CHAPTER 3

Two-Dimensional
Problems in Elasticity

3.1 INTRODUCTION

As has been pointed out in Sec. 1.1, the approaches in widespread use for determin-
ing the influence of applied loads on elastic bodies are the mechanics of materials
or elementary theory (also known as technical theory) and the theory of elasticity.
Both must rely on the conditions of equilibrium and make use of a relationship be-
tween stress and strain that is usually considered to be associated with elastic mate-
rials. The essential difference between these methods lies in the extent to which the
strain is described and in the types of simplifications employed.

The mechanics of materials approach uses an assumed deformation mode or
strain distribution in the body as a whole and hence yields the average stress at a
section under a given loading. Moreover, it usually treats separately each simple
type of complex loading, for example, axial centric, bending, or torsion. Although of
practical importance, the formulas of the mechanics of materials are best suited for
relatively slender members and are derived on the basis of very restrictive condi-
tions. On the other hand, the method of elasticity does not rely on a prescribed de-
formation mode and deals with the general equations to be satisfied by a body in
equilibrium under any external force system.

The theory of elasticity is preferred when critical design constraints such as
minimum weight, minimum cost, or high reliability dictate more exact treatment or
when prior experience is limited and intuition does not serve adequately to supply
the needed simplifications with any degree of assurance. If properly applied, the
theory of elasticity should yield solutions more closely approximating the actual
distribution of strain, stress, and displacement.

Thus, elasticity theory provides a check on the limitations of the mechanics of
materials solutions. We emphasize, however, that both techniques cited are approxi-
mations of nature, each of considerable value and each supplementing the other.
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The influences of material anisotropy, the extent to which boundary conditions de-
part from reality, and numerous other factors all contribute to error.

3.2 FUNDAMENTAL PRINCIPLES OF ANALYSIS

To ascertain the distribution of stress, strain, and displacement within an elastic
body subject to a prescribed system of forces requires consideration of a number of
conditions relating to certain physical laws, material properties, and geometry.
These fundamental principles of analysis, also referred to as the three aspects of
solid mechanics problems, are summarized as follows:

1. Conditions of equilibrium. The equations of statics must be satisfied throughout
the body.

2. Stress—strain relations. Material properties (constitutive relations, for example,
Hooke’s law) must comply with the known behavior of the material involved.

3. Conditions of compatibility. The geometry of deformation and the distribution
of strain must be consistent with the preservation of body continuity. (The mat-
ter of compatibility is not always broached in mechanics of materials analysis.)

In addition, the stress, strain, and displacement fields must be such as to conform to
the conditions of loading imposed at the boundaries. This is known as satisfying the
boundary conditions for a particular problem. If the problem is dynamic, the equa-
tions of equilibrium become the more general conservation of momentum; conser-
vation of energy may be a further requirement.

The conditions described, and stated mathematically in the previous chapters,
are used to derive the equations of elasticity. In the case of a three-dimensional
problem in elasticity, it is required that the following 15 quantities be ascertained:
six stress components, six strain components, and three displacement components.
These components must satisfy 15 governing equations throughout the body in ad-
dition to the boundary conditions: three equations of equilibrium, six stress—strain
relations, and six strain—displacement relations. Note that the equations of compati-
bility are derived from the strain—displacement relations, which are already in-
cluded in the preceding description. Thus, if the 15 expressions are satisfied, the
equations of compatibility will also be satisfied. Three-dimensional problems in
elasticity are often very complex. It may not always be possible to use the direct
method of solution in treating the general equations and given boundary condi-
tions. Only a useful indirect method of solution will be presented in Secs. 6.3
and 6.4.

In many engineering applications, ample justification may be found for simpli-
fying assumptions with respect to the state of strain and stress. Of special impor-
tance, because of the resulting decrease in complexity, are those reducing a
three-dimensional problem to one involving only two dimensions. In this regard, we
shall discuss throughout the text various plane strain and plane stress problems.

This chapter is subdivided into two parts. In Part A, derivations of the govern-
ing differential equations and various approaches for solution of two-dimensional
problems in Cartesian and polar coordinates are considered. Part B treats stress
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concentrations in members whose cross sections manifest pronounced changes and
cases of load application over small areas.

Part A—Formulation and Methods of Solution

3.3 PLANE STRAIN PROBLEMS

Consider a long prismatic member subject to lateral loading (for example, a cylin-
der under pressure), held between fixed, smooth, rigid planes (Fig. 3.1). Assume
the external force to be functions of the x and y coordinates only. As a conse-
quence, we expect all cross sections to experience identical deformation, including
those sections near the ends. The frictionless nature of the end constraint permits
x, y deformation, but precludes z displacement; that is, w = 0 at z = £L/2. Con-
siderations of symmetry dictate that w must also be zero at midspan. Symmetry ar-
guments can again be used to infer that w = 0 at +L/4, and so on, until every
cross section is taken into account. For the case described, the strain depends on x
and y only:

ou v ou o
ST BT YTy o 3.1
aw ow ou ow v
g, =— =0, =—+—=0, =— 4+ —=90 3.2
z oz Yz ox 9z 'sz ay 9z ( )

The latter expressions depend on du/dz and dv/dz vanishing, since w and its deriva-
tives are zero. A state of plane strain has thus been described wherein each point
remains within its transverse plane, following application of the load. We next pro-
ceed to develop the equations governing the behavior of bodies under plane
strain.

Substitution of &, =v,, = v,, = 0 into Eq. (2.30) provides the following
stress—strain relationships:

FIGURE 3.1. Plane strain in a cylindrical
body.

3.3 Plane Strain Problems
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o, =2Ge, + \(g, + ¢,)

o, =2Ge, + \(&, *+ ¢,) 3.3)
Ty = Gy
and
T, =Ty, =0, o, =N, +¢,) =v(o, +0y) (34)

Because o, is not contained in the other governing expressions for plane strain, it is
determined independently by applying Eq. (3.4). The strain-stress relations, Egs.
(2.28), for this case become

_l—v2 v
g, = z ox—l_voy

1 —? v

g, = E o, — . 0x> 3.5
Tyy

WG

Inasmuch as these stress components are functions of x and y only, the first two
equations of (1.11) yield the following equations of equilibrium of plane strain:

Jo X a’Tx y

+F. =0
0x ay (3.6)
do, 9Ty, :
— 4+ +F,=0
ay 0x

The third equation of (1.11) is satisfied if F, = 0. In the case of plane strain, there-
fore, no body force in the axial direction can exist.

A similar restriction is imposed on the surface forces. That is, plane strain will
result in a prismatic body if the surface forces p, and p, are each functions of x and
y and p, = 0. On the lateral surface, n = 0 (Fig. 3.2). The boundary conditions,
from the first two equations of (1.41), are thus given by

py =0l + Ty

Py =Tyl + oym 3.7
Clearly, the last equation of (1.41) is also satisfied.

In the case of a plane strain problem, therefore, eight quantities, o, o, T,,, &,
€y, Yxy» U, and v, must be determined so as to satisfy Egs. (3.1), (3.3), and (3.6) and

FIGURE 3.2.  Surface forces. y
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the boundary conditions (3.7). How eight governing equations, (3.1), (3.3), and
(3.6), may be reduced to three is now discussed.

Three expressions for two-dimensional strain at a point [Eq. (3.1)] are func-
tions of only two displacements, # and v, and therefore a compatibility relationship
exists among the strains [Eq. (2.8)]:

828x 828y _ azyxy

ayz ox? ox ay

3.8)

This equation must be satisfied for the strain components to be related to the dis-
placements as in Egs. (3.1). The condition as expressed by Eq. (3.8) may be trans-
formed into one involving components of stress by substituting the strain-stress
relations and employing the equations of equilibrium. Performing the operations
indicated, using Egs. (3.5) and (3.8), we have

& & Py
— [(1 = v)o, —vo,] + Q[(l —v)o, —vo,] =2

0y (a)

ax dy
Next, the first and second equations of (3.6) are differentiated with respect to x and
y, respectively, and added to yield

2627” = — o, + o, _ (9 + ofy
0x 9y oxr 9y’ ox 9y

Finally, substitution of this into Eq. (a) results in

2 2 F
("’2 * ‘92><ox to) =t <"’F* v ‘“) (3.9)
0x ay 1 — v\ ox ay
This is the equation of compatibility in terms of stress.

We now have three expressions, Egs. (3.6) and (3.9), in terms of three unknown
quantities: o, o, and 7,,. This set of equations, together with the boundary condi-
tions (3.7), is used in the solution of plane strain problems. For a given situation,
after determining the stress, Egs. (3.5) and (3.1) yield the strain and displacement,

respectively. In Sec. 3.5, Egs. (3.6) and (3.9) will further be reduced to one equation
containing a single variable.

3.4 PLANE STRESS PROBLEMS

In many problems of practical importance, the stress condition is one of plane
stress. The basic definition of this state of stress has already been given in Sec. 1.8.
In this section we shall present the governing equations for the solution of plane
stress problems.

To exemplify the case of plane stress, consider a thin plate, as in Fig. 3.3,
wherein the loading is uniformly distributed over the thickness, parallel to the
plane of the plate. This geometry contrasts with that of the long prism previously
discussed, which is in a state of plane strain. To arrive at tentative conclusions with
regard to the stress within the plate, consider the fact that o, 7., and 7,, are zero

3.4 Plane Stress Problems
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FIGURE 3.3.  Thin plate under plane stress. Yﬁ

on both faces of the plate. Because the plate is thin, the stress distribution may be
very closely approximated by assuming that the foregoing is likewise true through-
out the plate.

We shall, as a condition of the problem, take the body force F, = 0 and F, and
F, each to be functions of x and y only. As a consequence of the preceding, the
stress is specified by

O g Txy
a
- (a)

= TXZ = Tyz = 0
The nonzero stress components remain constant over the thickness of the plate and
are functions of x and y only. This situation describes a state of plane stress. Equa-
tions (1.11) and (1.41), together with this combination of stress, again reduce to the
forms found in Sec. 3.3. Thus, Egs. (3.6) and (3.7) describe the equations of equilib-
rium and the boundary conditions in this case, as in the case of plane strain.
Substitution of Eq. (a) into Eq. (2.28) yields the following stress—strain relations

for plane stress:

1
g, = Z (o0, — voy)
1
&= (o0, — voy) (3.10)
Try
yxy = E
and
Ve =1 =0, &= (o +0) (.11a)

Solving for o, + o, from the sum of the first two of Egs. (3.10) and inserting the re-
sult into Eq. (3.11a), we obtain

14
g, = — ﬁ(sx + Sy) (3.11b)
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Equations (3.11) define the out-of-plane principal strain in terms of the in-plane
stresses (0,, o,) or strains (&,, €,).

