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Abstract. This paper surveys several new developments in the analysis of Lie pseudo-
groups and their actions on submanifolds. The main themes are direct construction of
Maurer–Cartan forms and structure equations, and the use of equivariant moving frames
to analyze the algebra of differential invariants and invariant differential forms, including
generators, commutation relations, and syzygies.

1. Introduction.

Inspired by Galois’ introduction of group theory to solve polynomial equations, Lie
founded his remarkable theory of transformation groups for the purpose of analyzing
and solving differential equations. In Lie’s time, abstract groups were as yet unknown,
and hence he made no significant distinction between finite-dimensional and infinite-
dimensional group actions. However, since then the two theories have evolved in radi-
cally different directions. Through the work of Cartan, Weyl, Schreier and Chevalley, the
modern abstract theory of finite-dimensional Lie groups has become well-established and
widely used throughout mathematics and its physical applications. In contrast, the theory
of infinite-dimensional pseudo-groups remains in a surprisingly primitive state, and there
is still no generally accepted object to represent an abstract Lie pseudo-group.
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The importance of Lie pseudo-groups is accentuated by their appearance in a broad
range of physical and geometrical contexts, including gauge theories in physics, [6], Hamil-
tonian mechanics, symplectic and Poisson geometry, [53, 63], conformal geometry and
conformal field theory, [23, 25], the geometry of real hypersurfaces [20], foliations and
characteristic classes, [28, 78], symmetry groups of both linear and nonlinear partial differ-
ential equations, [63], Vessiot’s method of group splitting for producing explicit solutions
to nonlinear partial differential equations, [52, 61, 76, 92], fluid and plasma mechanics,
[2, 12, 63], meteorology, [5, 81], integrable (soliton) equations, [22], equivalence problem
for differential operators and Laplace invariants of hyperbolic systems, [84], mathemati-
cal morphology and computer vision, [83, 94], and geometric numerical integration, [54].
And keep in mind that any sufficiently regular local Lie group action qualifies as a Lie
pseudo-group.

For historical contributions to the subject, we refer the reader to the original papers of
Lie, Medolaghi, Tresse, and Vessiot, [45, 44, 57, 88, 92], for the classical theory of pseudo-
groups, to Cartan, [15, 17], for their reformulation in terms of exterior differential systems,
and [24, 35, 36, 42, 43, 46, 60, 77, 80, 85, 86, 87] for a variety of modern approaches. Re-
cent advances began with [26], that proposed a new approach to the classical theory
of moving frames for general transformation groups. In the case of finite-dimensional Lie
group actions, the reformulation of a moving frame, [13, 29], as an equivariant map back to
the Lie group, [27], proved to be amazingly powerful, sparking a host of new tools, new re-
sults, and new applications, including complete classifications of differential invariants and
their syzygies, [30, 68, 70], equivalence, symmetry, and rigidity properties of submanifolds,
[27], computation of symmetry groups and classification of partial differential equations,
[48, 58], invariant signatures in computer vision, [3, 7, 11, 66], joint invariants and joint
differential invariants [8, 66], rational and algebraic invariants of algebraic group actions
[31, 32], invariant numerical algorithms [37, 67, 94], classical invariant theory [4, 65],
Poisson geometry and solitons [49, 50, 51], the calculus of variations and geometric flows,
[38, 69], invariants and covariants of Killing tensors, with applications to general relativity,
separation of variables, and Hamiltonian systems, [55, 56], and invariants of Lie algebras
with applications in quantum mechanics, [9]. Subsequently, building on the examples pre-
sented in [26], a comparable moving frame theory for general Lie pseudo-group actions
was established, [71, 72, 73], and applied to several significant examples, [18, 19].

The present survey begins with the basic definitions of pseudo-group and Lie pseudo-
group, showing that any regular pseudo-group has a canonical Lie completion that pos-
sesses exactly the same local geometry and invariants, [33, 34]. The Maurer–Cartan forms
of a Lie pseudo-group are explicitly constructed as invariant differential forms on the in-
finite pseudo-group jet bundle, [71]. Moreover, the structure equations are found by
restricting the explicit diffeomorphism structure equations to the kernel of a linear alge-
braic system directly related to the linearized determining equations for the pseudo-group’s
infinitesimal generators. A large number of examples arise as symmetry groups of differ-
ential equations, and we provide a quick review of the classical Lie infinitesimal method
of calculating symmetry groups, [63], and then show how, using the preceding result, the
structure of the symmetry group of a system of differential equations can be directly found
without integration of the determining equations, [18, 71]. We then review the extension
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of the equivariant moving frame theory to pseudo-group actions on jets of submanifolds,
leading to an algorithmic procedure for constructing the differential invariants and invari-
ant differential forms, [19, 72]. The final section reviews how the moving frame calculus is
used to determine the structure of the differential invariant algebra, including classification
of generators, commutation relations, and differential syzygies, [73]. The mathematical
machinery underlying all these results is the variational bicomplex on infinite order jet
spaces, [1, 38], which also lies at the heart of the modern geometric approach to differ-
ential equations, variational problems, symmetries and conservation laws, characteristic
classes, and elsewhere.

2. Pseudo–Groups and Lie Pseudo–Groups.

Let us begin by recalling the basic definitions. To avoid technical complications,
we will work in the analytic category throughout. Thus, by a local diffeomorphism of
an analytic manifold M we mean a one-to-one analytic map φ :U → V defined on open
subsets U, V = φ(U) ⊆M , with analytic inverse φ−1 :V → U . Adapting the constructions
to smooth (C∞) pseudo-groups requires some additional care, as noted below.

Definition 2.1. A collection G of local diffeomorphisms of a manifold M is called a
pseudo-group if

• if U ⊂M is an open set and φ :U →M is in G, then φ | V ∈ G for all open V ⊂ U .

• if Uν ⊂ M are open subsets, U =
S

ν Uν , and φ :U → M is a local diffeomorphism
with φ |Uν ∈ G for all ν, then φ ∈ G.

• if φ :U → M and ψ :V → M are two local diffeomorphisms belonging to G with
φ(U) ⊂ V , then ψ ◦φ ∈ G.

• if φ :U →M is in G, and V = φ(U), then φ−1:V →M is also in G.

Note that the second and fourth requirements imply that G necessarily contains the
identity diffeomorphism: 11(z) = z for all z ∈M . The simplest example is the collection of
local analytic diffeomorphisms of an analytic manifold M , denoted D = D(M). All others
are sub-pseudo-groups thereof.

Ehresmann’s geometric formalization of the calculus of Taylor polynomials and series
through jet bundles, [24], was expressly introduced for analyzing pseudo-group actions.
For each 0 ≤ n ≤ ∞, let D(n) ⊂ Jn(M,M) denote the bundle formed by the nth order jets
of local diffeomorphisms. In particular, D(0) = M ×M , while for n ≥ 1, by the Inverse
Function Theorem, D(n) is characterized by the non-vanishing of the Jacobian determinant.
The n jet of a local diffeomorphism φ forms a m-dimensional submanifold jnφ ⊂ D(n). In
computations, we work in local coordinates (z, Z(n)) on D(n) provided by a system of source

coordinates z = (z1, . . . , zm) on M , target coordinates Z = (Z1, . . . , Zm) also on M , and
associated jet coordinates Za

B representing the partial derivatives ∂kφa(z)/∂zb1 · · ·∂zbk

of the local diffeomorphism Z = φ(z), with 1 ≤ a, b1, . . . , bk ≤ m, 1 ≤ k = #A ≤
n. Following Cartan, [16, 17], we will consistently use lower case letters, z, x, u, . . . for
the source coordinates and the corresponding upper case letter Z,X, U, . . . for the target
coordinates of local diffeomorphisms Z = φ(z). For k ≥ n, let πk

n:D(k) → D(n) denote the
standard projection, so πk

n(z, Z(k)) = (z, Z(n)).
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The diffeomorphism jet bundle D(n) forms a groupoid , [47, 93], with source map
σ
(
jnφ|z

)
= z and target map τ

(
jnφ|z

)
= φ(z) = Z. The groupoid multiplication is

induced by composition of diffeomorphisms, and requires that, in any product of diffeo-
morphism jets, the source of the left multiplicand match the target of the right.

Example 2.2. Consider the simplest case M = R with coordinate x. Local coordi-
nates on D(n)(R) are denoted (x,X,Xx, Xxx, . . . , Xn), where Xk corresponds to the kth

derivative of the diffeomorphism X = φ(x) at the source point x. The groupoid multipli-
cation corresponds to composition of Taylor polynomials/series, so that

(X,X,XX,XXX , . . . ) · (x,X,Xx, Xxx, . . . ) = (x,X,XXXx,XXXxx + XXXX2
x, . . . ),

which is only defined when the source coordinate X of the left hand jet matches the target
coordinate of the right hand jet. Higher-order terms can be expressed in terms of Bell
polynomials via the general Fàa–di–Bruno formula, [62, 79].

