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Abstract

In many engineering and scientific applications, the need arises to perform differ-

ential calculations on manifolds. If such calculations involve imprecise data, methods

for computing with such data must be determined. Definitions are given for mem-

berships on manifolds induced by differentiation along vector fields, and by flows of

vector fields with uncertain parameters. Examples are presented which illustrate the

concepts.

Introduction

In many scientific and engineering applications, the need arises to perform calculations on

manifolds [1, 2]. Many dynamical systems of science and engineering are most naturally

framed and solved in such an environment. Revolute joints in mechanical systems, for
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example, naturally lead one to make calculations on tori. Performing calculations using

simple real variables is not sufficient.

Given that calculations representing such systems must involve manifold calculations,

it might be desirable to as well consider imprecision in the variables of the calculations.

For example, when a mechanical designer is faced with designing a robotic manipulator,

initially the precise link lengths or other variables to choose may not be precisely known.

The designer may only be able to state subjectively what the values are approximately. Yet,

given even these approximate specifications, the designer must calculate performance to be

able to choose an actual configuration to use.

A natural approach to calculating the approximate performance given the approxi-

mate configurations would be to invoke the mathematics of fuzzy sets [3, 17], since the

approximate nature of the problem is due to the imprecision in knowledge about which

configuration will be used. Examples of such an approach in engineering can be found

in [12, 13, 14, 15]. In attempting to do such calculations over manifolds with associated

maps, however, one finds the existing literature lacking in definitions on how to do so.

Dubois and Prade [4] consider differentiation and integration of fuzzy numbers; that is,

of variables whose domain is the simple manifoldIR. Seikkala [11], Kaleva [6], Goetschel

and Voxman [5], and Puri and Ralescu [10] perform the operations of differentiation and

integration on a Banach space of fuzzy sets satisfying certain hypotheses. This paper, al-

ternatively, considers the membership induced through mappings on the manifold itself. In

some early work, Negoit¸ă and Ralescu [8] define induced membership for iterating a set

map. Such work can be seen as a generalization of the o.d.e. work in this paper, but the

generality to arbitrary sets limits its practicality.

In this paper some of the basic notions of fuzzy sets are developed for cases when the

set has the structure of a differentiable manifold. Specifically, the membership induced by

the Lie derivative of a function along a vector field, and the membership induced by the

flow of a vector field, possibly depending on imprecise parameters, is defined. Thus the

results of this paper are the definitions themselves, and their applications.

In Section 1 the basic notion of induced membership is discussed and some examples

are given. In Section 2 the induced membership is defined for the derivative of a function
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along a given vector field. The usual notion of differentiation of functions onIRn with re-

spect to the natural coordinates can be thought of as a specific example of this construction.

Illustrative examples are given. Section 3 presents ideas of how membership may be prop-

agated along the integral curves of a vector field. Two basic mechanisms which give rise

to induced membership are examined. The first case is that where an initial membership

on the manifold evolves as a function of time along the integral curves of the vector field.

In the second case, the vector field is allowed to depend on parameters which have some

imprecision associated with them. Both of these cases are examples of a more general con-

struction which is a combination of both problems. Examples are presented for each case.

Finally, Section 4 discusses an industrial example, the design of a mechanical accelerometer

switch.

1 Induced Membership

The discussion in this section, and in the following sections, will be presented in the context

of differentiable manifolds (we will always work in theC∞ category). However, it should

be clear that the concepts in this section are valid on the level of sets.

Let M be a smooth manifold. Amembership function, or simply amembership, onM

is a mapµ : M → [0, 1]. No smoothness requirements are placed onµ. Indeed, in the

examples presented, none of the membership functions are smooth, and some of them are

not even continuous.

In the particular case ofM = IRN , eachx ∈ IRN can be thought of as a vectorx =

(x1, . . . , xN ), where perhaps there are fuzzy numbers on each coordinate with membership

functionsµi(xi), in which case a membership function forx ∈ IRN could be constructed by

µ(x) = min{µ1(x1), . . . , µN (xN )}. But for general engineering and scientific purposes,

the fuzzy number concept is insufficient: there is no general way to define fuzzy numbers

on manifolds.