Because ¢, is not contained in the other governing expressions for plane stress,
it can be obtained independently from Egs. (3.11); then &, = gw/dz may be applied
to yield w. That is, only # and v are considered as independent variables in the gov-
erning equations. In the case of plane stress, therefore, the basic strain—displacement
relations are again given by Egs. (3.1). Exclusion from Eq. (2.3) of ¢, = qw/oz
makes the plane stress equations approximate, as is demonstrated in the section
that follows.

The governing equations of plane stress will now be reduced, as in the case of
plane strain, to three equations involving stress components only. Since Egs. (3.1)
apply to plane strain and plane stress, the compatibility condition represented by
Eq. (3.8) applies in both cases. The latter expression may be written as follows, sub-
stituting strains from Egs. (3.10) and employing Egs. (3.6):

2 2 F
(a + 2 )(ax +a,)=—(1+ v)<6F" <2 y) G.12)

o’ oy ox  ay

This equation of compatibility, together with the equations of equilibrium, repre-
sents a useful form of the governing equations for problems of plane stress.

To summarize the two-dimensional situations discussed, the equations of equi-
librium [Egs. (3.6)], together with those of compatibility [Eq. (3.9) for plane strain
and Eq. (3.12) for plane stress] and the boundary conditions [Egs. (3.7)], provide a
system of equations sufficient for determination of the complete stress distribution.
It can be shown that a solution satisfying all these equations is, for a given problem,
unique [Ref. 3.1]. That is, it is the only solution to the problem.

In the absence of body forces or in the case of constant body forces, the com-
patibility equations for plane strain and plane stress are the same. In these cases,
the equations governing the distribution of stress do not contain the elastic con-
stants. Given identical geometry and loading, a bar of steel and one of Lucite
should thus display identical stress distributions. This characteristic is important in
that any convenient isotropic material may be used to substitute for the actual ma-
terial, as, for example, in photoelastic studies.

It is of interest to note that by comparing Eqgs. (3.5) with Egs. (3.10) we can
form Table 3.1, which facilitates the conversion of a plane stress solution into a
plane strain solution, and vice versa. For instance, conditions of plane stress and
plane strain prevail in a narrow beam and a very wide beam, respectively. Hence, in

TABLE 3.1
Solution To Convert to: E is Replaced by: v is Replaced by:
) E v
Plane stress Plane strain 5
1—v 1—-v
1+2
Plane strain Plane stress v2 v
(1 +v) 1+

3.4 Plane Stress Problems
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a result pertaining to a thin beam, EI would become EI/(1 — v*) for the case of a
wide beam. The stiffness in the latter case is, for v = 0.3, about 10% greater owing
to the prevention of sidewise displacement (Secs. 5.2 and 13.3).

3.5 AIRY’S STRESS FUNCTION

The preceding sections have demonstrated that the solution of two-dimensional
problems in elasticity requires integration of the differential equations of equilib-
rium [Egs. (3.6)], together with the compatibility equation [Eq. (3.9) or (3.12)] and
the boundary conditions [Egs. (3.7)]. In the event that the body forces F, and F,
are negligible, these equations reduce to

90, Ty oo a7,
d Yoo, 2+ (a)
0x ay ay 0x
;&
(ax2+ay2>(0'x+0'y) :0 (b)

together with the boundary conditions (3.7). The equations of equilibrium are iden-
tically satisfied by the stress function, ®(x, y), introduced by G. B. Airy, related to
the stresses as follows:

P P P
o, = 8272, o, = 8272, Ty = — g (3.13)
ay 0x dx dy
Substitution of (3.13) into the compatibility equation, Eq. (b), yields
4(D 4¢) 4¢)
92 120 92 o -0 (3.14)

ox* ax*ay* oy

What has been accomplished is the formulation of a two-dimensional problem in
which body forces are absent, in such a way as to require the solution of a single
biharmonic equation, which must of course satisfy the boundary conditions.

It should be noted that in the case of plane stress we have o0, = 7,, = 7,, = 0
and o,, o,, and T,, independent of z. As a consequence, y,, = v,, = 0, and &,, &,,
&, and v,, are independent of z. In accordance with the foregoing, from Eq. (2.9), it
is seen that in addition to Eq. (3.14), the following compatibility equations also
hold:

oe. oe. oe.

=0, =0, =0 c
ox? ay* axay ©

Clearly, these additional conditions will not be satisfied in a case of plane stress by
a solution of Eq. (3.14) alone. Therefore, such a solution of a plane stress problem
has an approximate character. However, it can be shown that for thin plates the
error introduced is negligibly small.
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It is also important to note that, if the ends of the cylinder shown in Fig. 3.1 are
free to expand, we may assume the longitudinal strain ¢, to be a constant. Such a
state may be called that of generalized plane strain. Therefore, we now have

sle—lﬂ/ L >—vsz

E \Ux_l—voy

1 v (3.15)
& = g \O'y—l_vo'x — ve,
Tyy
WG
and
o, =v(o, + 0,) + Eg, (3.16)

Introducing Egs. (3.15) into Eq. (3.8) and simplifying, we again obtain Eq. (3.14) as
the governing differential equation. Having determined o, and o, the constant
value of ¢, can be found from the condition that the resultant force in the z direc-
tion acting on the ends of the cylinder is zero. That is,

J[o.dxdy =0 (d)
where o, is given by Eq. (3.16).

3.6 SOLUTION OF ELASTICITY PROBLEMS

Unfortunately, solving directly the equations of elasticity derived may be a formi-
dable task, and it is often advisable to attempt a solution by the inverse or semi-
inverse method. The inverse method requires examination of the assumed solutions
with a view toward finding one that will satisfy the governing equations and bound-
ary conditions. The semi-inverse method requires the assumption of a partial solu-
tion formed by expressing stress, strain, displacement, or stress function in terms of
known or undetermined coefficients. The governing equations are thus rendered
more manageable.

It is important to note that the preceding assumptions, based on the mechanics
of a particular problem, are subject to later verification. This is in contrast with the
mechanics of materials approach, in which analytical verification does not occur.
The applications of inverse, semi-inverse, and direct methods are found in examples
to follow and in Chapters 5, 6, and 8.

A number of problems may be solved by using a linear combination of
polynomials in x and y and undetermined coefficients of the stress function ®.
Clearly, an assumed polynomial form must satisfy the biharmonic equation and
must be of second degree or higher in order to yield a nonzero stress solution of
Eq. (3.13), as described in the following paragraphs. In general, finding the desir-
able polynomial form is laborious and requires a systematic approach [Refs. 3.2 and
3.3]. The Fourier series, indispensible in the analytical treatment of many problems
in the field of applied mechanics, is also often employed (Secs. 10.10 and 13.6).

3.6 Solution of Elasticity Problems
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Another way to overcome the difficulty involved in the solution of Eq. (3.14) is
to use the method of finite differences. Here the governing equation is replaced by
series of finite difference equations (Sec. 7.3), which relate the stress function at
stations that are removed from one another by finite distances. These equations, al-
though not exact, frequently lead to solutions that are close to the exact solution.
The results obtained are, however, applicable only to specific numerical problems.

Polynomial Solutions

An elementary approach to obtaining solutions of the biharmonic equation uses
polynomial functions of various degree with their coefficients adjusted so that
V4® = 0 is satisfied. A brief discussion of this procedure follows.

A polynomial of the second degree,

a c
b, = 2+ bxy + iyz 3.17)
2 2
satisfies Eq. (3.14). The associated stresses are
O, = G O-y = ay, Txy = _bZ

All three stress components are constant throughout the body. For a rectangular
plate (Fig. 3.4a), it is apparent that the foregoing may be adapted to represent
simple tension (c, # 0), double tension (¢, # 0, a, # 0), or pure shear (b, # 0).

A polynomial of the third degree

as 5 by, G, 45,
Q= —x"+ x7y + —xy° + — 3.18
3T 6" 2"V T Y 6" 3.18)
fulfills Eq. (3.14). It leads to stresses
o, = c3x + dsyy, 0, = a;x + by, Ty = —byx — ¢y

For a; = b; = ¢; = 0, these expressions reduce to

o, = dyy, o, =T,y =0

representing the case of pure bending of the rectangular plate (Fig. 3.4D).

P SR RN A
~— — )/ >
<_E ¢-——————— oy BN, :2»— ——————— é — X
l— }!‘—b & >
—— e——— — d3y
b,
(a) (b)

FIGURE 3.4. Stress fields of (a) Eq. (3.17) and (b) Eq. (3.18).
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ay 4, bs 4 € o0, 4 5 ey
Dy = —xt+ =%y + ol + —xy 19
4T Y TNy Xy oy oy (3.19)
satisfies Eq. (3.14) if e, = —(2¢4 + a4). The corresponding stresses are

A polynomial of the fourth degree,

o, = cx? + dyxy — (2¢c4 + ay)y?

o, = a; x> + byxy + ¢y’

b4 d4
Tey = — Exz —2¢c, xy — ?yz
A polynomial of the fifth degree
_as 5 b5, €5 3, 45,5 &, fs5 g
D5 = —x° + 2xty + 2x? + xS+ eyt o
ST TRTY T Y Tt T T

fulfills Eq. (3.14) provided that

(305 + 2C5 + 65)x + (bs + 2d5 + 3f§)y =0

It follows that

€5 = _3a5 - 205, bs = _2d5 - 3f5

The components of stress are then

c
O = §x3 +dsx’y — (3as + 2¢5)xy” + f5y’

d
o, = asx’ — (3fs + 2ds)x’y + csxy® + §y3

Ty = %(3]‘5 + 2d5)x3 — csx’y — dsxy? + %(3d5 + ch)y3

3.20)

Problems of practical importance may be solved by combining functions (3.17)
through (3.20), as required. With experience, the analyst begins to understand the

types of stress distributions arising from a variety of polynomials.

3.6

EXAMPLE 3.1

A narrow cantilever of rectangular cross section is loaded by a concen-
trated force at its free end of such magnitude that the beam weight may
be neglected (Fig. 3.5a). Determine the stress distribution in the beam.

Solution The situation described may be regarded as a case of plane
stress provided that the beam thickness ¢ is small relative to the beam
depth 2h.

The following boundary conditions are consistent with the coordi-
nate system in Fig. 3.5a:

(Txy)y=j:h = 0’ (Uy)y=ih =0 (a)

These conditions simply express the fact that the top and bottom edges
of the beam are not loaded. In addition to Eq. (a) it is necessary, on the

Solution of Elasticity Problems
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FIGURE 3.5. Example 3.1. End-loaded cantilever beam.

basis of zero external loading in the x direction at x = 0, that o, = 0
along the vertical surface at x = 0. Finally, the applied load P must be
equal to the resultant of the shearing forces distributed across the free

end:
+h
P = —/ Tt dy (b)
—h

The negative sign agrees with the convention for stress discussed in
Sec. 1.4.

