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1

INTRODUCTION
RHEOLOGY:

SUBJECT AND LANGUAGE

Rheology as an independent branch of natural sciences emerged more than 60
years ago. Its origin was related to observation of “strange” or abnormal behav-
ior of many well-known materials and difficulty in answering some very “sim-
ple” questions. For example:

• paint is evidently a liquid because it can be poured into a bottle, but why does
it remain on a vertical wall without sagging down, like any other liquid?

• a colloid solution is a liquid, but why does viscosity of such a liquid, in con-
trast to other liquids, appear different when we measure it under varying
conditions of flow?

• clay looks quite like a solid but everybody knows that it can be shaped; it also
takes the form of a vessel like any liquid does; if clay is a solid, why does it be-
have like a liquid?

• yogurt in a can is rather thick (its viscosity is high) but after intensive mix-
ing its viscosity decreases, to increase again when left to rest, so which value
of viscosity should be considered?

• concrete looks quite solid and rigid, but when subjected to an external force it
changes its dimensions (and shape) like liquid; which are the reasons for
such a behavior?
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• parts made out of polymeric materials (plastics) look rather solid and hard,
quite similar to parts made out of metal, but they are noticeably different.
When a force is applied to a metallic part it will slightly change its shape and
will maintain its new shape for a long time. This is not the case with plastics
which also change their shape after a force is applied but which continue to
change shape. If this material is solid, why does it “stalk”?

• pharmaceutical pastes (for example, toothpaste or a body paste) must be
“liquid” to be smoothly applied and not too “liquid” to remain on the skin; are
all these pastes liquids or not?

• sealants widely used in construction must be fluid-like to close (to seal) all
spaces (joints) and to fill cavities, but then sealant must rapidly “solidify” to
prevent its flow out of these spaces; is sealant liquid or not?

These examples can easily be extended. The general feature of all these exam-
ples is that they are relevant to many real materials and they all exhibit very
complicated superimposition of liquid-like and solid-like properties. It means
primarily that commonly-used words “liquid” and “solid” are insufficient and we
need to introduce a new terminology as a result of understanding particular fea-
tures of behavior and properties of all the above-mentioned and many other ma-
terials. Moreover, we need new methods to measure and characterize properties
of real materials quantitatively and in adequate terms.

The next common feature of all these newly-discussed phenomena is the exis-
tence of time effects, i.e., the results of observations depend on a time scale.
Certainly time by itself has no sense, and the appearance of time effect means
that something happens to a material in an experimental time scale. In general,
time is a reflection of changes in material structure taking place during the pe-
riod of observation (or experiment).

Thus, rheology is a branch of natural sciences considering real materials with
changing structure. Certainly any natural science pretends to deal with reality
and does it by means of phenomenological models. Any model is created to
reflect not all, but the most important, characteristic features of an object. The
ideas of a liquid and a solid are also models and their formal (mathematical)
representation originated from the classical works of Isaac Newton and Robert
Hooke.

Newton1 reflected upon a resistance of liquid to a cylinder rotating in a vessel.
His ideas were converted to a more accurate form by Stokes,2 who formulated a
general law of liquid-like behavior, now named the Newton - Stokes Law:
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σ ηγ= & [1.1]

whereσ is shear stress, and &γ is rate of deformation. The exact rigorous meaning
of these terms will be discussed below, but now, in order to be brief, we can say
that this law assumes that a force (or resistance) is proportional to a velocity (of
movement). The coefficient of proportionality, η, is called viscosity (or coeffi-
cient of viscosity).

Hooke3 formulated a similar proposal concerning properties of solids. The law,
named after him, was translated to modern form by Bernoulli, and the Hooke
Law states that stress, σ E , is proportional to deformation, ε :

σ εE = E [1.2]

The coefficient of proportionality is called the Young modulus, E. Again the
formal meaning of these values will be discussed below, but briefly, the Hooke
Law says that the force is proportional to the displacement.

Both models represent properties of many real materials and work well in de-
scribing their behavior with considerably high degree of accuracy. However,
there are numerous other real materials which are not described by the
above-mentioned Newton - Stokes and Hooke laws. Rheology relies on the idea
that non-Newtonian and non-Hookean materials exist in reality. These
materials are interesting from both theoretical and applied aspects, and that is
why such materials must be the objects of investigation. Indeed, the above-cited
examples show that a great number of materials used in engineering practice
and in everyday life are “strange” and “abnormal” from the point of view of clas-
sical concepts of liquid and solid materials.

This can be treated as the definition of rheology: it is a science dealing with
materials having properties not described by models of Newton - Stokes and
Hooke. It is a negative statement (the rule of contraries). The positive statement
says that rheology studies materials having properties described by any rela-
tionship between force and deformation. In this sense, the Newton - Stokes and
Hooke Laws are limiting cases formally lying on the border of rheology.

It is important to emphasize again that every model describes (represents)
properties of real materials with a different degree of approximation. The New-
ton-Stokes and Hooke laws appeared to be insufficiently accurate for many in-
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dustrial materials, which is why rheology, with its more strict and complex laws
and equations, gave much better approximation of reality than the classical
Newton - Stokes and Hooke laws known to everybody from his school-years.

Both phenomenological laws (i.e., taken as probable assumptions, but only as-
sumptions) avoid the problem of the inherent structure of matter. Almost every-
body is convinced that matter consists of molecules and intermolecular empty
space, which means that in reality, any material body is heterogeneous. At the
same time, any observer is sure that he sees a body of matter as a homogeneous
continuous mass without holes and empty spaces. The obvious way out of these
contradictory evidences lies in the idea of the space scale of observation.

This scale must be large enough to distinguish individual molecules or their
segments. Characteristic size of a molecule (its cross-section or length of several
bonds) is 1 nm. Then, only when one deals with sizes of the order of 10 nm, can
one neglect molecular structure and treat a body as homogeneous. It means that
a characteristic volume is of an order larger than 103 nm3. This is a real size of a
physical “point”; which is quite different from a philosophical or geometrical
point, the latter is an infinitely small object of zero-size. The physical “point”
contains ≈104 molecules or segments of macromolecule, and throughout its vol-
ume all molecular-size fluctuations are averaged. The number of molecules in
such a point is large enough for smoothing and averaging procedures.

Having in mind the real scale of a physical point, we think that we have a right
to apply methods of mathematical analysis of infinitesimal quantities (which re-
late to a geometrical point) to a physical medium. The formal extrapolation of
physics-based analysis to infinitely small sizes tacitly avoids the incorrectness
of this operation, and the only justification for this is the fact that in almost all
practical applications, nobody is interested in what really happens in a very
small volume.

There are at least two important principle exceptions:
• firstly, a central physical problem exists in explanation of observed

macro-facts on the base of the molecular structure of matter. In this ap-
proach, one would like to understand what happens to a molecule or how
intermolecular interactions occur; then going through micro-volumes con-
taining numerous molecules and averaging molecular phenomena, one
would come to the macro-properties of a body.

• secondly, in some applications we meet with “zero” size, if geometrical
shapes under consideration have angles and the size at the corner of any an-
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gle is (formally) equal to zero. Extrapolation of calculation results to such
zero volumes sometimes leads to infinite values, and this is out the realm of
physical meaning. That is why analysis of problems of this kind requires spe-
cial methods.

Pertinent to the above discussion, we shall consider homogeneous continuous
media, and both adjectives concern a size less than conditionally ≈10 nm. In
larger scales, a body can have structure and be heterogeneous. For example, a
body can be a mixture of some components with step-like transitions between
them. A very typical example of such heterogeneity is a filled polymeric material
(e.g., plastics with mineral filler) where a filler forms a statistical or quite well
arranged (in reinforced plastics) structure. In some applications we may not be
interested in this structure and continue to treat the medium as homogeneous,
averaging inner differences up to much higher scales (for example for many as-
tronomic observations, the sun and our Earth are quite homogeneous and more-
over can be treated as “points”). In other cases, the role of heterogeneity can be
important and even a determining factor (for example, for reinforced plastics),
but, in any case, the scale of such heterogeneity has to be much larger than char-
acteristic molecular sizes.

Considering all the above-mentioned limitations and the physical meaning of
terms which have been and will be used, let us formulate the main problem of
rheology. We have already tried to do it from a different perspective, and with
the present background we are able to add some additional details to the discus-
sion.

Rheology studies behavior of various real continuous media. What do we
mean saying “behavior”? For a body of finite size, it is a relationship between
outer action (forces, applied to a body) and inner reaction (changes of a shape of a
body). For the continuous media we can extrapolate this approach to a point and
examine the relationship between forces at this point and deformation, i.e.,
change of a distance between two arbitrary points in a body.

Thus when we consider what happens in a body in a point of reference, we
avoid the problem of a geometrical form of a body as a whole and are interested
only in its substantial, inherent properties. Now we come to a definition of the
subject of rheology: it is determination of mechanical properties of continuous
media having a different nature, i.e., ascertaining relationships between forces
and movements of a matter “in a point of reference”.

In its origin, the term “rheology” has been related to flowing media, since the
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main root of the word means “to flow” (rheo in Greek). Currently, the term is
used for any real material because sometimes it is very difficult to estimate
whether a material is solid or fluid. As a result, the analytical methods used for
both classes of media are very similar.

The place of rheology among other natural sciences and applied problems is
shown in Figure 1.1. One can see that rheology is a multidisciplinary science
having many points of relationship with fundamental physics and chemistry, as

well as having applications to real technological and engineering materials in
life.

To recapitulate, it seems useful to point out the main ideas of the Introduction
insofar as they will allow us to compose a dictionary of Rheology.

Rheology is a science concerned with mechanical properties of various

6 Introduction
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solid-like, liquid-like, and intermediate technological and natural products (ma-
terials). It accomplishes its goals by means of models representing principle pe-
culiarities of behavior of these materials. The behavior of a material is a
relationship between forces and deformations (or changes of shape) and a
model gives a mathematical formulation of the relationship, rheological prop-
erties being expressed by the structure of a model (i.e., its mathematical image)
and values of constants included in a model — characteristic for a material.

Rheological models are related to a point, which is a physical object including
a sufficient number of molecules in order to neglect the molecular structure of
matter and to treat it as continuum. The rheological analysis is based on the
use of continuum theories, meaning that the following is assumed:

• there is no discontinuity in transition from one geometrical point to another,
and the mathematical analysis of infinitesimal quantities can be used; dis-
continuities appear only at boundaries

• properties of material can change in space (due to the gradient of concentra-
tion in multicomponent mixtures, temperature distribution or other rea-
sons) but such change occurs gradually; these changes are reflected in space
dependencies of material properties entering equations of continuum theo-
ries which must be formulated separately for any part of material sur-
rounded by the boundary surfaces at which discontinuity takes place

• continuity theories include an idea of anisotropy of properties of a material
along different directions.

Rheological behavior of a material depends on time and space scales of obser-
vation (experiment). The former is important as a measure of the ratio of the
rate of inherent processes in a material to the time of experiment and/or obser-
vation; the latter determines the necessity to treat a material as homo- or heter-
ogeneous.

Rheological properties of a material can be understood via balance (or conser-
vation) equations (equations of solid state continuum or fluid dynamics), being a
method to transit from properties at a point to an observed behavior of an item or
a medium as a whole.

The results of macroscopic description of behavior of real engineering and bio-
logical media, based on their rheological properties, are used in numerous appli-
cations related to technology of synthesis, processing, and shaping of different
materials (plastics and ceramics, emulsions and dispersions in the chemical and
food industries, pharmaceuticals, cosmetics, transport, oil industry, etc.), their
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long-term properties, natural phenomena, such as movement of mud streams
and glaciers, and biological problems (dynamics of blood circulation, work of
bones). One can conclude that the first goal of rheology is a search for stress ver-
sus deformation relationships for various technological and engineering materi-
als in order to solve macroscopic problems related to continuum mechanics of
these materials.

The second goal of rheology consists of establishing relationships between rhe-
ological properties of a material and its molecular composition content. It is an
important independent problem related to estimating quality of materials, un-
derstanding laws of molecular movements and intermolecular interactions. The
term microrheology, related to classical works by Einstein,4 devoted to viscous
properties of suspensions, is sometimes used in this line of thought, and it
means that the key interest is devoted not only to movements of physical points
but also to what happens inside the point during deformation of a medium.

REFERENCES

1. I. Newton, Principia, Section IX of Book II, 1684.
2. G. Stokes, Trans. Camb. Phil. Soc., 8, 287 (1845); Math. Phys. Papers, 1, 75 (1880).
3. R. Hooke, Lecture de Potentia Restitutiva, London, 1678.
4. A. Einstein, Ann. Physik, 19, 289 (1906); 34, 591 (1911).
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2

STRESSES

2.1 GENERAL THEORY

Any external action applied to a body leads either to a movement of a body in its
entirety or to a deformation of its initial shape, or perhaps to both results simul-
taneously. The first consequence of an external action - the movement of a body
in space or its rotation around its center of gravity, without any changes to its
shape - is a subject of study by mechanics, and as such it is not relevant for us in
this book. Only what happens inside a body is of principle subject of our discus-
sion.

Briefly speaking, it means that we must consider two possibilities:
• a dynamic situation in which we need to analyze the result of external forces
• a geometric and/or kinematic situation in which it is important how and at

which speed distances between different points of a body change, or how lo-
cal shapes (conditionally drawn inside a body) distort.

Dynamic situation in any point of a medium is expressed by a physical quan-
tity called stress.

An initial projection of stress is very simple and obvious. Let us consider a body
(bar). The area of its normal section is S (Figure 2.1). The force, F, acts normal to
the surface, S. The specific force at any point of the section is equal to F/S and is a
normal stress or tensile stress:

σE = F S [2.1]
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i.e., stress is a force related to the unitary surface area.
The force at a free surface may not be constant but distributed, i.e., be a func-

tion of coordinates. For example, a train moving along the rails presses on them
at several local zones (where wheels touch a rail), i.e., a force is distributed along
a rail and as a result a very complex pattern of stresses acting in the body of a
rail appears. In this case, we can mark a small area, ∆S, to find a relative (spe-
cific) force acting on the area ∆ ∆F S. If we decrease the surface area, we even-
tually come to the limit of the ratio ∆ ∆F S at ∆S 0→ and this limit is a normal
stress at the marked point:

σ E S 0
= lim( F S) = dF dS

∆
∆ ∆

→

This formula shows clearly that the stress is related to a point and can change
from point to point.

We can also imagine a different situation where the force T acts not normal but
tangential to the surface as shown in Figure 2.2. If the area of the surface is S,
then the tangential or shear stress is equal to T/S, or

σ = T S [2.2]

These simple and obvious relations must be generalized to an arbitrary orien-
tation of an applied force. One may ask: what are the stresses acting on a surface
with any orientation in respect to force? The problem can be solved by two vec-
tors: of force, F, and orientation of a surface; the latter is characterized by nor-
mal, n, to surface (Figure 2.3).

10 Stresses

Figure 2.1. A bar loaded by a normal force. Figure 2.2. Shear of matter.



We know that there are phys-
ical concepts which can be pre-
sented by one quantity only,
such as density of a matter, for
example. Such objects are
called scalars. There are
physical characteristics which
must be defined not only by
their size but also by a direc-
tion of their action; such as ve-

locity, for example, and not one
but three quantities - projec-

tions of velocity along three coordinate axes - are necessary to determine veloc-
ity. Such physical objects are called vectors.

We deal with stresses. For their complete characterization it is necessary to
know not only the value of a force acting at a point (this force is a vector by itself)
but also its orientation in respect to a surface to which this force is applied (and
orientation is also presented by a vector). It means that for complete character-
ization of a stress we need to know two vectors: of a force and a normal to a sur-
face to which this vector is applied. The physical objects which are determined in
such a manner are called tensors, and that is why stress is a tensor.

Any vector can be represented by its three projections along the orthogonal co-
ordinate axes:

n = n(n1, n2, n3)

F = F(F1, F2, F3)

Then the nine values can be constructed: three projections of F on surfaces de-
termined by any of the three coordinate vectors. As the area of a surface is not es-
sential, all values of Fi (i = 1, 2, 3) must be divided by the area which gives
components of a stress tensor,σij, where the first index shows the orientation of a
force and the second index designates the orientation of a surface.

The result is written in the form of a table (matrix)

A. Ya. Malkin 11
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σ
σ σ σ
σ σ σ
σ σ σ

ij

11 12 13

21 22 23

31 32 33

=














where the first column represents components of a force (of a vector of a force)
applied at the plane normal to the x1-axis, the second column gives the same for
the x2-axis and the third to x3-axis. The directions of the normals are indicated by
the second indices. The table within the bars is the set (or a list) of all compo-
nents (projections) of a force vector applied on differently oriented planes at an
arbitrary point inside a body. In order to emphasize that this set of parameters
presents a single physical object - stress tensor - it is usual to put them between
the bars.

