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Abstract. This paper surveys the new, algorithmic theory of moving frames devel-
oped by the author and M. Fels. The method is used to classify joint invariants and joint
differential invariants of transformation groups, and equivalence and symmetry properties
of submanifolds. Applications in classical invariant theory, geometry, and computer vision
are indicated.

1. Introduction.

First introduced by Gaston Darboux, the theory of moving frames (“repéres mobiles”)
is most closely associated with the name of Elie Cartan, [12,13], who molded it into a
powerful and algorithmic tool for studying the geometric properties of submanifolds and
their invariants under the action of a transformation group. While applications to classical
group actions are now ubiquitous in differential geometry, cf. [23,46], the theory and
practice of the moving frame method for more general transformation groups has remained
relatively undeveloped and poorly understood.

In the 1970’s, several researchers, cf. [21, 20, 14, 25], began the attempt to place Car-
tan’s intuitive constructions on a firm theoretical foundation. A significant step was to
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begin the process of disassociating the theory of moving frames from reliance on frame
bundles and connections. More recently, [17, 18], Mark Fels and I formulated a new ap-
proach to the basic moving frame theory that can be systematically applied to general
transformation groups. The key idea is to formulate a moving frame as an equivariant
map to the transformation group. All classical moving frames can be reinterpreted in
this manner, but the new approach applies in far wider generality. Cartan’s construction
of the moving frame by the process of normalization is interpreted with the choice of a
cross-section to the group orbits. Building on these two simple ideas, one may algorithmi-
cally construct moving frames and complete systems of invariants for completely general
group actions. Some important consequences include a new and more general proof of the
fundamental theorem on classification of differential invariants, a general classification the-
orem for syzygies of differential invariants, and more general theorems on the equivalence,
symmetry and rigidity properties of submanifolds.

New and significant applications of these results have been developed in a wide variety
of directions. In [36, 1], the theory was applied to produce new algorithms for solving
the basic symmetry and equivalence problems of polynomials that form the foundation
of classical invariant theory. In [29], the differential invariants of projective surfaces were
classified and applied to generate integrable Poisson flows arising in soliton theory. In [17],
the moving frame algorithm was extended to include infinite-dimensional pseudo-group
actions. Faugeras, [16], initiated the applications of moving frames in computer vision.
In [11], the characterization of submanifolds via their differential invariant signatures was
applied to the problem of object recognition and symmetry detection, [4,5,7,41].

In this paper, I will concentrate on applications to joint invariant signatures, summa-
rizing the results in [18, 38], where full proofs, further details, and numerous additional
examples appear. The moving frame method provides a direct route to the classification
of joint invariants and joint differential invariants, establishing a geometric counterpart of
what Weyl, [45], in the algebraic framework, calls the first main theorem for the transfor-
mation group. In computer vision, joint differential invariants have been proposed as noise-
resistant alternatives to the standard differential invariant signatures, [6,9, 32,42, 43],
but very few complete classifications were known, [15,38]. The approximation of higher
order differential invariants by joint differential invariants and, generally, ordinary joint
invariants leads to fully invariant finite difference numerical schemes, first proposed in
(10,11, 3]. Applications to the construction of invariant numerical algorithms and the
theory of geometric integration, [8, 30], are under development.

2. Moving Frames.

Throughout this paper, G will denote an r-dimensional Lie group acting smoothly on
an m-dimensional manifold M. Let Gg = {g € G |g- S = S} denote the isotropy subgroup
of a subset S C M, and Gf’; = N,es5 G, its global isotropy subgroup, which consists of those
group elements which fix all points in S. The group G acts freely if G, = {e} for all z € M,
effectively if G, = {e}, and effectively on subsets if Gj; = {e} for every open U C M.
Local versions of these concepts are defined by replacing {e} by a discrete subgroup of G. A
non-effective group action can be replaced by an equivalent effective action of the quotient
group G/G%;, and so we shall always assume that G acts locally effectively on subsets.
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A group acts semi-regularly if all its orbits have the same dimension; in particular, an
action is locally free if and only if it is semi-regular with r-dimensional orbits. The action
is regular if, in addition, each point x € M has arbitrarily small neighborhoods whose
intersection with each orbit is connected.

We begin with the fundamental definition, which has the important effect of decoupling
the moving frame theory from any reliance on artificial frame bundle constructions. In
geometrical situations, one can identify our moving frames with the standard versions, but
these identifications break down for more general transformation groups.

Definition 2.1. A moving frame is a smooth, G-equivariant map p: M — G.

The group G acts on itself by left or right multiplication. If p(z) is any right-
equivariant moving frame then p(z) = p(z)~! is left-equivariant and conversely. All classi-
cal moving frames are left equivariant, but, in many cases, the right versions are easier to
compute.