For purposes of illustration, three approaches will be employed to
determine the distribution of stress within the beam.

Method 1. Inasmuch as the bending moment varies linearly with x and
o, at any section depends on y, it is reasonable to assume a general ex-
pression of the form

&P o ©
o, =— =
ayz Xy

in which ¢; represents a constant. Integrating twice with respect to y,

® = gexy’ + yfi(x) + fo(x) (d)
where fi(x) and f,(x) are functions of x to be determined. Introducing
the @ thus obtained into Eq. (3.14), we have

d‘fy d'f,
yoa Tt
dx dx
Since the second term is independent of y, a solution exists for all x and
y provided that d*f,/dx* = 0 and d*f,/dx* = 0, which, upon integrating,

=0

leads to
fi(x) = &x° + e3x* + cux + s
Fr(x) = ceX® + X% + cgx + ¢y
where ¢,, ¢3,..., are constants of integration. Substitution of f;(x) and

f>(x) into Eq. (d) gives
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3.6

D = texy’ + (X7 + esx? + cx + cs)y

+ cex® + cx? + cgx + ¢

Expressions for o, and 7, follow from Eq. (3.13):

ER)
o, = 87 = 6(cry + ¢co)x + 2(c3y + ;)
EE) )
T T axay 201y” — 36x° = 263 — ¢

At this point, we are prepared to apply the boundary conditions. Substi-
tuting Egs. (a) into (e),we obtain ¢, = ¢3 = ¢ = ¢; = 0O and ¢4, = —%clhz.
The final condition, Eq. (b), may now be written as

h h
—/ Tt dy = / let(y> — Bydy = P

h h

from which

3P p
C = —_-_—— = —- —
! 2k I
where I = 3th* is the moment of inertia of the cross section about the
neutral axis. From Egs. (¢) and (e), together with the values of the con-
stants, the stresses are found to be

Pxy

P
S 0, =0 n,=— (- y) (32D

Y 21

O, =

The distribution of these stresses at sections away from the ends is
shown in Fig. 3.5b.

Method 2. Beginning with bending moments M, = Px, we may as-
sume a stress field similar to that for the case of pure bending:

Px
Oy = _<>y’ Txy = Txy(x’ y)’ Oy = 07 = Tyz = Tyz = 0 (f)

1
Equation of compatibility (3.12) is satisfied by these stresses. On the
basis of Egs. (f), the equations of equilibrium lead to

@ 0Ty 0Ty

= O’ = O
0x ay 0x (®

From the second expression, 7,, can depend only on y. The first equa-
tion of (g) together with Egs. (f) yields
dey _ Py

dy 1

Solution of Elasticity Problems
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from which

Py?
T
Here c is determined on the basis of (7,,),+., = 0:c = —PHK*2I. The
resulting expression for 7., satisfies Eq. (b) and is identical with the re-
sult previously obtained.

Tx

Method 3. The problem may be treated by superimposing the polyno-
mials @, and ®,,

a2262:a4:b4:c4:e4:0

Thus,
— - dy 3
(D—<I)2+(D4—b2xy+€xy

The corresponding stress components are
O, = dyxy, o, =0, T,

It is seen that the foregoing satisfies the second condition of Egs. (a).
The first of Egs. (a) leads to d, = —2b,/h*. We then obtain

2
y
e ni?)

which  when  substituted into condition (b) results in
b, = —3P/4ht = Ph?21. As before, T,y 1S as given in Egs. (3.21).

Observe that the stress distribution obtained is the same as that
found by employing the elementary theory. If the boundary forces result
in a stress distribution as indicated in Fig. 3.5b, the solution is exact.
Otherwise, the solution is not exact. In any case, recall, however, that
Saint-Venant’s principle permits us to regard the result as quite accurate
for sections away from the ends.

Section 5.4 illustrates the determination of the displacement field
after derivation of the curvature-moment relation.

3.7 THERMAL STRESSES

Consider the consequences of increasing or decreasing the uniform temperature of
an entirely unconstrained elastic body. The resultant expansion or contraction oc-
curs in such a way as to cause a cubic element of the solid to remain cubic, while ex-
periencing changes of length on each of its sides. Normal strains occur in each
direction unaccompanied by normal stresses. In addition, there are neither shear
strains nor shear stresses. If the body is heated in such a way as to produce a
nonuniform temperature field, or if the thermal expansions are prohibited from
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taking place freely because of restrictions placed on the boundary even if the tem-
perature is uniform, or if the material exhibits anisotropy in a uniform temperature
field, thermal stresses will occur. The effects of such stresses can be severe, espe-
cially since the most adverse thermal environments are often associated with design
requirements involving unusually stringent constraints as to weight and volume.
This is especially true in aerospace applications, but is of considerable importance,
too, in many everyday machine design applications.

Solution of thermal stress problems requires reformulation of the stress—strain
relationships accomplished by superposition of the strain attributable to stress and
that due to temperature. For a change in temperature 7(x, y), the change of length,
8L, of a small linear element of length L in an unconstrained body is 8L = oLT.
Here a, usually a positive number, is termed the coefficient of linear thermal ex-
pansion. The thermal strain g, associated with the free expansion at a point is then

e =aTl (3.22)

The total x and y strains, &, and ¢, are obtained by adding to the thermal strains of
the type described, the strains due to stress resulting from external forces:

1
g, = E((rx —vo,) + ol
1
g, = E(Uy —vo,) + ol (3.23a)
Tyy
Yxy = E

In terms of strain components, these expressions become

- E s ) — EaT
T T Ty 1-v
EaT (3.23b)
= + —
Ty 1 - vz(sy ve:) 1—-v
Txy = Gny

Because free thermal expansion results in no angular distortion in an isotropic
material, the shearing strain is unaffected, as indicated. Equations (3.23) represent
modified strain—stress relations for plane stress. Similar expressions may be written
for the case of plane strain. The differential equations of equilibrium (3.6) are
based on purely mechanical considerations and are unchanged for thermoelasticity.
The same is true of the strain-displacement relations (2.3) and the compatibility
equation (3.8), which are geometrical in character. Thus, for given boundary condi-
tions (expressed either as surface forces or displacements) and temperature distrib-
ution, thermoelasticity and ordinary elasticity differ only to the extent of the
strain—stress relationship.

By substituting the strains given by Eq. (3.23a) into the equation of compatibil-
ity (3.8), employing Eq. (3.6) as well, and neglecting body forces, a compatibility
equation is derived in terms of stress:

3.7  Thermal Stresses

109



110

T T V. o, + aET) = 0 (3.24)
YR y .

Introducing Eq. (3.13), we now have
Vi®d + aEVAT =0 (3.25)

This expression is valid for plane strain or plane stress provided that the body
forces are negligible.

It has been implicit in treating the matter of thermoelasticity as a superposition
problem that the distribution of stress or strain plays a negligible role in influencing
the temperature field [Refs. 3.4 and 3.5]. This lack of coupling enables the tempera-
ture field to be determined independently of any consideration of stress or strain. If
the effect of the temperature distribution on material properties cannot be disre-
garded, the equations become coupled and analytical solutions are significantly
more complex, occupying an area of considerable interest and importance. Numeri-
cal solutions can, however, be obtained in a relatively simple manner through the
use of finite difference methods.

EXAMPLE 3.2

A rectangular beam of small thickness ¢, depth 2/, and length 2L is sub-
jected to an arbitrary variation of temperature throughout its depth,
T = T(y). Determine the distribution of stress and strain for the case in
which (a) the beam is entirely free of surface forces (Fig. 3.6a), and (b)

the beam is held by rigid walls that prevent the x-directed displacement
only (Fig. 3.6D).

Solution The beam geometry indicates a problem of plane stress. We
begin with the assumptions

o, = ay), o,=7,=0 (a)

Direct substitution of Egs. (a) into Egs. (3.6) indicates that the equations
of equilibrium are satisfied. Equations (a) reduce the compatibility
equation (3.24) to the form

2

:yz(ox + «ET) = 0 (b)

y
r———L—*‘L—L—j e— L —fe—L—>

T N
e F I

(a) (b)

FIGURE 3.6. Example 3.2. Rectangular beam in plane thermal stress: (a) un-
supported; (b) placed between two rigid walls.
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from which
o, = —aET + ¢y + ¢, (¢)

where ¢; and ¢, are constants of integration. The requirement that faces
y = *h be free of surface forces is obviously fulfilled by Eq. (b).

a. The boundary conditions at the end faces are satisfied by determin-
ing the constants that assume zero resultant force and moment at

x ==L:
h h
/ otdy =0, / oytdy =0 (d)
~h —h

Substituting Eq. (c¢) into Egs. (d), it is found that
= (3/2h3)ff'h aETydy and ¢, = (1/2h)ff'haET dy. The normal
stress, upon substituting the values of the constants obtained, to-
gether with the moment of inertia I = 2h°/3 and area A = 2ht, into
Eq. (c) is thus

h h
t t
o, = Ea —T+/Tdy+y/ Tydy (3.26)

The corresponding strains are

Vo,

UX
8X=E+0LT, Sy:_E+()LT, Yoy = 0 (e)

The displacements can readily be determined from Egs. (3.1).
From Egq. (3.26), observe that the temperature distribution for

T = constant results in zero stress, as expected. Of course, the strains
(e) and the displacements will, in this case, not be zero. It is also noted
that, when the temperature is symmetrical about the midsurface
(y = 0), that is, T(y) = T(—y), the final integral in Eq. (3.26) van-
ishes. For an antisymmetrical temperature distribution about the mid-
surface, T'(y) = —T(—y), and the first integral in Eq. (3.26) is zero.

b. For the situation described, &, = 0 for all y. With ¢, = 7,, = 0 and
Eq. (c), Egs. (3.23a) lead to ¢; = ¢, = 0, regardless of how T varies
with y. Thus,

o, = —EaT (3.27)
and
= (1 +v)aT (9]

Ex = Yxy = Oa gy

Note that the axial stress obtained here can be large even for modest
temperature changes, as can be verified by substituting properties of
a given material.

Thermal Stresses
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3.8 BASIC RELATIONS IN POLAR COORDINATES

Geometrical considerations related either to the loading or to the boundary of a
loaded system often make it preferable to employ polar coordinates, rather than
the Cartesian system used exclusively thus far. In general, polar coordinates are
used advantageously where a degree of axial symmetry exists. Examples include a
cylinder, a disk, a wedge, a curved beam, and a large thin plate containing a circular
hole.

