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Chapter 4 
 

4  EXAMPLES IN LINEAR ELASTICITY 
 
The objectives of this Chapter are to present the reader with a systematic method of first gaining 
an understanding of the problem on hand and, secondly, to establish the appropriate equations 
from which a solution may eventually be forthcoming.  The solution, per say, is not important; 
the method of setting up the correct equations and correct boundary conditions, is important.  In 
future cases where complicated problems are being tackled by the reader, this systematic 
approach leads to consistent sets of equations in which the Engineer may have confidence. 
 
In all of the examples about to be discussed, the definitions of the stress vector, (I), the body 
force vector, (II), and the symmetry of the stress tensor, (V), are assumed to be applicable and 
will not be referred to further. 
 

4.1  St. Venant's Principle 
 

If some distribution of forces acting on a portion of the surface of a 
body is replaced by a different distribution of forces acting on the same 
portion of the body, then the effects of the two different distributions on 
the parts of the body sufficiently far removed from the region of 
application of the forces are essentially the same provided the two 
distributions of forces are statically equivalent. 

 
 

4.2  The Deformation of a Long Rod Standing Vertically in a 
Gravitational Field 
 
Although the following problem appears mundane, it has the redeeming feature that it illustrates 
nicely the power of tackling problems from the systematic point of view.  Also, it does relate to a 
number of practical problems such as the design of a free standing tower and the laying of 
underwater communication cables. 
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4.2.1  PART A - The Set-up of the Problem 
 

Figure 4.1  Long Prismatic Rod in a Gravitational Field 
 
(III)  The Stress Boundary Conditions;  Ti = σijnj 
 

1. On all lateral surfaces since there are no lateral forces (such as wind) and no taper in the 
rod: 

(4.1) 
which, when taking into consideration (III), implies: 

(4.2) 
Please note at this early stage that the stress field whatever it may eventually become 
must satisfy these boundary conditions.  These conditions cannot be violated. 

 
2. On the top surface;  z = l: 

(4.3) 
No bird or elephant sits on the top of the rod. 
 

3. On the bottom surface;  z = 0: 

(4.4) 

( ) ( ) ,  0          ;    0   0   0 21 nn~n~T ii

.  0
,  0
,  0

223113

222112

221111

=+
=+
=+

nn
nn
nn

σσ
σσ
σσ

( ) ( ) .   0          1    0    0       ;       0    0    0 333231 ===⇒ σσσ~n~T ii

( ) ( ) .      ;   0         1-      0      0      ;            0     0 333231 gl~nρgl~T ii ρσσσ −===⇒+

x 

z 

l 



 

IV-3 

The implication of these boundary conditions are again worth noting.  They state that as 
the rod stands on a rigid foundation, there are no shear stresses induced at the bottom of 
the rod and that the normal stress is compressive and does not vary with the radius of the 
rod.  This latter observation leads to anomalies in the about to be derived displacement 
field.  Furthermore, by taking care in designating the direction of both the surface traction 
vector and the outward unit normal, the 'sense' of all stresses at this surface has been 
established beyond question.  This is one of the plus points obtained by approaching the 
set-up of all problems in a systematic manner. 
 
Finally, before moving onto the next basic equation, it is worthwhile making sure that 
ALL the load induced stress boundary conditions are deduced.  In this case they are. 

 
 
(IV)  The Equations of Equilibrium;   σij,j + χi = 0: 
 
By carefully writing out the component form of this equation in cartesian coordinates, it follows 
that: 
 

(4.5) 
 
These are the appropriate partial differential equations of equilibrium governing the entire stress 
field for this particular problem.  Theoretically, by solving these equations and applying the 
stress boundary conditions listed above, the unique stress field throughout the rod may be 
determined.  As noted in Appendix A, these equations coupled with (V) and the above boundary 
equations form a statically determined system. 
 
 
(VI)  The Strain-Displacement:  eij  =  1/2 (ui,j  +  uj,i): 
 
Certainly, these six strain-displacement equations may be written out at this time.  They will, 
however, be left in this present form until the following "B - Analysis of the Problem" section. 
 
At some point in the problem set-up portion A, the displacement boundary conditions must be 
listed.  Since the displacements have been introduced by (VI), this is an appropriate place to 
consider these conditions. 
 
A set of displacement boundary conditions consistent with the problem is as follows. 
 