If N is another manifold and iff : M → N is a smooth map, we have the following

definition.
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1.1 Definition: Themembership induced by fis the membership onN given by

µf : N → [0, 1]

n 7→ sup{µ(x) | x ∈ M, f(x) = n}

If f−1(n) = ∅, then takeµf (n) = 0.

In many problems,N = IR, so that memberships are induced on the values of a real-valued

function. Observe that this definition is nothing more than a restatement of the standard

notion of induced membership [3, 17], as originally presented by Zadeh [16], to manifolds.

The examples which will be presented in this paper are meant to be illustrative. Given

an application, it should be straightforward, in principle, to proceed using the methods

outlined here.

1.2 Example: Let M = IR be equipped with the membership function whose graph is

shown in Figure 1. This example is thus illustrative of a fuzzy number. Definef1 : M → IR

by f1(x) = x3−x. Figure 2 shows the membership induced onIR by f1. This illustrates the

membership on values of the functionf1 given the membership onx as shown in Figure 1.

This example will be returned to in Section 2.

1.3 Example: Let M = S2 = {~x ∈ IR3 | ||~x|| = 1}. If (x, y, z) are the standard

coordinates onIR3 then define a membership function onM by µ(x, y, z) = y2 + z2. Thus

µ = 1 on the equatorx = 0, andµ = 0 at the poles(1, 0, 0) and(−1, 0, 0). Note this cannot

be represented with the usual notions of fuzzy numbers. Letf2 be the function onM given

by f2(x, y, z) = x2 + y2. The induced membership in this case is easy to compute. The

range off2 is the intervalII = [0, 1]. For anyξ ∈ II, µf2(ξ) = 1 sincef−1
2 (ξ) will contain at

least one point(x, y, z) on M wherex = 0. At this pointµ(x, y, z) = 1, and so when the

supremum is computed,1 will be the result. Thusµf2(ξ) = 1 whenξ ∈ II andµf2(ξ) = 0

otherwise. This example will also receive more attention in Section 2.

2 Membership Induced by Lie Differentiation

In this section a definition is given for the membership induced by the derivative of a func-

tion along the integral curves of a vector field. The set of real-valued (C∞, by hypothesis)
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Figure 1: Membership onIR for x.

Figure 2: Membership induced onIR by f1.
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functions on a manifoldM will be denoted byF(M), and the set of vector fields onM

will be denoted byX (M).

Let X ∈ X (M) andf ∈ F(M). The Lie derivative(see Lang [7]) off along X

will be written LXf . If (x1, . . . , xn) are coordinates in some chart forM , and if, in

this chart, the vector fieldX is represented by(X1(x1, . . . , xn), . . . ,Xn(x1, . . . , xn)) (i.e.,

X = Xi∂/∂xi, with summation over repeated indices), then

LXf = Xi ∂f

∂xi
(2.1)

with summation over repeated indices. Thus, for everyX ∈ X (M), the Lie derivative

assigns a functionLXf to everyf ∈ F(M). In fact, as can easily be seen from (2.1),LX

is a derivation on theIR-algebraF(M). Thus memberships can be computed forLXf in

the manner given in Definition 1.1. This leads to the following definition.

2.1 Definition: Themembership induced by f along Xis the membership induced onIR by

LXf . This will be denoted by

µX,f (η) = sup{µ(x) | x ∈ M, LXf(x) = η}

whereη ∈ IR. If (LXf)−1(η) = ∅, takeµX,f (η) = 0.

As a special case of this definition, letM = IRn, and let(x1, . . . , xn) be the standard

coordinates forM . Then there aren distinguished vector fields onM given byXi = ∂/∂xi,

for i = 1, . . . , n. For a functionf : IRn → IR, µXi,f will give the membership onIR

induced by the function∂f/∂xi on IRn. In particular, ifn = 1, then Definition 2.1 reduces

to the definition of differentiation onIR as presented in [3] by Dubois and Prade.

