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A B O U T  D E R I V A T I O N S  AND V E C T O R - V A L U E D  D I F F E R E N T I A L  
F O R M S  

A.L.  Onishch ik  UDC 512.717;512.73 

I n t r o d u c t i o n  

Let M be a complex analytic manifold. With any holomorphic vector bundle E over M one can associate 
the vector bundle A = A E which is a bundle of Grassmann algebras. The corresponding sheaf of holomorphic 
sections A is a locally free analytic sheaf of commutative graded algebras. Let T = Der.A be the sheaf of 
C-derivations of .A. Then 7" is a sheaf of graded Lie algebras which can be considered as the tangent sheaf of 
the splittable supermanifold (M, .4). The cohomology algebra H* (M, 7") with the bra.cket ivherited from 7- 
is of great interest for the theory of complex analytic supermanifolds (see, e.g., [8]). To compute this algebra, 
it would be useful to have a fine resolution of 7" which is a sheaf of differential graded Lie algebras. Our goal 
is to construct such a resolution. 

The classic case is the ease where E is the cotangent bundle T(M)* of M, and hence where .4 = fl 
is the sheaf of holomorphic differential forms on M. The derivations of the sheaf of differential forms were 
first determined by Frrfieher and Nijenhuis in [2], where an expficit description of these derivations in terms 
of vector-valued differential forms was given. The resolution of T = Der ~, which is constructed here, can 
also be expressed in terms of vector-valued forms. We use this expression in the ease where M is a compact 
Hermitian symmetric space. In particular, we compute the algebra H* (CP ~, 7"). 

1. P re l iminar i e s  

Let A be a graded algebra over C. We write [a[ for the degree q of a homogeneous element a E Aq. As 
usual, we call a derivation of degree p of A any C-linear mapping u : A --+ A of degree p = [u[ satisfying the 
relation 

u(ab) = u(a)b + (-1)Jull~ 
The derivations of A form the graded Lie algebra Der A = (~)prz(DerA)p, where (DerA)p is the set of all 
derivations of degree p of A, and the bracket is given by 

= u v  + (_l)lUll-I+lv . 

If the graded algebra A is (associative and) commutative, then Der A is an A-module due to the rule 

(au)(b) = au(b), u E DerA, a,b E a. 

If A is a bigraded algebra, then we denote by Der A its graded Lie algebra of derivations, assuming that A is 
endowed with the total degree. It can be easily proved that A is actually a bigraded algebra with respect to 
the natural bigrading. 

The same definitions can be applied to the sheaves of graded algebras on a topological space M. In par- 
ticular, if ,4 is a sheaf of commutative graded algebras, then the sheaf Der'A of derivations of "A is defined 
which is a sheaf of graded Lie algebras and a sheaf of "A-modules on M. 

Let us consider the case where A = A E; here E is a complex vector space of dimension rn. This is a 
m commutative graded algebra with the standard grading A = (~)p=0 Ap, where Ap = A p E. Denote W ( E )  = 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. 
Vol. 35, Algebraicheskaya Geometriya-6, 1996. 

2 2 7 4  1072-3374/98/9004-2274520.00 �9 Plenum Publishing Corporation 



Der A. These graded Lie algebras are well known. Being endowed with the natura l  Zz-grading, they form one 
of the "Caf tan  type" series of simple finite-dimensional complex Lie superalgebras (see [6]). 

We need the well-known description of derivations from W ( E )  in terms of multi l inear forms. Any u G 
W(E)p is determined by its restriction to E = A1, which is an arbitrary linear mapping E --+ Ap+l -=- 
A p+I E. Thus, W ( E ) p  is isomorphic, as a vector space, to A p+I E @ E*. Elements of the latter vector space 
can be considered as vector-valued (p + 1)-forms on E*, i.e., as skew-symmetric (p + 1)-lineax mappings 
(E*) p+I --+ E*. Let us denote by i(~0) 6 W ( E ) p  the derivation which corresponds to a vector-vMued form 
%o 6 A p+I E | E*. Considering A as the set of all skew-symmetric multilinear forms on E*, we have 

i (~p)(a)(z l , . . .  , :rpnUq) 

1 
= ( p + l ) ! ( q - 1 ) !  ~ ( s g n ~ ) a ( ~ , ( x ~ , , . . . , x ~ , + l ) , x ~ , + 2 , . . . , x ~ , + q )  (1) 

~6Sp+q 

for a: k 6 E*. In fact, one can easily verify tha t  the right-hand side of (1) determines a derivation u from 
m (Der A)p. Choose a base ~1,- - - ,  ~,,~ of E and denote by ~ , . . . ,  ~ the dual base of E*. Then ~o = ~ j = l  ~oj | 

~], where ~oj 6 A p+I E.  Clearly, i(so)({j) = ~oj. On the other hand, u({i)(~l,..., zp+l) = ~os(zl,..., xp+l),  
and hence i(~o) = u. 

Clearly, the derivations ~ = i ( ( ; )  6 W ( E ) _ I ,  j = 1 , . . .  ,rn, form a base of the A-module W ( E ) .  It 
follows that  the derivations 

0 
~il "'" ~ip+l O~j' i l  < "'" < ip+l, j : 1 , . . .  , rn, 

form a base of W ( E ) p  over C. In particular, we see that  W ( E ) p  7 ~ 0 only for - 1  < p <_ m. 

