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History of Moving Frames

Classical contributions:
M. Bartels (~1800), J. Serret, J. Frénet, G. Darboux,

E. Cotton, Elie Cartan

Modern developments: (1970’s)

S.S. Chern, M. Green, P. Griffiths, G. Jensen, T. Ivey,
J. Landsberg, ...

The equivariant approach: (1997 — )

PJO, M. Fels, G. Mari—Beffa, I. Kogan, J. Cheh,
J. Pohjanpelto, P. Kim, M. Boutin, D. Lewis, E. Mansfield,
E. Hubert, E. Shemyakova, O. Morozov, R. McLenaghan,
R. Smirnov, J. Yue, A. Nikitin, J. Patera, P. Vassiliou, ...



Moving Frame — Space Curves
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Moving Frame — Space Curves

t b
tangent  normal binormal
¢ dz d?z bt
= — n — —— — n
ds ds?
s — arc length
z
Frénet—Serret equations
dt dn £+ b db
— = Kn — = —K T — =—Tn
ds ds ds

Kk — curvature T — torsion



“I did not quite understand how he [Cartan]| does this
in general, though in the examples he gives the
procedure is clear.”

“Nevertheless, I must admit I found the book, like
most of Cartan’s papers, hard reading.”

— Hermann Weyl

“Cartan on groups and differential geometry”
Bull. Amer. Math. Soc. 44 (1938) 598-601



Applications of Moving Frames
Differential geometry
Equivalence
Symmetry
Differential invariants
Rigidity
Identities and syzygies
Joint invariants and semi-differential invariants
Invariant differential forms and tensors
Integral invariants

Classical invariant theory



Computer vision
o object recognition
o symmetry detection
Invariant variational problems
Invariant numerical methods
Mechanics, including DNA
Poisson geometry & solitons
Killing tensors in relativity
Invariants of Lie algebras in quantum mechanics
Control theory

Lie pseudo-groups



The Basic Equivalence Problem

M — smooth m-dimensional manifold.

(G — transformation group acting on M

e finite-dimensional Lie group

e infinite-dimensional Lie pseudo-group



Equivalence:

Determine when two p-dimensional submanifolds

N and N Cc M

are congruent:

Symmetry:
Find all symmetries,
i.e., self-equivalences or self-congruences:

N=g N



Classical Geometry — F. Klein

Euclidean group:

o { SE(m) = SO(m) x R™
| E(m)=0@m)xR™

2 A2+ € SO(m) or O(m), eR™, zeR™
= isometries: rotations, translations , (reflections)
Equi-affine group: G = SA(m) = SL(m) x R™
€ SL(m) — volume-preserving
Affine group: G =A(m) =GL(m) x R™
€ GL(m)
Projective group: G =PSL(m+1)

acting on R™ C R&™

—> Applications in computer vision



Tennis, Anyone?




Binary form:

Equivalence of polynomials (binary forms):

Oz) = (vxm”@(j“ﬁ) o= (j §) c QL)

e multiplier representation of GL(2)
e modular forms




Q) = (a +6)" @ (‘” i 5)

YT + 0

Transformation group:

g: (z,u) (

ax + 0 u )
yr+6  (yx+o)”

Equivalence of functions <= equivalence of graphs

Ty ={(z,u) = (2,Q(x)) } CC’



Moving Frames

Definition.

A moving frame is a G-equivariant map

p: M — G
Equivariance:
g-p(2) left moving frame
p(g-z) = . . .
p(z) g right moving frame

pleft(z) = pright(z)_l




The Main Result

Theorem. A moving frame exists in
a neighborhood of a point z € M if and
only if GG acts freely and regularly near z.



Isotropy & Freeness

Isotropy subgroup: G,={9lg-z=2} for ze M

e free — the only group element ¢ € G which fixes one point
z € M is the identity: —> G, ={e} forall z € M.

° — the orbits all have the same dimension as G
—> G, is a discrete subgroup of G.

e regular — all orbits have the same dimension and intersect
sufficiently small coordinate charts only once
% irrational flow on the torus

e cffective — the only group element which fixes every point in
M is the identity: g-z =z for all z € M iff g = e:

Gy= N G, ={e}

zeM



Proof of the Main Theorem

Necessity: Let p: M — G be a left moving frame.
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p(z) = plg-2) =g p(2).
Therefore g = e, and hence G, = {e} for all z € M.
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Freeness: If g € G,, so g -z = z, then by left equivariance:
p(z) = plg-2) =g p(2).
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Hence g, — e in G.



Proof of the Main Theorem

Necessity: Let p: M — G be a left moving frame.

Freeness: If g € G,, so g -z = z, then by left equivariance:
p(z) = plg-2) =g p(2).
Therefore g = e, and hence G, = {e} for all z € M.

Regularity:  Suppose z, =g, -2 — 2z as n — oo.

By continuity, p(z,) = p(g, - 2) = g,, - p(z) — p(2).
Hence g, — e in G.

Sufficiency: By direct construction — “normalization”.

Q.E.D.



Geometric Construction

Normalization = choice of cross-section to the group orbits
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Geometric Construction

Normalization = choice of cross-section to the group orbits




K — cross-section to the group orbits

O, — orbit through z € M

k € K N O, — unique point in the intersection
e k is the canonical or normal form of z

e the (nonconstant) coordinates of k are the fundamental
invariants

g € G — unique group element mapping k to z
— freeness

p(z) =g left moving frame p(h-2)=h-p(z)

k=p"1(2) 2= prgne(2) - 2



Algebraic Construction
=—dimG < m=dimM

Coordinate cross-section

K={z=c¢, ... ,2,=¢,.}
left right
w(g,z) =gt 2 w(g,2) =09z
=(g,,...,9,) — group parameters

z=1(2y,...,%2,) — coordinates on M



Choose = dim GG components to normalize:

wy(g,2)= ¢, w,(g,2)=c,

Solve for the group parameters ¢ = (¢,,...,7,)
—> Implicit Function Theorem

The solution
= p(2)

is a (local) moving frame.