Given a pseudo-group G ⊂ D, let G(n) ⊂ D(n) denote the corresponding subgroupoid
consisting of the nth order jets of its local diffeomorphisms. To avoid unresolved complica-
tions at singularities, we will impose the following blanket regularity condition throughout.

Definition 2.3. A pseudo-group G ⊂ D is called regular of order n⋆ ≥ 1 if, for all
finite n ≥ n⋆, the pseudo-group jets form an embedded subbundle G(n) ⊂ D(n) and the
projection πn+1

n :G(n+1) → G(n) is a fibration.

The fiber dimension rn = dimG(n)|z, for z ∈M , quantifies the number of independent
pseudo-group parameters of order ≤ n. If rn = r for all n≫ 0, then G is of finite type, and
represents the (local) action of an r-dimensional Lie group G. In this case, the bundles
G(n) →M for n≫ 0 are principal bundles with structure group G.

Definition 2.4. An analytic pseudo-group G ⊂ D is called a Lie pseudo-group if
G is regular of order n⋆ ≥ 1 and, moreover, every local diffeomorphism φ ∈ D satisfying
jn⋆φ ⊂ G(n⋆) belongs to the pseudo-group: φ ∈ G.

In local coordinates, the pseudo-group jet subbundle G(n⋆) ⊂ D(n⋆) is characterized
by a system of n⋆-th order partial differential equations

F (n⋆)(z, Z(n⋆)) = 0, (2.1)

known as the determining system for the pseudo-group. The Lie condition of Definition 2.4
requires that every local solution Z = φ(z) to the determining system is a pseudo-group
transformations. (Global solutions need not be one-to-one, and so may be excluded.)
In most treatments of the subject, an additional integrability or involutivity requirement,
[10, 64, 82], is imposed on the determining system (2.1). However, in the analytic category,
involutivity is, in fact, a direct consequence of regularity, [34].

Theorem 2.5. The determining equations of a regular analytic Lie pseudo-group of

order n⋆ are involutive at some order n ≥ n⋆.
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Proof : Recall that the kth prolongation of a system of differential equations is defined
as the system obtained by appending all (total) derivatives of the original equations of or-
ders ≤ k. We write pr(k) for the prolongation operation. By regularity and analyticity, the
Cartan–Kuranishi Theorem, [10, 14, 41, 82], implies that some projection/prolongation

G̃(n) ≡ πk
n pr(k−n⋆) G(n⋆) ⊂ D(n), k ≥ n ≥ n⋆, is involutive. We claim that G̃(n) = G(n).

Indeed, any solution φ ∈ G to the determining equations G(n⋆) is automatically a solution
to any prolongation and projection thereof, and hence satisfies the involutive system G̃(n).
But G(n) is, by definition, the set of all solution jets of order n, and thus G(n) ⊂ G̃(n). On
the other hand, any solution to G̃(n) is necessarily a solution to the original system G(n⋆)

and thus, since G is, by assumption, a Lie pseudo-group, an element of G. We conclude
that G̃(n) ⊂ G(n), proving their equality. Q.E.D.

In the smooth category, there are no comparable existence theorems for involutive sys-
tems of partial differential equations, and so involutivity must be included in the definition
of a Lie pseudo-group. Indeed, it is conceivable that a C∞ system of partial differential
equations be local solvable and yet not formally integrable due to some “hidden integra-
bility condition” satisfied by its higher order jets that cannot be deduced by prolongation.
In more detail, it may be possible that a smooth pseudo-group G satisfy the conditions
of Definition 2.4, and yet, for some n > n⋆, the nth order pseudo-group jets form a strict
subbundle of the prolonged determining system: G(n) (pr(n−n⋆) G(n⋆), meaning that some
of the differential equations required to specify G(n) for some n > n⋆ do not result from
differentiating its determining system G(n⋆). Finding such an example — or, alternatively,
proving that such does not exist — is a challenging problem.

While the Lie condition of Definition 2.4 imposes a technical restriction on the types
of pseudo-groups to be considered, in a certain sense it is automatic. Namely, any regular
pseudo-group G has a canonical Lie completion G ⊇ G — namely, the set of all analytic
solutions to its determining system G(n⋆) = G(n⋆). Moreover, the original pseudo-group
and its Lie completion are indistinguishable as far as their local geometry, e.g., differential
invariants, the invariant variational bicomplex, etc., is concerned, [34].

Theorem 2.6. Any regular non-Lie pseudo-group can be canonically completed to

a Lie pseudo-group with the same differential invariants and invariant differential forms.

Example 2.7. Let the pseudo-group Gd be given by the diagonal action X = f(x),
Y = f(y), of f ∈ D(R) on the open submanifold M = {x 6= y} ⊂ R2. In terms of the local

coordinates (x, y,X, Y,Xx, Xy, Yx, Yy) on D(1), its first order jets G
(1)
d are subject to the

determining system Xy = Yx = 0, Xx, Yy 6= 0; higher order subbundles G
(n)
d ⊂ D(n) are

obtained by prolongation (differentiation). Its Lie completion Gd ) Gd is the Lie pseudo-
group formed by the general solution to the determining system — namely, X = f(x),
Y = g(y), where f, g ∈ D(R) are independent local diffeomorphisms.

3. Maurer–Cartan Forms and Structure Equations.

Let us turn to the basic structure theory of Lie pseudo-groups. Cartan’s approach,
[16, 17, 35, 87], relies on the prolongation of certain exterior differential systems, [10]. As

5



such, it suffers from several drawbacks. First, in the intransitive case, Cartan’s algorithm
requires an adapted coordinate system that involves the pseudo-group invariants, whose
calculation may not be easy. Secondly, the geometric interpretation of the differential forms
resulting from his intricate prolongation procedure is not so evident. Furthermore, when
applied to finite-dimensional intransitive actions, the resulting structure equations are not

the same as the standard Maurer–Cartan equations for the Lie group; indeed, elementary
abelian Lie group actions may end up with nonzero structure coefficients. Moreover, iso-
morphic pseudo-group actions may admit non-isomorphic Cartan structure equations. We
refer the reader to [59, 75, 90, 91] for further details.

In contrast, our new approach to the structure theory is directly inspired by the
classical invariant Maurer–Cartan forms on a finite-dimensional Lie group. To adapt to
general pseudo-groups, the Maurer–Cartan forms will be regarded as living on the principal
bundles G(n) →M formed by the group transformation jets of sufficiently high order. Gen-
eralizing this construction, the Maurer–Cartan forms of a Lie pseudo-group are identified
as right-invariant† one-forms on the pseudo-group jet bundles G(n). The invariant forms
can, in fact, be explicitly constructed, and the resulting structure equations immediately
established, using only linear algebra, from the pseudo-group’s infinitesimal generators.
This direct approach successfully avoids all of the aforementioned difficulties associated
with Cartan’s method. One can work in arbitrary local coordinates; the geometrical inter-
pretation of the resulting Maurer–Cartan forms is immediate; the structure equations are
intrinsically dual to the commutator equations for the infinitesimal generators, and thus
coincide with the standard Lie group structure equations when the pseudo-group is of finite
type; finally, isomorphic pseudo-groups necessarily have isomorphic structure equations.

The main tool is the powerful variational bicomplex structure possessed by the differ-
ential forms on jet bundles, [1, 89]. The cotangent space on the infinite diffeomorphism
jet bundle D(∞) ⊂ J∞(M,M) naturally splits‡ into horizontal and vertical (contact) com-
ponents. In terms of local coordinates za, Za

B, the horizontal subbundle is spanned by the
one-forms dza = dM za, a = 1, . . . , m, while the vertical subbundle is spanned by the basic
contact one-forms

Υa
B = dG Z

a
B = dZa

B −
m∑

c=1

Za
B,c dz

c, a = 1, . . . , m, #B ≥ 0, (3.1)

distinguished by their vanishing on all diffeomorphism jets j∞φ ⊂ D(∞), [64, 71]. We use
d = dM + dG to denote the induced splitting of the differential. In coordinates,

dM F =

m∑

a=1

(DzaF ) dza, dG F =

m∑

a=1

∑

#B≥0

∂F

∂Za
B

Υa
B , (3.2)

† As always, one needs to make a choice between right and left invariance. For our purposes,
the right version is slightly more convenient.

‡ The splitting only occurs at infinite order. However, computations always take place on finite
order jet bundles.
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for any differential function F (z, Z(n)), with

Dza =
∂

∂za
+

m∑

c=1

∑

#B≥0

Zc
B,a

∂

∂Zc
B

, a = 1, . . . , m, (3.3)

denoting the usual total derivative operators.

Composition of local diffeomorphisms induces an action of the diffeomorphism pseudo-
group D on its jet groupoids D(n), namely, Rφ(jnψ|z) = jn(ψ ◦φ−1)|φ(z) for φ ∈ D. A

differential form µ on D(n) is right-invariant if R∗
φ µ = µ, where defined, for every φ ∈ D.

