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Abstract

Résumé

Doll C., Ferreres G., Magni J.-E., Aerospace Science and Technology, 1999, no. 3, 177-189

The aim of this paper is to emphasize the usefulness of the u framework for the analysis of the robustness
properties of flight control systems. Model uncertainties may correspond, either to parametric uncertainties
(e.g. in the aerodynamic model or in the value of the trim point) or to neglected high frequency dynamics
(e.g. in the actuators or sensors). We especially show that several classical problems (computation of a phase
or delay margin, non-linear analysis of a PIO effect, computation of a frequency domain overshoot) can be
extended to an uncertain aircraft model. A flexible model of the aircraft can, moreover, be taken into account.
© Elsevier, Paris

robustness / 1 framework / flexible structures / phase and delay margins / non-linear analysis

Evaluation de la robustesse de lois de pilotage avec les outils de 1. -analyse. Le but de cet article est de
mettre en valeur la p-analyse pour caractériser la robustesse et les performances des systémes de pilotage.
Les incertitudes de modele correspondent, soit aux incertitudes paramétriques (induites par le modele aéro-
dynamique ou le point d’équilibre), soit aux dynamiques négligées aux hautes fréquences (dies aux action-
neurs ou capteurs). Plus précisement, on montre que plusieurs problemes classiques (tels que le calcul d’une
marge de phase ou de retard, I’analyse non-linéaire du phénomeéne de pompage piloté, le calcul du dépasse-
ment dans le domaine fréquentiel) peuvent étre étendus & un modele d’avion incertain. En outre, un modele
flexible d’avion peut aussi étre pris en compte. © Elsevier, Paris
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Glossary

MIMO: Multi Input Multi Output

LFT: Linear Fractional Transformation SIDF: Sinusoidal Input Describing Function
LMTI: Linear Matrix Inequality SISO: Single Input Single Output
LTI: Linear Time Invariant s.s.v.: structured singular value
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1. Introduction

Performance analysis in the presence of uncertainties
is a major issue in aeronautics. Indeed, aircraft models
depend on several parameters, which are either mea-
sured, or only known to lie between some bounds. The
key problem is then to check the stability and perfor-
mance properties of the controlled aircraft in the face of
all these possible parameter variations. This validation
must be ideally done in all the flight domain, and more
realistically in a relevant part of this domain.

As illustrated in this paper, u-analysis (see [27, 30,
31] and the references therein) appears to be a suitable
framework for that problem. The application of this tech-
nique is done in two steps. The first one is to derive a
standard form for the parametrically uncertain aircraft,
while the second one is to apply classical (and less clas-
sical) computational tools to this standard form. The first
step appears to be a difficult task (see [29]), since numer-
ous uncertain parameters may enter into the aircraft
model in a rather complex way. For example, a standard
form of an aircraft may indeed depend on:

* Potentially uncertain parameters, such as the aircraft
mass, the position of the center of gravity or the
coefficients of the aerodynamic model.

* Steady-state values of state variables which describe
a trim condition: these may, for example, correspond
to the aircraft speed or to its angle of attack.

* Parameters which are used to schedule the feedback
controller as a function of the operating point.

« Uncertainties in the parameters of a pilot model
(when trying, for example to, detect a P1O effect).

« Non-linearities such as rate limiters or saturations in
the actuators models.

A first obvious solution is to check the stability and
performance properties on each point of a gridding, in
the space of all possible parameter variations. Such an
analysis may however be computationally infeasible,
since the number of points in the gridding increases
exponentially with the number of parameters.

pn—analysis appears as an alternative efficient method
for a “one shot” analysis of the robust stability and per-
formance properties, over the continuum of models
which is described by the standard form. On the one
hand, this technique enables us to guarantee that the
studied property is actually satisfied over the whole
continuum of models !. This technique may moreover
provide worst case values of the parameters, i.e. values
corresponding to the worst degradation of the perfor-
mance property which is to be studied.

! On the contrary, when gridding the space of parameters, it can not
be claimed that a worst case closed loop behaviour has not been mis-
sed, which would correspond to a value of the parameters between two
points of the gridding.
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Since p—analysis is now a well known tool, we refer
to the literature for the most classical ways to use it (see
e.g. [1, 15]), and we prefer to emphasize the usefulness
of the i tools for specific problems, which are related to
aeronautical applications:

« Introduction of the flexible part of the aircraft in the
robustness analysis problem: this issue appears especial-
ly crucial when considering large dimension transport
aircraft, since the frequencies of the bending modes
become very close to the control bandwidth, and it is no
longer possible to consider these flexible modes as
neglected dynamics [9]. It appears especially necessary
to adapt the standard computational y tools to this new
problem.

* Computation of a worst case phase or delay margin
in the presence of model uncertainties: it is indeed
important to validate the control law with respect to
uncertainties in the time delays, since these delays
occur at various locations of the flight control sys-
tem (flight computer and sensors). Uncertainties in
the physical parameters of the aircraft are moreover
to be taken into account in such an analysis.
Assuming that all parameter variations are bounded
inside a given hypercube, the u tools enable us to
find the worst case value of the phase or delay mar-
gin together with the worst case value of the para-
meters inside the hypercube [14].

* Linear (category I) analysis of a PIO effect in the
presence of model uncertainties: a criterion for en-
suring the absence of a linear pilot-in-the-loop oscil-
lation (PIO) phenomenon [6] consists in minimizing
the frequency domain overshoot of a selected trans-
fer. We illustrate in this paper that p analysis enables
to compute the worst case frequency domain over-
shoot of an uncertain transfer.