The Fundamental Invariants

Substituting the moving frame formulae

= p(2)

into the unnormalized components of w(¢, z) produces the
fundamental invariants

1(2) = w, iy (p(2),2)  oee Ly (2) = w,(p(2), 2)

Theorem. Every invariant I(z) can be (locally) uniquely
written as a function of the fundamental invariants:

I(z)=H(I[,(2), ... , I _.(2))

Y Tm—r



Most interesting group actions (Euclidean, affine, projec-
tive, etc.) are not free!

Freeness typically fails because the dimension of the under-
lying manifold is not large enough, i.e., m < r = dim G.

Thus, to make the action free, we must increase the dimen-
sion of the space via some natural prolongation procedure.

e An effective action can usually be made free by:



e Prolonging to derivatives (jet space)
G J(M,p) — J"(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G*": Mx-+ XM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
Gm . ) o ppn)

—> joint or semi-differential invariants
—> invariant numerical approximations



e Prolonging to derivatives (jet space)
G™ . J(M,p) — JV(M,p)

— differential invariants

e Prolonging to Cartesian product actions
G": Mx---xM — Mx---xM

—> joint invariants

e Prolonging to “multi-space”
Gm . ) o ppn)

—> joint or semi-differential invariants
— invariant numerical approximations



Euclidean Plane Curves

Special Euclidean group: G = SE(2) = SO(2) x R?
acts on M = R? via rigid motions: w = 7z +

To obtain the classical (left) moving frame we invert
the group transformations:

= coso(x—a)+sino(u—
y (= ) 4 sin o )} o Red

v=—sino(xr—a)+cosd(u—>)

Assume for simplicity the curve is (locally) a graph:

C={u=f(z)}

—> extensions to parametrized curves are straightforward



Prolong the action to J™ via implicit differentiation:

X

(u—=1)
(u—=1)

2 o
— 3u;,,. sin

y= coso(x—a)—+sin
v=—sino(xr — a) + cos
—sin ¢ + u,, COoS

v, = :

Y cos ¢ + u,, sin
v — ua:x
Y9 (cosd +u,sino)3
~ (cos o +uysing )u
Yyyy =

(cos

+ u, sin o )?



Choose a cross-section, or, equivalently a set of
dim G = 3 normalization equations:

T =

y:

vy

yyy

cos(x—a)+sind(u—>0) =0
—sino (x —a)+cosd(u—0b)=0
—sin ¢ + u, coso 0
cosd +u,sing
uﬂfﬂf
(cos® +u,sin )3
(cos & +u,sino)u,  — 3u_sin

(cosd +u, sin o )?



Solve the normalization equations for the group param-
eters:

y= cosod(x—a)+sind(u—>0)=0
v=—sing(x—a)+coso(u—>0)=0
” _ —sin + u, COs — 0

Yy cos ¢ + u,, sin

The result is the left moving frame p: J! — SE(2)

= =u = tan~ U,



= = U — tan_l U,

Substitute into the moving frame formulas for the
group parameters into the remaining prolonged trans-

formation formulae to produce the basic differential in-
variants:

Upy , _ Uy
Yyy = (cosd +u, sing)3 " (1 + u2)3/2
Uyyy = 77 T L= 213
ds (1+wu?)
d*k 3
/Uyyyy:... | N _SH:

ds?



Theorem. All differential invariants are functions of
the derivatives of curvature with respect to arc length:

ds ds?

K



The invariant differential operators and invariant
differential forms are also substituting the moving
frame formulas for the group parameters:

(Contact-)invariant one-form — arc length element
dy = (cos® +u,sino)dr +— ds=/1+u2 dz

Invariant differential operator — arc length derivative
d 1 d —  d 1 d

d_y:cos +u,sin¢ dx | ds M1+ u? dx



The Classical Picture: T
/I

Moving frame p: (r,u,u,) — (R,a) € SE(2)

el F) e ()



Equi-affine Curves G = SA(2)

z— Az+Db A € SL(2), b € R?

Invert for left moving frame:

y=0(r—a)—0(u—0>)
w=A"1(z—b)
v=—7(x—a)+a(u—D>)
ad—p[By=1
Prolong to J? via implicit differentiation
1
dy = (6 — Bu,) dzx D, = D



Prolongation:
y=90(x—a)— 0 (u—>b)
v=—7y(x—a)+a(u—>)

v —au,
v, = — ———=
Yy —
0 —pBu,
Uu
v =

Y N (5 o ;xu:c)g

T )P

(%

yyyy (56— Bu,)T

Vyyyyy — * -



Normalization: r=dimG =5

y=0(w—a)=u=1) =0

v=—7x—a)+a(u—>0) =0

— ux -
Vy = = w 0
u$$ o
KRR TR
Uyyy = — ( — Bu )5
u:m::m:( o usc)2 + 10 ( o u:c) Upy Yprs + 15 2 uix
Yyyyy (06— Ju, )T



Equi-affine Moving Frame

p: (z,u,u,,u, ., u,.) — (A b) e SA(2)
A= o Y Uy o %u;a?/e) Upra
— = u 3y u_1/3 - %u—5/3u .

Nondegeneracy condition: U, 7 0.



Equi-affine arc length

dy — ( - ’sz) d;C — dS = 13/ uZUZU dx

Equi-affine curvature

yyyy

yyyyy

Uyyyyyy

2

K = 5 UprUpgoe — 3 Upra

B 8/3

Yu,’,
dk
ds
d?k
— 5K

ds?



The Classical Picture:

3 1, -5/3
. ( ua;a: 3 umm ua;a:a:
_ 3 -1/3 _1,,-5/3
um ua;a: ua;a: 3 ua;a: u

/ t
L) e




Equivalence & Invariants

e Equivalent submanifolds N ~ N
must have the same invariants: [ = I.

