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Abstract. This paper surveys some recent connections between classical invariant theory and the cal-
culus of variations, stemming from the mathematical theory of elasticity. Particular problems to be treated
include the equivalence problem for binary forms, covariants of biforms, canonical forms for quadratic vari-
ational problems, and the equivalence problem for particle Lagrangians. It is shown how these problems
are interrelated, and results in one have direct applications to the other.

1. Introduction. My mathematical researches into elasticity and the calculus of
variations over the past eight years have led to several surprising connections with classi-
cal invariant theory. My original motivation for pursuing classical invariant theory arose
through a study of existence theorems for non-convex problems in the calculus of variations
of interest in nonlinear elasticity. This theory, due to John Ball, relies on a complete clas-
sification of all null Lagrangians, which are differential polynomials whose Euler-Lagrange
equations vanish identically, or, equivalently, can be written as a divergence. The basic
classification tool is a transform, analogous to the Fourier transform from analysis, origi-
nally introduced by Gel’fand and Dikii, [8], in their study of the Korteweg-deVries equation,
and developed by Shakiban, [31]. This reduced the original problem to a question about
determinantal ideals, which had been answered in fairly recent work in commutative al-
gebra; see Ball, Currie and Olver, [1]. I further noticed that, when the relevant functions
involved were homogeneous polynomials, the transform coincided with the classical sym-
bolic method of classical invariant theory, but had the advantage of being applicable even
when the functions were not polynomials, leading to a ”symbolic method” for the ”invari-
ant theory of analytic functions”. Moreover, even in the classical case of polynomials, the
transform provides a ready mechanism for determination of the expression for classical
covariants and invariants in terms of partial derivatives of the form, a significant problem
mentioned by Kung and Rota, [20]. However, I have already written a survey of these
results and applications, [25], and, as I want to discuss several more recent connections
between classical invariant theory and the calculus of variations, space limitations will
preclude any further presentation of this range of ideas.

Following upon these results, in the summer of 1981, John Ball asked me whether
there were any conservation laws for nonlinear elasticity beyond the classical conservation
laws of energy, momentum, etc. I set out to answer his question, but soon realized that
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the linear theory was not in all that great shape. A detailed study, [22], of the equations
of linear isotropic elasticity in both two and three dimensions revealed new classes of
conservation laws (despite claims in the literature to the contrary). The next logical
step was to extend these results to anisotropic elasticity, but here a direct attack on the
equations in physical coordinates proved to be too complicated. I hit upon the idea of
employing some a priori change of variables, which would have the effect of placing the
general quadratic variational problem into a much simpler canonical form, similar to the
well-known canonical forms for ordinary polynomials. It turned out that the full power of
classical invariant theory, modified to incorporate the theory of “biforms”, was required to
effect the classification of canonical forms for quadratic Lagrangians, and hence of linear
elastic media, [28]. Importance consequences of this approach included the determination
of “canonical elastic moduli”, reducing the number of constants required to characterize
and simplify the behavior of anisotropic elastic materials, [27], and a complete classification
of conservation laws for arbitrary anisotropic planar elastic media, in which it was shown
that there are always two infinite families of new conservation laws which depend on two
arbitrary analytic functions of two complex variables, [29].

I still had not tried to tackle Ball’s original question for nonlinear elasticity, and there-
fore started searching for an appropriate tool that would handle the nonlinear case as
effectively as classical invariant theory had taken care of the linear case. Contempora-
neously, I learned of a powerful method introduced by Elie Cartan for answering general
(nonlinear) equivalence problems. By definition, an equivalence problem is to determine
when two given objects, e.g. two polynomials, two differential equations, or two variational
integrals, can be mapped into each other by an appropriate change of variables. In 1908,
through his pioneering study of Lie pseudogroups, [3], Cartan proposed a fundamentally
algorthmic procedure, based on the rapidly developing subject of differential forms, which
would completely solve general equivalence problems, leading to necessary and sufficient
conditions for equivalence of two objects. In spirit, Cartan’s method is very much like
classical invariant theory, in that it leads to certain functions of the original objects which
are invariants of the problem, and so must have the same values for any two equivalent
objects. But, even more, Cartan’s theory tells you which invariants are really important
as far as the equivalence problem is concerned, and gives the necessary and sufficient con-
ditions for equivalence in terms of a finite number of these invariants. Although Cartan’s
method is extremely powerful, and received further developments in the 1930’s for solving
several equivalence problems of interest in differential equations and differential geometry,
it never did catch on in the mathematical community at large. Most of the recent work
can trace its inspiration back to a paper of R. Gardner in mathematical control theory, [7].
In the last few years, the method has had a number of successful applications to differen-
tial equations, [14], [16], calculus of variations, [17], differential operators and molecular
dynamics, [18], etc., all of which have pointed to its increasing importance. However,
the method still awaits a real popularization in the applied mathematical community as
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a straightforward, algorithmic, computational tool that will provide explicit and effective
necessary and sufficient conditions for the solution of many equivalence problems of current
mathematical and applied interest. I am convinced that there are even more profound,
practical applications of Cartan’s method to both pure and applied mathematics, not to
mention physics and engineering, in the offing.

I still have not applied Cartan’s method to nonlinear elasticity, although the relevant
equivalence problem is now under investigation with Niky Kamran. However, while learn-
ing the method, I came across the remarkable observation that the fundamental equivalence
problem of classical invariant theory, namely that of determining when two binary forms
can be mapped to each other by a linear transformation, could be recast as a special case of
a Cartan equivalence problem for a particular type of one-dimensional variational integral,
a problem Cartan himself had solved in the 1930’s, [5]. Even more surprising is the fact
that the Cartan solution of the Lagrangian equivalence problem has, by this connection,
profound consequences for classical invariant theory. In particular, a new solution to the
equivalence problem for binary forms, based on just three of the associated covariants, as
well as new results on symmetry groups and equivalence to monomials and sums of n'®
powers are direct results of this remarkable connection, cf. [26], [30].

This paper will give a brief overview of these connections between the calculus of
variations and classical invariant theory; proofs and more detailed developments of results
can be found in the cited literature. This survey begins with a general discussion of
equivalence problems, illustrated by several examples from classical invariant theory and
the calculus of variations and their inter-relationships. In section 3, we introduce and
compare the basic concepts of invariants, covariants and other kinds of invariant objects
which make their appearance in the solutions to the equivalence problems discussed, which
are presented in section 4. Section 5 includes a discussion of symmetry groups and how
they arise from Cartan’s approach.

2. Equivalence Problems. The general equivalence problem is to determine when
two geometric or algebraic objects are really the same object, re-expressed in different
coordinate systems. Of course, there are two underlying questions that must be precisely
answered before we can mathematically formulate an equivalence problem: 1. Exactly
what do we mean by two objects being the “same”? 2. Which changes of coordinates
are to be allowed? Once we have been more precise in the specification of our equivalence
problem, we can begin the mathematical analysis of our problem. In this section we briefly
present several different types of equivalence problems arising in classical invariant theory
and the calculus of variations, and discuss their inter-relationships.



