equation, [1]. This led Lamb, [34], to draw
attention to the surprisingly common, but still poorly understood connection between in-
variant curve flows and integrable soliton dynamics; since then, many other examples have
been found, [5, 12, 13, 16, 19, 24, 28, 40, 41, 42, 44, 57, 59]. By “integrable”, we shall mean
that the evolution equation possesses a recursion operator, [46], inducing an infinite hierar-
chy of higher order symmetries. However, not all induced differential invariant evolutions
are integrable, and, at present, we do not understand the general conditions on the group
action and invariant curve flow needed to guarantee integrability.

When p = 1, there is only one independent invariant horizontal one-form

̟ = ω + η = ds+ η, (56)

whose horizontal component ω = ds can be identified with the G-invariant arc length ele-
ment. Invariance requires that the Lie derivative V(ω) vanishes on the submanifold, which
(because Lie derivatives preserve the contact ideal) implies the following:

Lemma 10 The curve flow induced by

V = I t +

q∑

α=1

Jα nα, where I = 〈V ;̟ 〉, Jα = 〈V ;ϑα 〉, (57)

preserves arc length if and only if the Lie derivative V(̟) is a contact form.
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Submanifolds of dimension p ≥ 2 do not have distinguished parametrizations to play the
role of the arc length parameter; this is because the invariant horizontal forms are almost
never exact on the submanifold. On the other hand, the Lie derivative condition can be
straightforwardly mimicked.

Definition 11 The invariant submanifold flow induced by V is called intrinsic if V(̟i) ≡ 0
for all i = 1, . . . , p.

Lemma 12 If the vector field V defines an intrinsic flow, then it commutes with the in-

variant differentiations:
[
V,Di

]
= 0 for i = 1, . . . , p. This holds if and only if

DjI
i +

p∑

j,k=1

Y i
jkI

k +

q∑

α=1

Bi
jα(Jα) = 0. (58)

In particular, for curve flows generated by (57), the condition (58) guaranteeing arc length
preservation reduces to

DI = B(J) =

q∑

α=1

Bα(Jα), (59)

where D is the arc length derivative, while B = (B1, . . . ,Bq) is the invariant Hamiltonian

operator, defined by (30).

Example 13 For the Euclidean group action on plane curves, in view of (30), the condition
that a curve flow generated by the vector field V = I t + J n be intrinsic is that

DI = −κ J. (60)

Most of the curve flows listed in Example 9 have non-local intrinsic counterparts owing
to the non-invertibility of the arc length derivative operator on κ J . An exception is the
modified Korteweg-deVries flow, where J = κs, and so I = − 1

2 κ
2. In general, the normal

flow induced by VN = J n has a local intrinsic version if and only if E(κ J) = 0, where E is
the invariantized Euler–Lagrange operator, [31].

The next result prescribes the evolution of differential invariants under general intrinsic and
normal invariant submanifold flows. See [53] for the proof.

Theorem 14 Let K be any differential invariant. If the submanifold flow (53) is intrinsic,

then
∂K

∂t
= V(K) = AK(J) +

p∑

i=1

Ii DiK. (61)

If the submanifold flow (53) is normal, then

∂K

∂t
= V(K) = AK(J). (62)

Example 15 For any of the Euclidean invariant normal plane curve flows Ct = J n listed
in Example 9, we have, according to Example 4,

∂κ

∂t
= (D2 + κ2)J,

∂κs

∂t
= (D3 + κ2D + 3κκs)J,

∂κss

∂t
= (D4 + κ2D2 + 5κκsD + 4κκss + 3κ2

s)J.

(63)
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For instance, for the grassfire flow J = 1, and so

∂κ

∂t
= κ2,

∂κs

∂t
= 3κκs,

∂κss

∂t
= 4κκss + 3κ2

s. (64)

The first equation immediately implies finite time blow-up at a caustic for a convex initial
curve segment, where κ > 0. For the curve shortening flow, J = κ, and

∂κ

∂t
= κss + κ3,

∂κs

∂t
= κsss + 4κ2κs,

∂κss

∂t
= κssss + 5κ2 κss + 8κκ2

s, (65)

thereby recovering formulas used in Gage and Hamilton’s analysis, [18]; see also Mikula and
Ševčovič, [43]. Finally, for the mKdV flow, J = κs,

∂κ

∂t
= κsss + κ2κs,

∂κs

∂t
= κssss + κ2κss + 3κκ2

s,

∂κss

∂t
= κsssss + κ2 κsss + 9κκsκss + 3κ3

s.