Constant invariants provide immediate information:
e.g. k=2 < K=2

Non-constant invariants are not useful in isolation,
because an equivalence map can drastically alter the
dependence on the submanifold parameters:

e.g. k=3 Versus Kk =sinhx



Syzygies

However, a functional dependency or syzygy among
the invariants ¢s intrinsic:

e.g. KJS:KJB—l — ER.=r -1

=

e Universal syzygies — Gauss—Codazzi

e Distinguishing syzygies.



Equivalence & Syzygies

Theorem. (Cartan) Two smooth submanifolds
are (locally) equivalent if and only if they have
identical syzygies among all their differential
invariants.

Proof -

Cartan’s technique of the graph:
Construct the graph of the equivalence map as the solu-
tion to a (Frobenius) integrable differential system, which
can be integrated by solving ordinary differential equations.



Finiteness of Generators and Syzygies

& There are, in general, an infinite number of differ-
ential invariants and hence an infinite number
of syzygies must be compared to establish
equivalence.

(7" But the higher order syzygies are all consequences
of a finite number of low order syzygies!



Example — Plane Curves

If non-constant, both x and ., depend on a single
parameter, and so, locally, are subject to a syzygy:

kg = H(r) (*)

But then
Koy = o H(x) = H'(5) 5, = H'(x) H(x)
S

and similarly for s etc.

CEER
Consequently, all the higher order syzygies are generated
by the fundamental first order syzygy ().

Thus, for Euclidean (or equi-affine or projective or ...)
plane curves we need only know a single syzygy between x and

k. in order to establish equivalence!



The Signature Map

The generating syzygies are encoded by the

signature map
>: N —

of the submanifold N, which is parametrized by
the fundamental differential invariants:

Y(x) = (I(2), - o I ()

The image
= Im X

is the subset (or submanifold) of N.



Equivalence & Signature

Theorem. Two smooth submanifolds are

equivalent

N=g N

if and only if their signatures are identical



Definition. The signature curve S C R? of a curve
C C R? is parametrized by the two lowest order
differential invariants

{(8)) < *




Equivalence & Signature Curves

Theorem. Two smooth curves C and C are
equivalent:

C=gqg-C
if and only if their signature curves are identical:

—> object recognition



Symmetry and Signature

Theorem. The dimension of the symmetry group
Gy={g] g-NCN}

of a nonsingular submanifold N C M equals the
codimension of its signature:

dimG,y = dim N —dim

Corollary. For a nonsingular submanifold N C M,
0 < dimGy < dim N

—> Only totally singular submanifolds can have larger
symmetry groups!



Maximally Symmetric Submanifolds

Theorem. The following are equivalent:
e The submanifold N has a p-dimensional symmetry group
e The signature & degenerates to a point: dim & = 0

e The submanifold has all constant differential invariants

N = H-{z,} is the orbit of a p-dimensional subgroup H C G

—> FEuclidean geometry: circles, lines, helices, spheres, cylinders, planes, ..

—> Equi-affine plane geometry: conic sections.

—> Projective plane geometry: W curves (Lie & Klein)



Discrete Symmetries

Definition. The index of a submanifold N equals
the number of points in N which map to a generic
point of its signature:

LN:min{#E_l{w}‘ w € }

— Self-intersections

Theorem. The cardinality of the symmetry group of
a submanifold N equals its index ¢ .

—> Approximate symmetries



The Index



The polar curve r =3 + 1—10 cos 36

The Original Curve

Fuclidean Signature

Numerical Signature

0.

2%,

0%

0.

6

0.

8



The Curve x = cost + %COSQ t, y=sint—+ 1—10811’1275

-6

The Original Curve  Euclidean Signature Affine Signature



The Curve CU:COSt—I—%COSQt, y:%x+sint+1—1()sin2t

-6

The Original Curve  Euclidean Signature Affine Signature






750

700

650

Nut 1

400 500

Signature Curve Nut 1

600

550

500

450

Nut 2

[

Signature Curve Nut 2

0
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Hook 1 Nut 1

750
1000
900 700

800 650
Closeness: 0.031217

700

200 400 500
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0.01
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—-0.005

-0.01

-0.015




M — m = p+ g dimensional manifold

z = (x,u) — local coordinates on M

r = (x',...,2P) — independent variables

u= (u',...,u?) — dependent variables

JU=J"(M,p) — jet space of p-dimensional submanifolds
uG = 0,u” — partial derivatives (jet coordinates)
Flz,u™)=F(... 2" ... u% ...) — differential function

F:JV—R



Invariantization

The process of replacing group parameters in transformation
rules by their moving frame formulae is known as invariantization:

( Functions —— Invariants
Forms —— Invariant Forms
b Differential Invariant Differential
—
Operators Operators

\

e The invariantization I = ((F’) is the unique invariant function
that agrees with F' on the cross-section: [ | K = F | K.

e Invariantization defines an (exterior) algebra morphism.

e Invariantization does not affect invariants: (1) =1



The Fundamental Differential Invariants

Invariantized jet coordinate functions:

H'(z,u'™) =u(z")  I§(z,u) = o(uf)

e The constant differential invariants, as dictated by the mov-
ing frame normalizations, are known as the phantom

Ivariants.

e The remaining non-constant differential invariants are
the basic invariants and form a complete system of
functionally independent differential invariants for the

prolonged group action.



Invariantization of general differential functions:




Invariantization of general differential functions:

F(... 2" oS )] =F(... H LI ..

The Replacement Theorem:

If I(x,u™) is any differential invariant, then (1) = I.

I(...2" ...uS ...)=1I(... H ... I ...




Invariantization of general differential functions:

F(.. 2" oS )] =F(.. H OIS L)

The Replacement Theorem:

If I(z,u™) is any differential invariant, then ¢(I) = I.

I(...2" ...ouS ... )=1(... H ... I¥ ...)