This action preserves the bicomplex splitting, and so if µ is any right-invariant form, so are
dM µ and dG µ. In particular, the target coordinate functions Za:D(0) → R are obviously
right-invariant. Therefore, their horizontal differentials

σa = dM Za =
m∑

b=1

Za
b dz

b, a = 1, . . . , m, (3.4)

form a right-invariant horizontal coframe, while their vertical differentials

µa = dG Z
a = dZa −

m∑

b=1

Za
b dz

b, a = 1, . . . , m, (3.5)

are the zeroth order contact forms, which are thus also right-invariant. Let DZ1 , . . . ,DZm

be the total derivative operators dual to the horizontal coframe (3.4), satisfying

dM F =

m∑

a=1

(DZaF ) dZa (3.6)

for any differential function F (z, Z(n)). Lie differentiation with respect to DZa preserves
right-invariance, and hence

µa
B = DB

Zµ
a, where DB

Z = DZb1 · · ·DZbk
, a = 1, . . . , m, k = #B ≥ 0, (3.7)

form a basis for the right-invariant contact forms, which are to be viewed as the Maurer–

Cartan forms for the diffeomorphism pseudo-group.

Example 3.1. When M = R, using the coordinate notation of Example 2.2, the
ordinary contact forms are

Υ = dX −Xx dx, Υx = dXx −Xxx dx, Υxx = dXxx −Xxxx dx, (3.8)

and so on. Starting with the target coordinate X , the basic right-invariant horizontal form
is σ = dM X = Xx dx, with dual invariant differentiation

DX = Xx Dx = Xx

(
∂

∂x
+Xx

∂

∂X
+Xxx

∂

∂Xx

+Xxxx

∂

∂Xxx

+ · · ·

)
. (3.9)
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Starting with µ = dGX = Υ, the right-invariant contact forms are µn = Dn
Xµ for n =

0, 1, 2, . . .; explicitly,

µ0 = Υ, µ1 = DXµ =
Υx

Xx

, µ2 = D2
Xµ =

Xx Υxx −Xxx Υx

X3
x

, . . . . (3.10)

These are to be regarded as the Maurer–Cartan forms for the diffeomorphism pseudo-group
D(R).

The structure equations for the diffeomorphism groupoid D(∞) express the differentials
dσa, dµa

B of the Maurer–Cartan forms as linear combinations of wedge products of Maurer–
Cartan forms. They are most concisely formulated as follows, [71]. Let µ[[H ]] denote the
column vector whose components are the invariant contact form-valued formal power series

µa[[H ]] =
∑

#B ≥ 0

1

B!
µa

B H
B, a = 1, . . . , m, (3.11)

depending on the formal parameters H = (H1, . . . , Hm). Further, let dZ = µ+σ = µ[[ 0 ]]+
σ denote column vectors of one-forms whose entries are dZa = µa + σa for a = 1, . . . , m.

Theorem 3.2. The structure equations for the diffeomorphism pseudo-group are

obtained by equating individual coefficients in the formal power series identities

dµ[[H ]] = ∇Hµ[[H ]] ∧
(
µ[[H ]] − dZ

)
, dσ = − dµ[[ 0 ]] = ∇Hµ[[ 0 ]] ∧ σ. (3.12)

Here ∇Hµ[[H ]] =

(
∂µa

∂Hb
[[H ]]

)
denotes the m×m formal power series Jacobian matrix.

Example 3.3. Continuing Example 3.1, when M = R, the Maurer–Cartan form
series is

µ[[H ]] = µ0 + µ1H + 1
2 µ2H

2 + 1
6 µ3H

3 + · · · .

The diffeomorphism structure equations (3.12) take the form

dσ = µ1 ∧ σ, dµ[[H ]] = µ′[[H ]] ∧ (µ[[H ]] − dZ), (3.13)

where
µ′[[H ]] = µ1 + µ2H + 1

2
µ3H

2 + · · ·

is the formal derivative of the Maurer–Cartan form series µ[[H ]] with respect to H, while

µ[[H ]] − dZ = −σ + µ1H + 1
2 µ2H

2 + · · · .

Equating the coefficients of the various powers of H in the second structure equation
(3.13), we recover Cartan’s formulae, [16; eq. (48)], for the structure equations for the
diffeomorphism pseudo-group D(R):

dσ = µ1 ∧ σ, dµn = σ ∧ µn+1 −

[ (n+1)/2 ]∑

j =1

n− 2j + 1

n+ 1

(
n+ 1

j

)
µj ∧ µn+1−j , n ≥ 0.
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As Lie discovered, the key to analyzing pseudo-group actions is to work infinitesimally.
Let g denote the Lie algebra† of infinitesimal generators of the pseudo-group, i.e., the set of
locally defined vector fields (3.14) whose flows belong to G. In local coordinates, a vector
field on M takes the form

v =

m∑

a=1

ζa(z)
∂

∂za
. (3.14)

Let JnTM , for 0 ≤ n ≤ ∞, denote the tangent n-jet bundle. Local coordinates on JnTM
are indicated by

(z, ζ(n)) = ( . . . za . . . ζa
B . . . ), a = 1, . . . , m, 0 ≤ #B ≤ n,

where ζa
B represents the partial derivative ∂Bζa/∂zB . For each n ≥ 0, the subbundle

jng ⊂ JnTM is prescribed by a system of linear partial differential equations

L(n)(z, ζ(n)) = 0. (3.15)

These can be obtained by linearizing the nonlinear determining system (2.1) at the identity
jet, and are hence known as the linearized or infinitesimal determining system for the
pseudo-group. If G arises as the symmetry group of a system of differential equations,
then the linearized determining system (3.15) is the involutive completion of the usual
infinitesimal determining equations obtained via Lie’s algorithm; see Section 4 below for
details.

As with finite-dimensional Lie groups, the structure of a pseudo-group is described
by its invariant Maurer–Cartan forms. A complete system of right-invariant one-forms
on G(∞) ⊂ D(∞) is obtained by restricting (or pulling back) the diffeomorphism Maurer–
Cartan forms (3.4, 7). We use the same notation σa, µa

B for the restricted forms, which are,
of course, no longer linearly independent, but are subject to certain constraints prescribed
by the pseudo-group. Remarkably, these constraints can be explicitly characterized by an
invariant version of the linearized determining equations.

Theorem 3.4. For each n ≥ 0, the homogeneous linear algebraic system

L(n)(Z, µ(n)) = 0 (3.16)

that is obtained from the infinitesimal determining equations (3.15) by formally replacing

the source coordinates za by the corresponding target coordinates Za, and the vector field

jet coordinates ζa
B by the corresponding Maurer–Cartan forms µa

B, serves to define the

complete set of dependencies among the Maurer–Cartan forms µ(n) when restricted to the

pseudo-group jet subbundle G(∞) ⊂ D(∞).

Corollary 3.5. The structure equations for a pseudo-group G are given by restricting

the diffeomorphism structure equations (3.12) to the solution space of (3.16).

† Here, we are using the term “Lie algebra” somewhat loosely, since, technically, the infinites-
imal generators may only be locally defined, and so their Lie brackets only make sense on their
common domains of definition.
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Example 3.6. Let M = { (x, u) | u 6= 0 } ⊂ R2. Consider the transitive Lie pseudo-
group G ⊂ D(M) consisting of (local) diffeomorphisms of the form

X = f(x), U =
u

f ′(x)
, (3.17)

where f(x) ∈ D(R) is an arbitrary local diffeomorphism. The pseudo-group jets are ob-
tained by differentiation of the target coordinates X,U with respect to the source coordi-
nates x, u; to first order,

X = f, U =
u

fx

, Xx = fx, Xu = 0, Ux = −
u fxx

f2
x

, Uu =
1

fx

. (3.18)

The determining system is obtained by implicitization, whence

Uu =
U

u
, U Xx = u, Xu = 0. (3.19)

This system is involutive, and so the higher order determining systems can be obtained by
repeated differentiation of (3.19).

The infinitesimal generators of (3.17) are all vector fields of the form

v = ξ(x, u)
∂

∂x
+ ϕ(x, u)

∂

∂u
= a(x)

∂

∂x
− a′(x) u

∂

∂u
, (3.20)

where a(x) is an arbitrary analytic function. The coefficients ξ(x, u) = a(x), ϕ(x, u) =
−u a′(x), form the general solution to the first order infinitesimal determining system

ϕu =
ϕ

u
= − ξx, ξu = 0, (3.21)

which is obtained by linearizing the determining system (3.19) at the identity jet.