Theorem 2.2. A moving frame exists in a neighborhood of a point z € M if and
only if G acts freely and regularly near z.

Of course, most interesting group actions are not free, and therefore do not admit
moving frames in the sense of Definition 2.1. There are two basic methods for converting
a non-free (but effective) action into a free action. The first is to look at the product
action of G on several copies of M, leading to joint invariants. The second is to prolong
the group action to jet space, which is the natural setting for the traditional moving frame
theory, and leads to differential invariants. Combining the two methods of prolongation
and product will lead to joint differential invariants. In applications of symmetry construc-
tions to numerical approximations of derivatives and differential invariants, one requires a
unification of these different actions into a common framework, called “multispace”, [39]
— the simplest version is the blow-up construction of algebraic geometry, [22].

The practical construction of a moving frame is based on Cartan’s method of normal-
ization, [26, 12], which requires the choice of a (local) cross-section to the group orbits.

Theorem 2.3. Let G act freely, regularly on M, and let K be a cross-section.
Given z € M, let g = p(z) be the unique group element that maps z to the cross-section:
g-z=p(z)-z€ K. Then p: M — G is a right moving frame for the group action.

Given local coordinates z = (2q,...,%,,) on M, let w(g,z) = ¢ - z be the explicit
formulae for the group transformations. The right moving frame g = p(z) associated
with a coordinate cross-section K = { zy = ¢;,...,%, = ¢, } is obtained by solving the

normalization equations

wy (g, 2) = ¢y, e w,(g,2) = c,, (2.1)
for the group parameters g = (gy,...,9,) in terms of the coordinates z = (zq,..., z,,).

Theorem 2.4. If g = p(z) is the moving frame solution to the normalization equa-
tions (2.1), then the functions

I,(z) = wr+1(p(z), z), .. I. .(z)=w,,(p(2),z), (2.2)
form a complete system of functionally independent invariants.
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Definition 2.5. The invariantization of a scalar function F': M — R with respect to
a right moving frame p is the the invariant function I = ((F') defined by I(z) = F(p(z) - z).

Invariantization amounts to restricting F' to the cross-section, I | K = F'| K, and then
requiring that I be constant along the orbits. In particular, if I(z) is an invariant, then
t(I) = I, so invariantization defines a projection, depending on the moving frame, from
functions to invariants.

3. Prolongation and Differential Invariants.

Traditional moving frames are obtained by prolonging the group action to the nth order
(extended) jet bundle J* = J™(M,p) consisting of equivalence classes of p-dimensional
submanifolds S C M modulo ntt order contact; see [34; Chapter 3] for details. The nth
order prolonged action of G on J" is denoted by G(™.

An nth order moving frame p(™:J* — G is an equivariant map defined on an open
subset of the jet space. In practical examples, for n sufficiently large, the prolonged action
G becomes regular and free on a dense open subset V* C J™, the set of regular jets.

Theorem 3.1. An ntt order moving frame exists in a neighborhood of a point
2" € J™ if and only if 2(™) € V" is a regular jet.

Although there are no known counterexamples, for general (even analytic) group ac-
tions only a local theorem, [40, 37], has been established to date.

Theorem 3.2. A Lie group G acts locally effectively on subsets of M if and only if
for n > 0 sufficiently large, G acts locally freely on an open subset V™ C J".

We can now apply our normalization construction to produce a moving frame and a
complete system of differential invariants in the neighborhood of any regular jet. Choosing
local coordinates z = (x,u) on M — considering the first p components z = (z!,..., zP) as
independent variables, and the latter ¢ = m —p components v = (u!, ..., u?) as dependent
variables — induces local coordinates z(™) = (x,u(")) on J" with components u§ repre-
senting the partial derivatives of the dependent variables with respect to the independent
variables, [34, 35]. We compute the prolonged transformation formulae

w™ (g, 2M) = g™ . (™) or (y,v™) = g™ . (2, u™)

by implicit differentiation of the v’s with respect to the y’s. For simplicity, we restrict
to a coordinate cross-section by choosing r = dim G' components of w(™ to normalize to
constants:

w,(g,2™) = ¢, e w,(g,2™) = c,. (3.1)

Solving the normalization equations (3.1) for the group transformations leads to the explicit
formulae g = p(")(z(")) for the right moving frame. Moreover, substituting the moving
frame formulae into the unnormalized components of w(™ leads to the fundamental nth
order differential invariants

I (2 = ™ (p(M) (2(M), 2(M)) = p() (z(M)) . 5 (), (3.2)
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In terms of the local coordinates, the fundamental differential invariants will be denoted
Hi(z,u™) =y (o™ (z,u™),2,u),  Ig(z,u®) =g (o (z,u),z,u®).  (3.3)

In particular, those corresponding to the normalization components (3.1) of w(™ will be
constant, and are known as the phantom differential invariants.