One can also write 

i(~o)(a) = a X % a 6 A, ~o 6 A % E * .  

A similar operation can be defined for two vector-valued forms of arbitrary degrees. For example, let ~0 6 
Ap | E*, r fi Aq N E* be given. Considering these tensors as E*-valued p- and q-forms on E*, we define the 
form ~0 ~ r 6 Ap+q-1 | E* by 

(~0 X r  ,Zp+q--1)  

1 

- ( p -  1)!q! E (sgna)~0(r  , z ~ , ) , z ~ , + , , . . .  , x ~ , + , _ , )  (2) 
c,6Sp+q_1 

for xk 6 E*. This operation can he used for expressing the bracket in W(E). More precisely, define the 
bilinear operation { , } on A | E* by 

{%r  = r X ~0 - (-1)(P-l)(q-D%o X r 

f o r ~ 0 6 A p |  r  a |  

i({~o, r  = [i(~o), i(r 

In fact, using the above notat ion,  we obtain 

[i(%0), i(r ) = i(%o)i(%b)({j ) - ( -  1)(P- 1)(q- 1)i(r 

= d2j X ~o -- (--1)(P--1)(q-1)cpj X r 

= ( r  - C b  

= = 

Let M now be a complex manifold of dimension n, 5 v its structure sheaf, and let E be a holomorphic 
vector bundle of rank m over M. Then we can construct the holomorphic bundle A = A E over M which is 
a bundle of commutat ive graded algebras. Let g" and .4 = A_r g" be the corresponding locally free analytic 
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m sheaves of holomorphic sections. Then  A = (~p=0 `4P, where A.p = A~- s is a sheaf of commutat ive  graded 

algebras. We denote T = 5Per `4. (In what  follows, we denote by 5Per B the sheaf of C-derivations of a sheaf  
of C-algebras/3.)  

We include T in an exact sequence of locally free analytic sheaves on M (see [7]). In what  follows, we omit 
the subscript ~" while denoting the tensor product  over the sheaf .T'. Assigning to any u E T its restriction to 

9 r = `40, we obtain a mapping 

a : 7" --~ "Hornc(.U , .,4) = .,4 | s162 

It can be easily proved tha t  Im a = .4 | 5Per.~ = .4 | 0 ,  where 0 is the tangent  sheaf of M, and tha t  
a(7"p) = `4p N 0 .  In any local coordinate system x l , . . .  , x,~ on M, the mapping a is expressed as follows: 

0 
~(~) = ~(x , )  | 0x--: 

i = 1  

Clearly, K e r a  is the subsheaf :Der.r A of the sheaf of graded Lie algebras 7" consisting of all ~-derivat ions.  

This is the sheaf of holomorphic sections of the holomorphic vector bundle W ( E )  with fibers W ( E , ) ,  z E M ,  
associated with E. We deduce from the above an injective sheaf homomorphism i : .Ap+l | s ~ Tp such 

that  Im i = (hPerT`4)p. We write 

i ( ~ ) ( a )  = a x ~, ~, e A | E*, a e A. 

As a result, we get the exact  sequence 

0 --). A | s --/+ 'T -~t A | 0 -> O. (3) 

Here i is a homomorphism of sheaves of graded Lie algebras if we define the grading and the bracket { , } on 

the sheaf .,4 | s as follows: 

( A N s  = Ap+l  | 1 6 3  p =  - 1 , . . .  ,m ,  

{~,r  = r ~ ~ - (-i)<l,~l-1)(l*I-~)v~ x r  (4) 

where the operat ion X is defined by (2) pointwise. In part icular,  we see that  7-p • 0 only for - 1  < p < m. 

The  ex t reme terms of (3) are locally free analytic sheaves on M. Notice tha t  7- has the  same proper ty;  

moreover,  it is a locally free sheaf of modules over .4 (this is a well-known proper ty  of  supermarfifolds). In 

fact, consider a coordinate  neighborhood U on M with local coordinates x x , . . .  , xn such tha t  E is trivial over 

U and choose a base ~1 , . . .  , ~,, of local sections of s over U. Then `41U is identified with A~-IU(~I, . . .  , ~m)- 

This  allows us to define derivations ~ ~  E T01U, i . . . .  1, ,n ,  and thus to construct  a local splitt ing 

(.,4 | 6))IV --+ T I U  of the exact sequence (3). On the other  hand,  we have the derivations ~ /  e T-xIU, j = 

1 , . . .  , m,  defined as for W ( E ) .  We see from (3) tha t  0 i = 1 , . . .  ,n ,  and b'~Tf~, J = 1 , . . .  ,m,  form a base 

of local sections of 7- over .4. Therefore,  the derivations 

0 
(il - . . ( i ,+1 0~--~" il  < . . .  < ip+l ,  j = 1 , . . .  ,rn, 

0 
( i  1 . ' '  ( ip  ~ X j '  i l  < " '"  < ip ,  j = 1 , . . .  , n, 

form a base of local sections of Tp over 5 r .  