1. The equivalence problem for forms

By a form! of degree n, we mean a homogeneous polynomial function
(2.1) f(z)= Za;ml,

defined for x = (z!,...,2™) in R™ or C™, where the sum is over all multi-indices I =
(41,20, 0m), with |I| =iy + -+ + i, = n, and where 2/ = (2!)1 - ... (2™)". In classical
invariant theory, the appropriate changes of coordinates are provided by the general linear
group G L(m) (meaning either GL(m,R) or GL(m, C)), which acts on the variables via the
standard linear representation x — A - X, A € GL(m). The induced action on the forms,
which takes f(x) to

(2.2) fE) =fA-%) =) ad,

induces an action of GL(m) on the coefficients a = (ay) of the form, whose explicit ex-
pression is easy to derive, but not overly helpful. Two forms f and f are called (real or
complex) equivalent if they can be transformed into each other by a suitable element of
GL(m), so the basic equivalence problem here is to determine whether or not two given
forms can be mapped into each other by a suitable linear transformation.

In the particular case of binary forms, meaning m = 2, so f = f(z,y) depends on
x = (z,y) = (z!,2?), we can replace x by the projective coodinate p = z/y, and write

(2.3) 9(p) = f(p,1)

for the corresponding inhomogeneous polynomial. Now, on the projective line, the corre-
sponding group of coordinate changes consists of the linear fractional transformations

ap+ b

24 p =
(2.4) P cp+d’

where A = (Z Z) € GL(2). Two n'* degree polynomials g and § are equivalent if

(2.5) 9(p) = (cp + d)"§(5) = (cp+ d)"G (‘”’ a b) ,

for some A € GL(2). The equivalence problem for inhomogeneous polynomials is to

determine when two given polynomials can be mapped into each other by such a linear
fractional transformation.

lHere we already encounter the first in a series of conflicting terminologies which will plague our
attempts to unite these two fields. In classical invariant theory, a form means a homogeneous polynomial;
in Cartan’s equivalence method, differential forms are the key objects of interest. Needless to say, these
are very different kind of objects. To distinguish them, we will always use “form” for a homogeneous
polynomial, whereas “differential form” will always have “differential” in front of it for emphasis.
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2. The equivalence problem for biforms.
A second important type of algebraic equivalence problem is provided by generalizing

the considerations of part 1 to what will be called “biforms”. By definition, a biform of
bidegree (m,n) is a polynomial function

(2.6) Q(x,u) = Za”x"u‘,,

depending on two vector variables (x,u) € RP x R? (or in CP x C9), which for, fixed u, is a
homogeneous polynomial of degree m in x, and, for fixed x, is a homogeneous polynomial
of degree n in u. The appropriate changes of variable are the linear transformations in the
Cartesian product group GL(p) x GL(q); the transformation x — A - X,u — B -1 maps
the biform Q(x,u) to the biform

Q%,0) = Q(A-%,B-a) =) apa'a’.

As with forms, two biforms are equivalent if they can be mapped to each other by a
suitable group element, and we have a similar, but less well investigated, type of equivalence
problem. (However, see Turnbull, [34], for a discussion of bilinear forms, and Weitzenbdck,
[35], for even more general types of polynomials.)

3. Equivalence problems for variational integrals.

We now consider some of the possible equivalence problems associated with a general
problem from the calculus of variations. Consider the integral

(2.7) L[u] :/QL(x,u("))d:c.

Here the domain of integration is an open subset 2 C RP, and the Lagrangian L is a
smooth function of the independent variables x € {2, the dependent variables u € R?, and
their derivatives up to some order n, denoted by ul™. The typical calculus of variations
problem is to find extremals (i.e. minimizers or maximizers) u = f(x) for the integral L[u]
subject to suitable boundary conditions. Here we are more concerned with the integral
itself, rather than the specific minimizers. There are at least four different versions of
the notion of “equivalence of variational problems”, depending on the type of changes of
variables allowed, and the precise form the equivalence is to take. First, there are two
immediately obvious possible choices of allowable coordinate changes:

1) The fiber-preserving transformations, in which the new independent variables depend
only on the old independent variables, so the transformations have the form

(2.8) x = ¢(x), = P(x,u).

2) The general point transformations, in which an arbitrary change of independent and
dependent variables is allowed, and the transformations have the form

(2.9) X = ¢(x,u), u = ¥(x,u).



Other possible classes of coordinate transformations include contact transformations,
linear transformations, volume-preserving transformations, etc., etc., but these two are
sufficient for our purposes. Furthermore, there are two choices for deciding when two
Lagrangians are equivalent:

a) Standard Equivalence: Here we require that the two variational problems agree on
all possible functions u = f(x). This implies that the two Lagrangians are related by the
change of variables formula for multiple integrals:

(2.10) L(x,u™) = L(%,0™) . det J,

where J = (D;¢’) is the Jacobian matrix of the transformation. (Here, we are treating
L[u] as an oriented integral; otherwise we should put an absolute value on the factor det J.)

b) Divergence Equivalence: Here we only require that the variational problems agree
on extremals, or, equivalently, that the associated Euler-Lagrange equations are mapped
directly to each other by the change of variables. A standard result, [23; Theorem 4.7],
says that two Lagrangians have the same Euler-Lagrange equations if and only if they
differ by a divergence, so the two Lagrangians must be related by the formula

(2.11) L(x,u™) = L(x,a™) . detJ + Div F,

where F(x,u(™) = (F},... F}) is an arbitrary p-tuple of functions of x, u and derivatives
of u.

Combining the two notions of equivalence with each of the two classes of coordinate
transformations, we are led to four different equivalence problems for Lagrangians, such
as the standard point transformation equivalence problem, the divergence fiber-preserving
equivalence problem, etc. Depending on the context, each of these problems is important,
and warrants a solution. To date, however, only some of the simpler cases, e.g. p =1 or
2, g =1, n =1 or 2, have been looked at, and only the simplest case p = ¢ = n = 1 has
been solved completely, cf. [17].

4. The equivalence problem for particle Lagrangians.

Now we specialize the general discussion on equivalence problems in the calculus of
variations to present one particular equivalence problem in detail. A particle Lagrangian
1s one involving only one independent variable, z, and we specialize to first order particle
Lagrangians in one dependent variable also, u. Let p = % denote the derivative variable.
The equivalence problem is to determine when two first order scalar variational problems

Llu] = /L(x,u,p)dm, and L[u] = /f)(i:,ﬁ,f))dfc,
can be transformed into each other by a point transformation

(2.12) & =¢(z,u), @=1p(z,u),



without any additional divergence terms. Let us see what this entails.

According to the chain rule, if Z,4 are related to z,u according to (2.12), the change
in the derivative p is given by a linear fractional transformation:

~_ap—i—b
(2.13) p—cp+d,
where
. o 0 09
(2.14) a=Z- b= 52’ C= a0 d= e

Specializing the general transformation rule (2.10), we deduce that equivalent Lagrangians
must be related by the basic change of variables formula

(2.15) L(z,u,p) = (cp + d)L(&, 1, p)

under (2.12), (2.13). Thus the original problem from the calculus of variations can be
recast as a problem of determining when two functions of three variables are related by
the formula (2.15) for some transformation of the form (2.12), (2.13). This is the basic
problem solved by Cartan in [5].