The picture which shows all components of
a stress tensor acting at a point is drawn in
Figure 2.4. One can easily see that compo-
nents with the same numbers in the index
are normal stresses, quite equivalent to the
initial definition of the normal stress in Eq
2.1, and all values with different numbers in
the index are shear stresses, as in Eq 2.2.

All components of the stress tensor are de-
termined at a point and can be constant or
variable in space (inside a medium). It de-
pends on configuration of outer forces ap-
plied to a body. For example, the force field is
homogeneous for the situation shown in Fig-
ure 2.1 and in this case a stress tensor is con-
stant (inside a body). But the stress field (or
stress distribution) appears to be very com-
plicated in many other cases, for example in a

liquid flowing inside a channel or in a case of roof covered with snow. Some other
examples illustrating stress distributions will be discussed at the end of this
Chapter.

There are some fundamental facts concerning the stress tensor (and any other
tensors as well) and they will be discussed below.

12 Stresses
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2.2 LAW OF EQUALITY OF CONJUGATED SHEAR STRESSES

Let us consider a plane section of a unit cube in Figure 2.4. The section is shown
in Figure 2.5. The rotational equilibrium condition about the central point of the
square gives the equality

σ σ12 21=

The same is true for any other pair of
shear stresses:

σ σ σ σ13 31 23 32= =;

These equalities are known as the
Cauchy rule:1

σ σij ji=

The result means that only three in-
dependent shear components of the
stress tensor exist, and the stress state
at a point is completely defined by six
independent values; three normal

(σ σ σ11 22 33, ,and ) and three shear stresses (σ σ σ σ σ σ12 21 13 31 23 32= , = ,and = ).

2.3 PRINCIPAL STRESSES

The idea of principal stresses (max-
imal and minimal) appears as a con-
sequence of the dependence of
stresses on orientation of a surface.
Let us illustrate it by two simple ex-
amples generated from Figures 2.1
and 2.2.

The normal stress,σ E , is calculated
as in Eq 2.1. The following question
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at the arbitrary oriented surface.



needs to be answered: if the force equals F as before, what are the stresses acting
at the surface inclined to the vector F at the angleα (Figure 2.6)? It is easily seen
that the vector F can be decomposed into normal Fn and tangential Fσ compo-
nents to the surface aa, i.e., there are normal and shear stresses at this surface.
The area of this surface is S/sinα , meaning that normal, σ αE, , and shear, σ α ,
stresses (forces divided by the surface area) depend on α and are equal to

σ α α σ ααE
nF

S
F

S, sin sin sin= = =
2

2

σ α α α σ αα
σ= = =F

S
F

S
sin sin cos sin

2
2

There are some interesting and peculiar orientations in a body:

at α = 90o σ E = max and σ = 0 (the later is evident from Figure 2.1);
at α = 45o σ σ= 2= maxE

at α = 0 σ E = 0 and σ =0 (plane free of stresses).

Figure 2.7 allows one to analyze the situation sim-
ilar to the picture shown in Figure 2.2. Let the area
of both sides of a cube be equal to a unit, so σ is a
shear stress. In this case we can write the following
equations for σ σα αE, and :

σ σ α α σ ααE, = 2 cos sin = sin2
σ σ α α σ αα = (cos sin ) = cos 22 2−

Again there are some peculiar orientations:

at α = 0 σ αE, = 0 and σ σα =
at α = 45o σ σαE, = = max and σ α =0
at α = 90o σ αE, = 0 and σ σα =

(equivalence at α α= 0and = 90o is the consequence of the Cauchy rule).

14 Stresses

Figure 2.7. Projections of
the shear stress at an arbi-
trary oriented surface.



The discussion shows that, in fact, at any arbitrary orientation (or direction) in
a body, both normal and shear stresses can exist irrespective of simple pictures
with only normal (Figure 2.1) or only shear (Figure 2.2) stresses. Moreover,
there are always directions where either normal or shear stresses are maximal.
The last result is very important because various media resist application of ex-
tension (normal force) or shear (tangential force) in different manner.

For example, it is very difficult to compress a liquid (compression is an action
equivalent to application of negative normal stresses) but it is very easy to shear
a liquid (to move one layer relative to another like cards in a pile). Another case:
when a thin film is stretched (it can be a cover of a balloon stretched by the inner
gas pressure), it breaks as a result of an action of normal stresses, whereas shear
stresses are practically negligible in this case.

The above-discussed examples are only illustrations of a general idea that all
components of a stress tensor depend on orientation of a surface, for which one
wants to calculate them. It is a result of projecting a vector along different direc-
tions: the size of a projection depends on orientation of the axes in space.

There are general rules and equations for calculating components of the stress
tensor at any direction, generalizing equations written above for σ αE, and σ α .
The main interest and the result of all these calculations and discussions are
connected with the existence of such direction in a body where stresses are
extremal. Theoretical analysis shows that for any arbitrary stress tensor it is
possible to find three orthogonal, i.e., perpendicular to each other, directions, at
which normal stresses are extremal and shear stresses are absent. Examples of
such situations have been shown above for the cases drawn in Figures 2.6 and
2.7. Indeed, normal stressesσ ii = max at these directions at which shear stresses
are absent,σ ij = 0. These normal stresses are called principal stresses. The ex-
istence of principal stresses is a general law for any stress tensor.

The concept of principal stresses allows one to find a minimal number of pa-
rameters which completely characterize the stress state at any point. It is im-
possible to compare stress states at different points of a body or in different
bodies if only operating with six independent components of the stress tensor
acting along different directions. It is much easier to do so dealing with only
three normal stresses. For example, one can expect that some materials are rup-
tured by an action of a normal stress if it reaches a critical level, that is why it is
important to know the value of maximal normal stress acting in a material, and
this maximal stress is the principal stress.
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2.4 INVARIANTS

If we can calculate principal stresses, it means that we can represent the stress
state of matter by three independent values, and every different stress state is
equivalent if principal stresses are the same for all of them. This means, in par-
ticular, that various physical phenomena taking place under stress (for exam-
ple, probability for a “quasi-liquid” to stick to a vertical wall and stay motionless
in spite of action of gravitational force; rupture of solid bodies; slow movement
and transition to spurt for snow, sand or mud on slopes, etc.) can be considered
as a consequence of an action of principal stresses only.

Principal stresses represent stress state in a body (at a given point), regardless
of any possible set of normal and shear stresses at any arbitrary orientation of
this point. In other words, they are invariant in respect to the choice of orienta-
tion. Then the question is: how to calculate principal stresses if all components
of the stress tensor are known for some arbitrary coordinate system? Theory of
tensors gives an answer to this question in the form of a cubic algebraic equa-
tion:

σ σ σ3
1

2
2 3I + I I = 0− − [2.4]

and principal stresses are three roots of this equation designated asσ σ σ1 2 3, , . It
is clear that the roots are expressed through coefficients of Eq 2.4, I1, I2, and I3.
These coefficients are constructed by means of all components of stress tensor
for arbitrary orthogonal orientations in space as:

I = + +1 11 22 33σ σ σ [2.5]
I = + + ( + + )2 11 22 11 33 22 33 12

2
23
2

13
2σ σ σ σ σ σ σ σ σ− [2.6]

I = + 2 ( + + )3 11 22 33 12 23 13 11 23
2

22 13
2

33 12
2σ σ σ σ σ σ σ σ σ σ σ σ− [2.7]

As the roots of Eq 2.4, the σ σ σ1 2 3, ,and do not depend on orientation of axes of
a unit cube (at a point) in space, on one hand, and they are expressed through
values of I1, I2, and I3, on the other. This leads to the conclusion that I1, I2, and I3

are also invariant in respect to the choice of directions of orientation and that is
why they are usually called invariants of a stress tensor at a point. According to
its structure (the power of components), I1 is a linear, I2 is a quadratic, and I3 is a
cubic invariant.
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Certainly any combination of the invariants, I1, I2, and I3, is also invariant in
respect to the orientation of axes in space. Various elegant or cumbersome struc-
tures of invariants are possible to be built but it is important to know that three
and only three independent values of such kind do exist.

Invariants are characteristics of the physical state of a matter. It means that
neither any stress by itself nor its arbitrary combination but only invariants de-
termine a possibility of occurrence of various physical effects such as, for exam-
ple, phase transitions, storage of elastic energy or dissipation (transition to
heat) of work of external forces. There is a fundamental principle saying that
physical effects must be independent of choice of a coordinate system and that is
why invariants, which are values independent of a coordinate system, govern
physical phenomena occurring due to application stresses.

In many practical problems, we deal a with two-dimensional or so-named
plane stress state. The very typical example of it are thin-walled items with
stress-free outer surfaces. “Thin” means that the size in direction normal to the
surface is much smaller than other two dimensions. Stresses in planes parallel
to the free surfaces can be assumed to be absent in comparison with stresses at
two other oriented planes. This can be proven by a pure geometrical argument:
because stresses are zero on both faces, they might not vary appreciably over the
small distance (thickness of the item).

In the plane stress state, all the components containing the index “3" vanish
and the full stress tensor looks like this:

σ
σ σ
σ σij

11 12

21 22=
0
0

0 0 0















[2.8]

In this case, one principal stress, σ3 , is zero and two others, σ σ1 2and , are the
roots of a quadratic (but not cubic) algebraic equation:

σ σ σ σ σ σ1,2
11 22 11 22

2

12
2=

+
2 2

+

1
2

± −





















Typical examples of thin (or two-dimensional) elements are various balloons,
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membranes and covers, barrels and tanks, and so on. And for all these articles
and many others, we can use the analysis of the two-dimensional (or plane)
stress state.

There are two particularly simple cases of the plane stress state, which are
simple (or unidimensional) tension and simple shear. In fact, these cases were
mentioned at the very beginning of this chapter, and their tensorial nature is il-
lustrated by the above-discussed Figures 2.6 and 2.7 and rules of a transforma-
tion of stress components with rotation of coordinate axes.

2.5 HYDROSTATIC PRESSURE AND DEVIATOR

It seems quite obvious that only nor-
mal stresses can change the volume of
a body, while shear stresses distort its
form (shape). For this reason it appears
to be reasonable to divide a stress ten-
sor into two components, singling out
the components connected to action of
the normal stresses.

Let us consider the situation of all-di-
rection compression of a body under
pressure, p (Figure 2.8). This case is
called hydrostatic pressure. The main
feature of hydrostatic pressure is the
absence of shear stresses; hence, all
components of the matrix except nor-
mal are equal to zero and the stress
tensor for this case looks like this:

σ ij =
-p 0 0
0 -p 0
0 0 -p















[2.9]

i.e., all principal stresses are the same and equal to -p:

σ σ σ1 2 3= = = p−
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The expression 2.9 can be written in a short form if to use some evident rules
for operation with tensors which allow a constant to be taken away from bars.
Then

σ ij =
-p 0 0
0 -p 0
0 0 -p

= p
1 0 0
0 1 0
0 0 1





























The remainder in bars is called the unit tensor or Kronecker Symbol, δ ij . For
the hydrostatic pressure

σ δ σ σij ij ii ij= p , i.e. = p; = 0 if i j− − ≠

For this stress tensor shear, the stresses are absent at any direction in space,
and it explains the term “hydrostatic” used for the situation shown in
Figure 2.8. The hydrostatic pressure (or simply - pressure) is evidently ex-
pressed as

p =
+ +

3
=

I
3

11 22 33 1− −σ σ σ
[2.10]

The last definition is taken to be true for any stress state, even when σ σ11 22, ,
andσ33 are not equal to each other, and Eq 2.10 is considered as a general defini-
tion of pressure, and the stress tensor, Eq 2.9, is called the spherical stress
tensor.

There is one intriguing question: whether the value I1/3 calculated according to
Eq 2.10, and called pressure, has the same physical meaning as pressure used in
any thermodynamic relationship? Certainly, it is true for hydrostatic pressure,
but this idea of arbitrary stress state needs a separate proof.

For plane shear stress state, whenσ σ12 21= , the principal stresses are equal to

σ σ σ σ σ1 E 2 E 3= ; = ; = 0 [2.11]

The same conclusion is correct for all other shear components of the stress ten-
sor. It means that for this situation called simple shear, I1 = 0, i.e., hydrostatic
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pressure does not exist. It proves that indeed shear stresses do not influence the
volume of a body but are able to change its shape only.

Now we can write down a general expression for any stress tensor with a sepa-
rated hydrostatic component. In this approach, all shear stresses remain un-
touched and each diagonal member of the tensor becomes equal to σ ii p− . This
part of the stress tensor (complete tensor minus hydrostatic component) is
called deviator or deviatoric part of the stress tensor. It is thought that this
part of the tensor is responsible for changes of shapes of a body (certainly at a
point).

The idea about splitting a stress tensor into spherical and deviatoric parts is
well illustrated by the example of uniaxial extension. Surely it is extension and
we have a right to expect that it leads to a volume change of a body. But is it all,
and is it equivalent to hydrostatic pressure?

Stress tensor for uniaxial extension is written as

σ
σ

ij =
0 0

0 0 0
0 0 0















[2.12]

It reflects the situation in Figure 2.1, where all other forces except normal
force, F, are absent. There is no reason for the appearance of other stresses ex-
cept for σ11, and that is why all components in the matrix 2.12 are zeros, except
for σ σ11 E= .

Let us separate this tensor into hydrostatic and deviatoric parts. In the case
under discussion, the matrix 2.12 shows that

σ σ σ σ11 E 22 33= ; = 0 and = 0

From Eq 2.10, it follows that p = - σ E /3. Now let us present the stress tensor
2.12 as a sum of hydrostatic pressure and remainder, where this “remainder” is
deviator or simply a difference between full stress tensor and hydrostatic pres-
sure. Then the stress tensor for uniaxial extension can be written as:
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σ δ

σ

σ

σ

δij ij

E

E

E

ij= p +

2
3

0 0

0 - 1
3

0

0 0 - 1
3

= -p−





















+
3

2 0 0
0 -1 0
0 0 -1

Eσ














Any component of the full stress tensor,σij, is equal to the sum of components of
both addenda with the same indices; for example:

σ σ σ σ σ11 E E E E= p + 2
3

= 1
3

+ 2
3

=− and σ σ σ σ22 E E E= p 1
3

= 1
3

1
3

= 0− − −

One can see that the uniaxial extension is not equivalent to hydrostatic pres-
sure (the sign is not essential in this discussion) as the former leads to appear-
ance of a deviatoric component of the stress tensor. In particular, it means that
we can find such directions in a body where the shear stress exists (opposite to
hydrostatic pressure where the shear stresses are absent in principle) as men-
tioned in discussion of Figure 2.6.

This interpretation of the uniaxial extension explains that in fact one-dimen-
sional tension creates not only negative pressure (“negative” means that
stresses are oriented from unit areas inside a body) but also different normal
stresses acting along all directions. This is a physical reason why in the uniaxial
tension all dimensions of a body change: a size increases along the direction of
extension but decreases in perpendicular (lateral) directions.

2.6 EQUILIBRIUM (BALANCE) EQUATIONS

The distribution of stresses throughout a body is described by equilibrium (or
balance) equations introduced by Navier,2 Poisson,3 and Cauchy.4 In essence
they are one form of Newton’s Second Law written for a continuum because they
state that the sum of all forces at a point is equal to the product of mass (of this
point) times acceleration.

A “point” in the theoretical analysis is an elementary (infinitesimal) space with
sides oriented along the orthogonal coordinate axes (in Figure 2.9 this space is a
cube in the Cartesian coordinates). The idea of the analysis consists of a projec-
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tion of all outer forces on faces of the
cube along three coordinate axes.

Let us consider a change of forces at
infinitesimal distance along an axis.
If there is no special situation with
jumps or breaks in force, we can
think that (for example) a force on
the left-hand face of the cube (Figure
2.9) equals to σ22, and on the parallel
right-hand face it equals to
σ σ σ′ ∂ ∂22 22 22 2 2= + ( x )dx and the
sum of projections of forces is
( x )dx (dx dx )22 2 2 1 3∂ ∂σ , where
(dx1dx3) is the surface area of the
face.