Non-linear (category II) analysis of a PIO effect in
the presence of model uncertainties: non-linearities
such as rate limiters are now inserted into the linear
model of the closed loop aircraft (possibly augmen-
ted with a pilot model), see [5, 6] and references
therein. The w tool can be used as a basis for tech-
niques, which either ensure the absence of limit-
cycles, or detect the presence of limit-cycles in the
face of model uncertainties [12]. In a classical way,
non-linearities are replaced by their equivalent
gains, and the issue is for example to find the largest
size parameter hypercube, inside which it can be
guaranteed that no limit-cycle arises.

The paper is organized as follows. Section 2 intro-
duces the p framework, contains notations and briefly
introduces the tools (i, skewed u and one-sided skewed
1 measures). Section 3 presents the 4 specific problems
which appear to be of particular interest in this paper.
The last section is devoted to the computational issues.
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2. Introduction to the 1 framework

2.1. A generic example

As a preliminary, we only recall the definition of
upper and lower LFTs. Let H and A denote, either com-
plex matrices, or transfer matrices. The lower LFT
Fi(H, A) (resp. the upper LFT F,(H, A)) represents
the uncertain transfer between u and y, which is obtai-
ned when closing the A loop in figure la (resp. in figu-
re 1b).

We can now introduce the u framework with the fol-
lowing example. Let y = Fj(H (s), A) u the LFT stand-
ard form, which corresponds to the LTI uncertain open
loop model of the aircraft. u represents the control inputs
(e.g. the elevator deflection in the case of a longitudinal
model) and y the feedback outputs (e.g. the vertical
acceleration and pitch rate). As explained in [29], the
parametric uncertainties in the structured model pertur-
bation A is a real diagonal matrix of the form:

A = diag(3i 1y, ... SnTgy)- (1)

The real scalar §;, which is said to be repeated if
gi > 1, corresponds to the normalized uncertainty in the
ith physical parameter of the aircraft, and §; = 0 cor-
responds to the nominal value of this parameter. As an
example, if 8; corresponds to the aircraft mass,
81 € [—1, 1] may for example mean that the mass varies
between + 20 % around its nominal value (depending
on the freely chosen constant which is used to normalize
the range of possible variations of the mass).

In the context of aeronautical problems, the family of
models obtained by closing in figure Ia the A-loop with
admissible matrices A (see equation (1)) is thus the
continuum of linearized models, which corresponds to
the set of possible values for the physical parameters of
the aircraft model.

Connect then the open loop LFT model of the aircraft
with the flight control law K (s), as shown in figure 2a.
This uncertain closed loop system can then be put under
the generic form of figure 2b, which is called a standard
interconnection structure M(s) — A. M(s) is simply the
transfer which is seen by the real model perturbation A

u Y
H A
A H
u o T Yy
(a) (b)

Figure 1. Lower and upper LFTs.
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in figure 2a, i.e. the transfer between w and z. We
emphasize the equivalence of both figures, i.e. in the
case of our example, figure 2b is just an other way to
represent figure 2a.

Let D the unit hypercube in the space of the §;’s:
D={5|é e[-1, 1]Vi € [1,N]}. 2)

With some abuse of notation, A € D should be unders-
tood in the following as § € D, where A is defined in
equation (1).

The nominal closed loop system (i.e. the one corres-
ponding to A = 0 in figure 2a or 2b) is assumed to be
asymptotically stable. Our aim is then to compute the
robustness margin kmax > 0, defined as the maximal
value of k, such that the uncertain closed loop of
figure 2a or 2b remains asymptotically stable for all
A € kD. In other words, the uncertain closed loop is
guaranteed to be stable for all §; varying independently
inside the interval {—kmax, kmax]-

— K(s)

H(s)

(a) (b)

Figure 2. (a) Uncertain closed loop system, (b) standard inter-
connection structure for p—analysis.

Assume that the parameters §; belong to the hyper-
cube kD, where k increases from 0. By assumption, all
poles of the uncertain closed loop are inside the left half
plane for k = 0. On the other hand, for a sufficiently
large value of k, at least some poles of the uncertain
closed loop are now inside the right half plane (except in
the special case of an infinite robustness margin kmax).

Using a continuity argument, when k increases
from 0, it can be claimed that the uncertain closed loop
becomes marginally stable (i.e. all poles inside the left
half plane, except one or more poles on the imaginary
axis) before being unstable. As a consequence, the prin-
ciple of w analysis is to find the minimal size model per-
turbation A, which moves one closed loop pole onto the
imaginary axis.

More precisely, let be the magnitude of

|
H(M(jw))
the minimal size model perturbation A, which shifts
one closed loop pole onto the imaginary axis at jw. Let
us redefine the robustness margin kmax in this sense as
the magnitude of the model perturbation A which shifts
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one closed loop pole somewhere onto the imaginary axis.
Then we obtain:

1 1
min - = - .
wel[0,00] u(M(jw)) max  u(M(jw))
wel0,00]

3)

kmax =

w-analysis is thus a frequency domain technique, which
computes the s.s.v. u(M(jw)) as a function of frequen-
cy . The robustness margin kmay is then deduced.
Following the classical generalized Nyquist criterion,
it suffices now to remark that the closed loop of figure 2b
has a pole at the point sp of the complex plane if and
only if det[/ — M(so)A]=0. As a consequence,

————— is defined as the magnitude of the minimal
n(M(jw))

size model perturbation A, which renders the matrix
det{/ — M(jw)A] = 0 singular.