We consider now the case where E = T ( M ) *  ; here T ( M )  is the tangent  bundle of M.  Then A coincides 

with the sheaf f~ of holomorphic differential forms on M, and the sheaves `4 | | and A | s both coincide 

with the sheaf f~ | | of holomorphic vector-valued differential forms. Thus,  the exact sequence (3) has the 

form 

0 -~ ~ |  4 ~r 2~ ~ |  -~ 0. (5) 
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It was found by FrSlicher and Nijenhuis (see [2]) that this exact sequence splits globally. Actually, they define 
the mapping l : f2 | 0 -4 T by 

Z(~) = [i(:),  d], (6) 

where d is the exterior differentiation, which is obviously a section of 7-1- It can be proved that a(l(tp)) = 9, 
so that I is a splitting of (5). Hence there is the following decomposition into the direct sum of subalgebra 
sheaves (not ideals!): 

7- = i ( a  | o )  �9 l(fl o o) .  

More precisely, 

7"p = i(ap+, | o) ~ z(a~ | o) .-,- (r~p+,. | o)  ~ (a,, | o). 

By the above, ~ | @ is a sheaf of graded Lie superalgebras under the grading and the bracket { , }, 
defined by (4). In what follows, we call this bracket algebraic. In [21, another bracket [ , ] was defined in 
fl | O, namely, 

[~, r = ,~([Z(W), I(~,)]). 
We call it the FN-braeke~. Under this bracket and the grading 

(fl | O)v = ~2. | O, 

the sheaf fl | O is a sheaf of graded Lie algebras as well. We also have l([~,r = [l(~),/(r and thus, l is 
a homomorphism of sheaves of graded Lie algebras. The following formula (see [2]) will also be important for 
US: 

[i(r l(r = l(r X he) 4- (--1)qi([~, r (7) 

where~0E~2|  C E f ~ q |  
It should be noted that all the considerations above can be carried over verbatim to the case where M is 

a differentiable manifold and E is a differentiable vector bundle over M. Notice that the setting considered 
by FrSlicher and Nijenhuis in [2] was just the smooth one. In particular, in this situation, the operation A, the 
algebraic bracket, and the FN-bracket are defined. 

2. Making the Resolution 

Using the notation of the previous section, consider the sheaf T of derivations of the sheaf .A = Ay" S. 
n Let us denote by �9 = ~p,q:O ~P'q the bigraded sheaf of smooth differential forms and by .Too = ~ 5~176 the 

sheaf of complex-valued smooth functions on M. We also denote by Too (M) the complex]fled tangent bundle 
of the smooth manifold (M, .Too); it decomposes into the sum T 1,~ @ T O' I(M) of the components of types 
(1, 0) and (0,1), respectively. Then TI '~  is the smooth bundle corresponding to the holomorphic vector 
bundle T(M) .  Let 0oo = 01'~ (]) 0 ~ be the corresponding sheaves of smooth vector fields. As in Sec. 1, we 

omit the subscript .T" in tensor products over the sheaf `T. 
Since T is a locally free analytic sheaf (see Sec. 1), it can be considered as the sheaf of holomorphic sections 

of a vector bundle ST(E)  over M (the supertangent bundle of (M, O)). Consider the standard Dolbeault-Serre 
resolution of A, which is the sheaf 7~ = if0,. @7" of smooth ST-valued differential forms of type (0, *). This is a 
bigraded sheaf of modules over the sheaf`Too of complex-valued smooth functions on M, where the bigrading 
is defined by 

The coboundary operator 0 is given by 

it is of bidegree (0, 1). 

T~p,q = ~0,q @ %.  

b ( :  | u) = ( b : )  e ~,; 
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We would like to provide "R. with a bracket coinciding on T = ~ . ,0  Cl (Ker 0) with the given one and 
such that 0 is a derivation (of total degree 1). Actually we will make another resolution ,S of T possessing the 
desired bracket and isomorphic to 7~. 

First, we consider the standard Dolbeault-Serre resolution of A, which is the sheaf ~ = r '~ | A of 
smooth A-valued differential forms of type (0, *). This is a bigraded sheaf of algebras, where the bigrading is 
defined by 

~p,q : ~O,q @ .Ap, 

and the multiplication is one of the tensor products of graded algebras. The coboundaxy operator 0 is given 
by 

| a) = | a; 

it is of bidegree (0, 1). It can be easily proved that 0 is a derivation (of total degree 1). 

Now, considering ~ as a sheaf of graded algebras with respect to its total degree, we consider the sheaf 
of graded Lie algebras T = 7)er ~. We denote 

/~ = ad(~. 

Clearly, D is a derivation of degree 1 (and of bidegree (0, 1)) of T, and 

By definition, we have 

Set 

1 ad[~,,~] = 0. D 2 =  [D,D] = ~ 

(L)u)(a) = Ou(a) - (-1)lulu(tga), u E S , a  E ~. (8) 

S = {u E q- l u( f )  = u(d f )  = 0 for any f E .T). 

It can readily be seen that  S is a subsheaf of bigraded subalgebras and of ̀ Too-submodules of 7". Further, for 
any u E S and any local holomorphic f C ~0,0 = `Too, by (8), we have 

(bu ) ( ] )  = ( b u ) ( d ] )  = O, 

and hence/)(S)  C S. 