The Maurer–Cartan forms are obtained by restricting the diffeomorphism Maurer–
Cartan forms to the subbundle defined by the pseudo-group determining equations (3.19).
The zeroth and first order Maurer–Cartan forms are

σ = Xx dx+Xu du = fx dx, τ = Ux dx+ Uu du =
−u fxx dx+ fx du

f2
x

,

µ = dX −Xx dx−Xu du = Φ, ν = dU − Ux dx− Uu du = −
uΦx

f2
x

,

µX =
Φx

fx

, νU = −
Φx

fx

, µU = 0, νX =
u fxx Φx − u fx Φxx

f4
x

,

(3.22)

where

Φ = df − fx dx, Φx = dfx − fxx dx, , Φxx = dfxx − fxxx dx, . . . ,

are contact forms in the pseudo-group parameters. Applying the replacement rules of
Theorem 3.4 to the linearized determining equations (3.21), the Maurer–Cartan forms
(3.22) are constrained by the linear algebraic constraints

νU =
ν

U
= −µX , µU = 0. (3.23)
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Higher-order constraints can be produced by formal prolongation, i.e., applying the re-
placement rules to the derivatives of (3.23). The remaining independent one-forms σ, τ, µ,
ν, νX , νXX , νXXX , . . . form a right-invariant coframe on G(∞). As in Corollary 3.5, the
pseudo-group structure equations

dσ = − dµ = −
ν ∧ σ

U
,

dτ = − dν = νX ∧ σ +
ν ∧ τ

U
,

dµX =
νX ∧ σ

U
,

dνX = − νXX ∧ σ −
νX ∧ (τ + 2 ν)

U
,

(3.24)

and so on, are obtained by restriction of the diffeomorphism structure equations to (3.23).

4. Symmetries of Differential Equations.

One of the most common arenas in which Lie pseudo-groups arise is, not surprisingly,
in Lie’s theory of symmetry group of differential equations. In this section, we review the
basic ideas. Applications of symmetry groups to the construction of explicit solutions,
integration of ordinary differential equations, construction of explicit solutions to partial
differential equations, determination of conservation laws, etc., can be found, for instance,
in [12, 63, 64].

As before, let M be an analytic, m-dimensional manifold. Fix 0 < p < m. For each
integer 0 ≤ n ≤ ∞, let Jn = Jn(M, p) denote the nth order submanifold jet bundle, which is
prescribed by the equivalence relation of nth order contact of p-dimensional submanifolds
N ⊂ M . For k ≥ n, we use πk

n: Jk → Jn to denote the natural projection. Introducing
local coordinates z = (x, u) on M , we consider the first p components x = (x1, . . . , xp) as
independent variables, and the latter q = m−p components u = (u1, . . . , uq) as dependent
variables, and we identify graphs u = f(x) as submanifolds. The induced coordinates on
Jn are denoted by z(n) = (x, u(n)), with components xi and uα

J = ∂Juα/∂xJ representing
the derivatives of the u’s with respect to to the x’s of orders 0 ≤ #J ≤ n. A real-valued
function F (x, u(n)), defined on an open subset of Jn, is known as a differential function.

A system of nth order (partial) differential equations in p independent variables and
q dependent variables forms a subvariety S ⊂ Jn. A (classical) solution to the system is
a p-dimensional submanifold N ⊂ M whose jet lies entirely in the subvariety: jnN ⊂ S.
We assume that the system is regular , meaning that it forms a submanifold, and hence
S ⊂ Jn is prescribed by the vanishing of a set of differential functions:

∆ν(x, u(n)) = 0, ν = 1, . . . , l, (4.1)

whose Jacobian matrix has maximal rank at all jets z(n) = (x, u(n)) ∈ S. We also assume
the system is locally solvable, [63], meaning that there exists at least one solution passing
through every jet in S.

In general, by a symmetry of the system (4.1) we mean a transformation which takes
solutions to solutions. Following Lie, we work infinitesimally. The prolongation of a vector
field on M to the submanifold jet bundle Jn has the form

v(n) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

∑

#J≤n

ϕα
J (x, u(n))

∂

∂uα
J

, (4.2)
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whose coefficients are given by the prolongation formula

ϕα
J (x, u(n)) = DJ

(
ϕα(x, u) −

p∑

i=1

ξi(x, u) uα
i

)
+

p∑

i=1

ξi(x, u) uα
J,i, (4.3)

first stated in this form in [62]. Here

Di =
∂

∂xi
+

q∑

α=1

∑

#J ≥ 0

uα
J,i

∂

∂uα
J

, i = 1, . . . , p, (4.4)

are the total derivatives on Jn, while DJ = Dj1
· . . . · Djk

for k = #J ≥ 0.

Theorem 4.1. A connected Lie pseudo-group G forms a symmetry group of the

regular system of differential equations S ⊂ Jn if and only if its prolonged infinitesimal

generators are everywhere tangent to S.

In local coordinates, the tangency condition leads to the classical infinitesimal sym-
metry criterion

v(n)(∆ν) = 0, ν = 1, . . . , r, whenever ∆ = 0. (4.5)

This forms a large over-determined linear system of partial differential equations for the
coefficients ξi, ϕα of the infinitesimal symmetry generator v, known as the infinitesimal

determining equations for the symmetry pseudo-group of the original system.

Example 4.2. The celebrated Korteweg–deVries (KdV) equation, [63], is

ut + uxxx + uux = 0. (4.6)

According to (4.5), a vector field

v = τ(t, x, u)
∂

∂t
+ ξ(t, x, u)

∂

∂x
+ ϕ(t, x, u)

∂

∂u
(4.7)

forms an infinitesimal symmetry of the KdV equation if and only if

v(3)(ut + uxxx + uux) = ϕ t + ϕxxx + uϕx + uxϕ = 0 whenever ut + uxxx + uux = 0.

Here ϕ t, ϕx, ϕxxx are, respectively, the coefficients of ∂ux
, ∂ux

, ∂uxxx
in the prolongation

of (4.7). Substituting the prolongation formula (4.2), and equating the coefficients of the
independent derivative monomials to zero, leads to the infinitesimal determining equations

τx = τu = ξu = ϕt = ϕx = 0, ϕ = ξt −
2
3 uτt, ϕu = −2

3 τt = −2ξx. (4.8)

Differentiation implies that all the second and higher order derivatives vanish. The general
solution

τ = c1 + 3c4t, ξ = c2 + c3t+ c4x, ϕ = c3 − 2c4u,

defines the four-dimensional KdV symmetry algebra, spanned by

v1 = ∂t, v2 = ∂x, v3 = t∂x + ∂u, v4 = 3 t∂t + x∂x − 2u∂u. (4.9)
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The action of the KdV symmetry group GKdV can be obtained by composing the flows of
the symmetry algebra basis:

(T,X, U) = exp(λ4v4) ◦ exp(λ3v3) ◦ exp(λ2v2) ◦ exp(λ1v1)(t, x, u)

=
(
e3λ4(t+ λ1), e

λ4(λ3t+ x+ λ1λ3 + λ2), e
−2λ4(u+ λ3)

)
.

(4.10)

To obtain the structure equations, as in (3.16), we substitute (t, x, u) 7→ (T,X, U) and
(τ, ξ, ϕ) 7→ (µt, µx, µu) into the infinitesimal determining equations (4.8), resulting in the
following linear algebraic relations among the first order diffeomorphism Maurer–Cartan
forms:

µt
X = µt

U = µx
U = µu

T = µu
X = 0, µu = µx

T − 2
3
Uµt

T = 0, µu
U = −2

3
µt

T = −2µx
X ,

while all the second and higher order forms are zero. Solving this homogeneous linear
system, we find that there are precisely 4 independent invariant contact forms, namely
µt, µx, µu, µt

T , which reflects the fact that GKdV is a four-dimensional Lie group. The
structure equations of the complete invariant coframe are obtained by restricting the full
diffeomorphism structure equations:

dσt = µ4 ∧ σt, dσx = µ3 ∧ σt + 2
3 Uµ

4 ∧ σt + 1
3 µ

4 ∧ σx, dσu = − 2
3 µ

4 ∧ σu,

dµ1 = −µ4 ∧ σt, dµ2 = −µ3 ∧ σt − 2
3 Uµ

4 ∧ σt − 1
3 µ

4 ∧ σx, dµ3 = 2
3 µ

4 ∧ σu, dµ4 = 0,

where σt, σx, σu are the invariant horizontal forms. This coframe lives on the principal

bundle G
(1)
KdV . The classical Maurer–Cartan equations for g

∗
KdV are obtained by restricting

to an individual target fiber, where Z = (T,X, U) are fixed:

dµ1 = −µ1 ∧ µ4, dµ3 = 2
3 µ

3 ∧ µ4,

dµ2 = −µ1 ∧ µ3 − 2
3 Uµ

1 ∧ µ4 − 1
3µ

2 ∧ µ4, dµ4 = 0.
(4.11)

Observe that the target coordinate U appears in the structure equations (4.11), which
indicates that the Maurer–Cartan basis for the fiber cotangent space varies from point
to point. Of course, since we are dealing with a finite-dimensional Lie group action,
one can make a Z dependent change of Maurer–Cartan basis that results in structure
equations that have constant structure coefficients. In contrast, such a change of basis is not
always possible for infinite-dimensional Lie pseudo-groups, and there may well be essential

invariants that cannot be eliminated from the structure equations. The appearance of
such essential invariants is one of the key impediments to the existence of an abstract
object that can represent the pseudo-group independently of the manifold upon which it
acts. See [16, 75, 90, 91] for additional details.