Writing the sum of projections of all
stress components parallel to x2-axis

and dividing them by (dx1dx2dx3), we come to equilibrium (or balance equations
or equations of moment conservation). For all three coordinate axes, this ap-
proach gives the system of equations:

∂
∂

∂
∂

∂
∂

σ σ σ ρ11

1

12

2

13

3
1 1x

+
x

+
x

+ X = a

∂
∂

∂
∂

∂
∂

σ σ σ ρ12

1

22

2

23

3
2 2x

+
x

+
x

+ X = a [2.13]

∂
∂

∂
∂

∂
∂

σ σ σ ρ13

1

23

2

33

3
3 3x

+
x

+
x

+ X = a

where X(X1, X2, X3) is a vector of a body force per unit volume (dx1dx2dx3), a(a1, a2,
a3) is a vector of acceleration and ρ is the density.

For most rheological applications, it is reasonable to treat problems restricted
to static equilibrium, and hence a = 0. Besides, in many cases (but not always)
vector X equals zero. The existence of a body force is important, for example, in
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Figure 2.9. Stress difference at parallel sur-
faces along the infinitesimal distance.



situations where the movement occurs because of the action of gravity: in sag-
ging paints or sealants from vertical or inclined surfaces, flowing of glaciers and
so on.

If we can omit two last members in the balance equations, it allows us to sim-
plify the system, Eq 2.13, and in this case we can write it as follows:

∂
∂

∂
∂

∂
∂

σ σ σ11

1

12

2

13

3x
+

x
+

x
= 0

∂
∂

∂
∂

∂
∂

σ σ σ12

1

22

2

23

3x
+

x
+

x
= 0 [2.13a]

∂
∂

∂
∂

∂
∂

σ σ σ13

1

23

2

33

3x
+

x
+

x
= 0

Equilibrium can be considered in
respect to different coordinate sys-
tems but not restricted to a Carte-
sian system. The choice of
coordinates is only a question of con-
venience in solving a concrete bound-
ary problem. The choice of the
coordinate system depends, gener-
ally speaking, on the shape and type
of symmetry of a geometrical space of
interest for the application. For ex-
ample, if we deal with problems re-
lated to round shells or tubes with
one axis of symmetry, the most con-
venient coordinate system in this
case is cylindrical polar coordinates
with r, z, and θ-axes.

Components of the stress tensor in these coordinates are shown in Figure 2.10.
The static balance equations (at a = 0) for the point (or infinitesimal volume ele-
ment) shown in Figure 2.10 represent equilibrium in respect to r, z, and θ direc-
tions and can be written as:
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∂
∂

∂
∂

∂
∂

σ σ σ
θ

σ −σθ θθrr rz r rr
rr

+
z

+
r

+
r

+ X = 0

∂
∂

∂
∂

∂
∂

σ σ
θ

σ σθ θθ θ θ
θ

r z r

r
+

r
+

z
+

2
r

+ X = 0 [2.14]

∂
∂

∂
∂

∂ ∂
∂

σ σ
θ

σ σθzz z rz zz
zr

+
r

+
r

+
z

+ X = 0

where X(Xr, XΘ, Xz) is a vector of a body force and its projections along the cylin-
drical coordinates.

Some applied problems are symmetrical about the z-axis, so that all terms con-
taining ∂ ∂θ-terms become zero and the shear stress σ rΘ as well. Besides, in
some cases, the cylindrical bodies can be very long and variations of stresses
along the axis of symmetry are absent (or can be taken as negligibly small). This
allows us to continue simplification of the balance equations, which in this case
reduce to

d
dr

+
r

+ X = 0rr rr
r

σ σ σ− ΘΘ [2.15]

and all shear components of the stress tensor are absent.

2.7 EXAMPLES

It seems interesting and useful to present and discuss typical examples of
stress distributions in a body for some model situations.

2.7.1 A BAR LOADED BY THE CONSTANT FORCE (FIGURE 2.1)

This is a very popular scheme of loading, for example, when one suspends a
weight on a string or pulls a car from mud with a rope, or stretches a filament in
the technology of fiber spinning - all cases deal with a material under the action
of uniaxial extension. A similar scheme of loading, but with the opposite sign,
appears when a material or a part is compressed in one direction; for example, as
in pile loading or in building foundation.
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The stress distribution near the butt-end of a bar depends on the manner of
counteracting the force. Far enough from the butt-end (typically at a distance
larger than the characteristic transversal size of a bar), the distribution of forces
at the end becomes unessential for stress distribution throughout the bar and
normal stresses are calculated by the very simple and obvious relation 2.1. By
the above-discussed method, all components of the stress tensor for different di-
rections can be found.

2.7.2 A BAR STRETCHED BY ITS OWN WEIGHT (FIGURE 2.11)

It can be found in some engineering constructions
where parts are suspended at their upper end, or a plas-
tic liquid-like stream, after leaving a nozzle, breaks by its
own weight at some distance from the nozzle.

Let a long bar (or a fiber) be suspended by its end. The
extensional (normal) stress along the bar appears as a re-
sult of stretching by its own weight. According to the
equilibrium condition

σ ρ(x) = x [2.16]

The maximal normal stress is equal to σL, where L is
the length of the bar. It means that if the bar is very long,
the stress will exceed any acceptable limit and break the
bar.

2.7.3 SAGGING OF A FLEXIBLE BAR OR A FIBER (FIGURE 2.12)

Sagging of flexible engineering elements (bars, fi-
bers and so on) is a rather typical situation in many
practical applications. The force provoking bar sag-
ging can be caused not only by the own weight of the
bar but also by various outer factors (lying snow, push
of the wind, and so on). In all these cases, we deal with
distributed load, q, expressed as a force divided by the
length. The reasonable supposition says that the
height of flexure is much lower than the length of the
bar, or a span between supports, L, (in Figure 2.12
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only a half of the bar is shown).
According to the equilibrium condition (the sum of torques around the point of

suspension is equal to zero), we have:

Fy - qx x
2

= 0

or

y = qx
2F

2

The last formula shows that the shape of the loaded bar is parabolic. It is easy
to find the maximal sagging, H:

H = qL
8F

2

[2.17]

Eq 2.17 allows us to find the necessary tension if we set acceptable flexure, and
vice versa. The normal stress in the bar is evidently equal to F divided by the
cross-section.

2.7.4 INTERNAL PRESSURE IN A THIN-WALLED CYLINDER (FIGURE 2.13)

This situation is of general meaning for all vessels working under internal
pressure, such as chemical rectors, boilers, and different types of balloons, tubes
in tires, plastic films stretched during technological procedure of their shaping,
and so on.
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Let us try to calculate stresses in the wall of a cylinder loaded by internal pres-
sure, p. We analyze the case when δ << R (the case named “thin-walled”). The
consideration of equilibrium across a radius gives the value of average stress
σ ΘΘ (or simply σ Θ):

σ δΘ (2L ) = 2pRL

or

σ
δΘ = pR [2.18]

(sinceδ<< R, we have a right not to distinguish outer and inner radii of the cylin-
der).

Are other components of the stress tensor essen-
tial? We can estimate the σ rr -component (or sim-
plyσ r ). It is evident thatσ r = 0at the outer surface
and σ r = p at the inner surface of the cylinder. It
means thatσ r is of the order of pR. Because we as-
sume that R/δ >> 1, it means that σ r is negligible
in comparison with σ Θ . The σ zz and all shear com-
ponents are absent in the case of thin-walled
items, as usual.

The situation changes if we assume that such a
vessel must be closed by a lid (Figure 2.14). It is
rather evident that there is a force acting on the

surface of a ring joining the lid and the cylinder. This force resists the action of
internal pressure and it leads to the following equation for the stress component
σ zz (or simply σ z):

p R = 2 R2
zπ π δσ

Then

σ
δz = pR

2
[2.19]
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Now, we come to the conclusion that there
is a two-dimensional (or plane) stress state
in the wall of the cylinder as shown in Fig-
ure 2.15 for a “unit” (or infinitesimal)
square. Both stresses σ σΘ and z are princi-
pal as shear stresses are absent. The third
principal stressσ σ σr z<< andΘ and can be
taken equal zero.

2.7.5 HEMISPHERICAL MEMBRANE UNDER ITS OWN
WEIGHT (FIGURE 2.16)

We face this type of loading in many engi-
neering constructions, especially when a
spherical roof covers a large area of a sta-
dium or a storehouse. This problem (simi-
lar to that discussed above) relates to
stress fields in shells or plates (mem-
branes). The shape of a membrane in this
case is defined as

r = Rsinα

Let the density of the membrane beρ. The thickness of a hemisphere is uniform
and equal toδ (δ is taken as much smaller than R). Theory gives the following ex-
pression for the normal stress acting along the surface of the hemisphere:

σ ρ= gR[1- (r / R) ] 1
(r / R)

2

2

1
2 − [2.20]

where g is the gravitation constant.
At the support ring (r = R) stresses must balance the total weight of the hemi-

sphere and that is why

σ = gR−

is the maximal value of the principal stress, σ.
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Figure 2.15. Plane stress state in a
wall of a cylinder.

Figure 2.16. Hemispherical cup
loaded by its own weight.



2.7.6 TORSION OF A THIN-WALLED CYLINDER (FIGURE 2.17)

This is a model situation for many ap-
plications. For example, it is a scheme of
a typical rotational viscometer widely
used for measuring rheological proper-
ties of different substances. Then this
scheme reflects such a classical engi-
neering situation as joining tubes with
fitting.

Let the wall of a cylinder, δ, be much
smaller than its radius, R, (as in Exam-
ple (iv)). The cylinder is loaded by the
torque, M. In this case, it is reasonable

to assume that there is an average (constant) shear stress σ σ σ= =z zΘ Θ over the
wall section.

From the condition of static equilibrium, one can derive:

M = S(R + 2)δ σ

where S 2 (R + 2)≈ π δ δis the area of a ring (section of the cylinder). As a result,
the shear stress is given as:

σ
π δ δ

= 2M
(2R + )2

[2.21]

In the case under discussion, a torque can be produced by relative turning, ro-
tating or twisting of cylinders (inner or outer with no difference for the result).
Eq 2.21 is applicable in this case if the condition δ << R is fulfilled.

2.7.7 TORSION OF A CONE OVER A PLATE (FIGURE 2.18)

It is practical to analyze this situation because it applies to a so-called
“cone-and-plate” viscometer, used in the plastic and rubber industries, as well
as to scientific investigations.

We analyze a case when the angleα between surfaces is small. This situation is
interesting (and rather simple) because at very low values of the angle α the
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shear stress, σ, is practically constant
throughout the volume of a material be-
tween the cone and the plate. Balance of
forces gives the following expression for σ:

σ θ= C sin2 [2.22]

where C is a constant and the angleθ is taken
from a vertical axis. Values of θ throughout
the gap, between the cone and plate, are very
close to π/2, then sin2θ ≈1and σ = const.

Integrating along the radius R gives the fi-
nal relationship for torque and shear stress:

σ
π

= 3M
2 R3

[2.23]

2.7.8 STRESSES IN A MEDIA MOVING ALONG A CYLINDER (FIGURE 2.19)

This is the simplest and per-
haps the most important hydro-
dynamic pattern having
general meaning for transpor-
tation of water, oil products,
raw materials in the food and
pharmaceutical industries, and
in numerous other cases.

If to write the balance equa-
tion for the element of the
length, dz, loaded by pressure
gradient, dp/dz, we come to the
following relationship:

σ π π(2 r)dz= r dp2

or
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Figure 2.18. Rotation of a cone over
a plate.

Figure 2.19. Movement of a medium along a cylinder.



σ = r
2

dp
dz

[2.24]

where σ σ σ= =zr rz is the shear stress, and r is a current radius, i.e., distance
from the axis of the cylinder.

The last equation shows that the shear stress at the wall, σ w , (maximal shear
stress) is calculated as

σ w = R
2

dp
dz

[2.25]

and the stress distribution along the radius of the cylinder (or the tube or capil-
lary) is linear:

σ σ= r
Rw [2.26]

The diagram in Figure 2.19 says nothing about other
components of the stress tensor; though normal (diago-
nal) stresses definitely exist (at least pressure, p, cre-
ates all-direction compression), only pressure gradient
(not pressure itself) influences the shear stresses.

2.7.9 STRESSES AROUND A CIRCULAR HOLE IN A SHEET (FIGURE 2.20)

Since practically all parts of engineering and every-
day applications have holes of different sizes and
shapes, it is very important to know how these holes in-
fluence performance characteristics of a part. In techni-
cal language, this influence is associated with stress
fields appearing in the neighborhood of a hole. A round
(circular) hole is the simplest example of possible
shapes of holes, though holes can have different shapes.

If a sheet having a circular hole is stretched by a uni-
form load, p, stress is created around the hole. From the
equation of equilibrium, it is possible to find (we omit
the details) that the distribution of stresses exists
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around the hole. All components of the stress tensor depend on relative radius
(r0/r) (r0 is the radius of the hole and r is a distance from the center of the hole,
r>r0) and the angle,θ, between the axis of the load action and an arbitrary direc-
tion.

Calculations show that stresses decrease very rapidly away from the edge of
the hole (in fact they are decreased as a function of (r0/r)2).

Most important is the situation at the hole boundary, where the stresses are
maximal and equal to:

σ θΘΘ = −p( cos )1 [2.27]

(at r0/r = 1 other components of the stress tensor are absent).
The limiting values of σ σΘ ΘΘ= are:

σ θ π θ π= 3p at = 2and = 3 2
σ θ θ π= p at = and =−

This phenomenon is called stress concentration (due to cracks) and larger
stresses (in comparison with the average value) lead to weakening in bodies con-
taining holes.

In the case shown in Figure 2.20, the side points, X, of the hole are the most vul-
nerable (in respect of possible fracture) because the stress is three times higher
than the average stress, p.

If extension changes to compression (applied stress is equal to -p), the maximal
tension occurs at the points Y, and in this situation these points become the ar-
eas of likely failure.

2.8 CONCLUDING REMARKS

Stress is the dynamic characteristic at a point and is defined as the relative
force or the force related to the unit area. Stress values depend on direction of
the applied force and the orientation of a surface for which we wish to find forces
acting at this surface inside a body. That is why stress is a physical object of ten-
sor nature. Stresses can be normal (perpendicular) and shear (tangential) to
the surface where they act.

It is always possible to calculate components of the stress tensor for any direc-
tion and to find principal directions and principal normal stresses; the latter
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are extremal and shear stresses are absent at those directions.
There are three special combinations of any arbitrary stress tensor which do

not depend on choice of axes orientation in space. These combinations are called
invariants.

The stress tensor can be divided into two parts, one of which (so-named spher-
ical) is responsible for volume and the other (called deviator) for shape (or
form) changes of a body (at a point).

Calculating stresses through a body is realized by solving differential equa-
tions with appropriate boundary conditions. These equations represent the law
of equilibrium (or balance) of all forces applied at a point.

Concrete examples of calculations for some simple geometrical forms show
that different situations are possible: uniform and distributed, one-dimen-
sional, plane, or volume stress fields.

The examples discussed above are typical due to simple (model) geometrical
forms of bodies under analysis. They allowed us to find stress fields regardless of
the particular properties of the material. But in many other cases, it is necessary
to analyze not only stress but deformation fields jointly. It leads to the necessity
to take into account relationships between stresses and deformations, i.e., rheo-
logical properties of matter.
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3

DEFORMATION
AND DEFORMATION RATE

3.1 DISPLACEMENTS AND DEFORMATIONS

The result of action of outer
forces can be either movement of
a body in space or change of its
shape. Here, we are interested in
describing the changes occur-
ring inside a body. The change of
a shape of a body is essentially
the change of distances between
different points on its surface.
Thus, change of shape can only
occur if there are changes of dis-
tances between different sites
inside a material, and this phe-
nomenon is called deforma-
tion.

The change of distances be-
tween points inside a body is
transmitted to the neighborhood
of a point which can be moni-
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tored by following the change of very small (infinitesimally small) distances be-
tween two points.

Let the distance between two points A and B in a material be ds (Figure 3.1). As
a result of some outer action, they both move and their new positions become A′
and B′, and the distance between them now is ds′. The absolute value of (ds’ − ds)
is not important, because the initial length ds might be quite arbitrary, only rel-
ative change of the distance between two sites, determined as

ε = ds ds
ds
′ − [3.1]

The definition 3.1 is not tied to any coordinate system, meaning that ε is a sca-
lar. It can be expressed through components of tensor of deformation (or
strain), ε ij . The position of a site in a body is characterized by its radius-vector,
r, and, because we have two sites, it is necessary to introduce two vectors: r1 for
the point A and r2 for the point B. The quantitative determination of deforma-
tion can be accomplished by following the relative displacement of two vectors,
expressed as (dr1 - dr2)/dr1. If we assume that a body after deformation remains
intact (between sites A and B), the distance between points A’ and B’ is still in-
finitesimal.