Denote by Eoo the sheaf of smooth sections of E. Then the sheaf of algebras 

Aoo = A coo 
~'oo 

is the sheaf of smooth sections of A. Also, 

~ 0 , .  = A ~0,1 ,  

~'oo 

= o oo  too = A ( *  ~ e coo). 
~'oo 

Thus, ~ is the sheaf of smooth sections of the vector bundle T~ (9 E. We can apply the arguments of 
Sec. 1 to (i, bearing in mind the smooth setting. 

In particular, we can include 7" into an exact sequence of sheaves similar to (3) (this is sequence (12) to 
be studied in Sec. 3). It follows that 7" is locally free over .Too. To describe a base of local sections of 7-, we 
choose a coordinate neighborhood U C M with holomorphic coordinates xl,  .. , an. Then a �9 K~-~i, i = 1 , . . .  , n ,  

and 0 i = 1,. n, form bases of local sections of the sheaves 01'0 and O ~ respectively. Denote r/i = 

dxi,  i = 1 , . . .  ,n. 
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Also, we can assume that  E is trivial over U and choose a base ~j, j = 1 , . . .  , m, of local sections of g in 
U. Then 7-p,q has the following base of local sections: 

0 0 
~il-.-~ip+ar]ka ' ' ' r ]kq-~j ,  ~i 1 .''~ip+lr]kl ...rlkq~-~j, ~1 < . . .  < ip+l, kl < . . .  < kq, 

0 0 
~i I "" " ~ i p ~ k l ' "  " O k q - ~  i , ~ i ,  ' '  "~ipT]kl "" " ~ k q - ~ x  i , ~1 < ' ' "  < ip, k l  < . . .  < kq. 

The definition of S implies tha t  Sp,q is the locally free subsheaf of 7-p,q with the base of local sections 

0 
( i l  ' '  " ~ i p + l t ] k  1 . . ' ~ k q - ~ j ,  i l  < -. .  < /p+l ,  ki < . . .  < kq, 

O (9) 
~il ...~ipTlk~ '' 'rlkq-~z i ,  il < . . .  < ip, kx < . . .  < kq. 

We are now going to compare the sheaves 7~ and S. Restricting any u E T to the subsheaf Aoo = 1 |  
of iir, we obtain a homomorphism 7 : u ~ ulAoo ofT" to 7-tomc(Aoo, r We have the following identification: 

"Homc(Aoo, (~) = (I '~ | s  

In fact, any C-homomorphism h : Aoo -4 ~) = ~0, .  @~'oo .4oo can be locally writ ten in the form h(a) = 
~-,k ~ ,  @ hk(a), a Ca Aoo, where ~0k is a fixed base of local sections of (I '~ (e.g., which formed by the forms 
rlk~ . . .  rll, q) and hj  ~_ s  It can be easily proved that  Im7  coincides with ~o, .  @:7"oo 79erAoo under this 
identification. 

Note tha t  there is a natural  injection @ -+ 0 1,~ C @oo, which, writ ten in local coordinates, maps & ~ 0 

into the "formal derivative" ~ ~  acting in .Too. Similarly, we obtain an injection 7" ~ 79era ~ 79erAr which 
a . a  0 extends any u = y'~i , o=~ + ~ i  bj ~-~ to the derivation of Aoo expressed by the same formula. It follows 

that  74. = a2 ~ @ 7- C ~o,* | DerAoo. 

T h e o r e m  1. The mapping 7 : 7" --~ ~o, .  | DerAoo determines an isomorphism of bigraded sheaves of 
.Too-modules 7 : S -~ 7~ satisfying the condition 7 o f~ = 0 o 7. 

The inverse isomorphism 7 -1  maps T = 1 @ T C 7?. onto the subsheaf T" = {u E S.,o[[O,u] = O} graded 
bu ~ = "Y n Sp,0. 

I f  we identifi# ~- with 7"with the help of 7, then the differential graded sheaf (S,  s is a fine resolution of 
7", and for any fized p, - 1 < p < m,  the differential graded sheaf (Sp,. ,  D) is a fine resolution of Tp. 

P r o o f .  We can use the local coordinates, which are introduced above. Consider the base of local sections 
of Sp,q over .Too given by (9). Clearly, 

0 O 
7 ( ~ , . . .  r ~-~i) = vk, . . - v h  | (r . . .  r ~-~j ), 

"r(,~q . . .  , % v k ,  . . .  vk ,  8 ~ ' )  = vk ,  . . .  vk ,  | ( ~ ,  - - .  ~ , ,  . ). 

But these elements form a base of local sections of Ts Hence 7 : S --+ Ts is an isomorphism, preserving the 

bidegrees. 

By (8 ) , f  or any u E T ,  we have 

( b u ) ( x i )  = Ou(x i ) ,  i = 1 , . . .  ,n ,  

( b u ) ( ~ i )  = Ou(~j) ,  j = 1 , . . .  ,m.  
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I fu  E ,5, then (/)u)(~i) = O, i = 1 , . . .  ,n,  and hence 

i j 

+ 

This completes the proof of the first assertion. The other is obvious. 

