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Abstract

The large commercial aircraft, developed today by manufacturers, are characterized by a high flexibility which results in a stronger
interaction between the flight control system and the structural modes. The active control of the first elastic modes is needed to meet the
performance requirements. This paper proposes an identification methodology of a flexible aircraft from flight test data, which is appropriate
for control law design with modern control techniques (LQG, H&/H In a first step a procedure based on Eigensystem Realization
Algorithm (ERA) is used to determine an initial aeroelastic model which is subsequently combined with a linearized rigid-body model
and optimized by an output-error minimization method. Two application examples show the good performances of the approach.

0 2002 Editions scientifiques et médicales Elsevier SAS. All rights reserved.

Résumé

Les avions commerciaux de grande taille, développés aujourd’hui par les constructeurs, se caractérisent par une plus grande souplesse
donc une interaction accrue entre le systéme de commandes de vol et les modes structuraux. Il devient nécessaire de contréler activeme
les premiers modes souples pour atteindre les performances recherchées. Ce papier propose une méthodologie d'identification d’'un modé
d’avion souple a partir de données d'essai en vol, adaptée a la conception de lois de pilotage par les techniques de commande moderne
(LQG, H2/Hx0). La procédure se déroule en deux étapes : un modele aéroélastique est tout d’abord obtenu par une approche fondée su
I'algorithme ERA ; ce modéle est ensuite combiné avec un modeéle linéarisé de la dynamique rigide, I'ensemble étant finalement optimisé par
minimisation des erreurs de sortie. Deux applications a des données simulées et réelles illustrent les performances de la démarche.

0 2002 Editions scientifiques et médicales Elsevier SAS. Tous droits réservés.
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1. Introduction control techniques (LQR/LQG, H2#&b). These models
must represent with high fidelity the relationships between
The forecast passenger growth over the next twenty the surface control deflections and the output signals used
years is leading the major aircraft manufacturers to developpy the controller, at both low and high frequency. If the
high-capacity long range aircraft. These new aircraft will preliminary knowledge may provide theoretical models
exhibit a higher flexibility due to a global decrease of \nich are appropriate for a first design iteration of control

modal frequer_mes, which results in a Strpnger7 Interaction laws, identification of the flexible aircraft model from in-
between the flight control system and the aircraft’s structural . . . .
flight data is required for the tuning of the control laws

modes. A control law design based only on the rigid erformance
modes is no more sufficient to meet the performancesIO ) S ) , o
requirements. Ensuring appropriate stability margins and The identification techniques applied to the rigid aircraft
providing satisfactory ride quality for passengers needs to @M mainly to the estimation of aerodynamic derivatives

Accurate multivariable state-space models are thereforeParameter estimation methods, the output error method is
required to support control laws synthesis using modern most widely used [4,8,9]. If time-domain algorithms prevail,

the frequency-domain approach [6] is very appealing for

T : linear systems due to a significant reduction of the number
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In the field of structural dynamics, the goal is very of- e to keep the physical meaning of the model coefficients;
ten to estimate the modal parameters (frequencies, damp- e to be able to directly apply parametric optimization

ing ratios, modes shapes) like in the flutter flight test analy- techniques;
sis. Most techniques work in the frequency domain and e to make easier the updating of the control law using the
aim to fit “measured” frequency response data with a ra- identified model.

tional transfer function model [12]. However, some iden-

tification techniques have been proposed for identifying  If such an approach does not raise any problem for the
state-space models, to be used for controller design. Inrigid-body model, it does not appear appropriate for the
his book, Juang [5] develops the Eigensystem Realiza- aeroelastic part:

tion Algorithm (ERA), based on system impulse response

(i.e. Markov parameters). Bayard in [1] proposes a two- e Roger's and Karpel's approximations lead to models
step state-space frequency domain algorithm which com-  with many coefficients;

bines curve fitting of frequency response data and state- ¢ all modal characteristics cannot be estimated from a
space realization. In [10] a combined method, based on a  limited number of measurements and it is not possible

realization algorithm followed by standard prediction er- to know a priori which modes are identifiable and which
ror method, is studied for estimating the structural modes are not;