The difference (dr1 - dr2) is a displacement, u. As a difference of two vectors, it is
also a vector which can be expressed by its three projections: u(u1, u2, u3). Rela-
tive displacement is characterized not only by its length but also by its orienta-
tion in space. Since two vectors, u and x(x1, x2, x3), describe relative
displacement, the latter is of tensorial nature. Indeed, deformation and relative
displacement are tensors and components of these tensors can be calculated as
derivatives du/dx. It is also pertinent that there are nine such values (three pro-
jections of vector u and three of vector x), as could be expected for a tensor. The
values of all derivatives are dimensionless and they are expressed in absolute
numbers or percents.

Accurate calculations of the components of the deformation tensor give the fol-
lowing expression:

ε ij
i

j

j

i

1

i

1

j

2

i

= 1
2

u
x

+
u

x
+ 1

2
u
x

u
x

+
u
x

∂
∂

∂
∂













∂
∂

∂
∂

∂
∂

∂u
x

+
u
x

u
x

2

j

3

i

3

j∂
∂
∂

∂
∂











 [3.2]

36 Deformation and deformation rate



The complete expression for ε ij consists of linear (first parentheses) and qua-
dratic (second parentheses) terms. In many cases, derivatives in this formula
are very small (<< 1) and their pair products, which enter into the second
right-hand member in Eq 3.2, are negligibly smaller than derivatives. Hence
they can be omitted, and thus only the two first members (first parentheses) of
the equation are essential. It is only true if deformations are small, and that is
why the tensor consisting only of first derivatives is called an infinitesimal de-
formation (or strain) tensor. This tensor, dij, is as follows:
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where the first line represents the projections of deformation along the x1-axis,
and so on.

In this Section we shall discuss only small deformations. The large deforma-
tions (if the first derivatives in Eq 3.2 are not small) will be considered in a sepa-
rate Section below.

Relative displacement is definitely the cause of deformations inside a body.
Are both displacement and deformation identical in this case? In order to an-
swer this question, let us calculate the relative displacement which is, by defini-
tion, a gradient of u:

g = grad u

The result can be presented in the form of a matrix:
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where the first line includes derivatives of the u1-component of displacement
along three coordinate axis, the second line is the same for the u2-component,
and the third, for the u3-component of the vector u.

It is quite evident that the tensors dij and gij are not equivalent. The difference
between them becomes clear if we decompose components of the tensor gij into
two parts in the following manner:
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The first, so-called symmetrical, part of the tensor gij coincides with the defor-
mation tensor dij, but

gij ≠ dij

Then, we need to understand the physical meaning of this difference or the
meaning of the second, so-called antisymmetrical, part of the displacement
tensor. Figure 3.2 helps to explain the concept. Let us follow the deformation of a
body element drawn as a rectangle. Two displacements, u2 and -u1, having gradi-
ents du2 /dx1 and -du1 /dx2, may occur as shown in the central part of Figure 3.2.
Now, let us superimpose these two displacements, as shown on the right dia-
gram. It is evident that the summation of du2/dx1 and -du1/dx2 does not lead to de-
formation but to rotation of the body element. It means that the second term in
Eq 3.5 represents rotation,but not deformation. It can be written in the follow-
ing form:

gij = dij + θij [3.6]
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where θij consists of differences of the structure
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and describes the rotations (turns) of infinitesimal volumes inside a body. Thus
displacement at any point of a body is a sum of deformation and rotation.

3.2 DEFORMATION RATE

If velocity (as a vector), at any point of a body, is the same, it means that a body
moves as a whole and no deformation takes place. The deformation appears only
as a consequence of velocity gradient at “a point”, which means that two neigh-
boring sites (the distance between them being infinitesimally small) move with
different velocities. If velocity is v (a vector value), its gradient is calculated as
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aij = dv/dr [3.8]

where space coordinates are described by radius-vector, r. Thus aij is a tensor de-
termined by two vectors (v and r). The velocity is the rate of displacement,
i.e., v = du/dt. The relationship between gradient of velocity and gradient of dis-
placement can be found from the equation:
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In the previous section, it was established that the whole gradient of displace-
ment is not controlling deformation, only its symmetric part. The same is true
for the deformation rate. The reasoning is the same as above. Differentiation in
respect to scalar - time, d/dt, - adds nothing new to the result. By decomposing
tensor aij into symmetrical and antisymmetrical components,
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one obtains

aij = Dij + wij [3.10]

where Dij is the rate of deformation tensor, and wij is the so-called vorticity
tensor. As in the previous case, the rate of deformation tensor characterizes lo-
cal changes of shape. The deformation is related to the first term in Eq 3.9, while
the vorticity tensor describes the rate of rotation of local elements of a body with-
out their deformation.
The difference between tensors aij and Dij (similar to gij and dij) can be easily illus-
trated by a simple example. Let us analyze the rotation of a solid (non-deform-
able) body around some axes. The velocity, v, at a point located at the distance, r,
from the axes is equal toωr, whereωis the constant angular velocity. Thus v =ωr,
and the gradient of velocity, grad v = dv/dr, is evidently equal toω. It means that
in rotation of a solid body the gradient of velocity does exist but there is no defor-
mation (because the body was assumed to be non-deformable).
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3.3 LARGE DEFORMATIONS

The difference between small and large deformations depends on the value of
derivatives in Eq 3.2. If all derivatives are much smaller than 1, the quadratic
terms can be neglected, i.e., products of derivatives (in parentheses), and the
tensor dij is used instead of εij.

In the discussion of a concept of large deformations, it is always assumed that a
reference state for deformation can be established. In this sense, flow of a liquid
may not be considered as deformation because all states are equivalent. Liquid
does not have initial (or reference) state. That is why only materials having
memory of their initial state are important here.

Having such an approach, it is very easy to illustrate the essential difference
between small and large deformations, using the model from Figure 3.3. Let a
bar of the length lo be stretched by ∆l. The simple question is: what is the defor-
mation in this case?

In the first case, let lo = 1
and ∆l = 0.1. The so-called
engineering measure of
deformation equals
ε *= l l = 0.1∆ (or 10%),
and it is expressed as
ε 11 1 1= du dx . The rea-
soning becomes much
more complicated if ∆l is
comparable with l, for ex-
ample, if ∆l = 1. Certainly
in this case we also can
use an engineering mea-
sure of deformation as a
characteristic of change of
specimen length, and it is
equal to 1 (or 100%). But

this approach to the definition of deformation contains an inherent contradic-
tion. Let us compare two situations, drawn in Figure 3.3: In the first case (case
I), the increase in the length occurs in two steps: initially by ∆l1 and then ∆l2.
Then the deformation in the first step is ε 1 1 o*= l l∆ and ε 2 2 1*= l l∆ in the
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second step, because initial length of a sample in the second step is l1. Then the
complete deformation is the sum of both

ε ε εI 1 2
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o

2

1

o 1 2 1
2

o 1

*= *+ *=
l

l
+

l
l

=
l ( l + l ) + l

l l
∆ ∆ ∆ ∆ ∆

In the second case (case II), the increase of the length is achieved in one step.
This increase is equal to (l1 + l2) and the deformation εII* is calculated as

ε II
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The ε εI II* *≠ contradicts the physical meaning of the experiment’s interpre-
tation because the final result is not the same in both cases; the sample does not
“know” which way it was brought to the final state, whereas calculations show a
difference. This appears only as a result of large deformations, because if defor-
mations are small, the quadratic terms in formulas for ε εI II*and * are negligi-
ble in comparison to the linear terms, and in this approximation (which is quite
reasonable if ∆l1 and ∆l2 << lo) both measures of deformation become identical.

From the above, it becomes apparent that there is a need to introduce such
measure of deformation which does not depend on the order of operations. Such
measure is called a Hencky measure,1 ε H , defined by:

ε H = ln( l l)∆ [3.11]

Large deformations analyzed by this measure obey the law of additivity. It is
easy to note that in the example discussed above

ε εI
H

II
H=

i.e., the result does not depend on the history of deformation, as required.
In rheological literature, some other values are used as a measure of deforma-

tions. In fact, any function of deformation can be treated as a measure of defor-
mation. One of the most widely used is the so-called Cauchy - Green tensor of
deformation, Cij. It is directly related to the concept of large deformations ex-
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pressed by Eq 3.2, and the Cauchy-Green tensor is determined as:

C = + 2ij ij ijδ ε [3.12]

where δ ij is the unit tensor (or Kronecker delta).
The Cauchy - Green tensor characterizes change of the distance between two

arbitrary “particles” in a “point”: here again we speak about a point, not as a
mathematical idea, but as a physical object which contains many “particles”.

Another tensor of large deformations is frequently used. This is the tensor in-
verse (or reciprocal) to the Cauchy - Green tensor, Cij, named the Finger ten-
sor, Cij

-1 . According to the definition, the relationship between both is

C C =ij ij
-1

ijδ

Introducing different measures of deformations does not exclude the main
question regarding the initial state - point of reference of the deformed state.
The value of this question has been already demonstrated by the example of
large deformations in uniaxial extensions. For static states this problem can be
solved by introducing the Hencky measure of deformations. But the same prob-
lem appears and becomes more pertinent for a continuously moving medium
where the position of deformed elements of a body is changing in time and we
want to describe the process or the rate of deformation.

A similar situation has importance in classical hydrodynamics where transfor-
mation is followed (for example, temperature effect or chemical reaction) in
moving media. In such a case, the problem is solved by using a so-called material
or substantial derivative, D/Dt, which can be written for any arbitrary vari-
able, Y, as

DY
Dt

= Y
t

+
v Y

x
k

k

∂
∂

∂
∂∑ [3.13]

The main new approach which appears in the theory of large deformations con-
cerns the importance of knowing the rate of deformation not only in a fixed coor-
dinate system but in moving one, as well. It means that the behavior of a
material in moving sites must be described because changes occur not at a point
of a space but in a traveling element of a material which deforms along its re-
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placement. This concept is called the principle of material objectivity and it
states that all physical phenomena, certainly including laws of deformation,
must not depend on a coordinate system used for their mathematical formula-
tion.

As a result of large deformations, material elements can travel far away from
their initial position, and that is why it is important to apply proper rules of
transition from the reference state. Similar to our discussion of large uniaxial
extension, it is also important here that the choice of different reference states
must not lead to an ambiguous estimation of deformation. An observer who mea-
sures properties of a material is always positioned in fixed (unmovable) coordi-
nate system. Hence the general approach consists of formulating ideas
concerning possible rheological behavior of a material for a moving (and deform-
ing) element of a medium, recalculating them into a fixed coordinate system,
and then comparing the results with an experiment.

This is completely true for the rate of deformation. There are different mathe-
matical ways to realize the idea of transformation of the rate of deformation ten-
sor into a fixed coordinate system and, depending on the choice, various special
forms of time derivatives, generalized by Eq 3.13. Moreover, in some theoretical
studies, there is a necessity to introduce kinematic tensors of a higher order
hich are determined as time derivatives of the Cauchy-Green or Finger ten -
sors. They are used if it is assumed that rheological behavior of a material de-
pends, not on the rate of deformation only, but on higher derivatives of
deformation, as well. In Chapter 7, devoted to properties of viscoelastic materi-
als, their behavior is modeled by equations containing a sum of n-th order time
derivatives of deformation (so-called rheological equations of a differential
type). If deformation is large, one needs to use measures of large deformations
and calculate their time derivatives.

In the case of the substantial time derivative, D/Dt, the physical meaning of
this operation requires us to calculate derivatives for a moving medium which
follow time changes in a material point changing its initial position. This prob-
lem in the theory of large deformations is solved by introducing time derivatives
of a different type. The most popular are the Rivlin - Eriksen, An(t), and White -
Metzner, Bn(t), tensors of the n-th order.2 They are determined as
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where Cij and Cij
-1 are the Cauchy-Green and Finger tensors, respectively.

Saint-Venant3 was the first who realized the necessity to consider the concept
of large (finite) deformations. Later ideas of the theory of large deformations
were discussed and developed by Finger,4 Zaremba,5 Cosserat, 6 and Jaumann.7

Fundamental works were also contributed by Biot.8 More recently, Rivlin9 dis-
cussed studies on large deformations in numerous publications. A complete
treatise on modern theories of large deformations of solids is included in book by
Green and Adkins,10 and for liquids, by Lodge.11 The use of various measures of
large deformations and different types of their time derivatives allows one to ar-
rive at qualitative predictions concerning possible effects in rheological behav-
ior of a material, but it is the task of an experiment to find a model which can
adequately describe physical phenomena observed for different real materials.

3.4 PRINCIPAL VALUES AND INVARIANTS OF THE DEFORMATION TENSORS

The principal deformations (strains) are calculated in the same way as
principal stress. For the infinitesimal deformation tensor, the principal defor-
mations, d1, d2, and d3, are extensions along three orthogonal directions. It can be
illustrated by a very spectacular picture of deformations in the vicinity of some
point. For this aim, let us represent an infinitely small volume in a body as a
sphere (Figure 3.4) with a center positioned at a point A and radius of the sphere
dr (infinitesimal small length). The coordinates of the central point A are x1, x2,
and x3. As a result of movements and displacements, the following changes have
taken place in a body: the point A has moved to a new position A*, the directions
of the radii AB, AC, and AD have changed to the directions A*B*, A*C*, and
A*D*, respectively. And the sphere itself has transformed into an ellipsoid with
semi-axes of lengths (1 + d1)dr, (1 + d2)dr, and (1 + d3)dr, respectively.
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The deformations characterize the change of the shape of a volume element of
a body — transition from a sphere to an ellipsoid. Besides they determine the
relative change of the volume, ε v , which can be written as follows:

ε v
ell sph

sph

=
V V

V

−
[3.14]

Simple calculation shows that

ε v = (1 + d1)(1 + d2)(1 + d3) - 1 [3.15]

It is very easy to show that ε v is expressed through invariants of the deforma-
tion tensor because change of volume must not be associated with the choice of
the coordinate system, and the invariants do not depend on the coordinate axes.
If deformations are small and it is possible to neglect quadratic terms in compar-
ison with linear terms, the Eq 3.15 gives a particularly evident result:

ε v = d1 + d2 + d3 [3.16]

i.e., volumetric changes are equal to the first (linear) invariant of the tensor of in-
finitesimal deformations and that is the physical meaning of the latter.
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The volumetric changes in deformation can also be represented through exten-
sion ratios. For this purpose, let us (conditionally) cut out a small rectangular
parallel pipe, at a some site in a body, oriented along the principal axes. Let the
length of its edges be a, b and c before deformation, and become a*, b*, and c* as a
result of deformation. Then the extension ratios are:

λ λ λ1 2 3= a * a; = b* b; = c * c

and the volume change is calculated as

∆V + V
V

= a * b*c *
abc

= 1 2 3λ λ λ

The last formula allows one to state a very simple rule of constancy of volume
in deformations of any type:

λ λ λ1 2 3 1= [3.17]

Like any other tensor, the deformation tensor, dij, can be decomposed into
spherical and deviatoric parts. Considering that the first invariant is the vol-
ume change, we can write:

d =
3

+ dij
v

ij ij
(dev)ε δ

where the second member in the right-hand part of the equation is a deviatoric
part, d ij

(dev) , of the dij-tensor which describes shape transformation occurring
without changes in volume.

3.5 UNIAXIAL ELONGATION. POISSON RATIO

Let a bar of sufficient length to be stretched and increase its length by ∆l/l0 or
the extension ratio, λ, be (∆l + l0) /l0. If (du1/dx1) = λ - 1, one can write

ε λ λ λ11
1

1

1

1

2

2 2=
du
dx

+ 1
2

du
dx

= ( 1) + 1
2

( 1) = 1
2

(








 − − −1) [3.18]
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Additional to being stretched in the axial direction, the bar undergoes changes
in the lateral direction. The relation between relative changes of dimensions in
the lateral and axial directions cannot be established on the basis of a purely
geometrical picture of deformations because this relation is an inherent, inde-
pendent property of a material. The quantitative characteristics of this property
is the ratio of relative lateral contraction to the relative longitudinal extension
and this special property of a material is called the Poisson ratio.

For simplicity, let the bar have a round cross-section with the radius, ro, and
the length, lo. If its elongation is ∆l, and, as a result of stretching, radius is de-
creased by ∆r, then, by definition, the Poisson ratio, µ, is:

µ =
r r

l l
o

o

∆
∆

[3.19]

It is now easy to calculate the volume change, resulting from uniaxial stretch-
ing. The relative change of volume ∆V/V is

∆ ∆ ∆
V V =

(r + r) (l + l) r l
r l

o
2

o o
2

o

o
2

o

−
[3.20]

If ∆l << lo and consequently ∆r << ro (small deformations), the last formula
gives

∆V V = (1 2 )− µ [3.21]

Poisson ratio is a measure of volume changes during small deformations. From
Eq 3.21, one can see that deformations occur without volume changes when and
if µ = 0.5. For real solid materials, µ < 0.5, meaning that their elongation is ac-
companied by increase in volume. Only for some rubbers µ = 0.5.

