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PREFACE TO THE DOVER EDITION

The flowering of minimal-surface theory referred to in the Introduc-

tion has continued unabated during the subsequent decade and a half,

and has borne fruit of dazzling and unexpected variety. In the past ten

years some important conjectures in relativity and topology have been

settled by surprising uses of minimal surfaces. In addition, many new

properties of minimal surfaces themselves have been uncovered. We

shall limit ourselves in this edition to a selected updating obtained by

enlarging the bibliography (in "Additional References") and by the

addition of "Appendix 3," where a few recent results are outlined. (The

reader is directed to relevant sections of Appendix 3 by new footnotes

added to the original text.) We shall concentrate on results most closely

related to the subjects covered in the main text, with the addition of

some particularly striking new directions or applications. Fortunately

we can refer to a number of survey articles and books that have

appeared in the interim, including the encyclopedic work of Nitsche [II]

and, for the approach to minimal surfaces via geometric measure

theory, the Proceedings of the AMS Symposium-Allard and Almgren [I];

both books include an extensive bibliography. The section "Additional

References," following the original bibliography in the present work,

starts with a list of those books and survey articles where many other

aspects may be explored.

In this Dover edition, a number of typographical errors have been

corrected, and incomplete references in the original bibliography have

been completed. Otherwise, with minor exceptions, the original text has

been left unchanged.



NOTE: In references to the bibliography, Roman numerals refer to

the list of books and survey articles in the Additional References (pp.

179-200), while Arabic numerals refer either to the subsequent list of

research papers or to papers in the original References (pp. 167-178).

MSG and SMS refer to Minimal Submanifolds and Geodesics, the

proceedings of a conference held in Tokyo in 1977, and to Seminar on

Minimal Subman folds, a collection of papers presented during the

academic year 1979-1980 at the Institute for Advanced Study, listed as

the first and second items in the Additional References, under books

and survey articles.

ROBERT OSSERMAN

PREFACE TO THE FIRST EDITION

This account is an English version of an article (listed as

Item 8 in the References) which appeared originally in Russian.

In the three years that have passed since the original writing there

has been a flurry of activity in this field. Some of the most strik-

ing new results have been added to the discussion in Appendix 2

and an attempt has been made to bring the references up to date.

A few modifications have been made in the text where it seemed

desirable to amplify or clarify the original presentation. Apart from

these changes, the present version may be considered an exact

"translation" of the Russian original.
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INTRODUCTION

The theory of minimal surfaces experienced a rapid develop-

ment throughout the whole of the nineteenth century. The major

achievements of this period are presented in detail in the books of

Darboux [1] and Bianchi [1]. During the first half of the present

century, attention was directed almost exclusively to the solution

of the Plateau problem. The bulk of results obtained may be found

in the papers of Douglas [1, 2], and in the books of Rad6 [3] and

Courant [2]. A major exception to this trend is the work of Bern-

stein [1, 2, 31 who considered minimal surfaces chiefly from the

point of view of partial differential equations. The last twenty

years has seen an extraordinary flowering of the theory, partly in

the direction of generalizations: to higher dimensions, to Rieman-

nian spaces, to wider classes of surfaces; and partly in the direc -
tion of many new results in the classical case.

Our purpose in the present paper is to report on some of the

major developments of the past twenty years. In order to give any

sort of cohesive presentation it is necessary to adopt some basic

point of view. Our aim will be to present as much as possible of

the theory for two-dimensional minimal surfaces in a euclidean

space of arbitrary dimension, and then to restrict to three dimen -

sions only in those cases where corresponding results do not seem

to be available. For a more detailed account of recent results in

the three-dimensional case, we refer to the expository article of
1
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Nitsche [4], where one may also find an extensive bibliography

and a list of open questions. The early history of minimal sur-

faces in higher dimensions is described in Struik [1].

Since it is impossible to achieve anything approaching com-

pleteness in a survey of this kind, we have selected a number of

results which seem to be both interesting and representative, and

whose proofs should provide a good picture of some of the methods

which have proved most useful in this theory. For the convenience

of the reader, a list of the theorems proved in the paper is given in

Appendix 1.

For the most part the present paper will contain only an organ-

ized account of known results. There are a few places in which

new results are given; in particular, we refer to the treatment of

non -parametric surfaces in E" in Sections 2-5, and the discus-
sion of the exterior Dirichlet problem for the minimal surface equa-

tion in Section 11.

In Appendix 2 we try to give some idea of the various general -

izations of this theory which have been obtained in recent years.

One word concerning the presentation. In most treatments of

differential geometry one finds either the classical theory of sur-

faces in three-space, or else the modern theory of differentiable

manifolds. Since the principal results of this paper do not require

any knowledge of the latter, we have decided to give a careful in-

troduction to the general theory of surfaces in E". For similar rea-

sons we have included a section on the simplest case of Plateau's

problem in E", for a single Jordan curve. In this way we hope to

provide a route which may take a reader with no previous knowledge

of the theory, directly to some of the problems and results of cur-

rent research.
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§1. Parametric surfaces: local theory
We shall denote by x = (x1, ..., xn) a point in euclidean n-space

V. Let D be a domain in the u-plane, u = (u1) u2). We shall de-
fine provisionally a surface in En to be a differentiable transforma-

tion x(u) of some domain D into En. Later on (in §6) we shall

give a global definition of a surface in En, but until then we shall

use the word "surface" in the above sense.

Let us denote the Jacobian matrix of the mapping x(u) by

(9x.
M=(m1.); i=1,...,n; j=1,2.

au.
1

We note that the columns of M are the vectors

= , ...,1

au. au. .au1

For two vectors v = (v1, ...) vn), w = (wl, ...) wn), we

inner product by

n

v w = VkWk

k=1

and the exterior product by

ax (ax1

vAw; vA w e EN, N=(2),

where the components of v A w are the determinants

Iv. v.

det ' 11 , i<j,/W.
I I

arranged in some fixed order.

axn

denote the

Finally, let us introduce the matrix
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(1.1)
° axk axk dx axG = (9 ii) = M M; gi1 = =

k_ 1 aui auI aui aul

and let us recall the identity of Lagrange:

ax ax 2 a(xi, x 2
(1.2) det G = A - I _

du1 au2 1<i<j<n a(u1, u2)

We may now formulate the following elementary lemma, which is of

a purely algebraic nature.

LEMMA 1.1. Let x(u) be a differentiable map': D -> E'. At

each point of D the following conditions are equivalent:

(1.3) the vectors h, ax are independent,
du1 au2

(1.4) the Jacobian matrix M has rank 2,

(1.5) i, j : 1 < i < j < n, such that
a(x

'
, x.)

01
a(u1, u2)

(1.6)
av A 0,

1
au2

(1.7) det G > 0.

Proof: Formula (1.2), combined with elementary properties of

the rank of a matrix, gives the equivalence. 4

DEFINITION. A surface S is regular at a point if the condi-

tions of Lemma 1. 1 hold at that point; S is regular if it is regular

at every point of D.

We shall write S E Cr if x(u) E Cr in D; i.e., each coordinate
xk is an r-times continuously differentiable function of u1, u2 in D.
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We shall assume throughout that S C Cr, r > 1.

Suppose that S is a surface x(u) a Cr in D, and that u(u) a Cr
is a diffeomorphism of a domain D onto D. We shall say that the

surface S defined by x(u(u)) in D is obtained from S by a change
of parameter. We say that a property of S is independent of param-

eters if it holds at corresponding points of all surfaces S obtained

from S by a change of parameter. It is the object of differential

geometry to study precisely those properties which are independent

of parameters. Let us give some examples.

We note first that if the Jacobian matrix of the transformation

u(u) is
au.

l

then the fact that u(u) is a diffeomorphism implies that

a(u1)
u2) = det U # 0 in D

a(ul, u2)

Furthermore, by the chain rule, it follows from S c Cr and u(u) e

Cr that S e Cr, so that the property of belonging to Cr is indepen-
dent of (Cr changes of) parameters. In particular,

ax 2 ax. au.
= I _ I

auk f= 1 auk auk

or

whence

(1.8)

and

M = MU,

G = UT GU



6 A SURVEY OF MINIMAL SURFACES

2 a(ul, u2)
2

(1.9) det G = det G(det u) = det G
a(u1, u2)

An immediate consequence of this equation, in view of (1.7) is that

the property of S being regular at a point is independent of param-

eters.

Suppose now that A is a subdomain of D such that 0 C D,

where 0 is the closure of A. Let E be the restriction of the sur-

face x(u) to u e A. We define the area of E to be

(1.10) A(s) = ff /det G dul du2

u(u) is a change of parameter, and A maps onto A, then the cor-If

responding surface Y. has area

ff
13(ul, u2A(s)

= det G d1 d2 = det G
A A a(ul, 2)

=
f f det G dul du2 = A (E)

D

du1 du2

using (1.9) and the rule for change of variable in a double integral.

Thus the area of a surface is independent of parameters.

We next note a special choice of parameters which is often use-

ful to consider. Let i and j denote any two fixed distinct integers
from 1 to n, and let D be a domain in the x., xi plane. The equa-
tions

(1.11) Xk = fk(xt, xk = 1, ..., n; k i, j; (xi, xf) e D

define a surface S in E. A surface defined in this way will be



PARAMETRIC SURFACES: LOCAL THEORY 7

said to be given in nonparametric or explicit form. This is, of

course, a special case of the surfaces we have been considering

up to now, the parameters being chosen to be two of the coordi-

nates in En. In other words, we may rewrite (1.11) in the form

(1.12) xi = ul, xl = u2, Xk = fk(ul,u2), k i,l.

In the classical case n = 3 we have a single function fk, and the
surface is defined by expressing one of the coordinates as a func-

tion of the other two.

In order for a surface to be expressible in non-parametric form,

it is of course necessary for the projection map

(1.13) (xl, ..., xn) -+ (xi) xl)

when restricted to the surface, to be one-to-one. This is not true
in general for the whole surface, but we have the following impor-

tant lemma.

LEMMA 1.2. Let S be a surface x(u), and let u = a be a point

at which S is regular. Then there exists a neighborhood A of a,

such that the surface E obtained by restricting x(u) to A has a
reparametrization E in non-parametric form.

Proof: By condition (1.5) for regularity, and using the inverse

mapping theorem, we deduce that there exists a neighborhood A of

a in which the map (u1, u2) -> (xi, xi) is a diffeomorphism. Further-

more, if x (u) a Cr, the inverse map (xi, xd

and the same is true of the composed map

(1.14)

- (ul, u2)

(xi, xl) -> (ul, u2) -' (x1, ...) Xn)

is also Cr,

which defines E.
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Thus, when studying the local behavior of a surface, we may,

whenever it is convenient, assume that the surface is in non-para-

metric form. Let us note also that the reparametrization (1.14)

shows that in a neighborhood of a regular point the mapping x(u)

is always one-to-one.

In order to study more closely the behavior of a surface near a

given point, we consider the totality of curves passing through the

point and lying on the surface. First of all, by a curve C in E'
we shall mean a continuously differentiable map

(1.15) 0: [a, 13] - E°

where [a, s] is some interval on the real line. We shall also use

the notation

(1.16) x = qS(t), a < t < l3; qS(t) _ q,(t)) ( C1 .

The tangent vector to the curve at a point t0 is the vector

(1.17) x'(t0) = (0i (to), ..., 0n (t0).

The curve is regular at t0 if x'(t0) 0.

Suppose now that we have a surface S defined by x (u), u e D,

and a curve C defined by (1.15). We shall say that C lies on S,
if the image of [a, (3] under (A is included in the image of D under

x(u). Since we are interested now in the local study of S, let us

choose any point u = a at which S is regular, and let us restrict

x(a) to a neighborhood of a in which Lemma 1.2 is valid. We

shall continue to denote this restricted domain by D, and the sur-

face by S. Then we have the representation (1.14) and the fact

that the mapping x (u) is one-to-one in D . We consider the totali -

ty of curves C which lie on S and pass through the point b = x (a).
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In order to fix the notation, we may assume that there is a fixed

value t0, a < t0 < 0, such that for each curve C, 0(t0) = b. By
virtue of the representation (1.14), to each such curve C corresponds

a curve u(t) in D such that u(t0) = a. Conversely, to each curve

u(t) in D with u(t0) = a corresponds obviously a curve 0(t) _
x(u(t)) on S, with S(t0) = b. For the tangent vector to the curve

C we have the formula

(1.18) x'(t0) = ui (t0)
au l

u2 (t0) au
1 2

where ax/aui and ax/au2 are evaluated at u = a.

LEMMA 1.3. At a regular point of a surface S, if we consider

the set of all curves which lie on S and pass through the point, then

the totality of their tangent vectors at the point form a two-dimen-

sional vector space.

Proof: Since we can obviously find curves u(t) in D such that
u(t0) = a, and ui (t0), u2 (t0) take on arbitrarily assigned values,
it follows from (1.18) that the set of tangent vectors x'(t0) consists

of all linear combinations of the two vectors ax/aul and ax/au2.
But by condition (1.3) for regularity these vectors are independent

and therefore span a two-dimensional space. 4

DEFINITION. The vector space described in Lemma 1.3 is

called the tangent plane to the surface S at the point b = x(a),

and is denoted by Il or II (a).

Thus a surface S has at every regular point a tangent plane,

which by its definition is independent of parameters.

For the length of a tangent vector we have from (1.1) and (1.18):
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2

(1.19) Ix'(t0)12 = x'(to) x'(to) = , g;i u1 (to) ui '(to)
i,1=1

Thus, the square of the length is expressed by a quadratic form in

the corresponding tangent vector u'(t0), with matrix G ; this quad -

ratic form is often referred to as the first fundamental form of the

surface S. We have seen in (1.10) that the determinant of this form

defines areas on the surface. Similarly, the length of curves on the
surface are obtained from (1.19), since the length of the curve x(t),

a < t < 0 in En is given by

(1.20) L =f jx'(t)jdt
a

It is convenient to associate with an arbitrary curve C of the

form (1.16) the quantity

to

(1.21) s(to) _ f Ix'(t)ldt
a

Since s'(t0) = lx'(to)l > 0 for a < to < 0, we have a monotone
mapping

(1.22) s(t) : [a,(3] - [0,L] .

If furthermore, the curve C is regular, then s'(t) = Ix'(t)l > 0, and
the map (1.22) has a differentiable inverse t (s). The composed map

(1.23) (s) : [0, L]
t(s) [a, R] 0(t) En

defines a curve C which is called the parametrization of C with re-

spect to arclength. We have at each point the unit tangent vector
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(1.24) T = dx = 0t) dx x'(t)
ds s'(t) ds s'(t)

= 1 .

11

We wish next to study "second order effects," and we shall as-

sume from now on that all curves considered are regular C2 curves.

We may then introduce the parametrization (1.23) with respect to

arc length, and we define at each point the curvature vector

(1.25) d2x dT

ds2 ds

as the derivative of the unit tangent with respect to arc length.

We use the same notation as in the paragraph preceding Lemma 1.3,

but we now add the assumption that the surface S e C2, and we re-

strict the class of curves passing through the regular point b = x (a)

on S to regular C2-curves lying on S. We shall seek to describe
the totality of curvature vectors to these curves evaluated at the

point b = x (a). More precisely, if [I is the tangent plane to S at
this point, let us denote by r11 its orthogonal complement, an (n-2)-

dimensional space called the normal space to S at the point. Each

vector is determined by its projections in 11 and IIl For our pres-

ent purposes we shall examine the projection of the curvature vec-

tor into Ill.

An arbitrary vector N e Ill is called a normal to S. Since such

a vector is in particular orthogonal to ax/aul , ax/au2 , we may

compute as follows:

dx du;

ds
i

ds

(1.26)

ax
au;

d2x d2ui ax du1 dui a2x

ds2 ; ds2 au ds ds au;aul

du. du.d?x N=y, b '..(N) '

ds2 I ds ds
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where we have introduced the notation

(1.27)
2

bij(N) = a x
(9u.

N ,
au.

I

the vector au.auk being evaluated at the point u = a. By
noting that

d
)2 = Ix'(t)I2 = gi1u,(t)ul(t)

and that du;/ds = (dui/dt)/(ds/dt), we may rewrite (1.26) in the
form

(1.28) d2x btj(N)u; (to)ut (to)

ds2
N

g.j u; (t0)ui ' (to)

The numerator on the right hand side is a quadratic form in the tan-

gent vector u'(t0) whose matrix b,,(N) depends on the point of the
surface and the normal N. It is called the second fundamental form

of S with respect to N. We note that the entire right-hand side of

(1.28) depends on the particular curve C only to the extent of the

tangent vector to C at the point. In fact, the homogeneity of the

right-hand side in the components of u'(t0) shows that it depends

only on the direction of the tangent vector: i.e., on the unit tangent

T. We may therefore rewrite (1.28) in the form

(1.29) d2x N= k(N,T), N e IIl T e II,
ds2

where the right-hand side is at each point of S a well-defined func-

tion of the normal N and the unit tangent T, called the normal cur-

vature of S in the direction T with respect to the normal N. If we

fix N, and let T vary, we obtain the quantities
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(1.30) k1(N) = max k(N, T), k2(N) = min k(N, T)

called the principal curvatures of S at the point, with respect to

the normal N. Finally we introduce the average value

(1.31) H(N) =
k1(N) + k2(N)

2

called the mean curvature of S at the point, with respect to the

normal N.

To obtain an explicit expression for H(N), we note that since

the right-hand side of (1.28) is the quotient of quadratic forms, its

maximum and minimum, which we have denoted by k1(N), k2(N), are

the roots of the equation

(1.32) det(bil(N)-Agi1) = 0

Expanded, this equation takes the form

det(giJ),\2-(g22b11(N)+g11b22(N)-2g12b12(N)),k+det(bii(N)) = 0.

For the sum of the roots, we therefore have

(1.33) H(N) =
922b11(N) + g11b22(N)-2g12b12(N)

2 det (gig)

It follows immediately from the definition (1.27) that the bij(N)

are linear in N, and from (1.33) that H(N) is linear in N for N E 111

Thus there exists a unique vector H E II1 such that

(1.34) H(N) = H N for all N E 11

The vector H thus defined is called the mean curvature vector of

S at the point. If e1, ..., en-2 is any orthonormal basis of 111, it

follows from (1.34) that the mean curvature vector H may be
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n-2
(1.35) H = I [H(ek)] ek

k= 1

DEFINITION. A surface S is a minimal surface if its mean

curvature vector H vanishes at every point.

The reason for this terminology will become apparent in Sec-

tion 3. For the moment we note merely that by virtue of (1.34) and

(1.35), H = 0 if and only if H(N) = 0 for all N c Ill Thus, using
(1.33), minimal surfaces are characterized in terms of their first

and second fundamental forms by the equation

(1.36) g22b11(N) + g11b22(N)-2g12b12(N) = 0.
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§2. Non-parametric surfaces.

We consider in this section surfaces in the non-parametric

form (1.11). By relabeling the coordinates in E" we may assume

that the surface is defined by

(2.1) xk = fk(x1, x2), k = 3, ..., n ;

or equivalently

(2.2) x1 = ul,

Then

x2 = u2, xk = fk(ul, u2), k = 3, ..., n.

ax af3 af" ax af3 af"

aul (11 0, au1 aul au2 au2 au2

and

(2.4)
g t' ( afk afk- i+ g12 =11 - ' 'k=3 aul k=3 au1 au2

922 In
C

afk )2
= 1+

k=3 au2

We note that the vectors ax/au1, ax/au2 are obviously indepen-

dent, so that every surface in non-parametric form is automatically

regular.

We again denote by 11 the tangent plane, and by IIl the normal

space.

LEMMA 2.1. Let N3, ..., N" be arbitrary. Then there exist

unique N1, N2 such that the vector N = (N1) ..., Nn) is in 111.

Proof: The vector N is in II1 if and only if N , ax/au; = 0,
i = 1, 2. By (2.3) we have Ni = - I k = 3 Nk(afk/aul), i = 1, 2. 1,
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We give an application of this lemma to arbitrary surfaces.

LEMMA 2.2. Let x(u) define a surface S c Cr, let b = x(a) be

a regular point of S, and let N be a normal to S at this point. Then

there exists a neighborhood A of a, and N(u) E Cr-i in A such that

N(u) E II1(u) and N(a) = N.

Proof: By Lemma 1.2 we may find a neighborhood A of a in

which S has a reparametrization in the form (2.1) (assuming suit-

able labeling of the coordinates in En). Let N = (N1, ...) Na), and

set

n of
N.(u) = - :, Nk k

k= 3 auI

Then N(u) has the desired properties. 1
For the remainder of this section we consider surfaces S e C2.

From (2.3) we deduce

(2.5)
a2x

au. auk

(0,

a2f3 a2fn
o'

au. au. au.auk

Thus, for an arbitrary normal N = (N1, ..., Nn),

n a2fk(2.6) b' ..(N) = =3 Nk
k= aui.au

I

.

we have

The equation (1.36) for a minimal surface therefore takes the form

n

3 1

.[c

n
afm

2
a2fk

+
m3 au2 au12

afm afm a2fk
-2

m=3 aul au2 aul au2

n of 2 a2f
1+ m k Nk = 0,

M= 3 au1 au2
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for all normal vectors N. Since, as we observed earlier, the com-

ponents N31 ..., N" may be chosen arbitrarily, it follows that each

of the coefficients of Nk must vanish, for k = 3, ..., n. We thus ob -

tain n - 2 equations for the n - 2 functions f3, ..., f". If we recall
that ul = xl, u2 = x2, and if we introduce the vector notation

(2.7) f (xl, x2) _ (f3(xl, x2), ...) f"(xl, x2)) ,

then these equations may be written as a single vector equation

(2.8) 1 + of I2 a2f - 2 of . of a2f
22

(ax l ax2) ax 1 ax2ax2 ) ax
1 /

+(1+I of 12)af
\\ ax J ax2

= 0.

This is the minimal surface equation for non-parametric minimal

surfaces in E". Every regular minimal surface provides local so-

lutions of this equation, by Lemma 1.2. We shall use this fact later

on to aid in the local study of minimal surfaces. For the present,

let us observe that Equation (2.8) allows us to find explicitly a

number of specific examples of minimal surfaces. Some of these

surfaces turn out to be very useful in the general theory because of

certain extremal properties which they possess.

First let us consider the case n = 3. Then f (xl, x2) = f 3(x1, x2)

and (2.8) reduces to a single equation for the scalar function f(xl, x2).

We have the following classical surfaces.

The helicoid:

(2.9) f (xl, x2) = tan '1 x2
x1
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One can show that this is the only solution of (2.8) which is also a

harmonic function, and that the helicoid is the only ruled minimal

surface. (For a more detailed discussion of all these surfaces we

refer the reader to Darboux [1].)

The catenoid:

f (x 1, x2) = cosh-1 r, r = x 12 + x2

xi + x2 = (cosh x3)2

This is the only minimal surface which is also a surface of rotation.

Scherk's surface:

cos x2
(2.12) f (x1, x2) = log

cos x1

This is the only minimal surface of translation; that is (2.12) is the

only solution of (2.8) of the form f(x1, x2) = g(x1) + h(x2).

There are two remarks we should make about these solutions.

First of all, the image of a minimal surface under a similarity trans-

formation is again a minimal surface, so that one can obtain other

solutions of (2.8) trivially by this method. Second of all, we have

not specified the domain of definition of the above solutions, but

we may note that none of them is defined for all x1, x2. This turns

out not to be an accident, since the theorem of Bernstein which we

shall prove later on (Section 5) states that for n = 3 there are no

non-trivial solutions of Equation (2.8) valid in the whole x1, x2-

plane.

We turn now to the case of arbitrary n. We note first that if

each fk is linear in x1, x2, then (2.8) is satisfied trivially. In this
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case the surface S is a plane.
If n is even we have the following special solutions. Let z =

xi + ix2, and let gl(z), ..., gm(z) be complex analytic functions of

z, where n = 2m + 2. Then setting

( Re{gp(z)1, k = 2p + 1
fk(xl, x2)

Im {gp(z)1, k = 2p-+ 2

for p = 1, ..., m, we obtain by direct verification a solution of (2.8).

We may word this result as follows: the graph of a complex-analytic

curve, considered as a surface in real euclidean space, is always

a minimal surface. For the case of a single function gl(z), the
corresponding minimal surfaces in E4 were studied in great detail

by Kommerell [1].
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P. Surfaces that minimize area.
We shall now discuss briefly the problem which led historically

to the theory of minimal surfaces. Namely, that of characterizing

those surfaces which have least area among all surfaces with the

same boundary. Specifically, we shall consider the following situ-

ation.

Let S be a regular surface defined by x(u) E C2 in a domain D.

Let r be a closed curve in D which bounds a subdomain A, and

let I, be the surface defined by x(u) restricted to A. Suppose that
the area of F, is less than or equal to the area of every surface

defined by x(u) in A such that for u on F, x(u) = x(u). What

does this imply about the surface x(u) ?

We shall apply the standard methods of the calculus of variations

in two different forms. First we shall make normal variations of the

surface, and later we shall consider non -parametric surfaces and

variations perpendicular to the x1, x2-plane.

To start with, let us suppose that N(u) a C' in D, such that
N(u) is normal to S at x (u). That is

(3.1) N(u) au = 0, i = 1, 2.

Differentiating this equation yields

(3.2)

2

au. au. - N au. au. = - bti(N)
I I I I

We now consider an arbitrary function h (u) a C2 in D,

each real number A we form the surface

and for

Sx : 2(u) = x(u)+ Ah(u)N(u), u c D.

We find
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ai ax + A Ch aN + ah N
aul au. L au. au.

and using (3.1), (3.2)

iij = az , ax = g.. - 2Ahb1j (N) +
au. au.

I J

where
clj is a continuous function of u in D.

It follows that

ij
A2c

21

(3.3) det ilj = a0 + alA + a2j12

where

(3.4) a0 = det gij, al = -2h(g11b22(N) + g22b11(N)-2g12b12(N))

and a2 is a continuous function of ul, u2, A for u in D.

As a first consequence of this formula, using the fact that S is

regular we deduce that a0 has a positive minimum on A, and since

al and a2 are continuous in D, there exists E > 0 such that
det glj > 0 for JAJ < E and u c 0. In other words, for JAl < E, the

surfaces Xx defined by restricting a`c(u) to A are all regular sur -

faces. To compute their area A(A) = A(Y'A), we note that in view

of (3.3), we have

(3.5)
I

Vdet gll -
CV a0

+ 2
a/ A)

< M A2

0

for u in A, where M is a positive constant. By (1.10) and (3.4)
we have

A(0) = A(Y.) = ff dul due
A

and integrating (3.5)
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A(A)-A(0)- A ff. al dul duz I < M1\z
2Vao

A(A) -A(0) _ f al
A 2/ dui duz l < M1 A

Letting A tend to zero, substituting in the expressions (3.4) for

ao, al, and recalling the formula (1.33) for the mean curvature, we

arrive at the expression

(3.6) A'(0) = -2 f f H(N) h (u) J/ ed t g.. du1 due
A

for the rate of change of area as a function of A.