characteristics of a commercial aircraft. For these three o a mode may be absent from the initial model.
cases a discrete-time multivariable state-space model is ob-
tained. Najmabadi in [11] presents an identification process  Therefore we have developed a two-step identification
of a continuous-time model from in-flight control sur- procedure. In the first step, a multivariable representation
face frequency sweep for a flexible aircraft. This single- of the structural dynamics including only modes which
input multi-output model is intended to be used to de- are visible from the measurements, is determined from
velop a compensator for active control of aircraft structural specific flight tests, typically frequency sweeps, thanks to the
modes. ERA algorithm. Then this model is transformed into a real
In this paper we propose a general methodology for iden- p|ock-diagonal form, which provides a minimal parametric
tifying a multivariable continuous-time state-space model representation. In the second step, a state-space model of
for a flexible aircraft, including rigid-body and structural dy- the flexible aircraft is obtained by bringing together the
namics, which is appropriate for control law synthesis using stryctural model and the rigid-body linearized model, both in
modern techniques. This methodology combines the ERA state-space form. The coupling is performed just by adding
algorithm for getting an initial aeroelastic model and an he gutputs of the two models. This new model is taken as
output-error minimization. It does not assume specific flight ;nitialization for the minimization of an output error criterion
tests. It has been developped in the research project COVAS[Jy the Gauss—Newton method in the frequency domain. The

(COVAS = COntrole du Vol de I'Avion Souple), led in co- jgentification is based on both usual rigid-body excitations
operation with AIRBUS France. The paper is organized as 5 excitations dedicated to flexible modes. If necessary a

follows. Section 2 introduces the identification methodology preliminary estimation of the rigid-body model coefficients

which is described.in more dgtails in_ Sections 3 and 4. The may be performed by a classical output error approach. The
performances are illustrated in Section 5 on simulated andwhole identification process is shown in Fig. 1.

in-flight test data. The paper closes with some concluding
remarks in Section 6.

FLIGHT TEST DATA PRELIMINARY
RIGID-BODY MODEL

2. The identification methodology

ERA IDENTIFICATION OUTPUT ERROR

Active control laws design for a flexible aircraft with PROCESS VINIMIZATION

modern techniques requires a linear state-space model in-
cluding rigid-body and structural dynamics. In an initial step

a simplified model can be extracted from a general prelim-
inary modelization based on theoretical computations and MODEL
wind-tunnel/structural tests data. The linearization of the

flight mechanics equations at the flight condition provides

RIGID-BODY
MODEL

the rigid-body model while the Roger’s or Karpel's approx- (;;J[E:ET;RT'?(?E oo 5
imations of the generalized forces may be used to derive
a linear state-space representation of the structural behav- FLEXIBLE AIRCRAFT

To retain a similar model structure in the identification
process is very tempting for several reasons: Fig. 1. General chart of the identification procedure.
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FLIGHT TEST DATA - : .
it is straightforward to verify thatf;., g can be factored as
Hiop = Ou AFCh
| MARKOV PARAMETER ESTIMATION ’
where
C
ERA ALGORITHM CA
Oy = .
-1
| MODEL REDUCTION | caA”
and
-1
( DISCRETE-TIME AEROELASTIC MODEL | Cp=[B AB ... AP1B ]
are respectively the extended observability and controllabil-
ity matrices of the system. Note in particular that

DISCRETE TO CONTINUOUS-TIME

Ho.a,p = 0uCp.
TRANSFORMATION O o«-p

If the system is controllable and observalilg, andCg and
henceHo, . g have rank:, equal to the system order.

( CONTINUOUS-TIME AEROELASTIC MODEL _ | Conversely, assume now thﬁo;a’ﬂ is an estimated
Hankel matrix wherex and 8 are chosen to exceed the
largest expected system order. From this starting point the
ERA algorithm proceeds in two steps:

Fig. 2. ERA identification process.

3. Aeroelastic model identification by ERA approach
e selection of the system order;
The ERA algorithm is the core of the aeroelastic model ® €stimation of the system matricés B, C, D.
identification process, depicted in Fig. 2. We will subse-
guently give a description of the algorithm and review the
diﬁe_rent operations which are necessary before ERA to put ﬁO;a,ﬁ —uUsvT
the input-output measurements into an adequate form and

afterwards to cancel the estimated modes which are not sig-WhereU and v are orthogonal matrices and the diagonal
nificant. matrix S contains the singular values in non-increasing order

on the diagonal. In the case of noisy impulse response
measurements, thBg., 4 matrix is full rank and the user
must decide how many singular values can be neglected,

. . . . N which determines the system orderEstimates of extended
This _algorlthm, mtroduc_ed in the elgh_t|es by Juang [5] controllability and observability matrices are given by
and which can be seen like an extension of the famous Ua 1
/ /

Ho—Kalman algorithm to noisy measurement data, is based®, = U, S;’* and 5,3 =S,V
on the availability of system Markov parameters and takes
advantage of the excellent numerical properties of the
singular value decomposition (SVD).