2.2. Notations

* Our notation is the same as in [27, 30, 31]. As a pre-
liminary, we define a block of neglected dynamics
A€(s) as an uncertain transfer matrix, which is only
known to satisfy the H,, inequality:

IAC () loo < 1
— E[Ac(jw)] <1 Yo e [0, oo]. (4)

At a given frequency w, A€ (s)becomes thus a full
complex block A% (jw), i.e. a complex matrix without
specific structure which is only known to satisfy
g(AC(jw)) < 1.

* Generally speaking, it is possible to transform a
closed loop system subject to parametric uncertainties
and blocks of neglected dynamics into the standard inter-
connection structure M (s) — A(s)of figure 2b. As illus-
trated in the example of the previous subsection, M (s)
contains the nominal closed loop system as well as the
way the various model uncertainties enter the closed
loop, while A(s) gathers all these model uncertainties.
At a given frequency w, the structured model perturba-
tion A(s) becomes a complex matrix which has the fol-
lowing specific structure:

A =diag (A, ..., Ap) (5)

in which A; may be, either a diagonal matrix of the form
A; =6§;1; with §; € R (a real repeated scalar block
accounting for the parameter uncertainties), or a matrix
in C">" without specific structure (a full complex
block accounting for neglected dynamics). The model
perturbations A which have the above structure will be
called in the following admissible model perturbations.

In p-analysis, the size of this structured model per-
turbation A is classically defined as a(A). Consider the
simplified case of a model perturbation A = diag(§, A),
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where § is a real scalar while AC is a full complex block:
as a key property of the spectral norm o, the inequality
o(A) <1 isequivalentto § € [—1, 1] and F(AC) <1.

Note also that the structured model perturbation A
may be real (if it only contains parametric uncertainties),
complex (if it only contains full complex blocks) and
otherwise mixed (if it simultaneously contains real and
complex uncertainties). In the same way, the associated
s.s.v. is said to be real, complex or mixed.

*» Let there be a complex matrix M, which typically
corresponds to the value of the transfer matrix M (s) at
s = jw. The p “measure” of M is then defined as:

n(M) =1/5(A) (6)

where A is the minimal size admissible model perturba-
tion which satisfies det(/ — M A) = 0. This definition is
illustrated in figure 3a: A is chosen as A = diag(éy, 82),
where the §;’s are real, and the line in figure 3 corres-
ponds to the equality det(/ — M A) = 0. In the space of
the §;’s, the © measure consequently corresponds to the
inverse of the size of the largest square around the zero
point, inside which det(/ — M A) # 0.

e Let A = diag(A|, Ap) be split into two structured
model perturbations A; and Aj,. The maximal size of
A1 is fixed, typically o(A;) < 1. The skewed 11 “mea-
sure” is then defined as:

V(M) = 1/5(A2) )

where A = diag (A1, Aj) is an admissible model pertur-
bation which satisfies (A1) < 1 and det(/ — MA) =0
and the norm of Aj is minimal (possibly larger than 1).
This definition is illustrated in figure 3b. 8; is main-
tained inside [—1, 1], while the size of &, is to be maxi-
mized as long as the system remains stable.

* Assume that A; reduces to a single real repeated
block Aj = 8,14, which is to be expanded on just one
side. Some uncertainties have indeed to be physically
positive, such as uncertain delays. The one-sided skewed
n “measure’ is then defined as:

VS (M) =1/8 @)

where the admissible model perturbation A = diag(Aj,
81y,) satisfies 7(A1) < 1, det(] — MA) =0 and the
norm of §; > 0 is minimal (possibly larger than 1). This
definition is illustrated in figure 3c. Here again, & is
maintained inside [—1, 1], while the size of §; is to be
maximized in the positive direction as long as the system
remains stable.

3. Some criteria revisited
3.1. Robustness analysis of flexible structures

When applying p-analysis to the standard inter-
connection structure M (s) — A of figure 2b, the s.s.v.

Aerospace Science and Technology



U Tools for flight control robustness assessment

Evaluation de la robustesse de lois de pilotage avec les outils de [1-analyse

181

8‘Z 82 82
=
= =
/:% .f,/
o -1 +1
; 81
//1 I %
i =
2= v 7/1//
BN
(a) (b) (c)

Figure 3. (a) Illustration of the definition of the w measure, (b) illustration of the definition of the skewed w measure v, (c) illus-
tration of the definition of the one-sided skewed © measure v*.

w(M (jw)) should be computed on the continuum of fre-
quencies w € [0, oo], and the robustness margin is then
obtained using equation (3). The most usual solution is
nevertheless to compute w(M(jw)) at each point of a
frequency gridding, and to make a regularity assumption
concerning the variation of i between the neighboring
frequency points.

This solution usually provides good results, except in
some special cases: when considering especially systems
with lightly damped modes, it is possible to obtain nar-
row and high peaks on the p plot, so that only a prohibi-
tively fine frequency gridding could find them. An
attractive solution in this case is to directly compute the
maximal s.s.v. over the frequency range, or — more inter-
estingly — over small intervals corresponding to the
peaks of the p plot.

A first idea is to consider an augmented p problem, in
which the frequency w is treated as an additional para-
metric uncertainty: a skewed p problem [I1] or a
one-sided skewed p problem [16] is then obtained. This
approach, despite its simplicity, appears however com-
putationally cumbersome in the case of high order trans-
fer matrices M(s). As a consequence, in subsec-
tions 4.2.1. and 4.3.2., we will rather focus on alternati-
ve approaches, which are computationally more efficient
and which have delivered good results in practical
examples [4, 9, 17].