(66)

Warning: Normal flows do not preserve arc length, and so the arc length parameter s will
vary in time. Or, to phrase it another way, time differentiation ∂t and arc length differen-
tiation D = Ds do not commute — as can easily be seen in the preceding examples. Thus,
one must be very careful not to interpret the resulting evolutions (64–66) as partial differ-
ential equations in the usual sense. Rather, one should regard the differential invariants
κ, κs, κss, . . . as satisfying an infinite dimensional dynamical system of coupled ordinary
differential equations.

Turning our attention to the intrinsic, arc length preserving curve flow, the complication
alluded to in the preceding paragraph does not arise because, by Lemma 12, time differenti-
ation now commutes with arc length differentiation. Substituting (59) in the formula (61):

Theorem 16 Under an arc-length preserving flow,

κt = Rκ(J) where Rκ = Aκ − κs D
−1B (67)

is the characteristic operator associated with κ. More generally, the time evolution of κn =
Dnκ is given by arc length differentiation: ∂κn/∂t = DnRκ(J).

In this case arc length is preserved, and hence the arc length and time derivatives commute.
Thus, unlike (62), the arc-length preserving flow (67) is of a more usual analytical form.
However, there is a complication in that the term

κs D
−1B(J) = κs

∫
B(J)ds (68)

may very well be nonlocal, and so (67) is, in general, an integro-differential equation. Note
that any integration constant appearing in (68) just adds in a multiple of κs, which represents
the arc length preserving tangential flow κt = κs that just serves to translate the arc length
parameter: s 7→ s+c and so can be effectively ignored. Also, on a closed curve, the integral in
(68) need not be periodic in s, and so one may not be able to continuously assign a uniquely
determined evolution along the entire curve — although, by the preceding remarks, all such
evolutions only differ by an overall translation, by an integer multiple of the total length of
the curve, of the arc length parameter.

In certain situations, (67) turns out to be a well-known local integrable evolution equa-
tion, and the characteristic operator R is its recursion operator!
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Example 17 In the case of Euclidean plane curves, the evolution of the curvature is given
by

κt = Rκ(J), (69)

where

Rκ = Aκ − κsD
−1B = D2 + κ2 + κsD

−1 · κ = D2
s + κ2 + κsD

−1
s · κ (70)

is the modified Korteweg-deVries recursion operator, [48]. In particular, for the mKdV flow,
J = κs, and (69) becomes

κt = Rκ(κs) = κsss + 3
2 κ

2κs,

which is the modified Korteweg-deVries equation, and R is its recursion operator, [48]. On
the other hand, for the grassfire flow, J = 1, and so

κt = Rκ(1) = κ2 + κsD
−1
s κ.

For the curve shortening flow, J = κ, and so

κt = Rκ(κ) = κss + κ3 + κsD
−1
s κ2.

Finally, for the thermal grooving flow, J = κss and so

κt = Rκ(κss) = κssss + κ2κss + κs D
−1
s κκss.

As noted above, the induced curvature flow (69) is local if and only if E(κ J) = 0, where E
is the invariantized Euler operator or variational derivative, [48]. Clearly not all these local
curvature flows will be integrable.

Example 18 As another example, consider the action

(x, u) 7−→ (αx+ βu+ a, γ x+ δu+ b), αδ − β γ = 1, (71)

of the equi-affine group SA(2) = SL(2) n R2 on plane curves C ⊂ R2. Applications to
computer vision can be found, for instance, in [4, 10, 55, 60]. According to [17, 23, 31],
the classical equi-affine moving frame arises from the choice of coordinate cross-section
x = u = ux = 0, uxx = 1, uxxx = 0. The fundamental differential invariant is the equi-
affine curvature

κ = ι(uxxxx) =
uxxuxxxx − 5

3 u
2
xxx

u8/3
xx

. (72)

All higher order differential invariants are obtained by invariant differentiation with respect
to the invariant arc length form

̟ = ι(dx) = ω + η, where ω = ds = u1/3
xx dx, η =

uxxx

3u5/3
xx

θ, (73)

with dual invariant differential operator D = u−1/3
xx Dx being the equi-affine arc length

derivative. Applying our computational algorithm, but suppressing the details, we obtain

dV κ = Aκ(ϑ), dV ̟ = B(ϑ) ∧̟,

where
Aκ = D4 + 5

3 κD
2 + 5

3 κsD + 1
3 κss + 4

9 κ
2, B = 1

3 D
2 − 2

9 κ.

