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Flexible aircraft model identification for control law design
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Abstract

The large commercial aircraft, developed today by manufacturers, are characterized by a high flexibility which results in a stronger
interaction between the flight control system and the structural modes. The active control of the first elastic modes is needed to meet the
performance requirements. This paper proposes an identification methodology of a flexible aircraft from flight test data, which is appropriate
for control law design with modern control techniques (LQG, H2/H∞). In a first step a procedure based on Eigensystem Realization
Algorithm (ERA) is used to determine an initial aeroelastic model which is subsequently combined with a linearized rigid-body model
and optimized by an output-error minimization method. Two application examples show the good performances of the approach.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Les avions commerciaux de grande taille, développés aujourd’hui par les constructeurs, se caractérisent par une plus grande souplesse et
donc une interaction accrue entre le système de commandes de vol et les modes structuraux. Il devient nécessaire de contrôler activement
les premiers modes souples pour atteindre les performances recherchées. Ce papier propose une méthodologie d’identification d’un modèle
d’avion souple à partir de données d’essai en vol, adaptée à la conception de lois de pilotage par les techniques de commande modernes
(LQG, H2/H∞). La procédure se déroule en deux étapes : un modèle aéroélastique est tout d’abord obtenu par une approche fondée sur
l’algorithme ERA ; ce modèle est ensuite combiné avec un modèle linéarisé de la dynamique rigide, l’ensemble étant finalement optimisé par
minimisation des erreurs de sortie. Deux applications à des données simulées et réelles illustrent les performances de la démarche.
 2002 Éditions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction

The forecast passenger growth over the next twenty
years is leading the major aircraft manufacturers to develop
high-capacity long range aircraft. These new aircraft will
exhibit a higher flexibility due to a global decrease of
modal frequencies, which results in a stronger interaction
between the flight control system and the aircraft’s structural
modes. A control law design based only on the rigid
modes is no more sufficient to meet the performances
requirements. Ensuring appropriate stability margins and
providing satisfactory ride quality for passengers needs to
actively control the first aeroelastic modes [7].

Accurate multivariable state-space models are therefore
required to support control laws synthesis using modern
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control techniques (LQR/LQG, H2/H∞). These models
must represent with high fidelity the relationships between
the surface control deflections and the output signals used
by the controller, at both low and high frequency. If the
preliminary knowledge may provide theoretical models
which are appropriate for a first design iteration of control
laws, identification of the flexible aircraft model from in-
flight data is required for the tuning of the control laws
performances.

The identification techniques applied to the rigid aircraft
aim mainly to the estimation of aerodynamic derivatives
from static and dynamic flight tests. Among the available
parameter estimation methods, the output error method is
most widely used [4,8,9]. If time-domain algorithms prevail,
the frequency-domain approach [6] is very appealing for
linear systems due to a significant reduction of the number
of parameters to be estimated and a strong data compression
by working in a limited frequency range.

1270-9638/02/$ – see front matter 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
PII: S1270-9638(02 )01197-5



592 A. Bucharles, P. Vacher / Aerospace Science and Technology 6 (2002) 591–598

In the field of structural dynamics, the goal is very of-
ten to estimate the modal parameters (frequencies, damp-
ing ratios, modes shapes) like in the flutter flight test analy-
sis. Most techniques work in the frequency domain and
aim to fit “measured” frequency response data with a ra-
tional transfer function model [12]. However, some iden-
tification techniques have been proposed for identifying
state-space models, to be used for controller design. In
his book, Juang [5] develops the Eigensystem Realiza-
tion Algorithm (ERA), based on system impulse response
(i.e. Markov parameters). Bayard in [1] proposes a two-
step state-space frequency domain algorithm which com-
bines curve fitting of frequency response data and state-
space realization. In [10] a combined method, based on a
realization algorithm followed by standard prediction er-
ror method, is studied for estimating the structural modes
characteristics of a commercial aircraft. For these three
cases a discrete-time multivariable state-space model is ob-
tained. Najmabadi in [11] presents an identification process
of a continuous-time model from in-flight control sur-
face frequency sweep for a flexible aircraft. This single-
input multi-output model is intended to be used to de-
velop a compensator for active control of aircraft structural
modes.

