The plane strain/stress boundary conditions for the problem are:

• The surfaces at r = a $(\hat{\mathbf{n}} = \hat{\mathbf{e}}_r)$ and r = b $(\hat{\mathbf{n}} = -\hat{\mathbf{e}}_r)$ are traction-free $(\mathbf{t} = \mathbf{0})$, which gives

$$\sigma_{rr} = \sigma_{r\theta} = 0$$
 on $r = a$ and $r = b$.

• The surface at $\theta = \pi/2$ is fixed:

$$u_r = u_\theta = 0$$
 on $\theta = \frac{\pi}{2}$.

• The traction distribution on the surface $\theta = 0$ ($\hat{\mathbf{n}} = -\hat{\mathbf{e}}_{\theta} \implies t_r = -\sigma_{\theta r}$, $t_{\theta} = -\sigma_{\theta \theta}$) is statically requivalent to $\mathbf{P} = -P\hat{\mathbf{e}}_1 = -P\hat{\mathbf{e}}_r$:

$$F_{1} = \int_{a}^{b} t_{r} dr = -P \implies \int_{a}^{b} \sigma_{\theta r}|_{\theta=0} dr = P ,$$

$$F_{2} = \int_{a}^{b} t_{\theta} dr = 0 \implies \int_{a}^{b} \sigma_{\theta \theta}|_{\theta=0} dr = 0 ,$$

$$M_{0} = \int_{a}^{b} rt_{\theta} dr = 0 \implies \int_{a}^{b} r\sigma_{\theta \theta}|_{\theta=0} dr = 0 .$$

For the proposed Airy stress function of the form

$$\Phi = \left(Ar^3 + \frac{B}{r} + Cr\ln r\right)\sin\theta ,$$

check first that the compatibility condition $\nabla^4 \Phi = 0$ is satisfied:

$$\nabla^2 \Phi = \frac{\partial^2 \Phi}{\partial r^2} + \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} = \left(8Ar + \frac{2C}{r}\right) \sin\theta ,$$

$$\nabla^4 \Phi = \nabla^2 (\nabla^2 \Phi) = \left(\frac{4C}{r^3} + \frac{8A}{r} - \frac{2C}{r^3} - \frac{8A}{r} - \frac{2C}{r^3}\right) \sin\theta = 0 .$$

Next, the components of stress are

$$\sigma_{rr} = \frac{1}{r} \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} = \left(2Ar - \frac{2B}{r^3} + \frac{C}{r}\right) \sin \theta ,$$

$$\sigma_{\theta\theta} = \frac{\partial^2 \Phi}{\partial r^2} = \left(6Ar + \frac{2B}{r^3} + \frac{C}{r}\right) \sin \theta ,$$

$$\sigma_{r\theta} = -\frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial \Phi}{\partial \theta}\right) = -\left(2Ar - \frac{2B}{r^3} + \frac{C}{r}\right) \cos \theta .$$

The boundary conditions $\sigma_{rr} = \sigma_{r\theta} = 0$ on r = a and r = b are satisfied if and only if

$$2Aa - \frac{2B}{a^3} + \frac{C}{a} = 0$$

$$2Ab - \frac{2B}{b^3} + \frac{C}{b} = 0$$
 $\implies B = -Aa^2b^2, \quad C = -2A(a^2 + b^2).$

Now the components of stress are

$$\sigma_{rr} = 2A\left(r + \frac{a^2b^2}{r^3} - \frac{a^2 + b^2}{r}\right)\sin\theta ,$$

$$\sigma_{\theta\theta} = 2A\left(3r - \frac{a^2b^2}{r^3} - \frac{a^2 + b^2}{r}\right)\sin\theta ,$$

$$\sigma_{r\theta} = -2A\left(r + \frac{a^2b^2}{r^3} - \frac{a^2 + b^2}{r}\right)\cos\theta .$$

For the average boundary conditions at $\theta = 0$, since $\sigma_{\theta\theta}|_{\theta=0} = 0$,

$$\int_{a}^{b} \sigma_{\theta\theta}|_{\theta=0} dr = 0 , \quad \int_{a}^{b} r \sigma_{\theta\theta}|_{\theta=0} dr = 0 ,$$

are identically satisfied. Finally, since

$$\int_{a}^{b} \sigma_{r\theta}|_{\theta=0} dr = -2A \int_{a}^{b} \left(r + \frac{a^{2}b^{2}}{r^{3}} - \frac{a^{2} + b^{2}}{r} \right) dr = -2A \left[b^{2} - a^{2} - (a^{2} + b^{2}) \ln \frac{b}{a} \right] = P ,$$

it follows that

$$A = -\frac{P}{2N}$$
, $B = \frac{Pa^2b^2}{2N}$, $C = \frac{P(a^2 + b^2)}{N}$,

where

$$N \equiv b^2 - a^2 - (a^2 + b^2) \ln \frac{b}{a} .$$

Note that the fixed-displacement boundary condition at $\theta = \pi/2$ is not satisfied—the solution is approximate in the sense of Saint-Venant's principle.