Theorem 3.3. Let p(™:J* — G be a moving frame of order < n. Every nth order
differential invariant can be locally written as a function J = ®(I™)) of the fundamental
nth order differential invariants. The function ® is unique provided it does not depend on
the phantom invariants.

The invariantization of a differential function F:J" — R with respect to the given
moving frame is the differential invariant J = ((F) = FoI(™. As before, invariantization
defines a projection, depending on the moving frame, from the space of differential functions
to the space of differential invariants.

Example 3.4. Let us illustrate the theory with a very simple, well-known example:
curves in the Euclidean plane. The orientation-preserving Euclidean group SE(2) acts on
M = R?, mapping a point z = (z,u) to

y =z cosf —usinb + a, v=2xsin6d +ucosf + b. (3.4)

For a parametrized curve z(t) = (z(t),u(t)), the prolonged group transformations

dv  z,sinf + u,cost d?v Tylyy — Tyl (3.5)
v = — = , v = —— = - s .
Y dy x,cos0 —u,sind Yoo dy?  (x,cos60 —u,sinh)3
and so on, are found by successively applying implicit differentiation operator
1
D, = D (3.6)

Y z,cos0 —u,sinf t

to v. The classical Euclidean moving frame for planar curves, [23], follows from the cross-
section normalizations

Yy = 0’ v = 07 ’Uy =0. (37)
Solving for the group parameters g = (0, a,b) leads to the right-equivariant moving frame

i u T, + UU U, — UL
0:—tan1—t, a=— -t "t b= ¢ ¢

) e 3.8
Ty Vai+u? V2 4 u? (3.8)

The inverse group transformation g=* = (6, a, b) is the classical left moving frame, [12, 23]:

bl
one identifies the translation component (@, b) = (z,u) = z as the point on the curve, while
the columns of the rotation matrix R = (t,n) are the unit tangent and unit normal vectors.
Substituting the moving frame normalizations (3.8) into the prolonged transformation
formulae (3.5), results in the fundamental differential invariants
TyUyy — Ty Uy dk d’k

v — K = v _ — v —
vy (.’IJ% +U§)3/2 ) yyy ds ’ yyyy ds2

+3k3, (3.9



where D, = (z24+u?)"Y2D, is the arc length derivative — which is itself found by
substituting the moving frame formulae (3.8) into the implicit differentiation operator (3.6).
A complete system of differential invariants for the planar Euclidean group is provided by
the curvature and its successive derivatives with respect to arc length: s,k , Kk, - .. .

The one caveat is that the first prolongation of SE(2) is only locally free on J* since
a 180° rotation has trivial first prolongation. The even derivatives of x with respect to s
change sign under a 180° rotation, and so only their absolute values are fully invariant.
The ambiguity can be removed by including the second order constraint v,, > 0 in the
derivation of the moving frame. Extending the analysis to the full Euclidean group E(2)
adds in a second sign ambiguity which can only be resolved at third order. See [38] for
complete details.

Example 3.5. Let n # 0,1. In classical invariant theory, the planar actions

ar + _
= —, u = o) " , 3.10
v= B= (3 +6) " (3.10)
of G = GL(2) play a key role in the equivalence and symmetry properties of binary forms,
when u = ¢(z) is a polynomial of degree < n, [24,36,1]. We identify the graph of the
function u = ¢(z) as a plane curve. The prolonged action on such graphs is found by
implicit differentiation:

_ ou, —nyu _ 0?uy, — 2(n — D)you, +n(n — 1)y%u
Uy = Aogn—1 Yyy = A25n—2 ’
S o3uy,, —3(n—2)yo?u,, +3(n—1)(n—2)y%0u, —n(n —1)(n — 2)y3u
yyy A3gn—3 ’

and so on, where ¢ = vp+ 9§, A = ad — By # 0. On the regular subdomain

—1
V? = {uH # 0} C J?, where H =uu,, — n u?
n

is the classical Hessian covariant of w, we can choose the cross-section defined by the
normalizations
y =0, v =1, v, =0, Uy, = L.