R e m a r k .  As we see from Theorem 1, the construction of the resolution (8, /~) solves the question posed in 
the Introduction. Instead of S, one can consider the resolution (T~, c~) endowed with the  bracket [, ] obtained 
by transferring the bracket from ,5 with the help of 7- An elementary calculation shows that  this transferred 
bracket in T~ is expressed by 

[~ | u, ~b | v] = ( -1 )  b'ibhl (~b) | [u, v] + ~u(~,)v - (-1)l~|174 
(lO) 

~o,~b E ~o,. ,  u ,v  E T,  

where we identify ~0,. with ~0,.  | 1 C q" and T with 1 | T C 7r 

3. Exac t  Sequences 

Here we return to the exact sequence (3) constructed in See. 1 and apply it to the s tudy  of the resolutions 
7~ and S. Clearly, (3) leads to the following exact sequence formed by the Dolbeault-Serre resolutions of our 
sheaves: 

0 ~ < I , 0 , . |  id| ~ 0 , . |  T id@c~) ~0 , .@A|  

In the notation of See. 2, it is written as follows: 

0 - - - ~ @ g *  id| 7:~. id |  (11) 

This is an exact sequence of sheaves of complexes if we define the coboundary operators 0 in the boundary 
terms in the usual way: 

0(~o @ u) = (0~v) | u, u E A |  

On the other hand, the arguments of Sec. 1, being applied to the smooth vector bundle T ~  @ E, 
give the following exact sequence, which is similar to (3): 

0 ~ q' | ( O~ @ eL) J+ q" % ~ | Ooo -+ 0. (12) 

The description (9) of the base of local sections of S implies (Ira j )  N S = j ( ~  | $*) = J(~ |  s and 
fl($) = ~ | Ol '~ = ~ | O. Thus, (12) gives the exact sequence 

0 ~  q ' |  -~ $ ~ ~ |  - 0 .  (13) 

P r o p o s i t i o n  I.  The diagram 

2+ s A -+o 

tl l, II 
0--+ q'| l ~ i  7r 1| ~ ' |  + 0  

(14) 

is commutative. The mapping id | is a homomorphism of sheaves of algebras if we endow ~ | S* C ~ |176 
(@o,1 @ s with the algebraic bracket { , } and ~ with the bracket (10). 
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P r o o f .  The proof of the commutat ivi ty  is straightforward by using the local coordinates. The second 
assertion follows from the fact that  j is a homomorphism of sheaves of algebras. 

R e m a r k .  Clearly, the subsheaf  ~ | E* C ~) | ( 0  ~ ~ s  is closed under the algebraic bracket .  This 
bracket is defined as in (4), where ~ | ~* = (~0, .  | .4) | C* is considered as the sheaf of E*-valued forms on 
E* @ T ~  and the operat ion A between two forms is defined by 

( ~  A , I ~ ) ( U l , . . .  , U r + p - - l , V l ,  . . .  , U s + q )  

1 
- ( p -  t)!q!r!s! ~ ( sgn~) ( sgnZ)~( r  ,u~(r) ,  (15) 

c~ESp+q_I 
~ES~+a-1 

V / 3 ( 1 ) , .  �9 �9 , V / 3 ( s ) ) ,  U n t ( r + l ) ,  �9 �9 �9 , U c * ( r - k - p - - 1 ) ,  V / 3 ( s + l ) ,  �9 �9 �9 , V / 3 ( s + q ) ) ,  

forgo E ~2p,q | 1 6 2  E (~,~ | E*,ui E 6*,v j  E 0 ~ �9 

Now we turn to the special case where E = T*(M) .  Clearly, in this ease, ~) = (I) ~ | f/ = ~ and 
~P'q = r p'q. Hence 7" = Derr The exact sequence (12) is a smooth analogue of (5). Denoting j and 13 by i 
and (~ again, we write it in the form 

By [2], there is the splitting l :  (I) |162 Ooo "-+ ~" of (16) given by (6). 
Consider now the sequence (13); in our case it has the form 

0-~ ~ |  r 1 7 4  0. (17) 

Its boundary  terms are the s tandard resolutions of the sheaf f~ | (9 of holomorphic vector-valued forms, first 
considered in [3]. Note that  I is a splitting of (17) as well. In fact, we see at once from the definition of S that  
[d, S] C S,  and therefore, l(ff | O) = [i(r | O), at] C S. 

We also see that  I is a homomorphism of complexes. In fact, for any ~ E ff | O, using (6), we obtain the 
graded Jacobi identity and the relation .[c~, d] = 0: 

D(I(~)) = [0, [i(~o), d]] = [[0, i(~o)], d] = Ii(O~o), d] = l(O~o). 

As a result, we have the  following theorem. 

T h e o r e m  2. Assume that E = T* (M) .  The mappings i and I determine the splitting of the resolution S of 
T into the direct sum of two subsheaves of bigraded subalgebra~: 

s = i ( r  | e)) ~ t (r  | e)). 

Here 

sp,q = i(,I ,p+I 'q | e )  ~ l(~ p,q | e ) ,  

and the bracket in the left summand is determined by the algebraic bracket in ~ | 0 ,  while that in the right 
~ummand is determined by the FN-bracket. In the entire S,  relation (7) holds. 