3.2. Worst case phase and delay margin computa-
tion

The computation of a delay margin is a practically
important problem, since more and more flight control
system realizations are digital. As a consequence, time-
delays are to be accounted for at the controller outputs as
well as at the sensor outputs. It is moreover necessary
to take into account classical model uncertainties (i.e.
real parametric uncertainties and neglected dynamics) in
the computation of the delay margin.

1999, no. 3

Consider again the open loop aircraft model
Fy[H(s), Aj], where the real model perturbation Aj
gathers all parametric uncertainties (see figure 4).
Connect this model with the flight controller K (s) and
add at the plant input a phase block e~/?, which will be
used to represent an uncertain time-delay e~ *° at
s=jw. ¢ =0 (or t =0) and Ar = 0 correspond to
the nominal closed loop, which is assumed to be asymp-
totically stable.

The idea is to compute at each frequency w the worst
case value ¢*(w) of the classical SISO phase margin
(i.e. the minimal value of the phase margin, which is
obtained when the parametric uncertainties in Aj
belong to the unit hypercube). The corresponding delay

*
¢ (w). Let then
w

margin is then deduced as t(w) =

7* = min,, 7*(w) be the worst case delay margin; it can
be claimed that the closed loop is asymptotically stable
for all values of the time-delay 7 € [0, t*] and for all
parametric uncertainties in A; inside the unit hypercube.

Note that we consider for the sake of simplicity the
case of a single time delay, but that our method can be
extended to the general case of a closed loop system,
which is simultaneously subject to classical model
uncertainties (parametric uncertainties and neglected
dynamics) and to several uncertain time-delays [14].

The closed loop of figure 4 is first equivalently re-
written as the interconnection structure of figure 5a. We

wn 21

K(s) H(s)

Figure 4. An uncertain closed loop with time delay.
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then precisely define at each frequency w the notion of
worst case phase margin as the maximal value ¢*(w) of
¢ (w), such that:

—ié _
det(1~P1(jw)[e 0 1 AOzD;éO 9)

for all ¢ € [0, ¢(w)] and for all admissible model per-
turbations A satisfying o (Az) < 1.

The issue is now to compute at each frequency w the
worst case phase margin ¢*(w) defined above. The idea
is to replace e~/ by a real scalar § using:

1 —js

e 9 = .
1+ 8

(10)

The unit circle, which corresponds to ¢ € [0, 2], is
completely described when § € [—o0, +00]. Note espe-
cially that § € [0, +00] is equivalent to the lower half
circle of figure 6.

X

w1 2] b 2
P.(s) Py(s)
wo 29 w2 Z2
o
(a) (b)

Figure 5. New interconnection structure for the uncertain clo-
sed loop with time delay.

L/

d=1-¢=m/2

. 1 —j§
Figure 6. Representation of ¢™/¢ = l J'S in the complex

plane. +J
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: —2j8
We would like to realize /¢ — 1 = j_ as an
14 j8
LFT transfer F,(X,d), where X is a two dimensional
matrix: b
a
X = [C d] an
so that: d+8(ch )
co—a
F,X, )= ————. (12)
1 —aé
. o —2jé
When comparing with ¢=/¢ — | = —, the coef-
ficients of X are identified as: I+jé

X—|:—2j 0:|. (13)
When replacing ¢ /% — 1 by its LFT realization
F, (X, 8), the interconnection structure of figure 5a is
equivalently transformed into the one of figure 5b. This
new interconnection structure can then be rewritten as
the classical interconnection structure of figure 2b, in
which A = diag(8, A») only contains the initial structu-
red model perturbation A, and an additional parametric
uncertainty §. Because of the equivalence of the trans-
formation of figure 4 into figure 2b, equation (9) is equi-
valent, under some technical assumptions, to:

det (I—M(jw)[g Aoz]) £0.  (14)

The problem of computing the worst case phase mar-
gin has been consequently recast into a standard p pro-
blem involving the model perturbation A = diag(s, Aj).

A one-sided skewed p problem has been more pre-
cisely obtained. Our aim is indeed to compute the maxi-
mal value kmax of &, such that equation (14) is satisfied
for all § € [0, k] and for all admissible model perturba-
tions Aj satisfying (Az) < 1. ¢*(w) is then deduced
from kpmax as:

¢* (w) = arctan km;x for kmax € [0, 1]
T ~ "max
" (w) = — for kmax = |
2 k
¢*(w) = 7 + arctan m;x for kmax € 11, 00]. (15)
- kmax

Remark: see [14] for the practical implementation of
the method, which is more complex. Note especially that
if ¢*(w) > m, the upper half circle is considered in the
same way as the lower half circle, simply by multiplying
equation (10) by /7 = —1.

3.3. Frequency domain overshoot analysis

3.3.1. A technical result

We briefly present a technical result, which will play
a key role in the rest of section 3. Let H a given complex
matrix and Aj an admissible model perturbation. We
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would like to solve the following robust performance
problem, namely to check whether the norm of the LFT
transfer y = Fj(H, Ay) u of figure 7a remains less than
1, i.e. whether @ [Fj(H, Ay)] < Ifor all admissible
model perturbations A, satisfying o(Az) < 1.