Key fact: Invariantization and differentiation do not commute:

W(D;F) # Du(F)

* % Recurrence Formulae % %



The Differential Invariant Algebra

Differential invariants:
I(g") - (z,u™)) = I(z,ul™)

— curvature, torsion, ...

Invariant differential operators:

D,,...,D

b — arc length derivative

e If I is a differential invariant, so is D, 1.

Z(G) — the algebra of differential invariants




Applications

Equivalence and signatures of submanifolds
Characterization of moduli spaces

Invariant differential equations:

H(...D,I. ...)=0

Group splitting of PDEs and explicit solutions

Invariant variational problems:
[ L. Dy, )

Invariant geometric flows



The Basis Theorem

Theorem. The differential invariant algebra Z(G) is locally
generated by a finite number of differential invariants

I, ... 1,
and p = dim S invariant differential operators
Dy, ..., D,

meaning that every differential invariant can be locally
expressed as a function of the generating invariants and
their invariant derivatives:

D,I, =D, D, D, I

In~ K’

—> Lie groups: Lie, Ousiannikov

—> Lie pseudo-groups: Tresse, Kumpera, Kruglikov-Lychagin,
Munoz—Muriel-Rodriguez, Pohjanpelto—O



Key Issues

e Minimal basis of generating invariants: Iy,..., 1,

e Commutation formulae

for the invariant differential operators:
p .
7
[Dj7pk] — Z ik D,
i=1

—> Non-commutative differential algebra

e Universal Syzygies (functional relations)

among the differentiated invariants:
(... DI, ...)=0

— (Codazzi relations



Computing Differential Invariants

#® The infinitesimal method:
v(l)=0 for every infinitesimal generator vVEg

—> Requires solving differential equations.

¢ Moving frames.
e Completely algebraic.
e Can be adapted to arbitrary group and pseudo-group actions.

e Describes the complete structure of the differential invariant
algebra Z(G) — using only linear algebra & differentiation!

e Prescribes differential invariant signatures for equivalence and
symmetry detection.



Infinitesimal Generators

Infinitesimal generators of action of G on M:

LA 0 d 0
= ¢ —_— o —_— K — 1, ey I
Vo= X G gn + X et g
Prolonged infinitesimal generators on J™:
q n _ o
vil=v_ + Y ¥ 07 (T, ul)) —
a=1 j=#J=1 dug
Prolongation formula:
p ‘ p ‘
#5n =D (w2 = Dousel) + Y ugch
i=1 i=1
Dy,...,D, — total derivatives



Recurrence Formulae

k=1
w'=1(dr') — invariant coframe
D, =u(D,:) — dual invariant differential operators
RY — Maurer—Cartan invariants
vy, ... v, €g — infinitesimal generators

pt, ... pum€g® — dual Maurer-Cartan forms



The Maurer—Cartan Invariants

Invariantized Maurer—Cartan forms:



The Maurer—Cartan Invariants

Invariantized Maurer—Cartan forms:

p .
V= pt (") = Y RiW
j=1

Remark: When G C GL(N), the Maurer—Cartan invariants 12}
are the entries of the Frenet matrices

D, pla, u™) - p(a, ™)™



The Maurer—Cartan Invariants

Invariantized Maurer—Cartan forms:

VE=pt (") = ). Ry

Remark: When G C GL(N), the Maurer—Cartan invariants 12}
are the entries of the Frenet matrices

Di p(CU, U’(n)> ’ p(.’E, u(n))—l

Theorem. (FE. Hubert) The Maurer—Cartan invariants and,
in the intransitive case, the order zero invariants serve to
generate the differential invariant algebra Z(G).



Recurrence Formulae

D, u(F)=D,F) + Y Rf (v

J




Recurrence Formulae

D, u(F)=uD,F) + S R u(vM(F))

J

& If ,(F) = cis a phantom differential invariant, then the left
hand side of the recurrence formula is zero. The collection
of all such phantom recurrence formulae form a linear
algebraic system of equations that can be uniquely solved
for the Maurer—Cartan invariants R";!



Recurrence Formulae

D, u(F)=uD,F) + S R u(vM(F))

J

& If ,(F) = cis a phantom differential invariant, then the left
hand side of the recurrence formula is zero. The collection
of all such phantom recurrence formulae form a linear
algebraic system of equations that can be uniquely solved
for the Maurer—Cartan invariants R";!

@ Once the Maurer—Cartan invariants are replaced by their
explicit formulae, the induced recurrence relations com-
pletely determine the structure of the differential invariant

algebra Z(G)!



The Differential Invariant Algebra

Thus, remarkably, the structure of Z(G) can be completely
determined without knowing the explicit formulae for either
the moving frame, or the differential invariants, or the
invariant differential operators!

The only required ingredients are the specification of the cross-
section, and the standard formulae for the prolonged
infinitesimal generators.

Theorem. If G acts transitively on M, or if the infinitesimal
generator coefficients depend rationally in the coordinates,
then all recurrence formulae are rational in the basic
differential invariants and so Z(G) is a rational,
non-commutative differential algebra.



Euclidean Surfaces

M =R3 G = SE(3) = SO(3) x R3 dim G = 6.

x
g-z=Rz+0b, R'R=1, z(y)ER?’.

u

Assume (for simplicity) that S C R? is the graph of a function:
u=f(z,y)

Classical cross-section to the prolonged action on J?:

r=y=u=u, =u, =u,, =0, u, Fu,.



Invariantization — differential invariants: I, = t(u, ;)

Phantom differential invariants:
vz)=1u(y) =tlu) =t(u,) = L(uy) = L(uxy) =0
Hy = Hy = Iyg = Iy = Iyy = I;; =
Principal curvatures:
1 = Iyg = t(Uyy), Ko = Ipy = [’(uyy)7
* % non-umbilic point: K, # Kk, * X
Mean and Gauss curvatures:

H = 1(k + ky), K = Ky Ks.