C o r o l l a r y .  / r E  = T * ( M ) ,  then 

H*(M,  7") = i*(H*(F(M, �9 | 0), 0)) �9 I*(H*(F(M, �9 | 6)), 0)) 

~_ H*(M, f2 |  H*(M,~2|  

The bigrading in H * ( M, 7" ) is given by 

Hq(M, 7"p) ~_ Hq(M,f~ p+I | @) ~ Hq(M,f~p | O), p _> - 1 , q  ~ 0, 

and the bracket [(~,fl], ~,/3 E H*(M, 7-), i~ determined by the algebraic bracket of the vector-valued forma in 
the left ~ummand, by the FN-bracket in the right one, and by (7) when c~, fl belong to different ~ummand~. 
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4. I n v a r i a n t  C o h o m o l o g y  of  C o m p a c t  H e r m i t l a n  S y m m e t r i c  Spaces  

Let M be a simply connected compact Hermitian symmetric space. We can represent M as the coset space 
K/L,  where K is a connected compact semisimple Lie group and L a connected symmetric subgroup of K,  
which is the stabilizer Ko of a point o E M. It is known (see [5]) that the symmetry s at the point o belongs to 
the center of L. The complexification G = K(C) also acts on M, and M = G/P,  where P = Go is a parabolic 
subgroup of G. Let T = ~Der ft, where f~ is the sheaf of holomorphic differential forms on M. Clearly, G acts 
by automorphisms on the sheaves it, 2" and hence on the bigraded cohomology algebra H* (M, T). The set 
of invariant cohomology classes H*(M, T) G is, clearly, a bigraded subalgebra of H* (M, T). In this section, 
we discuss the problem of computing this subalgebra. The complete computation will be done in the simplest 
case where M = CP".  

We start by studying the cohomology H* (M, it | 0),  where it | O is the sheaf of vector-valued holomor- 
phic forms. In See. 1, two brackets, the 'algebraic bracket { ,  } and the FN-bracket [, ], were defined on this 
sheaf. Each of them leads to a structure of the bigraded algebra on H*(M, f~ | O) and on the invariant part 
H*(M, it | O) G, which is a graded Lie algebra with respect to the complete degree. Similar brackets are de- 
fined in the resolution ~ |  of it | and the induced brackets on the cohomology of (F(M, �9 | 0) coincide 
with the corresponding brackets in H*(M, fl | O) if we identify these two eohomology groups (see [4]). 

The first step in the calculation of H*(M, ft | O) a is the reduction to the study of G-invariant forms 
from F(M, ~ | 0) .  Denote by 5 the operator on F(M, ~ | 0)  conjugate to 0 (with respect to the K-invariant 
Hermitian metric on M) and by [] = 05+60 the Beltrami-Laplace operator. As usual, a form ~0 E F(M, 0 |  
is called harmonic if []~0 = 0. For a harmonic % we have 0~0 = 0; any cohomology class contains precisely 
one harmonic form. 

P r o p o s i t i o n  2. We have 

F(M, @~ | e )  G = 0 

whenever r is even. 
Any ~o E P(M, �9 | O) G it harmonic. Assigning to a form ~o E F(M, �9 | O) G its cohoraology class, we get 

an itoraorphitm of bigraded algebra* A : P(M, �9 | O) G --+ H*(M, it | O) G both under the algebraic and the 
FN-brackets. 

The FN-bracket in H*(M, it | O) G it identically O. 

Proof .  For any form ~0 E F(M, �9 r | O) G, we have s*~o = ~o. Since dso = - i d ,  we obtain (s*~O)o = 
(-1)r+I~0o. If r is even, then qOo = 0, and hence q0 = 0. This proves the first assertion. 

Moreover, in the same situation, we have 0~o E P(M, Or+l | o)G. If r is odd, then O~0 = 0. Similarly, 
5~o = 0, and hence ~o is harmonic. It follows that ,~ : F(M, ~ |  G --+ tI*(M, ~t| G is defined and injeetive. 
To prove that  )~ is surjective, assume that q0 E F(M, ~I' | O) is a harmonic form representing a G-invariant 
eohomology class. Then, for any k E K,  the form k*~0 is harmonic and lies in the same cohomology class as 
~o. Therefore, k*~o = % k E K,  whence ~o E F(M, �9 | O) G. 

Clearly, P(M, �9 | O) G is a subalgebra under both brackets and A is an isomorphism of algebras. The 
FN-bracket is 0, since Hq(M, its' | O) G = 0 whenever p + q is even. 

R e m a r k .  Proposition 2 can be carried over to the cohomology H*(M,s  , where E x is the sheaf of 
holomorphic sections of the homogeneous vector bundle E x over M, determined by a holomorphic repre- 
sentation X of P such that X(s) = raid, tt 2 = 1 (by the Schur lemma, this is true, e.g., when X is irre- 
ducible). It can be proved that HP(M,s G = 0 whenever p is odd (even) for # = 1 (respectively, for 
# = - 1). Hence it follows that if X is completely reducible, then all forms from F(M, ~0,. | s )G are harmon- 
ic (with respect to an appropriate K-invariant Hermitian metric on T* (M) | E x), and the natural mapping 
,~ : F(M, ~o,. | s ~ H*(M, s is an isomorphism of graded vector spaces. 
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The next step is the reduction to invariants of the isotropy representation r of P in the tangent space 
To(M). The well-known Cartan principle of reducing invariants of a transitive action to invariants of the 
isotropy group gives 

P r o p o s i t i o n  3. The mapping ~ ~ ~o ofF(M, ~ | O) onto A(T~o'~162 T ~ | Tlo '~ determines 
an isomorphism of the bigraded vector spaces 

F ( M , ~  | O) a -e (A(TJ,~ �9 T~ * e TJ'~ e 

preserving the operations -A and { , }. 