5. Moving Frames for Pseudo–Groups.

We now turn to the construction, [72, 73], of moving frames for prolonged Lie pseudo-
group actions on submanifold jet bundles. We begin by pulling back the pseudo-group jet
bundle G(n) → M to the submanifold jet bundle via the projection πn

0 : Jn → M , thereby
producing a bundle H(n) → Jn. Local coordinates on H(n) are indicated by (z(n), g(n)),
where the base coordinates z(n) = (x, u(n)) ∈ Jn represent submanifold jets, while the fiber
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coordinates g(n) serve to parametrize the pseudo-group jets. The bundle H(n) also carries
the structure of a groupoid, with source map σ(z(n), g(n)) = z(n), while the target map

τ(z(n), g(n)) = g(n) · z(n) is the prolonged action of a pseudo-group diffeomorphism with n
jet g(n) at the source point z = πn

0 (z(n)) of the submanifold jet z(n).

Definition 5.1. Given a regular Lie pseudo-group G acting on M , a moving frame

of order n is an equivariant local section ρ : Jn → H(n).

Equivariance refers to the groupoid structure on H(n), so that, for a right-equivariant
moving frame, ρ(g(n) · z(n)) = ρ(z(n)) · (g(n))−1 when defined. As in the finite-dimensional
theory, the existence of a moving frame requires that the prolonged pseudo-group action be
free and regular. Regularity means that the pseudo-group orbits form a regular foliation.
In the finite-dimensional Lie group version, freeness at a jet z(n) requires that its isotropy
subgroup be trivial, i.e., g(n) · z(n) = z(n) if and only if g = e is the identity element.
Local freeness requires only that the isotropy subgroup is discrete, and is equivalent to
the orbit through z(n) having the same dimension as the group. But infinite-dimensional
pseudo-groups acting on finite-dimensional spaces inevitably have nontrivial isotropy, and
so the freeness condition must be suitably reformulated.

Definition 5.2. The jet isotropy subgroup of a submanifold jet z(n) ∈ Jn is defined
as Gz(n) = τ−1{z(n) } ∩ σ−1{z(n) } ⊂ H(n). The pseudo-group is said to act freely at

z(n) if Gz(n) = {(z(n), 11(n))}, i.e., the only order n pseudo-group jet g(n) that fixes z(n) is
that of the identity diffeomorphism. The pseudo-group acts locally freely at z(n) if Gz(n) is
discrete.

We note that, when specialized to a finite-dimensional Lie group action, the pseudo-
group freeness Definition 5.2 is slightly more general than the usual requirement that the
isotropy subgroup be trivial. A foundational result, proved in [74] — see also [73] for an
alternative proof of the locally free version — is the persistence of freeness.

Theorem 5.3. For n > 0, if the pseudo-group G acts (locally) freely at z(n) then it

acts (locally) freely at any z(k) ∈ Jk, k > n, with πk
n(z(k)) = z(n).

We say that G acts eventually freely if, for some n > 0, it acts freely on an open subset
Vn ⊂ Jn, and hence on the open subsets Vk = (πk

n)−1Vn ⊂ Jk for any k ≥ n. The minimal
such n is called the order of freeness, and denoted n⋆. The pseudo-group acts locally freely

at z(n) ∈ Jn if and only if the orbit through z(n) has dimension rn = dimG(n)|z, the fiber
dimension of the pseudo-group jet groupoid at a point z = πn

0 (z(n)), which requires, at the
very least, that

rn = dimG(n)|z ≤ dimJn = p+ (m− p)

(
p+ n

p

)
. (5.1)

Thus, freeness serves to bound the number of pseudo-group parameters at each sufficiently
high order, providing a simpler alternative to the Spencer cohomological growth conditions
imposed in [39, 40]. Pseudo-groups having too large a fiber dimension rn (or, loosely,
too many independent parameters), e.g., symplectomorphisms, [53], will, typically, act
transitively on (a dense open subset of) Jn, and thus possess no non-constant invariants.
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Extending our methods and results to non-free pseudo-group actions remains a significant
open problem.

A real-valued function I(z(n)) defined on an open subset of the submanifold jet space is
known as a differential invariant if it is constant on the prolonged pseudo-group orbits, and
hence I(g(n) · z(n)) = I(z(n)) for all (z(n), g(n)) ∈ H(n) such that both z(n) = σ(z(n), g(n))
and g(n) · z(n) = τ(z(n), g(n)) lie in the domain of I. Clearly, any functional combination of
differential invariants is a differential invariant (on the common domain of definition) and
thus we speak, somewhat loosely, of the algebra of differential invariants associated with
the action of the transformation group on submanifolds of a specified dimension. Since
differential invariants may only be locally defined, we should technically work the category
of sheaves of differential invariants, [39, 40]. However, for our local constructions, this
extra level of abstraction only serves to obscure the main ideas, and so we will leave their
sheaf-theoretic reformulation as a simple translational exercise for the cognoscenti.

As in the finite-dimensional version, [27], moving frames are constructed through a
normalization procedure based on a choice of cross-section Kn ⊂ Jn to the pseudo-group
orbits, that is, a transversal submanifold of the complementary dimension. Assuming
freeness, the associated (locally defined) moving frame section ρ: Jn → H(n) is uniquely
characterized by the condition that τ(ρ(z(n))) ∈ Kn. For the infinite-dimensional pseudo-
groups, a new cross-section and corresponding moving frame must be selected at each
order above the order of freeness. We require compatibility of the cross-sections, in the
sense that πk

n(Kk) = Kn for all k ≥ n ≥ n⋆, which implies compatibility of the resulting
moving frames: πk

n(ρ(z(k))) = ρ(πk
n(z(k))). We will simply refer to such a compatible

sequence of moving frames as a moving frame.

Definition 5.4. The invariantization I = ι(F ) of a differential function F : Jn → R is
the unique differential invariant that agrees with F on the cross-section: I | Kn = F | Kn.

In particular, invariantization preserves differential invariants: ι(I) = I, and hence
defines a morphism that projects the algebra of differential functions to the algebra of
differential invariants. In coordinates, invariantization is implemented by first transforming
according to the pseudo-group, and then replacing all the pseudo-group parameters by their
moving frame formulae. In particular, invariantizing the jet coordinate functions yields the
fundamental differential invariants

(H, I(n)) = ( . . . Hi . . . Iα
J . . . ) = ι(x, u(n)).

The combinations defining the cross-section Kn are constant, and called the phantom

differential invariants, while the remaining basic differential invariants form a complete
system of functionally independent differential invariants of order ≤ n. With these in
hand, the invariantization of a general function F (z) is simply implemented by replacing
each jet coordinate by the corresponding fundamental differential invariant:

ι
[
F (x, u(n))

]
= F (H, I(n)). (5.2)

In particular, this allows one to straightforwardly rewrite any other differential invariant
in terms the basic invariants:

J(x, u(n)) = J(H, I(n)) whenever J is a differential invariant, (5.3)
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an elementary but powerful result known as the Replacement Theorem.

To proceed further, we appeal to the variational bicomplex structure on the infinite
order submanifold jet space, [1, 38]. The specification of independent and dependent
variables on M splits the differential one-forms on J∞ = J∞(M, p) into horizontal forms,
spanned by dx1, . . . , dxp, and contact forms, spanned by the basic contact forms

θα
J = duα

J −

p∑

i=1

uα
J,i dx

i, α = 1, . . . , q, 0 ≤ #J. (5.4)

We let πH and πV be the projections onto horizontal and contact components, respectively.
The differential on J∞ splits into horizontal and vertical components, d = dH + dV , where
dH = πH

◦d, dV = πV
◦d, satisfy dH

◦ dH = 0 = dV
◦ dV , while dH

◦ dV = − dV
◦ dH .

The invariantization process induced by a moving frame can also be applied to dif-
ferential forms. Thus, given a differential form ω, its invariantization ι(ω) is the unique
invariant differential form that agrees with ω on the cross-section. An invariantized con-
tact form remains a contact form, while an invariantized horizontal form is, in general,
a combination of horizontal and contact forms. The complete collection of invariantized
differential forms forms the invariant variational bicomplex , [38].

Since this paper will concentrate on the differential invariants, we can safely ignore
any contact forms. (On the other hand, they are required when dealing with invariant
variational problems, [38], or submanifold flows, [69].) We will use the notation ω ≡ ̟
to indicate that two forms differ by a contact form. The horizontal components of the
invariantized horizontal forms

ωi = πH [ ι(dxi) ] ≡ ι(dxi), i = 1, . . . , p. (5.5)

form, in the language of [64], a contact-invariant coframe. The corresponding dual invari-

ant differential operators D1, . . . ,Dp are defined by

dH F =

p∑

i=1

(DiF ) dxi =

p∑

i=1

(DiF )ωi, (5.6)

for any differential function F (x, u(n)). As such, they form a system of (typically non-
commuting — see (6.5) below) differential operators that map differential invariants to
differential invariants.