We may note in passing that if f(u) is an arbitrary continuous
function of u in A we may define the integral of f with respect to

surface area on I, as

(3.7) fff(u)dA = ff. f (u) \/det g,j dul duz
E

th this notation, if we choose our family of surfaces S,A by set-Wi

ting h (u) = 1, then formula (3.6) reduces to

A'(0) _ -2 fZ H(N)dA
E

which provides an interesting interpretation of the quantity H(N).

We now return to our original problem, and we make the follow-

ing assertion: in order for I to minimize area, its mean curvature

must be identically zero. This follows immediately from (3.6) using

the standard argument of the calculus of variations. Namely, if the
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mean curvature did not vanish identically, then there would be a

point u = a in A and a normal N = N(a) such that H(N) 0. We
may assume H(N) > 0. By Lemma 2.2 we can find a neighborhood

Vl of a, and N(u) a C' in V1, such that N(u) is normal to S at
x(u). Then we will have H(N) > 0 throughout a neighborhood V2,

a e V2 C Vl, and if we choose the function h(u) so that h(a) > 0,

h(u) > 0 for all u, and h(u) - 0 for u ( V2, the integral on the

right-hand side of (3.6) will be strictly positive. However, if V2

is small enough so that V2 C A, then x(u) = x(u) on r, so that
Xx will be a surface with the same boundary as E. The assump-

tion that E minimizes area implies that A(A) > A(0) for all a,

whence A'(0) = 0. Thus we would obtain a contradiction to (3.6),

and the assertion is proved.

Thus minimal surfaces arose originally in connection with mini-

mizing area, and it is from this connection that they derived their

name. However, as we shall see, they also arise naturally in a num-

ber of other connections, and many of their most important properties

are totally unrelated to questions of area. Before leaving the sub-

ject we shall use the property of minimizing area to derive several

other forms of the minimal surface equation.

We start from a surface in non-parametric form:

xk = fk(xl, x2), k = 3, ..., n,

and introduce the vector notation

(3.8) f = (f3, ..., fn), p =ax
, q = x '

1
a2

a2 f 2of of taf
r ax S = axl axe ' ax2

2
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Then the minimal surface equation (2.8) may be written as

(3.9) ( 1 + I q12) P - (P q)( +
/

+ (1 + I PI 2) a = 0,
i \ 2 1/ 2

or as

(3.10) (1+IgI2)r-2(p q)s+(1+Ipi2)t= 0

The equations (2.4) take the form

911 = 1+ IPI2, g12 = P q, 922 = 1+ IgI2,

detg;, = 1+IPI2+IgI2+IPI2Ig12-(p.q)2 .

One often uses the notation

(3.13) W = \/ et g,

for non-parametric surfaces.

Suppose now that we make a variation in our surface, setting

fk = fk + Ahk, k = 3,...,n,

where A is a real number, and hk E C1 in the domain of definition

D of the fk.

whence

In vector notation, setting h = (h3, ..., hn)

f= f+Ah, P= P+A , 4= q+AaX
1 2

W2 = W2+2AX+A2Y,

where

we have

X = [(1+Igl2)P - (p q)qI . +.[(1+IPI2)q - (p q)p]. d
1 2
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and Y is continuous in x1, x2. It follows that

W = W+aW +A2Z

where Z is again continuous.

We now consider a closed curve F in the domain of definition

of f(xl, x2), and let A be the region bounded by F. If the surface

xk = f(xI, x2) over A minimizes the area among all surfaces with

the same boundary, then for every choice of h such that h = 0 on

F, we have

ffw dxl dx2 >
JJW dxl dx2

0 0

which is only possible if

0.

Substituting in the above expression for X, integrating by parts,

and using the fact that h = 0 on I", we find

ff[_c3_[1+iqJ2P_2_2q]+Oaa r1

W 2q P- q
p]Jh dxldx2 = 0.

x, w J-2

2
(3.14)

axl
[1+II2p_ PWq q + axe r1

W
121 q pl 0

must hold everywhere.

Once we have found this equation, it is easy to verify that it is

a consequence of the minimal surface equation (3.10). In fact the

left-hand side of (3.14) may be written as the sum of three terms:



26 A SURVEY OF MINIMAL SURFACES

1+Le aP P- q (( aq + aP + 1+Ipl2 aq
W axl W \ ax1 ax2) W ax2

Wg )-() PJX2

a 1+lpl2'\ a
+

(p q
ax2 w axl \ W )

The first term vanishes by (3.9). If we expand out the coefficient

of p in the second term, we find the expression

(3.15)

P.

al

1+wg12

ax2 wa

3 [(P' q)q-(I+ lgl2)P].[(1+jgj2)r-2(p q)s+(1+P12)t]
W

which vanishes by (3.10). Interchanging p and q, x1 and x2, we

see that the coefficient of q in the third term vanishes also, thus

proving (3.14). In the process we have also shown that the two

equations

a

r3x1

(3.16)

ax2 ( pWq

C pw ) =ax2 (1 wpl2)a

axl

are satisfied by every solution of the minimal surface equation

(3.10). These equations have long been known in the case n = 3,

and the fact that they are in divergence form allows one to derive

many consequences which are not immediate from (3.10). (See, for

example, Radio [31.) We shall see that Equations (3.16) have equal -

ly important consequences in the case of arbitrary n.
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§4. Isothermal parameters.

When studying properties of a surface which are independent of

choice of parameters, it is convenient to choose parameters in such

a way that geometric properties of the surface are reflected in the

parameter plane. As an example one can ask that the mapping of

the parameter plane onto the surface be conformal, so that angles

between curves on the surface are equal to the angles between the

corresponding curves in the parameter plane. Analytically, this con-

dition is expressed in terms of the first fundamental form (1.1) by

(4.1)

or

911 = g22, g12 = 0

(4.2) gii = \2Sti , A = A(u) > 0 .

Parameters u1, u2 satisfying these conditions are called isothermal

parameters.

Many of the basic quantities considered in surface theory simpli -

fy considerably when referred to isothermal parameters. For exam-

ple, from (4.2) we have

(4.3) det g .. = A4

and the formula (1.33) for mean curvature becomes

(4.4) H(N) =
b1 (N) + b22(N)

2A2

We also have the following useful formula for the Laplacian of the

coordinate vector of an arbitrary surface.

LEMMA 4.1. Let a regular surface S be defined by x (u) E C2

where u1, u2 are isothermal parameters. Then
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(4.5) Ax = 2A2H

where H is the mean curvature vector.

Proof: The defining equation (4.1) for isothermal parameters

may be written in the form

ax ax ax ax ax ax- , = 0
-ul au2 au2 au

1
(9u2

Differentiating the first of these with respect to ul, and the second

with respect to u2 yields

a2x ax _ a2x ax a2x ax

3u1avi avl au1au2 au2 au2
2

whence

Ax . ax = a2x + 32x ax
= 0

aui aui au2 au
1

Similarly, differentiating the first equation with respect to u2 and

the second with respect to ul yields

Ox. ax = 0 .
au2

Thus Ax is a vector perpendicular to the tangent plane to S.

if N is an arbitrary normal vector to S, we have

Ax N =ava2x . N + a 2 N = bll(N)+b22(N) = 2A2H(N)
i au2

But

by (4.4). This means that Ax/2A2 is a normal vector which satis -

fies the defining equation (1.34) of the mean curvature vector H,

and this proves (4.5). 4
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We may note that formula (4.5) is of interest in other connections,

and in particular in the study of surfaces of constant mean curvature.

However, for our purposes we are interested only in the following

immediate consequence.

LEMMA 4.2. Let x(u) E C2 define a regular surface S in isother-

mal parameters. Necessary and sufficient that the coordinate func-

tions xk(ul, u2) be harmonic is that S be a minimal surface.

Thus we see that minimal surfaces arise naturally in quite a dif-

ferent context from that of minimizing area. We wish to pursue fur-

ther the connection with harmonic functions.

Let us introduce the following notation. Given a surface x(u),

we consider the complex-valued functions

(4.6)
yy

ax
k(SI = k

au

axk
- 1 ,

au2
S = U1 + iu2

We note the identities:

n aX 2 n axk 2 axk axk
k

k
k=

1

k= au1
- k= 1 au2 - 2i

k= 1 au1 au2

(4.7)
=I ax12_I ax12_2iLx ,ax

au1 au2 au 1 au2

= 911 - g22 - 2ig12

(4.8)

`n n aX 2 aX 2

4 auk + auk
= 911 + g22

k=1 k=1 1 k=1 2

We may read off directly the following properties of the functions

a) is analytic in C<=> Xk is harmonic in u1, u2
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b) ul, u2 are isothermal parameters <_>

n

(4.9) k (C) = 0 ;k=

=1

c) if ul, u2 are isothermal parameters, then S is regular <_>

n

(4.10) I 10 0 .

k=1

LEMMA 4.3. Let x(u) define a regular minimal surface, with

ul, u2 isothermal parameters. Then the functions cbk(C) defined

by (4.6) are analytic, and they satisfy equations (4.9) and (4.10).

Conversely, let cl(C), ..., on(C) be analytic functions of C which
satisfy (4.9) and (4.10) in a simply-connected domain D. Then there

exists a regular minimal surface x(u) defined over D, such that
equations (4.6) are valid.

Proof: The first statement follows immediately from properties

a), b) and c), in view of Lemma 4.2. For the converse, if we define

(4.11) xk = Re J Ok(C)d ,

then the xk are harmonic functions satisfying (4.6), and again
applying a), b), and c) in the opposite direction, the result follows
from Lemma 4.2. 4

Thus we see that the local study of regular minimal surfaces

in En is equivalent to the study of n-tuples of analytic functions

satisfying (4.9) and (4.10). We may note that by (4.11), these func-

tions determine the xk up to additive constants, and the surface is

therefore determined up to a translation.
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The preceding results are all based on the assumption that the

surface can be represented locally in terms of isothermal parame-

ters. However, the existence of such parameters is not at all obvi-

ous, and in the case of C1-surfaces it is not even always true. For

C2-surfaces there is a general theorem guaranteeing their existence,

but we do not have to invoke this theorem, since in the case of min-

imal surfaces we are able to give an elementary proof.

LEMMA 4.4. Let S be a minimal surface. Every regular point

of S has a neighborhood in which there exists a reparametrization

of S in terms of isothermal parameters.

Proof: By Lemma 1.2 we may first of all find a neighborhood

of the regular point in which S may be represented in a non-parametric

form. We then have equations (3.16) satisfied in some disk

(x1 -a1)2 + (x2 - a2)2 < R2. These equations imply the existence
of functions F(xl, x2), G(xl, x2) in this disk, satisfying

(4.12) aF = 1 + 2
, aF = p q

ax1 W ax2 W

aG p - q aG = 1+ I q1 2
ax 1 W ' c3x2 W

If we set

(4.13) 61 = x1 + F(xl, x2), 42 = x2 + G(xl, x2),

we find

ael = 1+ 1+ 1PI 2 a6l = P_q
ax1 W ax2 W

a62 = p_q a62 = 1+ 1+ 2 ,
ax1 W axe W
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_ a(Ci' C2) = 2 + 2 +IPI2 + 1g12 0a(xl, x2) W >

Thus the transformation (4.13) has a local inverse (6l, 62) (xl, x2),
and setting xk = fk(xl) x2) for k = 3, ..., n, we may represent the

surface in terms of the parameters 6l, 62. We find

axl W+l+Igl2 ax2 P'qail= JW JW,

q
P

k
'k JWaS l JW

k=3,...,n;

axl p q ax2 W+1+IPI2

a62
= - JW ,

a62
= JW

W+1+ 2k
= JWIPI qk PW Pk, k=3,..., n.

2

It follows that with respect to the parameters 6l, 62, we have

gll = g22

(4.14)

=Iax12=I ax 12=Ww2
aet ae2 J 2W+2+Ip12+

ax ax612=
a6l

a62=<)

so that 6l, 62 are isothermal coordinates. 4

q12

COROLLARY. Let xk = fk(xl) x2), k = 3, ..., n, define a mini-

mal surface in non-parametric form. Then the fk are real analytic
functions of xl, x2.

axk _ W+l+g2 P, q
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Proof: In a neighborhood of each point we can introduce the

map (4.13) which gives local isothermal parameters ' 1,62 for the

surface. By Lemma 4.2, xi and x2 are harmonic, hence real-

analytic functions of 61,'2. Thus the inverse map x1, x2 ' 61, 2
is also real analytic. But each xk is harmonic in 61, 62, hence a
real analytic function of x1, x2.

Let us note in particular that every solution f (xl, x2) C2 of

the system (2.8) is automatically analytic. In the case n = 3 an
elementary argument of this type was given by Mtlntz [1] and Rado

[1], who considered, instead of (4.13), the mapping 61 = x1, 62 =
G(x1, x2). This is a somewhat simpler mapping which also gives

isothermal coordinates. However, the mapping (4.13) which was

introduced in the case n = 3 by Nitsche [1] has additional proper-

ties which make it particularly useful, as we shall see in the follow-

ing section.

We conclude this section with the following elementary lemma.

LEMMA 4.5. Let a surface S be defined by x(u), where ul, u2

are isothermal parameters, and let S be a reparametrization of S

defined by a diffeomorphism u(11). Then 1l, v2 are also isothermal

parameters if and only if the map u(u) is either conformal or anti-

conformal.

Proof: Since u1, u2 are isothermal, we have g.i = A2Sand by
(1.8), G = A2 U1 U. Thus 61, u2 isothermal <> gti = A2S=i <>
(A/A)U an orthogonal matrix <_> u(ir) is either conformal or anti-

conformal. 4
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§5. Bernstein's Theorem.

In this section we shall prove several results related to Bern-

stein's Theorem. Although this theorem is of a global, rather than

a local nature, we include it here before our general discussion of

surfaces in the large, for two reasons. First, because the proof

requires a purely elementary argument, and second, because Bern-

stein's Theorem provides the motivation for a number of the results

that we discuss later on.

We begin with some elementary lemmas.

LEMMA 5.1. Let E(xl, x2) a C2 in a convex domain D, and

suppose that the Hessian matrix

3x.3x.

is positive definite. Define a mapping

(5.1) (x1, x2) - (u1, u2), where u = aXE

Then if x and y are two distinct points of D, and if u and v are
their respective image points under the map (5.1), the vectors

y - x and v- u satisfy the equation

(5.2) (v- u) (y- x) > 0 .

Proof: Let G(t) = E(ty + (1- t) x), 0 < t < 1. Then

2

G'(t) _

and
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2

G"(t) _
02E

x.
(ty+(1-t)x(yi-xt)(Yi-xi)

> 0 for 0<t<1.

Hence G'(1) > G'(0), or I, v.(y. - x.) > I, ut(y. - x.), which is
(5.2).

LEMMA 5.2. (Lewy [1]). Under the hypotheses of Lemma 5.1,

if we define the map

(5.3) (x1, x2) ' (61, 62), by 0x1, x2) = xt + u.(x1, x2) ,

where u.(x1, x2) is defined by (5.1), then for any two distinct points

x and y of D, their images 6 and rf satisfy

(5.4) (rl-) (Y- X) > Iy- x12

Proof: Since rl- _ (y- x) + (v- u), this follows immediately
from (5.2). 4

COROLLARY. Under the same hypotheses, we have

(5.5) 177-6I > Iy-xl

Proof: By the Cauchy-Schwarz inequality,

1q- 61 IY-xl ,

which applied to (5.4) yields (5.5). 1

LEMMA 5.3. In the notation of the previous lemmas, if D is

the disk xi + x2 < R2, then the map (5.3) is a diffeomorphism of

D onto a domain A which includes a disk of radius R about (0).
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Proof: The map (5.3) is continuously differentiable, since

E(x1, x2) E C2. If x(t) is any differentiable curve in D, and 6(t)

its image, then it follows from (5.5) that 16101 > I-'(01, and

hence the Jacobian is everywhere greater than 1. Thus the map is

a local diffeomorphism, and by (5.5) it is one-to-one, hence a glo-

bal diffeomorphism onto a domain A. We must show that A in-

cludes all points 6 such that I'-6(0)I <R. If A is the whole
plane this is obvious. Otherwise there is a point , in the comple-

ment of A which minimizes the distance to 6(0). Let e(k) be a

sequence of points in A which tend to el and let xlkl be the cor-
responding points in D. The x(k) cannot have any point of accu-

mulation in D since the image of such a point would then be the

point contrary to the assumption that f is not in A. Thus
Ix(k)j -* R as k oo, and since I &)_6(0)j > ixfkll by (5.5), it
follows that 16- 601 > R, which proves the lemma.

LEMMA 5.4. Let f(xi, x2) be a solution of the minimal sur-

face equation (3.10) for xi + x2 < R2. Then using the notation

(3.8), (4.12), the map (x1, x2) (61, 62) defined by (4.13) is a dif-

feomorphism onto a domain A which includes a disk of radius R

about the point 6(0).

Proof: It follows from equations (4.12) that there exists a func-

tion E(x1, x2) in xi + x2 < R2 satisfying

(5.6) (9E = F, = G
ax

1
ax

2

Then E(xi, x2) a C2, and

a2E = I+ I P12 > 0 , det E = a(F, G)

ax2 w axiax2 a(xl, x2)
1
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by (3.12), (3.13) and (4.12). Thus the function E(x1, x2) has a po-

sitive-definite Hessian matrix and we may apply Lemmas 5.1-5.3

to it. But by (5.6), the map (4.13) is just the map (5.3) applied to

this function. Thus Lemma 5.4 follows immediately from Lemma

5.3. 1

LEMMA 5.5. Let f(x1 x2) c C' in a domain D, where f is

real-valued. Necessary and sufficient that the surface S: x3 =

f(xl, x2) lie on a plane is that there exist a nonsingular linear

transformation (u,, u2) , (x1) x2) such that ul, u2 are isothermal

parameters on S.

Proof: Suppose such parameters ul, u2 exist. Introducing the

functions 95k(C) by (4.6), k = 1, 2, 3, we see that 41 and 952 are

constant since xl and x2 are linear functions of ul, u2. But by
(4.9), 953 must also be constant. This means that x3 has constant

gradient with respect to u1, u2, hence also with respect to x1, x2.

Thus f(xi, x2) = Axi + Bx2 + C. Conversely, if f is of this form,
it is easy to write down an explicit linear transformation yielding

isothermal coordinates; for example, x1 = AAul + But, x2 =

ABu 1- Au2, where X2 = 1/(1 + A2 + B2). 1

THEOREM 5.1. (Osserman [71). Let f(x1, x2) be a solution of

the minimal surface equation (2.8) in the whole x1, x2-plane. Then

there exists a nonsingular linear transformation

(5.7)
xl = u 1

x2 = auI + but, b > 0,

such that (u1, u2) are (global) isothermal parameters for the sur-

face S defined by

xk = fk(xl, x2) , k = 3, ..., n .
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COROLLARY 1. (Bernstein [3]). In the case n = 3, the only

solution of the minimal surface equation in the whole x1, x2-plane

is the trivial solution, f a linear function of x1, x2.

COROLLARY 2. A bounded solution of equation (2.8) in the

whole plane must be constant (for arbitrary n).

COROLLARY 3. Let f(x1, x2) be a solution of (2.8) in the

whole x1, x2-plane, and let S be the surface defined by

(5.8) xk = fk(ul, u2) , k = 3, ..., n

obtained by referring the surface S to the isothermal parameters

given by (5.7). Then the functions

of aE
(5.9) k = auk - i

au
, k = 3, ..., n

1 2

are analytic functions of ul + iu2 in the whole ul, u2-plane and

satisfy

(5.10)

n

k -1-c2
k=3

c = a- ib .

Conversely, given any complex constant c = a- ib with b > 0,
and given any entire functions 31 of ul + iu2 satisfying
(5.10), equations (5.9) may be used to define harmonic functions

tlk(ul, u2) and substituting u1, u2 as functions of x1, x2 from

(5.7) into equations (5.8) yields a solution of the minimal surface

equation (2.8) valid in the whole x1, x2-plane.

Proof of Corollary 1: This is an immediate consequence of

Theorem 5.1 and Lemma 5.5. 4
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Proof of Corollary 2. By Lemma 4.2, each xk, for k= 3, ..., n,

will be a bounded harmonic function of (u1, u2) in the whole u1, u2-

plane, hence constant. 1

Proof of Corollary 3: This is an immediate consequence of

Lemma 4.3, using the fact that in view of (5.7),

ax ax
01 =aui -i au2 = 1, 02 =

ax ax
2 - i 2 = a-ib .

au2 au2

Proof of the theorem: We introduce the map (4.13), which is

now defined in the entire x1, x2-plane. It follows from Lemma 5.4

that this map is a diffeomorphism of the x1, x2-plane onto the en-

tire e1, e2 -plane. We know from (4.14) that e2) are isothermal

parameters on the surface S defined by xk = fk(xl, x2), k = 3, ...,n.
By Lemma 4.3, the functions

ax ax

ail - i a42 , k= 1,...,n

are analytic functions of C. We note the identity

a(xl, x2)

and since the Jacobian on the right is always positive, we deduce

first that 0, 0, 02 0 everywhere, and further that

Im I --
,,12 Im{c102f < 0.

Thus the function 02/01 is analytic in the whole c-plane, has
negative imaginary part, and must therefore be a constant:
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(5.11)
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95 2 = Cq 1 ; c = a-ib, b > 0.

Taking the real and imaginary parts of equation (5.11), we find

(5.12)

ax2 axl axl
= a - b --

ail a-2

ax ax ax-? = b -1 + a-- l- .

ae2 ail a62

If we now introduce the transformation (5.7), equations (5.12) take

the form

aul au2 8u2 au1

a6l a62 e2 2
that is to say, the Cauchy-Riemann equations, expressing the con-

dition that ul + iu2 is a complex-analytic function of 1 + i62.
But this means, by Lemma 4.5, that (ul, u2) are also isothermal

parameters, which proves the theorem. 1

We may note that in the case n = 3 the introduction of the

function E(xl, x2) defined by (5.6) was suggested by E. Heinz

(see Jorgens [1], p. 133), whereas the application of Lewy's map

(5.3) to this function and the resulting elementary proof of Bern-

stein's Theorem is due to Nitsche [1,2].

The point of Corollary 3 is that it provides a kind of represen-

tation theorem for all solutions of the minimal surface equation

(2.8) over the whole x1, x2-plane. It is interesting to examine in

detail the case n = 4. Then, as we have remarked at the end of

section 2, one has in addition to the trivial solutions fk linear,

the solutions

(5.13) f3 +if4 = 9 (z), z = x1 + ix2 ,
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where g is an analytic function of z. For an arbitrary entire func-

tion g(z), equation (5.13) defines a solution of the minimal surface

equation in the whole xl, x2-plane. The same is true if one sets

(5.14) f3-if4 = g(z) .

Now by Theorem S. 1, to every global solution f3(xl, x2), f4(xl, x2),

there corresponds a transformation (5.7) and entire functions

03(w), 04(w), where w= ul + iu2, satisfying

(5.15) 03 +
(k4 = -d, d= 1 + c2

We consider two cases. First, if c =+ i, then equation (5.10) re-

duces to

(5.16) 0; a=0, b=+1.

Thus the transformation (5.7) is either the identity transformation

or a reflection: w = z, or w = z, and equation (5.16) implies 94 =

± i93 which is equivalent to f3 + if4 an analytic function of z or

z . Thus the case c = ± i corresponds precisely to the special so-

lutions (5.13) and (5.14).

In the second case, c ± i, we may write equation (5.15) in

the form

(5.17) (q 3 + d,

Thus, each of the factors on the left is different from zero. In par-

ticular, the function 3- ic4 is an entire function which never
vanishes, and therefore is of the form

03-rc4 = eH(w)

for some entire function 11(w). By (5.17) we have
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cb3 + i04 = -de-H(u )

and combining these two equations yields

(5.18) 03 = 21- (e"'- de Hf'"1) , 04 = 2 (eH(w) + de-H(w))

We can thus describe explicitly in the case n = 4 all solutions

of the minimal surface equation which are valid in the whole x1, x2-

plane. They are either of the special form (5.13) or (5.14), or else

they may be obtained by making an arbitrary linear transformation

of the form (5.7), and inserting the constant d= 1 + (a- i b) 2 in

(5.18) together with an arbitrary entire function H(w).

Let us give a simple illustration. We choose a = 0, b = 2 in

(5.7), and H(w) = w. Then

x1 = u1, x2 = 2u2, 03 = 2 (ew- 3e-"'), 04 = 2 (ew + 3e ),

x3= Re f 3dw='/2cosu2(eul-3e "1)

.x4 = Re f 4 dw = - '/2 sin u2(eu 1- 3e-u')

We thus obtain the surface in non-parametric form:

(5.19) x3 ='/2cos ? (ex'- 3e-x1), x4 = -'/2 sin x2(ex'-3e-x')

which, as one may verify by a direct computation, provides a glob-

al solution of the minimal surface equation for n = 4. This surface

will be a useful example in connection with our general discussion

later on.* (See p. 124.)

*See Appendix 3, Section 2.
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§6. Parametric Surfaces: Global Theory

In the previous section we were able to obtain global results

because of the special circumstance that we had a global paramet-

rization in terms of two of the coordinates xI, x2. In the general

case we have a surface covered by neighborhoods in each of which

a parametrization of the form considered in section 1 is given. In

order to study the whole surface, we have to first give precise defi-

nitions. We begin by recalling some facts about differentiable mani-

folds.

DEFINITIONS. An n-manifold is a Hausdorff space, each point

of which has a neighborhood homeomorphic to a domain in E".

An atlas A for an n-manifold M is a collection of triples (Ra,

Oa, Fa), where Ra is a domain in E", Oa is an open set on M,
F. is a homeomorphism of Ra onto Oa, and the union of all the

Oa equals M. Each triple is called a map.

A manifold M is orientable if it possesses an atlas for which

each transformation FQ 1 0 Fp preserves orientation wherever it

is defined. An orientation of M is the choice of such an atlas.

A Cr-structure on M is an atlas for which FQ lo FR E Cr

wherever it is defined. A conformal structure on M is an atlas for

which Fa I 0 FP is a conformal map wherever it is defined.

REMARK. By "conformal," we mean "strictly conformal."

Thus a conformal structure on M automatically provides an orien-

tation of M.

Let M be an n-manifold with Cr-structure A, and M an m-mani-

fold with a Cr-structure A. A map f : M M will be called a CI'-

map, denoted f c Cp, for p < r, if each map FR I O f o Fa E Cp,

wherever it is defined.
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Let us note, in particular, that E" has a canonical Cr-structure

for all r, defined by letting A consist of the single triple Ra = Oa

= E", Fa the identity map.

DEFINITION. A Cr-surface S in E" is a 2-manifold M with a

Cr-structure, together with a Cr-map x(p) of M into E.