Consider the augmented p problem of figure 7b, in
which A represents an additional full complex block.
The Main Loop Theorem [27] claims that, under some
technical conditions, @ [F;(H, A2)] < 1for all admis-
sible model perturbations A; satisfying o(Az) < 1 if
and only if ua(H) < 1, where A = diag(Ay, A2).

Assume now that we would like to compute the maxi-
mal value kmax of &, such that the norm of the LFT trans-
fer y = Fj(H, Ay) u of figure 7a remains less than 1 for
all admissible model perturbations Aj satisfying
G(Ay) < k.

Introducing here again an additional full complex
block Aj in figure 7b, and using a skewed version of the
classical Main Loop Theorem (see [10]), it can be proved
that kmax can be obtained as:

=Vv(H) (16)

kmax

accordingly to equation (7), i.e. the size k of the struc-
tured model perturbation Ay is to be maximized
(T(Aj) < k), whilst the size of the fictitious complex
block A remains less than | (G (A1) < 1).

3.3.2. Frequency domain overshoot analysis

Consider again the LFT transfer y = Fj[H(s), Az] u
of figure 7a. This may correspond, either to an open loop
transfer such as the parametrically uncertain aircraft
model, or to a closed loop transfer. Our objective is then
to analyze the worst case overshoot of the normalized
frequency response between the vector input u and the
vector output y, when the admissible model perturbation
satisfies o(Aj) < 1, i.e. all normalized parametric
uncertainties &; € [—1, 1]if Ay = diag($; /).

— A e
v | Y, L. -
H H
A, — Ay
(a) (b)

Figure 7. An augmented skewed p problem.
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A first solution is to use the technical result of sub-
section 3.3.1. A more sophisticated solution takes into
account the fact that this overshoot depends on the static
gain F; [H(0), Az]. The issue is now to check whether
the worst case overshoot is less than a given positive real
number L, i.e. whether the following relation is satisfied
for all admissible model perturbations Aj satisfying
o(A)) < 1t

3(1 hlH(e), A [H(jw)’A]) <1. (17

L F[H©O),A]

A realization of the transfer — ~La )AL,

realization o ranster — —————— 1S pro-
L RIH©O). A"

posed in figure 8a, as the transfer between i and y. Let

A = diag(A», Aj). The transfer of figure 8a can then be
rewritten as the LFT transfer ¥y = F; [13(5), A] u of

figure 8b, i.e. Ay is now repeated twice in the new struc-

tured model perturbation A.

It suffices now to apply the technical result of subsec-
tion 3.3.1. to the LFT transfer F; [P(jw). A], ie. to
consider a new augmented model perturbation
A = diag(A |, A), where Ay is a fictitious full complex
block.

3.4. Limit-cycles analysis

3.4.1. A technical result

We first introduce a technical result, which will be
used afterwards. Consider the interconnection structure
of figure 7b, and partition H compatibly with the A;’s as:

Hyp Hp
H = . 18
|:H21 Hy) (18)

As a consequence:
Fi(H, Ay) = Hy| + Hi2Ay (I — HoAy) ™! Hap (19)
Fu(H,A)) = Hy + Hy Ay (I — HiiA)~™' Hip. (20)

Ps)

(a) (b)

Figure 8. LFT representation for overshoot analysis (a) nor-
malized (b) final.
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Using classical properties of the determinant, and
especially the fact that:

det([é gjl):det(A)det(D—CA_lB) Q1)

where A, B, C, D are complex matrices of suitable
dimensions, it can be proved that:

det(I—H[AO‘ Aoz])

=det(I — HpAy)det (I — Fi[H, Ay] Ay)
=det(I — Hy1Ay)det (I — Fu[H, Aj]A,).

As a consequence, under the assumption that
det(/ — Hy1 A1) # 0 and det(I — HypAjy) # 0, the fol-
lowing key property is obtained:

Al
det(I—H[O A])#O
> det(I — Fi[H, A2l A1) #0
> det(I — Fy[H, A11A2) £0.  (22)

Refering to the definition of the s.s.v. in section 2.2.,
equation (22) can be treated by the computation of the
p-measure. Noting that w(M) = (M) if the model
perturbation is a full complex block, equation (22)
appears to be the basis of the classical Main Loop
Theorem of section 3.3.1.

3.4.2. Non-linear analysis

Consider now the closed loop system of figure 9a.
Here again, the LFT transfer F;[H(s), A;] represents
the parametrically uncertain aircraft model, while X (s)
is the flight control system. ® represents a non-linearity
such as a rate limiter or a saturation on the controller out-
put. Note that for the sake of clarity, we thus consider in
the following the case of a single MIMO non-linearity ®.
The method which we present can be nevertheless exten-
ded to the general case of several MIMO non-linearities
occurring at various locations of the closed loop [12].

IV (X, w
u y
S v Ij :l
L
w 2 P(s)
A
(a) (b)

Figure 9. Interconnection structure to detect limit-cycles in the
presence of LTI parametric uncertainties.
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We first introduce the classical Sinusoidal Input
Describing Function (SIDF) N(X, w) of a SISO non-
linearity & (the definition can be readily extended to the
case of a MIMO non-linearity). A sinusoidal input
u(t) = X sin(wt) is applied to ®. The output of the non-
linearity, which is supposed to have odd symmetry, can
be written as:

y(t) = Psin(wt) + Q cos(wt) + €(t) 23)

where €(¢) contains the super-harmonic part of the si-
gnal y(¢). The SIDF is then classically introduced as the
gain:
P
N(X,w) = +—]Q (24)
X
In the context of the first harmonic approximation, the
closed loop signal () is typically assumed to be filte-
red by the low-pass transfers Fi[H (s), Aj] and K (s).