The polar coordinate system (r, 6) and the Cartesian system (x, y) are related
by the following expressions (Fig. 3.7a):

x=rcos®, rrP=x*+)>
(@)
y = rsin 6, 6 = tan' 2
These equations yield
o X ar .
— = —=cos0, — ="==sIn6
0x r ay
® _y _ sinf 3 _ x _cosb (b)
ox r’ r’o 9y ot r

Any derivatives with respect to x and y in the Cartesian system may be transformed
into derivatives with respect to r and 6 by applying the chain rule:

] o 9 a0 9 i) sin® 9

—=——+_——-=cos0— — —

ox  dx or  9x 099 or r o 90 ©
[

0 o 9 9 0 . 0 cosO 9

—=——+_—-_——-=smf—+ —

dy 9y oar 9y a6 or ro 90

Relations governing properties at a point not containing any derivatives are not af-
fected by the curvilinear nature of the coordinates, as is observed next.

atre
30, T+ 30 de
Og + 5 de
96 d iﬁ dr
)
<
\/Z« 9T
,% & c Tg + — dr
y b oo Tro
r de/2
; Ao
X
(a) (b)

FIGURE 3.7. (a) Polar coordinates; (b) stress element in polar coor-
dinates.
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Equations of Equilibrium

Consider the state of stress on an infinitesimal element abcd of unit thickness de-
scribed by polar coordinates (Fig. 3.7b). The r and 6-directed body forces are de-
noted by F, and F,. Equilibrium of radial forces requires that

oo, 3 d
o, + % e \r + drydo — ordd — oy + 20 dp |dr sin 20
or ) 2

do aT, do do
- (redrsin7 + | T + %de dr0037 - T,edr0037 + Frdrd6 =0

Inasmuch as d6 is small, sin(d6/2) may be replaced by d6/2 and cos(d6/2) by 1. Ad-
ditional simplication is achieved by dropping terms containing higher-order infini-
tesimals. A similar analysis may be performed for the tangential direction. When
both equilibrium equations are divided by r dr d6, the results are
or r 9o r

1 a

1 ooy ot 27,

r 90 or

3.28)

+F=0

In the absence of body forces, Eqs. (3.28) are satisfied by a stress function
®(r, 0) for which the stress components in the radial and tangential directions are
given by

10 1 &P
o, =——+ = —
v or 2 96°
RO
o=y (3:29)
_ 1l 180 _ 4100
T 200 raroe or\r 90

Strain-Displacement Relations

Consider now the deformation of the infinitesimal element abcd, denoting the r
and 6 displacements by u and v, respectively. The general deformation experienced
by an element may be regarded as composed of (1) a change in length of the sides,
as in Figs. 3.8a and b, and (2) rotation of the sides, as in Figs. 3.8c and d.

In the analysis that follows, the small angle approximation sin 6 ~ 6 is em-
ployed, and arcs ab and cd are regarded as straight lines. Referring to Fig. 3.8a, it is
observed that a u displacement of side ab results in both radial and tangential
strain. The radial strain ¢,, the deformation per unit length of side ad, is associated
only with the u displacement:

_ o

= (3.30a)

Er
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(r + u)de y

y
Ko
\
\
r //, ) 2
/"ﬁﬁ *’Qu+ﬂdr
Z=="Fe rdo v o
> X
(a)
y e fauyg Y
20
1 au -7
NPT} !
//. -
//////’/ b
==
> X
(c) (d)

FIGURE 3.8. Deformation and displacement of an element in polar coordinates.

The tangential strain owing to u, the deformation per unit length of ab, is

(r+u)do —rdd u

(e = g v @

Clearly, a v displacement of element abcd (Fig. 3.8b) also produces a tangential
strain,

9v/90) do 1
(6y), = 00V A6 _ 1av (©)

rdo r o
since the increase in length of ab is (9v/96)d6. The resultant tangential strain, com-
bining Egs. (d) and (e), is
1w u
== —+= .
=, et (3.30b)
Figure 3.8c shows the angle of rotation eb’f of side a’b’ due to a u displace-
ment. The associated strain is

(0ulo®) do 1 ou

R TR

®

The rotation of side bc associated with a v displacement alone is shown in Fig. 3.8d.
Since an initial rotation of b” through an angle v/r has occurred, the relative rota-
tion gb"h of side bc is

W v

(yre)v - 37 - ; (g)

The sum of Egs. (f) and (g) provides the total shearing strain
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1
L (3.30¢)

Yro = o r 99 r

The strain—displacement relationships in polar coordinates are thus given by Egs.
(3.30).

Hooke’s Law

To write Hooke’s law in polar coordinates, we need only replace subscripts x by r
and y by 0 in the appropriate Cartesian equations. In the case of plane stress, from
Egs. (3.10) we have

g = %(G, vay)
1

gy = E(O‘g - va,) (3.31)
1

Yro ETrG

For plane strain, Egs. (3.5) lead to

1+
&=~ 1(1 = v)o, — voy]
1+
8= —¢ Y11 = v)o, — vo] (3.32)
1
Yro = 5779

Transformation Equations
Replacement of the subscripts x’ by r and y’ by 6 in Egs. (1.13) results in
o, =0,co8’0 + o,sin’6 + 27,,sin 6 cos B
, — o,)sin 0 cos 6 + 7, (cos’ 6 — sin” 6) (3.33)

_ ) 2 :
0y = 0,8in" 0 + o, cos” 0 — 21, sin 6 cos 6

Tro = (0-

We can also express o, ,,, and o, in terms of o,, 7,4, and o, (Problem 3.26) by re-
placing 6 with —6 in Egs. (1.13). Thus,

0, = 0,c08° 0 + 0y sin” @ — 27,4 s5in O cos O

Ty = (0, — o) sin 6 cos O + 7,4(cos” 6 — sin>0) (3.34)

o, = 0,sin’ 0 + g, cos’ O + 27, sin 6 cos 6

Similar transformation equations may also be written for the strains ¢,, v,y, and &g

3.8  Basic Relations in Polar Coordinates
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Compatibility Equation
It can be shown that Egs. (3.30) result in the following form of the equation of com-
patibility:

Feo 1 &8, 208 1ds, 1 ve | 1 0w

= + 3.35
or P 90> r or r ar r orad > o8 (3.35)

To arrive at a compatibility equation expressed in terms of the stress function P, it
is necessary to evaluate the partial derivatives @*®/ox* and 9*®/9y” in terms of r and
6 by means of the chain rule together with Egs. (a). These derivatives lead to the
Laplacian operator:

P P ‘D 19D 1 PP
ve =12, 02 9%, 200, 202 (3.36)
0x ay or roor re 90
The equation of compatibility in alternative form is thus
& 1a 1 8
Vb =|S+- —+5 5 |[(VV®) =0 3.37
(arz roor r2 an)( ) ( )

For the axisymmetrical, zero body force case, the compatibility equation is, from
Eq. (3.9) [referring to (3.36)],

d* (o, + 05) 1 d(o, + op)
V2o, + 0y) = = ¥+ T Y =0 (3.38)

The remaining relationships appropriate to two-dimensional elasticity are found in
a manner similar to that outlined in the foregoing discussion.

EXAMPLE 3.3
A large thin plate is subjected to uniform tensile stress o, at its ends, as
shown in Fig. 3.9. Determine the field of stress existing within the plate.

Solution For purposes of this analysis, it will prove convenient to lo-
cate the origin of coordinate axes at the center of the plate as shown.
The state of stress in the plate is expressed by

0

The stress function, ® = o,y?/2, satisfies the biharmonic equation, Eq.
(3.14). The geometry suggests polar form. The stress function ® may be
transformed by substituting y = r sin 6, with the following result:

Oy = Oy, Oy = Txy =

FIGURE 3.9. Example 3.3. A plate in uniaxial ten- YA
sion.

AA

YYYYYYYYY
Y

Chapter 3 Two-Dimensional Problems in Elasticity



® = Lo, (1 — cos20) (h)
The stresses in the plate now follow from Egs. (h) and (3.29):

o, = 30,(1 + cos 26)
oy = 50,(1 — cos20) (3.39)

1 .
T,y = —;0,5Iin 20

—_

Clearly, substitution of o, = 7,, = 0 could have led directly to the fore-
going result, using the transformation expressions of stress, Egs. (3.33).

Part B—Stress Concentrations

3.9 STRESSES DUE TO CONCENTRATED LOADS

Let us now consider a concentrated force P or F acting at the vertex of a very large
or semi-infinite wedge (Fig. 3.10). The load distribution along the thickness (z direc-
tion) is uniform. The thickness of the wedge is taken as unity, so P or F is the load
per unit thickness. In such situations, it is convenient to use polar coordinates and
the semi-inverse method.

In actuality, the concentrated load is assumed to be a theoretical line load and
will be spread over an area of small finite width. Plastic deformation may occur lo-
cally. Thus, the solutions that follow are not valid in the immediate vicinity of the
application of load.

(a)

FIGURE 3.10. Wedge of unit thickness subjected to a concentrated
load per unit thickness: (a) knife edge or pivot; (b)
wedge cantilever.
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Compression of a Wedge (Fig. 3.10a).
Assume the stress function
® = cProsin6 (a)

where c is a constant. It can be verified that Eq. (a) satisfies Eq. (3.37) and compati-
bility is ensured. For equilibrium, the stresses from Egs. (3.29) are

0
o, = 2cP CO: . oy =0, 1,=0 (b)

The force resultant acting on a cylindrical surface of small radius, shown by the
dashed lines in Fig. 3.10a, must balance P. The boundary conditions are therefore
expressed by

oy =T, = 0, 0= ta (¢)
2/ (o,cos0)rdd = —P (d)
0

Conditions (c) are fulfilled by the last two of Egs. (b). Substituting the first of Egs.
(b) into condition (d) results in

4cP/ cos’9dh = —P
0

Integrating and solving for c¢: ¢ = —1/(2a + sin 2a). The stress distribution in the
knife edge is therefore
P 0
g ==—=B% 5 =0, 1,=0 (3.40)

r(a + 1 sin2a)’

This solution is due to J. H. Michell [Ref. 3.6].