It is interesting to use the general method of decomposing the deformation ten-
sor, dij, into spherical and deviatoric terms for uniaxial extension. If λ << 1, and
deformation is equal toε, the deformation tensor for such case can be written as:
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The structure of this sum is very similar to the structure of the stress tensor de-
composition into two parts (compare with the analogous procedure in
Chapter 2). A similar approach will also be taken in the next Chapter for the dis-
cussion of elasticity theory.

More precise analysis of Eq 3.20 shows, however, that for large deformations
Eq 3.2 is not valid, and the rule ofµ = 0.5 as the condition for maintaining the con-
stant volume at stretching has no general meaning. Indeed, preserving the for-
mal definition 3.19 for the Poisson ratio, according to Eq 3.20, we have for
∆V/V=0:

1 2 (1+ ) + (1+ ) = 02− µ ε µ ε ε [3.22]

If ε << 1, Eq 3.22 is converted to an ordinary condition such that µ = 0.5, but in
the more general case it is not true. For example, let the bar be stretched by 9
times (it is quite possible for rubber ribbons or melted fibers). It means that
∆l lo = 8 and the volume can remain unchanged if the final radius becomes
equal to 1/3 of its initial value. Then ∆r / ro = 2 3. In this case according to Eq
3.22, and formal definition 3.19, µ = 1 12. This example shows that adaptation
of infinitesimal deformation mechanics (µ = 0.5 as a necessary condition for con-
stant volume at extension) to the range of large deformations must not be done
in a straightforward manner.

3.6 SIMPLE SHEAR AND PURE SHEAR

Simple shear is a very important type of deformation because movement of
all fluids and liquid-like materials is based on the principle of sliding of neigh-
boring layers relative to each other. The schemes of simple shear for an element
of a body in the case of small deformations, and in the general case of arbitrary
deformation, are shown in Figure 3.5 a and b, respectively. Along the direction of
shear marked by an arrow, a displacement, u1, takes place. Its gradient,
du1 dx2, is determined by the slope which will be denoted as γ:
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γ = tanα = du1 dx2

Since the length of linear elements, which were oriented before deformation in
the x2-direction, is changed in shear, one more displacement component, u2 , ap-
pears. It is related to the change in the length of the segment OA, which after
displacement now becomes OA*:

( )OA * OA
OA

= 1+ 12
1
2− −γ [3.23]

The value of γ= du1/dx2 for simple shear determines all components of the ten-
sor at large deformations. According to the deformation of theε ij tensor, its com-
ponents are:

ε ε γ12 21= = 1
2

ε γ22
2= 1

2

This tensor is graphically illus-
trated in Figure 3.5 b in which the
components of the tensor, ε ij , are
marked by arrows (factor 1/2 is omit-
ted in drawing this Figure). The ap-
pearance of a diagonal component in
the deformation tensor in a simple
shear is a direct consequence of large
deformations because ε 22 is propor-
tional to γ2 and its value becomes
negligible if γ<< 1. This phenomenon
is known as the Poynting effect,
observed in twisting of wires: their
length slightly changes in this case.
Twisting is an example of shear de-
formation, and the observed change
of the length in the axis direction is
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restricted to ε 22-component of the deformation tensor.
Let us now discuss some models of simple shear which are often used in rheo-

logical literature and are illustrative for the tensorial nature of the deformation
tensor.

The angle,β, between the direction of shear, x1, and the orientation of the prin-
cipal axis is calculated as

β γ= 1
2

atan( 2) [3.24]

The main components of the deformation tensor may be written as follows:

γ λ γ λ γ λ1 1
1

2 2
2

3 3
2= 1

2
( 1); = 1

2
( 1); = 1

2
( 1)− − − [3.25]

where λ λ λ1 2 3, ,and are principal elongations (or extension ratios in the direc-
tions of principal axes). These values are related to the angleβ in Eq 3.24, and to
the plane deformation state (as in Figure 3.5); they are as follows:

γ β γ β γ1 2 3= cot , = tan , and = 1

A result obtained from the last set of formulas for λ i indicates that in simple
shear no volume change occurs because γ γ γ1 2 3 1= in accordance with Eq 3.17.

Components of the Cauchy - Green tensor in shear are important for theoreti-
cal discussion concerning rheological models of elastic liquids. Calculations give
the following expression for Cij:

C =
1 0

1+ 0
0 0 1

ij
2

γ
γ γ















In a simple shear, not only the lengths of linear elements change (e.g., along
the principal directions), but rotation of the elements of a body also takes place.
This effect is illustrated in Figure 3.5, where the angle of turn (rotation),θ, of the
diagonal from OC to OC* position, is shown.
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Shear deformation, AA*, in this Figure, is due to displacement, andα is its gra-
dient. Any gradient of displacement consists of deformation and rotation, which
in general form is expressed by Eq 3.5. For small displacement, the angle of rota-
tion,θ α= 2, must be used, unlike for large deformations, where the general Eq
3.5 is applicable.

It is possible to find such shear conditions where no rotation occurs. This case,
called pure shear, is based on definition of the ωij from Eq 3.7. It is seen that
ωij = 0 if all differences of the displacement gradient equal zero. For the simple
shear, this condition has following form: du1/dx2 = du2/dx1.

Geometrical image of a pure shear is drawn in Figure 3.6. In pure shear the di-
agonal AB of the small square (at some point) moves, due to deformation, into
new position A*B*, parallel to its initial position, and the diagonal OM does not

change its position at all, being only
extended to OM*; therefore, no ele-
ment of the body undergoes rotation.

Figure 3.6 can be obtained in a dif-
ferent way. It is quite evident that the
transition from the square OAMB to
the rhomb OA*M*B* can be achieved
by pressing the square along the di-
rection AB, with simultaneous
stretching along the direction OM. It
means that pure shear can be consid-
ered (and can be realized) through the
superposition of two uniaxial exten-
sion deformations (with different
signs).

From the point of view of continuum
mechanics, the difference between
simple and pure shear is not signifi-
cant, since deformations occur in the
infinitely small volumes “at a point”

and the rotation of infinitesimal elements of a body as a whole has no effect on its
deformation. But in real materials this difference can appear to be essential, be-
cause an act of deformation involves certain volumes which may include a large
number of molecules or their constituent parts. That is why rotation in simple
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shear does influence the rheological behavior of deformable (in particular flow-
ing) materials and is taken into consideration in formulating laws of deforma-
tions in the form of time derivatives used to calculate the rate of deformation, as
mentioned above.

3.7 EXAMPLES

Unlike stress analysis, the calculation of deformation fields cannot be carried
out for an arbitrary scheme of loading because reaction of a material to an exter-
nal force depends on inherent properties of a medium and its geometrical size
and shape. That is why calculation of deformation is possible only for materials
having established properties. The same force creates unlimited deformation in
a liquid and only small deformation in a steel object.

The deformation can be found, regardless of rheological properties of a mate-
rial, only for homogeneous deformation fields. Some principle examples have
been already discussed in the preceding Sections of this Chapter, and here we
shall summarize the main results.

3.7.1 UNIAXIAL EXTENSION OF A BAR (BEAM, FIBER)

It is one of the most frequently met cases in technology (e.g., orientational ex-
tension of fibers) and everyday life. Stress analysis of uniaxial extension was
discussed in Chapter 2. Now, we shall summarize the main relationships de-
scribing deformation.

Let the extension ratio of a uniform bar loaded along its axis be equal to λ (ini-
tial length lo, the length after deformation l, the extension ratioλ = l/lo). The engi-
neering measure of deformation, ε *, is (λ - 1). If ε * << 1 then

ε ε11 = *

In uniaxial extension, lateral contraction takes place, and its value is deter-
mined by the Poisson ratio

ε ε µε µε22 33 11= = − = − *

In some cases, it is especially important to know the components of complete
deformation, for example, if we wish to divide the full deformation into plastic
and elastic parts (such problem is pertinent to fiber spinning technology where
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the main goal is to produce highly oriented fibers). It is necessary to use the mea-
sure of deformation which is additive to the prehistory of loading and the
Hencky measure of deformations, ε H , as already discussed, to satisfy the re-
quirement. For uniaxial extension

ε ε λH = ln(1+ *) = ln

In the case of large deformations, ε 11-component of the deformation tensor has
the following structure:

ε ε ε λ λ λ11
2 2 2= *+ 1

2
* = ( 1) + 1

2
( 1) = 1

2
( 1)− − −

In applications of the theory of large deformations to rubbers and rubbery poly-
meric solutions, the Cauchy - Green and Finger methods of large deformation
calculations are widely used. Their values in our case are as follows:

C = ; C =11
2

11
-1 -2λ λ

Other components of Cij and Cij
-1-tensors are expressed through deformations,

ε ε22 33and , depending on the Poisson ratio.

3.7.2 SHEAR

Shear deformations are very typical for all hydrodynamic problems, including
the flow of low viscosity liquids (water, oil, gasoline), liquid-like and plastic ma-
terials, such as paints, sealants, clay, polymer solutions and melts, colloids, and
many others. Besides, many engineering applications rely on shear: twisting of
bars and tubes, cutting and threading are operations in which shear plays a
dominant role.

Main theoretical results concerning large deformations in shear were dis-
cussed in detail in the last section of this Chapter and need not be repeated.

Shear rate, determining peculiarities of flow, may have variable impact even
under the same geometrical conditions and stress, depending on rheological
properties of a medium. Hence, only for homogeneous flow can the shear rate be
estimated beforehand. Such flow occurs in a very thin gap between two parallel
surfaces, with one of them fixed and the other moving with constant velocity, v.
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This condition is typical for flow in narrow gaps of bearings, and more impor-
tant, it is widely used for measurement of rheological properties of various liq-
uids in so-called rotational viscometers.

If the width of a gap, h, between surfaces moving in parallel to each other is
small, the shear rate, &γ, in a flowing liquid is calculated as

&γ = v/h

This formula also applies when both surfaces are curved but the size of the gap is
much smaller than the radius of curvature; for example, if flow occurs in a very
narrow gap between two coaxial cylinders, one of which is rotating with constant
velocity.

3.7.3 PLANE DEFORMATION (STRAIN) STATE

Plane (two-dimensional) stress and deformation (strain) state appears in thin
items, stretching films, membranes, shells, and so on. The stress fields for some
typical situations have been analyzed in Chapter 2. The calculation of the defor-
mation field, regardless of rheological properties of matter, can be performed for
homogeneous static (equilibrium) state (e.g., a sphere (balloon) filled with gas,
having known pressure, up to the certain size).

Let the initial radius of a balloon be Ro, and after increase of inner pressure the
radius becomes R. The initial width of a cover is δo and δo << Ro. The extension
ratio equals λ = R/Ro. The directions along the radius of a sphere and tangential
to its surface are principal directions because shear stresses and deformations
are absent in thin shells, as discussed in Chapter 2.

The surface of the cover increases as a result of deformations, and for
(R − Ro)/Ro<<1 we have:

ε ε λ2 3
o

o

= =
r R

R
= 1

− −

where the directions 2 and 3 are tangential to the surface of the cover.
The third principal deformation, ε 1, (the direction 1 is along the radius) can be

calculated using Eq 3.21, considering volumes of a material before and after de-
formation. It is easily seen that in the case under discussion
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∆V/V = 1 - (R2δ/Ro
2δo)

It means that

R R = 22
o
2

oδ δ µ

and

δ δ µ µ
λo o

2

2
= 2 (R R) = 2

Then

ε δ δ δ µ
λ1 o o 2

= ( ) = 2 1− −

If volume of a material under deformations is constant (for example, if the
cover is made out of rubber), µ = 0.5 and we have

ε
λ1 2

= 1 1−

3.7.4 THREE-DIMENSIONAL DEFORMED STATE

Many engineering applications can benefit from analysis of these relation-
ships. Important to note is that consideration must be given to the real rheologi-
cal properties of the material in question. Some general principles are worth
citing because they apply to analysis of large deformations of rubbers.

If the values of principal extension ratios are λ λ λ1 2 3, ,and , or the engineering
deformations along principal axes are

ε λi i*= 1−

then the values of the Cauchy-Green and Finger tensors are:

56 Deformation and deformation rate



C = ; C = ; C =1 1
2

2 2
2

3 3
2λ λ λ

C = ; C = ; C =1
-1

1
-2

2
-1

2
-2

3
-1

3
-2λ λ λ

The first invariants of C and C-1 tensors are

C = ( ) and C = ( )I 1 2 3
2

II
-1

1 2 3
-2λ λ λ λ λ λ

As discussed above (see Eq 3.17), the equality λ λ λ1 2 3 1= means that deforma-
tion proceeds without changes of volume. Hence the condition of constant vol-
ume in three-dimensional deformations of arbitrary type is: CI = CII

-1 = 1.

3.8 CONCLUDING REMARKS

Action of outer forces results in displacement of the points of continuum. If
displacements are inhomogeneous throughout a body, and relative displace-
ments appear, they lead to deformations, which are the consequence of
changes of infinitesimal distances between different points inside a body. Dis-
placement is a vector, but relative displacement and deformation are objects of
tensorial nature, because to describe them both it is necessary to operate with
two vectors. The relative displacement is described by a radius-vector of two
points for which displacement is considered, and the deformation by a vector of
displacement and a radius-vector of a point, where the displacement occurs.

Deformation is only a part of relative displacement, which also includes rota-
tion of elements of a body as a whole.

Deformations can be small (or infinitesimally small) or large. The boundary
is determined by the value of relative displacement (or gradient of displace-
ment), which is a dimensionless value. If this value is small (<< 1), it is reason-
able to neglect the square of this value in comparison with the value itself. One
can thus neglect all quadratic terms included in the relationship. In this case,
deformations can be treated as infinitesimally small.

If large deformations are considered, some new effects appear. First of all,
physical phenomena occur at a site which moves and during deformation va-
cates its initial position. Description of all occurrences (including deformation
itself) must be done in relation to a moving point. An observer, carrying out ex-
periments with a material, follows its behavior and treats the results of mea-
surements in a fixed coordinate system. Hence it is necessary to know the rules
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of transformations and the tensor values used for projecting deformations from
a moving to a fixed coordinate system.

Large deformations are characterized by special measures of deformation,
such as the Hencky measure (a logarithmic measure subjective to additivity
rule), Cauchy - Green, and Finger tensors of large deformations.

Time derivative of displacement of a point is its velocity, time derivative of rel-
ative displacement is a gradient of velocity, and time derivative of deformation
is rate of deformation. Time derivatives of tensors are also tensors, and for
calculation of the rate of deformation, special rules exist which take into consid-
eration large deformations and movement of a deforming site in space. Gradient
of velocity is a sum of rate of deformation and vorticity tensor as elements of a
body which can not only deform but simultaneously rotate it.

In the process of uniaxial longitudinal extension, a body undergoes lateral
compression. The ratio of relative changes of lateral and longitudinal sizes is
called the Poisson ratio, which is an inherent property of a material. For the
range of small deformations the volume of a body remains unchanged if the Pois-
son ratio equals 0.5, but in large deformations this simple rule is not obeyed.

There is a special interesting case of deformation when volume changes are not
taking place, which is a simple shear. At large shear deformations, diagonal
components of the deformation tensor appear, and they lead to some effects of a
second order, such as elongation of long items at their twisting (Poynting ef-
fect). Simple shear is accompanied by rotation of elementary volumes in space.
It may reflect behavior of a material. In order to exclude rotation, it is necessary
to apply pure shear in which rotation does not exist. This type of deformation is
equivalent to a two-dimensional situation of superposition of extension and
compression in mutually perpendicular directions.
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4

RHEOLOGICAL
EQUATIONS OF STATE

4.1 MAIN RHEOLOGICAL EFFECTS

The concept of rheological equation of state (or constitutive equation)
occupies the central position in modern rheology. It is a relationship between
stresses acting at a point and deformations occurring as a result of their action.
Such a relationship determines all mechanical phenomena which can be ex-
pected in the observation of mechanical behavior of a material. Rheological
equations of state serve the purpose of understanding and describing qualita-
tively and (the most desirable) quantitatively various “anomalous” effects ob-
served in real life for real materials. Some macroforms of these effects were
mentioned in Chapter 1 and they are now described in rheological language in
terms of stresses, deformations, and rates of deformation.