A remarkable observation is that the equivalence condition (2.15) for particle La-
grangians and the equivalence condition (2.5) for binary forms are essentially the same! In-
deed, if, given a nonhomogeneous polynomial ¢(p) of degree n, we define the “Lagrangian”

(2.16) L(p) = {/9(p)

then the relevant transformation rules are identical, and so the equivalence problem (2.5)
for the polynomial ¢g(p) under the linear fractional transformation (2.4) is the same as the
equivalence problem for the (z,u)-independent Lagrangian (2.16) under the transforma-
tion (2.12), (2.13), (2.15). Therefore, any solution to the Lagrangian equivalence problem
immediately induces a solution to the equivalence problem for binary forms. This obser-
vation can be extended to forms in more variables, connecting the equivalence problem for
forms with an equivalence problem for multi-particle Lagrangians, cf. [26].

5. Equivalence problems for quadratic Lagrangians.

Another important special class of equivalence problems from the calculus of variations

comes from specializing the general considerations of part 3 to the special case of the
divergence equivalence of quadratic variational problems

n,a qn, 8
(2.17) ol = [ et 2

I 9z 9z

For simplicity, we assume that the coeflicients a}"[; are constants. These problems are
motivated by the applications to linear elasticity, but they also arise in many other contexts.
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Mathematically, the relevant subclass of changes of variables that preseves the quadratic
form of the Lagrangian are the linear change of variables x — A - x,u — B - u, already
presented in our discussion of biforms. We define the symbol of a quadratic Lagrangian to
be the biform

(2.18) Q(x,u) = Za” xIxTuuP,

bidegree (2n,2). It is not hard to show that, since we can add arbitrary divergences to
our Lagrangian, the symbol is well-defined, independently of any quadratic divergence
which might be added in. Moreover, except for an extra determinantal factor det A in
(2.11), which can always be effectively eliminated by rescaling, and the replacement of 4
by A~1, the transformation rules for quadratic Lagrangian and those for their symbols are
exactly the same. Therefore, we deduce the important fact that quadratic Lagrangians are
divergence equivalent under a linear change of variables if and only if their symbols are
equivalent as biforms. Thus, this equivalence problem reduces to the previous algebraic
equivalence problem.

3. Invariants. Of fundamental importance to the solution of any equivalence prob-
lem are certain functions, the invariants, whose values do not change under the change
of variables apposite to the problem. These can be appropriately defined for all of the
equivalence problems considered above. Additional invariant quantities are provided by
relative invariants or covariants, whose values change only by some multiplicative factor,
and invariant differential forms, which are the key to Cartan’s approach. The terminology
here is slightly complicated by the different use of the term “invariant” in the different
subject areas. In classical invariant theory, the invariants are distinguished from the more
general covariants by the fact that they do not involve the variables x. Furthermore, both
invariants and covariants are really relatively invariant functions, as they do change by
some multiplicative factor under the action of the general linear group. What we will be
calling invariants would be known as absolute invariants in the classical terminology. In
Cartan’s approach, the distinction between invariants and covariants blurs, and they are
all called invariants for simplicity. Thus, the invariants of Cartan’s approach would be
labelled absolute covariants in the classical invariant theory approach, while the invariants
and covariants of classical invariant theory are really relative invariants according to the
Cartan terminology. (I hope that this doesn’t cause undue confusion for the reader!) Ab-
solute invariants for two equivalent objects must agree identically, while relative invariants
only need agree up to a factor. However, the vanishing of a relative invariant is an invariant
condition, that often carries important geometric information about the object.

There are two basic methods for constructing invariants. In classical invariant theory,
the powerful symbolic method provides a ready means of constructing all the (relative)
polynomial invariants and covariants of a form. Hilbert’s Basis Theorem says that there
are a finite number of polynomially independent covariants for a form of a given degree,
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but the precise number of independent covariants increases rapidly with the degree n
of the form (although this is partially mitigated by the presence of many polynomial
syzygies). Indeed, a complete system of covariants has been constructed only for binary
forms of degrees 2,3,4,5,6, and 8. Despite the constructive methods used to generate
the covariants themselves, it is by no means clear which covariants play the crucial role
in the equivalence problem. For example, in the case of a binary quartic, there are two
important invariants, denoted by i and j, but it is the strange combination :* — 275 (the
discriminant) which provides the key to the classification of quartic polynomials, [12; page
292]. Symbolic techniques can also be applied to construct covariants of biforms, [35], [24],
and there is an analogous version of Hilbert’s Basis Theorem. However, explicit Hilbert
bases for even the simplest biforms are not known.

Cartan’s approach provides an alternative method for constructing invariants, this time
as functions of the partial derivatives of the basic object. Moreover, Cartan’s algorithm
automatically determines which invariants are important for the equivalence problem and
readily gives necessary and sufficient conditions for equivalence based on the fundamental
invariants. (We also note that Maschke, [21], developed a symbolic method for use in
equivalence problems in Riemannian geometry. See Tresse, [33], for a treatment of relative
invariants of differential equations.) We will see how the two approaches bear on each
other in the equivalence problem considered. One conclusion will be that, as far as the

equivalence problem is concerned, Cartan’s approach is certainly the more powerful of the
two.

Consider first the equivalence problem for forms. A classical covariant of weight w is
a function J(a,x) depending on the coefficients a = (ay) of the form and the variables x,
which, except for a determinantal factor, does not change under the action of GL(n) given

in (2.1), (2.2):
(3.1) J(&,%) = (det A)* - J(a,X).

If w =0, we call J an absolute covariant; these are the invariants in Cartan’s terminology.

If a covariant J does not depend on x it is called an invariant, although here we will use
the term relative invariant (unless w = 0).

In the case of a binary form f(z,y), we list some of the most important classical
covariants. First, the Hessian

2
— 2) _ 2

(32) H—(f’f)( ) - nz(n_1)2(fa:xfyy_ zy),
is a covariant of weight 2 and degree 2n — 4. The Jacobians

1
3.3 = = o7 e ly — z)s
(33) T = (f, 1) = gy (e Hy = £y 1)

1
3.4 =(H,T)= ——(H,T, - H,T,),
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are covariants of weight 3 and 6 and degrees 3n — 6 and 5n — 12 respectively. In these
formulae, the notation (f, ¢)(¥) denotes the k'* transvectant of f and g. A classical result
states that the k** transvectant of any two covariants is again a covariant, and, moreover,
all the polynomial covariants can be constructed using successive transvection, [9], [12].

Turning to the equivalence problem for biforms, we define a covariant of biweight (v, w)
of a biform (2.6) to be a polynomial function J(a,x,u), depending on the coefficients
a = (ayy) and the variables x, u, which satisfies:

J(&,%,0) = (det A)¥(det B)*J(a,x,u), A =(A,B)e€ GL(p) x GL(q).

As with forms, a relative invariant is just a covariant which does not depend on the
variables x or u. If v = w = 0, then we have an absolute covariant.