In this paper we propose a general methodology for iden-
tifying a multivariable continuous-time state-space model
for a flexible aircraft, including rigid-body and structural dy-
namics, which is appropriate for control law synthesis using
modern techniques. This methodology combines the ERA
algorithm for getting an initial aeroelastic model and an
output-error minimization. It does not assume specific flight
tests. It has been developped in the research project COVAS
(COVAS = COntrôle du Vol de l’Avion Souple), led in co-
operation with AIRBUS France. The paper is organized as
follows. Section 2 introduces the identification methodology
which is described in more details in Sections 3 and 4. The
performances are illustrated in Section 5 on simulated and
in-flight test data. The paper closes with some concluding
remarks in Section 6.

2. The identification methodology

Active control laws design for a flexible aircraft with
modern techniques requires a linear state-space model in-
cluding rigid-body and structural dynamics. In an initial step
a simplified model can be extracted from a general prelim-
inary modelization based on theoretical computations and
wind-tunnel/structural tests data. The linearization of the
flight mechanics equations at the flight condition provides
the rigid-body model while the Roger’s or Karpel’s approx-
imations of the generalized forces may be used to derive
a linear state-space representation of the structural behav-
iour.

To retain a similar model structure in the identification
process is very tempting for several reasons:

• to keep the physical meaning of the model coefficients;
• to be able to directly apply parametric optimization

techniques;
• to make easier the updating of the control law using the

identified model.

If such an approach does not raise any problem for the
rigid-body model, it does not appear appropriate for the
aeroelastic part:

• Roger’s and Karpel’s approximations lead to models
with many coefficients;

• all modal characteristics cannot be estimated from a
limited number of measurements and it is not possible
to know a priori which modes are identifiable and which
are not;

• a mode may be absent from the initial model.

Therefore we have developed a two-step identification
procedure. In the first step, a multivariable representation
of the structural dynamics including only modes which
are visible from the measurements, is determined from
specific flight tests, typically frequency sweeps, thanks to the
ERA algorithm. Then this model is transformed into a real
block-diagonal form, which provides a minimal parametric
representation. In the second step, a state-space model of
the flexible aircraft is obtained by bringing together the
structural model and the rigid-body linearized model, both in
state-space form. The coupling is performed just by adding
the outputs of the two models. This new model is taken as
initialization for the minimization of an output error criterion
by the Gauss–Newton method in the frequency domain. The
identification is based on both usual rigid-body excitations
and excitations dedicated to flexible modes. If necessary a
preliminary estimation of the rigid-body model coefficients
may be performed by a classical output error approach. The
whole identification process is shown in Fig. 1.

Fig. 1. General chart of the identification procedure.
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Fig. 2. ERA identification process.

3. Aeroelastic model identification by ERA approach

The ERA algorithm is the core of the aeroelastic model
identification process, depicted in Fig. 2. We will subse-
quently give a description of the algorithm and review the
different operations which are necessary before ERA to put
the input-output measurements into an adequate form and
afterwards to cancel the estimated modes which are not sig-
nificant.

3.1. The ERA algorithm

This algorithm, introduced in the eighties by Juang [5]
and which can be seen like an extension of the famous
Ho–Kalman algorithm to noisy measurement data, is based
on the availability of system Markov parameters and takes
advantage of the excellent numerical properties of the
singular value decomposition (SVD).

Consider the linear time-invariant system described by{
xk+1 = Axk + Buk,

yk = Cxk + Duk

and assumen the system order. The Markov parameters are
given by

hk =
{

0 k < 0,
D k = 0,
CAk−1B k > 0.

If we define the (α,β) Hankel matrix of the system by

Hk;α,β =


hk+1 hk+2 . . . hk+β

hk+2 hk+3 . . . hk+β+1
...

...
. . .

...

hk+α hk+α+1 . . . hk+α+β−1



it is straightforward to verify thatHk;α,β can be factored as

Hk;α,β =OαA
kCβ

where

Oα =


C

CA
...

CAα−1


and

Cβ = [
B AB . . . Aβ−1B

]
are respectively the extended observability and controllabil-
ity matrices of the system. Note in particular that

H0;α,β =OαCβ.
If the system is controllable and observable,Oα andCβ and
henceH0;α,β have rankn, equal to the system order.

Conversely, assume now that̂H0;α,β is an estimated
Hankel matrix whereα and β are chosen to exceed the
largest expected system order. From this starting point the
ERA algorithm proceeds in two steps:

• selection of the system order;
• estimation of the system matriceŝA, B̂, Ĉ, D̂.