The number of various rheological “anomalies” is large; any kind of deforma-
tion of material which does not obey the simplest, classical rheological equations
(Newton and Hooke Laws) inevitably leads to different, new qualitative, or at
least quantitative, phenomena which are not described by the concept of a New-
tonian fluid and a Hookean solid body. Each of these phenomena can be consid-
ered as a “rheological effect”. However, there are several fundamental
experiments which definitely indicate that material is either “classic” or “rheo-
logical”. These experimental observations are discussed below.
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4.1.1 NON-NEWTONIAN VISCOSITY

If we define viscosity, η, by Eq 1.1 as a ratio of shear stress,σ, and shear rate, &γ,
and then carry out measurements at different values of σ or &γ, the ratio σ γ&
should be constant because viscosity is a property of liquid. Liquids having con-
stant viscosity for any &γare called Newtonian liquids and their viscosity is called
Newtonian viscosity. In many real cases, the ratioσ γ& is not constant, and it
is called apparent (or non-Newtonian) viscosity, even though the same sym-
bol, η, is used. Dependence of the apparent viscosity on shear stress or shear rate
is called flow curve. It can be displayed in any of three coordinate systems,
η σ η γ σ γ− − −, ,or ,& & as shown in Figure 4.1. The apparent viscosity decreases in
this example, and such effect is frequently called shear thinning. This is the
most typical case, but viscosity can also increase with shear rate increasing (the
so-called shear-thickening). Sometimes, viscosity decreases or increases (for
the same material) in a different range of shear rate.

In many applications, it is important to know how apparent viscosity changes
when shear rates (and stresses) are changing in a very wide range. In order to
make this dependence more visual, logarithmic scales are frequently used. The
graph constructed in log&γ - logσ coordinates is also called a flow curve. The flow
curve of any Newtonian liquid is a straight line inclined by 45o to both axis;
therefore measurement points fulfill the condition of constancy of the σ γ& ra-
tio.
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Figure 4.1. Different images of a flow curve: dependencies η σ( ) - a, η γ( & ) - b and σ γ( & ) - c.



Non-Newtonian behav-
ior of a liquid was, for the
first time, observed by
Ostwald1 for colloid dis-
persions, and was ex-
plained by the changes of
a structure of colloid as a
result of deformation.
Some authors continue
to call the ratio σ γ& a
structure viscosity
(struktur Viskosität1),
even though the origin of
this effect is not neces-
sary related to the rup-
ture of a “structure” of a
flowing liquid.

Some typical examples
of non-Newtonian behav-
ior are given in Figures
4.2 and 4.3 for polymeric
systems and in Figure
4.4 for a bentonite solu-
tion. In all cases shown
in these Figures, the ef-
fect of non-Newtonian
flow is very pronounced,
though it appears in dif-
ferent forms: as a grad-
ual decrease of apparent
viscosity in Figures 4.2
and 4.3, and as a sudden
jump from very high to
very low viscosity in Fig-
ure 4.4.
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curve - flow curve of a pure polymer. All other curves are drawn
for solutions. Concentration of the polymer in weight percent-
age as labeled. T = 25oC.



One of the main problems in description of flow curves is the existence of limit-
ing values of apparent viscosity at σ → 0 or &γ → 0, and at σ → ∞ and &γ → ∞,
which are important to consider in interpretation of the physical meaning of
non-Newtonian behavior and in quantitative description of a flow curve.

Flow curves in Figure 4.2 are typical of polymer solutions. The solvent used be-
haves like a Newtonian liquid (flow curve is a straight line inclined by 45o to both
axes). In rather dilute solutions, flow curves display three regions. At low shear
rates (formally at σ γ→ →0and 0& ), Newtonian behavior is observed (straight
line inclined by 45o to both axes), and apparent viscosity corresponding to this
region of a flow curve is called zero-shear or initial or maximum Newtonian
viscosity. Then the decrease of apparent viscosity (declining from the straight
line) is observed - typical of non-Newtonian behavior. Finally, the upper part of a
flow curve again has Newtonian behavior. The value of apparent viscosity at
these high shear rates and stresses (formally at σ γ→ →0and 0& ) can be called
upper, limiting, or minimum Newtonian viscosity.
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Figure 4.3. Flow curve of a polyethylene melt. Experiments conducted for a typical polydisperse
polymer. Melt index of a sample was 2 g/10 min. T = 150oC.



Further increase of polymer concentration leads to increasingly more notice-
able deviation from Newtonian behavior, though in all cases the Newtonian vis-
cosity, at low shear rates, is apparent. Highly concentrated solutions (30% and
higher) have a broader range of non-Newtonian behavior, followed by the flow
curve which becomes close to a vertical line. This behavior is particularly strong
for a pure polymer. It may be argued whether this region of the graph corre-
sponds to real flow with rapid decrease of apparent viscosity or it reflects other,
special type of behavior of a material, but undoubtedly these experimental ob-
servations demonstrate peculiar rheological properties of these media.

There is no doubt that the initial Newtonian viscosity region exists for all, in-
cluding very concentrated, solutions. Also, the upper Newtonian region of flow
curves cannot be reached (or maybe does not exist) for concentrated solutions.
The general reason for this is a loss of flow stability at high shear rates (a very
close analogy of this behavior is a well-known transition from laminar to turbu-
lent flow for regular liquids).

Another example of rheological properties is represented in Figure 4.3 for poly-
mer melt. A continuous and gradual decrease of apparent viscosity occurs in a
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very wide range of shear rates. The whole decrease of apparent viscosity exceeds
1000 times in comparison with the initial value. The initial Newtonian region in
the flow curve appears in this Figure only as a hint; it may even be suspected
that this branch does exist.

Figure 4.4 represents a flow curve with a very sharp drop of viscosity at some
value of shear stress,σ y , or in a narrow range of shear stresses. The initial New-
tonian viscosity, ηo , can also be found here as a limit of η σat 0→ . The magni-
tude of ηo exceeds the apparent viscosity, in other regions, by several decimal
orders of magnitude. In fact, viscosity drops by 8 decimal orders of magnitude,
from 0.95 MPa⋅s to 9.3 mPa⋅s. That is why it is reasonable to treat the behavior of
a material atσ σ<< y as solid-like (even though the material is a liquid and flows
even though its viscosity is very high). The transition through σ y might be con-
sidered as a transition from solid-like to liquid-like behavior, and only the part
of the flow curve at σ σ> y as the flow curve.

The materials having sharp transition from solid-like to liquid-like behavior,
at sufficiently high shear stresses to cause flow, are called visco-plastics, and
the transition stress is called yield stress (or yield point). The flow curve in Fig-
ure 4.4 can be treated as a flow curve of a non-Newtonian liquid with rapid vis-
cosity decrease or as a dependence of apparent viscosity on shear stress,
characteristic for visco-plastic bodies. Both definitions are reasonable. In many
cases, it is very difficult to find a proper assignment for experimentally observed
viscosity versus shear stress dependence of real materials rapidly changing
their structure under deformation.

Many attempts were made to describe flow curves of various materials by ana-
lytical functions of different type, both on theoretical and empirical levels. For
the flow curves with distinctly expressed range of initial Newtonian viscosity,
the following equations are frequently applied:

Cross equation:2 η η
λγ

=
1+| |

o
m

&

[4.1]

Carreau equation:3 η η
λγ

=
[1+ ( ) ]

o
2 -p

&

[4.2]

Yasuda et al. equation:4 η η
λγ

=
[1+ ( ) ]

o
a (n-1)/ a

&

[4.3]
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Vinogradov - Malkin equation:5 η η
γ γα α

=
1+ A + B

o
2

& &

[4.4]

In all equations, η is apparent viscosity, depending on shear rate, ηo is
zero-shear viscosity, all other symbols are empirical or semi-empirical con-
stants.

All the equations are similar in their structure. They differ in a number of pa-
rameters: two in Eqs 4.1 and 4.2, and three in Eqs 4.3 and 4.4. It is interesting to
emphasize two main peculiarities of these equations: all have a limit at &γ → 0
equal to ηo . At sufficiently high values of shear rate, they transit to the so-called
power law (Ostwald - de Waele equation),6 which can be written as

σ γ= K n
& [4.5]

where K and n are empirical parameters.
All equations show that, at &γ → ∞, apparent viscosity diminishes to zero. It

means that it was assumed that there is a great decrease in apparent viscosity,
when shear rate increases, in comparison with ηo , so that the limiting value of
apparent viscosity at &γ → ∞ is negligibly small. There are situations (for exam-
ple, relatively dilute polymer solutions) when the total decrease in apparent vis-
cosity is not large, and the minimal value of apparent viscosity at &γ → ∞ is
frequently observed. In many cases, the possibility to reach the limiting viscos-
ity is restricted because, at very high shear rates, flow instabilities of a different
kind appear.

Discussing the problem of apparent viscosity, it is important to note that the
definition of viscosity applies to steady flow (no time-related changes). In some
cases it is important to consider viscosity in transient regimes of shear deforma-
tions. For pure viscous liquids, nothing is changing in this case. In other cases, &γ
must be treated, not as a rate of full deformation, but only as a rate of flow, i.e.,
rate of irreversible deformation. If the deformation is reversible (elastic), it has
nothing in common with viscous flow and definition of viscosity. Thus, in tran-
sient flow, only a part of deformation is related to the flow; the rate of this defor-
mation must be taken into account in calculating viscosity.

The flow curve measurements have various applications. Two of them are of
primary value. First, it is always necessary to know viscous properties of a real
material to solve any hydrodynamic problem related to flow of the material - in
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particular, to design processing equipment and predict conditions of its use in
practice (e.g., calculation of rate of flow and pressure drop). Second, the flow
curve reflects chemical content and/or physical structure of a material, and as
such it can be used as a method of analysis of material quality.

4.1.2 PLASTIC BEHAVIOR

Visco-plasticity can be for-
mally treated as a viscous flow:
viscosity is infinite at σ σ< y ,
and it decreases in a very nar-
row range of shear stress near
σ y , as discussed above. Plastic
material cannot be deformed at
σ σ< y , and it flows at σ σ> y .
The yield stress, σ y , is charac-
terized by a rapid change of vis-
cosity at σ σ→ y (Figure 4.5).
For some materials, such as
many pastes, greases,
bentonites, and paints, this pat-
tern of behavior is very close to
reality (see Figure 4.4). For

other materials - for example, polymer melts containing solid filler, rubber com-
pounds, sealants - the transition through the yield stress appears milder, as
demonstrated in Figure 4.6.

Formal description of visco-plastic behavior is based on a model of abrupt jump
of viscosity atσ y and existence of yield stress. Two analytical equations are usu-
ally used to characterize visco-plastic behavior:

Bingham equation7 σ σ η γ= +y p & at σ σ< y [4.7]
Casson equation8 σ σ γ1 2/

&= +y
1/ 2 1/ 2K at σ σ< y [4.8]

whereσ y is the yield stress, and η p and K are empirical constants. The constant
η p is sometimes called the “plastic” or Bingham viscosity.

Eq 4.7 represents a linear model. It predicts the decrease of apparent viscosity
in the flow range:
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Figure 4.5. Characteristic “flow curve” for a
visco-plastic medium in &γ σ− (a) and η σ− (b) coordi-
nates.



η σ
γ

η
σ
γ

= = +p
y

& &

[4.9]

The apparent viscosity decreases when the shear rate increases, as shown in
Figure 4.5 b.

If viscosity at σ σ> y is constant, the behavior is not described by the Bingham
equation and can be represented by the following equation:

η σ σ η η σ σ= ∞ =at < at >y y0 [4.10]
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Figure 4.6. Flow curve for a filled polymer melt - polyisobutylene containing 5 wt% carbon black,
60oC - demonstrating gradual approach of the yield point.



The existence of a range of low stresses in which a visco-plastic material is
solid-like leads to rather peculiar properties. If such material is pressed through
a round channel, the stress at the axis equals zero. In fact, there is a core in the
entire central zone where shear stress is very low. It means that there is a zone,
in the central part of a channel, where shear stress is lower than σ y ; therefore
this part of visco-plastic material does not flow but moves as a solid plug. Such
behavior is frequently called plug-flow.

The term plasticity9 (and the concept of plastic behavior) is also used for solids
which can be elastic (up to the yield point), and then deform to unlimited extent
when this critical stress is reached. The term “flow” has a rather peculiar mean-
ing for such materials as metals; nevertheless, they really flow (i.e., are de-
formed irreversibly) atσ σ> y . The plastic behavior of solids atσ σ> y is essential
in such technological operations as punching of golden articles (coins and so on)
or rolling of ingot steel.

In summary, it is necessary to emphasize that Eqs 4.1 through 4.10 are not
rheological equations of state, they only contain empirical description of experi-
mental data obtained in unidimensional shear deformations.

4.1.3 WEISSENBERG EFFECT

Weissenberg has described a set of “strange” pictures of behavior of some liq-
uids (Figure 4.7).10 If a rod is rotated inside a “rheological” liquid, such a liquid,
instead of being displaced from the rotor by centrifugal force towards the walls
of a vessel, begins to wind around the rotor and climb it (Figure 4.7 - case 1). In
the case of two coaxial cylinders (inner hollow), the rotation of the outer cylinder
forces liquid into the inner cylinder (Figure 4.7 - case 2). Another characteristic
example concerns liquid between two parallel discs. When the outer disc is ro-
tated around a common axis, the inner disc is lifted up by normal force generated
due to rotation (Figure 4.7 - case 3), and if a hole would be made in the center of
one of the discs, this “strange” liquid instead of being removed from the space be-
tween the discs to the periphery of the discs, is pressed through the hole. Such
behavior means that the force not only acts normal to the surfaces of the discs
but in the radial direction to the central axis as well.

The above-mentioned and some other related observations are known under
the general name of the Weissenberg effect. Phenomena associated with this
effect are very common in technological applications, because reactors with ro-
tating mixing elements, mixers of different geometry and type, are regular
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Figure 4.7. Typical phenomena usually associated with the Weissenberg effect: a rod rotating in a
liquid (1); rotating outer cylinder with liquid filling the center of a hollow cylinder (2); a liquid be-
tween two parallel rotating disks (3). (Continued on the next page.)



equipment in various branches of the chemical, food and pharmaceutical indus-
tries. Moreover, the last example of the Weissenberg effect shown in Figure 4.7
(case 3) was used to design a special type of machine for polymer processing, the
so-called screwless extruder. In this design, a material is mixed between two
discs and pressed through a nozzle by an action of forces originated from the
Weissenberg effect. Normal forces appearing due to rotation of parallel discs
also give additional support in slide bearings if a “rheological” liquid is used as a
lubricant. Some investigators think that the Weissenberg effect provides the
ability of articulations in biological organisms and that deficiency in this phe-
nomenon leads to an illness (“squeak in joints”).

It is interesting to understand the rheological origin of this effects, i.e., what
happens at the reference point. The common feature of all phenomena is appear-
ance of forces acting in the direction of shear and in the perpendicular direction.
It is equivalent to appearance of normal stresses in shear, even though, at the
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Figure 4.7. Continuation; see caption on the previous page.



first sight, it would be reasonable to suspect that only shear stress acts in a sim-
ple shear. This is true for many liquids, but not always. Normal stress (diagonal
component of the stress tensor) also acts, and the diagram of stresses is shown in
Figure 4.8.

It is possible to anticipate that normal components of stress tensor are related
to appearance of a diagonal component in the tensor of large deformations. Their
existence can be explained by large elastic deformations developed in flow (it
may be argued whether this explanation is general, but undoubtedly the large
elastic deformations lead to normal stresses). The appearance of normal
stresses in a simple shear is a main rheological reason for the Weissenberg ef-
fect.

In order to characterize the phenomenon, not absolute values of normal
stresses but their differences are important. If, for example, hydrostatic pres-
sure is superimposed, it will change all normal components of the stress tensor
but would not influence flow. (If this pressure is not very high, it is possible to ne-
glect the compressibility of a liquid - true in many real situations.) The differ-
ences of normal stresses are defined as follows:

first difference of normal stresses: σ σ σ1 11 22= −

second difference of normal stresses: σ σ σ2 22 33= −
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(σ σ1 2and are not invariants of the stress tensor, though they are written in the
same manner).

In rheological literature, very often, not σ σ1 2and are used but their coeffi-
cients (analogous to the use of viscosity coefficient instead of shear stress). The
first and the second normal stress coefficients are defined as

Ψ − Ψ −
1

11 22
2 2

22 33
2

= ; =
σ σ

γ
σ σ

γ& &

[4.11]

Normal stress in shear flow is an effect of the second order, and that is why, at
least in first approximation, σ σ1 2and are proportional to squared shear stress,
σ 2, and coefficients of normal stresses are proportional to η2. In all known cases,
σ σ1 2>> . Normal stress as an effect of the second order is much smaller than
shear stress at low shear rates, or to be more precise: ( ) << 111 22 12σ σ σ− . With
shear rate increasing, the normal stresses grow very quickly (proportional to
squared shear rate), and at high shear rate, normal stresses become larger than
shear stress, therefore they are critical for analysis of flow of some liquids (for
example, concentrated polymer solutions and melts).

