
Chapter 10

THE GENERAL ELASTICITY
PROBLEM IN SOLIDS

In Chapters 3-5 and 8-9, we have developed equilibrium, kinematic and constitutive equations for
a general three-dimensional elastic deformable solid body. In this chapter, we will summarize these
equations for the one-, two- and three-dimensional states of stress. We will find that in each case,
a system of equations will be obtained that must be solved with appropriate boundary conditions
for the particular problem being addressed. The solution procedure for the general case will also be
addressed in this chapter.

10.1 Necessary Equations for a 3-D Stress State

For a linear elastic solid under static equilibrium, we can now summarize the following three sets of
equations for any 3-D body:

1. Static Equilibrium Equations (Conservation of Linear Momentum)

x-component:
∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ ρgx = 0

y-component:
∂σxy

∂x
+

∂σyy

∂y
+

∂σzy

∂z
+ ρgy = 0 ⇐ 3 equations (10.1)

z-component:
∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
+ ρgz = 0

2. Constitutive Equations for a linear elastic isotropic material are given by (no thermal effects
included):

εxx =
1
E

[σxx − ν (σyy + σzz)]

εyy =
1
E

[σyy − ν (σxx + σzz)]

εzz =
1
E

[σzz − ν (σxx + σyy)]

εxy =
1 + ν

E
σxy ⇐ 6 equations (10.2)

εyz =
1 + ν

E
σyz

εxz =
1 + ν

E
σxz
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Alternately, (10.2) may be inverted to yield:

σxx =
E

(1 + ν)(1 − 2ν)
[(1 − ν) εxx + νεyy + νεzz]

σyy =
E

(1 + ν)(1 − 2ν)
[νεxx + (1 − ν) εyy + νεzz]

σzz =
E

(1 + ν)(1 − 2ν)
[νεxx + νεyy + (1 − ν) εzz]

σxy = σyx =
E

1 + ν
εxy (10.3)

σxz = σzx =
E

1 + ν
εxz

σyz = σzy =
E

1 + ν
εyz

3. Kinematics (Strain-Displacement) equations for small strain are given by

[ε] =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz




=
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 (10.4)

⇐ 6 equations

Consequently, for the general 3-D linear elasticity problem, we have a system of 15 governing partial
differential equations:

• 3 equilibrium (linear momentum) equations for σ

• 6 constitutive equations ([σ] = [C] {ε})

• 6 kinematic (strain) equations ({ε} = function of displacement gradients)

that relate the 15 unknown variables

• stresses (6),

• strains (6) and

• displacements (3).

The 15 governing equations are coupled partial differential equations that must be solved simultane-
ously. As in the solution of any differential equation, boundary conditions must be specified to solve
this boundary value problem. These boundary conditions must be either displacements or tractions
on every point of the boundary.

10.2 Necessary Equations for a 2-D Stress State

There are many special cases of the general elasticity problem that are of practical interest (and can
be solved!). These include Plane Stress and Plane Strain problems.



10.2. NECESSARY EQUATIONS FOR A 2-D STRESS STATE 231

σxx

σyy

σyx

σxy

x

y
z

Figure 10.1: Plate in State of Plane Stress

Plane stress occurs in thin bodies which have non-zero stresses in one plane only (and all out-of-
plane stresses are zero). For example, in the x-y plane, we have:

For a geometry that is plane stress in the x-y plane, we assume σzz = σxz = σyz = 0. The stress

tensor reduces to [σ] =




σxx σxy 0
σxy σyy 0
0 0 0


 and

1. Static Equilibrium becomes

x-component:
∂σxx

∂x
+

∂σyx

∂y
+ ρgx = 0

y-component:
∂σxy

∂x
+

∂σyy

∂y
+ ρgy = 0 (10.5)

2. Constitutive Equations for a linear elastic isotropic material in plane stress condition be-
come (have to substitute plane stress requirement of σzz = σxz = σyz = 0 into general
equations for strain):

εxx =
1
E

[σxx − νσyy]

εyy =
1
E

[σyy − νσxx]

εxy =
1 + ν

E
σxy (10.6)

εzz = − ν

E
(σxx + σyy)

Alternately, (10.6) may be inverted to yield:

σxx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εxx + νεyy + νεzz]

σyy =
E

(1 + ν)(1 − 2ν)
[νεxx + (1 − ν)εyy + νεzz]

σzz = 0

σxy =
E

(1 + ν)
εxy (10.7)

σxz = 0
σyz = 0
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3. Kinematics (Strain-Displacement) equations become

[ε] =




εxx εyx 0
εxy εyy 0
0 0 εzz


 =




∂ux

∂x
1
2

(
∂uy

∂x + ∂ux

∂y

)
0

1
2

(
∂ux

∂y + ∂uy

∂x

)
∂uy

∂y 0

0 0 ∂uz

∂z


 (10.8)

Note that for 2-D plane stress, we have 8 unknowns (3 stresses, 3 strains, and 2 displacements).