Assume that v > 0, H > 0, and solving for the group parameters gives the right moving
frame formulae

o= u(l—n)/n\/ﬁ’ /8 = 1 u(l—n)/n\/I_{, = %u(l—n)/n, 5 = ul/n - %xu(l—n)/n.
(3.11)
Substituting the normalizations (3.11) into the higher order transformation rules gives us
the differential invariants, the first two of which are

T |4

Vyyy + J:H3/2’ Vyyyy — K:m, (3.12)




—2 —1 —2
T= u2uzmz -3 n Uy Ugy +2 (n )(Zn ) Uia
n n
— —2)(n— ~1)(n—2)(n —
V= u3umm 4" 5 u2umum +6 (n=2)(n—3) uu,, 2um -3 (n=1)(n—2)(n—3) ui,
n n? n3

and can be identified with classical covariants, which may be constructed using the basic
transvectant process of classical invariant theory, cf. [24,36]. Using J? = T?/H?3 as
the fundamental differential invariant will remove the ambiguity caused by the square
root. As in the Euclidean case, higher order differential invariants are found by successive
application of the normalized implicit differentiation operator D, = uH -1/ 2D, to the
fundamental invariant J.

4. Recurrence Formulae and Syzygies.

As we noted in the preceding examples, substituting the moving frame normalizations
into the implicit differentiation operators D,,...,D,, associated with the transformed
independent variables gives the fundamental invariant differential operators D;,...,D,
that map differential invariants to differential invariants.

Theorem 4.1. If p(™:J* — G is an nth order moving frame, then, for any k >
n + 1, a complete system of kt order differential invariants can be found by successively
applying the invariant differential operators Dy, ..., D,, to the non-constant (non-phantom)

fundamental differential invariants I™1) of order at most n + 1.

Thus, the moving frame provides two methods for computing higher order differential
invariants. The first is by normalization — plugging the moving frame formulae into the
higher order prolonged group transformation formulae. The second is by invariant differ-
entiation of the lower order invariants. These two processes lead to different differential
invariants; for instance, see the last formula in (3.9). The fundamental recurrence formulae

D,;H* =¢; — L%, D;Ig =1k ; — Mg, (4.1)
connecting the normalized and the differentiated invariants (3.3) are of critical importance
for the development of the theory, and in applications too.

The A remarkable fact, [18,19], is that the correction terms L;, Mg ; can be effec-

tively computed, without knowledge of the explicit formulae for the moving frame or the
normalized differential invariants. Let

p q
Z 4 a k 0
prv, = ;Zl Eulo,u) 55 + > Y 05w u®) g T 1,...,r

a=1 k=#J>0

be a basis for the Lie algebra g(™ of infinitesimal generators of G(™). The coefficients
go(j’ﬁ(a:,u(k)) are given by the standard prolongation formula for vector fields, cf. [34, 35],
and are assembled as the entries of the nth order Lie matriz

& & 1 el 51

L, (2) = (4.2)

S-S & L S S 05,



The rank of L (2(™) equals the dimension of the orbit through z(™). The invariantized Lie
matriz is obtained by I, = «(L,)) = L, (I™), replacing the jet coordinates z(™) = (z,u(™)
by the corresponding fundamental differential invariants (3.2). We perform a Gauss—Jordan
row reduction on the matrix I,, so as to reduce the r x r minor whose columns correspond to
the normalization variables z,, ..., 2, in (3.1) to an r x r identity matrix — let K,, denote
the resulting matrix of differential invariants. Further, let Z(z,u(™) = (D,z,) denote
the p x r matrix whose entries are the total derivatives of the normalization coordinates
252, and W = ((Z) = Z(I™) its invariantization. The main result is that the
correction terms in (4.1) are the entries of the matrix product

Ly ... LY M;p ... M{ ... Mg,
W-K, =M, = : - Do : : (4.3)
L} ... L®2 M} ... MZ ... Mg,
Example 4.2. The infinitesimal generators of the planar Euclidean group SE(2) are
v, =0, vy =0,, vy = —ud, + z0,.

Prolonging these vector fields to J°, we find the fifth order Lie matrix

1 0 0 0 0 0 0
L= 0 1 0 0 0 0 0 |, (4.4)
—u z 14w2 3ugu, M; M, M
where
Under the normalizations (3.7), the fundamental differential invariants are
y — J =0, v — I =0, v, — I; =0, Uy, — Iy =k, (4.5)

and, in general, v, = D’y“v — Ip; see (3.9). The recurrence formulae will express each
normalized differential invariant I, in terms of arc length derivatives of k = I,. Using
(4.5), the invariantized Lie matrix takes the form

1 000 0 0 0
(Lg)=I;=(0 1 0 0 O 0 0
0 01 0 3k?® 10sI; 15k1,+10I3

Since our chosen cross-section (3.7) is based on the jet coordinates x, u, u, that index the
first three columns of I is already in the appropriate row-reduced form, and so Ky = I;.
Differentiating the normalization variables and then invariantizing produces the matrices

Z=(1 u, u,,), (Z)=W=(101,)=(10 k).
Therefore, the fifth order correction matrix is

M;=W-K;=(10 0 0 3x* 10s*I; 15x*I, 4+ 1013 ),
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whose entries are the required the correction terms. The recurrence formulae (4.1) can
then be read off in order:

D,J=D,0)=1-1, D, J=D,/0)=0-0,
DI, =D, (0)=0-0, D,,=D,x=1,-0,
DI, =1, — 3k DI, = I, — 10>, DI, = I — 15571, — 10K I3,

We conclude that the higher order normalized differential invariants are given in terms of
arc length derivatives of the curvature x by

I, =&, I; = k,, I4:mss+3n3,

Iy = K, +19K%k,, Is = Kypy + 34 K%k, + 48 kK2 + 45 K5,

and so on. The direct derivation of these and similar formulae is, needless to say, consid-
erably more tedious. Even sophisticated computer algebra systems have difficulty owing
to the appearance of rational algebraic functions in many of the expressions.

A syzygy is a functional dependency H( ... D;I, ...) = 0 among the fundamental
differentiated invariants. In Weyl’s algebraic formulation of the “Second Main Theorem”
for the group action, [45], syzygies are defined as algebraic relations among the joint
invariants. Here, since we are classifying invariants up to functional independence, there
are no algebraic syzygies, and so the classification of differential syzygies is the proper
setting for the Second Main Theorem in the geometric/analytic context. See [18, 38] for
examples and applications.

Theorem 4.3. A generating system of differential invariants consists of a) all non-
phantom differential invariants H* and I® coming from the un-normalized zerot® order jet
coordinates y*, v®, and b) all non-phantom differential invariants of the form 1§, where
I is a phantom differential invariant. The fundamental syzygies among the differentiated
invariants are

(4) DjHi = 6; - L;'., when H® is non-phantom,
(i) Dyl =c— Mg ;, when I is a generating differential invariant, while I§ ;. = c is a
phantom differential invariant, and
(iid) Dylfx — Dglf; = Mp;x — M7k 5, where Ify and I7; are generating differential
invariants and K N J = & are disjoint and non-zero.
All other syzygies are all differential consequences of these generating syzygies.

5. Equivalence and Signatures.

Two submanifolds S, S C M are said to be equivalent if S = g - S for some g € G.
A symmetry of a submanifold is a group transformation that maps S to itself, and so is
an element g € G4. As emphasized by Cartan, [12], the solution to the equivalence and
symmetry problems for submanifolds is based on the functional interrelationships among
the fundamental differential invariants restricted to the submanifold.

A submanifold S C M is called regular of order n at a point 2z, € S if its nth order jet
inSl,, € V" is regular. Any order n regular submanifold admits a (locally defined) moving
frame of that order — one merely restricts a moving frame defined in a neighborhood
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of z, to it: p™ o jnS- Thus, only those submanifolds having singular jets at arbitrarily
high order fail to admit any moving frame whatsoever. The complete classification of such
totally singular submanifolds appears in [37]; an analytic version of this result is:

Theorem 5.1. Let G act effectively, analytically. An analytic submanifold S C M
is totally singular if and only if G ¢ does not act locally freely on S itself.

Given a regular submanifold S, let J&*) = (%) |S = 1K) 0j,S denote the kth order
restricted differential invariants. The kth order signature S®*) = S()(§) is the set param-
etrized by the restricted differential invariants; S is called fully regular if J*) has constant
rank 0 < ¢, < p = dimS. In this case, S®) forms a submanifold of dimension t, —
perhaps with self-intersections. In the fully regular case,

tn <tn+1 <tn+2 <"'<tszts+1:"':tsp,
where t is the differential invariant rank and s the differential invariant order of S.

Theorem 5.2. Let S,S C M be regular p-dimensional submanifolds with respect to
a moving frame p(™). Then S and S are (locally) equivalent, S = g - S, if and only if they
have the same differential invariant order s and their signature manifolds of order s + 1
are identical: SG+1)(8) = SG+1)(§),

Example 5.3. A curve in the Euclidean plane is uniquely determined, modulo trans-
lation and rotation, from its curvature invariant x and its first derivative with respect to
arc length x,. Thus, the curve is uniquely prescribed by its Fuclidean signature curve
S = §(C), which is parametrized by the two differential invariants (k, k). The Euclidean
(and equi-affine) signature curves have been applied to the problems of object recognition
and symmetry detection in digital images in [11].

Theorem 5.4. If S C M is a fully regular p-dimensional submanifold of differential
invariant rank t, then its symmetry group Gg is an (r —t)—dimensional subgroup of G that
acts locally freely on §S.