As a first problem, we would like to detect a limit-
cycle in the presence of parametric uncertainties in A,.
To this aim, the MIMO non-linearity ® is replaced by its
corresponding gain matrix N(X, w) in the closed loop
system of figure 9a, and the new closed loop system of
figure 9b is obtained (in which P(s) represents an inter-
connection of the transfer matrices H(s) and K(s)).
Under the assumption that the first harmonic approxima-
tion above is valid, a very classical necessary condition
for the existence of a limit-cycle with magnitude X and
frequency o is:

det(/ — N(X,w) Fj[P(jw), A2]) =0. (25)

Using the method of subsection 3.4.1., it can be noted
that then equation (25} is satisfied if and only if:

det(/ — F, [P(jw), N(X,w)] A) =0, (26)

X and w are fixed. The issue is then to find the minimal
size of the model perturbation Aj, which satisfies the
above equation. This size is obviously given by

1

u(F[P(jw), N(X, 0)])’

As a second problem, we would like to compute the
maximal amount of parametric uncertainties in A,, for
which it can be guaranteed that no limit-cycle occurs.
The non-linearity @ is now replaced by N(X, ) + A
in the closed loop system of figure 9a, and figure 10a is
obtained. Roughly speaking, A; may be considered as a
block of neglected dynamics, which is used to take into
account the super-harmonic part €(¢) of the 51gnal y(t).
Aj is only known by the relation:

o (A < a(X, w) 27

where a(X, o) is a known function of the magnitude X
and frequency w of the limit-cycle. For the sake of sim-
plicity, we assume a(X, w) = 1 in the following.
Figure 10a is then reshaped into figure 10b. A suffi-
cient condition for the absence of limit-cycles in the
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closed loop is then given by the following weak gain
condition, which is to be satisfied for all admissible
model perturbations Aj:

o (F[Q(X,w), Az]) < 1. (28)

Remember F;[Q(X, w), Ay] corresponds to the LFT
transfer between w and z in figure 10b with Ay = 0.
For given values of X and w, the problem consequently
reduces to the problem of computing the maximal
amount of parametric uncertainties in A, for which the
sufficient condition (28) for the absence of limit-cycles
remains satisfied. Using the technical result of subsec-
tion 3.3.1., an augmented skewed u problem is obtai®
ned, which involves the augmented model perturbation
A = diag(A1, Ap).

B

N(X, O w L] L1z
(%) Pljw) e |

(a) (b)

Figure 10. Interconnection structure to guarantee that no limit-
cycles occur in the presence of LTI parametric uncertainties.

4. Computation of 1 bounds

4.1. Introduction

Many methods exist for computing (. Before briefly
presenting a few methods in the following subsections,
note that these techniques can be classified using various
criteria:

* The algorithm may be exponential-time or polyno-
mial-time, i.e. its computational effort may be an
exponential or polynomial function of the number of
uncertainties. Note that the computation of the struc-
tured singular value u is a NP-hard problem, so that
any algorithm which computes the exact value of u
is exponential-time. As a consequence, for large
dimension problems, lower and upper bounds are
computed for u, instead of the exact value, using
polynomial-time algorithms.

* The algorithm provides, either the exact value of u,
or a u lower bound, or a u upper bound.

* Some algorithms are just applicable to special
classes of model uncertainties. A great deal of work
has been especially devoted to the computation of
the real (or the bounds of the real) s.s.v., i.e. only
parametric uncertainties can be dealt with.
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Conversely, some methods only deal with complex
uncertainties (typically neglected dynamics at
various locations of the closed loop).

* The algorithm can compute a u bound, either at a
given frequency w, or directly over the frequency range
(using thus a frequency sweeping technique, as in sub-
sections 4.2.1. and 4.3.2.; see also section 3.1. for its
motivation).

4.2. u lower bound computation

4.2.1. Frequency sweeping techniques

As already mentioned in section 3.1. one possibility to
treat the p—computation without frequency gridding is to
consider the frequency as an additional uncertainty. The
problem is that the frequency will then be a real uncer-
tainty 8 repeated as many times as the number of states
of the considered system. Obviously, this approach will
be computationally cumbersome in the case of high
order systems.

A new algorithm (called later algorithm 1) which
computes a lower bound of the peaks of the u curve is
introduced in [4, 21]. This algorithm is efficient for
mixed or purely real uncertainties. From the fact that fre-
quency gridding is not used, the proposed polynomial-
time algorithm is very fast and the risk to miss high, nar-
row peaks due to flexible structures is minimized. This is
quite useful in a design cycle in which it is necessary to
detect worst cases; see [20] in this issue and [24].

The idea beyond this technique consists in shifting the
eigenvalues towards the imaginary axis with a minimum
norm perturbation. An adaptation of the pole migration
technique of [23] is used. The proposed algorithm is
divided into two steps. After the first step the limit of
stability (i.e. the imaginary axis) is reached with a model
perturbation of minimum Frobenius norm. The second
step consists in minimizing the ‘sigma-max norm’ of the
perturbation obtained after the first step while remaining
at the limit of stability.

4.2.2. Pointwise computation

See [30] for the so-called polynomial-time Standard
Power Algorithm SPA. It computes a mixed pu lower
bound at a given frequency o via a fixed-point algo-
rithm. The application of the SPA is restricted by the use
of frequency gridding and convergence problems pro-
voked by limit-cycles (especially with real and repeated
complex scalars). In [26, 28] convergence improvements
are proposed at the cost of increasing computational
time.