Let S be a Cr-surface in E", A the Cr-structure on the asso-

ciated 2-manifold M, Ra a domain in the u-plane, and Ro a domain

in the u-plane. Then the composition of Fa with the map x(p) is a

map x(u) of Ra into E' which defines a local surface in the sense
of section 1. The corresponding map x(u) of RR into E" defines

a local surface obtained from x(u) by the change of parameters

u(u) = FQ 1 o Fo. Thus all local properties of surfaces which are
independent of parameters are well defined on a global surface S

given by the above definition. In particular, by a point of S we

shall mean the pair (p0, x(po)) where po is a point of M, and we

may speak of S being regular at a point, or of the tangent plane

and the mean curvature vector of S at a point, etc.

The global properties of S will be defined simply to be those

of M. Thus S will be called orientable if M is orientable, and an

orientation of S is an orientation of M. Similarly for topological

properties of S: S compact, connected, simply connected, etc.

We shall now make a convention which we shall adhere to

throughout this paper. All surfaces considered will be connected
and orientable. Obviously, if a surface is not connected one can

consider separately each connected component, which is also a

surface. As for non-orientable surfaces, they are certainly of inter-

est, and in particular in the case of minimal surfaces, since they

arise both analytically as elementary surfaces given by explicit
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formulas, such as Henneberg's surface (see for example Darboux

[1], §226), and physically as soap-film surfaces of the type of the

Mobius strip, bounded by a simple closed curve (see for example

Courant [2], Chapter IV). However it is an elementary topological

fact that to each non-orientable C`-manifold M there corresponds

an orientable C' -manifold M and a C`-map g : M M, such that g

is a local diffeomorphism, and the inverse image of each point of

M consists of two points of M. Thus to each non-orient able sur-

face x(p) : M - E" corresponds an orientable surface x (p): M - E",

where x(p) = x(g(p)), and many properties of the former can be

read off immediately from corresponding properties of the latter. In

particular, only such properties of non-orientable minimal surfaces

will be derived in this survey.

DEFINITION. A regular C2 -surface S in E' is a minimal sur-
face if its mean curvature vector vanishes at each point.

LEMMA 6.1. Let S be a regular minimal surface in E" defined

by a map x(p) : M En. Then S induces a conformal structure on

M.

Proof: We are assuming by our convention that S is orientable.

Let A be an oriented atlas of M. Let A be the collection of all

triples (Ra, Oa, Fa) such that Ra is a plane domain, Oa is an open

set on M, Fa is a homeomorphism of Ra onto Oa,_ FR I o Fa pre-

serves orientation wherever defined, and x o Fa: Ra -* E" defines

a local surface in isothermal parameters. By Lemma 4.4 the union

of the Oa equals M, so that A is an atlas for M, and by Lemma 4.5

each FQ'I o FR is conformal wherever defined, so that A defines

a conformal structure on M. 1
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Let us note that the introduction of a conformal structure in

this way may be carried out in great generality, since low-order

differentiability conditions on S guarantee the existence of local

isothermal parameters; however, the proof of their existence is far

more difficult in the general case.

We now discuss some basic notions connected with conformal

structure. We note first that if M has a conformal structure, then

we can define all concepts which are invariant under conformal

mapping. In particular, we can speak of harmonic and subharmonic

functions on M, and (complex) analytic maps of one such manifold

M into another M. A meromorphic function on M is a complex-

analytic map of M into the Riemann sphere. The latter may be de-

fined as the unit sphere: IxJ = 1 in E3, with the conformal struc-

ture defined by a pair of maps

(2u -2u2
1

I w1 2-11
(6.1) F : x = - , - ,lwl2+1 lwl2+1 Iw12+1

and

w=u1+1u2

2

= / 2u1 -2u2 1I wI 2
(6.2) F : x - (\ - W= vl + iu2

I wj 2+1 1wl2+1 1w(2+1 /

The map F1 is called stereographic projection from the point

(0,0, 1), the image being the whole sphere minus this point. The

map F1-1 is given explicitly by

(6.3)
x + ix

Fl 1: w = -1 2

1-x3

and F1- I O F2 is simply w = 1/w , a conformal map of 0 < I w1 <

onto 0 < 1 W 1 < - .
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DEFINITION. A generalized minimal surface S in En is a

non-constant map x(p) : M -, En where M is a 2-manifold with a

conformal structure defined by an atlas A = 1(Ra, Oa, Fa)}, such

that each coordinate function xk(p) is harmonic on M, and further-

more

(6.4)

n

0k(S) °0,
k= 1

where we set for an arbitrary a,

a
hk(0 = xk(Fa(C)), Ok(C) =

ahk
- i ahk

62
, S = 61 +

Let us make the following comments concerning this definition.

First of all, if S is a regular minimal surface, then using the con-
formal structure defined in Lemma 6.1, it follows from Lemma 4.3

that S is also a generalized minimal surface. Thus the theory of

generalized minimal surfaces includes that of regular minimal sur-

faces. On the other hand, if S is a generalized minimal surface,

then since the map x(p) is non-constant, at least one of the func-
tions xk(p) is non-constant, which implies that the corresponding

analytic function ck(c) can have at most isolated zeroes. Thus
the equation

(6.5)

n

Ilk2(C) I = 0
k=1

can hold at most at isolated points. Then again by Lemma 4.3, if

we delete these isolated points from S, the remainder of the sur-

face is a regular minimal surface. The points where equation (6.5)

holds are called branch points of the surface. If we allow the
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case n = 2 in the definition of a generalized surface, we find that

either xl + ix2 or xl-ix2 is a non-constant analytic function
f(C). The points at which (6.5) holds are simply those where

r(c) = 0, corresponding to branch points, in the classical sense,

of the inverse mapping. In the case of arbitrary n, the difference

between regular and generalized minimal surfaces consists in al-

lowing the possibility of isolated branch po;nts. There are both

positive and negative aspects to enlarging the class of surfaces

to be studied in this way. On the one hand, there are certain theo-

rems one would like to prove for regular minimal surfaces, but

which have, up to now, been settled only for generalized minimal

surfaces. The classical Plateau problem is a prime example.' On

the other hand, there are many theorems where the possible exis-

tence of branch points has no effect, and one may as well prove

them for the wider class of generalized minimal surfaces. Let us
give an example.

LEMMA 6.2. A generalized minimal surface cannot be compact.

Proof: Let S be a generalized minimal surface defined by a

map x(p) : M E". Then each coordinate function xk(p) is har-

monic on M, and if M were compact xk(p) would attain its maxi-

mum, hence it would be constant, contradicting the assumption

that the map x(p) is non-constant. 1

Finally, concerning the study of generalized minimal sur-

faces, let us note that precisely properties of the branch points

themselves may be an object of investigation. See, for example,

Bers [2] and Chen [1].

For the sake of brevity we make the following convention. We

shall suppress the adjectives "generalized" and "regular," and

*See Appendix 3, Section 1.
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we shall refer simply to "minimal surfaces" except in those cases
where either the statement would not be true without suitably qual-
ifying it, or else where we wish to emphasize the fact that the sur-
faces in question are "regular" or "generalized."

We next give a brief discussion of Riemannian manifolds.

DEFINITION. Let M be an n-manifold with a Cr-structure de-
fined by an atlas A = {(Ra, Oa' Fa){. A Riemannian structure on M,or

a C'1-Riemannian metric is a collection of matrices Gal where the
elements of the matrix Ga are C4-functions on Oa, 0 < q < r- 1,
and at each point the matrix Ga is positive definite, while for any
a,$ such that the map u(a) = Fa-I 0FR is defined, the relation

(6.6) Ga = UTGaU

must hold, where U is the Jacobian matrix of the transformation
F-1 oFa R.

A differentiable curve on M is a differentiable map p(t) of an
interval [a, b] of the real line into M.

The length of the curve p(t), a <. t < b, with respect to a given
Riemannian metric is defined to be

(6.7) J bh(t)dt,
a

where for each to, a < to < b, we choose an Oa such that
p (t0) E Oa, and we set

(6.8) h(t) _
(

gjj(p(t))u.(t)uj, (t)''/' , Ga = (b;f)

for t sufficiently near to, where u1, u2 are coordinates in Ra. By
(6.6), the definition of h(t) is independent of the choice of Oa.
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A divergent path on M is a continuous map p(t), t >.O, of the

non-negative reals into M, such that for every compact subset Q

of M, there exists to such that p(t) ( Q for t > t0.
If a divergent path is differentiable, we define its length to be

(6.9) J h(t)dt
0

where h(t) is again defined by (6.8).

DEFINITION. A manifold M is complete with respect to a

given Riemannian metric if the integral (6.9) diverges for every

differentiable divergent path on M.

The first investigation of complete Riemannian manifolds was

made by Hopf and Rinow [1] in 1931. Since that time this subject

has been studied extensively, and it is generally accepted that the

notion of completeness is the most useful one for the global study

of manifolds with a Riemannian metric. One of our aims in this

survey will be to discuss in detail the structure of complete mini-

may surfaces. First let us make the following observations.

Let a Cr-surface S in E" be defined by a map x(p) : M -> E.

Then this map induces a Riemannian structure on M, where for

each a we set x(u) = x(Fa(u)), and we define Ga to be the matrix

whose elements are

(6.10)
g'f - ax.

ax

Then equation (6.6) is a consequence of (1.8), and the matrix Ga

will be positive definite at each point where S is regular. Thus

to each regular surface S in E" corresponds a Riemannian
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2-manifold M. We say that S is complete if M is complete with

respect to the Riemannian metric defined by (6.10).

If S is a generalized minimal surface, then there will be iso-

lated points at which the matrix defined by (6.10) will not be posi-

tive definite. However, the function h(t) defined by (6.5) is still
a non-negative function, independent of the choice of a, and we

may still define S to be complete if the integral (6.9) diverges for

every divergent path.

We conclude this section by recalling some basic facts from

the theory of 2-manifolds.

First of all, each 2-manifold M has a universal covering sur-

face which consists of a simply-connected 2-manifold M and a map

it : M M, with the property that each point of M has a neighbor-

hood V such that the restriction of it to each component of i7-1(V)

is a homeomorphism onto V. In particular, the map n is a local

homeomorphism, and it follows that any structure on M : C r con-

formal, Riemannian, etc. induces a corresponding structure on M.

It is not hard to show that M is complete with respect to a given

Riemannian metric if and only if M is complete with respect to the

induced Riemannian metric.

Suppose now that S is a minimal surface defined by a map

x(p) : M - E. We then have an associated simply-connected mini-

mal surface S, called the universal covering surface of S, defined

by the composed map x(rr(p)) : M -, E". It follows that S is regu-

lar, if and only if S is regular, and S is complete if and only if S

is complete. Thus, many questions concerning minimal surfaces

may be settled by considering only simply-connected minimal sur-

faces. In that case we have the following important simplification.
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LEMMA 6.3. Every simply-connected minimal surface S has a

reparametrization in the form x(C) : D - E", where D is either the
unit disk, CI < 1, or the entire c-plane.

Proof: Let S be defined by x(p) : M , E'. By Lemma 6.2, M

is not compact, and by the Koebe uniformization theorem (see, for

example, Ahlfors and Sario [1], III, 11, G) M is conformally equiva-

lent to either the unit disk or the plane. The composed map

D M E" gives the result.

Finally, let us recall some terminology which distinguishes the

two cases in Lemma 6.3.

A 2-manifold M with a conformal structure is called hyperbolic

if there exists a non-constant negative subharmonic function on M,

and parabolic otherwise. The function ReI v-1 E shows that the

unit disk I C1 < 1 is hyperbolic, and it is not hard to show that the

entire plan is parabolic.

There are many interrelations between the conformal structure,

the topological structure, and the Riemannian structure of a surface.

Furthermore, in the case of minimal surfaces, we shall see that

each of these structures plays a role in studying the geometry of

the surface.



MINIMAL SURFACES WITH BOUNDARY 53

§7. Minimal Surfaces with Boundary.

In this section we shall investigate some properties of minimal

surfaces with boundary. We do not go into detail on Plateau's prob-

lem for the reasons mentioned in the introduction, but we include

a brief discussion in the context of the present paper.

DEFINITION. A sequence of points pk on a manifold M is

divergent if it has no points of accumulation on M.

If S is a minimal surface defined by a map x(p) : M En, the

boundary values of S are the set of points of the form limx(pk)'

for all divergent sequences pk on M.

REMARK. If M is a bounded domain in the plane, then a se-

quence pk in M is divergent if and only if it tends to the boundary.

If x(p) extends to a continuous map of the closure )W, then the

boundary values of S are the image of the boundary of M.

LEMMA 7.1. Every minimal surface lies in the convex hull of

its boundary values.

Proof: Let S be a minimal surface defined by x(p) : M E'.
Suppose that the boundary values of S lie in a half space

n

L(x)= E akxk-b <0.
k=1

The function h(p) = L(x(p)) is harmonic on M, and by the maxi-

mum principle, h(p) < 0 on M. Namely, if suph(p)=m, we may

choose points pk such that h(pk) -> m. If the pk have a point of

accumulation in M, then h(p) would assume its maximum at this

point, hence be constant. But choosing an arbitrary divergent se-

quence qk we would have h(qk) = m for all k, and limh(gk) < 0,
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hence m < 0. On the other hand, if pk is divergent, then again

m = limb (pk) < 0. Thus L(x(p)) < 0 on M, so that S lies in the
half-space L(x) < 0. But the convex hull of the boundary values

is the intersection of all the half-spaces which contain them, and
S lies in this intersection. 1

LEMMA 7.2. Let x(u) be a minimal surface in isothermal pa-

rameters defined in a plane domain D. Then x(u) cannot be con-

stant along any line segment in D.

Proof: Since the map x(u) is one-to-one in the neighborhood

of a regular point, and since the branch points, if any, are isolated,

the result follows immediately.

LEMMA 7.3. (Reflection principle). Let x(u) be a minimal sur-

face in isothermal parameters defined in a semi-disk D : l ul < E ,

u2 > 0. Suppose there exists a line L in space such that x(u) , L

when u2 0. Then x(u) can be extended to a generalized minimal

surface defined in the full disk Iul < E . Furthermore this extended

surface is symmetric in L.

Proof: By a rotation in E" we may suppose that L is given by

the equations xk = 0, k = 1, ..., n - 1. Then the functions xk(u),

for k = 1, ..., n - 1, may be extended by setting xk(ul) 0) = 0,

xk(ul, u2) _ - xk(ul, - u2). These extended functions are harmonic

in the full disk, by the reflection principle for harmonic functions.

Thus the functions

axk axkOk = , k= 1,...,n-1
au1 au2

are analytic in the full disk and are pure imaginary on the real axis.
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By the equation

n-1
2 2on ok

k=1

we see that 0 . extends continuously to the real axis and has non-

negative real values there. It follows that On extends continuous-

ly to the real axis and has real values there. By integration, xn

extends continuously to the real axis, and satisfies axn/au2 = 0

there. If we then set x(u1, u2) = x(u1, - u2) in the lower half-
disk we obtain the desired result. 4

LEMMA 7.4. Let x(u) be a minimal surface in isothermal pa-

rameters defined in a disk D. Then x(u) cannot tend to a single

point along any boundary arc of D.

Proof: If it did, we could apply Lemma 7.3, after a preliminary

conformal map of D onto the upper half-plane, and extend the sur-

face over a segment of the real axis. It would then be constant on

this segment, contradicting Lemma 7.2. 1

We now state the fundamental existence theorem concerning the

existence of a minimal surface with prescribed boundary.

THEOREM 7.1 (Douglas [1]). Let I' be an arbitrary Jordan

curve in En. Then there exists a simply-connected generalized"

minimal surface bounded by F.

We content ourselves here with an outline of the proof, based

on important modifications due to Courant [1, 2]. We refer also to

the versions given in the books of Radc [3], Lewy [2], and Gara-

bedian [1].

First of all, let us give a precise statement of the conclusion.

'See Appendix 3, Section 1.
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Let us use the following notation:

D is the unit disk: ui + u2 < 1
D is the closure: ui + u2 < 1
C is the boundary: ui + U2 = 1.

The result is that there exists a map x(u) En, such that

i) x(u) is continuous on 5,
ii) x(u) restricted to D is a minimal surface,

iii) x(u) restricted to C is a homeomorphism onto F.

This mapping is obtained by the method of minimizing the Dirichlet

integral. To each map x(u) E C1 in D, we denote by

fi(x) -ff [\auk
)2

+ (auk
)2]

duldu2
D k 1 1 2

its Dirichlet integral. In order to single out a suitable class of
mappings in which the Dirichlet integral will attain a minimum, we

consider monotone maps of C onto F ; that is, maps such that if
C is traversed once in the positive direction, then r' is traversed
once also in a given direction, although we allow arcs of C to map

onto single points of F.

To a given Jordan curve r we associate the class H of maps
x(u) : D En having the following properties:

a) x(u) is continuous in D

b) x(u) E C1 in D

c) P(x) <o ;
d) x(u) restricted to C is a monotone map onto 1,.

It may well be that H is empty. However, we make the following

assertions.

1. If r is piecewise differentiable (in particular, a polygon),
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or if F is even rectifiable, then H is not empty.

2. Whenever H is not empty there exists a map y(u) e H such

that D(y) <. D(x) for all x(u) a H.

3. This map y(u) satisfies the conditions i), ii), iii) above for
a solution of our problem.

We now outline the proof of these assertions.

1. If we let s be the parameter of arc length on F, L its total

length, and t = tars/L, then the map x(e'r): C -> F can be extend-
ed by the Poisson integral applied to each coordinate xk(e't) to a
map of D -* E' which will be in 11.

2. Let d= inf D (x) for x c H, and let xv(u) e H such that
dd = D(xv) d. For each v, define kv(u), by letting xk(u) be
the harmonic function in D having the same boundary values as

xk(u). Then xv(u) a H, and hence d < D(xv) < D(xv), by the
property of harmonic functions to minimize the Dirichlet integral

with given boundary values. Now fix three points on C and three

points on r, and let h be the subset of H for which x(u) maps
the former onto the latter in a given order. By a linear fractional

transformation of D, we can obtain from each xv(u) an xv(u) a IL

and D(xv) = D(xv). One then proves the fundamental lemma that

boundary maps xv: C , I, must be equicontinuous. We can there-

fore find a subsequence of the iv which converge uniformly on C,

hence in the closed disk D, and the limit will be a map y(u) e H,

with 9)(y) = d.

3. The map y(u), being the uniform limit of harmonic functions

in D is also harmonic in D. One shows by a variational argument

that such a map must define a generalized minimal surface in D.

Since the boundary correspondence is monotone. the only way it
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could fail to be one-to-one is if a whole boundary arc maps onto a

point, but by Lemma 7.4 this is impossible. Thus the map y(u)

satisfies conditions i), ii), iii) and solves the problem.

For the final step in the proof of Theorem 7.1, Douglas shows

that if F is an arbitrary Jordan curve, it can be approximated by a

sequence of polygons, and the corresponding sequence of minimal

surfaces will tend to a surface which again satisfies i), ii), iii).

REMARKS. 1. The restriction that the surface S be simply-

connected is neither necessary, nor from a certain point of view,

natural. In fact, if one proceeds to construct minimal surfaces

physically, using a piece of wire and soap solution, one finds in

many cases surfaces of higher genus and connectivity, including,

among the simplest, the Mobius strip. For further discussion of

this theory we refer to the fundamental paper of Douglas [2], and

the book of Courant [2]. We limit ourselves here to mentioning two

of the most striking facts concerning the order of complications

that may arise. First of all there exist rectifiable Jordan curves r'

which bound a non-denumerable number of distinct minimal surfaces

(Levy (1]); second, there exist rectifiable Jordan curves F for

which a surface of minimum area bounded by r' must have infinite

connectivity (Fleming [ 11).

2. In the past few years an entirely new approach to Plateau's

problem has been instituted, in which one seeks a minimum of

area among a very general class of objects, instead of restricting

the competition to surfaces, and then shows that there is a mini-

mizing object which is in fact a surface. In a pioneering work of

Reifenberg [1], the class of objects considered are compact sub-

sets having a given boundary in a certain sense, and the 2-dimen-
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sional Hausdorff measure is minimized. Two major advantages of

this method is that it can be applied to higher dimensional sub-

varieties, in which case one minimizes the m-dimensional Haus-

dorff measure, and that in the 2-dimensional case one obtains not

only a generalized minimal surface, but in fact a regular one. The

latter follows from the combined results of Reifenberg [ 1, 2, 3], and

in particular, from Theorem 4, p. 70 of [i] together with [3]. Flem-

ing [2], basing on the methods of Federer and Fleming [1], shows

the existence of a regular oriented minimal surface bounded by an

oriented rectifiable Jordan curve F. ' See also the discussion in

Almgren [3].

3. One of the major open problems concerning Theorem 7.1 is

whether there, in fact, exists a regular simply-connected minimal

surface bounded by an arbitrary Jordan curve F.' This was actual-

ly the way Plateau's problem was originally envisaged, and in this

form it is still unsolved. In the following lemmas we give some in-

formation concerning cases in which the surface constructed in

Theorem 7.1 must, in fact, be regular.

LEMMA 7.5 (Rado [3], 111.7). Let h(ul, u2) he non-constant

harmonic in the unit disk D, continuous in the closure D. Suppose

that the gradient of h vanishes at a point (al, a2) in D. Then if
h(al, a2) = b, there are at least four distinct points on the boundary

of D where h takes on the value b.

Proof: Let A be a component of the set of points in D where

h > b. Then at boundary points of A interior to D we have h = b.

Since h b, each component A must have boundary points on the

boundary of D with h > b. Similarly for each component of the set

where h < b. In the neighborhood of the -point (al, a2) there are at

*See Appendix 3, Section 1.
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least two components of the set h > b, and two of the set h < b.

If the former were part of a single component A in which h > b,

then we could find an arc joining them which could be completed

to a Jordan curve in D through (al, a2), and this curve would com-

pletely enclose a domain in which h < b, contradicting our previous

conclusion that such a domain must go to the boundary of D. Thus

there are at least two distinct components where h > b and two

where h < b, and each of these intersects the boundary at points

where h b. But if there were at most three boundary points where

h = b, there would be at most three complementary arcs on each of

which h > b or h < b, hence at most three components of sets

h > b and h < b, which contradicts what we have shown. 4

LEMMA 7.6. Let F be a Jordan curve in En, and let x(u) be

a simply-connected generalized minimal surface bounded by f, in

the sense of Theorem 7.1. Then either x(u) is in fact a regular
minimal surface or else F has the property that for some point in

E", every hyperplane through this point intersects I' in at least
four distinct points.

Proof: We use the notation of the proof of Theorem 7.1. Thus

x(u) is continuous in D, and defines a generalized minimal surface

in D. Suppose that at some point (al, a2) of D, x(u) fails to be
regular. Then at this point all the functions

axk axk0o-=-- l
ain au2

must vanish. If L(x) = E akxk + c-= 0 is the equation of an arbi-

trary hyperplane through the point x(a1, a2), then h(u1, u2) =

L(x(ul, u2)) is a function satisfying the hypotheses of Lemma 7.5,
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with b = 0. It follows that there are at least four distinct points

on F where L(x) = 0, which proves the lemma.

This lemma shows that unless F is fairly complicated, the

surface that it bounds has no branch points. In many specific

cases we may assert the existence of regular simply-connected

surfaces bounded by I, thus giving in those cases a complete so-

lution of Plateau's problem.

THEOREM 7.2' Let D1 be a bounded convex domain in the

(x1, x2)-plane, and let C1 be its boundary. Let gk(xl, x2), k =

3, ..., n, be arbitrary continuous functions on C1. Then there ex-

ists a solution

f (x1, x2) = (f3(xl) x2), ..., fn(x1) x2))

of the minimal surface equation (2.8) in D1, such that fk(xl, x2)

takes on the boundary values gk(xl, x2).

Proof: The boundary C1 of D1 is a Jordan curve(even recti-

fiable) and the functions gk(x1, x2) define a Jordan curve I' in En

which projects onto C1. By Theorem 7.1, there exists a continu-

ous map x(u): D - En of the unit disk I uI < 1 which defines a

minimal surface in the interior D, and takes the boundary C homeo-

morphically onto F. It follows that the map (u1, u2) - (x1) x2) is

a continuous map of 15 which is harmonic in the interior and maps

C homeomorphically onto C1. By Lemma 7.1, the image of D must

lie in D1. Furthermore, the Jacobian never vanishes in D. Namely,

if at some point (al,a2) in D the Jacobian were to vanish, then
the rows of the Jacobian matrix would be linearly dependent at this

point, i.e., for suitable constants A1, we would have

*See Appendix 3, Section 5.
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ax ax ax ax
A -1 +A 2 = 0, A 1 +A ? = 0.1 aul 2 au1 1 au2 2 au2

Then the function h(ul, u2) = A1x1(u1, u2) + k2x2(ul, u2) would

satisfy the hypotheses of Lemma 7.5 and it would follow that

A1x1 + a2x2 would take on the same value at four distinct points

of C1, which is impossible by the convexity of D1. We therefore

conclude that the map (u1, u2) (x1, x2) is a local diffeomorphism

in D, and since it maps C homeomorphically onto C1, it is a glo-

bal diffeomorphism of D onto D1. We may therefore express the

xk, k = 3, ..., n as functions of x1, x2, and these functions will

satisfy the conclusion of our theorem. 1

Let us note in conclusion that except for the proof of Theorem

7.1, all the results in this section have been adapted from the treat-

ment for the case n = 3 in the book of Rado [3].
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§8. Parametric Surfaces in E3. The Gauss Map.

In everything we have done up to now, there is either no dif-

ference at all, or else very little difference, between the classical

case of three dimensions and the case of arbitrary n. We shall

now discuss several results which either have not been extended

to arbitrary n, or else require a much more elaborate discussion to

do so.

We start with the important observation that for the case n= 3

we are able to describe explicitly all solutions of the equation

(8.1) of +02+03 = 0.

LEMMA 8.1. Let D be a domain in the complex c-plane, g(C)

an arbitrary meromorphic function in D and f(C) an analytic func-

tion in D having the property that at each point where g(C) has a
pole of order in, f(C) has a zero of order at least 2m. Then the

functions

(8.2) 1 = 2 f(1-g2), 02 =
z

f(1 + g2), 03 = fg

will be analytic in D and satisfy (8.1). Conversely, every triple

of analytic functions in D satisfying (8.1) may be represented in

the form (8.2), except for 01 - i02, S63 - 0.

Proof: That the functions (8.2) satisfy (8.1) is a direct calcu-

lation. Conversely, given any solution of (8.1), we set

(8.3) f=01-i02, g= - -.
0 1-iS6 2

If we write (8.1) in the form

(8.4) (01 - i(k2)(01 + i02) = - 03
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we find
2

(8.5) 01+' +'02
03 -_-fg2.

0 1-ik2

Combining (8.3) and (8.5) yields (8.2). The condition relating the

zeros of f and the poles of g must obviously hold, since otherwise

by equation (8.5), 01 + i02 would fail to be analytic. This repre-

sentation can fail only if the denominator in the expression for g

in (8.3) vanishes identically. In this case we have by (8.4) that

03 0, which is the exceptional case mentioned.