Thus membership induced through differentiation is now made clear for more general

cases than simple real numbers. Recall that the purpose in doing so was to observe the

membership on the performance variables represented by the functions and their deriva-

tives. If the resulting memberships are observed independently, misleading results might be

inferred. This is because in order to specify the derivative, one must also specify the point

at which it is evaluated. When observing the membership for values of the derivative, there

is an associated value of the function itself. Thus one must consider them simultaneously.
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Figure 3: Membership induced onIR byLX1f1.

ξ

µ∼
X,f

Figure 4: Membership induced onIR2 by f1 andLX1f1.
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We now develop this formally. Given a functionf and a vector fieldX on a manifold

M , a membership onIR2 can be defined which represents the membership induced byf

along with the membership induced byf alongX. More precisely, a membership is induced

on IR2 as follows.

µ̃X,f : IR2 → [0, 1]

(ξ, η) 7→ sup{µ(x) | x ∈ M, f(x) = ξ, LXf(x) = η}
(2.2)

As usual, iff−1(ξ) ∩ LXf−1(η) = ∅, thenµ̃X,f (ξ, η) = 0. This is an example of Defini-

tion 1.1 whereN = IR2.

To illustrate the use of (2.2), the examples of Section 1 are treated again with the addi-

tion of differentiation along specified vector fields.

2.2 Example:Let M = IR and definef1 as in Example 1.2. As a membership function on

M , take the function whose graph is depicted in Figure 1. LetX1 = ∂/∂x wherex is the

standard coordinate forIR. A quick calculation givesLX1f1 = 3x2 − 1. The membership

induced onIR byLX1f1 is shown in Figure 3. However, the memberships onIR by bothf1

andLX1f1 cannot each be considered independently, for example, when selecting values

for f1 andLX1f1. Figure 4 shows the membership onIR2 induced byf1 andLX1f1 as

given by (2.2). Observe that if the curve representing non-zero membership is projected

onto the(ξ, µ̃X,f )-plane, the membership induced byf as shown in Figure 2 results, and if

the same curve is projected onto the(η, µ̃X,f )-plane, the membership induced byf along

X results, as shown in Figure 3. This observation is true in general, as can easily be seen

by checking the definition.

2.3 Example: Let M , µ, andf2 be as in Example 1.3. Define a vector field onIR3 by

X2 = y∂/∂x− x∂/∂y. ThusX2 generates a uniform rotation about thez-axis inIR3. It is

easily verified thatX2 leavesM invariant, and so defines a vector field onM by restriction,

which we will also denote byX2. The integral curves ofX2 onM are shown in Figure 5. In

Figure 6 the membership onIR2 is plotted as computed by (2.2) given the membershipµ on

M . Observe that the projection of the membership curve onto the(η, µ̃X,f )-plane consists

of a single point. This reflects the fact thatf2 is constant alongX2 (i.e., LX2f2 = 0).

2.4 Example: Let M , µ, andX2 be the same as in Example 2.3. Define a functionf3 on

M by f3(x, y, z) = y2 + z2. The membership onIR2 as computed by (2.2) is shown in
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Figure 5: Integral curves forX2 onS2.

ξ
η

µ∼
X,f

Figure 6: Membership induced onIR2 by f2 andLX2f2.
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η

ξ

µ
X,f

Figure 7: Membership induced onIR2 by f3 andLX2f3.

Figure 7. A straightforward calculation givesLX2f3 = −2xy. Observe thatf3, unlike f2,

is not constant along integral curves ofX2. This is verified by the fact that the projection of

the membership curve in Figure 7 onto the(η, µ̃X,f )-plane is nontrivial. Also note that the

projection of the membership curve onto the(ξ, µ̃X,f )-plane yields a triangular membership

function increasing linearly from0 to 1. This reflects the fact thatf3 has been chosen to be

the same as the membershipµ.

3 Membership Induced by Flows of Vector Fields

In this section, ordinary differential equations (o.d.e.’s) will be presented with one, or both,

of the following effects of imprecision.

1. How membership on the variables gets modified as the variables evolve according to

the flow of the o.d.e., and

2. the existence of imprecision in parameters in the o.d.e.