Invariant differential operators (diagonalizing Frenet frame):

D, = [’(Dm)7 D, = L(Dy)'



To obtain the recurrence formulae for the higher order differen-
tial invariants, we need the infinitesimal generators of g = se(3):

vi=—y0,+z0,
vy, =—u0, +2x0,,
vy =—ud, +yd,
w, =0, Wwy=0, w3=20

u

e The translations will be ignored, as they play no role in the
higher order recurrence formulae.



Recurrence formulae

3
Dib(ujk;) (D’Lu]k}) Z L[ @ik(xa Y, u(j+k)) ]R@Va ] +k > 1

r=1

Dily=11,+ Z ©I%(0,0, TR RY
v=1

Dyl =1 141+ Z ©I*(0,0, TR RY
vr=1

©IF(0,0,I10FR)) = 1[pI* (2, y,uUFF))]  —  invariantized
prolonged infinitesimal generator coefficients

RY — Maurer—Cartan invariants



Phantom recurrence formulae:
0="Dylyy= Iy + R%
0="D,1, =R’
0="D1,; =1 + (120 - 102)Ri

Maurer—Cartan invariants:

Ry = (Y5, — Ky,0)

where
Ly Diry
Lo — I K1 — Rg

Y, =

0= D2110 - R%
0= D2101 - 102 + RS’

0= D2111 - I12 + (120 - 102)R5

RQ - (_ Y1707 - ’12)

are also the commutator invariants:

[DDDQ] :D1D2_92D1 :Y2D1 _Y1D2-



Third order recurrence formulae:

I3 =Dylyy = K11 Iy; = Dylyy = K9
Ly =Dy, = Ko 1 Log = Dylyy = Rg. 2
The fourth order recurrence formulae
121103 B 21221 2

LI, — 217
30712 12 4 ko k2=1,=D,1,, — + KK
1h2 22 1412 1ha
K1 — Ko K1 — Ko

lead to the Codazzi syzygy

2 2
Ki1Kg 1 T K1okg o — 2’42,1 - 2""31,2 —0
K19 = Ko 11 T+ — Kyko(k) — Ky) =
K1 — Ko

e The principal curvatures s, k,, or, equivalently, the Gauss
and mean curvatures H, K, form a generating system for
the differential invariant algebra.



Third order recurrence formulae:

I3g =Dy 1y = ki1 Iy =Dylyy = K2
Ly =D Iy = Ko 1 Iy = Dylyy = Ko o

The fourth order recurrence formulae

LI, —2I? I, I, —27I2
DI, + 3012 2712 4 2 [ =D, I, — 208 2721 4 .2,
S K1 — Ko

lead to the Codazzi syzygy

2 2
Ki1Kg 1 T K1okg o — 2’42,1 - 2""31,2 —0
K19 = Ko 11 T+ — Kyko(k) — Ky) =
K1 — Ko

e The principal curvatures s, k,, or, equivalently, the Gauss
and mean curvatures H, K, form a generating system for
the differential invariant algebra.

* % Neither is a minimal generating set! * %



Codazzi syzygy:
K = kiky = — (D +Y1)Y, — (Dy + Y)Y,




Codazzi syzygy:
K = fyhy = = (D + 11)Y) = (Dy +13)Y)

The Gauss curvature is intrinsic.



Codazzi syzygy:
K = fyhy = = (D + 11)Y) = (Dy +13)Y)

The Gauss curvature is intrinsic.

Proof: The Frenet frame is intrinsic, hence so are the invariant
differentiations and also commutator invariants. Q.E.D.




Codazzi syzygy:
K = kiky = — (D + Y)Y, — (Dy + 1,)Y,

The Gauss curvature is intrinsic.

Proof: The Frenet frame is intrinsic, hence so are the invariant
differentiations and also commutator invariants. Q.E.D.

Theorem. For suitably nondegenerate surfaces, the mean
curvature H is a generating differential invariant, i.e., all other
Euclidean surface differential invariants can be expressed as
functions of H and its invariant derivatives.



Proof: Since H, K generate the differential invariant algebra,

it suffices to express the Gauss curvature K as a function of H
and its derivatives. For this, the Codazzi syzygy implies that we
need only express the commutator invariants in terms of H.

The commutator identity can be applied to any differential
invariant. In particular,

*
D,D,D,H — D,D,D.H =Y, D,D,H — Y, D,D,;H )

Provided the nondegeneracy condition
(D,H)(D,D,;H) # (D,H)(D,D;H), forj=1or?2

holds, we can solve (x) for the commutator invariants as rational
functions of invariant derivatives of H. Q.E.D.

Note: Constant Mean Curvature surfaces are degenerate.
Are there others?



Theorem. G = SA(3) = SL(3) x R% actson S C M = R3:
The algebra of differential invariants of generic equiaffine
surfaces is generated by a single third order invariant, the
Pick invariant.

Theorem. G = SO(4,1) acts on S C M = R*:
The algebra of differential invariants of generic conformal
surfaces is generated by a single third order invariant.

Theorem. G = PSL(4) actson S C M = R?:
The algebra of differential invariants of generic projective
surfaces is generated by a single fourth order invariant.