19



The characteristic operator is

Rκ = Aκ − κsD
−1B = D4 + 5

3 κD
2 + 4

3 κsD + 1
3 κss + 4

9 κ
2 + 2

9 κsD
−1
s · κ. (74)

As in the Euclidean action, both the Eulerian and Hamiltonian operators are invariantly
self-adjoint: A = A∗ and B = B∗. Therefore, the Euler-Lagrange equation for an equi-affine
invariant Lagrangian L̃(κ, κs, . . .) ds takes the invariant form (48), namely,

(
D4 + 5

3 κD
2 + 5

3 κsD + 1
3 κss + 4

9 κ
2
)
E(L̃) −

(
1
3 D

2 − 2
9 κ
)
H(L̃) = 0.

The equi-affine arc-length functional
∫
ds with L̃ = 1 has E(L̃) = 0, H(L̃) = −1, and hence

the Euler-Lagrange equation is

A∗(0) − B∗(−1) = − 2
9 κ = 0.

We conclude that the minimal equi-affine curves are those with zero equi-affine curvature —
the conic sections. As another example, the variational problem

∫
κ ds has Euler-Lagrange

equation
A∗(1) − B∗(−κ) = 2

3κss + 2
9κ

2 = 0,

the solution to which, [30], gives κ as an elliptic function of s.
A general equi-affine invariant curve flow takes the form

Ct = I t + J n, (75)

where t,n are, respectively, the equi-affine tangent and normal directions, [23]. The equi-
affine curve shortening flow, [4, 61], is the normal flow with I = 0, J = 1. Under this flow,
the equi-affine curvature and its derivative evolves according to

∂κ

∂t
= Aκ(1) = 1

3 κss + 4
9 κ

2,

∂κs

∂t
= Aκs

(1) = DAκ(1) − κsB(1) = 1
3 κsss + 10

9 κκs.

(76)

A second example is the intrinsic (arc-length preserving) flow with J = κs. In this case, the
curvature evolution arises from the characteristic operator:

κt = R(κs) = κ5s + 5
3 κκsss + 5

3 κsκss + 5
9 κ

2κs,

which is the integrable Sawada–Kotera equation, [63]. In this case, the characteristic op-
erator R is closely related to, but not the same as the Sawada–Kotera recursion operator,
which is given by the following formula, [12]:

R̂ = R · (D2 + 1
3 κ+ 1

3 κsD
−1). (77)

Example 19 In the case of space curves C ⊂ R3, under the Euclidean group G = SE(3) =
SO(3) n R3, there are two generating differential invariants, the curvature κ and torsion τ .
According to [31], the relevant moving frame formulae are

dV κ = Aκ(ϑ), dV τ = Aτ (ϑ), dV ̟ = B(ϑ) ∧̟,
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where ϑ = (ϑ1, ϑ2)
T is the column vector containing the order 0 invariant contact forms,

while the characteristic and Hamiltonian operators are:

Aκ =
(
D2

s + (κ2 − τ2), −2τDs − τs
)
,

Aτ =

(
2τ

κ
D2

s +
3κτs − 2κsτ

κ2
Ds +

κτss − κsτs + 2κ3τ

κ2
,

1

κ
D3

s −
κs

κ2
D2

s +
κ2 − τ2

κ
Ds +

κsτ
2 − 2κττs
κ2

)
,

B =
(
κ, 0

)
.

Thus, under an intrinsic flow with normal component VN = J n1 +K t2, the curvature and
torsion evolve via

(
κt

τt

)
= R

(
J
K

)
, where R =

(
Rκ

Rτ

)
=

(
Aκ

Aτ

)
−

(
κs

τs

)
D−1B

is the recursion operator for the integrable vortex filament flow, with J = κs, K = τs. This
flow can be mapped to the nonlinear Schrödinger equation via the Hasimoto transformation,
[25, 36].
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