LEMMA 8.2. Every simply-connected minimal surface in E3

can be represented in the form

C
(8.6) xk(C)= Re

f-
0 + ck, k= 1,2,3

0

where the Ok are defined by (8.2), the functions f and g having

the properties stated in Lemma 8.1, the domain D being either the

unit disk or the entire plane, and the integral being taken along an

arbitrary path from the origin to the point C. The surface will be

regular if and only if f satisfies the further property that it van-

ishes only at the poles of g, and the order of its zero at such a

point is exactly twice the order of the pole of g.

Proof: By Lemma 6.3, the surface may be represented in the

form x(t;) : D , E3 where D is either the disk or the plane, the
coordinates xk being harmonic in C. If we set

axk axk
k-asl a2 e1+ie2,

then these functions will be analytic and (8.6) will hold (the inte-
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tegral being independent of path). For a generalized minimal sur-

face the equation (8.1) must hold and by Lemma 8.1 we have the

representation (8.2). The surface will fail to be regular if and only

if all the 0k vanish simultaneously, which happens precisely

when f = 0 where g is regular or when ff2 = 0 where g has a
pole. 1

Let us note that representations of the form (8.2), (8.6) were

first given by Enneper and Weierstrass, and have played a major

role in the theory of minimal surfaces in E3. For one thing, they

allow us to construct a great variety of specific surfaces having

interesting properties. For example, the most obvious choice:

f - 1, g(C) = C, leads to the surface known as Enneper's surface.

More important, this representation allows us to obtain general

theorems about minimal surfaces by translating the statements in-

to corresponding statements about analytic functions. In order to

do this we must first express the basic geometric quantities asso-

ciated with the surface in terms of the functions f,g.

First of all, the tangent plane is generated by the vectors

ax ax where aX - i ax = (01'02'03)
a61 ae2

a61
ae2

It follows that

(8.7) gii = a25ii
where

A2= Iai 2
= a2 I2 = l kl2

=

Furthermore
2

ax x ax = Im{(023,
aSl ae2
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and substituting in (8.2) we arrive at the expression

ax
X

ax = If12(1+IgI2) (2 Refgl, 2 Im{gf, Ig12 - 1) .

all a62 4

From this it follows that

I ax X ax I [f(1+I2)l2 xa2

ax ax

(8.8) N = ael
ae2

=

lal Xa62

2Relg1 2Im{g; IgI2-1

IgI2+1 ' IgI2+1' IgI2+1

is the unit normal to the surface with the standard orientation.

Now given an arbitrary regular surface x(u) in E3, one de-

fines the Gauss map to be the map

(8.9)

ax X ax
aul au2

aXXaxI
aul au2

of the surface into the unit sphere.

LEMMA 8.3. If x(c) : D -, E3 defines a regular minimal sur-

face in isothermal coordinates, then the Gauss map N(C) defines

a complex analytic map of D into the unit sphere considered as

the Riemann sphere.

Proof: Formula (8.8) compared with formula (6.1) for stereo-
graphic projection shows that the Gauss map x(c) --, N(t) followed
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by stereographic projection from the point (0,0, 1) yields the mero-

morphic function g(C). 1

Let us note that in general the Gauss map cannot be defined if

a surface is not regular. However, for a generalized minimal sur-

face the Gauss map extends continuously, and even analytically,

to the branch points, the normal N being given by the right-hand

side of (8.8).

LEMMA 8.4. Let x(C) : D -> E3 define a generalized minimal

surface S, where D is the entire cplane. Then either x(C) lies
on a plane, or else the normals to S take on all directions with at

most two exceptions.

Proof: To the surface S we associate the function g(C) which
fails to be defined only if 1 - c3 - 0. But in this case x3
is constant and the surface lies in a plane. Otherwise g(C) is
meromorphic in the entire t;-plane, and by Picard's theorem it either

takes on all values with at most two exceptions, or else is constant

But by (8.8) the same alternative applies to the normal N, and in

the latter case S lies on a plane. 1

LEMMA 8.5. Let f(z) be an analytic function in the unit disk

D which has at most a finite number of zeros. Then there exists a

divergent path C in D such that

(8.10) ff(z)k dzl <oo .

C

Proof: Suppose first that f(z) /0 in D. Define

w = F(z) = J
0
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Then F(z) maps I zj < 1 onto a Riemann surface which has no

branch points. If we let z = G(w) be that branch of the inverse

function satisfying G(O) = 0, then since jG(w)j < 1, there is a
largest disk I wl < R < o in which G(w) is defined. There must

then be a point w0 with I wol = R such that G(w) cannot be ex-

tended to a neighborhood of w0. Let L be the line segment w =

two, 0 < t < 1, and let C be the image of L under G(w). Then C

must be a divergent path, since otherwise there would be a se-

quence to -> 1 such that the corresponding sequence of points zn

on C would converge to a point z0 in D. But then F(z0) = w0,

and since F'(z0) = f(z0) 0, the function G(w) would be extend-

able to a neighborhood of w0. Thus the path C is divergent, and

we have

f jf(z)I Idzl = fl
l

ddz Idt = f 11 dwjdt = R <- .

t

This proves the lemma if f(z) has no zeros. But if it has a finite
number of zeros, say of order vk at the points zk, then the func-
tion

1-Zkz vk

f1(z) = f(z) II
/Z_ zk

never vanishes, and by the above argument there exists a divergent

path C such that fC Ifl(z)I ldzl <00. But lf(z)l < If1(z)l through-

out D, and (8.10) follows. 4

THEOREM 8.1. Let S be a complete regular minimal surface

in E3. Then either S is a plane or else the normals to S are every-
where dense.
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Proof: Suppose that the normals to S are not everywhere dense.

Then there exists an open set on the unit sphere which is not inter-

sected by the image of S under the Gauss map. By a rotation in

space we may assume that the point (0, 0, 1) is in this open set.

Then the unit normals N = (N1, N2) N3) satisfy N3 w<:77 < 1. The

same is true of the universal covering surface S of S, which may

be represented in the form x(C) : D E3 where D is the plane or

the unit disk. But D cannot be the unit disk, because by (8.8),

N3 < rl < 1 <-> I g(C)I < M< oo, and since S is regular f(C) can-

not vanish. But by (8.7) the length of any path C would be

fAdI= 2 ffi(1+g2)Idi < 1+2 2 ffi IdCj
c C

and by Lemma 8.5 there would exist a divergent path C for which

this integral converges, and the surface would not be complete.

Thus D is the entire plane, and since the normals omit more than

two points, it follows from Lemma 8.4 that S must lie on a plane.

The same is then true of S, and since it is complete, S must be

the whole plane. 1

Let us note that Theorem 8.1 has as an immediate consequence

the theorem of Bernstein. In fact, a non-parametric minimal surface

in E3 defined over the whole x1, x2-plane is a complete regular

surface whose normals are contained in a hemisphere, hence it

must be a plane.

On the other hand, Theorem 8.1 leads naturally to the question,

given a complete minimal surface S, not a plane, what can be said

about the size of the set of points on the sphere omitted by the

Gauss map of S? Theorem 8.1 tells us that, at least if S is regular,
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the omitted set cannot contain a neighborhood of any point. A much

stronger result can be obtained by introducing the notion of sets of

logarithmic capacity zero. We may define these to be closed sets

on the sphere whose complement is parabolic in the sense of con-

formal structure. (See the discussion at the end of section 6.) It

is well known that parabolicity is equivalent to the non-existence

of a Green's function. (See, for example, the book of Ahlfors and

Sario [ 1], IV 6 and IV 22.)

LEMMA 8.6. Let D be a domain in the complex w-plane. The

complement E of D on the Riemann sphere has logarithmic capac-

ity zero if and only if the function log (1+ I wl 2) has no harmonic

majorant in D.

Proof: Suppose first that there exists a harmonic function h(w)

in D such that log(1+ I wl 2) < h(w) everywhere. Then -h(w) is
a negative harmonic function in D, and hence E has positive log-

arithmic capacity. Conversely, if E has positive logarithmic ca-
pacity, then for any point w0 in D there exists a Green's function

G(w, w0) with pole at w0. By definition, G(w, w0) + log 1w- w01 _

h(w), where h(w) is harmonic in D, and G(w, w0) > 0, so that

log w- w01 < h(w). The function log[(1+ I wl 2)/1 w- w0l 2] is con-

tinuous on the compact set E, hence has a finite maximum M. Thus

if w1 is any boundary point of D, we have

lim [log(1+Iw1 2) - 2h(w)] < lim [log(1+Iwl2) - 2logj w-w0l]
W_, wl wa w1

< M.

But log(1+ I wl 2) is subharmonic in D, and by the maximum prin-

ciple we have log(1+I wl2) < 2h(w) + M throughout D. 1



PARAMETRIC SURFACES IN E3: THE GAUSS MAP 71

THEOREM 8.2.* Let S be a complete regular minimal surface in

E3. Then either S is a plane, or else the set E omitted by the im-
age of S under the Gauss map has capacity zero.

Proof: If S is not a plane, then the image of S under the Gauss

map is an open connected set on the sphere, and the complement of

the image is therefore a compact set'E. If E is empty there is
nothing to prove. Otherwise we may assume that the set E includes

the point (0, 0, 1), after a preliminary rotation of coordinates. Again

we may pass to the universal covering surface S of S, whose Gauss

map omits the same set E. The surface S is given by a map

x(O : D -> E3, where D is either the plane or the unit disk. In the

former case we know that the set E can contain at most two points

and hence certainly has capacity zero. Let us examine the case

where D is the disk IC1 < 1. We have the associated function g(C)

which is analytic in D, and by the regularity of S, f(t;) 0 in D.

Suppose now that E did not have capacity zero. Then in the image

D1 of D under the map w = g(C), there would be a harmonic func-

tion h(w) majorizing log(1+I w12). Then h(g(t)) is harmonic in

D, and is the real part of an analytic function-G(C) in D. Finally,

F(c) = eG(C) is analytic in D and never zero. For an arbitrary path

C in D, we have the length

f kldCl = a f fIfF l Idyl
C C

C

But the function f(c)F(c) never vanishes in D, and by Lemma 8.5

there would be a divergent path C for which the integral on the right

converges, and the surface S would not be complete. Thus the set

E must in fact have capacity zero, and the theorem is proved. 1

*See Appendix 3, Section 4.
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THEOREM 8.3. Let E be an arbitrary set of k points on the

unit sphere, where k < 4. Then there exists a complete regular

minimal surface in E3 whose image under the Gauss map omits

precisely the set E.

Proof: By a rotation we may assume that the set E contains

the point (0, 0, 1). If this is only point, then Enneper's surface

defined earlier (by setting f(C) = 1, g(C) = C) solves the problem.

Otherwise let the other points of E correspond to the points wm,

m = 1,...,k-1, under stereographic projection. If we set

f(O = k- 1 1

lI wn)
m

e g(0 = S,

and use the representation (8.2), (8.6) in the whole c-plane minus

the points wm, we obtain a minimal surface whose normals omit

precisely the points of E, by (8.8), and which is complete, because

a divergent path C must tend either to - or to one of the points

wm, and in either case, we have

IC
AIdCJ = 1 f If1(1+Ig12)1dCI =

C

We may note that the integrals (8.6) may not be single-valued, but

by passing to the universal covering surface we get a single-valued

map defining a surface having the same properties. 1

Let us review briefly the historical development of the above

theorems. Theorem 8.1, with the additional assumption that S be

simply connected was conjectured by Nirenberg as a natural gener-

alization of Bernstein's theorem, and it was proved in Osserman[1].

The presentation given here follows that of Osserman [3], where it
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is observed that simple connectivity is irrelevant and where the

formulas (8.2), (8.6), (8.8) are used to reduce geometric statements

of this kind to purely analytic ones. Lemma 8.5 is given there for

the case f(z) 0, and Theorem 8.2 is stated as a conjecture. At

the end of the paper there is given a proof of Theorem 8.2 due to

Ahlfors, who observed that using the above-mentioned reduction to

analytic functions the result followed from a theorem of Nevanlinna.

Ahlfors also suggested the reasoning which allows one to include

in Lemma 8.5 functions f(z) with a finite number of zeros. This

allows us to make the following geometric conclusion: Theorems

8.1 and 8.2 remain valid for generalized minimal surfaces, provided

that they are simply connected and have only a finite number of

branch points. Furthermore, Ahlfors observed that Lemma 8.5 con-

tinues to hold if f(z) has an infinite number of zeros, provided that

their Blashke product is convergent. Thus Theorems 8.1 and 8.2

continue to hold for a certain class of generalized minimal surfaces

which have an infinite number of branch points, but it is not clear

how to characterize this class geometrically. On the other hand, let

us note the following. There exist complete generalized minimal

surfaces, not lying in a plane, whose Gauss map lies in an arbitra-

rily small neighborhood on the sphere. In fact, we need only choose

D to be the unit disk IC1 < 1, g(e) = EC for any given E > 0, and

f (C) a function analytic in D such that fcl f (c) I I dCl = cc for every

divergent path C. Such functions f(C) may be constructed in a va-

riety of ways.

Returning to Theorem 8.2, the proof given here, which does not

depend on Nevanlinna's theory of functions of bounded characteris-

tic, is taken from Osserman [4], Theorem 8.3 is due to Voss [1].
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An example of a complete surface whose normals omit 4 directions

had been given earlier in Osserman [3], and it was later observed

in Osserman [6], that the classical minimal surface of Scherk pro-

vides still another example.

The obvious question which arises when comparing Theorems

8.2 and 8.3 is the exact size of the set E omitted by the normals.*

Specifically the following:

Problems 1. Do there exist complete regular minimal surfaces

whose image under the Gauss map covers all of the sphere except

for any arbitrary finite set of points E given in advance?

2. Does there exist a complete regular minimal surface whose

image under the Gauss map is the complement of an infinite set E

of capacity zero?

"See Appendix 3, Section 4.
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§9. Surfaces in E3. Gauss Curvature and Total Curvature.

We continue our study of minimal surfaces in E3, using the

representation (8.2).

The second fundamental form was defined in (1.27) with re-

spect to an arbitrary normal vector N. Since it is linear in N, and

since in E3 the normal space at each point is one-dimensional, it

is sufficient to define btj(N) for a single normal N which is usual-

ly chosen to be that in (8.8). By a calculation one finds the follow-

ing expression for the second fundamental form for a minimal sur-

face in the representation (8.2):

(9.1) 1 6.
'I dt

. d' di = Re}-fg,(df)2};
C_61

Since by (8.7) we have

gij d ; dSj = [Ifi(1+Ig12)12 I

dt dt L 2
JJ

dt

it follows by (1.28) that the normal curvature is given by

2
2 Re{ -fg' e2ia } ; = I

d I eia

[IfI(1+Ig12) dt dt

+ i 62

The maximum and minimum of this expression, as a varies from 0

to 27r, were defined in (1.30) to be the principal curvatures. They

are obviously

(9.2)
41g'ikl =

If1(1+1812)2

k =-41gI
2 IfI(1+Ig12)2

Now for an arbitrary regular C2-surface in E3 one defines the
Gauss curvature K at a point as the product of the principal cur-

vatures:
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(9.3) K = k1k2 .

LEMMA 9.1. Let x(C) : D -> E3 define a minimal surface. Then

using the representation (8.2), the Gauss curvature at each point is

given by

(9.4) K = -
I

4 19" 2

Proof: (9.2) and (9.3). 1

COROLLARY. The Gauss curvature of a minimal surface is

non-positive and unless the surface is a plane it can have only iso-

lated zeros.

Proof: By (8.8), S is a plane <= N constant g con-
stant H g' - 0. But g' is analytic and either has isolated ze-
ros or is identically zero.

Let us note the important formula

(9.5) K A log A

which may be verified by a direct computation from (8.7) and (9.4).

Actually it is proved in differential geometry that formula (9.5) holds

for an arbitrary surface in terms of isothermal parameters, g,j =

A28.. .

Consider now, for an arbitrary minimal surface in E3, the follow-

ing sequence of mappings, where E denotes the unit sphere:

stereographic
X(0 Gauss map projection

(9.6) D S =I, w-plane.

The composed map, as we have seen in the proof of Lemma 8.3, is
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g (C) : D -> w-plane.

Consider an arbitrary differentiable curve C(t) in D, and its image

under each of the maps in (9.6). If s(t) is the arclength of the im-

age on S, then as we have seen:

(9.7) d= z If1(1 + Ig12) 191
a

.

The arclength of the image in the w-plane is simply

(9.8) d
I = Ig,(C)I I

dt
I

If we let g(t) be arclength on the sphere, then it follows by the

formula (6.1) for stereographic projection that

(9.9)
dQ= 2

I dw1
dt 1 + I wI 2 dt

Combining these formulas with (9.4), we find

(9.10)
do / ds = _4Ig
dt dt Ifl(1+Ig12)2

Thus we have an interpretation of the Gauss curvature in terms of

the Gauss map. If we now let A be a domain whose closure is in

D, the surface defined by the restriction of x(C) to A has total

curvature given by

21 Bld 2
(9.11) f f 1

2g,g2

00 J

which is the negative of the area of the image of A under the Gauss

map. (This is in fact the original definition used by Gauss to define

the Gauss curvature of an arbitrary surface.) Of course if the image
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is multiply-covered the total area is that of all the sheets. We may

note that (9.11) may be regarded equivalently as the spherical area

of the image of A under

Throughout this discussion we have been assuming that the

surface S was defined in a plane domain D. However, the normal

N and the value of the function g are independent of the choice of

parameter. In fact, if we introduce new isothermal parameters by a

conformal map then we have Ok(C) _ OkC d , k = 1, 2, 3,

and by its definition (8.3) the value of g is unchanged. Thus, if

we are given an arbitrary minimal surface we may replace (9.6) by

stereographic
(9.12) M "(p) S Gauss map

IV
projection _ w-plane

where the composed map

(9.13) g(p) : M - w-plane

is a meromorphic function on M. The total curvature of S is still

the negative of the area of the image on 1. In order to study the

nature of this map for complete minimal surfaces, we prove a series

of lemmas, of which the first is a generalization, and in a certain

respect, a clarification of Lemma 8.5.

LEMMA 9.2. Let D be a plane domain and g1i = \2513 a Rie-

mannian metric in D, where A = A(z) E C2, such that D is complete

with respect to this metric. If there exists a harmonic function h(z)

in D such that

(9.14) log X(z) < h(z)
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throughout D, then D is either the entire plane, or else the plane
with one point removed.

Proof: Introduce a second metric gif = A2& ., where X = eh.

Then A < A throughout D, and if C is any divergent path in D,
we have

fAdzj > fAjdzI
C C

so that D is complete with respect to this metric also, and the

same is true for the universal covering surface D of D with re-

spect to the induced metric. But in a neighborhood of any point of

D we may introduce an analytic function f(z) whose real part is

h(z), and the mapping

w = f ef(z) dz

which satisfies

(9.15) dw I = I ef(z) I = eh(z)
dz

Thus the length of any curve on D with respect to the metric g if
is equal to the euclidean length of its image in the w-plane. By the

simple connectivity of D there exists a global map of D into the

w-plane satisfying (9.15), and by the completeness of b, this map

must be a one-to-one map of D onto the entire w-plane. Thus the

universal covering surface of D is conformally equivalent to the

plane, and it follows that D itself is of the type asserted in the
lemma.

LEMMA 9.3. Let D be the domain 0 < rl < IzI < r2 < oc, and
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let gtl = \2t .. be a Riemannian metric in D satisfying (9.14).

Suppose that fC X I dzl = 00 for every path C of the form z(t),

0 < t < 1, such that lim I z(t)I = r2. Then r2 = 00.
t -) 1

Proof: Suppose r2 < 00. Then we may assume that

r1 < 1 <1<r2 ; A = (z: 1 < Izl <r21 .
r2 r2

We introduce in A the metric g1. = 1\60 9 where X (z) = A(z) A(1/z).

Then one verifies easily that this metric satisfies the hypotheses

of Lemma 9.2 in A, but the conclusion is not valid. Thus the as-

sumption r2 < oo leads to a contradiction. 4

LEMMA 9.4. Let D be a hyperbolic domain and g;l = \2S ii a
metric with respect to which D is complete. Suppose that

(9.16)

ffD1Ab01

A log A 0

(9.17) <00, z=x+.

Then there exists a harmonic function h(z) in D satisfying (9.14).

Proof: Since D is hyperbolic, for each point C in D there ex-
ists a Green's function g(z, C) which is harmonic and positive for

z # C, and such that g(z, C) + logIz- Ci = H(z, C), a harmonic

function of z throughout D. (See, for example, Ahlfors and Sario

[1], IV 6.) Set

uW = 2rr
ff G(z, C) A log A(z) dxdy

D

This integral exists, by (9.17) and the basic properties of the
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Green's function, while u(C) > 0 by (9.16). But by Poisson's for-

mula, we have Au = -A log A, so that h (z) = u + log A is har-

monic in D. But since u > 0, h(z) > log A.

REMARK. The formula (9.5), which holds for the Gauss curva-

ture of an arbitrary surface in E3, can also be used to define the

Gauss curvature of an arbitrary Riemannian metric of the form gi f

= A26... One can verify directly that it is invariant under conformal

changes of parameters. Then (9.16) is equivalent to

(9.18) K < 0

and (9.17) is equivalent to

< 00 .(9.19)
ffD

THEOREM 9.1. Let M be a complete Riemannian 2-manifold

whose Gauss curvature satisfies (9.18) and (9.19). Then there ex-

ists a compact 2-manifold hl, a finite number of points pl, "'' pk
on A?, and an isometry between M and A?- {pi, ..., pkI.

Proof: By a theorem of A. Huber, the condition (9.19) on a com-

plete 2-manifold M implies that M is finitely connected (A. Huber

[1], p. 61). This means that there exists a relatively compact re-

gion Mo on M bounded by a finite number of analytic Jordan curves

y i' ..., yk , such that each component MI of M - Mo is doubly con-

nected. (See Ahlfors and Sario [1], I 44D and 113 B.) Then each M

can be mapped conformally onto an annulus D.: 1 < I zI c r. < 00,

where the curve y, corresponds to I zi = 1. The metric on Mj takes

the form gtf = A26l1 in Dl, and the conditions (9.18) and (9.19) re-

duce to (9.16) and (9.17) respectively. The region Df is obviously
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hyperbolic, since the function Re( 1 - 1} is a negative harmonic
z

function. By Lemma 9.4 there exists a harmonic function h(z) sat-

isfying (9.14) and by Lemma 9.3 (and the completeness of M) if

follows that r. Let D. be the extension of D. to a disk on
I I J

the Riemann sphere obtained by adding the point at oo. Let M be

the compact surface obtained by "welding" the disks Di to MO

along y, (see Ahlfors and Sario [11, 11 3C). Then M is conformally

equivalent to M - { pl, ..., pk}, where pi is the point Di - Di , and

by carrying over the metric on M this correspondence becomes an

isometry. 4

LEMMA 9.5. Let x(p) : M -, E3 define a complete regular mini-

mal surface S. If the total curvature of S is finite, then the con-
clusion of Theorem 9.1 is valid, and the function g(p) in (9.13) ex-

tends to a meromorphic function on M.

Proof: We know that on a minimal surface K < 0, and therefore

1f f K dAI = f f IKJ dA, so that finite total curvature is equivalent

to (9.19). Thus Theorem 9.1 may be applied, and we may consider

g(p) to be a meromorphic function on M- 1pl, ..., pk} If any of the

points pi were an essential singularity of g, then by Picard's
theorem, g would assume every value infinitely often, with at most

two exceptions. But this would imply that the spherical area of the

image is infinite, and hence also the total curvature, contrary to

assumption. Thus g has at most a pole at each p1, and is there-

fore meromorphic on all of M. 1

THEOREM 9.2. Let S be a complete minimal surface in E3.

Then the total curvature of S can only take the values -477m, In a

non-negative integer, or --m.
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Proof: Since K < 0, either the integral f f K dA over the whole

surface diverges to -o, or else the total curvature is finite. In the
latter case we apply Lemma 9.5 and find that the total curvature

is the negative of the spherical area of the image under g of

M - (pl, ..., pk }. But since g is meromorphic on M, it is either

constant, in which case K = 0, or else it takes on each value a

fixed number of times, say m. The spherical area of the image is

then 4nm. 1

LEMMA 9.6. Let f(z) be analytic and different from zero for

0 < r1 < I zI < oo. Suppose that for every path C which diverges to

infinity, we have

(9.20) f If(z)I I dzl = - .

c

Then f(z) has at most a pole at infinity.

Proof: Since f(z) # 0, log I f(z)I

Laurent expansion at infinity

is harmonic, and we have the

log If(z)I = a logl zj + h(z) + H(z) ,

where h(z) is harmonic and bounded for rl < r2 < IzI < co, and H(z)

is harmonic in the finite plane IzI < o. If N is any positive inte-

ger greater than a, it follows that for I zj > r2,

(9.21) Jf(z)j = zjaeh(z) eH(z) < MI zINeH(z) = MI zNeG(Z)I

where M is a suitable constant, and G(z) is an entire function
whose real part equals H(z). We introduce the entire function

w = F(z) = fzNe)dz, F(0) = 0 ,
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and note that there exists a single-valued branch

C(z) = [F(z)]
11N+1

in a neighborhood of z = 0, satisfying C'(0) 0. We therefore have

an inverse z(C) in a neighborhood of C= 0, and either this inverse

extends to the whole c-plane, or else there is a largest circle
I CI < R to which it can be extended. But the latter cannot occur,

for then there would be a point S0 satisfying I SDI = R over which

the inverse could not be extended. If we consider the curve C(t) _

tC0, 0 < t < 1, its inverse image in the z-plane will be a path C

such that

IC
zNeG(z)IIdzI = f1F'111 = RN+1

C

If the path C were to diverge to infinity, then from some point on

it would be in the region IzI > r2, and because of (9.21) this would

contradict (9.20). Thus C cannot diverge to infinity, and there

must exist a sequence of points zn on C which have a finite point

of accumulation z0, such that the images of these points in the

c-plane tend to CO. But since F'(z0) 0, we could extend the in-

verse mapping over CO. We thus conclude that the inverse z(C)

is defined in the whole c-plane. Furthermore,

z(C1) = z(C2) _> F(z(C1)) = F(z(C2)) N+ 1 = c2 + 1

Thus each value is taken on at most N+ 1 times, and z(C) must

be a polynomial. But 0 > C = 0, and hence Ack
for some integer k. Finally, z'(0) = Akck-1 # 0 => k = 1, A / 0.
Thus F(z) = (z/A)N+ 1, and G(z) must be constant. The same is
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then true of H(z), so that If(z)I <M1IzIN near infinity, and f(z)
has at most a pole at infinity. 1

THEOREM 9.3.* Let S be a complete regular minimal surface

in E3. Then

(9.22)
ffs

KdA <2n'(X-k) .

where X is the Euler characteristic of S, and k is the number of
boundary components.