Variational Problems

= / L(z,u™)dx — variational problem

L(z,u™) — Lagrangian

Variational derivative — Euler-Lagrange equations: E(L) =10

L
components: E_(L) =) (-D)”’ —8 >
- ou
OF
D, F
& c’?xk O;:] Uik gy oug

— total derivative of F with respect to z*



Invariant Variational Problems

According to Lie, any G—invariant variational problem can be
written in terms of the differential invariants:

I[u]:/L(x,u(”))dx:/P(... DI .. ) w

... If — fundamental differential invariants
Dy,...,D, — invariant differential operators
Dy I — differentiated invariants

wW=wA---AwP — invariant volume form



If the variational problem is G-invariant, so
Tlu] = /L(m,u(”))dx: /P( DRI ) w

then its FEuler-Lagrange equations admit G as a symmetry
group, and hence can also be expressed in terms of the differ-
ential invariants:

Main Problem:

Construct F' directly from P.
(P. Griffiths, 1. Anderson )



Planar Euclidean group G = SE(2)

K = i _:Lm; EE curvature (differential invariant)
/Ujm
ds = /1 +u2dx — arc length
d 1 d
D=—= — arc length derivative

ds /1 + u2 dx

Euclidean—invariant variational problem

/Lazu dx_/Pli,/is,liss,.. ) ds

Euler-Lagrange equations

E(L)~ F(k,k K, --.) =0

)78 78S



Euclidean Curve Examples

Minimal curves (geodesics):

I[u]:/ds:/ 1+ w2 dx
E(L) = —

)=—k=0

—> straight lines

The Elastica (Euler):




General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,liS,/iss,.. ) ds



General Euclidean—invariant variational problem

/Lxu dil?—/P/’i,lis,/iSS,.. ) ds

Invariantized Euler-Lagrange expression

0 ., OP d
Z 8/{ D_E

n=0



General Euclidean—invariant variational problem

/Lxu dil?—/P/i,lis,/iSS,.. ) ds

Invariantized Euler-Lagrange expression

e ., OP d
D= —
nz::() (‘9/{ ds
Invariantized Hamiltonian
8P

P> i




/Lxu dil?—/P/’i,lis,/iSS,.. ) ds

Fuclidean—invariant Euler-Lagrange formula

E(L)= (D*+x*) EP)+rH(P)=0




/L:r;u dZC—/P/i,KJS,KSS,.. ) ds

Fuclidean—invariant Euler-Lagrange formula

E(L)= (D*+x*) EP)+rH(P)=0




LETTERS

The shape of a Mobius strip

E. L. STAROSTIN AND G. H. M. VAN DER HELIDEN®

Cesite bor Hosfinesar Dynamics, Degariment of Civil and Emviransentsl Enginesring, Usiversity College Londas, Londsn WE1E 5T, LK

*g-mail; g.heljdan@iucan ok

Fushsnng oning: 15 July 2007, ool 10 108RRmat1 229

The Mabius strip, obtzined by tuking a rectangular strip of
plastic or paper. twisting one end theough 180", and then
jorning the ends, is the canonicl exanmple of u one-sided surface.
Finding its characteristic developable shape has been an open
problem ever since s first formulation in refs 1,2, Here we
wse the imvariant varigtional bicomplex formalism to derive
the first equilibrivm eguations for 2 wide developable strip
undergoing large deformations, theceby giving the frst non-
trivial demonstration of the potential of this approach. We then
formulate the boundary-value problem for the Mobies steip and
salve it numerically. Solutions for increasing width show the
formation of creases bounding nearly flat trinngular regions, a
feature also faumiliar from fabric draping” and paper crumpling™,
This could give new insight nte enespy localization phenomena
in unstectchable sheets®, which might help to predict points
dmo{mmtg. It coubd also eid our understanding of the

1l mﬂp}rm:-a] prupertios of rana-
md mu'rn&mpk Miabius m—lp structures”

11 s Bxir o day that the Mobius strip 3 one of the few wons
of mathematics that have been absorbed into wider culture. It
b mrthematical besuty and inspired artists such as Escher™, In
engineering, pulley belts are often used in the form of Ml irips
tor wear "otk sdces equally. At a mocl: sorsller seabe, Miibius stzips
have recently been formed in ribbon-shaped Nhle; crystals under
certadn erowtl conditions invalvine a Bree temperature eradient™.

Figure 1 Phato of 2 paper Mabius strip of aspect ratin 2. Trg sinp adopts a
hermelersic shape netenshity of e rateral causes the surtacs 1o be
deveiopabie, Bs stright genaratoss A ciwn 2nd e colourng wirns acoondiog o
1z bending enargy cansty.



i

. -,
\\
s \% b

| “ |
Figure 2 Compubed Miibives airips. The kit panef chime T res-Emensional sheoes for w =017 (8], 0.2 ), O 5 gy, 0.8 4, 1.0 e and 1.5 (T and the ight pare! the
cormsponding crainpmets oo S plane. The colouring changess dccoeding i the kol bending ey density, from vidlet far regions of low berding fo red for rogions of

rign bending acaes e indivicusily pojusted). Solution & ey be compared velh e peper modsl 0 Fig. © on which Ta generatoe Tiekd ant density ooiousing have
mon prinind



The Infinite Jet Bundle

Jet bundles
M=J" — J'" «— J% «— ...

Inverse limit

J° = nleoo J"

Local coordinates
29 = (z,ul)y = (... 2t . wd L)

— Taylor series



Differential Forms

Coframe — basis for the cotangent space T J>:

e Horizontal one-forms

det, ..., dzP

e Contact (vertical) one-forms

= du — Z uhd:c

1=1

Intrinsic definition of contact form

0i. . N=0 — 0=> A569



The Variational Bicomplex

= Dedecker, Vinogradov, Tsujishita, 1. Anderson, ...

Bigrading of the differential forms on J°°:

r = # horizontal forms
Q* — @ QT,S

s = # contact forms

Vertical and Horizontal Differentials
dH N O LAE BN Qr—|—1,s
d= dy + dy,
dV QTS Qr,s—|—1



Vertical and Horizontal Differentials

F(z,u™) — differential function
p .
dy F =Y (D,F)dz' — total differential
i=1
dy F' = Z 6uJ — first variation

dy (dz') = dy (dz*) = 0,

dy (6 Zdaz N 05

1=1

dy, (69) =0

l



The Simplest Example

x — independent variable
(z,u) € M = R?
u — dependent variable
Contact (vertical) forms
0 =du—u,dr

0, =du, —u,, dx

9:1::1: - dumm — Uppy dx



0 =du—u,dz, 0, =du, —u,,dr, 0. =du,, —u,_dz
Differential:
dF:g—i daz+g—5 du+gi; dum—}-aiim du, 4
= (D;I;F)d$+g—§9+ gi 0. + 8(11 0 +--
=dy F+d,F
Total derivative:
DmF:g—i%—g—ium%—gZ u$$+8iix U, A