The distribution of the normal stresses o, over any cross section m—n perpen-
dicular to the axis of symmetry of the wedge is not uniform (Fig. 3.10a). Applying
Eq. (3.34) and substituting r = L/cos 6 in Eq. (3.40), we have

P cos* 9

— 341
L(a + 1sin2a) (34D

o, = 0,c08’0 = —

The foregoing shows that the stresses increase as L decreases. Observe also that the
normal stress is maximum at the center of the cross section (6 = 0) and a mini-
mum at 6 = «. The difference between the maximum and minimum stress, Ao, is,
from Eq. (3.41),

P(1 — cos*a)
Ao, = — 2L (e)

L(a + 5sin 2a)
For instance, if o = 10°, Ao, = —0.172P/L is about 6% of the average normal
stress calculated from the elementary formula (o,)gem = —P/A = —P/2L tan a =
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—2.836P/L. For larger angles, the difference is greater; the error in the mechanics
of materials solution increases (Prob. 3.31). It may be demonstrated that the stress
distribution over the cross section approaches uniformity as the taper of the wedge
diminishes. Analogous conclusions may also be drawn for a conical bar. Note that
Eqgs. (3.40) can be applied as well for the uniaxial fension of tapered members by
assigning o, a positive value.

Bending of a Wedge (Fig. 3.10b)

We now employ ® = cFr0, sin 8;, with 6; measured from the line of action of the
force. The equilibrium condition is

(m2)+a (m/2)+a
/ (o, cos 0,)r do, = 2CF/ cos’0,do, = —F
(

w/2)—a (w2)—a
from which, after integration, ¢ = —1/(2a — sin 2a). Thus, by replacing 6; with
90° — 0, we have
F cos 6 Fsin @
o, = — — 1 - _ Slln' ’ oy = 0, T = 0 (3.42)
r(o — 5sin 2a) r(o — 3sin2a)

It is seen that if 6, is larger than m/2 the radial stress is positive, that is, tension

exists. Because sin 0 = y/r,cos § = x/r, and r = Vx*> + y? the normal and shear-
ing stresses at a point over any cross section m — n, using Egs. (3.34) and (3.42),
may be expressed as

F sin 6 cos® 6

o, =0,0080 = ———7
r(a — 5sin 2a)
_ F x’y
T o — %Sin2a (x2 + y2)2
o, = 0,sin’ § = _Fslln3.62
. r(a yé sin 2a) (3.43)

o — %Sin 2a (x2 + y2)2

F sin® 6 cos 0
r(a — 3 sin 2a)
F xy?

o — %Sin 2a (x2 + y2)2

= o,sinfcos B = —

Using Egs. (3.43), it can be shown that (Prob. 3.33) across a transverse section
x = L of the wedge: o, is a maximum for 6 = +30° o, is a maximum for
0 = £60°, and 7,, is a maximum for = £45°.

To compare the results given by Egs. (3.43) with the results given by the ele-
mentary formulas for stress, consider the series

3.9  Stresses Due to Concentrated Loads
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(20)°  (20)
3! " 5!

sin 2a = 20 —

It follows that, for small angle o, we can disregard all but the first two terms of this
series to obtain

(2)°
6

200 = sin 2a + @
By introducing the moment of inertia of the cross section m — n,
I =32y = 2x3- tan’a, and Eq. (f), we find from Egs. (3.43) that

Fxy| (tana\’ 4 Fy’[ (tana’ 4
O, = — I|:<a>cosﬁ, Txy——l o cos” 0 (2

For small values of a, the factor in the bracket is approximately equal to unity. The
expression for o, then coincides with that given by the flexure formula, —My/I, of
the mechanics of materials. In the elementary theory, the lateral stress o, given by
the second of Egs. (3.43) is ignored. The maximum shearing stress 7,, obtained
from Eq. (g) is twice as great as the shearing stress calculated from VQ/Ib of the el-
ementary theory and occurs at the extreme fibers (at points m and n) rather than
the neutral axis of the rectangular cross section.

In the case of loading in both compression and bending, superposition of the
effects of P and F results in the following expression for combined stress in a pivot
or in a wedge—cantilever:

P 0 F cos 0
v, = — €8 - P =0, 1,=0 (344)
r(a + 3sin2a)  r(a — 3sin2a)

The foregoing provides the local stresses at the support of a beam of narrow rec-
tangular cross section.

Concentrated Load on a Straight Boundary (Fig. 3.11a)
By setting a = /2 in Eq. (3.40), the result

2P cos 9
o= T oy =0, T =0 (3.45)
is an expression for radial stress in a very large plate (semi-infinite solid) under
normal load at its horizontal surface. For a circle of any diameter d with center on
the x axis and tangent to the y axis, as shown in Fig. 3.11b, we have, for point A of
the circle, d - cos 6 = r. Equation (3.45) then becomes

g, =—— (3.46)
We thus observe that, except for the point of load application, the stress is the same
at all points on the circle.

The stress components in Cartesian coordinates may be obtained readily by
following a procedure similar to that described previously for a wedge:
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(a) (b)

FIGURE 3.11. (a) Concentrated load on a straight boundary of a large plate; (b) a circle
of constant radial stress.

__7COS46__27PX73
Ox X T (22 + )
P 2P xy?
o, = ———sin’Hcos’ O = _7% (3.47)
X T (¥ +y)
P 2P x?
Txy=—fsinecos36=—f%
X ™ (2747

The state of stress is shown on a properly oriented element in Fig. 3.11a.

3.10 STRESS DISTRIBUTION NEAR CONCENTRATED
LOAD ACTING ON A BEAM

The elastic flexure formula for beams gives satisfactory results only at some dis-
tance away from the point of load application. Near this point, however, there is a
significant perturbation in stress distribution, which is very important. In the case of
a beam of narrow rectangular cross section, these irregularities can be studied by
using the equations developed in Sec. 3.9.

Consider the case of a simply supported beam of depth 4, length L, and width
b, loaded at the midspan (Fig. 3.12a). The origin of coordinates is taken to be the

y hv2
A R a A ¢ A
A R = 5

|<—3L—><—?L——>| (b) (©)
Vy
(a)

- T |

FIGURE 3.12. Beam subjected to a concentrated load P at the midspan.
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center of the beam, with x the axial axis as shown in the figure. Both force P and
the supporting reactions are applied along lines across the width of the beam. The
bending stress distribution, using the flexure formula, is expressed by

,_ My 6P(L _
T I bi*\2 Y
where I = bh*/12 is the moment of inertia of the cross section. The stress at the
loaded section is obtained by substituting x = 0 into the preceding equation:

. 3PL
T = Y

(a)

To obtain the total stress along section AB, we apply the superposition of the
bending stress distribution and stresses created by the line load, given by Eq. (3.45)
for a semi-infinite plate. Observe that the radial pressure distribution created by a
line load over quadrant ab of cylindrical surface abc at point A (Fig. 3.12b) pro-
duces a horizontal force

w2 w2 P
/ (o,sin 0)rdo = / — sinfBcosHdb = — (b)
0 o T ™
and a vertical force
w2 w2
2P
/ (o, cos 0)rdo = / ~—cos’0dh =P (c)
—7/2 —7/2

applied at A (Fig. 3.12c). In the case of a beam (Fig. 3.12a), the latter force is bal-
anced by the supporting reactions that give rise to the bending stresses [Eq. (a)].
On the other hand, the horizontal forces create tensile stresses at the midsection of
the beam of

or=— (@

as well as bending stresses of

_Phy 6P
Tx 2w 1 'n'bhzy

[/ —

(e)

Here Ph/2w is the bending moment of forces P/m about the point 0.
Combining the stresses of Eqgs. (d) and (e) with the bending stress given by Eq.
(a), we obtain the axial normal stress distribution over beam cross section AB:

3P 2h P
=L -=1ly+ — 4
7x bh3< w )y wbh (3.48)

At point B(0, h/2), the tensile stress is

3PL< 4h ) 3PL

P
- — 0.637— 3.49
2bH? 3mL (3.49)

T b2 bh

(O-X)B =
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The second term represents a correction to the simple beam formula owing to the
presence of the line load. It is observed that for short beams this stress is of consid-
erable magnitude. The axial normal stresses at other points in the midsection are
determined in a like manner.

The foregoing procedure leads to the poorest accuracy for point B, the point of
maximum tensile stress. A better approximation [see Ref. 3.7] of this stress is given
by

3PL P
= O.SOSE (3.50)

(Ux)B

Another more detailed study demonstrates that the local stresses decrease very
rapidly with increase of the distance (x) from the point of load application. At a
distance equal to the depth of the beam, they are usually negligible. Furthermore,
along the loaded section, the normal stress o, does not obey a linear law.

In the preceding discussion, the disturbance caused by the reactions at the ends
of the beam, which are also applied as line loads, are not taken into account. To de-
termine the radial stress distribution at the supports of the beam of narrow rectan-
gular cross section, Eq. (3.44) can be utilized. Clearly, for the beam under
consideration, we use F = 0 and replace P by P/2 in this expression.

3.11 STRESS CONCENTRATION FACTORS

The discussion of Sec. 3.9 shows that, for situations in which the cross section of a
load-carrying member varies gradually, reasonably accurate results can be expected
if we apply equations derived on the basis of constant section. On the other hand,
where abrupt changes in the cross section exist, the mechanics of materials ap-
proach cannot predict the high values of stress that actually exist. The condition re-
ferred to occurs in such frequently encountered configurations as holes, notches,
and fillets. While the stresses in these regions can in some cases (for example, Table
3.2) be analyzed by applying the theory of elasticity, it is more usual to rely on ex-
perimental techniques and, in particular, photoelastic methods. The finite element
method (Chapter 7) is very efficient for this purpose.

It is to be noted that irregularities in stress distribution associated with abrupt
changes in cross section are of practical importance in the design of machine ele-
ments subject to variable external forces and stress reversal. Under the action of
stress reversal, progressive cracks (Sec. 4.4) are likely to start at certain points at
which the stress is far above the average value. The majority of fractures in machine
elements in service can be attributed to such progressive cracks.

It is usual to specify the high local stresses owing to geometrical irregularities
in terms of a stress concentration factor, k. That is,

maximum stress
k= —r " 3.51)
nominal stress

Clearly, the nominal stress is the stress that would exist in the section in question in
the absence of the geometric feature causing the stress concentration. The technical
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FIGURE 3.13.  Example 3.4. Circular hole in a plate subjected to
uniaxial tension: (a) tangential stress distribution for
0 = +£w/2; (b) tangential stress distribution along pe-
riphery of the hole.

literature contains an abundance of specialized information on stress concentration
factors in the form of graphs, tables, and formulas.*

EXAMPLE 3.4

A large, thin plate containing a small circular hole of radius a is sub-
jected to simple tension (Fig. 3.13a). Determine the field of stress and
compare with those of Example 3.3.