For example, consider the first nontrivial case of a biform, a binary biquadratic

(3.5) Q(x,u) =allz®u® + 2allzyu’® + ajpy?u® + 2a7 2%uv + 4ajjzyuv+

122 22 2,2 222 222 2
+ 2a55y“uv + ajjrv® 4+ 2ai5zyv” + azyy v,

Here x = (z!,22%) = (z,y) and u = (u!,u?) = (u,v), and we have incorporated some multi-

nomial coefficients to conform with the references. Since @ is a quadratic function of x for
each fixed u, it is not hard to see that the discriminant

(36) Ae(w) = 1(QesQuy — Q2)

is a covariant of biweight (2,0). Similarly, the u-discriminant

(3.7) Au(x) = i(Ququ -Q%)

is a covariant of biweight (0,2). These discriminants have the usual properties enjoyed by
the discriminant of an ordinary quadratic polynomial; for instance, Ayx(ug) = 0 implies
that Q(x,up) is a perfect square, etc. There is a mixed biquadratic covariant of biweight
2,2), which has the explicit formula

(33) C2 = 1(Quu@yo — Quu@yu).

The simplest relative invariant of ) is the quadratic expression
(3.9) Iy(a) = 2ay3a3; — 4a13a1; + 2653077 — dayia; + 4(a33)’,
and has biweight (2,2). There is a single cubic invariant, namely

_ 11,12 22 11 12 22 11 12 22 11 12 22 11 12 22 11 _12 22
(3.10) Is(a) = ajjaj3a5;5 — ajjasa7; — G19017a55 + a19G5a7] + G30a;7a75 — Gy3A15a]]
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Further invariants and covariants can be found by applying the technique of composi-
tton of covariants. If @ is any (bi)form, and J is a polynomial covariant for ), then we can
regard J itself as a (bi)form, whose coefficients are certain polynomial combinations of the
coefficients of (). Any covariant K, which depends directly on the coefficients of the new
form J, is then, by composition, a covariant of the original biform @, and is denoted by
K oJ. Thus, since the discriminant A,(x) of a binary biquadratic form is a binary quartic
form in the variables x = (z,y), all the standard covariants of the binary quartic yield,
under composition, covariants of the original biquadratic Q. Thus we have the Hessian of
the u-discriminant

(311) Hu(x) =HoA, = (AuaAu)(2)a

which is again a binary quartic in x, and a covariant of biweight (2,4), as well as the two
relative invariants

(3.12) iw=10A, = (Ay,A)" and j, =j oA, = (Ay, Hy)W,

which have biweights (4,4) and (6,6) respectively. Similarly, the Hessian of the x-discriminant
(3.13) Hy(u) = HoAy = (Ay, Ay)?,

has biweight (4,2), and the two relative invariants

(3.14) ix =10 Ay = (A, A)® and jyx = j 0 Ay = (Ay, H)W,

have biweights (4,4) and (6,6), respectively. The two Hessians H,, and Hy are easily seen
to be different quartic polynomials in general (even if one identifies the variables x and u).
Remarkably, the ¢ and j invariants of the two discriminants are the same invariants of the
original biquadratic polynomial Q.

THEOREM 1, [24]. Let @ be a binary biquadratic form. Let Ax(u) and Ay (x) be the
two discriminants, which are quartic forms in u and x respectively. Then the invariants of
these two quartic forms are the same:

ix =100y =1y =104, IJx =J0Ax =jJu=704y.

The structure of the roots of the two discriminants is an important invariant of the
biquadratic (3.5), and provides the key to the determination of canonical forms and the
solution to the equivalence problem. (See below.) For instance, if Ay(u) has two double
roots in one coordinate system, then it has two double roots in every coordinate system.
Since the discriminant of a quartic, whose vanishing indicates the presence of repeated
roots, is given by i* — 2752, cf. [12; page 293], Theorem 1 immediately implies the following
interesting interconnection between the root structures of the two discriminants.

11



COROLLARY 2. The two discriminants Ax(u) and Ay (x) of a binary biquadratic either
both have all simple roots, or both have repeated roots.

Note that it is not asserted that Ax(u) and Ay(x) have identical root multiplicities!
For example, the biquadratic form Q@ = z?u? + zyv? has u-discriminant A, = —423y,
which has a triple root at 0 and a simple root at co, whereas the x-discriminant Ay = v?
has a quadruple root at co. We also note that since the ratio 1%/;j? essentially determines
the cross ratio of the four roots of the quartic, [9], [12], the cross ratios of the roots of the
two discriminants Ax(u) and A, (x) must be the same.

There are at least three possible ways to prove Theorem 1. One is to explicitly write
out the invariants iy, ju, ix and jx, and compare terms. This was the original version of the
proof, and was effected on an Apollo computer using the symbolic manipulation language
SMP. The explicit formula for j, runs to two entire printed pages! A second approach
is to write out the formulas for the invariants in terms of the partial derivatives of the
biquadratic form. The final approach is to work entirely symbolically; this last proof is
the easiest for hand computation, and can be found in [24].

We now turn to a discussion of the invariants for Lagrangian equivalence problems.
For specificity we consider example 4 of section 2 - the standard equivalence problem for a
particle Lagrangian under point transformations. We assume that we are at a point where
neither L nor the second derivative L,, vanishes. (In particular, we are excluding the
elementary affine Lagrangians a(z,u)p + b(z,u).) The simplest invariant of this problem
1s the rational differential function

(LLPPP + 3LPLPP)2 .

(3.15) I=
LI},

The next most complicated one is

212 L,y Lyppp — 2LLyLyp Lypp + 6LL3, — 3L2L2, — 3L°L2,
2LL3, '

(3.16) J(p) =

Below we shall see how both of these formulas are found using the Cartan method.

The numerator and denominator of these two absolute invariants are relative invariants.
Indeed, according to (2.15),

L= (cp+d)7'L,

hence, differentiating using the chain rule and (2.14), we find

Lys = (ad — be)"*(ep + d)° L,
I:Efii + 3f’ﬂzﬁﬁ = (ad — bc)—a(CP + d)S(LLppp + 3LPLI)P)‘

This proves the invariance of I directly, the corresponding result for J follows after one
further differentiation.
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So far we have been discussing just scalar-valued invariants. We can consider vector-
valued invariants (or even more general quantities) when we have an induced action of the
relevant coordinate changes on some other vector space. The most important class of such
invariants are the invariant differential forms, where the exterior powers of the cotangent
space have the standard induced action under coordinate changes. In the Cartan equiv-
alence method, one begins by encoding the original equivalence problem into a problem
involving the mapping of non-invariant differential one-forms on the manifold. For the

standard particle Lagrangian equivalence problem under point transformations we are led
to introduce the one-forms

(3.17) w; = L(z,u,p)dz, wy = du — p dx,

the first of which is essentially the integrand, and the second of which is known as the
contact form, which must be preserved (up to multiple) in order that the derivative p
transform correctly, as in (2.13). We introduce the corresponding one-forms for the trans-
formed Lagrangian L:

Oy = L(&,4,p)dE, &y =t —p di.
Then we have the following reformulation of our basic equivalence problem.

LEMMA 3. Two nonvanishing Lagrangians L and L are equivalent if and only if
there exist functions A(z,u,p), B(z,u,p), with B # 0, and a diffeomorphism (&,4,p) =
®(x,u,p) such that the one-forms are related according to

(318) CI)*((:)]) =wy + sz, (I)*((L‘Q) = ng.

under the pull-back map ®*.