Two different combinations of [30] with the approach
of the previous section exist:

« Initialization of the SPA with the results of the

Frobenius norm optimization algorithm, see also [22].
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* The method proposed in [9]: First, the so-called
regularized p problem is solved (i.e. adding some
complex scalars to improve the convergence charac-
teristics of the SPA). A mixed model perturbation
matrix A" is obtained which renders the closed loop
system marginally stable. Its complex parts are omit-
ted, hence the resulting model perturbation matrix
A’ does not render the system unstable anymore. An
LP algorithm, based on the approach of the previous
section, is used to adjust A’ so that the system
becomes again unstable. The smallest destabilizing
model perturbation matrix A is obtained. This algo-
rithm will be called algorithm 2.

In [3] an exponential-time algorithm is proposed
which is restricted to real uncertainties and based on
frequency gridding.

4.3. 1 upper bound computation

4.3.1. Pointwise computation

See [27, 31] for the polynomial-time computation of a
complex or mixed u upper bound with frequency grid-
ding.

Two sets of scalings are considered having the same
structure as A, see (5):

* D: D; =D} > 0 and D; € C"*" for real and com-
plex repeated blocks. D; = d; I, and d; > 0 for full
complex blocks. D € D is consequently a positive
definite matrix;

* G G; =G} and G; € C"*™ for real repeated
blocks. G; = 0 for other blocks. G € G is an hermi-
tian block diagonal matrix,

or respectively:

¢ D: det(D;) # 0 and é, € C">*" for real and com-
plex repeated blocks. D = d;I,,and d; #0, d; € C
for full complex blocks. D € Disnot anymore posi-
tive definite;

* G: G =diag(g;) and g; € R _for real repeated
blocks. G = O for other blocks. G € G is a real dia-
gonal matrix.

We shall use the following well known result (see [31]).

Lemma 4.1. The Laplace variable s being fixed, let
D €D, G e G and B be such that

MH©DM(s) + | [GM(s) - MmH (s)G] <D (29

then
u(M(s)) < B. (30)

The problem of finding the best upper bound B of
w(M(s)) is equivalent to the problem of minimizing S
under the LMI condition of equation (29). It is known as
a (quasi-convex) generalized eigenvalue problem: For
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fixed D and G the problem recasts to an eigenvalue pro-
blem, and if S is fixed a priori, it is possible to find D
and G satisfying (29) by solving an LMI as the problem
becomes linear (and hence convex) in D and G. The sca-
lings D and G and the best § are determined at all points
of a frequency gridding.

In [31] an alternative formulation of the p upper
bound is derived:

Lemma 4.2. The Laplace variable s being fixed, let
D €D, G €G and B be such that

) H-1
EI:F‘IM % —j6> F“'/“] <1 @31

with F =1+ 52, then
n(M(s)) < B.

This second equivalent formulation involves the mini-
mization of a singular value o. As a consequence, the
mixed p upper bound can be computed, either using effi-
cient methods for solving LMIs [2], or using a specific
algorithm which takes into account the particular struc-
ture of the optimization problem [31].

A completely different exponential-time algorithm
applying frequency gridding for a real u upper bound is
proposed in [19]. At least in the pure real case, it delivers
a better upper bound than the algorithm of [27].

4.3.2. Frequeney sweeping techniques

See [11, 16, 18] for preliminary methods based on the
consideration of an augmented p problem which
consists in treating the frequency w as an additional
parametric uncertainty. This will at least be repeated as
many times as there are system states so that the compu-
tation becomes difficult, even impossible for high order
systems.

Hence, the following two new algorithms are cited.
They are based on the same idea.

We take advantage of the knowledge of the lower
bounds of peak values of p. Let pmax be the highest
lower bound available. In order to validate this result say
with 10 % accuracy, it suffices to consider a test value
ur = 1.1 umax and to check that w is lower than this
value for all frequencies.

Thus the problem consists in finding intervals of fre-
quencies for which a given pair of scalings Dg and Gy
(see section 4.3.1.) enables us to conclude that u is less
than 7. For a graphical determination of these intervals
see [25] and the example treated in section 5.

A first analytical description of these intervals is deri-
ved in [8] and is based on the p upper bound formula-
tion as the singular value minimization of lemma 4.2.
The corresponding algorithm will be called algorithm 3.
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A second analytical derivation of these intervals
based on the p upper bound formulation as the minimi-
zation of a generalized eigenvalue problem of
lemma 4.1. is given in [25]. In the following we will
speak of algorithm 4.

The main idea is that checking equation (30) with
B = ur on a frequency interval w € [w~ ] around
wp reduces to finding the eigenvalues w™ and w™ of the
matrix

H=A+B (M%DO—B)— C (32)
where

T A o 1.5- B
|1 cTpgc AT |7 T cTDyD — jCTGy
C =[D"DyC + jGoC —BT)

D= (GOD — D" Go) + DTDoD
depending on the state space realization (A, B, C, D)
of M(s) and two scalings Gq and Dy satisfying (20) for
s = jwg.

4.4. Skewed and one-sided skewed y methods

We do not detail these methods, which compute a ske-
wed or one-sided skewed p bound at a given frequency
w, and refer the interested reader to the following refe-
rences:

* A skewed u lower bound is presented in [10], whe-
reas two different skewed p upper bounds are pre-
sented in [10, 11, 13]. All three associated algo-
rithms are polynomial-time, and the general case of
a mixed model perturbation is considered.