10



A means of computing memberships induced by the flow in these instances is presented.

Cases1) and 2) are examples of a more general problem which is formulated first. In

keeping with the spirit of the first two sections, o.d.e.’s are formulated in the language of

vector fields on a manifold.

As in the previous sections,M will be a smooth manifold. Since vector fields may

depend on parameters, a manifoldP is needed which will be theparameter space. Let

πM : M × P → M be projection onto the first factor. Thetangent bundleof M will be

denoted byTM andτM : TM → M will denote the tangent bundle projection. As in

Lang [7], thepull-back bundleπMP : π∗MTM → M × P can be formed, where

π∗MTM = {(v, (x, p)) ∈ TM × (M × P ) | τM (v) = πM (x, p)}

and

πMP (v, (x, p)) = (x, p)

The manifoldπ∗MTM is to be regarded as a vector bundle overM × P . The fibre over a

point (x, p) ∈ M × P is π−1
MP (x, p) = TxM . Now we can make a definition.

3.1 Definition: A vector field with parameterson M is a smooth sectionX : M × P →
π∗MTM of π∗MTM such that for everyp ∈ P , Xp : M → TM : x 7→ X(x, p) is a vector

field onM .

If Xp is the vector field onM corresponding to the parameterp ∈ P , its flow will be the

one-parameter family of diffeomorphisms ofM which will be denoted byF p
t : M → M .

All vector fields considered here will be complete.

Now suppose a membership,µ, is given onM × P . For eacht ∈ IR, a membership on

M induced by a vector field with parameters can be defined as follows.

µt : M → [0, 1]

x 7→ sup{µ(x′, p) | (x′, p) ∈ M × P, F p
t (x′) = x}

(3.1)

If
⋃

p∈P F p
−t(x) = ∅, then takeµt(x) = 0. Negoiţ̆a and Ralescu [8] discuss a similar

notion in the context of iterating a set mapf : X → X which depends on imprecise pa-

rameters. Nov`ak [9] extends these ideas to include cases where imprecise initial conditions

are mapped under the set mappingf . This situation is included in the definition (3.1).

The cases1) and2) can be thought of as special cases of (3.1) as follows.
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1. Crisp parameters:In this case, an initial membership function,µM , is given onM .

Since there is no dependence on parameters,P is taken to be the manifold consisting

of a single pointp so that we have the single vector fieldXp on M with flow F p
t .

Now define a membershipµ on M × P by µ(x, p) = µM (x). Applying (3.1) will

determine how the membershipµM will evolve under the flow ofXp. See 3.1 below.

2. Imprecise parameters:In this case, a pointx0 ∈ M is fixed and a membership onP

gives rise to an induced membership onM asx0 gets mapped under the flow of the

vector field for the various parameter values. SupposeµP is some given membership

on P . A membership can be defined onM × P by µ(x, p) = µP (p) if x = x0 and

µ(x, p) = 0 otherwise. Computing the induced membership given by (3.1) will give

the desired membership onM for eacht. See 3.2 below.

3.1 Example: In this example, the first case is illustrated. LetM = IR2 and let(x, y)

be the standard coordinates forM . Define a vector fieldX4 = −x∂/∂x + y∂/∂y on

M . Such a vector field is representative of a two dimensional ideal fluid flow against a

wall perpendicular to the flow. The flow of this vector field is given by the one-parameter

family of diffeomorphismsF 4
t : M → M : (x, y) 7→ (xe−t, yet). Figure 8 shows how

two particular membership functions onM starting att0 andt′0 are mapped by the flow to

memberships onM at timest1, t2, andt′1, t′2, respectively. This is a very simple example.

More complicated flows will give rise to more distorted induced memberships.