Proof: If the integral on the left of (9.22) diverges to -oc, the

result holds trivially. Otherwise S has finite total curvature, and

we may apply Theorem 9.1 and Lemma 9.5. By virtue of the rela-

tion (8.8) between the function g and the normals to the surface

we may assume (after a preliminary rotation in space) that g(p) 0,

oc at the points p1., and that the poles of g(p) are all simple poles.

In a neighborhood of any point of M = M - (p1, ..., pk} we have the

representation (8.2) in terms of isothermal parameters C. As we

have noted earlier, under a conformal change of parameters CO'

the corresponding functions satisfy k(t;)
=

and similarly for f(t;). This implies that the existence of a zero

of ck or f at a point, as well as its order, is independent of the
choice of local parameters. By Lemma 8.2, f must have a double

zero at each of the simple poles of g, and f has no other zeros.

Thus, if g is of order m on M, f has exactly 2m zeros on M. At

each point pi we may introduce local coordinates C so that C = 0

corresponds to pi . For 0 < ICI <6 we have IgI < M, hence f L 0.

Furthermore, if C is a curve on M tending to pf, we have by the

completeness of S that

*See Appendix 3, Section 4.
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(A I 2 ff(1+ IgI2)ICI < 1 2M2 ffI IdCI
C c c

It follows from Lemma 9.6 that f must have a pole at the origin.

From the fact that the functions xk(C) in (8.6) are single-valued

in 0 < I I < g , and because of the assumption that g (pj) 0, it

follows easily that the order vj of the pole of f at pi is at least
equal to 2. Thus is a meromorphic differential on M, and

one has the Riemann relation that the number of poles minus the

number of zeros equals 2- 2G, where G is the genus of M (Ahl-

fors and Sario [1], V 27A). Furthermore, the Euler characteristic

X of M is equal to 2- 2G- k. We have, therefore

k
2-2G = E v. - 2m > 2k-2m

I -j=1

and

ffs
KdA =-477m < 27r(2- 2G- 2k) = 27r(X-k) . 4

REMARK. The inequality f fSK dA < 277X was shown by Cohn-

Vossen to hold for an arbitrary complete Riemannian 2-manifold

with finite total curvature and finite X. It follows in particular

from (9.22) that in the case of minimal surfaces, equality can never

hold in Cohn-Vossen's inequality. This question is discussed in a

recent paper of Finn [6], who introduces at each boundary compo-

nent a geometric quantity which acts as a compensating factor be-

tween the two sides of the Cohn-Vossen inequality. One obtains in

this way a geometric interpretation of the order vj of the pole of f

at p..
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THEOREM 9.4. There are only two complete regular minimal

surfaces whose total curvature is -47r. These are the catenoid and

Enneper's surface.

Proof: This is the case m = 1 in Theorem 9.2. This means

that the function g is meromorphic of order 1, hence maps M con-

formally onto the Riemann sphere E. Thus M has genus G = 0,

and inequality (9.22) reduces to k < 2. We may therefore choose

M to be E minus either one or two points, in which case we have

g(C) = C, and by Lemma 9.6 f(C) is a rational function. Taking

into account the completeness and the fact that the functions xk(0

are single-valued, one easily finds that the only choices of f(C)

compatible with these conditions yield precisely the two surfaces

named.

COROLLARY. Enneper's surface and the catenoid are the only

two complete regular minimal surfaces whose Gauss map is one-to-

one.

Proof: If the Gauss map is one-to-one, then the total curvature,

being the negative of the area of the image, satisfies

-47r < ffs K dA < 0 .

By Theorem 9.2, equality holds on the left, and the result follows

from Theorem 9.4. 1

The methods used to prove the above theorems on the total

curvature can also be used to study more precisely the behavior of

the Gauss map, supplementing and sharpening the results obtained

in the previous section. Let us give at; example.
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THEOREM 9.5. Let S be a regular minimal surface, and sup-

pose that all paths on the surface which tend to some isolated

boundary component of S have infinite length. Then either the

normals to S tend to a single limit at that boundary component, or

else in each neighborhood of it the normals take on all directions

except for at most a set of capacity zero.

Proof: By a neighborhood of an isolated boundary component

we mean a doubly-connected region whose relative boundary is a

Jordan curve y. This region on the surface may be represented by

x(C) : D E3, where D is an annular domain 1 < 16 < r2 < 00,

the curve y corresponding to ICI = 1, and we may introduce the

representation (8.2) in D. Suppose now that in some neighborhood

of this boundary component the normals omit a set of positive ca-

pacity. This means that for some rl > 1, the function w = g(C)

omits a set of positive capacity in the domain D': rl < Cl < r2 .

By Lemma 8.6 there exists a harmonic function h(w) in the image

of D' under g(C), such that log(1 + I w l 2) < h(w). Since the met-

ric on S is given by Jt = % f ( 1 + I gI 2), we have

log a(C) < log' 2 + log h(g(C))

Since the right-hand side is a harmonic function in D', we may ap-

ply Lemma 9.3 and deduce that r2 = -. But then g(C) could not

have an essential singularity at infinity by Picard's theorem. Thus

g(C) tends to a limit, finite or infinite, as C tends to infinity, and
the same is true of the surface normal. 1

Without giving the details, let us note that further analysis

along the above lines leads to the following result:
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Let S be a complete minimal surface in E3. Then

S has infinite total curvature <===> the normals to S take on all

directions infinitely often with the exception of at most a set

of logarithmic capacity zero;

S has finite non-zero total curvature <> the normals to S take
on all directions a finite number of times, omitting at most

three directions;

S has zero total curvature <> S is a plane.

This result, and the other theorems in this section are contain-

ed in the two papers Osserman [4, 5]. The presentation given here

is somewhat different. Lemma 9.4 is based on an argument of

A. Huber [1]. which he used to obtain the following result:

if S is a complete surface, and f fSK-dA converges, where

K- = maxi -K, 01, then S is parabolic.

(This result was obtained earlier by Blanc and Fiala in the case

that S is simply connected and the metric real analytic.) Lemma

9.6 was announced (without proof) by MacLane [1] and Voss [1].

The proof given here is taken from Finn [6] who obtains by the

same reasoning a much more general result, not needed for our

purposes. The corollary to Theorem 9.4 was observed independent-

ly by Osserman [6] and Voss [1].

In conclusion, let us note that it would be interesting in con-

nection with the above results to have more examples of complete

minimal surfaces whose genus is different from zero.* It was shown

by Klotz and Sario [1] that there exist complete minimal surfaces

of arbitrary genus and connectivity. Furthermore, it can be shown

(Osserman [6]) that the classical surface of Scherk has infinite

genus. There remains the following open question.

'See Appendix 3, Section 4.
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Problem: Does there exist a complete minimal surface of finite

total curvature whose normals omit three directions?

If so, the value "three" is the precise bound. If not, the maxi-

mum is "two," and is attained by the catenoid.
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§10. Non-parametric Minimal Surfaces in E3.

The study of minimal surfaces in non-parametric form consists

of the study of solutions of the minimal surface equation

(10.1) (1 + q2)r - 2pgs+ (l+ p2)t = 0,

and as such it may be considered as a chapter in the theory of non-

linear elliptic partial differential equations. Just as we have seen

in previous sections that the theory of functions of a complex va-

riable and of Riemann surfaces led to many geometric results

about minimal surfaces, we shall now show that many properties

of minimal surfaces can be attributed to the form of equation (10.1).

In the next section we shall reverse the process and use the para-

metric theory to derive properties of solutions of this equation.

The underlying idea in the present section is the comparison

of an unknown solution of (10.1) with a fixed solution whose prop-

erties are well known. This method is possible by virtue of the

following basic lemma.

LEMMA 10.1. Let F and G be two solutions of equation (10.1)

in a bounded domain D. Suppose that lim(F - G) < M for an arbi-

trary sequence of points approaching the boundary of D. Then

F - G < M throughout D.

Proof: This lemma holds for a wide class of equations of which

(10.1) is a special case. We refer to the discussion in Courant-

Hilbert [1], p. 323. 1

An interesting feature of the study of equation (10.1) is that

its solutions behave in some ways precisely as one would expect

from the general theory of elliptic equations, as in the case of the

above lemma, and in other ways they reveal completely unexpected
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properties. The non-existence of any solution in the whole plane

other than the trivial linear ones (Bernstein's theorem) is an exam-

ple of the latter. We shall now give some further examples. We

first show that for certain domains D, the conclusion of Lemma

10.1 may be valid even though the hypotheses are known to hold

on only part of the boundary. Let us introduce the following nota-

tion. Let

(10.2) G(r; r1) = r1 cosh-1 r , r > r1 ; G(r; r1) < 0 .

rl

The equation

(10.3) x3 = G(r; r1), r = xi + x2

defines the lower half of the catenoid, and is a solution of the min-

imal surface equation in the entire exterior of the circle x2 + x2 =

r2, taking the boundary values zero on this circle.

LEMMA 10.2. Let D be a domain which lies in the annulus

r1 < r < r2, and let F(x1, x2) be an arbitrary solution of (10.1) in

D. If the relation

(10.4) lim (F(x1, x2) - G(r; r1)) < M

is known to hold for an arbitrary sequence of points which tends

to a boundary point of D not on the circle r = r1, then

(10.5) F(x1, x2) < G(r; r1) + M

throughout D.

REMARK. Perhaps the most striking illustration of this lemma

is the case where D coincides with the annulus r1 < r < r2. Then
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the fact that (10.4) holds on the outside circle r = r2 implies that

(10.5) holds throughout D, and hence limF(xl, x2) < M on the inner

circle r= rl. Geometrically, one can describe this situation as
follows: given an arbitrary minimal surface lying over an annulus,

if one places a catenoidal "cap" over the annulus in such a posi-
tion that the surface lies below it along the outer circle, then the

surface lies below it throughout the annulus. This behavior is in

striking contrast with that of harmonic functions where on can pre-

scribe arbitrarily large values on the inner circle, independently of

the values on the outer circle, and find a harmonic function in the

annulus taking on these boundary values.

Proof: For an arbitrary ri satisfying r1 < r' < r2, let

E = max G(r; r1) - G(r; ri)I
rl ` r < r2

Then by (10.4), we have

(10.6) lim (F(xl, x2) - G(r; ri)) < M + E

for all sequences approaching a boundary point of D lying in the

annulus r' < r < r2. We wish to conclude that

(10.7) F(xl, x2) < G(r; ri) + M + E

in the domain D'= D fl {rl < r < r2 }. The result then follows by

letting ri tend to ri.
To prove (10.7), it suffices by Lemma 10.1 to show that (10.6)

holds at every boundary point of D. Since it already holds at

boundary points of D, it suffices to show that (10.7) holds at in-

terior points of D which lie on the circle r = ri . Suppose not.
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Then the function F(xi, x2) - G(r; ri) would have a maximum

M1 > M + E at some point (a1, a2) on this circle, interior to D.

By Lemma 10.1, F(xl, x2) - G(r; ri) < M1 throughout D : On the

other hand, F has a finite gradient at the point (a1, a2), whereas

by (10.2),
aG(r; ri)

aC

Since F- G = Ml at (al, a2), it follows that F- G > Ml for all

points in D' sufficiently near (al, a2) and the origin. Thus the

supposition that (10.7) did not hold leads to a contradiction, and

the lemma is proved. 1

We shall give several applications of this lemma. The first is

a generalized maximum principle for solutions of (10.1)

THEOREM 10.1. Let F(xi, x2) be a solution of the minimal

surface equation (10.1) in a bounded domain D. Suppose that for

every boundary point (al,a2) of D, with the possible exception

of a finite number of points, the relation

lim F(xi, x2) < M,
(x1, x2)-'(al, a 2)

(10.8)

lim F(x1, x2) > m
(x1, x2)-*(a1, a 2)

are known to hold. Then

(10.9) m < F(xi, x2) < M

throughout D.

Proof: It is sufficient to prove the right-hand inequality in

(10.9), since the other then follows by considering the function -F.
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We proceed by contradiction. Suppose that sup F = M1 > M. Then

there exists a sequence of points in D along which F tends to M1,

and a subsequence of these points must converge to one of the

exceptional boundary points. (If F assumes its maximum at an

interior point of D, it must be constant, since x3 is a harmonic

function in local isothermal parameters.) We may suppose by a

translation that this point is at the origin, and we may choose

r2 > 0 so that none of the other exceptional boundary points lies

in the disk r < r2. Choose ri arbitrarily so that 0 < r1 < r2 and
let D' be the intersection of D with {r1 < r < r2}. Finally let M2

= sup F for points of D on the circle r = r2 . We assert that

M2 < M 1. Namely, given a sequence of points on the circle r = r2

along which F tends to M2, they have a point of accumulation

which either lies on the boundary of D, in which case M2 < M, or

else interior to D, in which case F < M1 at that point, since other

wise F = M1 > M contradicting (10.8). Combining all these facts,

we conclude that

lim (F(xl, x2) - G(r; r1)) < M3-G(r2; r1)

at all boundary points of D' for which r> r1, where

M3 = max(M,M21 < M1

By Lemma 10.2, it follows that

F(xl, x2) < G(r; r1) - G(r2; r1) + M3

throughout D'. Now for each fixed r, it follows from (10.2) that

G(r; r1) 0 as rI -, 0, and we deduce that F(x1, x2) < 1113 < M1

for 0 < r < r2. But this is in contradiction with F -, MI along a
sequence of points tending to the origin, and the result follows. 1
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Let us note that in the statement of Theorem 10.1, each of the

exceptional points may either lie on a boundary continuum, or else

be an isolated boundary point. In the latter case the above proof

simplifies considerably, and a much stronger result is in fact true.

THEOREM 10.2.` A solution of the minimal surface equation

cannot have an isolated singularity.

Proof: Let F(xl, x2) be an arbitrary solution of equation (10.1)

in a punctured disk: 0 < r < E. We wish to show that F(xl, x2) ex-

tends continuously to the origin, and that the resulting surface

x3 = F(xl, x2) is a regular minimal surface over the whole disk

r <E.

Chose r2, 0 < r2 <E, and let M= maxlF(xl, x2)I for xi + x2

= r2. By Theorem 10.1, IF(xl, x2)I < M for 0 < xi + x2 < r2. Ac-
cording to Theorem 7.2 there exists a function F (xl, x2) defined

and continuous in the disk r < r2, satisfying (10.1) in r < r2, and

taking on the same values as F for r = r2. Then IF I < M also

for r < r2. We shall show that in fact F = F for 0 < r < r2, and

hence F is the desired extension of the solution F. To this end
we recall that in the notation

W = VI-1 _ aF aF
P - q ax

1 2

,

the equation (10.1) can be written as

aoaojx+ax=o
1 2

W' W

*See Appendix 3, Section 5.
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(This is merely the special case n = 3 of equation (3.14), but it

can easily be verified directly.)

We now introduce the corresponding quantities for the function

F, and consider the difference of these two functions in the annu-

lus DA: A < r < r2. If we let CA be the circle r = A, then by vir-
tue of the fact that F - F = 0 on the circle r = r2, Green's theo-
rem applied to the domain DA yields

(10.12) f(F_F)[(cb_)dx2 - (i-0)dx1]
Ca

= Jf [(P- (q- q)(t&-tI)]dx1 dx 2
D

where we have applied equation (10.10) to both functions F and

F. Now we note from (10.11) and the definition of W that
02 + 02 < 1 and similarly 2 + 2 < 1. Since 2M, it

follows that the left-hand side of (10.12) tends to zero as A -+ 0.

But the integrand on the right is non-negative, as one sees easily

by applying Lemma 5.1 to the function E(p, q) = V 1 + p2 + q2.

We consider p and q as independent variables, and we find

aE p aE qap W - v-,
-a q

W

The integrand on the right of (10.12) then reduces to the expres-

sion on the left of (5.2). Thus if (p-p)2 + (q-q)2 0 at some

point, it follows that the integrand on the right of (10.12) is posi-

tive at some point, hence in a neighborhood of that point, hence

the integral could not tend to zero as A tends to zero. Thus we

conclude p- 0, q- q = 0 for 0 < r < r1, and hence also
F F = 0, which proves the theorem.. 1
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The proof just given, together with the proofs of Theorem 10.1

and Lemma 10.2 are due to Finn [5]. Lemma 10.2 is in fact a spe-

cial case of Finn's lemma ([5], p. 139). Theorem 10.2 and the case

of Theorem 10.1 in which the exceptional boundary points are iso-

lated are originally due to Bers [1]. The form of Theorem 10.1

stated above is due to Nitsche and Nitsche [1]. It was later gener-

alized to allow the exceptional set to be an arbitrary set of linear

Hausdorff measure zero (Nitsche [5]). Similarly, Bers' theorem on re-

movable singularities has the following extension:`If D is a bound-

ed domain, and E a compact subset of D whose linear Hausdorff

measure is zero, then every solution of the minimal surface equa-

tion in D-E extends to a solution in all of D. This result was
obtained independently by Nitsche [5] and De Giorgi and Stampac-

chia [1]. The situation is quite different for the case n > 3. There,

even bounded solutions of the minimal surface equation may have

isolated non-removable singularities (Osserman [101).1

We turn next to another application of Lemma 10.2. We wish to

investigate the solvability of the Dirichlet problem for the minimal

surface equation. For this purpose we introduce the following no-

tation.

DEFINITION. Let D be a plane domain and P a boundary

point of D. We say that P is a point of concavity of D if there

exists a circle C through P and some neighborhood of P whose

intersection with the exterior of C lies in D. The circle C is
called a circle of inner contact at P.

LEMMA 10.3. Let D be a bounded plane domain, P a point of

concavity on the boundary, and C a circle of inner contact at P.

If F is a solution of the minimal surface equation in D, then the

*See Appendix 3, Section 5.
fSee Appendix 3, Section 5.
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boundary values of F at the point P are limited by the boundary

values of F on the part of the boundary exterior to C.

Proof: We may assume that the circle C is centered at the

origin and has radius r1. The entire domain D is contained in

some circle r < r2 . Suppose that lim F < M for all boundary points

of D exterior to C. Then by Lemma 10.2 applied to the intersec-

tion of D with the exterior of C, F < G(r; r1) - G(r2 ; r1) + M for

rI < r < r2, and therefore

(10.14) lim F(Q) < M-G(r2; rd
Q P

LEMMA 10.4. Let D be an arbitrary plane domain. Then D is

convex if and only if there does not exist a point of concavity on

the boundary of D.

Proof: Suppose first that P is a point of concavity of D, and

let C be a circle of inner contact at P. Then a segment of the
tangent line to C at P will have its endpoints in D, but the seg-
ment itself contains the point P not in D. Hence D is not convex.

Conversely, if D is not convex there exist two points Q1, Q2 in

D, such that the segment joining them is not in D. Let Q(t),

0 < t < 1 be a curve in D joining Q1 to Q2. Then there is a
smallest value t0 of t for which the segment L from Q1 to Q(t0)

is not entirely in D. We have t0 > 0, and for all smaller values of
t sufficiently near to the line segments from Q1 to Q(t) lie in D

and are on the same side of L. There is therefore an open subset

A of D consisting of all points on one side of L and sufficiently
near to L together with all points in a disk around each of the

endpoints. By choosing a sufficiently flat circular arc lying in A
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joining the endpoints of L and translating it until it first contracts

the boundary of D, one finds a point of concavity. 4

THEOREM 10.3. Let D be a bounded domain in the plane.

Necessary and sufficient that there exist a solution of the minimal

surface equation (10.1) in D taking on arbitrarily assigned contin-

uous values on the boundary is that D be convex.

Proof. Suppose first that D is convex. Then by Theorem 7.2

one can solve the boundary value problem for arbitrary continuous

boundary values. If, on the other hand, D is not convex, then by

Lemma 10.4 there exists a point of concavity P on the boundary

of D. If we choose boundary values which are sufficiently large

at P and small outside a neighborhood of P, then no solution can

exist by virtue of the inequality (10.14). 4

This theorem and Lemma 10.3 are both due to Finn [5]. We may

note that one can easily construct special cases of non-solvability

directly from Lemma 10.2. For example, if D is the part of the

annulus r1 < r < r2 lying in the first quadrant, and if we assign

continuous boundary values which are equal to G(r; rd outside

the circle r = rl, and positive somewhere on this circle, then no

solution can exist by (10.5). The question of non-existence of so-

lutions in non-convex domains had been considered earlier by a

dumber of authors starting with Bernstein [2], but in each case the

arguments had been valid only for special domains. For a detailed

discussion of this question, see Nitsche [6].

We consider next a more general situation in which solutions

may have infinite boundary values. We prove first the following re-

sult, also contained in the paper of Finn [5].
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THEOREM 10.4. Let D be an arbitrary domain having a point

of concavity P on its boundary. Then a solution of the minimal

surface equation in D cannot tend to infinity at P.

Proof: Let C be a circle of inner contact at the point P. By
choosing a slightly larger circle tangent to C at P, if necessary,

we may assume that there is an arc y of C which contains P but

no other boundary points. If C' is a larger circle concentric with

C and sufficiently close, then the region D' bounded by y, two

radial segments, and an arc y' of C', will be entirely in D. Any

solution F of (10.1) in D will have a finite upper bound M on the

part of the boundary of D' exterior to C. We may then apply Lem-

ma 10.3 to the domain D', and by (10.14) F cannot tend to infinity

at the point P. 4

The interest of the above theorem is that solutions of the mini-

mal surface equation can indeed take on infinite boundary values,

even along an entire arc of the boundary, as in the case of Scherk's

surface

cos x2
F(xl, x2) = log cos xt

which is defined in the square lxtl < 77/2, 1 x21 < 77/2, and tends

to either +oo or -o at every boundary point except for the vertices.

Obviously if D is any domain interior to this square whose bound-

ary is tangent to one of the sides, then F is a solution in D which
tends to infinity at the point of tangency.

We next prove a result complementary to Theorem 10.4, which

shows that infinite boundary values cannot occur along a whole

convex arc.
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THEOREM 10.5. Let D be a plane domain, y an arc of the

boundary of D, L the line segment joining the endpoints of y.

If y and L form the boundary of a subdomain D' of D, then no

solution of the minimal surface equation in D can tend to infinity

at each point of y.

Proof: Let P be a point of D' and let C be the circle through
P and the endpoints of L. Then there exists a subdomain D " of
D' which lies outside C and is bounded by parts of C and y. If

F were a solution of the minimal surface equation in D which ap-

proached infinity at each point of y, then Lemma 10.2 applied to

-F would imply F -. in D'; which is impossible. 4

Combining Theorems 10.4 and 10.5, one sees the following:

if a solution of the minimal surface equation tends to infinity

along a whole arc of the boundary, then that arc is a straight-

line segment.

The question then arises whether one can solve the Dirichlet prob-

lem with infinite boundary values along a given line segment on

the boundary. In the paper of Finn [4], which also contains Theo-

rem 10.5, the following result is proved: let D be a convex domain

whose boundary contains a straight-line segment L. Let continuous

boundary values be prescribed arbitrarily on the complementary part

of the boundary. Then there exists a solution of the minimal sur-

face equation in D which takes on these boundary values, and

which tends to infinity at each inner point of L.

A detailed study of the question of the Dirichlet problem with

infinite boundary values has been made recently by H. Jenkins and

J. Serrin [1, 21. Necessary and sufficient conditions are given for

the existence and uniqueness of solutions taking on prescribed
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boundary values which are plus infinity, minus infinity, and con-

tinuous, respectively, on three given sets of boundary arcs. Let

us note one example of their results: Let D be a convex quadri-

lateral. Let one pair of opposite sides have total length L, and

the other pair have total length M. Necessary and sufficient that

there exist a solution of the minimal surface equation in D taking

on the boundary values +- on one pair of sides and --o on the
other pair is that L = M. When the solution exists, it is unique up

to an additive constant.
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§11. Application of parametric methods to non-parametric problems.

We conclude our discussion of minimal surfaces in E3 with

several examples of how results on solutions of the minimal sur-

face equation can be obtained by expressing the corresponding sur-

faces in parametric form.

THEOREM 11.1. Let x3 = F(x1, x2) define a minimal surface

in the disk D : xi + x2 < R2. Let P be the point on the surface
lying over the origin, let K be the Gauss curvature of the surface

at P, and let d be the distance along the surface from P to the
boundary. Then the inequality

(11.1) IKI <
cd2

0

holds, where c is an absolute constant, and W2 is the value at

the origin of

(aF)2
W2 \a / 2

REMARK. Inequality (11.1) may also be expressed in the form

of a bound at the origin for the second derivatives of an arbitrary

solution of (10.1) in the disk D.

Proof: We may represent the surface parametrically by x(C),

< 1, the orientation being chosen so that the unit normal is

N - (WE
' W

1 / P
CTx

q =ai
1 2

Using the representation (8.2), we have by (8.8) that

(11.2) lg(C)l2 = W+1 < 1 .
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If C is an arbitrary curve in I C1 < 1, then the length of its image

on the surface is given, according to (8.7), by

fAIdl = 1/ f IfI(1+Igl2)I<I < flf( Idyl
C C C

In particular, if we consider all divergent paths C in < 1 which

start at the origin, then we have

(11.3) d = inf f I dCl < f If(C) l 1<1
ClC

where C1 is any particular such path. We choose the path C1 as

follows. Set w = f f(C) dC, where G(O) = 0. Then

f 0 in I j < 1, by Lemma 8.2, and following the reasoning of

Lemma 8.5, the inverse function C = H(w) defined in a neighbor-

hood of the origin will be defined in a largest circle I wl <-p on

whose boundary there will be a point w0 over which the inverse

cannot be extended. The radius L : w(t) = two, 0 < t < 1, will map

onto a divergent path C1 in I C1 < 1 which starts at the origin.

But

(11.4) f If(C)l IdCI = f Idwl = p
C1 L

By Schwarz' lemma, applied to the map H(w) of I wl < p into I < 1,

we have H'(0)j < 1/p. Thus f( 0)1 _ IG'(0)j = 1/jff'(0)j> p .

Comparing with (11.3) and (11.4) yields

(11.5) d < jf(0)j .

Next we apply Schwarz' lemma to the map g (C) of I C < 1 into

I g(C) < 1, and we find



APPLICATIONS OF PARAMETRIC METHODS 107

(11.6) Ig'(0)I < 1- Ig(0)( 2 .

Finally, combining (11.2), (11.5) and (11.6) with the expression

(9.4) for the Gauss curvature, we find

\/IKI d < 4 9'(0) _ < 4(1- 2 (1 + 1 < 4
(1+lg(0)I2)2 (1+lg(0)I2)2 Wo Wo _ Wo

which proves the theorem.

COROLLARY.` Under the same hypotheses, there exists an ab-

solute constant co such that

(11.7) IKI < co

2R

Proof: Obviously d > R, and Wo > 1.