Solution The boundary conditions appropriate to the circumference
of the hole are

o, = T, = 0, r=a (a)

For large distances away from the origin, we set o,, oy, and T, equal to
the values found for a solid plate in Example 3.3. Thus, from Eq. (3.39),
for r = oo,

o, = 30, (1 + cos26)

oy = %00(1 — cos 26), T = — %(ra sin 260

(b)

For this case, we assume a stress function analogous to Eq. (h) of Exam-
ple 3.3,

D = fi(r) + fo(r) cos 260 (©)

in which f; and f, are yet to be determined. Substituting Eq. (c) into the
biharmonic equation (3.37) and noting the validity of the resulting ex-
pression for all 6, we have

*See, for example, Refs. 3.8 through 3.11.
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3.11

d 1 d\(dfi  1dfy\
<d r dr><dr2 * rodr =0 @
d _
dr

2 d? d 4
Lok s e
The solutions of Egs. (d) and (e) are (Prob. 3.35)
fi=cqrtlnr + cr*+ c;Inr + ¢ 0
f226572+cﬁr4+%+C8 (®

where the ¢’s are the constants of integration. The stress function is then
obtained by introducing Egs. (f) and (g) into (c). By substituting ® into
Eq. (3.29), the stresses are found to be

[ 6c;  4cg
o, =c(l+2Inr) + 2 + 2c;+—+— cos 26
r’ rt r
[ 6¢;
gy =c¢(3+2Inr) + 2¢c, — <2c; + 12¢r* + > cos 26 (h)
r?
6¢ 2c
T = <2c5 + 6cgr> — — — 28> sin 260
r r

The absence of ¢, indicates that it has no influence on the solution.

According to the boundary conditions (b), ¢; = ¢ = 0 in Eq. (h),
because as r — o0 the stresses must assume finite values. Then, accord-
ing to the conditions (a), the equations (h) yield

C 6c;  4dcg 6c;  2cq

2+ 2=0, 2e5+—F+-—>=0, 2c5-——F—">=0
a a a a a

Also, from Egs. (b) and (h) we have
g, = _4C5, g, = 4C2

Solving the preceding five expressions, we obtain ¢, = g,/4,
c; = —a*o,)2, cs = —o,/4, ¢; = —a‘oc,/4, and ¢ = a’c,/2. The determi-
nation of the stress distribution in a large plate containing a small circu-
lar hole is completed by substituting these constants into Eq. (h):

2 3 4 4 2
v, = lo, [(1 _ “2> n <1 + 24— “> cos ze} (3.52a)
r r r
2 3at
Oy = 30, |:<1 + a2> - <1 + i) cos 26:| (3.52b)
r r

30t 24
T = — 0, (1 - i + ”) sin 26 (3.52¢)
r

Stress Concentration Factors
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FIGURE 3.14. Example 3.4. Graph of tangential
and radial stresses for 6 = /2
versus the distance from the center
of the plate shown in Fig. 3.13a.

The tangential stress distribution along the edge of the hole, r = a,
is shown in Fig. 3.13b using Eq. (3.52b). We observe from the figure
that

(09)max = 30, 0= +m/2
(Ge)min = 70y 0= Oa 0=+m

The latter indicates that there exists a small area experiencing compressive
stress. On the other hand, from Eq. (3.39) for 6 = £7/2, (04)max = Oo-
The stress concentration factor, defined as the ratio of the maximum stress
at the hole to the nominal stress o, is therefore k = 30, /0, = 3.

To depict the variation of o,(r, w/2) and oy(r, w/2) over the distance
from the origin, dimensionless stresses are plotted against the dimen-
sionless radius in Fig. 3.14. The shearing stress 7,4(r, /2) = 0. At a dis-
tance of twice the diameter of the hole, that is, r = 4a, we obtain
oy ~ 1.0370, and o, =~ 0.0880,. Similarly, at a distance r = 9a, we have
oy ~ 1.0060, and o, ~ 0.0180,, as is observed in the figure. Thus, simple
tension prevails at a distance of approximately nine radii; the hole has a
local effect on the distribution of stress. This is a verification of Saint-
Venant’s principle.

The results expressed by Egs. (3.52) are applied, together with the method of
superposition, to the case of biaxial loading. Distributions of maximum stress
oy(r, w/2), obtained in this way (Prob. 3.36), are given in Fig. 3.15. Such conditions
of stress concentration occur in a thin-walled spherical pressure vessel with a small
circular hole (Fig. 3.15a) and in the torsion of a thin-walled circular tube with a
small circular hole (Fig. 3.15b).
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FIGURE 3.15.  Tangential stress distribution for = /2 in the
plate with the circular hole subject to biaxial
stresses: (a) uniform tension, (b) pure shear.

FIGURE 3.16. Elliptical hole in a plate under uni-
axial tension.
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It is noted that a similar stress concentration is caused by a small elliptical hole
in a thin, large plate (Fig. 3.16). It can be shown that the maximum tensile stress at
the ends of the major axis of the hole is given by

Omax = O, (1 + 22) (3.53)

Clearly, the stress increases with the ratio b/a. In the limit as a — 0, the ellipse be-
comes a crack of length 2b, and a very high stress concentration is produced; mater-
ial will yield plastically around the ends of the crack or the crack will propagate. To
prevent such spreading, holes may be drilled at the ends of the crack to effectively
increase the radii to correspond to a smaller b/a. Thus, a high stress concentration is
replaced by a relatively smaller one.

3.12 NEUBER’S DIAGRAM

Several geometries of practical importance, given in Table 3.2, were the subject of
stress concentration determination by Neuber on the basis of mathematical analy-
sis, as in the preceding example. Neuber’s diagram (a nomograph), which is used
with the table for determining the stress concentration factor k for the configura-
tions shown, is plotted in Fig. 3.17. In applying Neuber’s diagram, the first step is
the calculation of the values of V' A/a and V b/a.

Given a value of \/l%, we proceed vertically upward to cut the appropriate curve
designated by the number found in column 5 of the table, then horizontally to the left
to the ordinate axis. This point is then connected by a straight line to a point on the left
abscissa representing Vi/?, according to either scale e or f as indicated in column 4 of

3.12  Neuber’s Diagram
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TABLE 3.2

Type of Nominal Scale for ~ Curve
Type of change of section loading stress \Vhla fork
P
Tensi — 1
ension bt f
3IM
Bendi — 2
ending b f
P
Tensi — 3
ension br f
6M
Bendi — 4
ending o f
P
Tensi — 5
ension bt f
3Mh
Bendin — 5
8 2( — 1) ¢
P
Tensi — 6
ension 7 f
4M
Bendi — 7
ending 3 f
1.23Vv
Direct shear 3 e 8
wh
2T
Torsional shear —— e 9
b

the table. The value of & is read off on the circular scale at a point located on a normal
from the origin. [The values of (theoretical) stress concentration factors obtained from
Neuber’s nomograph agree satisfactorily with those found by the photoelastic method.]

Consider, for example, the case of a member with a single notch (Fig. B in the
table), and assume that it is subjected to axial tension P only. For given
a=7925mm, h=44450mm, and b = 266.700 mm, \/}% =237 and
\V/bla = 5.80. Table 3.2 indicates that scale f and curve 3 are applicable. Then, as
just described, the stress concentration factor is found to be k = 3.25. The path fol-
lowed is denoted by the broken lines in the diagram. The nominal stress P/bt, multi-
plied by k, yields maximum theoretical stress, found at the root of the notch.

EXAMPLE 3.5

A circular shaft with a circumferential circular groove (notch) is sub-
jected to axial force P, bending moment M, and torque 7T (Fig. D of
Table 3.2). Determine the maximum principal stress.

Chapter 3 Two-Dimensional Problems in Elasticity
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FIGURE 3.17. Neuber's nomograph.

Solution For the loading described, the principal stresses occur at a
point at the root of the notch which, from Eq. (1.16), are given by

2
o= ) =0 (a)
12 2 2 Txy’ 03

where o, and T,, represent the normal and shear stresses in the reduced
cross section of the shaft, respectively. We have

P My Tr
U.v:kaz—i_kaa Txy:kt7
or
P 4M 2T
Oy = ka 1Tb2 + kb 1Tb3 5 Txy = k[ 'Tl'b3 (b)

Here k, k,, and k, denote the stress concentration factors for axial
force, bending moment, and torque, respectively. These factors are de-
termined from curves 6,7,and 9 in Fig. 3.17. Thus, given a set of shaft di-
mensions and the loading, formulas (a) and (b) lead to the value of the
maximum principal stress ;.

In addition, note that a shear force V may also act on the shaft (as in
Fig. D of Table 3.2). For slender members, however, this shear con-
tributes very little to the deflection (Sec. 5.4) and to the maximum stress.

3.13 CONTACT STRESSES

Application of a load over a small area of contact results in unusually high stresses.
Situations of this nature are found on a microscopic scale whenever force is trans-
mitted through bodies in contact. There are important practical cases when the

3.13

Contact Stresses
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geometry of the contacting bodies results in large stresses, disregarding the stresses
associated with the asperities found on any nominally smooth surface. The Hertz
problem relates to the stresses owing to the contact of a sphere on a plane, a sphere
on a sphere, a cylinder on a cylinder, and the like. The practical implications with re-
spect to ball and roller bearings, locomotive wheels, valve tappets, and numerous
machine components are apparent.

Consider, in this regard, the contact without deformation of two bodies having
spherical surfaces of radii r; and r,, in the vicinity of contact. If now a collinear pair
of forces P acts to press the bodies together, as in Fig. 3.18, deformation will occur,
and the point of contact O will be replaced by a small area of contact. A common
tangent plane and common normal axis are denoted Ox and Oy, respectively. The
first steps taken toward the solution of this problem are the determination of the
size and shape of the contact area as well as the distribution of normal pressure act-
ing on the area. The stresses and deformations resulting from the interfacial pres-
sure are then evaluated.

The following assumptions are generally made in the solution of the contact
problem:

1. The contacting bodies are isotropic and elastic.

2. The contact areas are essentially flat and small relative to the radii of curvature
of the undeformed bodies in the vicinity of the interface.

3. The contacting bodies are perfectly smooth, and therefore only normal pressures
need be taken into account.

The foregoing set of assumptions enables an elastic analysis to be conducted.
Without going into the derivations, we shall, in the following paragraphs, introduce
some of the results.* It is important to note that, in all instances, the contact pres-
sure varies from zero at the side of the contact area to a maximum value o, at its
center.