A submanifold with maximal differential invariant rank ¢ = p is called nonsingular.
Theorem 5.4 says that these are the submanifolds with only discrete symmetry groups. The
indez of such a submanifold is defined as the number of points in S map to a single generic
point of its signature, i.e., ind S = min {# o~ *{¢}|¢ € SETVY, where o(z) = JEH(2)
denotes the signature map from S to its order s + 1 signature S+, Incidentally, a point
on the signature is non-generic if and only if it is a point of self-intersection of S*1). The
index is equal to the number of symmetries of the submanifold, a fact that has important
implications for the computation of discrete symmetries in computer vision, [11], and in
classical invariant theory, [1, 36].

Theorem 5.5. If S is a nonsingular submanifold, then its symmetry group is a
discrete subgroup of cardinality # G4 =ind S.

At the other extreme, a rank 0 or maximally symmetric submanifold has all constant
differential invariants, and so its signature degenerates to a single point.
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Theorem 5.6. A regular p-dimensional submanifold S has differential invariant rank
0 if and only if it is an orbit, S = H - z;, of a p-dimensional subgroup H = G4 C G.

For example, in planar Euclidean geometry, the maximally symmetric curves have
constant Euclidean curvature, and are the circles and straight lines. Each is the orbit of a
one-parameter subgroup of SE(2), which also forms the symmetry group of the orbit.

In equi-affine planar geometry, when G = SA(2) = SL(2) x R? acts on planar curves,
the maximally symmetric curves are the conic sections, which admit a one-parameter
group of equi-affine symmetries. The straight lines are totally singular, and admit a three-
parameter equi-affine symmetry group, which, in accordance with Theorem 5.1, does not
act freely thereon. In planar projective geometry, with G = SL(3,R) acting on M = RP?,
the maximally symmetric curves, having constant projective curvature, are the “W-curves”
studied by Lie and Klein, [27, 28].

In the case of binary forms studied in Example 3.5, the signature curve S = S(q) of
a function (polynomial) u = ¢(z) is parametrized by the covariants J? and K, as given in
(3.12). The following non-classical theorem solving the equivalence problem for complex-
valued binary forms appears in [33, 36, 1].

Theorem 5.7. Two nondegenerate complex-valued forms q(z) and g(x) are equiv-
alent under the group action (3.10) if and only if their signature curves are identical:

S(q) = S(@)-

If ¢ and § are nonsingular polynomials and have identical signature curves, then each
solution T = ¢(z) of the two rational equations

J(z)? =J(@)? K@) =K@). (5.1)

will define an equivalence between ¢ and §. In particular, the theory guarantees ¢ is
necessarily a linear fractional transformation!

Theorem 5.8. A nondegenerate binary form q(x) is maximally symmetric if and
only if it satisfies the following equivalent conditions:
(a) q is complex-equivalent to a monomial z*, with k # 0, n.
(b) The covariant T? is a constant multiple of H3 # 0.
(¢) The signature set is a single point.
(d) q admits a one-parameter symmetry group.
(e) The graph of q coincides with the orbit of a one-parameter subgroup of GL(2).
A binary form q(z) is nonsingular if and only if it is not complex-equivalent to a monomial
if and only if it has a finite symmetry group.

The symmetries of a nonsingular form can be explicitly determined by solving the
rational equations (5.1) with J = J, K = K. See [1] for a MAPLE implementation of this
method for computing discrete symmetries and classification of univariate polynomials.

Theorem 5.9. If gq(x) is a binary form of degree n which is not complex-equivalent
to a monomial, then its projective symmetry group has cardinality

b < { 6n — 12 if V = cH? for some constant ¢, or

4n — 8 in all other cases.

11



6. Joint Invariants and Joint Differential Invariants.

Consider now the joint action

g-(2°...,2")=(g-2%...,9-2"), geG, 2% ....2"e M. (6.1)
of the group G on the (n+1)-fold Cartesian product M* ™+ = M x-..x M. An invariant
I(2°,...,2") of (6.1) is an (n + 1)-point joint invariant of the original transformation

group. In most cases of interest, although not in general, if G acts effectively on M, then,
for n > 0 sufficiently large, the product action is free and regular on an open subset of
M*("+1) " Consequently, the moving frame method outlined in Section 2 can be applied
to such joint actions, and thereby establish complete classifications of joint invariants and,
via prolongation to Cartesian products of jet spaces, joint differential invariants. We will
discuss two particular examples — planar curves in Euclidean geometry and projective
geometry, referring to [38] for details.