A collection of differential invariants is called a generating set if every other differential
invariant can be locally expressed as a function of them and their successive invariant
derivatives. The Basis Theorem — see Theorem 7.1 below — states the existence of a
finite generating set of differential invariants of any eventually freely acting Lie pseudo-
group. Furthermore, the differentiated invariants DJIκ are not necessarily functionally
independent, but may be subject to certain functional relations or differential syzygies

that vanish identically:
H( . . . DJIκ . . . ) ≡ 0. (5.7)

The Syzygy Theorem 7.2 states that these all follow from a finite number of generating
syzygies.
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Example 5.5. Let M = R3. Consider the Lie pseudo-group G given by

X = f(x), Y = f ′(x) y + g(x), U = u+
f ′′(x) y + g′(x)

f ′(x)
, (5.8)

where f(x) ∈ D(R) is an arbitrary local analytic diffeomorphism, while g(x) is an arbitrary
analytic function. We are interested in the induced action of G on surfaces S ⊂M , which,
for simplicity, we assume to be graphs of function u = h(x, y). (The constructions can be
readily adapted to parametrized surfaces.) Note that

dH X = fx dx, dH Y = ex dx+ fx dy, (5.9)

where, for convenience, we set e(x, y) = f ′(x) y + g(x), and so ey = fx, fy = 0. The pro-
longed pseudo-group transformations are found by successively applying the dual implicit
differentiation operators

DX =
1

fx

Dx −
ex

f2
x

Dy, DY =
1

fx

Dy,

to U = u+ ex/fx, whereby

UX =
ux

fx

+
exx − ex uy

f2
x

− 2
fxx ex

f3
x

, UY =
uy

fx

+
fxx

f2
x

,

UXX =
uxx

f2
x

+
exxx − exx uy − 2ex uxy − fxx ux

f3
x

+

+
e2x uyy + 3exfxx uy − 4exx fxx − 3ex fxxx

f4
x

+ 8
ex f

2
xx

f5
x

,

UXY =
uxy

f2
x

+
fxxx − fxx uy − ex uyy

f3
x

− 2
f2

xx

f4
x

, UY Y =
uyy

f2
x

,

and so on. The prolonged pseudo-group does not act freely on J1, but is locally free and
locally transitive on the open set {uyy 6= 0} ⊂ J2.

To construct a moving frame, for brevity, we restrict our attention to the case uyy > 0,
and use the coordinate cross-section

x = y = u = ux = uy = 0, uxx = uxy = 0, uyy = 1, uxk = uxk−1y = 0, k ≥ 3. (5.10)

Solving the corresponding normalization equations produces the moving frame formulae

17



for the pseudo-group parameters and the corresponding phantom differential invariant:

X = 0 = ι(x), f = 0,

Y = 0 = ι(y), e = 0,

U = 0 = ι(u), ex = −u fx,

UY = 0 = ι(uy), fxx = −uy fx,

UX = 0 = ι(ux), exx = (uuy − ux) fx,

UY Y = 1 = ι(uyy), fx =
√
uyy ,

UXY = 0 = ι(uxy), fxxx = −
√
uyy

(
uxy + uuyy − u2

y

)
,

UXX = 0 = ι(uxx), exxx = −
√
uyy

(
uxx − uuxy − 2u2uyy − 2uxuy + uu2

y

)
.

(5.11)

By this stage, we have normalized enough parameters to find the first two fundamental
differential invariants of the pseudo-group, namely,

J1 = ι(uxyy) =
uxyy + uuyyy + 2uyuyy

u
3/2
yy

, J2 = ι(uyyy) =
uyyy

u
3/2
yy

, (5.12)

which are obtained by substituting the the moving frame normalizations (5.11) into the
prolonged action formulas for UXY Y , UY Y Y , respectively. Further, substituting the moving
frame formulae into (5.9) fixes the contact-invariant coframe

ω1 = πH(ι(dx)) =
√
uyy dx, ω2 = πH(ι(dy)) =

√
uyy (dy − u dx), (5.13)

and thus the dual invariant differential operators

D1 =
1√
uyy

(Dx + uDy), D2 =
1√
uyy

Dy. (5.14)

As we shall subsequently prove, all of the higher order differential invariants are obtained
by successive invariant differentiation of J1, J2, which thus generate the entire algebra of
differential invariants .

6. Recurrence.

While the invariantization respects algebraic operations, in general, the same is not
true for differentiation. By a recurrence relation, we mean a formula that expresses a
differentiated invariant function or form in terms of the basic differential invariants and
invariant differential forms. The recurrence formulae are the most important new contri-
bution of the equivariant moving frame method, and are the master key that unlocks the
complete structure of the differential invariant algebra and, more generally, the invariant
variational bicomplex for any eventually free pseudo-group action. Remarkably, the recur-
rence formulae can be deduced without knowledge of the explicit formulas for either the
differential invariants, or the invariant differential operators, or the moving frame, or even
the actual pseudo-group transformations! Indeed, they follow directly, using only linear
algebra, from the formulas for the prolonged infinitesimal generators, combined with the
specification of the cross-section normalizations.
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The first step is to pull back the pseudo-group Maurer–Cartan forms to the bundle
H(n); we will continue to denote these forms by µ(n) = ( . . . µa

B . . . ). Let ν(n) =
( . . . νa

B . . . ) be the one-forms on Jn obtained by pulling the latter forms back via the
moving frame section ρ : Jn → H(n), so νa

B = ρ∗µa
B . In view of Theorem 3.4, they are

subject to the linear relations

L(n)(H, I, ν(n)) = 0, n ≥ 0, (6.1)

obtained from the infinitesimal determining equations (3.15) by formally replacing the
source coordinates xi, uα by the corresponding differential invariants Hi = ι(xi), Iα =
ι(uα), and the vector field jet coordinates ζa

B by the one-forms νa
B.

The universal recurrence formula for differential invariants and invariant differential
forms of Lie pseudo-groups can now be stated; a proof can be found in [72].

Theorem 6.1. If Ω is any differential form on Jn, then

d ι(Ω) = ι
[
dΩ + v(n)(Ω)

]
, (6.2)

where the final term denotes the Lie derivative of Ω with respect to the prolonged infinites-

imal generator v(n), and ones uses the rule ι(ζa
B) = νa

B to “invariantize” the derivatives of

the infinitesimal generator coefficients appearing therein.

Each phantom differential invariant is, by definition, normalized to a constant value,
and hence has zero differential. As proved in [72], the corresponding phantom recurrence
formulae form a system of linear algebraic equations which, provided n ≥ n⋆, can be
uniquely solved for the pulled-back Maurer–Cartan forms ν(n). Substituting the resulting
expressions into the remaining, non-phantom recurrence formulae leads to a complete
system of recurrence relations. Here, we only require the horizontal components of these
relations. Each horizontal pulled-back Maurer–Cartan form γa

B = πHν
a
B is an invariant

linear combination of the contact-invariant coframe ωi, cf. (5.5).

In particular, choosing Ω = dxi to be a basis horizontal form, the horizontal component
of the resulting recurrence relation (6.2) is

dH ωi ≡ d ι(dxi) = ι(d(dxi) + v( dxi)) = ι(dξi) ≡ ι




p∑

j =1

Djξ
i dxj





=

p∑

j =1

ι

(
∂ξi

∂xj
+

q∑

α=1

uα
j

∂ξi

∂uα

)
∧ ι(dxj) ≡

p∑

j =1

(
γi

j +

q∑

α=1

Iα
j γ

i
α

)
∧ ωj .

(6.3)

Replacing the pulled back first order horizontal Maurer–Cartan forms γi
j , γ

i
α, by their

expressions resulting from solving the phantom recurrence formula produces the explicit
recurrence formulas

dH ωi = −
∑

j<k

Y i
jk ω

j ∧ ωk. (6.4)
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The commutator invariants Y i
jk appearing in (6.4) also provide the coefficients in the

commutator formulae for the invariant differential operators

[Dj,Dk ] = Dj Dk −Dk Dj =

p∑

i=1

Y i
jk Di. (6.5)

Example 6.2. Return to the pseudo-group G treated in Example 5.5. To establish
the recurrence relations for the invariantly differentiated functions and forms, we first write
out its infinitesimal generator†

v = a(x)
∂

∂x
+
[
y ax(x) + b(x)

] ∂
∂y

+
[
y axx(x) + bx(x)

] ∂
∂u

, (6.6)

where a(x), b(x) are arbitrary scalar functions. We prolong the vector field to the sub-
manifold jet bundle Jn using (4.2–3); the resulting coefficients will be linear combinations
of derivatives ak = Dk

xa, bk = Dk
xb. According to our rules, the invariantized coefficient

will be the corresponding invariant linear combination of the pulled-back Maurer–Cartan
forms. We use αk, βk, to denote the horizontal constituents of the Maurer–Cartan forms
corresponding to ak, bk, respectively. We do not need to compute these one-forms directly,
since they will be determined from the recurrence formulae for the phantom differential
invariants. Indeed, let us now write out the recurrence formulae (6.2) for the fundamen-
tal differential invariants. Here, we only display their horizontal components, using ≡ to
denote equality modulo contact forms. We begin with the phantom invariants