R — Q0.0

dm

The Variational Bicomplex

dm

du

du

dm

dm

dm

du

dm

dy




R — Q0.0

dm

The Variational Bicomplex

dyv

Ql,O

dm

du

du

dm

Lagrangians

dm

dm

du

dm

dy




R — Q0.0

The Variational Bicomplex

dv
91,3 du
dy
1,2 dum
dy
11 9m
dyv
Ql,O du
Lagrangians

PDEs

dm

dm

du

dm

dyv

Qp_]-ao

(Euler—Lagrange)

dy




R — Q9.0

The Variational Bicomplex

dv
91,3 dn
dy
1,2 dum
dy
1,1 du
dyv
Ql,O dn
Lagrangians

PDEs

dm

dm

du

dm

dyv

Qp_]-ao

(Euler—Lagrange)

)

T Fg
1)
1)

Helmholtz conditions



dyv

R — Q9.0

conservation laws

The Variational Bicomplex

dyv
91,3 dn
dV‘

1,2 du
dV‘

1,1 _9u
dyv

Ql,O du
Lagrangians

PDEs

dm

dm

du

dm

dyv

Qp_]-ao

(Euler-Lagrange)

)

T Fg
1)
1)

Helmholtz conditions



The Variational Derivative

E = Tro dv

dy, — first variation

m — integration by parts = mod out by image of dj

o QP! S Fr=qrl/d, ot
q
A=Ldx — Z—Ho‘/\ dx — > E_(L)0*Adx
auJ a=1

Variational First Euler-Lagrange

% . . H
problem variation source form



The Simplest Example: (z,u) € M = R?

Lagrangian form: A= L(x,u(”)) de € Qb0



The Simplest Example: (z,u) € M = R?

Lagrangian form: A= L(x,u(”)) de € Qb0
First variation — vertical derivative:
d\ = dy A= dy, L Ndx
oL oL oL
= — 9 9 9 ... d Ql,l
<8u +8uw QC—F&uMj oz T )/\ T €



The Simplest Example: (z,u) € M = R?

Lagrangian form: A= L(z,u™)dr € QL0
First variation — vertical derivative:
d\ = dy A= dy, L Ndx
OL OL OL
= =40 6 6 d Qb1
<8u +(9u5C w+8um ex ¥ >/\ vs
Integration by parts — compute modulo im dy; :
L L L
d\ ~ 0)\= a——Dx 0 + D? O Nornde € 7
ou ou, ou,,
=E(L) O A dx

— FEuler-Lagrange source form.



To analyze invariant variational prob-
lems, invariant conservation laws, invariant
flows, etc., we apply the moving frame
invariantization process to the variational

bicomplex:



Differential Invariants and
Invariant Differential Forms

— invariantization associated with moving frame p.

Fundamental differential invariants
H(z,u™) = 1(z") I (z,u™) = 1(ug)
Invariant horizontal forms
w' = 1(dz?)

Invariant contact forms

95 = u(65)



The Invariant “Quasi—Tricomplex”

Differential forms

Q= Q"
Differential
d’}-{ : Qr,s _ Qr+1,s
dV : Qr,s _ Qr,s—l—l
dW : Qr,s _ Qr—l,s—i—Q

invariantization and differentiation do not commaute:

d () #£ 1(d2)



The Universal Recurrence Formula

Q@) = dD) + 3 V5 ALV, ()]

k=1
V{,...,V, — Dbasis for g — infinitesimal generators
vl ...,v" — invariantized dual Maurer—Cartan forms

The invariantized Maurer—Cartan forms are uniquely determined
as solutions to the recurrence formulae for the phantom
differential invariants.



d0(Q) = 1(dQ) + il A L[V (Q)

* %k x  All identities, commutation formulae, syzygies, etc.,
among differential invariants and, more generally, the invariant
variational bicomplex follow from this universal formula by
letting 2 range over the basic functions and differential forms!

% &k x  Moreover, determining the structure of the differential
invariant algebra and invariant variational bicomplex requires
only linear differential algebra, and not any explicit formulas
for the moving frame, the differential invariants, the invariant
differential forms, or the group transformations!



Euclidean plane curves

Fundamental normalized differential invariants

(z)=H =0
v(u)=1,=0 phantom diff. invs.
v(u,) =1, =0
Wuge) ==k (Uyy) = =Ry (Uyyyy) = Iy = kg + 3K
In general:
L(F (2 Uy, Uy Uy s Uy - -+ ) = F(0,0,0, , kg, kg + 367, )




Left moving frame:

=T

=u =tan "~ u

dy = (cos

+ u,,sin ¢) dz + (sin¢) 0

Fully invariant arc length form:

w=(dr) =

Invariant contact forms

v =1(0) =

0

Vv1+u2




Prolonged infinitesimal generators

v, = 0,, v, =0, vy=—ud, +z0,+ (1+u2)d, +3u,u,,d

T ~Ug

Basic recurrence formula

Au(F) = UdF) + 1(vy(F)) V! + (v, () 12 + i(vy(F)) 1
Use phantom invariants
0=dH = u(dz) + 1(vy(2)) " + (vo(2)) V* + 1(v3(2)) v’ = w + 17,
0= dly = u(du) + t(vy(w)) v + u(va(w)) v + o(va(u) V¥ =9 + 2,

0= dl} = e(duy) + e(vy(uy)) " + 1(va(uy)) VP + (v3(u,)) v° = K + 9y + 17

to solve for the Maurer—Cartan forms:




Recurrence formulae:
d/{ = dL(U’x:c) = [’(du:cx) + [’(Vl(uac:c)) Vl + [’(V2(u:cac)) VQ + [’(V3(u:cac)) V3

de+0,,.)—t(Bu,u,,) (kw+9,) = Iyw+Y,.