Example 6.1. Fuclidean joint differential invariants. Consider the proper Euclidean
group SE(2) acting on oriented curves in the plane M = R?. We begin with the Cartesian
product action on M*2 ~ R*. Taking the simplest cross-section z° = v = z! = 0,u! > 0
leads to the normalization equations

y® =2%cosf —usinf +a = 0, v9 = 2%sin6 + u®cos @ + b =0, (6.2)
y' =zl cosh — ulsinf +a = 0. '
Solving, we obtain a right moving frame
xzt — 20
0 =tan~! (170> , a=—2"cosd + u’siné, b= —2"sinf —u’cosd, (6.3)
ul —u
along with the fundamental interpoint distance invariant
vP=xlsind+ulcosd+b — TIT=|z' 2. (6.4)

Substituting (6.3) into the prolongation formulae (3.5) leads to the the normalized first
and second order joint differential invariants

T S E I R
(21 — 20) A 2} vy [(z' = 20) A 2] ]

for £k = 0,1. Note that

k —
v, > Jp=-—

Jy, = — cot ¢°, J, = +cot ¢, (6.6)

where ¢F = (2! — 2%, 2F) denotes the angle between the chord connecting 2°, 2! and the
tangent vector at z*, as illustrated in Figure 1. The modified second order joint differential
invariant

(25 A 2)
[(z1 = 2°) A 2D ]

equals the ratio of the area of triangle whose sides are the first and second derivative

vectors 27, 20, at the point z° over the cube of the area of triangle whose sides are the

Ry= )2 = | K, = : (6.7)

12
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Figure 1. First and Second Order Joint Euclidean Differential Invariants.

chord from 2° to z! and the tangent vector at 2°; see Figure 1. Interestingly, K o (but not
K,) is also an equi-affine joint differential invariant.

On the other hand, we can construct the joint differential invariants by invariant
differentiation of the basic distance invariant (6.4). The normalized invariant differential
operators are
|2t —2°

(21 — 20) A 2F

D, . (6.8)
The recurrence formulae expressing the differentiated invariants in terms of the funda-
mental normalized joint differential invariants can either be found directly, or using an
adaptation of the infinitesimal algorithm. The resulting recurrence formulae

Dyl = —J,, DI =J,,
1+ J2 1+ J2
DyJy = Ky — T >, DyJy = Ii =, (6.9)
1+ J? 1+ J2

imply that all of the joint differential invariants can be obtained from the basic distance
invariant by invariant differentiation.

Proposition 6.2. Every two-point Euclidean joint differential invariant is a function
of the interpoint distance I = || 21 — 2° || and its invariant derivatives with respect to (6.8).

A generic product curve C = C° x C!' € M*? has joint differential invariant rank
2 = dim C, and its joint signature S)(C) will be a two-dimensional submanifold param-
etrized by the joint differential invariants I,J,, J;, K, K; of order < 2. There will exist
a (local) syzygy ®(I,J,,J;) = 0 among the three first order joint differential invariants.

13



Differentiating and using the recurrence formulae (6.9), we find

2 2
_J 8<I>+<K0_1+JO) 0P <1+J1> 8(1):0,

0 a1 I aJ, \ I aJ,
ok 1+J2\ 0% 1+ J2\ 0%
7= (K 7= .

Jlaf+< T >8J0+(1+ T ) ar =Y

Thus, the syzygies for second order joint differential invariant K, K, are uniquely deter-
mined, provided 0®/0J, # 0 and 0®/0J; # 0. The surface parametrized by the first order
joint differential invariants I, J,, J; can be used as a reduced signature set to characterize
such (generic) product curves.

If the first order signature degenerates to a one-dimensional curve, then, locally,

Jy = —cot ¢’ = ®,(1), J, = cot ¢! = @, (I). (6.10)

Differentiating these two syzygies and using (6.9) leads to the four derived syzygies

1+ J2 14+ J2
Ky = —Jy @1+ —--2, T gy,
1+ J? 1+ J? (6.11)
K1:J1<I>’1(I)—T1, - I ! :_JOCI)Il(I)-

The first of each pair prove that the second order joint differential invariants K, K, are
also functionally dependent upon I, as determined by the syzygies (6.10).

Theorem 6.3. A curve C or, more generally, a pair of curves C,,C; C R?, is
uniquely determined up to a Euclidean transformation by its reduced joint signature,
which is parametrized by the first order joint differential invariants I, J,, J,. The curve(s)
have a one-dimensional symmetry group if and only if their signature is a one-dimensional
curve if and only if they are orbits of a common one-parameter subgroup (i.e., concentric
circles or parallel straight lines); otherwise the signature is a two-dimensional surface, and
the curve(s) have only discrete symmetries.

For n > 2 points, we can use the two-point moving frame (6.3) to construct the
additional joint invariants

y* — H, = 2" = 2°|| cosyF, " — I, = || 2 = 20| siny¥,
where F = g (2F — 20, 2! — 29). Therefore, a complete system of joint invariants for SE(2)
consists of the angles ¥*, k > 2, and distances || 2¥ — 2°]|, k¥ > 1. The other interpoint
distances can all be recovered from these angles; vice versa, given the distances, and the
sign of one angle, one can recover all other angles. In this manner, we establish a “First
Main Theorem” for joint Euclidean differential invariants.