Consider the linear time-invariant system described by

The key feature is the SVD factorization Eb;a, B

3.1. The ERA algorithm

where U, andV, are submatrices formed from the first
columns ofU andV and the diagonal matrif, contains
then principal singular values.
Then the system matrices are derived fr@pandCg
X1 = Axg + Bug,
{Yk — Cxy + Dug e B andC are given by the first: columns ofCs and the
first p rows of O, respectively, where: and p denote

and assume the system order. The Markov parameters are the number of inputs and outputs:

given by o A is obtained using the shifted-block Hankel matrix
{ 0 k <0, Hy,4 p by solving
hy=1D k=0 7, A AP
y Ha. =0,AC )
CA*1B k>0, s T Ran R
If we define the ¢, 8) Hankel matrix of the system by e Distaken equal to.
hiv1  hig2 ... hi+p Besides singular values, others indicators (modal ampli-
" _ hiv2  heys oo hikgptt tude coherence, mode singular value) have been developped
kap =1 : : by Juang to evaluate the validity of the models provided by

hira hirast . Prsatpoi the ERA algorithm and especially give information about
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the accuracy of the estimated modes. They help the opera-3.3. Model reduction

tor to compare several models of different orders and decide

the best order. The modal amplitude coherence, based onthe A characteristic of the ERA algorithm is to yield extrane-

comparison of the pulse responses of “measured” and iden-ous modes, not present in the system to be identified. These

tified modes, has been extended in order to take into accountmodes, which seem sensitive to how the Hankel matrix is

the behaviour with respect to inputs as well through the con- built, may have significant coherence indicators and well sta-

trollability matrices. For this new indicator, which ranges bilized frequencies. So they are very difficult to recognize

from 0 to 1, a value close to 1 indicates that the estimated from physical modes and cannot be suppressed just by look-

mode is reliable; on the other hand, the mode is considered toing at the stabilization diagram. However they must be can-

be a noise mode if the indicator value is low. The modal am- celed not to disturb the further identification procedure. We

plitude coherence indicators may be stuck at each mode forhave defined an elimination procedure based on the analy-

each tested order and plotted on a so-called stabilization dia-sis of the contributions of each mode in the responses of the

gram. This diagram visualizes the frequency location of the identified model to the flight test inputs.

modes versus model order as well as their accuracy through

vertical bars whose length is equal to the corresponding indi-

cator value. When the model order increases, the estimatedt. Flexible aircraft identification by output error

frequencies stabilize with higher indicators. This allows the minimization

operator to quickly assess the effect of changing the model

order and to decide the optimal order. Once an initial aeroelastic model has been obtained, it
Applying the ERA algorithm requires to seleet and must be converted into a suitable continuous-time represen-

B which determine the size of the Hankel matrix. Using a tation and combined with the linearized rigid-body model to

simplified model of a flexible aircraft we have found that, feed a parametric output-error minimization procedure. In

for a given number of pulse response measurements data, &his section we will briefly describe the optimization method

square Hankel matrix was preferable for reducing the noise by showing the advantage to work in the frequency-domain

influence. This observation agrees with the result in [2]. and explicit the parametrization of the aeroelastic model.

Thereforex is chosen so thata ~ mB under the constraint

o + B = K, with K the impulse response length. 4.1. Output error minimization in frequency domain

3.2. Markov parameter estimation The system is assumed to be described by the equations
. i . x(t) = Ax(t) + Bu(1),
The response of a linear causal discrete-time system | y(;) = Cx(r) + Du(r)

to an arbitrary inputz can be expressed as the discrete . :
where the matriced, B, C, D contain the unknown para-

convolution : . :
. meters®. In the time-domain the estimates of parameter
= th i vector® are obtained by minimizing the cost function
- —1
i=0

whereh denote the system Markov parameters. Conversely,

the firstk Markov parameters can be determined from input ) ) )
and output measurements by solving with R the measurement noise covariance matrix arile

error vector between the measurement and the model output.
[yo ... yk-1l Starting from suitable initial values of the parameter vector,
uo u1 ... Ug-1 new estimates are obtained iteratively using a non-linear
O wo ... ug-2 optimization algorithm like the Gauss—Newton method.
=lho ... hgall . . : For linear systems the same problem may be solved in the
6 0 . M.o frequency-domain. Applying the Fourier transformation, the
system equations get transformed into