Let us note that the inequalities (11.1) and (11.7) may be re-

garded as quantitative forms of Bernstein's theorem. Namely, if

F(xl) x2) is defined over the whole (x1, x2) plane, then we may

choose a disk of arbitrarily large radius R about any point, and it

follows from (11.7) that the Gauss curvature of such a surface is

identically zero, which for a minimal surface implies that it is a

plane. The first results of this type were given by Heinz [1], where

one finds inequality (11.7). This was later sharpened by E. Hopf

[1], who gave a different proof and found that one could insert the

factor W2 in the denominator.

The inequality (11.1) is in Osserman [2]. It has the advantage

that it remains true if the disk D is replaced by an arbitrary do-

main in the (x1, x2) -plane. Concerning the constant c, one can

show that if the surface has a horizontal tangent plane at the origin,

then W
0

= 1, and

*See Appendix 3, Sections 2, 61B, and 611A.
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J K( < 69 12
d

Furthermore, this inequality is sharp, equality being attained in

the case of Enneper's surface (the domain D no longer being a

disk in this case). By a refinement of the argument given above

one can show that the constant c in (11.1) satisfies

69 <c <8

These results are contained in the paper Osserman [2].

A completely different proof of inequality (11.7), using purely

parametric methods is given in Finn and Osserman [1]. It is shown

there that if the surface has a horizontal tangent plane at the ori-

gin, then one has

IK(
<22 12

,
R

and that this inequality is best possible, with Sherk's surface play-

ing the role of an extremal. It is also shown that the constant co

in (11.7) satisfies

n2 < c0 < 6
2

These considerations point obviously to the following question.

PROBLEM. What are the precise values of the constants c

and co in (11.1) and (11.7)? For a given value of W can one de-

scribe the extremal surface for these inequalities?

We turn next to solutions of the minimal surface equation de-

fined in the exterior of a disk. We note first the following result,

due to Bers [1].
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THEOREM 11.2. Let x3 = F(xl, x2) define a minimal surface

in the region xi + x2 > R2. Then the gradient of F tends to a
limit at infinity.

Proof: The normals to such a surface are contained in a hemi-

sphere, whereas the length of all curves on the surface which di-

verge to infinity is clearly infinite. It follows by Theorem 9.5 that

the normals tend to a limit at infinity, which is the desired

result.

Actually, Bers obtained much more precise results on the be-

havior of the solution F(xl, x2) in the neighborhood of infinity.

For this purpose he used a parametric representation analogous to

(8.2), together with the following lemma.

LEMMA 11.1. Let x3 = F(xl, x2) define a minimal surface S

in the region x2 + x2 > R2. Then S is con formally equivalent to

the punctured disk: 0 < < 1, where C tends to zero as xi + x2

tends to infinity.

Proof: This result follows by the same reasoning that was used

in the proof of Theorem 9.5.

The precise conditions in parametric form for a surface to be of

the kind we wish to consider are the following.

LEMMA 11.2. Let a minimal surface S be represented by the

equations

(11.8) xk = Re f 95k(C) dC

in the punctured disk A : 0 < ICI < 1, where
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(11.9) 1 =
2

f(1-g2) , 952 =
2

f(1 + g2) , 03 = fg

Then the following statements are equivalent:

1. There exists p > 0 such that the part of S corresponding

to 0 < I I < p can be solved in the form x3 = F(xl, x2), where

F(xl, x2) is a bounded solution of the minimal surface equation

in the exterior of some Jordan curve F.

H. There exists p'> 0 such that in the punctured disk A':
0 < I tj < p , the functions are analytic and have the

following properties:

a) extends to an analytic function in < p , satis-

fying Ig(C)I < 1, g(0) = 0, g'(0) = 0.
b) f (J) 0 in A', and f (t;) has a pole of order two at the

origin with residue zero.

Proof: I H. Let p'= p. A surface in non-parametric form

is necessarily regular, and satisfies I g I < 1, hence f 0, by

Lemma 8.2. Since g is a bounded analytic function in a punctured

disk, it has a removable singularity at the origin. The value of

g(0) determines the limiting position of the gradient at infinity;

if g(0) 0, then by (11.2) the gradient would tend to a limit dif-

ferent from zero and F(xl, x2) would not be bounded. Thus g (0)

= 0. Furthermore, x3 = F(xl, x2) bounded at infinity means that

x3 is a bounded harmonic function of ,+' in a neighborhood of the

origin, and hence also has a removable singularity. Thus

'03(C) = a3 - i O X3 61 + i62
06, 062

is analytic in the full disk, and the same is true of the function
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f(0 g(C)2. From this it follows first of all that f cannot have an
essential singularity at the origin. Further, from (11.8) and (11.9),

we have

(11.10) x1 + ix2 = 2 L ' fdC -
I fg2gj

from which we deduce that f must have residue zero at the origin

in order for xl and x2 to be single-valued functions of C. On the

other hand, f cannot be regular at the origin, since otherwise xl

and x2 would be bounded. Thus f has a pole of order at least two,
and fg analytic at the origin implies g has a double zero; i.e.,

g '(0) = 0. Finally, we must show that f(C) cannot have a pole of

order greater than two. But note that by (11.10) we may write

(11.11) xl + ix2 = 2 [H(C) - G(C)]

where

(11.12) H(o = J f(C)dC, G(C) = ff()g()2dC

are single-valued analytic functions in A. If f(C) had a pole of
order greater than two, then H(C) would have a pole of order greater

than one, and the image of C1 = E for all small 6 would wind

around the origin more than once. But IH(C)I > IG(C)l on JCJ = E

for small E, and thus the image of JCJ = E in the xl, x2-plane would

also wind around the origin more than once. But this contradicts the

fact that for 0 < J CJ < p, the map C-* (xl) x2) is one-to-one, and the

result is proved.
II -_ I. Conditions a) and b) guarantee that the functions G(C),

H(C) defined by (11.12) are single-valued in A', and that G(C) is

analytic at the origin, while H(C) has a simple pole. Thus, by (11.11)
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xi + x2_ tends to infinity as C tends to zero. For the Jacobian of

the map (11.11) we have the expression

(11.13)
3(x , x

J = a(e1't2) = 4 jfl2(jgI4-1)
2

Since lg l < 1, we have J < 0 everywhere, and the map (11.11) is

a local diffeomorphism. We wish to show that it is a global diffeo-

morphism in 0 < 1 C1 < p, for suitable choice of p. To this end, we

first choose r> 0 so that is univalent in 0 < ICl < r, which

is possible since H(C) has a simple pole. Let M = max 1 G()l for

ICI < r, and choose ri < r so that IH(C)l > M for 0 <I Cl <r , .

Let M1 = maxlxl + ix2l for 1C1 = rl. We assert that every point

in the exterior of the circle xi + x2 = M2 is taken on precisely

once in 0 < I Cl < rl . Namely, given any such point (al, a2),

choose r2 < ri such that lH(C)l > 21al + ia2l + M = M2 for

J CJ < r2. Then l xl + ix2l > l al + ia2l on l Cl = r2, and the map

(11.11) is a local diffeomorphism of the annulus r2 < 1C1 < rl,

such that the image of the boundary has winding number equal to

one with respect to the point (al, a2). The point (al, a2) has
therefore exactly one pre-image in this annulus and none for

l Cl < r2. This completes the proof of the lemma. 4

LEMMA 11.3. Let F(xl, x2) satisfy the minimal surface equa-

tion in the exterior of some circle xi + x2 = R2. If F(xl, x2) is
bounded, then it tends to a limit at infinity, and

aF + i aF
axi ax2

in a neighborhood of infinity, for a suitable constant M.



APPLICATIONS OF PARAMETRIC METHODS 113

Proof: By Lemmas 11.1 and 11.2 we have the representation

(11.8), (11.9), where f and g satisfy conditions II a) and b) of

Lemma 11.2. As we pointed out in the proof of Lemma 11.2, x3

tends to a limit as C tends to zero, hence as x2 + x2 tends to
infinity. From the representation (11.11) and the properties of G

and H, it follows immediately that I x1 + ix21 ClItends to a finite
limit as C tends to zero. Finally, from (8.8) one may compute

aF = 2 Re{g) aF_ = 2 ImlgI
ax1 1-Ig12

' axe 1-Ig12

and since g(C) has a double zero at the origin,

aF + i aF
ax1 ax2

_ - 2L
1-Ig12

in a neighborhood of infinity. 4

M1

- Ix
1

+ ix21 2

THEOREM 11.3. If the exterior Dirichlet problem has a bound-

ed solution, then it is unique. Specifically, if F(x1, x2), F(x1. x2)

are bounded solutions of the minimal surface equation in the do-

main xi + x2 > R2, if they are continuous for xi + x2 > R2 and
agree for xi + x2 = R2, then F(x1, x2) F(x1, x2).

Proof: Let us use the same notation as in the proof of Theorem

10.2, but applied to the annulus D : r1 < r < r2, where r1 > R. We

obtain formula (10.12), but with two boundary integrals on the left.

The one around the outside boundary tends to zero as r2 tends to
infinity by virtue of (11.4) and the fact that both F and F are bounded.

The one on the inside circle tends to zero as r1 -, R because F - F

tends to zero, whereas the quantities 95, V, are all less then 1

in absolute value. Thus the reasoning of Theorem 10.2 shows that F

and F have the same gradient, hence differ by at most a constant, and

and since they coincide on a circle they are identical. 4
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REMARK. The above proof was suggested by R. Finn. Obvi-

ously the boundary need not be a circle, since the reasoning is

quite general. The fact that this theorem was true was pointed out

to the author by D. Gilbarg, who also raised the question of whether

there always exists a bounded solution of the exterior Dirichlet

problem. We show that there does not in the following theorem.

THEOREM 11.4. There exist continuous functions on the cir-

cle xi + x2 = 1 which may be chosen to be arbitrarily smooth

(e.g., real analytic functions of arc length) such that no bounded

solution of the minimal surface equation in the exterior of this cir-

cle takes on these values on the boundary.

Proof. We first construct a particular surface S which will

play a role similar to that of the catenoid in the arguments of the

previous section. This surface is defined by setting

f(C) =
2

, g(C) = 2

in (11.9), for 0 < ICI < 1. The transformation (11.11) takes the

form

x1 + ix2 = X3/3 .

One can easily verify that the image of C1 = 1 under (11.15) is

a Jordan curve IF, and it follows by the same reasoning as in the

proof of Lemma 11.2 that (11.15) is a diffeomorphism of 0 < I CI < 1

onto the exterior of F. Thus the surface S can be expressed in

non-parametric form x3 = F (x1, x2) in the exterior of F. Using

the equation x3 = 261, one may easily verify the following facts:

i) the-map (11.15) takes the axes into the axes and symmetric

points into symmetric points;
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ii) F(xl, x2) is symmetric with respect to the x1-axis, and anti-

symmetric with respect to the x2-axis; it is positive for xl < 0,

negative for xl > 0, and tends to zero at infinity;

iii) F may be expressed in polar form: r = h(O), where r de-

creases monotonically from 4/3 to 2/3 as 0 increases from 0

to 77/2 (the rest of F being obtained by symmetry);

vi) the gradient of F is infinite along F .

We now let C be the unit circle xi + x2 = 1, and we assign

boundary values 0 (xl, x2) on C satisfying

a) 0 is symmetric with the respect to the xl-axis, antisymmet-

ric with respect to the x2-axis.

b) for points on C outside ' in the left half-plane xt < 0, we
have 0 < c(xl, x2) < F(xl, x2).

Suppose now that F(xl, x2) were a bounded solution of the

minimal surface equation in the exterior of C, taking on the bound-

ary values qS(x1, x2). Then by property a) of S5, the function

F (x1, x2) = -F(- x1, x2) would be a bounded solution taking on

the same boundary values, and by Theorem 11.3, F(x1, x2)

F (xl) x2). In particular F(0, x2) = F (0, x2) = -F(0, x), so that

F(0, x2) = 0. Hence the limit of F at infinity must be zero. Thus,

for any 6 > 0, we can choose R sufficiently large so that JFj < E,

F < 6 on x
1

+ x2 = R2. We now let D be the domain in the

left half-plane, lying inside xi + x2 = R2, and outside the curves
C and F. On the vertical axis we have F = F= 0. On xi + x2 =
R 2, we have F < F + 26, and for points on C outside F, F = (k < F.

Thus the equality F < F + 26 holds at all boundary points of D

except possibly for those on F. However, along IF the gradient of

F is infinite, and by the same reasoning as was used in
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Lemma 10.2, the inequality F < F + 26 must also hold for bound-

ary points on F. Finally, if we let D' be the crescent-shaped do-

main in the left half-plane lying inside I, and outside the circle C,

then the inequality F < F + 26 on I, implies, again by Lemma
10.2, a bound of the form F < M on the part of the boundary of D'

on the circle C. This means that if the boundary values 95 (x1, x2),

which have not yet been prescribed on the part of C interior to I,,

are chosen so that 0 > M at some point, then the exterior boundary

problem cannot be solved. This proves the theorem. 1

We conclude this discussion with the following remarks.

First of all, one could remove the requirement of boundedness

and ask if there exists any solution of the exterior Dirichlet prob-

lem. However, one would then have to sacrifice uniqueness, since

even for constant boundary values on the circle one has distinct

solutions in the catenoid and a horizontal plane.

Next we note that the choice of a circle as boundary curve is

of no special importance. Obviously the argument works in great

generality. It would be interesting to give an argument for an arbi-

trary exterior domain.

Finally, we note that according to an observation of D. Gilbarg,

one can prove by standard methods in the theory of uniformly ellip-

tic equations that a solution of the exterior Dirichlet problem will

always exist if the boundary data are sufficiently small. We thus

have, by virtue of the non-existence for certain sufficiently large

boundary values, one more striking example of how the non-linearity

of the minimal surface equation affects the behavior of its solutions.
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§12. Parametric surfaces in En; generalized Gauss map.

In this section we shall show how the results of sections 8 and

9 may be extended to minimal surfaces in E. For this purpose we

must define the generalization to n dimensions of the classical

Gauss map, and study its properties in the case of minimal sur-

faces. This was first done for n = 4 by Pinl [1]. We may also note

here that Pinl has obtained a number of results on parametric min-

imal surfaces in E" which we are not able to discuss here. (See

Pinl [2, 3] and further references given there. Note also the papers

of Beckenbach [1] and Jonker [1].) For arbitrary n, the Gauss map

of minimal surfaces was first studied by Chem [1]. The present

section is devoted to the results in that paper, together with those

given in Osserman [5] and in Chern and Osserman [1].

We begin by discussing the Grassmannian G2," . This is a dif-
ferentiable manifold whose points are in one-to-one correspondence

with the set of all oriented two-dimensional linear subspaces of E';

i.e., all oriented planes through the origin. Let 11 be any such

plane, and let v, w be a pair of orthogonal vectors of equal length

which span n, and such that the ordering v, w agrees with the

orientation of H. We then set zk = Vk + iwk I k = 1, ..., n, and we

thus obtain a map

(12.1) v,w, zEC".

Suppose next that v, w' are another such pair of vectors span-

ning H, and z' is their image under the map(12.1). Then one veri-
fies easily that there exists a complex constant c such that zk=
C Zk for all k. Thus the map (12.1) induces a map

(12.2) 11 . Z E P"-1(C)
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which assigns to each plane H a point in the (n - 1) -dimensional

complex projective space. Furthermore, we have

n

zk = } vk - wk - 2i , Vk Wk = 0.
k=1

Thus, if we introduce the complex hyperquadric

(12.3)
n

Qn_2={zEPn-1(C): I. zk=o,
k= 1

the map (12.2) actually takes the form

(12.4) II -, z E Qn-2 C Pn-1(C) .

Conversely, for any point z c Qn_2, if we write zk = Vk + iwk,

then the vectors v, w will span a plane II which corresponds to

the point z. We thus see that the map (12.4) defines a one-to-one

correspondence between all planes II and all points of Qn_2. We

thus identify Qn-2 with the Grassmannian G2,n
.

Suppose now that we have a regular Ct-surface S defined by a

map

(12.5) X(P): M -, En,

where M is an oriented 2-manifold. Then at each point we have a

tangent plane II(p). This may be defined in terms of local param-

eters u1, u2 as the plane spanned by the vectors ax/aul, ax/au2.
and is independent of choice of parameters. We may then assign

the point z(p) obtained by the map (12.4), and the resulting map

(12.6) g: S Qn_2

where

(12.7) g: x(p)t-.II(p) '. z(p)
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is called the generalized Gauss map of the surface S. In the case
n = 3, we have a one-to-one correspondence between oriented planes

H and their unit normals N, and one-to-one correspondence between

the points of Q1 and those of the unit sphere obtained by setting

w = z3/(z1- iz2) and following by stereographic projection. The

map (12.7) then reduces to the classical Gauss map: x(p) -+ N(p).

We will simply refer to the map (12.7) as the "Gauss map" for arbi-

trary n.

We recall next that the immersion (12.5) defines a natural con-

formal structure on M, where local parameters on M are those which

yield isothermal parameters on S.

LEMMA 12.1. A surface S defined by (12.5) is a minimal sur-

face if and only if the Gauss map (12.7) is anti-analytic.

Proof:`In a neighborhood of any point the surface S may be

represented by x(C) in terms of isothermal parameters t; _ 61+i62.

Then the vectors ax/ae1, ax/a'2 are orthogonal, equal in length
and span the tangent plane. Thus we may define the Gauss map by

setting

(12.8)
axk axk

= (0)zk= + i- k

ael ae2

By Lemma 4.2 we have:

S a minimal surface <> Xk harmonic <> zk analytic in '.

LEMMA 12.2. A surface S in En lies in a plane if and only

if its image under the Gauss map reduces to a point.

Proof: The image under the Gauss map is a point if and only

if the tangent vectors ax/aul, ax/au2 may be expressed as linear

This proof is not complete as it stands. For a discussion and complete proof, see
pp. 7-10 of Hoffman and Osserman 111.
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combinations of two fixed vectors v, w, which is equivalent to

x(p) - x(p0) expressible as a linear combination of v and w for
all points p and a fixed point p0.

THEOREM 12.1.' Let S be a complete regular minimal surface

in En. Then either S is a plane, or else the image of S under the
Gauss map approaches arbitrarily closely every hyperplane in

Pn-1(C).

Proof: We may first of all pass to the universal covering sur-

face S of S, which affects neither the hypothesis nor the conclu-

sion. Suppose that the image under the Gauss map does not come

arbitrarily close to a certain hyperplane E ak zk = 0. This means
that

(12.9)

I ak zk12
k=1 > E > 0

EIzk12
k=1

everywhere on the image.

Let S be defined by x(C) : D -. En, where D may be either the
unit disk or the whole C -plane. Then in the notation (12.8), the in-

equality (12.9) takes the form

(12.10)
n

Y' I Ok(C) 12 <

e

IV(C)I2
k=1

where ak/k(C) is analytic and different from zero in D.

But the metric on S is given by gi f = ,k2Sli , where A2 = Ok(C) 12,

and by (12.10) log A has a harmonic majorant in D. Since S is

complete, it follows from Lemma 9.2 that D cannot be the unit cir-

cle, but must be the entire plane. But in that case, it follows from

"See Appendix 3. Section 4.
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(12.10) that each of the functions is a bounded entire

function, hence constant. Thus the image of S under the Gauss map

reduces to a point, and by Lemma 12.2 S lies in a plane, and being

complete, S coincides with this plane.

COROLLARY. The normals to a complete regular minimal sur-

face S in E1 are everywhere dense unless S is a plane.

Proof: Suppose that the normals to S all make an angle of at

least a with a certain unit vector (A1, ..., An). One can show that

this is equivalent to the inequality

1 2Y . AJ Z J

l l zk12
>

2
sin2a

which means that the image of S under the Gauss map is bounded

away from the hyperplane I ak zk = 0. The result therefore follows

from Theorem 12.1. To obtain (12.11) one need only choose a pair

of orthogonal unit vectors v, w which span the tangent plane at a

point, and decompose A in the form A = av + bw + N, where N is a

normal at the point. If w is the angle between N and A, then since

a N = IN12, we have

b2= 1-IN I2= 1-cos2cw > 1-cos2a

which is precisely (12.11), where zk = vk + iwk . 1

The above theorem and its corollary may be regarded as the first

steps in the direction of settling the following basic problems:

1. Describe the behavior of the Gauss map for an arbitrary com-

plete minimal surface in En.

2. Relate this behavior to geometric properties of the surface

itself.
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In sections 8 and 9 we have given a number of results of this

type for the case n = 3. We now review briefly the situation for

arbitrary n. First let us make the following definition.

DEFINITION. The Gauss map is degenerate if the image lies

in a hyperplane.

LEMMA 12.3. Let S be a minimal surface in E° whose image

under the Gauss map lies in a hyperplane

(12.12) H : I ak zk = 0.

If H is a "real" hyperplane; i.e., the ak are real, then S it-
self lies in a hyperplane of E°.

If H is a tangent hyperplane to Qn-2, i.e.,

(12.13)

then there exists a change of coordinates in En, say xi = I bfkik

where B = (bfk) is an orthogonal matrix, such that xl + ill is an

analytic function on S.

Proof: In the case where the ak are real, equation (12.12) sim-

ply says that the tangent vectors v and w are both orthogonal to

the vector a = (al, ..., an), where zk = Vk + iwk. By integration,

the surface lies in the hyperplane orthogonal to the vector a.

In the second case, if we set ak = ak + i'3k , the vectors a and
(3 are real orthogonal vectors of equal length, by (12.13), and we

may assume them to be unit vectors. We may then complete them

to an orthonormal set of vectors which we use to form the columns

of the matrix B. Then introducing the functions Ok in terms of

local isothermal parameters, equation (12.12) takes the form
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0 = ai0i = I a,.blk95k = 01 - i02

But this is just the Cauchy-Riemann equations for the function

x 1 + ix2, which proves the lemma. 4

Let us note the following concerning the two cases which arise

in the lemma. In the first case we can make an orthogonal change

of coordinates so that S lies in a hyperplane x 1 = constant, or

equivalently 0 1 = 0. In the second case we have c 1 = icb 21 or

2 + 2
0. In general, we are led to make the following defini-

tion.

DEFINITION. A minimal surface in E° is decomposable if,

with respect to suitable coordinates, we have

m

(12.14) 'k(C) 2 = 0, for some m < n.
k= I

Note that equation (12.14) implies that also

n

0
k=m+1

This means that if we write En = Em ®En-n`, then the projection

of the surface into each of these subspaces is again a minimal sur-

face, although one of them may degenerate into a constant mapping.

In particular, one can always manufacture minimal surfaces in

higher dimensions out of pairs of minimal surfaces in lower dimen-

sions by this procedure. As a special case, if

x1+1x2, x3+1x4,...,xn_1 +lxn

are analytic functions of a variable C, where n is even, then the
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surface x(C) is a (decomposable) minimal surface in E. The ex-
ample given at the end of section 2 is an illustration of this.

LEMMA 12.4. For a minimal surface S in E3, the following are

equivalent:

a) S is decomposable;

b) the Gauss map of S is degenerate;

c) S lies on a plane.

Proof: Clearly a) is equivalent to c), because if S is decompos-

able, either m = 1 or m = 2, in which case either 1 = 0 or qS3 = 0.
If the Gauss map is degenerate, then the image of S lies in a hyper-

plane H of P2(C) and in the quadric Q1. But one may easily veri-
fy that H fl Q1 consists of either one or two points, and since the

image is connected, it must reduce to a point, and S lies in a plane

by Lemma 12.2. 1

If one now passes to higher dimensions, then no two of these

conditions are equivalent, even if one replaces condition c) by the

natural generalization, "S lies in a hyperplane." We have already
seen that the latter condition corresponds to a special type of de-

generacy or decomposability. As for the first two conditions, the

example given at the end of section 5 is a surface for which 02 =

-2io
,

so that the Gauss map is degenerate, but one can easily

verify that it is not decomposable.

In the above discussion, as well as in condition (12.9) in Theo-

rem 12.1, we have described the Gauss map in terms of the image

lying in certain subsets of P` 1(Q. For many purposes it is more

natural to characterize the set of hyperplanes in P"-1(C) which in-

tersect the image. One can easily verify, for example, that equation

(12.9) is equivalent to the statement: "the image under the Gauss
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map does not intersect any hyperplane sufficiently near the hyper-

plane I ak zk = 0." Thus Theorem 12.1 can be reworded: "If S

is a complete minimal surface, not a plane, then its image under

the Gauss map intersects a dense set of hyperplanes." *

For a closer study of the Gauss map from this point of view

we note the following.

LEMMA 12.5. Given a minimal surface S in En, the Gauss

map g(S), and a hyperplane H in Pn-1(C), then either g(S) lies

in H, or else H intersects g(S) at isolated points with fixed mul-

tiplicities.

Proof. If H is given by I akzk = 0, then near any point of S
choose local isothermal parameters and set 0 (C) = F, ak Ok(O

Then either I/I(i) = 0, in which case g(S) lies in H locally, and
by analyticity, globally, or else has isolated zeros whose

multiplicities are independent of the choice of parameter C. 1

We are thus led to a study of the "meromorphic curve" g(S),

which is precisely the type of object treated in detail in the book

of Weyl [1]. It is advantageous for the general theory, and particu-

larly for the applications we wish to make, to introduce a Rieman-

nian metric on P'-'(C). We may do this by defining the element

of arclength do of a differentiable curve z(t), by the expression

z,I2
(12.15) do, 2_

2 2
j<k I k k j

Cdt) Iz(t)I4 (Y- IzkI2)2

Up to a multiplicative factor, this is a standard metric for complex

projective space.

Suppose now that we have a minimal surface S, and in terms

of local isothermal parameters C, zk = 95k(C).
Then (12.15) takes

`See Appendix 3, Section 4.
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the form

(12.16)

where

(12.17)
io(C)12

In particular, the image of a domain A in the c-plane has area

(12.18) A = 2f
,I 2

del de2
A 1014

with respect to this metric.

We next compute the Gauss curvature. The formula (9.5): K =

-A log A/A2, applied to the metric on S :

(12.19)
dt = \ I dt I ;

\2
=

1 lo(C)12

yields the expression

(12.20) K
410A0,12 2

1.016 x2

In particular, for the total curvature, we obtain

JJKdA
='fAKa2deld62 = J A a2 delde2 = -A

In other words: the total curvature of any part of the surface is the

negative of the area of the image with respect to the metric (12.15).

We thus have a precise generalization of the situation in three

dimensions, represented by (9.11), and we may examine the form in

which various theorems generalize. The methods of integral

A SURVEY OF MINIMAL SURFACES

dal2 = 2d 12

Cdt/ dt

= J2 10()Ao'(C)1
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geometry allow one to relate the number of times the image under

the Gauss map intersects various hyperplanes with the area of the

image, hence with the total curvature of the surface. We do not go

into the details here, but refer the interested reader to the discus-

sion in the paper of Chern and Osserman [1].





APPENDIX 1

LIST OF THEOREMS

THEOREM 5.1. Let f(xl, x2) = (f3(x1, x2), ..., fn(xl, x2)) be a

solution of the minimal surface equation (2.8) in the whole x1, x2-

plane. Then there exists a nonsingular linear transformation xl =

ul, x2 = au1 + but, b > 0, such that (ul, u2) are (global) iso-
thermal parameters for the surface S defined by xk = fk(xl, x2),

k = 3, ..., n.