The key feature is the SVD factorization of̂H0;α,β
Ĥ0;α,β = USV T

whereU andV are orthogonal matrices and the diagonal
matrixS contains the singular values in non-increasing order
on the diagonal. In the case of noisy impulse response
measurements, thêH0;α,β matrix is full rank and the user
must decide how many singular values can be neglected,
which determines the system ordern. Estimates of extended
controllability and observability matrices are given by

Ôα = UnS
1/2
n and Ĉβ = S

1/2
n V T

n ,

whereUn andVn are submatrices formed from the firstn

columns ofU andV and the diagonal matrixSn contains
then principal singular values.

Then the system matrices are derived from̂Oα andĈβ

• B̂ andĈ are given by the firstm columns ofĈβ and the
first p rows of Ôα respectively, wherem andp denote
the number of inputs and outputs;

• Â is obtained using the shifted-block Hankel matrix
Ĥ1;α,β by solving

Ĥ1;α,β = ÔαAĈβ;
• D̂ is taken equal tôh0.

Besides singular values, others indicators (modal ampli-
tude coherence, mode singular value) have been developped
by Juang to evaluate the validity of the models provided by
the ERA algorithm and especially give information about
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the accuracy of the estimated modes. They help the opera-
tor to compare several models of different orders and decide
the best order. The modal amplitude coherence, based on the
comparison of the pulse responses of “measured” and iden-
tified modes, has been extended in order to take into account
the behaviour with respect to inputs as well through the con-
trollability matrices. For this new indicator, which ranges
from 0 to 1, a value close to 1 indicates that the estimated
mode is reliable; on the other hand, the mode is considered to
be a noise mode if the indicator value is low. The modal am-
plitude coherence indicators may be stuck at each mode for
each tested order and plotted on a so-called stabilization dia-
gram. This diagram visualizes the frequency location of the
modes versus model order as well as their accuracy through
vertical bars whose length is equal to the corresponding indi-
cator value. When the model order increases, the estimated
frequencies stabilize with higher indicators. This allows the
operator to quickly assess the effect of changing the model
order and to decide the optimal order.

Applying the ERA algorithm requires to selectα and
β which determine the size of the Hankel matrix. Using a
simplified model of a flexible aircraft we have found that,
for a given number of pulse response measurements data, a
square Hankel matrix was preferable for reducing the noise
influence. This observation agrees with the result in [2].
Thereforeα is chosen so thatpα ≈ mβ under the constraint
α + β = K, with K the impulse response length.

3.2. Markov parameter estimation

The responsey of a linear causal discrete-time system
to an arbitrary inputu can be expressed as the discrete
convolution

yk =
k∑

i=0

hk uk−i

whereh denote the system Markov parameters. Conversely,
the firstK Markov parameters can be determined from input
and output measurements by solving

[y0 . . . yK−1 ]

= [h0 . . . hK−1 ]


u0 u1 . . . uK−1
0 u0 . . . uK−2
...

...
. . .

...

0 0 . . . u0


or

Y = HU.

By assuming that the number of measurements is higher than
the impulse response length, Markov parameter estimates
are obtained as the least squares solution of an overdeter-
mined system. However the result is not very satisfactory in
noisy situation. It can be strongly improved by use of the
singular value decomposition: all singular values of the in-
put matrixU , smaller than a selected threshold, are set to
zero before computing the pseudo-inverse ofU .

3.3. Model reduction

A characteristic of the ERA algorithm is to yield extrane-
ous modes, not present in the system to be identified. These
modes, which seem sensitive to how the Hankel matrix is
built, may have significant coherence indicators and well sta-
bilized frequencies. So they are very difficult to recognize
from physical modes and cannot be suppressed just by look-
ing at the stabilization diagram. However they must be can-
celed not to disturb the further identification procedure. We
have defined an elimination procedure based on the analy-
sis of the contributions of each mode in the responses of the
identified model to the flight test inputs.

4. Flexible aircraft identification by output error
minimization

Once an initial aeroelastic model has been obtained, it
must be converted into a suitable continuous-time represen-
tation and combined with the linearized rigid-body model to
feed a parametric output-error minimization procedure. In
this section we will briefly describe the optimization method
by showing the advantage to work in the frequency-domain
and explicit the parametrization of the aeroelastic model.