0 = d ι(x) = ι(dx+ a) ≡ ω1 + α0,

0 = d ι(y) = ι(dy + y ax + b) ≡ ω2 + β0,

0 = d ι(u) = ι(du+ ϕ) ≡ ι(ux dx+ uy dy + y axx + bx) ≡ β1,

0 = d ι(ux) = ι(dux + ϕx)

≡ ι(uxx dx+ uxy dy + y (axxx − uyaxx) + bxx − uxax − uybx) ≡ β2,

0 = d ι(uy) = ι(duy + ϕx) ≡ ι(uxy dx+ uyy dy + axx − uyax) ≡ ω2 + α2,

0 = d ι(uxx) = ι(duxx + ϕxx) ≡ β3,

0 = d ι(uxy) = ι(duxy + ϕxy) ≡ J1ω
2 − β2 + α3,

0 = d ι(uyy) = ι(duyy + ϕyy) ≡ J1ω
1 + J2ω

2 − 2α1,

0 = d ι(uxxx) = ι(duxxx + ϕxxx) ≡ β4,

0 = d ι(uxxy) = ι(duxxy + ϕxxy) ≡ K1ω
2 − 2J1β1 − β2 + α4,

and so on, where we set K1 = ι(uxxyy), K2 = ι(uxyyy), K3 = ι(uyyyy). Solving the
resulting linear system produces the formulae for the horizontal component of the pulled-

† Actually, to perform this computation, we only need the infinitesimal determining equations;
however, employing their explicit solution, as provided in (6.6), makes the calculations more
compact and easier to follow.
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back Maurer–Cartan forms:

α0 = −ω1, α1 = 1
2 J1 ω

1 + 1
2 J2 ω

2, α2 = −ω2, α3 = −J1 ω
2,

α4 = −K1 ω
2, β0 = −ω2, β1 = β2 = β3 = β4 = 0,

and similarly for the higher order forms. Observe that we did not require the explicit
formulas for either the moving frame map or the original Maurer–Cartan forms to de-
duce these expressions. Substituting these expressions into the next couple of recurrence
relations

dH J1 ≡ d ι(uxyy) = ι(duxyy + ϕxyy)

≡ ι
(
uxxyy dx+ uxyyy dy − 3uxyyax − uyyybx − (2uyy + yuyyy) axx

)

= K1 ω
1 +K2 ω

2 − 3 J1 α1 − J2 β1 − 2α2 =
(
K1 −

3
2 J

2
1

)
ω1 +

(
K2 −

3
2 J1J2 + 2

)
ω2,

dH J2 ≡ d ι(uyyy) = ι(duyyy + ϕyyy) ≡ ι(uxyyy dx+ uyyyy dy − 3uyyyax)

= K2 ω
1 +K3 ω

2 − 3 J2 α1 =
(
K2 −

3
2
J1J2

)
ω1 +

(
K3 −

3
2
J2

2

)
ω2,

produces the explicit recurrence formulae

D1J1 = K1 −
3
2 J

2
1 , D2J1 = K2 −

3
2 J1J2 + 2,

D1J2 = K2 −
3
2 J1J2, D2J2 = K3 −

3
2 J

2
2 .

Comparing the second and third yields the fundamental differential syzygy

D1J2 −D2J1 = −2 (6.7)

among the lowest order differential invariants. Proceeding by induction, we deduce that
all higher-order differential invariants are obtained by successively applying the invariant
total derivative operators to the fundamental invariants J1, J2.

Similarly, we can determine the differentials of the basic invariant horizontal and
contact forms. As in (6.3),

dH ω1 ≡ d ι(dx) = ι
[
d(dx) + v(dx)

]
= ι(da) ≡ ι(ax dx) = α1 ∧ ω

1 = − 1
2 J2 ω

1 ∧ ω2,

dH ω2 ≡ d ι(dy) = ι
[
d(dy) + v(dy)

]
= ι
[
d(y ax + b)

]
≡ ι
[
(y axx + bx) dx+ ax dy

]

= β1 ∧ ω
1 + α1 ∧ ω

2 = 1
2 J1 ω

1 ∧ ω2.

These imply the commutation formula

[D1,D2 ] = 1
2
J2 D1 −

1
2
J1 D2 (6.8)

for the invariant differential operators. Moreover, applying (6.8) to J1 allows us to write

J2 =
2D1D2J1 − 2D2D1J1 + J1 D2J1

D1J1

, (6.9)

and hence J1 alone suffices to generate the entire differential invariant algebra. The syzygy
(6.7) then becomes an identity among the invariant derivatives of J1, as does the modified
commutation formula obtained by substituting (6.9) into (6.8).
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Example 6.3. Let us determine the algebra of differential invariants for the KdV
symmetry group (4.10), acting on surfaces u = h(x, y). The prolonged action is readily
computed via implicit differentiation:

T = e3λ4(t+ λ1), X = eλ4(λ3t+ x+ λ1λ3 + λ2), U = e−2λ4(u+ λ3),

UT = e−5λ4(ut − λ3ux), UX = e−3λ4ux,

UTT = e−8λ4(utt − 2λ3utx + λ2
3uxx), UTX = e−6λ4(utx − λ3uxx), UXX = e−4λ4uxx.

(6.10)

Let us work with the coordinate cross-section

t = x = u = 0, ut = 1, ut + uux > 0.

Solving the corresponding normalization equations T = 0, X = 0, U = 0, UT = 1,
produces the moving frame

λ1 = −t, λ2 = −x, λ3 = −u, λ4 = 1
5

log(ut + uux). (6.11)

The differential invariants are obtained by substituting (6.11) into (6.10):

H1 = ι(t) = 0, H2 = ι(x) = 0, I0 = ι(u) = 0, I10 = ι(ut) = 1,

I01 = ι(ux) =
ux

(ut + uux)3/5
, I20 = ι(utt) =

utt + 2uutx + u2uxx

(ut + uux)8/5
,

I11 = ι(utx) =
utx + uuxx

(ut + uux)6/5
, I02 = ι(uxx) =

uxx

(ut + uux)4/5
,

(6.12)

I30 = ι(uttt) =
uttt + 3uuttx + 3u2utxx + u3uxxx

(ut + uux)11/5
,

I21 = ι(uttx) =
uttx + 2uutxx + u2uxxx

(ut + uux)9/5
,

I12 = ι(utxx) =
utxx + uuxxx

(ut + uux)7/5
, I03 = ι(uxxx) =

uxxx

ut + uux

, . . . .

The Replacement Rule (5.3) allows us to immediately rewrite the KdV equation in terms
of the differential invariants by applying the invariantization process

0 = ι(ut + uux + uxxx) = 1 + I03 =
ut + uux + uxxx

ut + uux

.

The invariantized horizontal coframe

ω1 = πH ι(dt) = (ut + uux)3/5 dt,

ω2 = πH ι(dx) = −u(ut + uux)1/5 dt+ (ut + uux)1/5 dx,
(6.13)

produces the invariant differential operators

D1 = (ut + uux)−3/5Dt + u(ut + uux)−3/5Dx, D2 = (ut + uux)−1/5Dx.

The commutation formula

[D1,D2 ] = 3
5 (I11 + I2

01)D1 −
1
5 (I20 + 6I01)D2 (6.14)
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can be found either directly or through recurrence as in (6.4). The recurrence relations

D1I01 = I11 −
3
5 I

2
01 −

3
5 I01I20, D2I01 = I02 −

3
5 I

3
01 −

3
5 I01I11,

D1I20 = I30 + 2I11 −
8
5
I01I20 −

8
5
I2
20, D2I20 = I21 + 2I01I11 −

8
5
I2
01I20 −

8
5
I11I20,

D1I11 = I21 + I02 −
6
5 I01I11 −

6
5 I11I20, D2I11 = I12 + I01I02 −

6
5 I

2
01I11 −

6
5 I

2
11,

D1I02 = I12 −
4
5 I01I02 −

4
5 I02I20, D2I02 = I03 −

4
5 I

2
01I02 −

4
5 I02I11,

and so on, can be derived using (6.2) as in the previous example. They imply that all
higher order differential invariants can be constructed by repeatedly applying the invari-
ant differential operators to the generating invariants I01, I20. Moreover, applying the
commutation identity (6.14) to I01 and one of its derivatives, e.g., D1I01, produces

D1D2I01 −D2D1I01 = 3
5 (I11 + I2

01)D1I01 −
1
5 (I20 + 6I01)D2I01,

D1D2D1I01 −D2D
2
1I01 = 3

5 (I11 + I2
01)D

2
1I01 −

1
5 (I20 + 6I01)D2D1I01.

