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Grading
• A grade will be determined as follows:

– Exam #1 25 percent
– Exam #2 25 percent
– Final 35 percent
– Homework 15 percent

• Exams will be either in-class or take-home.  HW 
will be from the book and/or from class hand-outs.

• If a project is undertaken in the class, the relative 
weighting above will be changed.
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Course Objectives
• Comprehension of the structure of classic theory 

of elasticity
• Ability to recognize and formulate a well-posed 

problem
• Exposure to a variety of topics within the theory
• Presentation of basic theorems and solution 

techniques
• Illustration of alternate approaches to the same 

problem
• Ability to use the principle of superposition 

effectively
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Preamble – Mech. Of Materials
In elementary mechanics of materials we study simple 

element’s deformation under loading.  Usually the 
problems solved with the mechanics of materials approach 
are restricted to bars, circular shafts, beams, and frames.
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Generally, significant kinematic simplifying assumptions are 
made in obtaining mechanics of materials solutions.
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Preamble – Elasticity Solutions
• Elasticity with its general theory allow more 

difficult problems to be solved exactly such as:

Plate with a hole Solid with spherical inclusion

Stress concentration at a crack tip
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Preamble – Elasticity Solutions

Torsion of noncircular cross section

Circular punch problemHertz contact problem

Wedges
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Preamble - Elastodynamics
Wave propagation is a topic which generally 

falls under the category of elasticity.  Small 
amplitude stress waves travel through solids 
at speeds determined from the material’s 
elastic properties.  Applications include:
– measurement of elastic moduli
– measurement of residual stress
– measurement of texture
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Preamble – Nonlinear Elasticity
Some materials don’t exhibit linear stress-

strain behavior to any extent
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Preamble - Common Aspects
• For each of the topics discussed there are 

both undergraduate and graduate courses 
devoted to each.  Yet there is quite a bit in 
common among them.
– All of the previously mentioned topics have 

material occupying space.
– Newton’s Laws are valid for all topics
– To solve specific problems in any discipline 

boundary conditions must be applied.
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Preamble - Common Aspects
Continuum mechanics lays the 

foundation for the study of these 
problems. 
– material particles
– description of position
– stress-strain relationships
– boundary conditions
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Preamble – Course Outline
• Review of material assumed known
• Some basic theorems of elasticity
• St. Venant’s problem and its relationship to 

mechanics of materials
• The plane problem
• Three dimensional elasticity
• Nonlinear elasticity
• Anisotropic elasticity (Stroh formalism)
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Engineering Materials

• Structural foam
– no Poisson’s ratio

Iron -- BCC at room temperature

CH2
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• In mathematics a point has 
no dimension.  Even in a 
metal a point within the 
boundary could be found 
which has no material 
occupying that position.

• A rubber, say trans 1,4
polybutadiene, is made up 
of carbon and hydrogen 
atoms connected in a 
repeating mer shown to 
the right.
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Continuum Concept
• Material properties are assumed to be the same no matter 

how many times we subdivide the region of interest.

• By doing this, we can utilize mathematical tools involving 
continuous functions and obtain “exact” solutions.

• Before we tackle any problems, we must learn about 
tensors, indicial and direct notation, linear algebra, and 
vector calculus (using indicial notation!).  This is similar to 
an undergraduate student mastering vector components in
Statics and Dynamics.
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Review of material assumed known
a) Preliminaries

i. Vectors, tensors, Cartesean tensors
b) Stress

i. Definition, principal stress
c) Kinematics of deformation

i. Position, displacement, strain
ii. Infinitesimal linear displacements

d) Constitutive relationships
i. elasticity
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Tensor Basics
Tensor Order Class Examples

0th Scalar temperature,
density, speed

1st Vector
(have

directional
properties)

velocity, force,
acceleration

2nd Tensor stress, strain,
moment of
inertia

There are 3rd, 4th, and higher order tensors which are common but have not 
been listed in this table.
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Tensor Definition
• A tensor is a quantity which is 

invariant under an admissible 
coordinate transformation.

• What is meant by invariant?

• Say each of us has a rectangular 
coordinate system having x
pointing away from our chest, z
points up, and y is directed 
towards our left.  Each of us 
stands on opposing sides of 
Third Ave. and observes a 
vehicle pass by.  

v = 30 mph

z’

y’

x’

x

y

z
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Another Tensor Example
As an example of a second-order tensor, consider the stress on an element 
on the outside of a circular bar in pure torsion.

The admissible coordinate transformation is a 45° rotation about the z 
axis.
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Vector Components
• Since we will be talking about 

coordinates which may be 
changing, a general notation 
must be used.

• Cartesian coordinates x1, x2, and 
x3 will define three mutually 
orthogonal directions (these 
replace x, y, and z).