COROLLARY 1. In the case n = 3, the only solution of the

minimal surface equation in the whole x1, x2-plane is the trivial

solution, f a linear function of x1, x2.

COROLLARY 2. A bounded solution of equation (2.8) in the

whole plane must be constant (for arbitrary n).

COROLLARY 3. Let f(x1, x2) be a solution of (2.8) in the

whole x1, x2-plane, and let S be the surface defined by xk =

fk(ul, u2), k = 3,..., n, obtained by referring the surface S to the

isothermal parameters given in Theorem 5.1. Then the functions

'Pk =
afk afk

- 1
au1 au2

k =3,...,n,

are analytic functions of ul + iu2 in the whole ul, u2-plane and

satisfy the equation

129
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n

o2 = -1-c2
k=3

c=a-ib .

Conversely, given any complex constant c = a-ib with b > 0,

and given any entire functions 03, ..., qSn of u1 + iu2 satisfying

the above equation, these may be used to define a solution of the

minimal surface equation (2.8) in the whole x1, x2-plane.

THEOREM 7.1. Let I' be an arbitrary Jordan curve in En,

Then there exists a simply-connected generalized minimal surface

bounded by F.

THEOREM 7.2. Let D be a bounded convex domain in the

x1, x2-plane, and let C be its boundary. Let gk(xl, x2) be arbi-

trary continuous functions on C, k = 3,...,n. Then there exists a

solution f(xl, x2) = (f3(x1, x2),..., n(x1, x2)) of the minimal
surface equation (2.8) in D, such that fk(xl, x2) takes on the

boundary values gk(x1, x2).

THEOREM 8.1. Let S be a complete regular minimal surface

in E3. Then either S is a plane, or else the normals to S are
everywhere dense.

THEOREM 8.2. Let S be a complete regular minimal surface

in E3. Then either S is a plane, or else the set E omitted by
the image of S under the Gauss map has logarithmic capacity

zero.

THEOREM 8.3. Let E be an arbitrary set of k points on the

sphere, where k < 4. Then there exists a complete regular minimal

surface in E3 whose image under the Gauss map omits precisely

the set E.
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THEOREM 9.1. Let M be a complete Riemannian 2-manifold

whose Gauss curvature satisfies K < 0, ffml KI dA < o. Then there

exists a compact 2-manifold M, a finite number of points p1'"'. pk
on M , and air isometry between M and M- 1 pl, ..., pk}.

THEOREM 9.2. Let S be a complete minimal surface in E3.

Then either f fSK dA = -oo, or else f fsK dA = -477m, m = 0, 1, 2,...

THEOREM 9.3. Let S be a complete regular minimal surface

in E3. Then f ffKdA < 277(X-k), where x is the Euler charac-
teristic of S, and k is the number of boundary components of S.

THEOREM 9.4. There are only two complete regular minimal

surfaces in E3 whose total curvature is -47r. These are the cate-
noid and Enneper's surface.

COROLLARY. Enneper's surface and the catenoid are the only

two complete regular minimal surfaces in E3 whose Gauss map is

one-to-one.

THEOREM 9.5. Let S be a regular minimal surface in E3. and

suppose that all paths on the surface which tend to some isolated

boundary component of S have infinite length. Then either the

normals to S tend to a single limit at that boundary component, or

else in each neighborhood of it the normals take on all the direc-

tions except for at most a set of capacity zero.

THEOREM 10.1. Let F(x1, x2) be a solution of the minimal

surface equation (10.1) in a bounded domain D. Suppose that for

every boundary point (a1, a2) of D, with the possible exception

of a finite number of points, the relations
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lim F(x1, x2) < M, lim F(x1, x2) > m
(x1, x2) -, (al, a2) (x1, x2) -) (a1, a2)

are known to hold. Then m < F(x1, x2) < M throughout D.

THEOREM 10.2. A solution of the minimal surface equation

cannot have an isolated singularity.

THEOREM 10.3. Let D be a bounded domain in the plane.

Necessary and sufficient that there exist a solution of the minimal

surface equation in D taking on arbitrarily assigned continuous

values on the boundary is that D be convex.

THEOREM 10.4. Let D be an arbitrary domain having a point

of concavity P on its boundary. Then a solution of the minimal

surface equation in D cannot tend to infinity at P.

THEOREM 10.5. Let D be a plane domain, y an arc of the

boundary of D, L the line segment joining the endpoints of y.

If y and L bound a subdomain D' of D, then no solution of the

minimal surface equation in D can tend to infinity at each point

of Y.

THEOREM 11.1. Let x3 = F(x1, x2) define a minimal surface

in the disk D: x2 + x2 < R2. Let P be the point on the surface
lying over the origin, let K be the Gauss curvature of the surface

at P, and let d be the distance along the surface from P to the
boundary. Then the inequality IKI < c/d2W2 holds, where c is

an absolute constant, and W2 is the value at the origin of W2 =

1 + (aF/ax1)2 + (aF/ax2)2.

COROLLARY. Under the same hypotheses, there exists an

2absolute constant c0 such that 1KI < c0/R.
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THEOREM 11.2. Let x3 = F(x1, x2) define a minimal surface

in the region xi + x2 > R2. Then the gradient of F tends to a
limit at infinity.

THEOREM 11.3. If the exterior Dirichlet problem has a bound-

ed solution, then it is unique.

THEOREM 11.4. There exist continuous functions on the cir-

cle xi + x2 = 1 which may be chosen to be arbitrarily smooth,

such that no bounded solution of the minimal surface equation in

the exterior of this circle takes on these values on the boundary.

THEOREM 12.1. Let S be a complete regular minimal surface

in En. Then either S is a plane, or else the image of S under the
Gauss map approaches arbitrarily closely every hyperplane in

Pn-1(C).

COROLLARY. The normals to a complete regular minimal sur-

face S in En are everywhere dense unless S is a plane.





APPENDIX 2

GENERALIZATIONS

One of the important roles played historically by the theory of

minimal surfaces was that of a spur to obtain more general results.

In the following pages we shall try to give a brief idea of some of

the extensions of the theory which we have discussed. We shall

group the results in several categories.

I. Wider classes of surfaces in E3.

A. Surfaces of constant mean curvature.

From a geometric point of view, the most natural generalization

of surfaces in E3 satisfying H = 0 consists of surfaces satisfying
H - c. Certain properties extend to this class, whereas others are

quite different according as c = 0, or c A ii,

Let us start with the Plateau problem. Theorem 7.1 was ex-

tended first by Heinz [2], who pointed out that in general, one

would expect a solution only if the mean curvature is not too large

compared to the size of the curve F. (See also the discussion be-

low for the non-parametric case.) The results of Heinz were later

improved on by Werner [1], who obtained, in particular, the follow-

ing result: Let r be a Jordan curve which lies in the unit sphere.
Then for any value of c, I cl < 1/i , there exists a simply-connected

surface satisfying H = c, bounded by r.

Complete surfaces of constant mean curvature are studied in

Klotz and Osserman [1] using methods similar to those of section

8. The following result is proved: Let S be a complete surface of

constant mean curvature. If K > 0 on S, then S is a plane,

135
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a sphere, or a right circular cylinder. If K < 0, then S is a cylin-
der or a minimal surface. If one makes no restriction on the sign

of the Gauss curvature K, then there exist complete surfaces of

constant mean curvature which are none of the types listed.

Concerning non-parametric surfaces, we have first of all the

following result, which may be considered the natural generaliza-

tion of Bernstein's theorem. Let x3 = F(xl, x2) define a surface

of constant mean curvature H = c > 0 in a disk x2 + x2 < R2.

Then R < 1/c, with equality holding only if the surface is a hemi-

sphere. The first statement in the conclusion is due to Bernstein

[1] and the second to Finn [5]. The theorem of Bers on removable

singularities (Theorem 10.2) goes over without change (Finn Ill),

and indeed so does the fact that every set of vanishing linear Haus-

dorff measure is removable (Serrin [2]). Finally, there is an exis-

tence theorem corresponding to Theorem 10.3. (See IIB, below.)

B. Quasiminimal surfaces.

Considering minimal surfaces in non-parametric form from the

point of view of partial differential equations, one is led to ask for

more general equations whose solutions behave in a similar manner.

Various classes of equations were studied by Bers [3] and Finn

[2] with a view toward generalizing results such as Bernstein's

theorem and Theorems 10.2 and 11.2 of Bers. The underlying idea

is to replace conformal maps by quasiconformal maps at some point

in the theory. In particular, Finn introduces a class of equations

of "minimal surface type" whose solutions have the property that

their Gauss map is quasiconformal. With varying additional restric-

tions, these equations have been studied in Finn [2, 3, 4], Jenkins

11, 2], and J enkins and Serrin [ 1].` It is shown in these papers that

*See Appendix 3, Section 61B.
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a large part of the theory of minimal surfaces which we have pre-

sented here can be carried over, and in fact some results were

first proved in this wider context before they were known for the

special case of minimal surfaces. Among the most interesting,

let us note the Harnack inequality and the convergence theorems

of Jenkins and Serrin [1].

If one considers parametric surfaces with the single require-

ment that the Gauss map be quasiconformal, one is led to the

class of surfaces introduced in Osserman [4] as "quasiminimal

surfaces." Certain results, for example Theorem 9.2, can be

shown to continue to hold in this generality. It would be interest-

ing to know whether Bernstein's theorem is true for quasiminimal

surfaces, or whether some of the additional restrictions imposed

by Finn are really necessary.*

II. Hypersurfaces in En.

A. Minimal hypersurfaces.

From many points of view the most natural generalization af

surfaces in E3 is to hypersurfaces in E. If one asks for the
condition that a hypersurface minimize volume with respect to all

hypersurfaces having the same boundary, then one is led to the

geometric condition that the mean curvature be zero, and the ana-

lytic condition that the surface in non-parametric form xn =

F(x1, ..., xn-1) satisfy the equation

(1)

n-1
p o

1 W i=1 )

12

It has long been an open problem whether Bernstein's theorem

generalizes to this case, i.e., whether every solution of (1) de-

n-1
W=(1+j P2

*See Appendix 3, Section 61B.
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fined for all x1, ..., xn_1 is linear. This was proved in the case
n = 4 by de Giorgi [1], for n = 5 by Almgren [2], and for n = 6, 7, 8

by Simons [1]. Weaker forms of Bernstein's theorem have been

proved for arbitrary n, where the conclusion that F is linear is
obtained by imposing additional restrictions, such as W bounded

(Moser [1]) or F positive (Bombieri, de Giorgi, and Miranda [1]).

The latter paper also contains references to a number of other re-

cent contributions to the theory of minimal hypersurfaces.*

An analogue of Theorem 7.2 is given in a recent paper of

Miranda [1], while de Giorgi and Stampacchia [1] gave the follow-

ing theorem on removable singularities: Every solution of equation

(1) in a domain D from which a compact subset E of (n - 2) -dimen-

sional Hausdorff measure zero has been removed extends to a so-

lution in all of D.+
Up till now it has not been possible to extend the results of

sections 8 and 9 on parametric surfaces to the case of hypersur-

faces.
Finally, Jenkins and Serrin [3] have obtained the following re-

markable generalization of Theorem 10.3: Let D be a bounded

domain in En - I with C2 boundary, and let H be the mean curva-

ture of the boundary with respect to the inner normal. Then neces-

sary and sufficient that there exist a solution of equation (1) in

D taking on arbitrary assigned C2 boundary values is that H > 0

everywhere on the boundary.

*It appears that the problem of Bernstein's theorem has just been settled
in the most unexpected fashion. Bombieri [1] has announced the construc-
tion of a counterexample showing that although Bernstein's theorem is true
for n < 8, it fails to hold for n > 8. The details will appear in a paper of
Bombieri, de Giorgi, and Giusti [1].
+See Appendix 3. Sections 611A and 611B.
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B. Other hypersurfaces.

The result of Jenkins and Serrin just referred to has been fur-

ther extended by Serrin [3] to a large class of equations which in-

clude the equation for surfaces of constant mean curvature. His

result is the following: Under the same hypotheses as before,

necessary and sufficient that there exist a hypersurface of con-

stant mean curvature c corresponding to arbitrarily prescribed C2

boundary values is that H > c(n- 1)/(n- 2) at each point of the

boundary.

We note also the following result, contained in a recent paper

of Chern [2]. If xn = F(x1, ..., xn-1) defines a hypersurface of

constant mean curvature, H = c, over the whole space of x1, ...

xn-1, then in fact H = 0.

III. Minimal varieties in En.
We come now to the general case of k-dimensional minimal vari-

eties in En, where 2 < k < n - 1. Very little progress had been

made for the intermediate values of k, 2 < k < n-1 until recently,

when there appeared the papers of Reifenberg [1] and Federer and

Fleming [1]. In both cases one gets away from parametric methods

(including the "non-parametric methods" discussed earlier) and

introduces suitable classes of objects which are handled chiefly

by measure-theoretic methods. In particular, Reifenberg [1, 2, 3]

showed that there always exists a compact set X having a given

boundary A in a certain precise sense, such that the set X-A,
outside of a possible subset of (k- 1) -dimensional Hausdorff mea-

sure zero, is a k-dimensional minimal variety.

These methods have been carried further by Almgren [1] and by
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Morrey [3]. The book of Morrey is an excellent general reference

to this theory, viewed in terms of differential equations and the

calculus of variations.
A major question concerning these methods is whether the pos-

sible singular sets actually occur. Simons [1] showed that in the

case of hypersurfaces in dimensions n < 7, the set X -A is a real

analytic minimal variety without singularities. He also gave an ex-

ample for n = 8 of a cone having a singularity at the origin which

provides a relative minimum in Plateau's problem. Now Bombieri

[1] has announced a series of results which prove that Simons' cone

represents an absolute minimum, and hence a counterexample to

the regularity of the solution. Details are given in Bombieri,

de Giorgi and Giusti [1].

IV. Minimal subvarieties of a Riemannian manifold.

The theory of two dimensional minimal surfaces in a Rieman-

nian manifold has been studied by various authors (for example,

Lumiste[1], Pinl [2]). Morrey [1] showed that the problem of Pla-

teau could be solved also for the case of a Riemannian manifold.

More recently Morrey [2, 3] has extended the work of Reifenberg

from the euclidean to the Riemannian case. Almgren [1, 2] and

Frankel [1] have studied topological properties of minimal sub-

varieties.

We have noted earlier that a complex-analytic curve in C' ,

considered as a real two-dimensional surface in E2n, is always a

minimal surface. This generalizes to the statement that a K5hler

submanifold of a KAhhler manifold is a minimal variety. For this

and related statements we refer to the recent paper of Gray [1].

A major contribution to the theory of minimal varieties has

been made by Simons [1]. He derives an elliptic second order



GENERALIZATIONS 141

equation which is satisfied by the second fundamental form of a

minimal variety in an arbitrary Riemannian manifold. There are a

number of applications, including the extension of Bernstein's

theorem mentioned above (in IIA), and a large part of the earlier

theory is unified and generalized.

Minimal submanifolds of spheres have been the object of par-

ticularly intensive research in the past two or three years. In ad-

dition to several of the above-mentioned papers we note the work

of Calabi [2] which applies complex-variable methods to 2-dimen-

sional minimal surfaces in an n-sphere, and the papers of Chern,

do Carmo, and Kobayashi [1], Hsiang [1,2], Lawson [1, 2, 3],

Otsuki [1], Reilly [1], Takahashi [1], and Takeuchi and Kobayashi

Ill.

To all those whose work has not been mentioned, or barely

skimmed over in this brief survey, we apologize. To the novice

in this field we hope at least to have given some idea of the range

and the depth of current activity in the field of minimal surfaces.





APPENDIX 3

DEVELOPMENTS IN MINIMAL SURFACES, 1970-1985

1. Plateau's Problem

Many basic questions concerning Plateau's problem have been set-

tled in the past decade. The fundamental existence theorem of Douglas,

Theorem 7.1, may now be sharpened to the form: let r be an arbitrary

Jordan curve in E3. Then there exists a regular simply-connected

minimal surface bounded by I'. (See Osserman [11], Gulliver [1],

Gulliver, Osserman, and Royden [11, and Alt [ I].) Among the further

questions that arise are whether or not the surface obtained is actually

embedded (i.e., without self-intersections), and when the solution is

unique. If the curve IF lies on the boundary of a convex body, then

Meeks and Yau [1] proved that the surface is indeed embedded, while,

independently, Almgren and Simon 111 and Tomi and Tromba [ 1 ] proved

related embedding results. Earlier, Gulliver and Spruck [1] proved the

result under the additional assumption that the total curvature of r was

at most 4Tr.

In all the above results we cannot properly speak of the surface

bounded by r (or the Douglas solution) since one does not in general

have uniqueness. An interesting example is provided by Enneper's

surface. In the standard representation of Enneper's surface (see p. 65,

above), if one denotes by r, the image of the circle tj = r, then Nitsche

[10] has shown that for 1 < r < 1 + E there exist at least three distinct

solutions to Plateau's problem with boundary r,. In the other direction,

Ruchert [ 11 proved that for 0 < r -- 1, the solution is unique. Ruchert's

proof makes use of a sharpened form of a uniqueness theorem due to

143
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Nitsche [9]: a real analytic Jordan curve in E3 whose total curvature is

at most 41r bounds a unique simply-connected minimal surface. An

interesting counterpart is a construction of Almgren and Thurston [1],

who show that given any a and any positive integer g, there exists a

Jordan curve F in E3 with the property that the total curvature of F is

at most 41r+e, and any embedded minimal surface bounded by r

must have genus at least g. If one drops the requirement of simple

connectivity, then one has extensive results due to Gulliver [2] on the

regularity of Douglas' solutions of higher topological type (where the

topological type is specified in advance), and the basic theorem of Hardt

and Simon [I ] proving the existence of a regular embedded minimal

surface spanning an arbitrary given set of Jordan curves in E3.

When we go to En, n ' 4, although Douglas' basic existence the-

orem 7.1 still holds, both regularity and uniqueness tend to break

down. An important example is the surface S in E4 defined non-

parametrically by x3 = Re{R(x1 + tx2)4}, x4 = Im{R(x, + ix2)4},

Ix, + tx2j -5 1, R a positive constant. As was noted at the end of §2, S is

a minimal surface. Its boundary t is a Jordan curve. Federer [1] showed

that S is in fact the unique oriented surface of least area bounded by F.

Thus in this case, Douglas' solution is unique. On the other hand,

Morgan [1] has shown that there exists a non-oriented minimal surface

S* bounded by r, and that for sufficiently large R there exists a one-

parameter family of isometrics of E4 mapping r onto itself and taking S*

onto a one-parameter family of mutually distinct minimal surfaces of

least area all bounded by t. Federer's Theorem also gives examples

where Douglas' solution is not regular, but has branch points.

Even for non-parametric solutions, uniqueness may fail. Thus, in

Theorem 7.2, the solution is unique when n = 3 by Lemma 10.1,

whereas for n , 4 there exist arbitrarily smooth boundary values on the
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unit circle for which the solution is not unique (Lawson and Osserman

Ill).

A paper of White [2] gives a generic regularity result: for almost

every smooth closed curve in E^, the unoriented area-minimizing sur-

faces that it bounds have no singularities.

Returning to E3, Morgan 131 gave another example of a continuum

of distinct minimal surfaces having the same boundary. In his example,

the boundary is the union of four disjoint circles. On the other hand, in

the paper referred to above, Hardt and Simon [1] show that if r is an

arbitrary collection of sufficiently smooth Jordan curves in E3, then F

can bound only a finite number of oriented area-minimizing surfaces.

Their result uses basic earlier work of Bohme and Tomi 111, as well as

Tomi [1]. For further work on finiteness, we refer to the papers of

Tromba [1], Morgan [2,5], Nitsche [III], Beeson 12], Koiso [11, and Bohme

and Tromba 111.

Another area of major progress is that of regularity at the boundary.

This was settled by a number of authors following the initial ground-

breaking work of Hildebrandt [3]. For details we refer to the book of

Nitsche [II] (Chapter V, §2.1) and to the paper of Hardt and Simon 11].

Finally we note that a totally different approach to regularity is

given by Beeson 111, who applies variational arguments in a neigh-

borhood of a branch point. For background on the subject of branch

points on minimal surfaces, see Osserman [I] and Nitsche [II], V.2.2. For

more on Plateau's problem, including a long list of open problems, see

the lecture notes of Meeks M.

2. Stability

There is a class of minimal surfaces that falls between that of the

area-minimizing surfaces and that of the totality of all minimal sur-
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faces: stable minimal surfaces. There are various notions of stability,

but basically a stable surface is area-minimizing relative to nearby

surfaces with the same boundary. Thus, stable minimal surfaces are

precisely the ones that one would expect to obtain in physical experi-

ments. In terms of our discussion in §3, minimality of a surface is

equivalent to the vanishing of the first variation of area A'(0) under all

deformations of the surface leaving the boundary fixed. Thus, mini-

mality is a necessary condition for a surface to be area-minimizing.

However, if for some deformation the second variation is negative,

A"(0) < 0, then there are nearby surfaces of smaller area, and the

surface is called unstable.

The property of stability has assumed increasing importance in

recent years. Among the results obtained are the following:

Barbosa and do Carmo [1] showed that for a surface S in E3, if the

image of S under the Gauss map has area less than 2a, then S is stable:

the second variation of area is positive for all deformations fixing the

boundary. This result has found important applications in Nitsche's

theorems 19,1111 on uniqueness and finiteness. It was later generalized to

minimal surfaces in En by Spruck [1], replacing the Gauss map by the

generalized Gauss map (12.7). Spruck's result was in turn improved by

Barbosa and do Carmo [21, who showed that the assumption f fJKJdA <

47r/3 implied stability for simply-connected minimal surfaces in En.

The above results all involve sufficient conditions for stability. In

the other direction, the assumption of stability often has important

consequences. One example is a recent result of Schoen [ 1 ], who obtains

an analog of inequality (11.1) for stable surfaces. Specifically, Schoen

shows that there is a universal constant c such that if S is a stable

minimal surface in E3, then for any point p in S the Gauss curvature K

of S at p satisfies JK(p)j _ c/d2, where d is the distance from p to the
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boundary of S. Since a non-parametric minimal surface can easily be

shown to be area-minimizing with respect to its boundary and hence

stable, Schoen's result is an extension of Heinz inequality (11.7), which

in turn implies Bernstein's Theorem. It also implies the earlier result of

Fischer-Colbrie and Schoen [I] and do Carmo and Peng [1] that, if S is a

complete globally stable minimal surface in E3, then S is a plane. The

assumption "S globally stable" means that every relatively compact

domain D on S is stable.

Another class of surfaces that are area-minimizing, and therefore

globally stable, is complex holomorphic curves in Cn, considered as real

surfaces in E2n (Federer [1]). A paper of Micallef [1] makes a number of

important contributions to the study of stability, including the proof

that a complete globally stable minimal surface in E4 must be a holo-

morphic complex curve with respect to some orthogonal complex struc-

ture on E4 (which is thereby identified with C2), provided that some

further condition is satisfied, such as a restriction on the Gauss map,

finite total curvature, or that the surface is non-parametric. This last

condition was obtained independently by Kawai [1]. It shows in par-

ticular that the surfaces, such as (5.19), obtained as global solutions of

the minimal surface equation must be unstable, even though they are

non-parametric.

The paper of Schoen [1] applies to minimal surfaces not only in E3

but also in a three-dimensional Riemannian manifold. The study of

stable minimal surfaces in Riemannian manifolds has been a very

fruitful one in recent years and has led to some of the most important

advances. These will be discussed below in Sections 6.IV.A and 6.V.

3. Isoperimetric inequalities

There are two roles that isoperimetric inequalities have played in

recent work on minimal surfaces. First, isoperimetric inequalities for
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domains on minimal surfaces have been applied in a number of ways.

(For a discussion of such applications, see §4 of Osserman [III].) Second,

isoperimetric inequalities on arbitrary surfaces have been applied to the

theory of minimal surfaces. For example, the stability results of Barbosa

and do Carmo 11, 2, 31 and Spruck [ 1 ] depend on the use of iso-

perimetric inequalities on the image of a minimal surface under the

(generalized) Gauss map.

It has been a long-standing conjecture that the classical iso-

perimetric inequality L2 % 4irA should hold for an arbitrary domain on a

minimal surface in En, where A is the area of the domain, and L the

length of the boundary. Until recently that was only known for an

oriented domain bounded by a single Jordan curve. (New and simpler

proofs of that have been given by Chakerian [ 11 and Chavel [ 11.) Then It

was proved for doubly-connected domains, first in E3 (Osserman and

Schiffer [1]) and then in general (Feinberg [1]). That in turn implied the

result for minimal MObius strips (Osserman 113]). Except under further

hypotheses, the sharp isoperimetric inequality for domains of arbitrary

topological type on minimal surfaces is still not known. (See Li, Schoen,

and Yau [ 11 for certain hypotheses that suffice.) For more details, see

Nitsche [II], §323, and Osserman [III], H.

4. Complete minimal surfaces

One of the most striking results of recent years is a theorem of

Xavier [1] that goes a long way toward answering the questions on p. 74,

above, concerning the gap between Theorems 8.2 and 8.3. What Xavier

shows is that the normals to a complete minimal surface in E3, not a

plane, can omit at most six directions. The method of proof is quite

different from that used in the proof of Theorem 8.2, and it does not

seem amenable to reducing the number of omitted values to four, which
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by Theorem 8.3 would be best possible value. Thus, it still remains an

open question to determine the precise number of values that the

normals to a complete non-planar minimal surface in E3 can omit.

Xavier's Theorem represents a very strong generalization of Bern-

stein's Theorem (Corollary 1 of Theorem 5.1). Two other generalizations

of Bernstein's Theorem in different directions have been proved re-

cently. One is the theorem on complete globally stable surfaces dis-

cussed above. The other is a theorem of Schoen and Simon [2]. Instead

of a condition on the Gauss map or on stability, an assumption is made

on area growth. Specifically, they prove the following: let S be a simply-

connected complete minimal surface embedded in E3. For some fixed

point p in S, let Sp(r) denote the component containing p of the

intersection of S with a ball of radius r centered at p. Let A(r) be the

area of SP(r). If A(r) < Mr2 for somefixed M, then S must be a plane.

Using the area-minimizing property of non-parametric minimal sur-

faces, and comparing SP(r) with the area of a domain on the sphere of

radius r having the same boundary, one sees easily that the classical

Bernstein Theorem is a consequence of the Schoen-Simon Theorem.