We regard this as a pair of linear algebraic equations, which can be solved for I20 and
I11 as rational combinations of derivatives of I01. We conclude that the single differential
invariant I01 generates the entire algebra of KdV differential invariants.

7. The Algebra of Differential Invariants.

The algebra of differential invariants of an eventually free Lie pseudo-group is a non-
commutative differential algebra whose entire structure follows from the recurrence formu-
lae for the differentiated invariants. To establish constructive versions of the fundamental
Basis and Syzygy Theorems, we appeal to techniques from computational algebra, specif-
ically Gröbner bases, [21], which rely on imposing term orderings on the relevant polyno-
mial modules. An issue worth investigation is the intelligent selection of term orderings
for practical computations.

There are two important commutative algebraic modules associated with a prolonged
pseudo-group action on submanifold jets. At each z ∈M , let I|z denote the symbol module,
[10, 82], of the linearized determining system (3.15). As a consequence of involutivity, at
each z ∈ M , the symbols span a submodule I|z ⊂ T of the R[ t ] module T ≃ R[ t ] ⊗Rm

consisting of algebraic polynomials η(t, T ) =
∑

ηa(t)T a depending on t = (t1, . . . , tm) and
linearly on T = (T 1, . . . , Tm). Explicitly, the symbol maps the vector field jet coordinate ζa

B

for B = (b1, . . . , bk) to the monomial tBT
a = tb1 · · · tbk

T a. The symbol of a linear function
of the vector field jets is the polynomial constructed by applying the linear symbol map
to its highest order terms.

Analogously, let S ≃ R[s] ⊗Rq denote the R[s] module consisting of polynomials
σ(s, S) =

∑q
α=1 σα(s)Sα depending on s = (s1, . . . , sp) and linearly on S = (S1, . . . , Sq).

At each submanifold 1-jet z(1) = (x, u(1)) = (. . . xi . . . uα . . . uα
i . . .) ∈ J1, we define a linear

map β : Rm × Rm → Rm by (s, S) = β(z(1); t, T ), with components

si = ti +

q∑

α=1

uα
i tp+α, Sα = T p+α −

p∑

i=1

uα
i T

i. (7.1)
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The linear map β acts on symbol polynomials via pull-back:

β∗
[
σ(s, S)

]
= σ

(
β(z(1); t, T )

)
.

The prolonged symbol module J |z(1) ⊂ S at z(1) ∈ J1 is defined as the inverse image of
the symbol module I|z ⊂ T at z = π1

0(z
(1)) under the pull-back map:

J |z(1) = (β∗)−1(I|z) =
{
σ
∣∣ β∗(σ) ∈ I|z

}
. (7.2)

The invariantization process associated with a moving frame acts coefficient-wise on
prolonged symbol polynomials, taking

σ(x, u(1); s, S) =

q∑

α=1

∑

#J ≥ 0

hJ
α(x, u(1)) sJS

α,

say, to

σ̃(H, I(1); s, S) = ι
[
σ(x, u(1); s, S)

]
=

q∑

α=1

∑

#J ≥ 0

hJ
α(H, I(1)) sJS

α. (7.3)

We let J̃ |(H,I(1)) = ι(J |(x,u(1))) denote the invariantized prolonged symbol module, and

J̃ >n⋆ |(H,I(1)) the submodule containing those polynomials that have degree > n⋆, the

order of freeness, in the s’s. In particular, if G acts transitively on J1 and we use a minimal
order moving frame, then the fundamental differential invariants (H, I(1)) are all constant,
and so the invariantized prolonged symbol module is independent of the jet.

We identify the invariantized polynomial (7.3) with the differential invariant

Iσ̃ =

q∑

α=1

∑

#J ≥ 0

hJ
α(H, I(1)) Iα

J . (7.4)

This collection of differential invariants turns out to be much better adapted to the struc-
ture of the differential invariant algebra, since their recurrence formulae (6.2) can be shown
to take the form

Di Iσ̃ = Isi σ̃ +Mσ̃,i, (7.5)

in which, when deg σ̃ > n⋆, the leading term Isi σ̃ is strictly of higher order than the
correction term Mσ̃,i. Iteration of (7.5) underlies the proof of a Constructive Basis Theorem
for the differential invariant algebra, [73].

Theorem 7.1. Let G be a Lie pseudo-group that acts freely an open subset of the

submanifold jet bundle Jn⋆ for some n⋆ > 0. Then a finite generating system for its

differential invariant algebra consists of :

• the differential invariants I1 = Iσ1
, . . . , Il = Iσl

, where σ1, . . . , σl form a Gröbner basis

for the invariantized prolonged symbol submodule J̃>n⋆ , and, possibly,

• a finite number of additional differential invariants of order ≤ n⋆.
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We are also able to exhibit a finite generating system of differential syzygies. First, the
commutator formulae (6.5) for the invariant differential operators imply the commutator

syzygies

DJ Iσ̃ −DJ̃ Iσ̃ = Mσ̃,J −Mσ̃,J̃ ≡ NJ,J̃,σ̃, whenever J̃ = π(J) (7.6)

for some permutation π. Provided deg σ̃ > n⋆, the right hand side NJ,J̃,σ̃ has strictly lower
order than the terms on the left hand side. Technically, there are an infinite number of
algebraically independent commutator syzygies, although they are all consequences of the
two-sided ideal of invariant differential operators that is finitely generated by the original
commutator identities (6.5).

In addition, any algebraic syzygy that is satisfied by the Gröbner basis polynomials
of the prolonged symbol module provides an additional differential syzygy amongst the
generating invariants. In detail, to each invariantly parametrized polynomial

q(H, I(1); s) =
∑

J

qJ (H, I(1))sJ ∈ R[s],

we associate an invariant differential operator

q(H, I(1);D) =
∑

J

qJ (H, I(1))DJ , (7.7)

where we adopt the normal ordering convention that the latter sum ranges over non-
decreasing multi-indices j1 ≤ j2 ≤ · · · ≤ jk. In view of (7.5), whenever σ̃(H, I(1); s, S) ∈

J̃ |(H,I(1)), we can write

q(H, I(1);D) Iσ̃(H,I(1);s,S) = Iq(H,I(1);s) σ̃(H,I(1);s,S) +Rq,σ̃, (7.8)

where Rq,σ̃ has strictly lower order. Thus, any algebraic syzygy

l∑

ν =1

qν(H, I(1), s) σν(H, I(1); s, S) = 0

among the Gröbner basis polynomials of the invariantized prolonged symbol module in-
duces a syzygy among the generating differential invariants,

l∑

ν =1

qν(H, I(1),D) Iσ̃ν
= R̂q,σ̃,

whose right hand side is of strictly lower order. By combining these constituents, we deduce
a general, constructive Syzygy Theorem for differential invariant algebras of eventually free
Lie pseudo-groups, [73].

Theorem 7.2. Every differential syzygy among the generating differential invariants

is a combination of the following:

• the syzygies among the differential invariants of order ≤ n⋆,

• the commutator syzygies,

• syzygies arising from an algebraic syzygy among the Gröbner basis polynomials.
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Example 7.3. For the pseudo-group treated in Example 5.5, recall that the order
of freeness is n⋆ = 2. Since G acts transitively on an open subset of J1, we can ignore the
dependence of the invariantized symbol polynomials, etc., on (H, I(1)) = const. In view of
the cross-section equations (5.10), the prolonged symbol submodule J>2 is spanned by the
monomials si

1s
j
2 S for i+ j ≥ 3, j ≥ 2. Thus, the Gröbner basis consists of the monomials

σ̃1(s, S) = s1s
2
2 S, σ̃2(s, S) = s32 S, (7.9)

whose corresponding differential invariants J1 = I1,2, J2 = I0,3, appear in (5.12). Since
there are no low order differential invariants, Theorem 7.1 immediately implies that J1, J2

generate the differential invariant algebra. (However, as we learned, they do not form
a minimal generating set.) Furthermore, there is a single generating syzygy among the
Gröbner basis polynomials, namely,

s2 σ̃1 − s1 σ̃2 = 0, (7.10)

which corresponds to the basic differential syzygy (6.7). Theorem 7.2 implies that the
syzygies among the differentiated invariants are all differential consequences of it and the
commutation relation (6.8).

Acknowledgments : Thanks to Francis Valiquette for corrections and comments.
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Springer–Verlag, New York, 1997.

[24] Ehresmann, C., Introduction à la théorie des structures infinitésimales et des
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continues de transformations, Acta. Math. 28 (1904), 307–349.

[93] Weinstein, A., Groupoids: unifying internal and external symmetry. A tour through
some examples, Notices Amer. Math. Soc. 43 (1996), 744–752.

[94] Welk, M., Kim, P., and Olver, P.J., Numerical invariantization for morphological
PDE schemes, in: Scale Space and Variational Methods in Computer Vision, F.
Sgallari, A. Murli and N. Paragios, eds., Lecture Notes in Computer Science,
vol. 4485, Springer–Verlag, New York, 2007, pp. 508–519.

31