Now that we have recast the original equivalence problem into an equivalence problem
involving differential forms, we are ready to apply the Cartan algorithm. Unfortunately,
space considerations will preclude a discussion of the details of the algorithm, and we refer
the interested reader to the references [4], [7], [15], [17] for the details. Suffice it to say
that the method is completely algorithmic, to the extent that it can be programmed onto
a symbolic manipulation computer package, of which several exist. Barring complications,
the final result of the Cartan method is to produce a list of invariant one-forms, which
can then be used to produce scalar invariants and the complete solution to the equivalence
problem.

For instance, in the Lagrangian equivalence problem, if the Lagrangian does not depend
on z or u, the invariant forms resulting from Cartan’s method are

b1 = :t\/ |LLpp|(du — p dz),
(3.19) 62 = (L — pLy)da + Lydu,
L
03 =+ I—%ldp.
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(If L does depend on z and u, there are much more complicated expressions for the invariant
forms, [17].) As the reader can check directly, as long as L # 0, L,, # 0, (again we exclude
the trivial affine Lagrangians), these differential forms constitute an invariant “coframe”,
or basis for the cotangent space at each point of of the (z,u, p)-space, meaning that under
the point transformations (2.12), (2.13), with the Lagrangians matching up as in (2.15),
the corresponding differential forms satisfy the invariance conditions

(3.20) 6, =6;,, 1=1,23.

(The ambiguous =+ signs in the coframe are unavoidable and stem from the ambiguity of
the square root.) The differential form 6, is the well-known Cartan form from the calculus
of variations, also known as Hilbert’s invariant integral.

Once we have determined an invariant coframe, there is a straightforward method for
producing invariant scalar-valued functions, such as those in (3.15), (3.16). It relies on
the fact that the exterior derivative operation is invariant under coordinate changes, so we
can differentiate the invariant coframe elements to determine new invariant forms. We can

evaluate each df; directly, and rewrite the resulting two-forms in terms of wedge products
of the invariant coframe:

(3.21) df; =Y Ciyf; A b.

These are known as the structure equations for our problem. It is readily seen using (3.20)
that the so-called torsion coefficients C’;k must all be scalar invariants of the problem, i.e.

TIPSt

j
For the Lagrangian equivalence problem, with L = L(p), the structure equations take
the explicit form

d61 = —%.[091 A 93 + 92 A 93,
(322) d92 = :F91 A 93,
d93 = O

Hence, the only nonconstant torsion coeflicient is the invariant

LLppp +3LpLyp

VIL||Lppl®

If we square I to eliminate the ambiguous sign, we recover the earlier invariant (3.15).

Iy =+

Further scalar invariants are found by re-expressing the exterior derivatives of the
invariants appearing in the structure equations in terms of the invariant coframe, leading
to the ”derived invariants”. In our case, since L only depends on p, we find

dIO == J93,

14



where the derived invariant

oI,

9

is the same invariant given in (3.16). This process can lead to higher and higher order
derived invariants; for instance the equation dJ = K03 leads to the second order derived
invariant K = ++/|L/Lpp|-J, , etc., etc. For the full Lagrangian equivalence problem, there
are not one but three fundamental invariants appearing in the corresponding structure
equations, and a host of interesting derived invariants, cf. [17].

s l]

4. Solution of Equivalence Problems. The invariant quantities play a fundamen-
tal role in the resolution of any equivalence problem. Basically, one tries to characterize the
equivalence of two objects in terms of the associated invariants. The Cartan approach is
especially eflicacious in this regards, in that it readily identifies which invariants are of fun-
damental importance for the equivalence problem, and, moreover, through the powerful
Cartan-I{ahler existence theorem for exterior systems of differential equations, provides
necessary and sufficient conditions for equivalence based on these invariants. Roughly,
the key to the complete solution of the equivalence problem is the functional relationship
between the invariants which appear in the structure equations and their corresponding
derived invariants, as discussed above. (Here I am glossing over several complications,
including structures of higher order, and structures that require prolongation.) These
functional relations, which lead to the concept of a determining function for the equiva-
lence problem, are the principal objects of interest. It is best if we illustrate this with a
particular example - the standard particle Lagrangian equivalence problem in the special
case when the Lagrangian only depends on the derivative variable p. In this case, there
is one fundamental invariant appearing in the structure equations (3.22), namely Io(p),
or, better, its square I(p). If I happens to be constant, then its value must remain un-
changed under the point transformations (2.12), and so must have the same value for both
Lagrangians. Otherwise, if I(p) is not constant, we express the derived invariant J(p), cf.
(3.16), in terms of I, leading to an equation of the form J = F(I). The scalar function
F is called the determining function for our equivalence problem, since it effectively de-
termines the equivalence class of a given Lagrangian. Since F' may well turn out to be a
multiply-valued function, it is better to view the invariants I and J as parametrizing a
curve in C?, which we may identify with the “graph” of the determining function F.

DEFINITION 4. Let L(p) be a complex-analytic Lagrangian depending only on the
derivative variable p. The universal curve corresponding to L is the complex curve

(4.1) e = {(I(p), J(p)) : p€ C} C C2.
(If I is constant, so J = 0, then € reduces to a single point.)

The universal curve is an invariant for the Lagrangian, so that two equivalent La-
grangians have identical universal curves. The Cartan method shows that, moreover,
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barring the trivial affine Lagrangians, the universal curve provides the complete necessary
and sufficient conditions for the solution to the Lagrangian equivalence problem.

THEOREM 5. Let L(p) and L(p) be two complex analytic Lagrangians which are not

affine functions of p. Then L and L are equivalent under a complex analytic change of
variables if and only if their universal curves are identical: C = C.

In particular, if curve degenerates to a point, the invariants I and I are both constant,
and they must the same: I = I. For a real-valued Lagrangian, the theorem is essentially
the same, except that one must add in the additional condition that the sign of the second
derivatives L,, must match that of ﬂﬁﬁ in order that the resulting change of variables be
real, cf. [30].

According to the remarks in section 2.4, the equivalence problem for binary forms
is a special case of the general Lagrangian equivalence problem, when the Lagrangian is
the nt* root of a polynomial of degree n. We can therefore translate Theorem 5 into the
language of classical invariant theory by evaluating the invariants I and J directly in terms
of known covariants of the binary form f. In each of the covariants (3.2), (3.3), (3.4), we
can replace  and y by the homogeneous coordinate p to find corresponding covariants of
the polynomial ¢g(p); we use the same symbols for these covariants. A simple exercise in
differentiation using the formula f(z,y) = y"¢(z/y) will prove the following formula:

n—1_,_,
(4.2) L,y = TL "H.
Note that (4.2) provides a simple proof of the classical fact that a binary form is the n'®
power of a linear form if and only if its Hessian is identically 0. Indeed, if H = 0, then
the Lagrangian L must be an affine function of p, i.e. L = ap + b, which implies that
g9(p) = (ap +0)".