• are unit vectors 
pointing in the x1, x2, and x3
directions, respectively (these 
replace                    ).

, ,e e e1 2 3 and 

, ,i j kand 

v

1ê

2ê

3ê x1

x2

x3 The “hat” designates
a unit vector.
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Any vector can be written in terms of components 
along these three mutually orthogonal directions.

3

1 1 2 2 3 3
1

ˆ ˆ ˆ ˆi i
i

v v v v
=

= + + =∑v e e e e

ˆi iv=v e

This is called the summation convention.

We drop the summation sign and understand that 
indices will range from 1 to 3, and that indicies
repeated once imply summation from 1 to 3.
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Compound Products of Vectors
• component form of triple product

[ ], ,⋅ × = × ⋅ =u v w u v w u v w

ijk i j ku v wε⋅ × =u v w
• component form of triple product
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Permutation-Kronecker Eqs.
The Kronecker delta and permutation symbol 

have the following useful identities

miq jkq mj ik mk ijε ε δ δ δ δ= −

mkq jkq jmε ε δ=

6ijk ijkε ε =
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Tensor Product of Two Vectors
The tensor product of two vectors results in a dyad.

ˆ ˆ ˆ ˆi i j j i j i ja b a b⊗ = ⊗ = ⊗a b e e e e

( )⊗ ⋅ = ⋅a b v a b v

( )then  for all = ⊗ ⋅ = ⋅T a b T v a b v v

Tensor products are defined through their action on an arbitrary vector v. 
The following relation must hold:

If vectors a and b form a tensor T through the tensor product, then

This relationship will be used later when stress is studied.
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Transformation of Cartesian Tensors
It is often necessary to write 

the components of a tensor 
in terms of another 
reference frame.  Such is 
the case in elementary 
mechanics of solids when 
Mohr’s circle is used.

Consider an unprimed 
reference frame and a 
primed reference frame    .

ei 'ei

x1

x2

x3
1x′

1
11cos a−

1
12cos a−

1
13cos a−

1ê

2ê
3ê
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Directly from the sketch on previous page, the unit vectors 
are related to each other as follows:

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

a a a
a a a
a a a

′ = + +
′ = + +
′ = + +

e e e e
e e e e
e e e e

ˆ ˆi ij ja′ =e e

ˆ ˆij i ja ′= ⋅e e
A convenient way to display the components of aij, the 

transformation matrix, is by a transformation table.

Or, more compactly 

where
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Transformation Table

    

 

11a
 12a

 13a
 

 

21a
 22a

 23a
 

 

31a
 32a

 11a
 

 

 

1ˆ′e

2ˆ′e

3ˆ′e

1ê 2ê 3ê
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Transformation of a Vector

This gives the components of v in the primed system 
in terms of the components in the unprimed 
system (a transformation). It can be shown that

which means that the transformation matrix is an 
orthogonal matrix.

To transform an arbitrary vector, simply transform 
the unit vectors and let the components tag along.

  or  T
j ji iv a v′ ′= = =v Av vA

T  or  ij ik jka a δ= =A A I
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Transformation of a Vector cont.

Using the orthogonality of the transformation matrix 
allows us to derive an inverse between vi and vi’.

(Notice the difference in the indice’s order in the two transformation equations.  This 
difference determines whether to use A or AT in the direct, or symbolic, notation.)

j ji i

jk j jk ji i ki i k

v a v

a v a a v v vδ

′ =

′ = = =

  or  T
k jk jv a v′ ′= =v A v
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Transformation of a Tensor
For a second-order tensor the transformation 

matrices are applied twice: once for each free
indice.

In general,  for an arbitrary tensor of any rank, the 
transformation equation can be written as

  or  

  or  

T
ij iq jm qm

T
ij iq mj qm

T a a T

T a a T

′ ′= =

′ ′= =

T ATA

T A T A

ij k iq jm kp qm pR a a a R′ =
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Invariants of a Tensor
Three quantities composed from a tensor’s 

components are invariant under an admissible 
coordinate transformation.  These quantities are 
called the invariants.

  or  iiI T I tr= = T

( ) ( ) ( )2 21 1  or  
2 2ii jj ij ijII T T T T II tr tr = − = − T T

1 2 3   or  detijk i j kIII T T T IIIε= = T

Note: Often  I = I1 , II = I2 , III = I3
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Linear Algebra Review
In general, a second order tensor T operating on a vector v results in another 

vector w.  Vectors v and w are, in general, completely different vectors.

  or  ij j iT v w⋅ = =T v w

  or  ij j iT v vβ β⋅ = =T v v

b is a scalar called an eigenvalue

( ) 0ij j i j ji ij ij jT v v v T vβ β δ βδ= = ⇒ − =

From this definition, 

However, if a nonzero vector v is such that when T operates on it the resulting 
vector w is parallel to v, then v is called an eigenvector of the tensor T.