3.2 Example: In this example, the second case is illustrated. LetM = IR with x the

standard coordinate onM . As a vector field onM takeX5 = ax∂/∂x. Such a vector field

represents the growth of an exponential process. Herea ∈ IR is a parameter and has the

same membership function as was used forx in Example 1.2. See Figure 1. The flow ofX5

is given byF 5
t : IR → IR : x 7→ xeat. In Figure 9 the membershipµt on M is computed

for two times,t1 andt2. The initial pointx0 ∈ IR has been chosen to be positive. Observe

that att = 0, the induced membership onM has support{x0}.
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Figure 9: Membership induced onIR by the flow ofX5 with membership ona.
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Figure 10: Accelerometer design.

4 Engineering Example: Design of an Accelerometer Switch

As an industrial example of using induced membership through imprecise o.d.e’s, consider

the design of a uni-directional accelerometer, which indicates accelerations above a thresh-

old with a switch closure. It can be modeled as a simple mass spring system, as shown

in Figure 10. Under specified accelerations, the accelerometer mass must contact a switch

within specified time durations. Imprecision in this model reflects that, at the start of a

design process, the designer does not know what parameter values are desired to be used.

Typically, though, the designer may be able to state that certain values of a design parameter

will not work, and that some may work better than others. Furthermore, the designer may

adjust values of the design parameters to better satisfy the customer, based on the perfor-

mance evaluations. Thus there is informal interpretation among the parameter values.

In the accelerometer design (shown in Figure 10) there is a massm attached to a spring

k attached to the ground. The ground is accelerated. With sufficient acceleration, the mass

must displace a specified distance to make contact with a switch. There is also a backstop

placed against the mass. Refer to Figure 11.

To determine the time to actuate the switch, the differential equation of motion of the

mass must be solved. It is:

m(
d2x

dt2
+ a) + kx = 0 (4.2)
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Figure 11: Accelerometer model.

with x(0) = x0 andẋ(0) = 0.

Imprecision exists in the model, in that the designer does not initially know what values

of massm, spring constantk, and backstop positionx0 should be used. Subjectively, how-

ever, the designer may feel appropriate values are as specified by the membership functions

shown in Figure 12.

The manifold in this case isM = IR, and the additional parameter space isP = IR2,

with p = (m,k) ∈ P . A membership functionµ(x0,m, k) onM×P = IR3 can be defined

as

µ(x0,m, k) = min{µ(m), µ(k), µ(x0)} (4.3)

With this definition, (4.2) becomes an imprecise o.d.e. with imprecise starting conditions

and imprecise parameters. Applying (3.1), the induced preferenceµt, where

µt(x) = sup{µ(x0,m, k) | (x0,m, k) ∈ M × P,F p
t (x0) = x}, (4.4)

can be graphed on the phase space(x, ẋ) for different timest, as shown in Figure 13. The

initial imprecision ofx0, as shown att = 0, is spread out across the phase space as time

elapses, due to the imprecision in the o.d.e. from the imprecision ofm andk. Thus, the

designer has much freedom in attaining values of(x, ẋ) at any time to actuationt.

15



Figure 12:m, k, andx0 preferences.
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Figure 13: Phase space of the accelerometer.

5 Conclusions and Future Work

Methods have been presented for propagating membership on manifolds through the oper-

ation of Lie differentiation, and by the flow of vector fields which may or may not depend

on imprecise parameters.

The formula for induced membership onIR2 given by (2.2) seems to merit further ex-

ploration. In Example 2.3 the membership for the derivative of a function which is constant

along a vector field was demonstrated to have support equal to{0}. It would be interesting

to see if the topology of the manifold has any effect on the possible distribution of member-

ship onIR2. For example, is it true that a compact manifold will give rise to a compactly

supported membership? Figure 7 seems to suggest that this may indeed be the case.

Interpretations for memberships induced by the flows of vector fields seem to be more

readily made. Figures 8 and 9 agree with what is expected intuitively. Namely, in Figure 8

the initial membership onIR2 is simply transported along the integral curves of the vec-

tor field, and in Figure 9, an initial membership concentrated at the pointx0 is spread out

overIR as time elapses. However, even for examples of this type, some rather complicated

behaviour can emerge. For example, if the chosen range of parameters includes abifurca-

tion value, the qualitative behaviour of the induced membership could change drastically
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depending on the parameter.
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