4.1. Output error minimization in frequency domain

The system is assumed to be described by the equations{
ẋ(t) = Ax(t)+ Bu(t),

y(t) = Cx(t)+ Du(t)

where the matricesA,B,C,D contain the unknown para-
metersΘ. In the time-domain the estimates of parameter
vectorΘ are obtained by minimizing the cost function

J (θ) = 1

2

N∑
n=1

ε(n, θ)TR−1ε(n, θ)

with R the measurement noise covariance matrix andε the
error vector between the measurement and the model output.
Starting from suitable initial values of the parameter vector,
new estimates are obtained iteratively using a non-linear
optimization algorithm like the Gauss–Newton method.

For linear systems the same problem may be solved in the
frequency-domain. Applying the Fourier transformation, the
system equations get transformed into{
(ω)x(ω)= Ax(ω)+ Bu(ω),

y(ω) = Cx(ω)+ Du(ω).

Using the Parseval’s formula, the cost function to be
minimized becomes

Jfreq(θ) = 1

2

L∑
l=1

ε(ωl, θ)
TS−1ε(ωl, θ)

with S−1 = (f
(t

R−1; (f and (t denote respectively the
frequency resolution and the sampling period.
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A significant advantage of identifying parametric models
in the frequency rather in the time-domain is the capability
to work in a restricted frequency-range, which results in fil-
tering the high-frequency measurement noise and provides
consistent reduction of the data amount to be processed. Fur-
thermore, by dropping the zero-frequency in the cost func-
tion, bias parameters or linearization conditions need not to
be accounted for in the optimization process, significantly
reducing the number of parameters to be estimated. Finally
the method is suitable for unstable or near-unstable sys-
tems because no numerical integration is involved in the fre-
quency domain: there is no risk of divergence.

4.2. Aeroelastic model parametrization

The ERA identification process provides a multivariable
discrete-time state-space model in balanced form. First this
model is transformed into a continuous one using a zero-
order hold. Then it is converted to a real modal block-
diagonal form with the system matrixA

A =


A1 0

A2
. . .

0 An/2


with

Ai =
[ 
(λi) �(λi)

−�(λi) 
(λi)

]
.


(λi) and �(λi) are the real and imaginary parts of the
eigenvalueλi . The other system matrices are full.

This representation is not suitable for output error mini-
mization owing to a too high number of parameters: all state
variables can be scaled without affecting the input-output re-
lations [3]. Consequentlyn conditions must be imposed on
theB or C matrices. We have chosen to freeze the first col-
umn ofB. So the parameters to be estimated include the real
and imaginary parts of the eigenvalues and all coefficients
of the system matricesB, C andD except the first column
of B.

5. Applications

Two applications of the identification methodology to
simulated and in-flight test data from a large transport
aircraft are presented now. The results have been obtained
using the package HARISSA, developped at ONERA.

5.1. Simulated test data

In this first example we use data from a general air-
craft motion simulator, including a 6 dof flight mechanics
modelization and a structural dynamics representation in a
wide frequency range. We are interested only in the lateral-
directional motion. Five pseudo flight tests are simulated

through excitation of ailerons and rudder: two of them are
dedicated to the aeroelastic model identification (frequency
sweeps on aileron and rudder) and the three others (aileron
and rudder pulse, rudder doublet) excite rather the rigid-
body dynamics. The output signals consist of the lateral ac-
celeration measured at front, mid and rear fuselage and roll
and yaw rates at front and rear fuselage.

First the input and output signals for all tests are deci-
mated to a sample rate of 20 Hz, which is justified by the
control of the only first flexible modes.

The second step consists of the aeroelastic model identi-
fication by the ERA methodology and we consider only the
two frequency sweep tests in this phase. The least-squares
estimation of the impulse responses from unnoisy data does
not raise any specific problem. The length of the estimated
responses to aileron and rudder impulses is restricted to 10
seconds or 201 time samples.

Fig. 3. Largest singular values of the Hankel matrix and stabilization
diagram computed from simulated test data for models of order 6 to
34. Circles correspond to potential structural modes andtriangles to real
eigenvalues; the length of thevertical bar attached to each mode is equal
to the value of the modal amplitude coherence indicator for this mode and
ranges between 0 (noise mode) and 1 (high quality mode).
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Table 1
Comparison of identified aeroelastic modes from simulated test data

Aeroelastic modes: frequency (Hz)/damping ratio (‰)

ERA ERA after Output error
model reduction minimization

1.00/36.5
1.83/46.2 1.83/46.2 1.83/47.4
2.07/48.6 2.07/48.6 2.07/59.2
2.29/12.7 2.29/12.7 2.29/12.8
2.68/33.3 2.68/33.3 2.62/41.0
3.00/32.5 3.00/32.5 3.00/27.0
3.29/170.0
3.68/27.3

Fig. 4. Lateral acceleration of front fuselage for rudder doublet excita-
tion: comparison of only rigid-body dynamics identification (middle) and
rigid-body and aeroelastic dynamics identification (bottom).