Theorem 6.4. Ifn > 2, then every n-point joint E(2) differential invariant is a
function of the interpoint distances || 2* — 27 || and their invariant derivatives with respect
to (6.8). For the proper Euclidean group SE(2), one must also include the sign of one of

the angles, say 9? = (22 — 20,21 — 20).

14



Figure 2. Four-Point Euclidean Curve Invariants.

Generic three-pointed Euclidean curves still require first order signature invariants.
To create a Euclidean signature based entirely on joint invariants, we take four points
29,21, 22,23 on our curve C C R2. As illustrated in Figure 2, there are six different

interpoint distance invariants

a=l2t =2, b=l -2"l, e=2-2"],

6.12
d=122 =2, e=[2-2"1  f=12-2] (6:42)

which parametrize the joint signature S=38 (C) that uniquely characterizes the curve C
up to Euclidean motion. This signature has the advantage of requiring no differentiation,
and so is not sensitive to noisy image data. There are two local syzygies

®,(a,b,c,de, f) =0, ®,(a,b,c,d,e, f) =0, (6.13)
among the the six interpoint distances. One of these is the universal Cayley—Menger syzygy
2a2 a?+b2—d? a?+c?—e?
det | a® + b? — d? 252 b +c2— f2 =0, (6.14)
a?+c?—e? b2+ — f? 2¢2

which is valid for all possible configurations of the four points, and is a consequence of
their coplanarity, cf. [2,31]. The second syzygy in (6.13) is curve-dependent and serves to
effectively characterize the joint invariant signature. Euclidean symmetries of the curve,
both continuous and discrete, are characterized by this joint signature. For example, the
number of discrete symmetries equals the signature index — the number of points in the
original curve that map to a single, generic point in S.

Example 6.5. As a final example, we consider the joint differential invariants for
curves in the real (or complex) projective plane. First, an application of the moving frame

15



Figure 3. Projective Area Cross Ratio Invariant.

method for the joint projective action of PSL(m +1,R) on m-dimensional projective space
M = RP™ leads to a complete classification of joint projective invariants.

Theorem 6.6. FEvery joint invariant of the projective group is a function of the
fundamental volume cross-ratios

Ligyeooyie o k) Ligyeesi o 0n]
Clig,---riy,_o; 4, k,1,n) = — et — ; 6.15
(i 2 ) [dgs-vstpy o d U] [tgyeensiy, o knl (6.15)

where the bracket notation
[i7...m]=[2"27 ... 2" =det(2* 2,...,2") (6.16)

denotes the indicated parallelepiped volume in R™.

The projective invariance of the volume cross-ratios was noted by Veblen and Young,
[44; 827]. Neither they, nor Weyl, who only briefly mentions this case, cf. [45; pp. 112—
114], prove completeness or discuss minimal generating sets. In the one-dimensional case,
we recover the usual cross-ratios. In the two-dimensional case, all five-point joint projective
invariants are generated by

_[o012][034] _[012][134]
S [013][024]’ S [o13][124]°
For example, C(0;1,2,3,4) equals the product of the areas of the two shaded triangles
divided by the product of the areas of the two white triangles in Figure 3.

A complete analysis of joint differential invariants and projective signatures appears

in [38]. The following theorem summarizes the results. We use dots over bracket entries
to indicate derivatives:

C(0;1,2,3,4) C(1:0,2,3,4) (6.17)

lijkl=G —2YAGEF =2, [ijk]l=(G—Z)AER, [km]=[zF5"] =3k nEm

16
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Figure 4. First Order Projective Joint Differential Invariant.

Theorem 6.7. Every n-point joint projective differential invariant is obtained by
invariant differentiation of the following joint differential invariants:

n>>5 The cross-ratio invariants
C(0;1,3,k,2), C(1;0,3,k,2), k=4,...,n—1.
n=4 The first order derived cross-ratio invariants:
o . (15 k][i1lm]
Cli; g,k l,m) = — —
(455 ) [i71][ikm]
n=3 The first order three point joint differential invariant:

[020][011][122]
[010][121][022]

n=2 The second order two point joint differential invariant:
[010]3[11]
[01i]3[00]

n=1 The projective curvature k.

The two-point joint differential invariant is a ratio of the Euclidean (actually equi-
affine) joint differential invariants (6.7). The three point joint differential invariant is the
ratio of the product of the three triangular areas in the first diagram over the product of
the three triangular areas in the second diagram in Figure 4. The invariant differential
operators depend on the number of points; see [38] for more details.

17



Additional cases, including plane curves under the equi-affine and affine groups, as
well as curves and surfaces in R® under Euclidean and equi-affine transformations, are
investigated in detail in [38].
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