FIGURE 3.18.  Spherical surfaces of two bodies compressed y

by forces P.
P Normal

Tangent
plane

*A summary and complete list of references dealing with contact stress problems are
given by Refs. 3.12 through 3.16.
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Two Spherical Surfaces in Contact

Because of forces P (Fig. 3.18), the contact pressure is distributed over a small circle

of radius a given by
P(E, + Ez)”lrz}m
a=088 ————— 3.59)
|: E\Ey(ry + 12)

where E; and E, (r; and r,) are the respective moduli of elasticity (radii) of the
spheres. The force P causing the contact pressure acts in the direction of the normal
axis, perpendicular to the tangent plane passing through the contact area. The
maximum contact pressure is found to be

P

wa?

o, =15 (3.55)

This is the maximum principal stress owing to the fact that, at the center of the
contact area, material is compressed not only in the normal direction but also in
the lateral directions. The relationship between the force of contact P, and the rel-
ative displacement of the centers of the two elastic spheres, owing to local defor-

mation, is
1 1\ 1 1\ 1"
= 2 —_— _—
d 0.77[P <E1 + E2> (ﬁ + r2>:| (3.56)

In the special case of a sphere of radius r contacting a body of the same mater-
ial but having a flat surface (Fig. 3.19a), substitution of r, = r,r, = 00, and
E, = E, = E into Eqgs. (3.54) through (3.56) leads to

1/3 1/3 1/3
2P PE? P
a= 0.88<Er> . o.= 0.62< = > , b= 1.54<2E2r> (3.57)

For the case of a sphere in a spherical seat of the same material (Fig. 3.19b) sub-
stituting r, = —r, and E;, = E, = E in Eqgs. (3.54) through (3.56), we obtain

1/3 1/3
2P —n )
a=08 —2 | 4 =06 PE2{ 20
E(rz - }’1) 27‘1}’2

3.58
5= 1.54[132(r2 — rl)}m o=

FIGURE 3.19. Contact load: (a) in sphere on P P
a plane; (b) in ball in a spheri- r
cal seat. 2
(a) (b)

3.13  Contact Stresses
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P
E;
— e |
P

(a)

FIGURE 3.20. Contact load: (a) in two cylindrical rollers; (b) in
cylinder on a plane.

Two Parallel Cylindrical Rollers

Here the contact area is a narrow rectangle of width 2b and length L (Fig. 3.20a).
The maximum contact pressure is given by

2 P
=—— 3.59
o= (3.59)
where
4Pr, (1-12%  1-13\]"?
b= + 3.60
|:"TL("1 + ”2)\ E, E, ( )

In this expression, E;(v;) and r;, with i = 1, 2, are the moduli of elasticity (Poisson’s
ratio) of the two rollers and the corresponding radii, respectively. If the cylinders
have the same elastic modulus E and Poisson’s ratio v = 0.3, these expressions re-
duce to

PE r +n, P nn

. . b=152,|——
¢ L nr ’ EL r + r

(3.61)

Figure 3.20b shows the special case of contact between a circular cylinder of radius
r and a flat surface, both bodies of the same material. After rearranging the terms
and taking r; = r and r, = o0 in Egs. (3.61), we have

Pr
b=152,/— 3.62
EL ( )

o, = 0.418

S

Two Curved Surfaces of Different Radii

Consider now two rigid bodies of equal elastic moduli E, compressed by force P
(Fig. 3.21). The load lies along the axis passing through the centers of the bodies
and through the point of contact and is perpendicular to the plane tangent to both
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FIGURE 3.21. Curved surfaces of different radii of two bodies com-
pressed by forces P.

bodies at the point of contact. The minimum and maximum radii of curvature of the
surface of the upper body are r; and r}; those of the lower body are r, and r; at the
point of contact. Thus, 1/r;, 1/r}, 1/r,, and 1/r5 are the principal curvatures. The sign
convention of the curvature is such that it is positive if the corresponding center of
curvature is inside the body. If the center of the curvature is outside the body, the
curvature is negative. (For example, in Fig. 3.22a, r, r| are positive, while r,, r, are
negative.)

Let 6 be the angle between the normal planes in which radii r; and r, lie. Sub-
sequent to loading, the area of contact will be an ellipse with semiaxes a and b
(Table C.1). The maximum contact pressure is

P

o, =15— (3.63)
mab

In this expression the semiaxes are given by
3 P 3 P
a=c, |2 b=y (3.64)
n n

- 4 _4E
1 1. 1. 1 "T3a-»
1

Here

(3.65)

+—+ =

ry R

The constants ¢, and ¢, are read in Table 3.3. The first column of the table lists val-
ues of «, calculated from

B
cosa = A (3.66)

3.13  Contact Stresses
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TABLE 3.3

a (degrees) c, Cp
20 3.778 0.408
30 2.731 0.493
35 2.397 0.530
40 2.136 0.567
45 1.926 0.604
50 1.754 0.641
55 1.611 0.678
60 1.486 0.717
65 1.378 0.759
70 1.284 0.802
75 1.202 0.846
80 1.128 0.893
85 1.061 0.944
90 1.000 1.000

12
+2 L_otyr_ 1 cos 26 (3.67)
n r'yJ\rn 1)

By applying Eq. (3.63), many problems of practical importance may be treated,
for example, contact stresses in ball bearings (Fig. 3.22a), contact stresses between a

*P

o €l§
e

(a)

f=rJd

FIGURE 3.22. Contact load: (a) in a single-row ball bearing; (b) in a cylin-
drical wheel and rail.
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cylindrical wheel and a rail (Fig. 3.22b), and contact stresses in cam and push-rod
mechanisms.

EXAMPLE 3.6

A railway car wheel rolls on a rail. Both rail and wheel are made of steel
for which E = 210GPa and v = 0.3. The wheel has a radius of
r, = 0.4 m, and the cross radius of the rail top surface is r, = 0.3 m (Fig.
3.22b). Determine the size of the contact area and the maximum contact
pressure, given a compression load of P = 90 kN.

Solution For the situation described, 1/r'; = 1/r’, = 0, and, because
the axes of the members are mutually perpendicular, 6 = /2. The first
of Egs. (3.65) and Egs. (3.67) reduce to

4 11 1 1/ 1 1
= — A=—-—+— B= +—-—-— 3.68
" 1/”1 + 1/"2’ 2(71 r2>’ 2<}’1 r2> ( )

The proper sign in B must be chosen so that its values are positive. Now
Eq. (3.66) has the form
1/}’1 - 1/}’2

cosa = £ m (3.69)

Substituting the given numerical values into Egs. (3.68), (3.69), and
the second of (3.65), we obtain

- 4 — 0.6857 _ARI0X0) 5 o0 1on
04+ 03 00 T 30001
104 — 1/0.3 )
cosa = =+ m = (.1428 or o = 81.79

Corresponding to this value of «, interpolating in Table 3.3, we have
¢, = 1.1040, ¢, = 09113
The semiaxes of the elliptical contact are found by applying Egs. (3.64):

90,000 X 0.6857

a = 1.1040
3.07692 x 10"

1/3
= 0.00646 m

90,000 X 0.6857

1/3
3.07692 x 101 :| = 0.00533 m

b= 0.9113|:

The maximum contact pressure, or maximum principal stress, is thus

90,000
=15 : = 1248 MP
Ge 7(0.00646 X 0.00533) a
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A hardened steel material is capable of resisting this or somewhat
higher stress levels for the body geometries and loading conditions de-
scribed in this section.

PROBLEMS
Secs. 3.1 through 3.7
3.1. A stress distribution is given by
or = pyx’ — 2c1xy + ¢y
o, = pxy’ — 2px’y

- _3,.272 2 1, 4
Ty = —3PX°Y  + oy +3pxT +

(@

where the p and ¢’s are constants. (a) Verify that this field represents a so-
lution for a thin plate of thickness ¢ (Fig. P3.1); (b) obtain the correspond-
ing stress function; (c) find the resultant normal and shearing boundary

forces (P, and V,) along edges y = 0 and y = b of the plate.

3.2. If the stress field given by Eq. (a) of Prob. 3.1 acts in the thin plate shown
in Fig. P3.1 and p is a known constant, determine the ¢’s so that edges
x = ta are free of shearing stress and no normal stress acts on edge

X = a.

3.3. In bending of a rectangular plate (Fig. P3.3), the state of stress is expressed

by

0, =y + ey Ty = (b = ¥)

(a) What conditions among the constants (the ¢’s) make the preceding ex-
pressions possible? Body forces may be neglected. (b) Draw a sketch

showing the boundary stresses on the plate.
3.4. Given the following stress field within a structural member,
o, = a[y* + b(x* — y?)] T = —2abxy
o, = a[x* + b(y* — x%)] Tyy = Ty = 0
o, = ab(x* + y?)

where a and b are constants. Determine whether this stress distribution
represents a solution for a plane strain problem. The body forces are

omitted.

A YA

|<—a—><—a—>| o |<734>|

FIGURE P3.1. FIGURE P3.3.
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3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

Problems

Determine whether the following stress functions satisfy the conditions of
compatibility for a two-dimensional problem:

®, = ax® + bxy + ¢)? (a)
®, = ax® + bx?’y + cxy* + dy? (b)
Here a, b, c, and d are constants. Also obtain the stress fields that arise from
&, and P,.
Figure P3.6 shows a long, thin steel plate of thickness ¢, width 24, and
length 2a. The plate is subjected to loads that produce the uniform stresses

o, at the ends. The edges at y = +h are placed between the two rigid walls.
Show that, by using an inverse method, the displacements are expressed by
1 — 2 v(l +v)

5 o, X, v =0, w = 5 0,2

u =

Determine whether the following stress distribution is a valid solution for a
two-dimensional problem:

1
o, = —ax’y o, = — gay3 T, = axy’
where a is a constant. Body forces may be neglected.

The strain distribution in a thin plate has the form

ax® axy®
axy? ax’y

in which a is a small constant. Show whether this strain field is a valid solu-
tion of an elasticity problem. Body forces may be disregarded.

The components of the displacement of a thin plate (Fig. P3.9) are given by
u=—c(y*+vx) v=2xy

Here c is a constant and v represents Poisson’s ratio. Determine the stresses

o, 0y, and T,,. Draw a sketch showing the boundary stresses on the plate.

Consider a rectangular plate with sides a and b of thickness ¢ (Fig. P3.10).
(a) Determine the stresses o, 0,, and T,, for the stress function ® = px’y,
where p is a constant. (b) Draw a sketch showing the boundary stresses on
the plate. (c) Find the resultant normal and shearing boundary forces
(P, P,, V,, and V,) along all edges of the plate.

YA YA

'4—6————»(—8—»'

111
YYYY
JyVyY
LT
\
x
N
A
o'

FIGURE P3.6.
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FIGURE P3.9. F1GURE P3.10.

3.11. Redo Prob. 3.10 for the case of a square plate of side dimensions a and

_ P 201 3
® =55 (Y7 + 50y
where p is a constant.

3.12. Resolve Prob. 3.10 a and b for the stress function of the form

Py (3b - 2y)

(DZ—E

where p represents a constant.