4.1.4 TRANSIENT DEFORMATIONS IN SHEAR (OF LIQUIDS)

For regular liquids, the step-wise setting of constant shear rate leads to an im-
mediate beginning of flow. Shear stress, which maintains the steady flow, re-
mains constant all the time (eliminating inertial effects). After the cessation of
flow, stress instantaneously drops to zero. There are some liquids (and they are
the object of rheological studies) for which development and disappearance of
stresses is far from the simplest scheme.

Figure 4.9 demonstrates the effect of step-wise setting of constant shear rate.11

The left side of the diagram represents “regular” and the right side “rheological”
liquids. The main observations for the latter are as follows:

• at low shear rate, there is a very prolonged time interval of slowly developing
shear stresses, and this interval becomes shorter if shear rate is increased

• at high shear rates, shear stresses pass through a maximum (sometimes
several maxima can be observed) before reaching the state of steady flow

• after sudden cessation of flow, shear stress decays (relaxes); the initial relax-
ation rate increases with increasing initial shear rate.
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Besides this complex behavior,
the Weissenberg effect (normal
stresses at simple shear) also ex-
ists. The evolution of normal
stresses (regardless of σ σ1 2and ),
before the steady state and during
relaxation, is similar to the devel-
opment and decay of shear
stresses. The main peculiarity
consists of much slower change of
normal than shear stress, either in
pre-stationary (pre-steady) state
of deformations or during relax-
ation.12 This effect is illustrated in
Figure 4.10 for relatively low
shear rate when a maximum of
stresses is not attained.

Transient behavior is also observed at other types of deformations (not only at
constant shear rate). If shear stress is set constant, then rate of deformation will
be changing in time in a manner shown in Figure 4.11. The steady flow regime is
reached after a transient range of deformation, when shear rate is changing due
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Figure 4.9. Development of shear stresses at preset constant shear rate for regular (a) and “rheo-
logical” (b) liquids.

Figure 4.10. Comparison of development (at con-
stant shear rate) and decay (after cessation of
flow) of shear and normal stresses.



to a change of a relative effect of plastic
and elastic components, along with de-
formation rate.

Transient rheological behavior is a
very characteristic time effect, leading
to a complex relationship between
stress and rate of deformation. The
most evident manifestations of this ef-
fect can be observed at preset constant
stress or shear rate. The reasons for the
effects can vary, but the main models of
the behavior are:

• thixotropic (rheopectic) phenomena
• visco-elastic behavior of a material.
Both typical phenomena are discussed

in separate Sections below. Important
practical applications are numerous, es-
pecially in cases when time for tran-
sient behavior is rather long and
comparable with duration of flow. For
example, it is applicable to flow in short

dies, sudden changes of the diameter of a channel, or local hindrances in outer or
inner flows. In all these, and many other cases, it would be incorrect to charac-
terize properties of a liquid by its flow curve alone, i.e., the relationship between
stresses and rates of deformation, measured only at “equilibrium” conditions
(after completion of transient processes). It is therefore important to under-
stand the reasons for these effects in different media and describe them in rela-
tion to the whole complexity of the properties of matter.

4.1.5 UNIAXIAL EXTENSION

Uniaxial extension of liquids is a very important method of deformation en-
countered in fiber formation, orientational drawing, and formation of thin films.
From a theoretical point of view, uniaxial extension differs geometrically from
deformation in shear flow. In shear, the tangential stress determines behavior
of a material, whereas in uniaxial extension only normal stresses are applied. It
is thus very important to understand how different materials manifest their in-
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Figure 4.11. Development of shear rate at
constant stress for regular (a) and “rheo-
logical” (b) liquids. Dotted lines show
change of elastic (1) and plastic (2) compo-
nents of deformation.



herent properties under varying conditions of loading to construct three-dimen-
sional rheological equations of state.

If a liquid is stretched, it flows (similar to shearing), and the elongational vis-
cosity,λ, can be determined as a ratio of normal stress,σ E , to the gradient of ve-
locity, &ε (equal, in this case, to the rate of axial deformation):

λ σ
ε

= E

&

[4.12]

For Newtonian liquids, their elongational viscosity equals 3η. The equality

λ η=3 [4.13]

is called the Trouton law and the value λ is called the Trouton viscosity.13

In the range of low deformation rates, Eq 4.13 is valid as a limiting case for any
liquid. For some liquids, increase in the rate of deformation leads to a change of
their elongational viscosity. As a rule, the elongational viscosity increases at
higher rates of deformation, but opposite cases also have been observed.

The most appropriate method of elongational viscosity measurement would be
to draw a sample until a regime of steady state flow is reached, and then normal
stress and rate of deformation are measured to calculate elongational viscosity
according to its rigorous definition expressed by Eq 4.12. Unfortunately, in most
cases, such an obvious procedure is not applicable because the stretched mate-
rial usually ruptures before a steady state is reached. The rupture of samples at
high draw ratios (factor limiting experiments in extension) is a principle differ-
ence between shearing, which can continue for an unlimited time, and exten-
sion. In discussion of experimental data obtained for flow in uniaxial extension,
it must be remembered that data (as a rule) relate to the transient behavior of a
material.

A general picture of normal stress distribution during extension of “rheologi-
cal” liquid at different rates of deformation is given in Figure 4.12. At low rates
of extension (curve 1), stress reaches constant level, corresponding to steady
elongational flow with constant Trouton viscosity. But at high rates of exten-
sion, there is no limiting state related to a viscous flow and stress grows with ac-
celeration (curve 2) up to the rupture of the sample.14 The latter case is a typical
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example of transient behavior and it is
inappropriate to treat curve 2 in Figure
4.12 as a reflection of viscosity growth in
extension.

It is worth noting that rupture of “rheo-
logical” media also occurs in some differ-
ent ways than ultimate breaking of
regular materials. Schematically, they
are pictured in Figure 4.13: the upper
drawing shows that rupture of ordinary
material occurs after a continuous pro-
cess of sample flow, leading to its rupture
in the weakest section. The next drawing
(b) relates to “rheological” liquid (e.g.,
rubber glue): during stretching, spheri-
cal droplets are formed along the stream
and rupture follows. The lower drawing
(c) shows rupture of stretched solids.
Regular material deforms as shown in
Figure 4.13a, but “rheological” solid
forms a sharp local contraction - neck-
ing - and following deformation, occurs
through a transition from a parent mate-
rial to a neck.

4.1.6 INSTABILITIES AND SECONDARY FLOWS15

Stability of flow is of general interest in
numerous applications: sailing ships,
pipe-lines for liquid materials (water, oil
products, etc.), flow of material in dies,
paint milling, water spraying, produc-
tion of plastic parts with high quality
surfaces, and so on.

In “regular” liquids, instabilities ap-
pear as a result of capillary or inertial
forces. The first reason leads to surface

78 Rheological equations of state

Figure 4.12. Development of stresses in
uniaxial extension of “rheological” liquid
at low (curve 1) and high (curve 2) rates of
deformation.

Figure 4.13. Drawings demonstrating
characteristic modes of deformation in
stretching of a regular material (a), “rhe-
ological” liquid (b) and solid (c).



effects, such as breaking up a stream into many droplets. The second reason is a
base of the so-called Reynolds turbulence, which appears as a chaotic movement
of liquid particles in any flow. Reynolds turbulence occurs when inertial forces
exceed viscous damping of occasional disturbances. Turbulent flow occurs when
and if the critical value of the Reynolds Number, Re, is exceeded. Re is deter-
mined as

Re = Vdρ
η

[4.14]

where V is characteristic velocity, d characteristic linear size, η viscosity, and ρ
density.

The critical value of the Reynolds Number, corresponding to possible transi-
tion from laminar to turbulent flow in cylindrical channel, is about 2300 (the
Reynolds Number, like any other criteria of similarity, is a dimensionless
value).

Reynolds (inertial) turbulence can also take place in the flow of non-Newtonian
liquids, but the most interesting fact is that in the flow of “rheological” liquids,
unexpected effects appear. In some cases, flow becomes unstable at values of the
Reynolds Number different from that characteristic for regular liquids at the
equivalent conditions of flow. It indicates that different mechanisms of instabil-
ity can exist. Since the critical value of the Reynolds Number reflects viscous
properties of liquid, these new mechanisms of instability must reflect other rhe-
ological properties of material. Then, the main problem consists of understand-
ing these mechanisms and correlating them with rheological properties of
media.

Instabilities of different types accompany many technological processes. For
example, they are the cause of haziness of extruded films, rough surface of cable
insulation, waviness of fibers in spinning, and so on. Instabilities in flow have
been observed for various “rheological” liquids and can manifest themselves in
different forms. There is a common opinion that the general reason for instabil-
ity of many “rheological” liquids is their elasticity and viscoelastic effects - a pri-
mary characteristic of polymeric liquids (melts and solutions).

The concept of viscoelasticity (Chapter 7) requires us to consider at least one
parameter reflecting elastic properties of material in addition to its viscosity. It
can be the modulus of elasticity, E, but it is preferable to use a measure of the
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rate of inherent rearrangement processes in a material (not specifying its na-
ture). This time constant, called relaxation time, θ, is defined, at least for di-
mensional reasons, as

θ η=
E

[4.15]

This value must be used as a second (additional to viscosity) characteristic prop-
erty of a liquid.

It is therefore reasonable to introduce a new dimensionless criterion to mea-
sure a ratio between viscous and elastic forces in flow, such as the Weissenberg
Number, We, defined as

We = V
d
θ [4.16]

The Weissenberg Number is close but not quite equivalent to the Deborah
Number, De:

De =
T
θ [4.17]

where T is a characteristic time of flow. The value (V/d) can be treated as a char-
acteristic time constant but it is more reasonable to use the Weissenberg num-
ber in steady flow and the Deborah Number in time-depending flows, where T is
a time factor for transient flows.

Phenomena of instability in flow of “rheological” liquids can be manifested dif-
ferently, depending on the geometrical mode of flow and the inherent properties
of a liquid. However, the following manifestations are the most characteristic:

• extrudate distortions (sometimes called “melt fracture”)
• secondary flows (flows in straight channels of a simple geometrical form,

such as flow between coaxial cylinders) superimposed on primary flow
• interfacial and surface instabilities (boundary distortions in flow of

multicomponent systems, breaking free streams, and so on)
• rheological phenomenon in inertial turbulence (Toms effect).
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4.1.6.1 Extrudate Distortions (Melt Fracture)16

Extrudate distortions are observed when polymer in the form of a concentrated
solution or melt is forced through a die (orifice or capillary) and when free recov-
ery of deformations, stored during constrained flow in channels, occurs. This
type of instability is of special importance for polymer processing because it lim-
its the desired tendency to increase production rate. Besides the discussion of
reasons and quantitative description of boundaries of stability (directly related
to rheological properties of matter), it is an interesting general problem of con-
tinuous mechanics, and as such, it was treated in numerous theoretical studies.

Photographs in Figure 4.14 show two situations. The left picture demonstrates
a stream leaving an orifice (visible at the upper part of the photograph) at low
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Figure 4.14. Instability in flow appearing in the form of regular (screw-like) defects: left - smooth
stream in stable flow; right - instable flow.



speed. The flow is stable and the surface of the stream is quite smooth. The right
photograph demonstrates what happens to the same material when the speed of
flow exceeds some limit. The regular defects resembling a screw appear on the
surface as a manifestation of instability. In this case, the instability arises as pe-
riodic oscillation.

Photographs in Figure 4.15 show more severe consequences of flow instability.
The photographs show frozen samples of streams leaving a die. The shear rate
was increasing from left to right. During the flow inside the orifice, large inher-
ent forces (or energy) were stored in the material, and when the polymer melt
was released from a die (capillary or orifice) at high velocity, the stream disinte-
grated, fragmenting into separate elements.

Numerous observations, similar to those presented in Figures 4.14 and 4.15,
show that, as a rule, extrudate distortions start from slight skin defects. Then
they are enlarged to regular surface defects (sometimes called “shark-skin”),
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Figure 4.15. Instability of flow leading to disruption of a stream: transition from left to right corre-
sponds to increase of velocity (shear rate).



forming gross regular variations of a cross-sectional area and shape (sometimes
looking like a helical screw on extrudate) which can be an evident result of a
“stick-slip” mechanism, when alternating rough and smooth zones appear on
the surface of an extrudate. Finally, the instability of this type reaches a form of
chaotic distortions and ruptures of stream, as documented in Figure 4.15, illus-
trating the meaning of “melt fracture”. Many direct observations of flow lines
(made by markers suspended in a flowing liquid through transparent walls of a
channel) showed that movement of a liquid inside a channel at high velocities,
when an extrudate becomes irregular, is unstable and movement of markers is
chaotic. It is direct evidence of flow instability.

The appearance of gross distortions of periodic or aperiodic types in the flow of
polymers (melts and concentrated solutions) can be accompanied by an abrupt
jump of the flow rate - “spurt” - during flow through a capillary (die) under con-
stant pressure.17 This effect is explained by loss of fluidity and sliding along a
solid wall, due to relaxation transition of a linear polymer into a rubbery state.
This is the reason why “liquid” begins to behave, not like a fluid, but similar to a
solid, rubber-like material which does not flow but slides as a plug along a chan-
nel.

The main result of numerous experiments shows that instability in flow in the
form of “extrudate distortion” occurs at very low values of the Reynolds Number,
sometimes as low as 10-5, because viscosity of a melt is very high, and (most im-
portant) the effect under discussion does not correlate with any definite value of
the Reynolds Number. It is therefore necessary to find an explanation of this ef-
fect other than the Reynolds turbulence.

There are at least two causes for extrudate distortions. At relatively low flow
rates, surface distortions occur as a consequence of non-linear effects in defor-
mation of “rheological” liquids - such phenomena as their elasticity and/or nor-
mal stress in shear flow. Gross extrudate distortions such as melt fracture are
related to a non-linear phenomenon such as phase (or relaxation) transition.
The melt-fracture instability appears at some critical value of the Weissenberg
Number, namely about 5. The exact value of the Weissenberg Number depends
on details of the method used for its estimation. In original publications, one can
find critical values of the Weissenberg Number in shear flows in the range from
1 to 10.18 Perhaps the scatter of these values can be explained by difficulties in
determination of an exact moment when flow instability occurs and/or by diffi-
culties in distinguishing between different mechanisms leading to similar fea-
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tures of unstable flow. Indeed, strong non-linear effects and phase (relaxation)
transition in flow can superimpose and therefore lead to somewhat deceiving
conclusions concerning quantitative criterion of instability.

Extrudate distortion is velocity dependent, and begins beyond some limiting
velocity of flow. Extrudate distortion has an industrial importance because it
limits the increase in flow rate, and thus, output in many technological applica-
tions such as fiber spinning, extrusion, etc. The understanding of the principles
and controlling rheological parameters allows one to evaluate the processability
of materials and select them, based on laboratory data.

4.1.6.2 Secondary Flow

The initial stage of instability occurs due to the so-called secondary flow.
Secondary flow is formation of closed vortices in planes perpendicular to the di-
rection of the main (primary) flow, governed by the movement of solid bound-
aries in a liquid sample. For example, secondary flow in a straight cylindrical
channel produces circular flow lines in planes perpendicular to the axis of a
channel. Secondary flow does not appear in “rheological liquids” in channels
having a circular cross-section but can be found in channels with cross-sections
of other geometrical forms.

Secondary flow increases resistance to flow, meaning that the energy con-
sumption in transportation of “rheological” liquids is increased in comparison to
a regular liquid of the same viscosity. On increasing the flow rate, the secondary
flow causes much stronger instability, and that is why they are so closely related
to such gross effects as flow distortions.

The most well-known case of secondary flow in Couette flow is called Taylor
instability.19 It is shown in Figure 4.16 along with some other cases of second-
ary flows. If a liquid is placed in a gap between two coaxial cylinders, and one of
them is rotated, the main flow takes place in a circular direction, and a second-
ary flow forms closed flow lines, called Taylor cells (Figure 4.16a). A quite equiv-
alent situation occurs in the flow between two parallel plates driven by the
motion parallel to the plates. This case is known as plane Couette flow. It is
equivalent to the motion of coaxial cylinders with radii much larger than the gap
between the cylinders, and the curvature effect is neglected.