Note that since M is symmetric, ~" is trivial on the unipotent radical of P.  Hence the P-invariants in 
To(M) coincide with the L(C)- or n-invariants. 

In conclusion, we will study the example M = CP" = SLn+t(C)/P, where P is a subgroup of all matrices 
of the form 0) 
Thus, P = SL,~+I(C)o, where o = (0 : . . .  : 0 : 1). We also have 

K = SUn+l, 

L = S ( U n x U 1 ) = { h E P I A E U , ,  b=O},  

L(C) = S(GL,,(C) x GL,(C)) = {h e PtA e GLn(C), b = 0}. 

As a Caftan subalgebra of p, we use the subalgebra of all diagonal matrices diag(A1,... , A,~+l), where A1 + 

�9 . - + A n + l  = 0 .  
The vector space Tlo'~ is identified with the subalgebra n+ C 5[n+l(C) of all matrices of the form 

(00 0), 
where u is an n-column. The restriction of the isotropy representation r to L(C) is given by 

L(C) with GLn(C)by  the isomorphism ( 0  A : )  *-+ A, 
$ 

If we identify then 

d z ( e )  = (det p)p, 
where p is the standard representation of GLn(C). 

The vector space T~o'I(M) is identified with Tlo,~ * = n~_ by means of the K-invariant Hermitian 
metric on M, and n~_ with the subalgebra n_ C s[n+l(C) of all matrices of the form 

(000) 
where v is an n-row. (The pairing between n+ and n_ is given by the invariant inner product in s[ ,+l(C).)  
By Proposition 3, 

P q 

Hq(M,f~v | O)G ~ ((A n_ ) @ (A n+) | n+)L(C). 

Clearly, the representations A q r, A P r* are irreducible, and 
q q 

(A r)lL(C) = (de t  p)q A 
P P 

(A <)IL(C) = (det p)-~ A p-. 
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Further, for p >_ 1, we have the following decomposition into the sum of two irreducible components: 

p p p--I 
(A r*)rlL(C) = (det P)'-P(A p*)p = (det p)l-p A P• + (det p)'-ma, (18) 

where the leading weight of a is )~1  - -  ) ~ n - - p + l  - -  . - -  - -  A n .  It follows that 

H a ( M , f ~ p |  { C f o r q = p - l > 2  
0 forq ~ p -  1. 

It is easy to see that for any p > 1, we can choose the following vector-valued form Wp of type (p,p - 1) 
on n+ = To l '~ 

~p(Ul, . . .  ,Up,Yl , . . .  ,Vp_l) = (p-- 1)! 

~1 (Ul ,Vl)  . . -  (Ul ,Vp--1)  

~2 (U2,~l)  . - -  (U2,Vp--1) 

Up (Up,OX) . . -  (Up,Vp--1) 

(19) 

where li i 6 B+, Vj 6 n_ and ( , ) is the invariant inner product. Clearly, cop • 0 for p = 1, . . .  ,n. The 
corresponding basic G-invariant vector-valued form on M and its cohomology class in H p - I ( M ,  f~P | O) a 
will also be denoted by Wp. 

Now we are able to calculate the algebra H* (M, T)  a. Clearly, the decomposition in Theorem 2 is G-inva- 
riant, and hence 

H * ( M , T )  G ~_ H*(M,~2 | 0)  G ~]~ H*(M,f~ | o)G, 

the bigrading and the bracket being described in the corollary of this theorem. The above calculation implies 
that the only nonzero cohomology spaces Ha(M, 7-p) G are the following ones: 

HV(M, ~ ) G  = (/'(cop+i)), 

HV(M, Tp+I) G = (/*(Wp+l)), p = 0 ,1 , . . .  , n -  1. 

In particular, i*(wa) = e 6 H~ To) G is the grading derivation of T, and/*(cox) = d E H~ T1) G is the 
exterior differentiation. 

P r o p o s i t i o n  4. The bracket operation in H*(CP" ,T)  G is given by 

[i*(wp), i*(Wq)] = (q - p)i*(wp+q-1), 

[r(cop), l*(coa)] = 0, 

[/*(cop), l*(wa) ] = ql*(cop+a_l), p,q > 1. 