» See [16] for a one-sided skewed p upper bound. The
method, which is polynomial-time, is applicable to a
generic mixed model perturbation.

* See also [7] for exponential-time methods, which
compute a lower and an upper bound of the real one-
sided skewed s.s.v..

5. Example

To give an idea of how to use the above-mentioned
tools and of how could look like the results of
pn—analysis, we will apply algorithms 1-4 to the example
of the robustness analysis of the flexible space structures
of [17].

It is a system of 70th order with parameter uncertain-
ties on the 10 flexible modes. The real parameter uncer-
tainties are normalized to the interval §; € [—1; 1] by a
value §; max. They appear twice repeated, so that the per-
turbation matrix A is of size 20 x 20.
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5.1. Lower bounds

The results of the p lower bound computation are
given in figure 11. The * represent its two peaks calcu-
lated by algorithm 1 and the o those by algorithm 2.
Both algorithms deliver almost identical results. The
higher peak of the lower bound appears with p = 0.47 at
a frequency of 8.2rad/s, its robustness margin is
kmax = 1/ = 2.13. Hence, the §; can vary between
[—2.13; 2.13] before the system becomes unstable, i.e.
the system remains stable within the expected range of
the parameters §; max. it is robust. On the other hand, if
kmax becomes smaller than 1 (u > 1), the system
becomes unstable within the parameter range for a cer-
tain combination of the §;. This critical perturbation A
is directly delivered by both algorithms. The feedback of
A with M(s) gives the so-called worst-case, the sys-
tem’s configuration which is first destabilized and for
which an improved control design should be elaborated.

We initialize algorithm 1 with just the system and the
uncertainty structure. For algorithm 2 a vector of fre-
quencies has additionally to be defined.

The SPA of [30] implemented in the mu command of
MATLAB does not converge on the tested frequency band
when launched with standard options and 100 frequency
points to check. With more frequency points and more
accurate options, it should converge as well, but the com-
putation time increases immediately to unacceptable
values. Furthermore, the initial problem remains that
because of the gridding, a narrow, high peak can still be
missed. It is initialized with the system, the uncertainty
structure and a vector of frequencies.

5.2. Upper bounds

mu does not only compute a lower, but also an upper
bound (using [27]) on the tested frequency band. As

5

g
5 bar p upper bound from aigorithm 3
s o ulower bound from atgorithm 2
5E * u lower bound from algorithm 1
@
3t
5
2+ — B
f l |

L]

Figure 11. p—plot for flexible space structures.
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1 upper bound test with 2% tolerance by algorithm 4
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Figure 12. 1 upper bound test (a) with 10 % tolerance (b) with 2 % tolerance.

before, launched with standard options and 100 frequen-
cy points, this upper bound is known to be too conserva-
tive for real uncertainties. With more points and more
accurate, but too time-consuming options, it should deli-
ver similar results for the upper bound, as in figure 11
when it does not miss the peak because of gridding.

The bars in figure 11 represent the frequency intervals
where w is inferior to the value given by the bar height.
That is the result of algorithm 3. At both peaks the upper
bound is very close to the lower bound, the difference is
about 0.5 %, hence no conservatism. Hence, the exact
value of p is tightly determined. Not only is a worst-case
identified, but robustness is ensured as well.

Similar conclusions can be drawn from the results of
algorithm 4 in figure 12a and figure 12b. The * represent
again the peaks of the lower bound given by algorithm 1.
Starting from these peaks, the intervals are eliminated
where p is inferior to the test value (horizontal line)
ur = 1.1 max(u) (ur = 1.02 max(u) respectively)
with constant scalings Dy and Gy. One curve starting at
low w values and reaching w7 corresponds to one set of
Dg and Gy.

In both cases all intervals can be eliminated, so that on
the tested frequency band, ur = 0.52 (or ur = 0.48
respectively) is an upper bound of the exact value of w«.
In the case of 10 % tolerance 5 scalings have to be deter-
mined, in the case of 2 % tolerance 10 scalings. The
additional scalings are located around the peak value of
the lower bound. Hence, the more exact the upper bound
is, the more time-consuming is the computation. This
explains the higher computation times of the algorithm
given in [27] as it determines scalings for each treated
frequency point. For flexible structures a lot of points are
necessary to track narrow, high peaks, so typical ratios of
scalings (and hence in computation time) will be about
1/500 in favor of algorithm 4.

The initialization of algorithm 4 is done by the sys-
tem, the uncertainty structure, the frequencies correspon-
ding to the peak values of the lower bound and finally by
limit frequencies defining a range where to check 7.

Algorithm 3 is initialized by the system, the uncer-
tainty structure, the N frequency points treated simulta-
neously (here N = 2), a vector of initial frequencies and
the desired tolerance. Remark: 40 initial points are large-
ly sufficient as the algorithm itself refines the intervals
where necessary (see the different bar widths in figu-
re 11). Finally, about 50 scalings have to be computed.

6. Conclusions

This article gives an idea of what are the p-measure
and its derivatives and how they could be used for aero-
nautical applications: e.g. the determination of control
law robustness of flexible structures, the determination
of phase and delay margins and linear and non-linear
analysis of PIO effects. The example shows how to use
the algorithms and how to interpret their results. Hence,
this article should rather be understood as an invitation to
use these new methods in flight control analysis and
design. For a deeper insight we refer to the detailed refe-
rence section.
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