1. For the two planes  xα  =  0, the displacements uα  =  0.      (4.6) 
 

These two conditions simply state that whatever the displacement field turns out to be, 
the horizontal displacements of the centre of the rod must be zero.  Other conditions 
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could have been specified, the only thing to be made sure of being; that they are 
consistent with the problem being studied. 

 
2. At the single point  xi =  0,  i.e., the origin of the coordinates,  ui  =  0 .    (4.7) 
 

This condition rules out any possibility of a rigid body movement.  In effect, the rod is 
being pinned at this single point and all displacements are relative to this point. 

 
 
(VII)  The Compatibility Equations 
 
In this particular example the compatibility equations do not play a roll.  It turns out, however, 
that both the resulting stress and displacement fields are compatible and do satisfy the St. Venant 
(VII)i and Beltrami-Michell (VII)ii equations, respectively. 
 

(VIII)i  The Constitutive Equations:  . 1
ijijkkij EE

e σνδσν ++−=  

In their expanded form they become: 
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(4.8) 
 
IX)  The Navier Displacement Equations of Motion 
 
These equations can be applied to this problem.  However, since they are a 'nested' form of the 
even numbered equations:  (IV), (VI) and (VIII), they duplicate the information already 
gathered from these particular equations.  Considering the Navier equations instead of these 
three is often more attractive since only the three displacement components have to be 
determined. 
 
Please note that all of the basic equations of linear isotropic elasticity have been investigated and 
their implications listed for the problem on hand.  Other problems will have a completely 
different set of equations and boundary conditions, which result from an equally careful 
examination of the same basic equations, (I) through (IX).  Mathematically, the number of 
equations equals the number of unknowns and a solution is therefore possible. 
 
Attention will now be turned to part B where these equations along with the specified boundary 
conditions are analyzed. 
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4.2.2  PART B - Analysis of the Problem 
 
By considering the equilibrium equations eqn(4.5) and the boundary conditions, eqns(4.1 – 4.4), 
it is easily verified that the following stress field satisfies all of these equations and conditions: 

(4.9) 
 
Usually, this is the hardest part of a problem.  In this case, where an effort is being made to 
illustrate the systematic approach, time will not be spent on 'solving' the equilibrium equations 
and then applying the boundary conditions.  Instead, the reader should verify that the stress 
equations and boundary conditions are satisfied by this solution.  Secondly and turning to the 
design of this rod, if the density and compressive strength of the rod's material and a suitable 
safety factor were to be specified, the maximum length of the rod could have been estimated.  
Concerning the related problem of the laying of undersea cables, the maximum allowable depth 
of ocean in which a cable could be suspended from the stern of a Cable-layer could be found in a 
similar fashion. 
 
Substituting this stress field eqn(4.9), into the constitutive equations, eqn(4.8), immediately 
results in the strain field: 

(4.10) 
Substituting this strain field, into the strain-displacement relations, (VI), gives: 
 

(4.11) 
Integrating the diagonal terms of  eij  and recalling from Appendix A that a "comma" indicates 
partial differentiation, results in general expressions for the displacement field, i.e.: 
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(4.12) 
 
We now apply the above determined boundary conditions to these displacement expressions. 
 

1. The boundary condition: on the plane x = 0 , u1 = 0, implies, for all applicable values of 
y and z, that: 

(4.13) 
 
2. The boundary condition: on the plane y = 0 , u2 = 0, implies, for all applicable values of 

x and z, that: 

(4.14) 
 
3. Considering the shear strain-displacement conditions expressed in eqn(4.11), it now 

immediately follows that  u1,2 + u2,1 = 0 is identically satisfied. 
 
4. However, the implication of the off-diagonal relation  u1,3 + u3,1 = 0  of eqn(4.11) has to 

be determined differently.  Applying the observation eqn(4.13) and taking the partial 
differentiation of eqn(4.12)1 with respect to z gives: 

(4.14)1 
 while the partial derivative of eqn(4.12)3 with respect to x results in: 

(4.14)2 
Hence, from  u1,3 + u3,1 = 0  it follows that: 

(4.15) 
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5. In a similar manner, the implication of the off-diagonal equation  u2,3 + u3,2 = 0  is that: 
 

(4.16) 
 
6. Comparing the expressions for f3 in eqns(4.15 & 4.16) and taking note of h1 and h2, it 

follows that a general expression for f3 may be written as: 
 

(4.17) 
 
7. Finally, by substituting this eqn(4.17) into eqn(4.12)3 and applying the displacement 

boundary condition, eqn(4.7), it follows that: 
 

C = 0    .                                                                       (4.18) 
Hence eqn(4.12) finally becomes: 

(4.19) 
 
Now, the last thing to be undertaken in a systematic approach to any problem is to check if the 
answers makes sense.  For example, the above expressions, which describe the lateral 
displacements appear correct in that they adhere to the applied boundary conditions and they 
indicate a general expansion of the rod as it approaches the base.  Secondly, the vertical 
displacement is negative as one would expect. 
 