(1)

(2)

(3)
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Eq. (3) represents three equations which must be satisfied by 
components vi in order that v be an eigenvector of T.  
Furthermore, this system of equations has nontrivial 
solutions iff the determinant of the coefficients vanish, i. e.,

( )det 0ij ijT βδ− =

( ) 3 2
1 2 3 0I I Iφ β β β β= − + − + =

where I1, I2, and I3 are invarients of T.  In general, Eq. (5) has 
three roots of which some could be imaginary.

(4)

(5)
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Linear Algebra Theorem 1: If T is symmetric, all of the roots of Eq. (5) are real.

Suppose the roots of Eq. (5) are not real. From a theorem of algebra the 
complex roots occur in conjugate pairs.  Thus, two of the roots would 
be of the form:

( ) ( )1 2 2 where 1i i iβ µ γ β µ γ= + = − = −

( ) ( )1 2
j j j j j jv i v iα δ α δ= + = −

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2  and  ij j i ij j iT v v T v vβ β= =

Eq. (2)2 must hold for all eigenvectors and their corresponding
eigenvalues, hence

Corresponding eigenvectors would be of the form:

(6)

(7)

(8)
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Multiply (8)1 by vi
(2) and (8)2 by vi

(1) to get

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 2

2 2 1 2 1 2 1 1 2

i i ij j i

i i ij j i ji j i ij j i

v v T v v

v v T v v T v v T v v

β

β

=

= = =

( ) ( )( ) ( ) ( )1 2 1 2 0i iv vβ β− =

( )( ) ( )0 2 2 0i i i i i i i ii i i iγ α δ α δ γ α α δ δ γ= + − = − ⇒ =  

Thus, b (1) , b (2) are real.

Subtraction of these expressions gives

Using Eq. (6)

(9)

(10)

(11)
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Linear Algebra Theorem 2: The eigenvectors of a symmetric tensor corresponding 
to distinct eigenvalues are orthogongal.

Suppose v(1) and v(2) are eigenvectors of T corresponding to eigenvalues
β(1) and β(2) , respectively. (β(1)<>β(2))  Again, Eq. (2) must hold for 
each eigenvector:

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 2 2  and  ij j i ij j iT v v T v vβ β= =

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1 2 1 2

2 2 1 2 1 1 2

i i ij j i

i i ij j i ji j i

v v T v v

v v T v v T v v

β

β

=

= =

Multiply (12)1 by vi
(2) and (12)2 by vi

(1) to obtain

(13)

(12)
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Subtracting Eqs. (13)

( ) ( )( ) ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 0i i ij ji i jv v T T v vβ β− = − =

Also

( ) ( ) ( ) ( )1 2 1 2 0i iv vβ β≠ ⇒ =
( ) ( ) ( ) ( )1 2 1 2or  0⋅ = ⇒ ⊥v v v v

That is, eigenvectors are perpendicular.

(14)

(15)
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Linear Algebra Theorem 3: Every symmetric second order tensor has three 
linearly independent principal directions.

See Advanced Engineering Mathematics, 
Wylie, p. 542.
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Extremal Properties of Quadratic Forms
Associated with a symmetric tensor T is a scalar valued function, 

quadratic in the direction cosines of a unit vector mi

( )ˆ ij i jQ T m m=m
We want to know the extreme values of Q(mi) subject to the constraint 

that mi is a unit vector.  Using the method of Lagrange multipliers, the 
condition for extremum of (16) is

( ){ }1 0

2 0

ij i j i j
k

ij ik j ij i jk ik i

T m m m m
m

T m T m m

β

δ δ βδ

∂
− − =

∂

+ − =

2 0kj j ik i kT m T m mβ+ − =

(16)

(17)

(18)
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Hence, Q(mi) attains extremum values when mi is an 
eigenvector of T.  We also note that is mi is an eigenvector 
of T with corresponding eigenvalue β, then

Since Tkj = Tjk ,

( )2 0kj j kT m mβ− = (19)

kj j k kj jT m m mβ βδ= = (20)

( )ˆ ij i j i iQ T m m m mβ β= = =m (21)
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From the previous development, T has three real eigenvalues
and three orthogonal eigenvectors.  Referred to the basis 
{m1,m2,m3} the tensor T is represented in diagonal form

Eigenvectors of a tensor make the associated quadratic form 
attain extreme values which are associated eigenvalues.

2

3

0 0
0 0
0 0

β
β

β

 
 =  
  

1

T (22)