(Jw)x(w) = Ax(w) + Bu(w),

N
J(O) = % Z e(n,0)"R e(n, 0)
n=1

or
Y=HU. {

. o y(w) = Cx(w) + Du(w).

By assuming that the number of measurements is h|gh_erthan Using the Parseval's formula, the cost function to be
the impulse response length, Markov parameter estimates_. ~ .

. . minimized becomes
are obtained as the least squares solution of an overdeter- B
mined system. However the result is not very satisfactory in 1 Tal
noisy situation. It can be strongly improved by use of the “frea(® =73 > e, TS e, 0)
singular value decomposition: all singular values of the in- =1
put matrix U, smaller than a selected threshold, are set to with §~% = i—f:R—l; Af and Ar denote respectively the

zero before computing the pseudo-invers&of frequency resolution and the sampling period.
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A significant advantage of identifying parametric models through excitation of ailerons and rudder: two of them are
in the frequency rather in the time-domain is the capability dedicated to the aeroelastic model identification (frequency
to work in a restricted frequency-range, which results in fil- sweeps on aileron and rudder) and the three others (aileron
tering the high-frequency measurement noise and providesand rudder pulse, rudder doublet) excite rather the rigid-
consistent reduction of the data amount to be processed. Furbody dynamics. The output signals consist of the lateral ac-
thermore, by dropping the zero-frequency in the cost func- celeration measured at front, mid and rear fuselage and roll
tion, bias parameters or linearization conditions need not to and yaw rates at front and rear fuselage.
be accounted for in the optimization process, significantly  First the input and output signals for all tests are deci-
reducing the number of parameters to be estimated. Finallymated to a sample rate of 20 Hz, which is justified by the
the method is suitable for unstable or near-unstable sys-control of the only first flexible modes.
tems because no numerical integration is involved in the fre-  The second step consists of the aeroelastic model identi-

guency domain: there is no risk of divergence. fication by the ERA methodology and we consider only the
two frequency sweep tests in this phase. The least-squares
4.2. Aeroelastic model parametrization estimation of the impulse responses from unnoisy data does

not raise any specific problem. The length of the estimated
The ERA identification process provides a multivariable responses to aileron and rudder impulses is restricted to 10
discrete-time state-space model in balanced form. First thisseconds or 201 time samples.
model is transformed into a continuous one using a zero-

order hold. Then it is converted to a real modal block- Singular Values of Hankel matrix HO
diagonal form with the system matrix ® ; ; : : ;
Aq 0 or |
Ao 35h 1
A=
c. 30F g
0 An/2 25k ]
with

A= | @A) 3G
LRG0 RO |

N(x;) and J(x;) are the real and imaginary parts of the

eigenvalue,;. The other system matrices are full. 5r ]
This representation is not suitable for output error mini- i i ST Eesecencooaoia s
mization owing to a too high number of parameters: all state ~ ° > O v 0 s

variables can be scaled without affecting the input-output re-
lations [3]. Consequently conditions must be imposed on

the B or C matrices. We have chosen to freeze the first col- Stabilization diagram
umn of B. So the parameters to be estimated include the real 5T - ‘ ;

and imaginary parts of the eigenvalues and all coefficients b1y
of the system matriceB, C and D except the first column 30k 4 REE 1
of B. :

254 1

5. Applications

[*)
=]
T

Model order

Two applications of the identification methodology to
simulated and in-flight test data from a large transport

aircraft are presented now. The results have been obtained ol ° .- $ |
using the package HARISSA, developped at ONERA. a %é
5.1. Simulated test data 0 03 ! I’SModcﬁcqicncy (Hz)zs 3 35 4