Assume that this is not the case, i.e. H does not vanish identically. Then further
differentiations prove that

—2)2 71? 12(n — 2)?
(4.3) = M_, J = _12(n-2ygU
n3(n—1) H3 n—1 H3
Discarding the inessential constants, we deduce the following solution to the equivalence
problem for binary forms.

THEOREM 6. Let f(z,y) be a binary form of degree n. Let H,T,U be the covariants
defined by (3.2), (3.3), (3.4). Suppose that the Hessian H is not identically 0, so f is not
the nt* power of a linear form. Define the fundamental absolute rational covariants

T2

« . JU
(4:4) =g 7=
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which are both covariants of weight 0 and degree 0. The functions I* and J* parametrize
a rational curve C* in the projective plane CP2, called the universal curve associated with
the binary form f. (If I* is constant, the curve reduces to a single point.) Then two binary
forms f and f are equivalent under the general linear group GL(2,C) if and only if their
universal curves are identical: C* = C*.

Therefore a complete solution to the complex equivalence problem for binary forms
depends on merely two absolute rational covariants — I* and J*! Buchberger, [2], has
developed a computationally effective method based on the idea of a Grobner basis which
can be used to eliminate the parameter p from the definition of the universal curve, and
thereby give an implicit formula for the curve. This could provide a computationally
effective method to find the universal curve associated with a binary form and explicitly
solve the equivalence problem in a form amenable to symbolic computation. Clebsch, [6],
gives another solution to the equivalence problem for binary forms based on the absolute
invariants of the forms, assuming the existence of suitable linear or quadratic covariants.
However, his approach is not applicable to all forms, whereas the Cartan approach is
valid in all cases. In [30], the relationship between the Clebsch and Cartan approaches is
explained, and the special role of the null forms made clear.

When the universal curve does not degenerate to a single point, the linear fractional
transformations (2.13) themselves mapping equivalent Lagrangians, or equivalent binary
forms, to each other can also be explicitly determined using the universal curve. Let
I* = (I*,J*) : CP! — €* denote the map parametrizing the universal curve.

THEOREM 7. Let f and f be equivalent binary forms, so that the universal curves are
the same C* = C*. If the curve does not degenrate to a single point, then the implicit
equation

(4.5) I*(p) = I*(p),

which has a discrete set of solutions, determines all the linear fractional transformations

mapping f to f.
In other words, we can explicitly determine all the linear fractional transformations

mapping f to f by solving the equations
|

e =G, 0) = ).

Of course, the second of these two equations merely serves to delineate the appropriate
branch of the universal curve, and so rule out spurious solutions to the first equation which
map between different branches.

Another (related) approach to the solution of an equivalence problem is to solve the
more difficult canonical form problem, which is to find a complete list of simple, canonical
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forms for the given type of objects. The invariants and covariants will then determine
which of the canonical forms a given object is equivalent to. This appears to be difficult
to do for general Cartan equivalence problems, since there are uncountably many different
equivalence classes. However, for many binary forms, canonical forms are well known, cf.
[12]. In the case of biforms, the solution to the equivalence problem for binary biquadratics
presented in [28] depends on the enumeration of all possible canonical forms. These are
listed in table 1. It can be shown that every binary biquadratic is complex-equivalent
to exactly one of the 20 classes of canonical forms. (It is not quite uniquely equivalent
to one of the canonical forms, since there are certain discrete automorphisms taking one
of the canonical forms to another in the same class for the first four classes.). The real
equivalence problem has the same sort of classification, except there are various subclasses
given by placing + signs in front of the squared terms z2u?, etc. The different canonical
forms are basically distinguished by the root structure of the associated discriminants Ay,
A, discussed above. Thus the first class corresponds to those biforms whose discriminants
have four simple complex roots. (Note that according to Corollary 2, if one discriminant
has all simple roots, so does the other.) Some of the classes need more sophisticated
invariants to distinguish them. For instance, both case 13 and case 17 have discriminants
with two pairs of double roots, but they are distinguished by the fact that the invariant
Is, cf. (3.10), vanishes for case 17, but is nonzero for case 13. See [28] for the full details
of this classification.
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Table 1: Canonical Forms for Binary Biquadratics.

1. z2u? + y?v? + a(z?0? + y2u?) + 2Bzyuv, (1+a?—p%)?% #4002 a #0,
2. z2u? + y2? + a(zv? + y2u?) + 2Bzyuv, (14+a? - p%)?% =4a% a #0,
3. z2u? 4+ y20? + 2Bzyuv, B% £ 1,

4. r?u? + y%0v? 4 2zyuv,

5. z2u? + y2v? 4 y?u? + 2Bzyuv, B A1,

6. z2u? + y2o? 4+ y?u? 4 2zyuv,

7. z2u? — 2202 4+ 2yu? + zyuv?,

8. 22u? — y2u? + 2%uv + y2uv,

9. z2u? + y20? + yluv + 2zyuv,

10. z2u? 4+ y2uv,

11. z2u? + zyuv?,

12. z2uv + zyu?,

13. z2u? + y2u? + zyuv,

14. 22u? + 220? + 2yuw,

15. ?u? 4+ y?u?,

16. z2u? + 2202,

17. z2u? 4+ zyuv,

18. z?u?,

19. TYuw,

20. 0.

Each of these canonical biforms corresponds to a canoncial form for a first order planar
quadratic Lagrangian, i.e. p = ¢ = 2,n = 1, in (2.17). In linear elasticity, the physically
important Legendre-Hadamard strong ellipticity condition, [10], [27], requires that the
symbol of the Lagrangian be a positive definite real biform, i.e. @(x,u) > 0 for x, u # 0.
Therefore, the only equivalence classes of interest there are the first two, case 1 correspond-
ing to an anisotropic elastic material, case 2 to an isotropic material. The corresponding
Lagrangian takes the form

ul + vl + a(ul +02) + Zﬂuzyy.

This particular Lagrangian can be shown to be just a rescaled version of the stored energy
function for an orthotropic elastic material, which, in three dimensions, is an anisotropic
material with three reflectional planes of material symmetry, cf. [10]. (A block of wood is
a good example of such a material.) The constants a and § are called the canonical elastic
moduli of the material. Thus, the invariant theory produces the surprising new result that
every linear, planar elastic material is equivalent to an orthotropic material, determined
by just two canonical elastic moduli (as opposed to the standard six moduli for a planar
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anisotropic material described in any text book on linear elasticity). Complex variables
methods, well-known for orthotropic materials, but considerably more cumbersome for

more general anisotropic materials, can now be readily employed for the analysis of physical
problems.

5. Symmetry Groups. For any equivalence problem, the symmetry group of an in-
dividual object is the group of “self-equivalences” - i.e. the group consisting of all allowable
changes of variables which leave the given object unchanged. For example, in the case of a

binary form, the symmetry group is the subgroup consisting of all matrices (‘C‘ 2) € GL(2)

such that

flaz + by, cx + dy) = f(z,y).