However, there appears to be a problem at the base where z = 0.  On this surface, as x or y 
increases, there is a positive u3 displacement.  This anomaly is as a result of the chosen stress 
boundary assumption that the vertical reaction load on the surface z = 0 be uniform.  In practice 
it is not and this approximation caused the anomaly noted in the u3 expression. 
 
 
 
 
 
 
 

( ) .   
2

          2
2

323 xhy
E
gfy

E
g,f +=⇒= νρνρ

( ) .    
2

22
3 Cyx

E
gf ++= νρ

( )

( )

( )[ ] .     2
2

g

,    
E

g

,     

222
3

2

1

yxzlz
E

u

yzlu

xzl
E
gu

+−−−=

−=

−=

νρ

νρ

νρ



 

IV-8 

4.3  Thin Rotating Discs 
 
Now that an understanding of the systematic approach to the solution of problems has been 
gained, the actual order in which the set-up and analysis is carried out is no longer of importance.  
What is important is to make sure that all parts of the process are addressed at some point or 
other. 
 
In this case of thin rotating discs, for example, a detailed review of the stress boundary 
conditions is delayed until the end.  Also, the Navier displacement equations of motion (IX) 
could have been implemented effectively, rather than the (IV), (VI) & (VIII) approach 
illustrated here.  Finally, this example illustrates the use of the cylindrical coordinates detailed in 
Appendix B. 
 
The stress distribution in rotating circular discs is of considerable practical importance, for 
example, in the design of turbines and spray driers.  If the thickness of the disc is small in 
comparison to its radius, the variation of the radial and tangential stresses over the thickness, as a 
first approximation, may be neglected.  As will be seen in the next chapter, this is equivalent to a 
plane stress assumption. 
 

4.3.1  PART A - The Set-up of the Problem 
 
(II)  The Body Force Vector:  χχχχ.   For a disc rotating at a constant angular velocity  ω, the 
centrifugal force may be considered as a body force acting radially outwards at each point of the 
disc.  Using polar cylindrical coordinates, this may be expressed as: 
 

(4.21) 
 
(IV)  The Equilibrium Equations:   σij,j + χi = 0 
 
From a consultation of the equations eqn(B.1) in Appendix B and acknowledging that this is a 
strictly axisymmetric problem, these equations reduce to the single equation: 

(4.22) 
 

(VI)  The strain-displacement relations:   ( )ijjiij uue ,  , 
2
1 +=  

 
Again consulting equations presented in the Appendix B we see that equation (B.3) is applicable 
in this case, i.e.: 
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(4.23) 
 

(VIII)i  The Constitutive Equations:   ( )   1
ijijkkij EE

e σνδσν −+−=  

 
Since these equations do not involve partial differentiation, signified by the "comma", they may 
simply be written down in terms of the stress and strain components that appear to be non-zero in 
the above equilibrium and strain-displacement equations, i.e.: 
 

(4.24) 
Noting that both the stress boundary equations (III) and the compatibility equations will be 
discussed subsequently, this completes the set-up of the spinning disc problem. 
 

4.3.2  PART B - The Analysis of the Problem 
 
From here on, every problem is different.  In this particular case, a review of the equilibrium 
equation eqn(4.22)2 reveals that it is identically satisfied by setting: 

(4.25) 
 
This is the first example of many where solutions may be found by introducing a  STRESS 
FUNCTION, namely,  F(r).  This is a relatively common way of solving problems and more will 
be said about this technique in the next chapter.  For now, just notice that these expressions for 
the stresses satisfy the equilibrium equation (IV).  The emphasis will now be concentrated on 
finding the governing equation for F(r).  Once that equation is solved, it may be substituted into 
eqn(4.25) to deduce the stresses, from whence the strains and eventually the displacements can 
be found. 
 
The first step in finding the governing equation for F(r) is performed by considering the strain-
displacement relations, eqn(4.23).  It is noticed, by taking the derivative of  eθθ  with respect to r, 
that the resulting expression will contain the  err  term.  Hence: 
 

.     