In this first example we use data from a general air- Fig. 3. Largest singular vqlues of the Hankel matrix and stabilization
. . . . dof fliaht mechanics d|agr§1m computed from smulgted test data for mogels of order 6 to
craft mOtIQn simulator, including a 6_ 9 . . 34. Circles correspond to potential structural modes ananglesto real
modelization and a structural dynamics representation in @egjgenvalues; the length of thertical bar attached to each mode is equal
wide frequency range. We are interested only in the lateral- to the value of the modal amplitude coherence indicator for this mode and

directional motion. Five pseudo flight tests are simulated ranges between 0 (noise mode) and 1 (high quality mode).
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Table 1
Comparison of identified aeroelastic modes from simulated test data

Aeroelastic modes: frequency (Hz)/damping ratio (%o)
ERA ERA after

Output error

model reduction minimization

1.00/36.5
1.83/46.2 1.8346.2 1.8347.4
2.07/48.6 2.0748.6 2.0759.2
2.2912.7 2.2912.7 2.2912.8
2.68/33.3 2.6933.3 2.6241.0
3.00/32.5 3.0032.5 3.0027.0
3.29/170.0
3.68/27.3
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Fig. 4. Lateral acceleration of front fuselage for rudder doublet excita-
tion: comparison of only rigid-body dynamics identification (middle) and

rigid-body and aeroelastic dynamics identification (bottom).

Applying the ERA algorithm needs to form the Hankel

Singular Values of Hankel matrix HO
45 T T T T T T
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Fig. 5. Largest singular values of the Hankel matrix and stabilization
diagram computed from flight test data for models of order 2 to 34.

Table 2
Comparison of identified aeroelastic modes from in-flight test data

Aeroelastic modes: frequency (Hz)/damping ratio (%o)

ERA Qutput error minimization
2.18/48.4 2.1438.7
2.89/23.3 2.8617.7
3.67/27.7 3.6320.9

stabilization diagram confirms that it is a possible choice:
the frequencies of the 6 modes obtained at order 12 are quite
well preserved when the model order increases (they are
well stabilized). Furthermore, the length of the vertical bar

matrix. The number of row and column blocks is selected attached to all these modes indicates modes of good quality.
to make the matrix almost square. The magnitudes of the Other stabilized modes appear for higher orders, for example
largest singular values of the Hankel matrix as well as the two modes at 2.7 Hz and 3.3 Hz for order 16 or two modes
stabilization diagram for model orders 6 to 34 are presentedclose to 2.6 Hz from order 22. Finally a 16th order model
in Fig. 3. We observe that the singular values fall off sharply is chosen. The characteristics of the 8 estimated modes are
at order 12, suggesting to select 12 as model order. Thegiven in Table 1.
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Fig. 6. Lateral accelerations for rudder frequency sweep: measurefigetgleft column), model response&e s, (middle column), reconstruction errors
A = Zmes— Zes. (right column).

The analysis of the modal contributions shows that three 5.2. In-flight test data
modes do not affect very much the model outputs and can be
dropped, leading to an initial aeroelastic model of order 10. In order to validate the identification methodology in
An initial rigid-body model is also required for the final a more realistic context, we will apply it now to in-flight
optimization procedure. So we have been led to estimatedata obtained from a large transport aircraft. As flight tests
the coefficients of the linearized model from the three rigid consist of aileron and rudder frequency sweeps in the range
tests. As it can be seen in Fig. 4 (middle graph), the match 1.4-5.6 Hz, we will only be interested in the aeroelastic
between the model outputs and the test data is very poor. Themodel. Three accelerometric measurements are available at
estimated model is not able to explain the measurements. the front, middle and rear fuselage with a sampling rate of
Finally we identify the rigid-body and structural dynam- 128 Hz.
ics using all the tests. About 110 coefficients have to be es-  After decimating the data with a factor of 5, we estimate
timated. The output error minimization is performed in the the impulse response and apply the ERA algorithm. The
frequency-domain between 0.1 and 4 Hz. If the modal fre- singular value curve and the stabilization diagram (Fig. 5)
guencies are hardly modified by the optimization procedure, suggest us to select a 6th-order model (the next suitable
the damping ratios are more affected as well as some coef-model order is 18). The aeroelastic modes are given in
ficients of the rigid-body model. We see in Fig. 4 that the Table 2.
model matches almost perfectly the test data, the residual er- Then this model is refined with output error minimiza-
ror resulting from a high-frequency mode which is not in the tion. We note that, as previously, modal frequencies are less
model. affected than damping ratios by the second step. A compar-
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