3.13. A vertical force P per unit thickness is applied on the horizontal boundary
of a semi-infinite solid plate of unit thickness (Fig. 3.11a). Show that the

stress function ® = —(P/m)y tan '(y/x) results in the following stress field

within the plate:

Y __2p _ 2Py
Ox T (X + ) Oy T (X + ) Txy T (2 + )

Also plot the resulting stress distribution for o, and 7, at a constant depth
L below the boundary.

3.14. The thin cantilever shown in Fig. P3.14 is subjected to uniform shearing
stress T, along its upper surface (y = +h) while surfaces y = —h and
x = L are free of stress. Determine whether the Airy stress function

FIGURE P3.14.
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2 3 2 3
_1 Xyt _xyn Ly Ly
“’—4*o<xy‘h‘m+h+hz>
satisfies the required conditions for this problem.

3.15. Figure P3.15 shows a thin cantilever beam of unit thickness carrying a uni-
form load of intensity p per unit length. Assume that the stress function is

expressed by

® = ax? + bx%y + cy’ + dy’ + ex?y?
in which a, ...,e are constants. Determine (a) the requirements on
a, ..., e so that ® is biharmonic; (b) the stresses o,, 0, and 7,,.

3.16. Consider a thin square plate with sides a. For a stress function
® = (pla®)(3x%y* — ty*), determine the stress field and sketch it along the
boundaries of the plate. Here p represents a uniformly distributed loading
per unit length. Note that the origin of the x, y coordinate system is located
at the lower-left corner of the plate.

3.17. Consider a thin cantilever loaded as shown in Fig. P3.17. Assume that the
bending stress is given by

sz:_£x2
I Y

(P3.17)

Oy = —

and o, = 7,, = 7,, = 0. Determine the stress components o, and T,, as

functions of x and y.

y

3.18. Show that for the case of plane stress, in the absence of body forces, the
equations of equilibrium may be expressed in terms of displacements u and
v as follows:

Fu tu 1+vaolou v
+ + ——+—=1]=0

ax? 672 1 —vax\ox ay
(P3.18)
iv v >=0

J’_
ay>  ax* 1 —wvay

Fo dv ltvafw
Jay  ox

[Hint: Substitute Egs. (3.10) together with (2.3) into (3.6).]

3.19. Determine whether the following compatible stress field is possible within
an elastic uniformly loaded cantilever beam (Fig. P3.17):

"4

FEEEEEE’

Y

Y

!: L

FIGURE P3.15.
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3.20.

3.21.

3.22,

3.23.

3.24.
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FIGURE P3.17.

pP p

O, = — E(sz + th)y + §y3
pXx

Txy = = Z(hz - y2) (P3.19)
14

o, = — 67(2]’13 — 3h2y + y3)

Here I = 2th*/3 and the body forces are omitted. Given p = 10 kN/m,
L=2m, h=100mm, ¢t = 40mm, v = 0.3, and E = 200 GPa, calculate
the magnitude and direction of the maximum principal strain at point Q.
A prismatic bar is restrained in the x (axial) and y directions, but free to ex-
pand in z direction. Determine the stresses and strains in the bar for a tem-
perature rise of T, degrees.

Under free thermal expansion, the strain components within a given elastic
solid are &, = &, = &, = oT and v,, = v,, = ¥,, = 0. Show that the tem-
perature field associated with this condition is of the form

ol =cx + oy +caz+co
in which the ¢’s are constants.

Redo Prob. 3.6 adding a temperature change 7;, with all other conditions
remaining unchanged.

Determine the axial force P, and moment M, that the walls in Fig. 3.6b
apply to the beam for 7 = a,;y + a,, where a, and a, are constant.

A copper tube of 800-mm? cross-sectional area is held at both ends as in Fig,
P3.24. If at 20°C no axial force P, exists in the tube, what will P, be when the
temperature rises to 120°C? Let E = 120 GPa and a = 16.8 X 10 ®per °C.

FIGURE P3.24.
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Secs. 3.8 through 3.10

3.25.

3.26.

3.27.

3.28.

3.29.

Problems

Show that the case of a concentrated load on a straight boundary (Fig.
3.11a) is represented by the stress function

P
b =——r0sin 6
v

and derive Egs. (3.45) from the result.

Verify that Egs. (3.34) are determined from the equilibrium of forces act-
ing on the elements shown in Fig. P3.26.

Demonstrate that the biharmonic equation V*® = 0 in polar coordinates
can be written as

d 1o 1 F\od 10 1 PP
PO | L Syl B
ar roor re 90 or roor re 90

Show that the compatibility equation in polar coordinates, for the axisym-
metrical problem of thermal elasticity, is given by

1d r@ + EoT =0 (P3.28)
rdr dr

Assume that moment M acts in the plane and at the vertex of the
wedge—cantilever shown in Fig. P3.29. Given a stress function

M((sin 26 — 26 cos 2at)
2(sin 2 — 2a cos 2a)

b= (P3.29a)

determine (a) whether & satisfies the condition of compatibility; (b) the

stress components a,, oy, and T,e; and (c) whether the expressions
_ 2M sin 26 _ 2M cos’ 0

g, D Oy = 0’ Trog = 2
mwr ya

(P3.29b)

represent the stress field in a semi-infinite plate (that is, for « = w/2).
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FIGURE P3.30.

3.30. Referring to Fig. P3.30, verify the results given by Egs. (b) and (c) of Sec. 3.10.

3.31. Consider the pivot of unit thickness subject to force P per unit thickness at
its vertex (Fig. 3.10a). Determine the maximum values of o, and 7,, on a
plane a distance L from the apex through the use of o, given by Eq. (3.40)
and the formulas of the elementary theory: (a) take a = 15° (b) take
o = 60°. Compare the results given by the two approaches.

3.32. Solve Prob. 3.31 for a = 30°.

3.33. Redo Prob. 3.31 in its entirety for the wedge—cantilever shown in Fig. 3.10b.

3.34. A uniformly distributed load of intensity p is applied over a short distance
on the straight edge of a large plate (Fig. P3.34). Determine stresses o, o,
and 7, in terms of p, 6, and 6,, as required. [Hint: Let dP = pdy denote
the load acting on an infinitesimal length dy = rd 6/cos 6 (from geometry)
and hence dP = prd 6/cos 6. Substitute this into Eqgs. (3.47) and integrate
the resulting expressions. |

Secs. 3.11 through 3.13

3.35. Verify the result given by Egs. (f) and (g) of Sec. 3.11 (a) by rewriting Eqs.
(d) and (e) in the following forms, respectively,

vaf afvaf an\T\ _
r dr rdr rdrrdr B
d{1d d| 1 d (F335)
ajft a),apl a, , _
" <r3 dr{r dr[r3 dr(r fzﬂ}) =0
pdy

p _’M‘—dy

FYYYYY
NN

FIGURE P3.34.
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3.36.

3.37.

3.38.

3.39.

3.40.

3.41.

3.42.

3.43.

3.44.

3.45.

3.46.

Problems

and by integrating (P3.35) and (b) by expanding Egs. (d) and (e), setting
t = In r, and thereby transforming the resulting expressions into two ordi-
nary differential equations with constant coefficients.

Verify the results given in Fig. 3.15 by employing Eq. (3.52b) and the
method of superposition.

For the flat bar of Fig. C of Table 3.2,let b = 17h, ¢ = 18h, and a = h (cir-
cular hole). Referring to Neuber’s nomograph (Fig. 3.17), determine the
value of k for the bar loaded in tension.

A 20-mm-thick steel bar with a slot (25 mm radii at ends) is subjected to an
axial load P, as shown in Fig. P3.38. What is the maximum stress for
P = 180 kN?

For the flat bar in Fig. A of Table 3.2,let # = 3a and b = 15a. Referring to
Neuber’s nomograph (Fig. 3.17), find the value of k for the bar subjected to
(a) axial tensile load, and (b) bending.

A thin-walled circular cylindrical vessel of diameter d and wall thickness ¢
is subjected to internal pressure p (see Table 1.1). Given a small circular
hole in the vessel wall, show that the maximum tangential and axial
stresses at the hole are oy = Spd/4t and o, = pd/4t, respectively.

The shaft shown in Fig. D of Table 3.2 has the following dimensions:
a = 6 mm, # = 12 mm, and b = 200 mm. The shaft is subjected simultane-
ously to a torque 7' = 4 kN -m, a bending moment M = 2 kN-m, and an
axial force P = 10 kN. Calculate at the root of the notch (a) the maximum
principal stress, (b) the maximum shear stress, and (c) the octahedral stresses.

Redo Prob. 341 for a = 4mm, A = 6 mm, b = 120mm, 7 = 3kN-m,
M =15kN-m,and P = 0.

A 50-mm-diameter ball is pressed into a spherical seat of diameter 75 mm
by a force of 500 N. The material is steel (E = 200 GPa, v = 0.3). Calcu-
late (a) the radius of the contact area; (b) the maximum contact pressure;
and (c) the relative displacement of the centers of the ball and seat.

Calculate the maximum contact pressure o. in Prob. 3.43 for the cases
when the 50-mm-diameter ball is pressed against (a) a flat surface, and (b)
an identical ball.

Calculate the maximum pressure between a steel wheel of radius
r; = 400 mm and a steel rail of crown radius of the head r, = 250 mm (Fig.
3.22b) for P = 4kN. Use E = 200 GPa and v = 0.3.

A concentrated load of 2.5 kN at the center of a deep steel beam is applied
through a 10-mm-diameter steel rod laid across the 100-mm beam width.

50 mm
|

L
| — P
T
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FIGURE P3.38.
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3.47.

3.48.

3.49.

3.50.

3.51.

Compute the maximum contact pressure and the width of the contact be-
tween rod and beam surface. Use £ = 200 GPa and v = 0.3.

Two identical 400-mm-diameter steel rollers of a rolling mill are pressed
together with a force of 2 MN/m. Using £ = 200 GPa and v = 0.25, com-
pute the maximum contact pressure and width of contact.

Determine the size of the contact area and the maximum pressure between
two circular cylinders with mutually perpendicular axes. Denote by r; and
r, the radii of the cylinders. Use r, = 500 mm, r, = 200 mm, P = S kN,
E =210 GPa, and v = 0.25.

Solve Prob. 3.48 for the case of two cylinders of equal radii,
r = r, = 200 mm.

Determine the maximum pressure at the contact point between the outer
race and a ball in the single-row ball bearing assembly shown in Fig. 3.22a.
The ball diameter is 50 mm; the radius of the grooves, 30 mm; the diameter

of the outer race, 250 mm; and the highest compressive force on the ball,
P = 1.8kN. Take £ = 200 GPa and v = 0.3.

Redo Prob. 3.50 for a ball diameter of 40 mm and a groove radius of
22 mm. Assume the remaining data to be unchanged.
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