Proof .  One uses the corollary of Theorem 2, Proposition 3, and the following relation: 

wp ~Wq = pWp+q-1, p,q > 1. (20) 

To prove (20), we expand the determinant in (19) with respect to the first row; we have 

Wp(Ul~-. .  ~Up,Yl~... ~Yp--1) 

= ( p - -  1) (Wp-- l (U2, . . .  ,Up, Vl , . . .  ,Vp--1),Vl)Ul 

p--1 
+ ( p -  I)~(--1)i(ul,vi)wp-x(u2,... ,Up,V1,... ,vl . . . .  , vp- l ) .  

i----1 

(21) 

2284 



By (15), we have  

(w v 7~ Wq ) (Ul ,  . . . , Uv+q-1 ,  vl . . . . .  v p + q - 2 )  

1 
: ( p -  1)!2q!(q- 1)! ~ (sgn~)tsgn/3) 

c ,6  S p + q _  l 
36Sp+q-2 

XIMp(OJq( l I~(1) , - , -  , I Io t (q) ,U/3(1) , ' ' "  , Pf~(q--1)),  

tL~(q-{-1)," �9 �9 , Ua(p-{-q--1),  72/9(q)," " " , ~)/3(p-t-q--2))" 

p--1 
D u e  to  (21), this  express ion  is the  sum o f p  t e r m s  ~ i = 0  Qi ,  where  

1 
Q0 = ( p _  1 ) [ ( p -  2)[q!(q - 1)[ ~ ( s g n ~ ) ( s g n / 3 )  

c,6 Sp+q_1 
36Sp+q-2 

X ( a / p _ l ( U ~ ( q + l ) , . . .  , U~(p . l_q_l )  , U/~(q.+-l) , . . .  , Y/3(pq-q--2)),  Y/3(q)) 

X O;q( t t c r (1 ) , . . .  ,Uo , (q ) ,V /3 (1 ) , - . -  ,Y/3(q--1)) ,  

(-1)~ ~ (sgn~)(sgn/3) 
Qi  = (p _ 1)!(p - 2)[q!(q - 1)! , ~e s ,+ ,_ ,  

~eSv+q-~ 

• (Wq(Ua(1) , . . .  , Ua(q), Vfl(1),.. �9 , Vfl(q_l)), VO(q.t_i_l) ) 

x top_ x(U~(q+l),  �9 �9 � 9  u~ (p+q_  x), V~(q) , . . .  , ~ ( q + i -  x), �9 �9 � 9  vt3(r,+q-2) ), 

i = 1 , . . .  , p - 1 .  

Us ing  the  e x p a n s i o n  wi th  r e spec t  to  the  first  p - 1 rows,  we see t h a t  

Q0 = w p + q - x ( u l ,  . . .  , % + q - l ,  v l , . . .  , v p + q - 2 ) .  

T o  ca lcu la te  Qi ,  i > 0, we change  the  runn ing  e l e m e n t / 3  6 S p + q - 2  b y  inser t ing  

f l = 7 o ( 1 , . . . , q ) o ( q , q + l , . . . , q + i - 1 ) ,  7 6 S p + q - 2 .  

Clear ly ,  sgn f l  = ( - 1 )  q+i s g n T ,  a n d  hence  

Qi = (p  _ 1)!(p - 2)!q[(q - 1)! ,~6s~+,-1 

3eSp+q-~ 

• , Ut~(q ) , 'O..t(2), . . .  , V.).(q) ), V..t(1) ) 

XtOp--l(tt~(q+l), �9 �9 �9 , ll~(p-l-q--l), l)7(q-bl)," - �9 , UT(p-l-~--2))" 

P r o c e e d i n g  as in t he  case i = O, we see t h a t  

Qi  = ( - 1 ) q ( P  + q - 1)! 

X 

(%Zl, Vl)  - - .  Ul ( U l ,  V q + l )  
(u2,vl) . . .  u ~  (-~,v~+l) 

( t / p + q - - l , l ~ l ) - . - U p 4 - q - - 1  ( U p + q - - l , U q + l )  

�9 .. ('~1, oq+p-~) I 
�9 .. (~,2, ~,q+p-~) 

�9 . .  ( I t p n U q - - l , U q - { - p - - 2 )  

= 0)p. l_q_l(Ul, . . .  ,Up-t-q--l ,1)l ,---  ,W-t-q--2 ) 

for any  i > 1. Th i s  p roves  (20). 
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Using the theorem of Bott [1] on the structure of an induced representation, we can also describe the 
whole algebra H* (C~ ~ , 7-). 

T h e o r e m  3. The Lie sul~eralgebra H~ n, 7-) has the form 

H ~  = H~ @ H~ To) @ H~ 7-1), 

~ohgre 

and 

H~ ", 7"-1) = i*(sl.+l(C)), 

H~ = [*(fi[n+l(C)) (~ (~), 
H~ = (d), 

= x , v  e 

The bigraded algebra H*(CPr~,T) i3 the semidirect sum of the subaIgebra H~ and ~he ideal 

O Hq(CP"'7-P) = (i*(wp)'l*(wP)lP >- 2). 
p+q~2 

Proof .  Clearly, H* (CF n , 7") contains the bigraded algebra described in the formulation as a subalgebra. To 
prove the coincidence, it is sufficient to show that the G-module H*(CP n , Gp | 0 )  is trivial or irreducible for 
any p > 0. The homogeneous vector bundle A p T(M)* |  over CP" is determined by the representation 
X = (A p T*)V of P .  For p = 0, the representation X = ~" is irreducible, while for p > 1, X splits into two 
irreducible components (see (18)). The second summand has the leading weight 

A = Ax - ~ - p + l  - . - . -  ~ + ( 1 - p ) ~ , + l .  

Let 9 be half of the sum of all positive roots of G and vt = ,~n-p+l - ~,,+1- Then (A + g, ~) = 0, and hence 
A + g is singular. Therefore, our assertion follows from the above-mentioned theorem of Bott. 
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