An exciting recent development has been the discovery of the first

new complete embedded minimal surface of finite genus in over two

hundred years. The previously known examples were the plane, the

catenoid, and the helicoid. A paper of Jorge and Meeks [11 studied

necessary conditions on the Weierstrass representation for the resulting

surface to be a complete embedded minimal surface. Using those condi-

tions, Costa [I ] showed that there exists a constant c such that the

choice off=p, g=c/p' in the Weierstrass representation (8.2), (8.6),

where p is the elliptic p-function of Weierstrass based on the unit

square, gives a complete minimal surface of genus one in E3, with three

embedded ends. Hoffman used computer graphics to obtain excellent
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pictures of Costa's surface, showing clearly that it was embedded. (See

Peterson [I].) Hoffman and Meeks [1] gave an analytic proof of the

embeddedness, and subsequently [2] found complete embedded minimal

surfaces of every genus.

Returning to the distribution of normals, we note that Gackstatter

(1] showed that the normals to a complete abelian minimal surface in

E3, not a plane, can omit at most four directions. Complete abelian

minimal surfaces are a generalization of complete surfaces of finite total

curvature for which the functions'pk of (4.6) extend to be meromorphic

on a compact Riemann surface, but the xk = Ref cpk need not be single-

valued. Since the surfaces of Theorem 8.3 are abelian, the number "4"

of Gackstatter's theorem is sharp.

Finally, we refer to the papers of Meeks [3], Jorge and Meeks [1],

Gulliver [3], and Gulliver and Lawson [1] for further results on complete

minimal surfaces of finite total curvature in E3.

Complete minimal surfaces in En have been studied by various

authors. Among recent results, we note the following.

Gackstatter [2] studied relationships between various quantities

associated with a complete minimal surface S of finite total curvature in

En. Let m be the dimension of the smallest affine subspace of E'

containing S. Let k be the number of boundary points of S, and g its

genus. Then the total curvature of S satisfies

f f KdA -_ (3 - m - k - 4g) 7rr.
S

This result complements inequality (9.22) in Theorem 9.3, which holds

in En as well as E3 (Chern and Osserman 11]). Combining the two, one

can prove the following result, complementing Theorem 9.4: if f f KdA
S

_ -41r, then either S is simply-connected and m , 6, or else S is

doubly-connected (g = 0, k = 2) and m _- 5. This theorem was first
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proved by C. C. Chen [3] using other arguments. One can in fact give a

complete characterization of the surfaces with total curvature - 47r

(Hoffman and Osserman [1]). The doubly-connected ones are particularly

interesting. They are a kind of generalized catenoid, in the sense that

they are all generated by a one-parameter family of ellipses (or circles)

that are obtained by intersecting the surface with the set of all hyper-

planes parallel to a given fixed one. In that connection we note another

result of C. C. Chen [2]: a minimal surface S in En that is isometric to a

catenoid is in fact itself a catenoid lying in a three-dimensional affine

subspace.

Finally we note that the complete minimal surfaces of total curva-

ture -21r have a very simple characterization: let (z,w) be coordinates

in C2. For each real c > 0, the graph of the function w = cz2

represents a minimal surface in E4 with total curvature - 2ir. Every

complete minimal surface in En with total curvature - 2-rr lies in a

four-dimensional affine subspace and is congruent to one of the above

surfaces. This theorem is a somewhat sharpened form of a theorem of

C. C. Chen [3]. For this and further related results we refer to Hoffman

and Osserman [1].

The above results characterizing complete minimal surfaces with

total curvature - 2a and - 47r follow from a general characterization of

complete minimal surfaces of genus zero and given total curvature

(Hoffman and Osserman [1], Proposition 6.5). In particular, one has a

general construction for genus zero minimal surfaces. As mentioned on

p. 89, above, it would be interesting to have more examples in the

higher genus case. A paper of Gackstatter and Kunert [1] shows that

given any compact Riemann surface M, there exist points p,.... pk,

and a complete minimal surface S of finite curvature in E3 defined by

a map x(p): M-,E3, where M=M-{p ... p,}. In fact, their method
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gives many such surfaces for any given M, including a continuum of

conformally distinct types. What still remains to be studied is to what

degree one can prescribe the points p1,... , Pk. (See also Chen and

Gackstatter [1], and, for non-orientable surfaces, Oliveira [1].)

With no assumption on finite total curvature, we have very recent

extensions of Xavier's Theorem to E4 by Chen 14] and to En by Fujimoto

11]. Fujimoto shows that if S is a complete minimal surface in En with

non-degenerate Gauss map g, then g(S) cannot fail to intersect more

than n2 hyperplanes in general position. In a second paper, Fujimoto

[21 gives a remarkable generalization of all these Picard-type theorems in

the form of Nevanlinna-type theorems for the Gauss map.

5. Minimal graphs

Many results on minimal graphs in E3 extend only partially, or not

at all, to higher codimension.

Theorem 7.2 asserts the existence of a solution to the minimal

surface equation in a convex plane domain corresponding to an arbi-

trary set of continuous boundary functions. For the case of a single

boundary function, it follows from Lemma 10.1 that the solution is

unique. It turns out that in the general case uniqueness does not hold.

In fact, even when D is the unit disk, one can show that there exists a

pair of real analytic functions on the boundary of D to which corre-

spond three distinct solutions in D of the minimal-surface equation

(Lawson and Osserman [1]).

Another result that fails when going from E3 to En is Bers' Theorem

(Theorem 10.2) asserting that a solution of the minimal-surface equa-

tion cannot have an isolated singularity. There are simple counterexam-

ples as soon as n = 4, such as the complex function w =1/z, considered

as a pair of functions of two real variables. However, one does have the
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following result (Osserman [121): letf(x1,x2) be a vector solution of the

minimal surface equation (2.8) in O<x2 + x2<e for some a>O. Suppose
1 2

that all components off with at most one exception extend continu-

ously to the origin. Then f extends to the origin, is smooth there, and

satisfies (2.8). This result contains as special cases both Bers' Theorem

and the following result proved independently by Harvey and Lawson [1]:
2 2

if f(x1,x2) is continuous in x +X < E2 and is a solution of (2.8) in
1 2

2 20 < x + x < e2, then f is a solution in the full disk.
1 2

Finally we note that Simon [21 has generalized the removable sin-

gularity result of Nitsche and of de Giorgi and Stampacchia (see p. 98,

above) by eliminating the hypothesis that the exceptional set E be a

compact subset of D.

6. Generalizations

We follow here the order adopted in Appendix 2, and list just a few

of the subsequent results most pertinent here.

I. Wider classes of surfaces in E3

A. Surfaces of constant mean curvature

A whole new approach to Plateau's problem for surfaces of constant

mean curvature was devised by Wente [1] and elaborated in later papers

of Steffen 11,21 and Wente [2]. (See the last of these for details and

further references.) Wente's method involves minimizing area subject to

a volume constraint, in contrast to the earlier method of Heinz 121 based

on a variational problem with the mean curvature H prescribed in

advance.

An analog of Theorem 8.1 has been proved by Hoffman, Osserman,

and Schoen [1]. They show that if S is a complete surface of constant

mean curvature in E3 whose Gauss map lies in a closed hemisphere,

then S is either a plane or a right circular cylinder. Examples of
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complete surfaces of revolution of constant mean curvature show that

the Gauss map can lie in an arbitrarily narrow band about an equator.

An important observation due to Ruh [1] is that a surface has

constant mean curvature if and only if its Gauss map is a harmonic

map. For details on this and the general theory of harmonic maps see

Eells and Lemaire [1,21. (See also the comments on harmonic maps in VI

below.)

Kenmotsu [ 11 derived a representation theorem for surfaces of con-

stant mean curvature, similar to the Weierstrass representation theorem

of Lemmas 8.1 and 8.2. He proved that if g is a harmonic map of a

simply-connected plane domain D into the unit sphere I, then there

exists a surface S of constant mean curvature in E3 defined as a

branched immersion x: D - E3 where the coordinates in D are iso-

thermal parameters on S and the map g is the composition of the

immersion map D - S with the Gauss map S -* 1. More generally, for

arbitrary surfaces in E3 of variable mean curvature H, Kenmotsu derives

an integrability condition relating H with the Gauss map, and obtains a

generalized Weierstrass representation theorem. For further results

along these lines, see Hoffman and Osserman [4].

Although somewhat further afield, the most striking recent result

on surfaces of constant mean curvature is the answer by Wente [31 to an

old problem of Heinz Hopf: Are there any compact immersed surfaces of

constant mean curvature in E3 other than the standard sphere? Wente

showed that there is such a surface in the form of an immersed torus.

Several notions of stability are possible for surfaces of constant

mean curvature. For a discussion and some recent results, see Barbosa

and do Carmo 15 1, Palmer [ 1 ], and da Silveira [ 1 ].

B. Quasiminimal surfaces

The question raised on p. 137, above, has been settled by Simon
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([4], Theorem 4.1) who showed that Bernstein's Theorem holds for

arbitrary quasiminimal surfaces. The paper of Schoen and Simon [2]

referred to earlier, where Bernstein's Theorem is generalized by impos-

ing a bound on area growth rather than a non-parametric representa-

tion, is actually valid for all quasiminimal surfaces. Another paper of

Simon [5] gives generalizations of Heinz' inequality (11.7) and of Bers'

Theorems, Theorem 10.2 and 11.2, for quasiminimal surfaces that are

defined via solutions to equations of "mean curvature type." This class

of equations is considerably broader than similar ones considered

earlier by Finn [2,4] and Jenkins and Serrin [1,2].

C. Complete surfaces of finite total curvature

A recent paper of White [3] shows that many of the results of

Chapter 9 concerning the Gauss map and total curvature of a complete

surface hold in great generality. Without assuming minimality or any

other local condition, White gives new proofs and generalizations of

Theorems 9.1 and 9.2, and Lemma 9.5. He assumes only that S is a

complete surface in E3 satsfying the condition fs(2H2 - K)dA<oo. He

also obtains analogous results in En, generalizing those of Chern and

Osserman [1].

A paper of Osserman [14] shows that a surface in E^ given by a

polynomial map must have finite total curvature; if it is in addition a

regular complete surface, then it must be conformally the plane.

II. Hypersurfaces in En

A. Minimal hypersurfaces

One of the major advances of the past decade was a paper of

Schoen, Simon, and Yau [1] in which they obtain pointwise curvature

estimates generalizing Heinz' inequality (11.7) to non-parametric mini-

mal hypersurfaces in En for n < 6. An immediate consequence was a
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new proof of Bernstein's Theorem in those dimensions. But more

important were the methods used, which have led to many further

results (see IV.A, below). A number of improvements on the original

paper were given by Simon [ 1,3].

A higher-dimensional version of the parametric Bernstein Theorem

Theorem 8.1, has been given by Solomon 111. In fact, he gives a finite

version, analogous to the parametric version of Theorem (11.1) (Osser-

man [21) in the following form: let M be a smooth area-minimizing

hypersurface of En. Suppose that the first cohomology class of M is

zero, and that the Gauss map of M omits a neighborhood U of some

great (n-3)-dimensional sphere on the (n-1)-sphere. Then there

exists a constant c depending on n and U such that for any

point p of M, if d is the distance from p the boundary of M and if

K1, ... , Kn_ 1 are the principal curvatures of M at p, then

2 2
K + . + K c/d2.

1 -11

A paper of Morgan [51 gives a number of finiteness theorems for the

set of solutions to Plateau's problem for various classes of minimal

hypersurfaces in En, for n , 7.

In another direction, the paper of Simon [2] sharpening the remov-

able singularity theorem of de Giorgi and Stampacchia holds in all

dimensions.

A question that has been studied by a number of authors is the

following: given a Riemannian metric, when can it be realized on a

minimal hypersurface in En? The case n = 3 was treated by Ricci-

Curbastro 11], while higher dimensions were considered by Pinl and

Ziller [1], and Barbosa and do Carmo [41. Further conditions, as well as

a review of the whole subject, are contained in Chern and Osserman (2].
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B. Other hypersurfaces

In the papers of Simon [2,3] referred to above, he shows that the

generalized Heinz inequality, Bernstein's Theorem, and the de

Giorgi-Stampacchia Theorem all hold for broader classes of hypersur-

faces. In particular, he extends the results of Jenkins [ 11 for parametric

elliptic functionals in two dimensions to three dimensions, and he

shows that a Heinz inequality and the Bernstein Theorem hold through

dimension 7 for the non-parametric Euler-Lagrange equation of any

integrand whose associated parametric functional is close enough to the

area integrand.

A higher-dimensional version of Hopfs question referred to earlier

(6.I.A) was answered by W.-Y. Hsiang 131, who showed that for all n - 3

there exist non-standard immersions of the n-sphere in En+1 with

constant mean curvature. (Hopf had shown that to be impossible when

n=2.)

III. Minimal varieties in En

A major breakthrough was the paper of White [ 11, solving the

classical Plateau problem in higher dimensions. Specifically, any smooth

map of the (n-2)-sphere into En, for 4 , n , 7, extends to a Lipschitz

map of the (n-1)-ball that minimizes (n-1)-dimensional area among all

such maps. In fact, in all dimensions n - 4, the infimum of areas

obtained from Lipschitz maps (the parametric problem) is the same as

one gets using integral currents or singular chains. This result con-

trasts strongly with the situation for E3, where, for example, a higher-

genus surface spanning a given Jordan curve may have much less area

than the parametric (Douglas) solution, obtained by mapping a disk.

Some of the most interesting other results have concerned minimal

graphs of arbitrary dimension and codimension. An m-dimensional
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graph in E^ is given by a set of functions xk = fk(xl, ... , xm), k = m + 1,

, n, or by a vector functionf(x), where x=(xl, ... , xm), f=(fm+1,

, f ). The corresponding submanifold is minimal in E^ if and only if

f satisfies the minimal surface equation

a2ft, gy ax, ax, =
0,

where (gy)=(gy)-1 andgy=8y+ax ax. The equation (2.8) is the special

case m = 2 of this equation. (See Osserman 19], p. 1099, and IV].)

One of the surprising results for minimal varieties of higher co-

dimension concerns the Dirichlet problem. Lawson and Osserman [1]

showed that one can prescribe a set of three quadratic polynomials on

the boundary of the unit ball in E4 which are not the boundary values of

any solution to the minimal surface system over the interior of the ball.

Thus, Theorem 7.2, which holds for dimension 2 and arbitrary co-

dimension, as well as for arbitrary dimension and codimension 1, fails

for dimension 4 and codimension 3. Another result in the same paper is

that there is a (specifically given) minimal cone of dimension 4 and

codimension 3, which represents a solution of the minimal-surface

system everywhere except at the origin, where it is continuous but has a

non-removable singularity.

A Bernstein-type theorem in arbitrary dimension and codimension

was proved by Hildebrandt, Jost, and Widman [1]: Letf(x) be a solution

of the minimal surface equation (') over all of Em. Suppose there exists

a number P. < 1/cosp(ir/2\), where p=min{m,n-m} and K=1 if
n = m + 1, K = 2 tf n > m + 1. If Idet(gy))1"2 13o everywhere, then each

componentf off is a linear function of x1, ... , xm.
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Thus, the only entire solutions come from affine subspaces, pro-

vided a suitable gradient bound holds. In the hypersurface case

n=m+1, the condition reduces to a uniform gradient bound on the

defining function, and the theorem reduces to that of Moser [1].

One problem in dealing with minimal submanifolds of high dimen-

sion and codimension is the paucity of examples. In that respect, recent

work of Harvey and Lawson [1,3] is of special interest. They show that a

certain class of closed differential forms can be used to single out

submanifolds of euclidean spaces that are area-minimizing in their

homology class. A special case of their construction is the family of

Kahler submanifolds of Cn, where Cn is identified with E2n. They give

other explicit examples, along with the partial differential equations

that must be satisfied by non-parametric submanifolds in each class. As

a special case they recover the minimal cone of Lawson and Osserman

referred to above, which Is thereby not only a solution of the minimal

surface equation, but absolutely area-minimizing with respect to its

boundary.

For absolutely area-minimizing submanifolds (and more generally,

integral currents), Almgren [4] has recently proved the long-sought

sharp isoperimetric inequality, with the same constant as obtained for

an open subset of euclidean space of the same dimension.

Concerning complete minimal submanifolds, there are some strik-

ing recent results of Anderson [3]. He shows that the main theorems

concerning the structure and the Gauss map for complete minimal

surfaces of finite total curvature, proved in Chapter 9 for surfaces in E3

and extended by Chern and Osserman [1] to surfaces in En, have

extensions to minimal submanifolds of arbitrary dimension and co-

dimension.
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IV. Minimal subvarieties of a Riemannian manifold

The move from euclidean to more general Riemannian spaces as the

ambient manifold represents undoubtedly the area of greatest activity in

recent years. One of the main differences is that it allows minimal

submanifolds to be compact. From the vast amount of work that has

been done, we select just a few results.

A. Existence theorems

Using a combination of the methods of geometric measure theory,

in particular as developed by Almgren [1], and those of Schoen, Simon,

and Yau [1], Pitts [I] has obtained the most striking general existence

theorems, including the following: let M be a compact n-dimensional

Riemannian manifold of class Ck, where 3 , n = 6 and 5 , k , -.

Then there exists a non-empty compact embedded minimal hypersur-

face of class Ck-1 in M. Using a somewhat different approach, Schoen

and Simon [1] were able to extend Pitts' results to n , 7, as well as to

prove an important regularity theorem for stable minimal hypersurfaces

in arbitrary dimension. In both papers stability plays a fundamental

role, as it does in the paper of Schoen, Simon, and Yau [ 11, much of

which applies to stable minimal hypersurfaces in an arbitrary Riemann-

ian manifold.

There are a number of more special but very Important existence

theorems. Among them we note the theorem of Lawson [6], that there

exist compact minimal surfaces of every genus in the 3-sphere, and a

kind of dual result of Sacks and Uhlenbeck [ 11, proving the existence of

generalized minimal surfaces of the type of the 2-sphere in a broad class

of Riemannian manifolds. A later paper of Sacks and Uhlenbeck [21

proves existence of minimal immersions of higher-genus compact sur-

faces. Results of a similar nature were also proved by Schoen and Yau
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[1], and applied to the study of three-dimensional manifolds (see V.A.B,

below).

B. Minimal surfaces in constant curvature manifolds

Minimal surfaces in spheres continue to be studied extensively. For

recent results and references to earlier ones, see the papers of Barbosa

[ 11 and Fischer-Colbrie [ 1 ]. There has also been some work on minimal

surfaces in hyperbolic space and in compact flat manifolds. For the

latter, see Meeks [1,2], Micallef [2], and Nagano and Smyth [1], and

further references there.

Among the topics covered, we may mention:

a) an analog of Theorems 8.1 and 8.2 stating that a compact

minimal submanifold in the sphere must be a lower-dimensional great

sphere if the normals omit a large enough set. The first theorem of that

type is in Simons [ 11; for the best results to date and for earlier

references see Fischer-Colbrie [1].

b) stability: again the first results are due to Simons 11], and then

later, Lawson and Simons [1]. We note in particular the fact that there

does not exist any stable compact minimal submanifold on a stan-

dard sphere. Extensions of the Barbosa-do Carmo Theorem 111 have

been made by a number of authors, in particular Barbosa and do Carmo

[2,3], Mori [1], and Hoffman and Osserman [2]. For a more detailed

survey of stability, see do Carmo [I]. In V, below, we give a number of

applications of stability results.

c) the "spherical Bernstein problem": Hsiang [4] has shown that for

n=4,5,6, there exist minimal hyperspheres embedded in S^, different

from the great hyperspheres.

C. Foliations with minimal leaves

Minimal surfaces have turned up in a somewhat surprising manner
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as leaves of a foliation. In particular, a number of recent papers treat

the question of characterizing those foliations such that there exists a

Riemannian metric for which the leaves of the given foliation are all

minimal submanifolds (see Rummler [ 1 ] , Sullivan [ 1 1 , Haeflinger [ 1 ], and

Harvey and Lawson [41).

V. Applications of minimal surfaces

In recent years the theory of minimal surfaces has been applied to

the solution of a number of important problems in other parts of

mathematics. We give here several examples.

A. Topology

In a series of papers, Meeks and Yau [ 1-51 have shown how adept

use of solutions to the Plateau problem in Riemannian manifolds can

lead to important consequences of a purely topological nature. The most

striking example was their part in a string of results which when

combined led to the solution of a long-standing problem in topology

known as the Smith Conjecture (see Meeks and Yau [51). Similar

methods are used to obtain other purely topological results in the theory

of 3-manifolds in a recent paper of Meeks, Simon, and Yau [ 11.

In a somewhat different direction, Schoen and Yau [1,2] use the

existence of certain area-minimizing surfaces to obtain topological

obstructions to the existence of metrics with positive scalar curvature

on a given manifold. The stability of the minimizing surface plays a key

role in the argument. More recently, Gromov and Lawson [11 have made

a somewhat different use of stable minimal surfaces to study existence

of metrics with various conditions on the scalar curvature. Those

results are in turn used to derive topological properties of stable mini-

mal hypersurfaces in manifolds with lower bounds on the scalar cur-

vature. The existence of stable minimal 2-spheres is used to derive a
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homotopy result by J. D. Moore 111. Other results of a related nature are

due to Lawson and Simons [1] and Aminov (1]. Still other applications of

minimal surfaces to topology have been given by Hass ]1,3], and

Nakauchi ]1].

B. Relativity

By much more delicate arguments, but fundamentally an extension

of those used in the papers referred to above, Schoen and Yau [3,4] were

able to prove a well-known conjecture in general relativity, the "positive

mass conjecture." Using results in these papers, they later obtained a

mathematical proof of the existence of a black hole (Schoen and

Yau (5]).

Other applications to relativity are given by Frankel and Galloway

C. Geometric inequalities

Let C be a Jordan curve in En and let B be a closed set such that B

and C are linked. (When n = 3, B would typically be another closed

curve.) Gehring posed the problem of showing that if the distance

between B and C is r, then the length L of C satisfies L % 2ar. Several

proofs of this inequality were given, including one (Osserman [13]) that

used the solution of Plateau's problem for C and the isoperimetric

inequality on the resulting minimal surface. It was pointed out in that

paper that the same argument would yield an analogous result in all

dimensions, provided one has a parametric solution to Plateau's prob-

lem and a sharp isoperimetric inequality for the resulting surface.

Neither of those results was available at the time, but they have since

been proved by White (1) and Almgren (4], respectively. In the meantime

a somewhat different proof of Gehring's inequality was obtained by

Bombieri and Simon [1], also using minimal surfaces, and a strengthen-
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Ing of the result was given by Gage ]1]. A generalization of Gehring's

inequality was subsequently obtained by Gromov [1], p. 106, as part of a

major new approach to whole classes of geometric inequalities. Solu-

tions to generalized Plateau problems are basic to Gromov's arguments.

VI. Harmonic maps

The class of harmonic mappings has proved to be of increasing

Importance in recent years. Harmonic maps have many ties to minimal

surfaces. First of all they represent a direct generalization, in that, if a

map f: M -* N is an isometric immersion of one Riemannian manifold

into another, thenf is harmonic if and only tff(M) is a minimal

submanifold of N. When M is two-dimensional, the same result holds if

f is assumed to be conformal, rather than an isometry. Slightly more

generally, one has the following (Hoffman and Osserman [2]): letf:

M -* N be a conformal map where the conformalfactor p is a smooth

non-negative function with p > 0 except on a set of measure zero.

Then if dim M = 2, f is harmonic if and only if f(M) is a generalized

minimal subman fold of N; i.e., f is an immersion almost everywhere

with mean curvature zero; f dim M > 2, then f is harmonic If and only

iff is homothetic (p is constant on each connected component of M)

andf(M) is a minimal submantfold of N.

Given a map f: M - N, we may assume that N is embedded

isometrically in some En. If dim M = 2, we may choose local isothermal

parameters u1, u2 on M, and thus get a representation off in the form

x(u1,u2), where x=(x1, ... , xn). We may form the functions cpk(t) _
n

(axk/aul)-i(axk/au2), as in (4.6), and we define cp(t) =k11(pk(t).

It turns out that iff is a harmonic map, then cp is a holomorphic

function. (See Chern and Goldberg [1], §5, Sacks and Uhlenbeck [1],

Prop. 1.5, and T. K. Milnor [1].) Furthermore, under change of isother-

mal parameters, cp behaves like the coefficient of a quadratic differential
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As a corollary, if M is the standard 2-sphere S2, it follows that

cp(s) = 0. But that means precisely that the mapf is conformal. Since

the image of a conformal harmonic map is a minimal surface, it follows

that the image of any harmonic map f: S2 --+ N is a minimal surface in

N (Chern and Goldberg [11, Prop. 5.1).

Another link between harmonic maps and minimal surfaces is the

fact that a map f: M -* N is harmonic if and only if the graph off is

minimal in M X N (Eells [1]).

We note also that if a foliation is defined by a Riemannian submer-

sion f: M -, N, then f is harmonic if and only if the leaves are minimal

in M. (Eells and Sampson [1]. For related results, see Kamber and

Tondeur [ 11.)

Finally, we note the basic theorem of Ruh and Vilms [1]: let M be a

submanifold of E^. Then the generalized Gauss map g of M into the

Grassmannian is a harmonic map if and only if M has parallel mean

curvature. In particular, g is harmonic if M is minimal.

For further basic facts and references on harmonic maps, see Eells

and Sampson [ 11 and Eells and Lemaire [ 11.

Among the important recent applications of harmonic maps that

have been made, we mention:

A. Hildebrandt, Jost, and Widman [1] proved a Liouville-type the-

orem for harmonic maps, and by applying it to the Gauss map via Ruh

and Vilms, they obtained the Bernstein-type theorem for arbitrary

dimension and codimension cited In III above.

B. Sacks and Uhlenbeck [1,2] have proved existence theorems for

harmonic maps together with arguments concerning conformal struc-

ture to get a conformal harmonic map which is thereby a minimal

surface.

C. Harmonic maps have recently been studied by physicists (see
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Misner [1] for a discussion of their relevance as models for physical

theories). In particular, a number of physicists have studied the ques-

tion of characterizing all harmonic maps of the standard 2-sphere S2

into complex projective space CPn (Din and Zakrzewski [1,2], Glaser and

Stora [1]). By virtue of the result mentioned above, that all such maps

are conformal, the question is equivalent to that of finding all minimal

2-spheres in CPn. Inspired in part by the work of the physicists, Eells

and Wood [1] gave a complete classification of harmonic maps of a class

of compact Riemann surfaces, including the sphere, into CPn. A dif-

ferent approach to the same problem was given by Chern and

Wolfson [1].
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area, 6

first variation, 22
second variation, 146

atlas, 43
Bernstein's Theorem, 34, 38, 69,

92, 107, 138, 147, 149,
155-158, 165

black hole, 163
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branch points, 47, 48
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Cohn-Vossen Theorem, 86
complete Riemannian manifold,
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map, 43
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curvature vector, 11
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second, 12, 75, 141

Gauss curvature, 75
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77, 87-89, 119-127

generalized minimal surface, 47
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harmonic maps, 154, 164-166
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parabolic (Riemann surface), 52
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reflection principle, 54
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relativity, 163
representation theorem

for constant mean curvature,
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Riemannian metric, 49
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