10.3 Necessary Equations for a 1-D Stress State

Consider the case where a uniaxial load is applied to a uniaxial bar oriented in the x direction. For
this one-dimensional state of stress, only σxx exists and σyy = σzz = σxy = σxz = σyz = 0. We have
the following set of necessary equations:

1. Static Equilibrium becomes

x-component:
dσxx

dx
+ ρgx = 0 (10.9)

2. Constitutive Equation for a linear elastic isotropic material becomes:

σxx =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εxx + νεyy + νεzz]

εxx =
σxx

E
, (10.10)

εyy = −νσxx

E
,

εzz = −νσxx

E

3. Kinematics (Strain-Displacement) equation becomes

[ε] =




εxx 0 0
0 εyy 0
0 0 εzz


 =




∂ux

∂x 0 0
0 ∂uy

∂y 0
0 0 ∂uz

∂z


 (10.11)

For the 1-D case, we have 3 unknowns: 1 stress (σxx), 1 strain (εxx) and 1 displacement (ux). The
other non-zero strain and displacement components appearing in equations (10.10) and (10.11) can
be written in terms of the three unknown quantities listed previously. It must be noted that while
there is only one non-zero stress (σxx), this stress produces non-zero strains normal to the direction
of loading (εyy and εzz)) due to the Poisson’s ratio effect.

10.3.1 1-D Special Cases

All of the general 3-D equations relating stress, strain and deformation may be specialized to some
important 1-D cases which involve long, slender geometries like beams, rods, bars, tubes, etc. in
which the stress state is 1-D. In the following chapters, we will consider in detail three special cases:
bars in tension, bars in torsion and beam bending. Typical examples of these are shown below.

• Bar with axial force only

• Bar (or pipe) in torsion

• Beam in bending

In each case, we will develop expressions for the appropriate displacement (or twist) and stress
within the body as function of position within the body.
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10.4 General Solution Procedure

The governing equations are for an elastic solid body are in general a system of coupled partial differ-
ential equations that must be solved simultaneously. As in the solution of any differential equation,
boundary conditions must be specified to solve this boundary value problem. These boundary condi-
tions must be either displacements or tractions on every point of the boundary. Consequently, for
every problem we must satisfy the following four (4) sets of equations:

Four Sets of Equations to be Satisfied for Any Solid Deformable Body
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3-D 2-D 1-D
Static Equilibrium Equation (from COLM): (10.1) (10.5) (10.9)
Constitutive Equation (Stress-Strain): (10.3) (10.7)∗ (10.10)
Kinematics (strain-displacement): (10.4) (10.8) (10.11)
Boundary Conditions: Depends on problem geometry and loading

∗ for plane stress condition

Example 10-1

Consider a uniaxial bar that experiences a simple extension in the x direction under a uniform
loading σ = σ0 on the end surfaces as shown below:

    

L

σ0

n

x x

y
y

σ0

Figure 10.5:

Try σxx = σ0, σyy = σzz = σxy = σxz = σyz = 0

• Equilibrium equations:
identically satisfied

• Constitutive Equations

εxx =
1
E

[σxx − ν(σyy + σzz)] =
σ0

E

εyy =
1
E

[σyy − ν(σxx − σzz)] = −ν
σ0

E

εzz =
1
E

[σzz − ν(σyy + σxx)] = −ν
σ0

E
εxy = 0 (10.12)
εxz = 0
εyz = 0

• Kinematics

ux =
(σ0

E

)
xx, uy = −

(νσ0

E

)
xy, uz = −

(νσ0

E

)
xz (10.13)

Substitute σ0 = P
A into the equation for u:

ux =
Px

EA
(10.14)
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• Boundary Conditions:
[
t(n)

]
= [n] · [σ]

lateral surface :
[
t(n)

]
=

[
0 n2 n3

]



σ0 0 0
0 0 0
0 0 0


 =

[
0 0 0

]

end surfaces :
[
t(n)

]
=

[
1 0 0

]



σ0 0 0
0 0 0
0 0 0


 =

[
σ0 0 0

]

x = L

x = 0 →
[
t(n)

]
=

[
−1 0 0

]



σ0 0 0
0 0 0
0 0 0


 =

[
−σ0 0 0

]
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Deep Thought  

Collaborative learning brings you one step closer to the 
solution steps of BVP in continuum mechanics.  