Applying the ERA algorithm needs to form the Hankel
matrix. The number of row and column blocks is selected
to make the matrix almost square. The magnitudes of the
largest singular values of the Hankel matrix as well as the
stabilization diagram for model orders 6 to 34 are presented
in Fig. 3. We observe that the singular values fall off sharply
at order 12, suggesting to select 12 as model order. The

Fig. 5. Largest singular values of the Hankel matrix and stabilization
diagram computed from flight test data for models of order 2 to 34.

Table 2
Comparison of identified aeroelastic modes from in-flight test data

Aeroelastic modes: frequency (Hz)/damping ratio (‰)

ERA Output error minimization

2.18/48.4 2.14/38.7
2.89/23.3 2.86/17.7
3.67/27.7 3.63/20.9

stabilization diagram confirms that it is a possible choice:
the frequencies of the 6 modes obtained at order 12 are quite
well preserved when the model order increases (they are
well stabilized). Furthermore, the length of the vertical bar
attached to all these modes indicates modes of good quality.
Other stabilized modes appear for higher orders, for example
two modes at 2.7 Hz and 3.3 Hz for order 16 or two modes
close to 2.6 Hz from order 22. Finally a 16th order model
is chosen. The characteristics of the 8 estimated modes are
given in Table 1.



A. Bucharles, P. Vacher / Aerospace Science and Technology 6 (2002) 591–598 597

Fig. 6. Lateral accelerations for rudder frequency sweep: measurementsZmes (left column), model responsesZe.s. (middle column), reconstruction errors
( = Zmes− Ze.s. (right column).

The analysis of the modal contributions shows that three
modes do not affect very much the model outputs and can be
dropped, leading to an initial aeroelastic model of order 10.

An initial rigid-body model is also required for the final
optimization procedure. So we have been led to estimate
the coefficients of the linearized model from the three rigid
tests. As it can be seen in Fig. 4 (middle graph), the match
between the model outputs and the test data is very poor. The
estimated model is not able to explain the measurements.

Finally we identify the rigid-body and structural dynam-
ics using all the tests. About 110 coefficients have to be es-
timated. The output error minimization is performed in the
frequency-domain between 0.1 and 4 Hz. If the modal fre-
quencies are hardly modified by the optimization procedure,
the damping ratios are more affected as well as some coef-
ficients of the rigid-body model. We see in Fig. 4 that the
model matches almost perfectly the test data, the residual er-
ror resulting from a high-frequency mode which is not in the
model.

5.2. In-flight test data

In order to validate the identification methodology in
a more realistic context, we will apply it now to in-flight
data obtained from a large transport aircraft. As flight tests
consist of aileron and rudder frequency sweeps in the range
1.4–5.6 Hz, we will only be interested in the aeroelastic
model. Three accelerometric measurements are available at
the front, middle and rear fuselage with a sampling rate of
128 Hz.

After decimating the data with a factor of 5, we estimate
the impulse response and apply the ERA algorithm. The
singular value curve and the stabilization diagram (Fig. 5)
suggest us to select a 6th-order model (the next suitable
model order is 18). The aeroelastic modes are given in
Table 2.

Then this model is refined with output error minimiza-
tion. We note that, as previously, modal frequencies are less
affected than damping ratios by the second step. A compar-
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ison between the measured data and the model responses is
shown in Fig. 6. We observe that the reconstruction errors
look like white noise, which means that the main aeroelas-
tic information has been extracted from the accelerometric
measurements.

6. Conclusion

A general two-step methodology for identifying a state-
space model of a flexible aircraft, appropriate for control law
design with modern control techniques, has been proposed.
The first step based on the ERA algorithm provides an initial
aeroelastic model of good quality which is next combined
with a linearized rigid-body model. In the second step the
flexible aircraft model, including rigid and elastic modes,
is improved by an output error minimization method. The
experimental results show a good correspondance between
the measurements and the model responses at both low
and high frequency. Future work is needed to get a better
understanding of extraneous modes in the ERA algorithm,
to take advantage of the specific structure of Toeplitz and
Hankel matrices for the singular value decomposition, to
make the procedure more if not fully automatic.
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