0

0

00























r
u

dr
du

~e r

r

ij

( ) ( ) .     1          ;          1
rrrrrr E

e
E

e σσνσσ θθθθθθ −=−=

( ) ( ) .                   and               22r
dr

rdFrFr rr ρωσσ θθ +==



 

IV-10 

(4.26) 
 
This equation eqn(4.26) takes the place of the compatibility equations,  (VII)i, discussed in 
Chapter 3, in that it may be viewed as an integration of the single compatibility equation that 
applies in this situation. 
 
The strains expressed in terms stresses, namely eqn(4.24), may now be substituted into this 
'pseudo' compatibility relation eqn(4.26), to generate: 

 
which, upon rearranging gives: 

(4.27) 
This in turn may be viewed as an integrated form of the Beltrami Michell compatibility 
equations  (VII)ii. 
 
Finally, the stresses in terms of the stress function,  F(r),  may now be substituted into this 
compatibility equation to give, after some manipulation, the required governing equation for the 
stress function F(r): 

(4.28) 
 
This is a non-homogeneous, 2nd order, linear, ordinary differential equation with variable 
coefficients, which may be solved using standard solution techniques.  For example, the solution 
of the homogeneous part of eqn(4.28) may be found prior to finding its particular integral.  Such 
a process eventually results in the general expression for the stress function  F(r),  namely: 
 

(4.29) 
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At this point it is worth noting that this general expression could not have been found without 
employing all of the basic linear isotropic elastic relations, including the compatibility equations.  
With the determination of the stress function  F(r), it becomes a relatively simple process to find 
all the other variables, starting with the stresses. 
 
Substituting for  F(r)  in eqn(4.25) the stress field becomes: 

(4.30) 
 
It is important to review the form of these equations.  First, consider these expressions when 
there is no rotational effect.  The third term of both becomes zero and exceptionally nice forms 
of the stresses for all generally axisymmetric problems results.  For any thin circular disc where 
the loads do not vary with  θ  all that is required is to find the two constants of integration from 
the applied boundary conditions. 
 
Having obtained these general expressions the boundary conditions  (III)  may now be 
specified in order to complete the problem.  Among a variety of boundary conditions, consider 
the following two boundary value problems. 
 
 
(A)  The Solid Disc:  
 
For this case, the first thing that is noticed is that since  σrr  must remain finite at the center of the 
disc: 

A2 = 0   ,                                                                            (4.31) 
 
otherwise the stresses at the centre would tend to infinity.  Secondly, the stress boundary 
condition at  r = a,  the outside radius of the disc, becomes from (III): 

(4.32) 
such that: 

(4.33) 
 
Evaluating eqn(4.30)1 at  r = a  dictates that: 

(4.34) 
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from which it follows, in the case of a solid disc, that the stresses are: 

(4.35) 
 
Notice, that the stresses are the greatest at the disc center  r = 0  with: 

(4.36) 
 
The displacement field may be simply determined by substituting these expressions for the 
stresses back into a combination of eqn(4.23)and eqn(4.24) to obtain: 

(4.37) 
 
Again it is worth noting that the displacement tends to zero as the radius tends to zero. 
 
With a knowledge of these stresses and displacements, coupled with the mechanical properties of 
the material from which the disc is to be manufactured, the safe design of the disc may be 
completed.  Attention will now turn to another problem that results from a choice of different 
boundary conditions. 
 
 
(B)  A Disc with a Stress Free Circular Hole: 
 
The Stress Boundary conditions,  (III) , in this case may be formulated as follows. 
 

1. On the outside radius  r = a  of the disc: 

(4.38) 
Hence from eqn(4.30)1: 

(4.39) 
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2. On the inside radius  r = b  of the disc: 
 

( ) ( ) ,      0                  001      ,      000 =⇒− rrii ~n~T σ  
(4.40) 

which, in turn implies: 
 

(4.41) 
By solving for  A1  and  A2  from eqns(4.39 & 4.40), it may be shown that: 
 

(4.42) 
 
Hence, in the case of a spinning disc with a stress free hole, the stresses given in eqn(4.30) 
become: 

(4.44) 
 
The position of maximum "radial" stress may be shown to be at  r = √ab  , while the maximum 
"hoop" stress is at  r = b.  Furthermore, the stresses at these positions are: 

(4.45) 
 
Now, as  b → 0, it may be observed by comparing the maximum "hoop" stresses described by 
eqn(4.36)2 and eqn(4.45)2 that: 

(4.46) 
 
The value of 2 is the stress concentration factor for this particular problem.  It is of considerable 
importance in the design of spinning discs. 
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