Trx

Therefore,
Dk = k, = I3, dyk =19, = (D?+ )V

where the final formula follows from the contact form recurrence formulae
dd =du(0,) =AY, dI, =duf) =AWy K'Y~ kI, AD

which imply
9, =DV, V9, =DI, +r>9 = (D*+x*)V



Similarly,
dw = o(d*z) + v A (v (dz)) + 2 A u(vy(de)) + V3 A u(vs(d))

=(kw+9) AN(u,de+0) =rkw NI+ 39, AD.

In particular,
dyw=—-KVNw

Key recurrence formulae:

dy k= (D* + k%) 0 dyw=-kdAw




Plane Curves

Invariant Lagrangian:

Euler-Lagrange form:

Invariant Integration by Parts Formula

Fd,(DH)Aw ~ —(DF)d,HAw— (F-DH)dy,®

dyA=d, P Aw+ Pd,w

oP
Z % dvfin/\W‘i‘Pde

n

~ E(P) dyk Nw+H(P) dy,w



Vertical differentiation formulae

dy k = A1) — invariant variation of curvature

dyw=BW)ANw — invariant variation of arc length

dy A ~ E(P)AW) Aw+H(P) B Aw
~ [A*E(P)—B*H(P)| YA w

Invariant Euler-Lagrange equation

A*E(P) — B*H(P) =0




Euclidean Plane Curves

dy, k= (D* + k)9
Invariant variation of curvature:

A:DQ—F/{ZQ A*:D2—|—l€2

dyw=—-—KUVANw
Invariant variation of arc length:

B=—-k B*=—k

Fuclidean—invariant Fuler-Lagrange formula:

E(L) = A*¢(P) — B*H(P) = (D? + %) £(P) + s H(P).



Invariant Plane Curve Flows

G — Lie group acting on R?
C'(t) — parametrized family of plane curves

G—invariant curve flow:

dC
— =V =I7t+Jn
dt *

e [, J — differential invariants

e t — ‘“unit tangent”

e n — ‘“unit normal”



t, n — basis of the invariant vector fields dual to the invariant
horizontal and order 0 contact one-forms:

(t;w) =1, (n;w) =0,
(t;v) =0, (n;v)=1.

C,=V=It+Jn

e The tangential component It only affects the underlying
parametrization of the curve. Thus, we can set I to be
anything we like without affecting the curve evolution.

e There are two principal choices of tangential component:



Normal Curve Flows

C,=Jn
Examples — Euclidean—invariant curve flows
e C,=n — geometric optics or grassfire flow;
o ,=kKn — curve shortening flow;
e C,=r'Y3n — equi-affine invariant curve shortening flow:
Ct — nequi—afﬁne 3

=k, n — modified Korteweg—deVries flow;

C
e (, =rk,,n — thermal grooving of metals.



Intrinsic Curve Flows

Theorem. The curve flow generated by
v=It+Jn
preserves arc length if and only if

B(J)+DI=0.

D — invariant arc length derivative

dyw = BW) Aw

B — invariant variation of arc length operator



Normal Evolution of Differential Invariants

Theorem. Under a normal flow C;, = Jn,

Ok Ok,

Moan. e .
dy k= A, (0), dyk, = A, (V).
A=A — invariant variation of k

A

.. = DA, + Kk, — invariant variation of &,



Euclidean—invariant Curve Evolution

Normal flow: (), =Jn

Ok 0 9

5 =A_(J)= (D" + k*) J,

a"{s 3 2

o =A,. (J)=(D°+~r"D+3kk,)J.

Warning: For non-intrinsic flows, 0, and 9, do not commute!

Grassfire low: J =1
Ok o oK

— = K~ S =3kKkkK
ot

ot S

— caustics



Euclidean Signature Evolution

Evolution of the Euclidean signature curve
ky =D(t, k).

G fire flow:
rassfire flow - e -
—— =3kD — r°— .
ot Ok

Curve shortening flow:

®
%—t =®° P, — kP, + 4K>D.

Modified Korteweg-deVries flow:

®
%—t =33, +39°P,_P,__ + 3xkD°



Canine Left Ventricle Signature

Original Canine Heart

MRI Image Boundary of Left Ventricle



Smoothed Ventricle Signature




Intrinsic Evolution of Differential Invariants

Theorem.

Under an arc-length preserving flow,

k,=R(J)  where R=A-rD'B (%)

In surprisingly many situations, (*) is a well-known integrable
evolution equation, and R is its recursion operator!

—

—
—
—

Hasimoto
Langer, Singer, Perline
Mari—Beffa, Sanders, Wang

Qu, Chou, and many more ...



Euclidean plane curves
G = SE(2) = SO(2) x R?
dy, k = (D + K%) 0, dyw=—-KkINw
— A =D?+ Kk, B=—-k

R:A—/{SD_IB:D2—|—/€2—|—KJSD_1'/€

Rt — R("is) — Rsss + %R2Rs

—> modified Korteweg-deVries equation



Equi-affine plane curves

G = SA(2) = SL(2) x R?
dy, k = A1), dyw = B(W)ANw
A:D4+§/£D2+§/£SD+%/£SS+%H;2,
B:%D2—%Ii,
R=A-rD'B
:D4—|—%RD2—|—%RS’D—|—%RSS—|—%R2—|—%RS'D_1-li

_ _ 4 2,5 92
Iit—R(KJS)—l€58+2l€/§)88—|—§lis—|—§lﬁl Ky

—> Sawada—Kotera equation



A=

(

dyrk\ V4 B
nr)=Aln) s

D? 4 (k% — 7%

2_7'Dg L 3KT, — QKSTDS n KTyg — KgTg + QK3
K K2 K2
—217D, — 7,
Ips Tspey K TQDS
K K K

B=(x 0)




Recursion operator:

— vortex filament flow

—> mnonlinear Schrodinger equation (Hasimoto)