Similarly, for one of our Lagrangian equivalence problems, the symmetry group of a given
Lagrangian is the group of all transformations (either fiber-preserving or point transfor-
mations, depending the allowed changes of variables) which map the Lagrangian to itself
(either with or without a divergence, depending on the notion of equivalence used). For
instance, if the Lagrangian is L = p?, then the scaling group (z,u) — (Az, A\%u), A > 0, is
a symmetry group for the fiber-preserving equivalence problem (and hence for any of the
more complicated equivalence problems). The transformation group (z,u) — (z,u + ex),
e € R, maps L to (p + €)% = p? + 2ep + €2, and so is not a symmetry group of the stan-
dard Lagrangian equivalence problem; however, the two extra terms can be written as a
divergence, 2ep + €2 = D(2eu + €%z), and hence this group is a symmetry group of the
divergence equivalence problem. Similarly, in the case of the quadratic Lagrangian or bi-
forms, we can talk about linear symmetries. For instance, the “isotropic” case 2 of table 1
is distinguished from the more generic “anisotropic” case 1 by the fact that it possesses an
additional one-parameter rotational symmetry group beyond the obvious scaling symmetry
common to all quadratic Lagrangians. Thus, two-dimensional isotropic elastic materials
are distinguished from more general anisotropic materials by this additional one-parameter
symmetry group.

One of the great strengths of the Cartan method is that it immediately provides the
dimension of the symmetry group of any given object.

THEOREM &. Suppose we have solved an equivalence problem on an n dimensional
space by constructing an invariant coframe. Let r be the rank of the invariant coframe,
meaning the number of functionally independent invariants appearing among the torsion
coefficients C; . and their derived invariants. Then the symmetry group of the problem is
an n — r dimensional Lie group.

(Here we have phrased the theorem so as to ignore additional complications which can
arise when there are infinite pseudo-groups of symmetries, or when the problem must be
“prolonged”.) See Hsu and Kamran, [14], for an application of this result to the study of
symmetry groups of ordinary differential equations. Here we use Theorem 8 to provide a
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complete determination of the possible symmetry groups for our Lagrangian equivalence
problem.

THEOREM 9. Let L(p) be a Lagrangian which depends only on p. Then the two-
parameter translation group (z,u) — (z + é,u+¢), §,¢ € C, is always a symmetry group.
If L is an affine function of p, then L possesses an infinite- dimensional Lie pseudogroup
of symmetries depending on two arbitrary functions. If L is not an affine function of
p, and the invariant I is constant, then L admits an additional one-parameter group of
symmetries. If the invariant I is not constant, then the symmetry group of L is generated
by only the translation group and, possibly, discrete symmetries.

Indeed, the rank of the invariant coframe (3.19) is one, unless the invariant I is constant,
in which case there are no non-constant invariants for the problem, and the rank is zero.
(The affine case does not follow from the equivalence method results as presented above,
since we explicitly excluded this case from consideration, but is easily verified by direct
computation.) It is easy to see that, except in the case when the Lagrangian is an affine
function of p, the symmetry groups of a binary form f and the corresponding Lagrangian
(2.16) differ only by the translation group in (z,u). Therefore, Theorem 8 immediately
implies the following theorem on symmetries of binary forms.

THEOREM 10. Let f(z,y) be a binary form of degree n.

1) If H = 0, then f admits a two-parameter group of symmetries.
ii) If H # 0, and I* is constant, then f admits a one-parameter group of symmetries.

iii) If H # 0, and I* is not constant, then f admits at most a discrete symmetry group.

(Case i) is proved by direct computation, using the fact that f is the nt" power of a
linear form, and hence equivalent to f+z™.)

In the case when the invariant I* is not constant, so the universal curve C* is really
a curve, we can combine theorems 7 and 10 to determine the cardinality of the discrete
symmetry group of a binary form.

THEOREM 11. Let f be a binary form with non-constant invariant I*. Let d denote
the covering degree of the universal curve I* : CP! — C*, i.e. the number of points in the
inverse image I*~1{z} of a generic point z € €*. Then the symmetry group of f is a finite
group consisting of d elements.

Indeed, the symmetries will be determined by all solutions to the implicit equation

(5.1) I*(p) = I*(p)-

Moreover, since I* and J* are rational functions, the degree cannot be infinite, so we
deduce that a binary form cannot have an infinite, discrete symmetry group.
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A second consequence of Theorem 11 is the interesting result that any binary form
with constant invariant I* is equivalent to a monomial. The proof is elementary once the
symmetry generator is placed in Jordan canonical form, cf. [30].

THEOREM 12. A binary form f is complex-equivalent to a monomial, i.e. to z*y™~*,
if and only if the covariant T? is a constant multiple of H®, or, equivalently, its universal

curve degenerates to a single point.

Another new result which follows directly from the Cartan approach is a complete
characterization of those binary forms which can be written as the sum of two n** powers.

THEOREM 13. A binary form of degree n > 3 is complex-equivalent to a sum of two
n'*powers, i.e. to 2™ + y®, if and only if the invariant I* is not constant, and its universal
curve is an affine subspace of CP? of the explicit form

n 1
5.2 Y= — ).
(5:2) J 371—6(I +2)

This is equivalent to the condition that the covariants f, H,T,U are related by the
equation

1
(5.3) (3n —6)fU + nT? + §nH3 = 0.

(Incidentally, there are other binary forms whose universal curves are also affine subspaces
of C2%, one example being a binary quartic whose roots are in equianharmonic ratio. An
interesting open problem is to characterize all such binary forms.)

There is a classical theorem, due to Gundelfinger, cf. [11], [19], which gives an alter-
native generic test for determining how many n‘* powers a binary form of degree n can be
written as the sum of. It would be interesting to find a relationship between Gundelfinger’s

result and the criterion in Theorem 13 in the case of two nt*

powers. Another interesting
line of investigation would be to see how the universal curve distinguishes between sums
of three or more n** powers, although this appears to be much more difficult as it is no

longer determined by a single-valued function of I*.
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Order Boundary Value Problem

Chaitan P. Gupta A Two-Point Boundary Value Problem of Dirichlet Type with Resonance at
Infinitely Many Eigenvalues

Jong—Shenq Guo On the Quenching Behavior of a Semilinear Parabolic Equation

Bei Hu A Quasi-Variational Inequality Arising in Elastohydrodynamics

E. Somersalo, G. Beylkin, R. Burridge and M. Cheney Inverse Scattering Problem for the
Schrodinger Equation in Three Dimensions: Connections Between Exact and Approximate Methods

J.H. Dinitz and D.R. Stinson Some New Perfect One-Factorizations from Starters in Finite Fields

Albert Fassler and René Jeanneret Optimum Filter for DC/AC-Converter in Electronics

Paul Lemke On the Question of Obtaining Optimal Partitions of Point Sets in E4 with Hyperplane Cuts

Paul Lemke and Michael Werman On the Complexity of Inverting the Autocorrelation Function of a
Finite Integer Sequence, and the Problem of Locating n Points on a Line, Given the ('2‘) Unlabelled
Distances Between Them

Chris J. Budd, Avner Friedman, Bryce McLeod and Adam A. Wheeler The Space Charge Problem

Jerrold R. Griggs, Daniel J. Kleitman and Aditya Shastri Spanning Trees With Many Leaves in Cubic
Graphs

Akos Seress On A-designs with A = 2P

Chjan C. Lim Quasi-periodic Dynamics of Desingularized Vortex Models

Chjan C. Lim On Singular Hamiltonians: The Existence of Quasi-periodic Solutions and Nonlinear Stability

Eugene Fabes, Mitchell Luskin and George R. Sell Construction of Inertial Manifolds by Elliptic
Regularization

Matthew Witten A Quantitative Model for Lifespan Curves

Jay A. Wood Self-Orthogonal Codes and The topology of Spinor Group

Avner Friedman and Miguel A. Herrero, A Nonlinear Nonlocal Wave Equation Arising in Combustion
Theory

Avner Friedman and Victor Isakov, On the Uniqueness in the Inverse Conductivity Problem with One
Measurement

Yisong Yang Existence, Regularity, and Asymptotic Behavior of the Solutions to the Ginzburg-Landau
Equations on R3

Chjan. C. Lim On Symplectic Tree Graphs

Wilhelm I. Fushchich, Ivan Krivsky and Vladimir Simulik, On Vector and Pseudovector Lagrangians for
Electromagnetic Field

Wilhelm I. Fushchich, Exact Solutions of Multidimensional Nonlinear Dirac’s and Schrodinger’s Equations

Wilhelm I. Fushchich and Renat Zhdanov, On Some New Exact Solutions of Nonlinear D’Allembert
and Hamilton Equations

Brian A. Coomes, The Lorenz System Does Not Have a Polynomial Flow

J.W. Helton and N.J. Young, Approximation of Hankel Operators: Truncation Error in an H*®
Design Method

Gregory Ammar and Paul Gader, A Variant of the Gohberg-Semencul Formula Involving Circulant
Matrices

R.L. Fosdick and G.P. MacSithigh, Minimization in Nonlinear Elasticity Theory for Bodies Reinforced
with Inextensible Cords

Fernando Reitich, Rapidly Stretching Plastic Jets: The Linearized Problem

Francisco Bernis and Avner Friedman, Higher Order Nonlinear Degenerate Parabolic Equations

Xinfu Chen and Avner Friedman, Maxwell’s Equations in a Periodic Structure

Avner Friedman and Michael Vogelius Determining Cracks by Boundary Measurements

Yuji Kodama and John Gibbons, A Method for Solving the Dispersionless KP Hierarchy and its
Exact Solutions II

Yuji Kodama, Exact Solutions of Hydrodynamic Type Equations Having Infinitely Many
Conserved Densities

Robert Carroll, Some Forced Nonlinear Equations and the Time Evolution of Spectral Data

Chjan. C. Lim Spanning Binary Trees, Symplectic Matrices, and Canonical Transformations
for Classical N-body Problems

E.F. Assmus, Jr. and J.D. Key, Translation Planes and Derivation Sets

Matthew Witten, Mathematical Modeling and Computer Simulation of the Aging-Cancer
Interface
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Recent IMA Preprints (Continued)
Author/s Title

Matthew Witten and Caleb E. Finch, Re-Examining The Gompertzian Model of Aging

Bei Hu, A Free Boundary Problem for a Hamilton-Jacobi Equation Arising in Ions Etching

T.C. Hu, Victor Klee and David Larman, Optimization of Globally Convex Functions

Pierre Goossens, Shellings of Tilings

D. David, D. D. Holm, and M.V. Tratnik, Integrable and Chaotic Polarization Dynamics
in Nonlinear Optical Beams

D. David, D.D. Holm and M.V. Tratnik, Horseshoe Chaos in a Periodically Perturbed
Polarized Optical Beam

Laurent Habsieger, Linear Recurrent Sequences and Irrationality Measures

Laurent Habsieger, MacDonald Conjectures and The Selberg Integral

David Kinderlehrer and Giorgio Vergara—Caffarelli, The Relaxation of Functionals
with Surface Energies

Richard James and David Kinderlehrer, Theory of Diffusionless Phase Transitions

David Kinderlehrer, Recent Developments in Liquid Crystal Theory

Niky Kamran and Peter J. Olver, Equivalence of Higher Order Lagrangians
1. Formulation and Reduction

Lucas Hsu, Niky Kamran and Peter J. Olver, Equivalence of Higher Order Lagrangians
II. The Cartan Form for Particle Lagrangians

D.J. Kaup and Peter J. Olver, Quantization of BiHamiltonian Systems

Metin Arik, Fahriinisa Neyzi, Yavuz Nutku, Peter J. Olver and John M. Verosky
Multi-Hamiltonian Structure of the Born-Infeld Equation

David H. Wagner, Detonation Waves and Deflagration Waves in the One Dimensional
ZND Model for High Mach Number Combustion

Jerrold R. Griggs and Daniel J. Kleitman, Minimum Cutsets for an Element of
a Boolean Lattice

Dieter Jungnickel, On Affine Difference Sets

Pierre Leroux, Reduced Matrices and g-log Concavity Properties of g-Stirling
Numbers

A. Narain and Y. Kizilyalli, The Flow of Pure Vapor Undergoing Film Condensation
Between Parallel Plates

Donald A. French, On the Convergence of Finite Element Approximations of a Relaxed
Variational Problem

Yisong Yang, Computation, Dimensionality, and Zero Dissipation Limit of the
Ginzburg-Landau Wave Equation

Jirgen Sprekels, One-Dimensional Thermomechanical Phase Transitions
with Non-Convex Potentials of Ginzburg-Landau Type

Yisong Yang, A Note On Nonabelian Vortices

Yisong Yang, On the Abelian Higgs Models with Sources

Chjan. C. Lim, Existence of Kam Tori in the Phase Space of Vortex Systems

John Weiss, Backlund Transformations and the Painlevé Property

Pu Fu-cho and D.H. Sattinger, The Yang-Baxter Equation for Integrable Systems

E. Bruce Pitman and David G. Schaeffer, Instability and Ill-Posedness in Granular Flow

Brian A. Coomes, Polynomial Flows on C™*

Bernardo Cockburn, Suchung Hou and Chi-Wang Shu, The Runge-Kutta Local
Projection Discontinuous Galerkin Finite Element Method for Conservation Laws IV:
The Multidimensional Case

Peter J. Olver, Invariant Theory, Equivalence Problems, and the Calculus of Variations

Daniel D. Joseph and Thomas S. Lundgren with an appendix by R. Jackson and
D.A. Saville, Ensemble Averaged and Mixture Theory Equations

P. Singh, Ph. Caussignac, A. Fortes, D.D. Joseph and T. Lundgren, Stability of
Periodic Arrays of Cylinders Across the Stream by Direct Simulation

Daniel D. Joseph, Generalization of the Foscolo-Gibilaro Analysis of Dynamic Waves

A. Narain and D.D. Joseph, Note on the Balance of Energy at a Phase Change Interface

Daniel D. Joseph, Remarks on inertial radii, persistent normal stresses, secondary
motions , and non-elastic extensional viscosities

D. D. Joseph, Mathematical Problems Associated with the Elasticity of Liquids

Henry C. Simpson and Scott J. Spector, Some Necessary Conditions at an Internal
Boundary for Minimizers in Finite Elasticity

Peter Gritzmann and Victor Klee, On the 0-1 Maximization of Positive Definite
Quadratic Forms .