Secondary flows (closed vortices), observed in the flow of a “rheological’ liquid
in a gap between a cone and a plate when a cone is rotated around its axis, are
shown in Figure 4.16b.
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If a liquid is forced to flow through a straight channel with an elliptical or rect-
angular cross-section in the direction of the main flow along the axis of a chan-
nel, the secondary flow forms closed flow lines in the cross-section of a channel
(Figure 4.16c). The most spectacular secondary flow, in the form of closed vorti-
ces, occurs in a “rheological” liquid flow through a sudden narrowing (Figure
4.16d).

Instability of the Taylor vortices is explained for regular Newtonian liquids as
a result of inertial effects (analogous to the Reynolds turbulence). Taylor insta-
bility occurs in any Newtonian liquid if a critical value of the Reynolds Number
is exceeded. Theoretical analysis of the flow of a Newtonian liquid shows that
the stability threshold for flow between two coaxial cylinders is determined by
the value of the Taylor Number, T, calculated as

A. Ya. Malkin 85

Figure 4.16. Secondary flows in different channels: between two rotating coaxial cylinders (a),
along a non-round element (b), in channel crosssection (c), near a sudden change of cross-section
surface area (d).



T =-2b(Re)2ε [4.18]

where

b= o i

i

Ω Ω
Ω
−

Ω i andΩ o are the rates of rotation of the inner and outer cylinders, respectively;
ifΩ o = 0, b = -1,ε δ= Ri is the ratio of the gap to the radius of the inner cylinder
and

Re =
Ri iΩ δρ
η

[4.19]

is the Reynolds Number determined for a circular flow between coaxial cylin-
ders.

The height of the Taylor cells formed in a Newtonian liquid in a section along
the axis of cylinders is roughly equal to the width of a gap, i.e., the form of cells is
close to square.

One of the main theoretical findings for a Newtonian liquid is the existence of
the minimal value of the critical Taylor Number equal to 3390 (at b = -1).

Elasticity of “rheological” liquids strongly influences the stability of flow. Ex-
periments show that elasticity (for example, characterized by the normal
stresses) can stabilize the Couette flow. Besides, some investigators observe
new types of instability in the Couette flow; for example, wavy cells with bound-
aries periodically changing with time.20 Appearance of cells of different type, as
documented, depends on rheological properties of a liquid.

Instabilities observed in highly elastic (rubbery) liquids are quite different
than those described for Newtonian or weakly elastic liquids. Firstly, instability
occurs irrespective of the Taylor Number (for example, it can happen even at T
close to zero, quite analogous to instability of the melt fracture type which also
appears irrespective of the Reynolds Number and even at Re close to zero). Sec-
ondly, cells can be of very irregular form, reminding us of rough extrudate dis-
turbances in capillary flow. Thirdly, it is possible to observe instability of the
oscillatory type, again reminding us of periodic distortions of an extrudate.
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Instability related to a secondary flow also can be observed in other circular
(rotational) devices, as is shown in Figure 4.16b. The cone-and-plate system is
very often used in experimental rheology for viscosity and normal stress mea-
surement, and in this case the angle between a cone and a plate does not exceed
4 - 5o.

Inertial instability in a form of closed vortices appears in circular flow of a
Newtonian liquid between a cone and a plate at sufficiently high values of the
Reynolds Number. In circular flow of a “rheological” liquid, instability begins
from distortion of a meniscus due to elastic effects. These distortions can be
rather extensive.

More severe effects cause a rupture of a liquid sheared between a cone and a
plate. It does not happen immediately after the beginning of rotation, but after a
period of deformation. This effect also can be considered as analogous to flow dis-
turbances and melt fracture of an extrudate leaving a die.

A very important type of secondary flow occurs when there is a sudden narrow-
ing in axisymmetrical geometry of a channel (Figure 4.16d). This situation is
typical in a transition from one diameter of a pipe to a smaller diameter; for ex-
ample, in liquid transportation or in a die in industrial extruders or capillary
viscometers.

Many visual experiments demonstrated that vortices appear at the corners, as
shown in Fig. 4.17. Experiments proved that the shape and behavior of such vor-
tices are characteristic for properties of a “rheological” liquid. However, in a typ-
ical case, at low flow rate, the stable vortices exist at the corners. Increasing the
rate of flow (equivalent to the increase in the Weissenberg Number), regular
pulsation of vortices occurs. Further increase in flow rate causes pulsations to
become irregular. It is interesting to emphasize that these transitions in behav-
ior of vortices correspond to the character of flow inside a die and distortions of
an extrudate. Thus the observations regard the transition from typical second-
ary flow to a chaotic instability of turbulent type.

Another interesting feature of flow through sudden decrease in cross-section
surface area is axial extension of a liquid near the axis of a stream. With increas-
ing flow rate, the draw ratio increases, creating a combination of instability of
secondary and extensional flow. In particular, when a rate of extension exceeds
some threshold value, fracture of flow lines is observable along the axis, i.e., flow
ruptures in a continuum media. This phenomenon is a limiting case of instabil-
ity in extensional flow. It superimposes on vortex formation, and a result of
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these effects leads to extrudate distortion and melt fracture, with all the techno-
logical significance of these effects for processing of viscoelastic materials, as
mentioned before.

In summary, in shear curvilinear flows, for example, in gaps between two coax-
ial cylinders, a cone and a plate, in three-dimensional flows in sudden change of
cross-section, instabilities of different types occur. The first type is related to
normal stress influencing critical conditions responsible for secondary flows,
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Figure 4.17. Photograph illustrating the appearance of closed vortices near a sharp corner around
a sudden reduction of cross-section surface area.



causing formation of regular vortices (this is a weak non-linear effect). In this
case, the secondary flow appears as a chaotic movement of particles in a liquid or
irregular distortion of smooth surfaces of a stream. The second type causes se-
vere distortion of a media in oscillatory-type movement (this can be treated as a
strong non-linear effect). The irregular instability which occurs as a result of
ruptures in a continuum media can be considered as a result of phase (or
relaxational) transitions, and can be treated as a “phase” non-linear effect. The
effect close to it is a phase separation which occurs due to shearing,21 observed in
mixtures and solutions.

4.1.6.3 Waving in Extensional Flows

There are very interesting and unusual effects observed during stretching of
“rheological” liquids. These effects are important in many technological pro-
cesses, such as the commercial process of fiber spinning and orientation, where
the natural tendency to increase the process rate is contrary to the requirements
to prevent process instability caused by “fast” flow.

In practice, the following phenomena are met which can cause instabilities of
different type.

Draw resonance is a wavy periodic change in stream (fiber) diameter occur-
ring at constant feed (take-up) rate.22 It is impossible to avoid occasional small
fluctuations in fiber diameter, but instability is the phenomenon which in-
creases these fluctuations. It is reasonable to assume that draw resonance is due
to elastic behavior of a liquid, and this phenomenon can be described in terms of
non-Newtonian behavior in uniaxial extension, thus the Deborah Number is the
determining parameter for this phenomenon. Draw resonance affects quality of
fibers (expected to have uniform cross-section).

Jet breaking occurs in a Newtonian liquid due to surface tension (capillary
waves break up a stream, as explained in the classical works by Rayleigh).23 The
reason for jet breaking is a growth of small occasional wavy variations in a diam-
eter of a jet until a cylindrical jet breaks up into droplets.24 The main difference
between a regular and “rheological” liquid is in the form of a jet before break-up.
As mentioned in discussion of extensional flow of “rheological” liquids, a stream
is initially converted to a series of elongated droplets connected by threads.
These threads can be stretched at a rather large ratio (especially if the resis-
tance to stretching increases on drawing), leading to stream stabilization. That
is why “rheological” liquids, for example, very diluted water solutions of some
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polymeric substances, can be successfully used in fire extinguishing when it is
desirable to prevent jet breaking and to increase the distance of stream delivery.

Necking was already mentioned in discussion of uniaxial tension of solid
viscoelastic materials. It is an abrupt deviation from uniform (homogeneous) de-
formation.25 It is an instability of the phase type, consisting of self-sustaining
change in the diameter of a stretched filament. This effect is typical for large de-
formations of solid materials. It is related to relaxation or phase
(recrystallization) phenomena. It also occurs during extension of liquids (poly-
mer melts). Necking is very important in such technological operations as orien-
tation of amorphous materials and orientational crystallization in fiber
spinning.

Rupture of a stream, observed in uniaxial extensional flows, is the final stage
of instabilities. It can happen as a result of development of surface waviness in
draw resonance or jet break-up (surface instability) or as a result of cohesive
fracture even though it is encountered in liquids. It is important to mention that
this cohesive fracture occurs at the same magnitude of stress as in melt fracture
of an extrudate leaving a die. It emphasizes the correlation between the
strength (rupture) of a material and major distortion observed in concentrated
solutions of polymers and melts.

4.1.6.4 Interfacial and Surface Instability

In coating processes, shear flows of films with a free surface are observed. A
technologist expects that a liquid film on a solid base should be smooth and ho-
mogeneous - not always the case because of surface instabilities in a flow of a
coating liquid.26 It is important in surface coating, especially in automotive ap-
plication where anticorrosive coatings are used.

The model of such a situation is a flow of a liquid film along an inclined plate. A
stream with a free surface can become unstable, as demonstrated by imperfec-
tions of a free surface. An analogous phenomenon is observed in
multicomponent flow through channels. Waves are formed at the boundaries of
two liquids.

Interfacial and surface instabilities occur for Newtonian liquids due to inertial
effects. The stability of flow is controlled by the Reynolds Number and the sur-
face tension. The influence of the Weissenberg Number, controlling surface in-
stability, is an additional factor typical of “rheological” liquids. Theory predicts
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that elasticity of liquid, even at very low values of the Reynolds Number, can
lead to waviness of a surface, which is a purely rheological effect.

4.1.6.5 Rheological Phenomenon in Inertial Turbulence (Toms Effect)

Inertial turbulence exists in “rheological” liquids similar to many other effects
of instability discussed above. Also in this case, special properties of some “rheo-
logical” liquids lead to a very abnormal (compared with regular liquids) phe-
nomenon known as the Toms effect.27 It is a very interesting, unusual, and
important phenomenon worthy of separate discussion.

In order to understand the meaning of the Toms effect, it is necessary to repeat
some fundamental concepts of classical hydrodynamics of viscous (Newtonian)
liquids.

It is well-known (see also Chapter 5) that pressure drops during the flow of vis-
cous liquid through a cylindrical tube (capillary, channel), i.e., the difference of
hydrostatic pressures at the ends of a tube, ∆P, is related to the volumetric flow
rate, Q. If and until the flow rate is not very high, the relationship between these
two main macro-characteristics of a stream is expressed by the Hagen -
Poiseuille equation,28 which can be written as follows

∆P = 128 LQ
D4

η
π

[4.20]

where D is a diameter of a tube, L length, η viscosity. Alternative form of
Eq 4.20, when substituting the volumetric flow rate by an average velocity, V, is
as follows:

Q = 1
4

D V2π

Then we have

∆P = 32 LV
D2

η [4.21]

Finally, let us introduce dimensionless characteristics of flow, i.e., the
Reynolds Number, defined in Eq 4.14, with V in this formula being an average
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velocity. The second dimensionless number is a coefficient of friction,λ, which is
determined as

λ
ρ

= P
1
2

V

D
L2

∆ [4.22]

Now, the Hagen - Poiseuille equation can be written with dimensional variables

λ = 64
Re

[4.23]

Sometimes both numbersλ and Re are determined, not through diameter, D, but
by radius, R, of a tube, then

Re = VR ; = P
1
2

V

R
LR R

2

ρ
η

λ
ρ

∆

So the Hagen - Poiseuille equation looks like this:

λ R
R

= 16
Re

Changing D for R does not influence the result, and both dimensionless forms
are equivalent to the initial Eq 4.20. Application of dimensionless Numbers λ
and Re is of general meaning for hydrodynamics flow through tubes, because
such an approach allows one to generalize data for different liquids and tubes of
various geometrical sizes (diameter and length) by representing them in
dimensionless coordinates λ and Re in one relationship. It is generally accepted
to analyze the pressure versus output (flow rate) relationship in terms of λ and
Re for any flow velocity, not only when Eq 4.20 is fulfilled.

It is well known that the Hagen - Poiseuille equation corresponds to the experi-
mental data only up to some critical value of the Reynolds Number, Re*, which is
close to 2300 (i.e., log Re* = 3.36). Increasing flow rate (or the Reynolds Num-
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ber), the transient regime is attained, which lies in the range of Re* to Re**, and
at Re >Re**, turbulent flow occurs.

The dependence of the friction coefficient on the Reynolds Number, for a fully
developed turbulent regime of flow, in the range of the Re values up to 105, is well
described by the empirical Blazius equation29

λ = 0.3164
Re 0.25

[4.24]

The generalized λ(Re) dependence, established on the basis of numerous re-
search experiments covering all regimes of flow, is drawn in Figure 4.18. In this
graph, constructed in log - log coordinates, the line P corresponds to the Hagen -
Poiseuille equation, and the line B is drawn according to the Blazius equation.
Evidently, the transition from laminar to turbulent flow results in a great in-
crease of resistance to flow, with corresponding increase of energy due to the
movement of a liquid. The critical values of the Reynolds Numbers Re* and Re**
are also marked in Figure 4.18.
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Figure 4.18. General view of the dependence of friction coefficient on the Reynolds Number.
t - regular (Newtonian) liquid,� - “rheological” liquid, P - Hagen - Poiseuille equation, B - Blazius
equation, V - Virk asymptote.



The Toms effect in “rheological” liquids describes the decrease in resistance to
flow (drag reduction) in adding very small amounts of some components to a
regular liquid (the latter can be, for example, water or oil). These special addi-
tives are, as a rule, polymers of very high molecular weight (with very long flexi-
ble chain) and their concentration in solution can be as small as 1 - 100 ppm
(parts of an additive per 1 million parts of a liquid). These micro-quantities of ad-
ditives are the reason for the appearance of new rheological properties of mat-
ter.

The effect appears from some threshold value of Re, marked in Figure 4.18 as
Re*. Black points in Figure 4.18 correspond to a pure liquid (solvent) and the
light points to “rheological” liquid (very dilute polymer solution). In the laminar
and transitional ranges, both sets of points fall into the same dependence. The
same is true at the beginning of a turbulent regime of flow, but at Re > Re* the
situation changes radically and a coefficient of friction for a “rheological” liquid
becomes lower than for regular liquid.

Many publications have been devoted to the Toms effect. The main results
about general peculiarities of the Toms effect are:

• the value of Re* decreases on increase of solution concentration; in the limit-
ing case, Re* can become as low as Re**, and the transient regime of flow be-
tween Re* and Re** disappears

• the degree of drag reduction depends on the material properties (type of liq-
uid and an additive, concentration of a solution, and so on), i.e., the effect de-
pends on rheological properties of a liquid

• there is a limiting (asymptotic) degree of drag reduction in polymer solu-
tions, common for all materials; it can be represented by dimensionless vari-
ables as described by the equation called the Virk asymptote:30

λ = 2.36Re-0.58 [4.25]

The Virk asymptote is draw in Figure 4.18 under the symbol V.
Comparison of graphs B and V in Figure 4.18 shows that the maximal effect of

drag reduction can reach 75%. Certainly, it is a very strong effect, and as such, it
finds practical applications in liquid transportation. Also, special additives are
used as a smoothing agents of fast movement of ships when turbulence requires
additional energy use. The additives, by decreasing resistance, promote attain-
ing higher speeds at the same engine power.
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4.1.7 THIXOTROPY AND RHEOPEXY

Very often, real materials change their properties with time due to the struc-
ture transformations resulting from an action of external forces or rebuilding
their initial structure at rest. The reason for change can be a preliminary defor-
mation: in this case, rheological properties (in the simplest case - viscosity)
change along with deformation and continue to change at rest after cessation of
deformation. Such phenomena do not exist in Newtonian liquids having con-
stant viscosity.

The change of properties can be fully reversible, though it may require a long
time or even special actions (for example increase of temperature to accelerate
processes during the material’s rest). Some changes initiated by deformation
can be stored in a material and then recovery may be incomplete. Both cases are
real and observed; for example, in yogurt on mixing, in preparation of rubber
compounds, shearing of thickened greases, pouring building materials, and so
on.

If viscosity decreases during mixing and returns to the initial level on rest after
shearing, such a phenomenon is called thixotropy.31 The reverse phenomenon

is called rheopexy. The definitions of
thixotropy and rheopexy are valid not
only for regimes of steady flow but also for
transient deformations. The use of these
terms is not always very definite, and
thixotropic and rheopectic effects are fre-
quently mixed with other viscoelastic ef-
fects.

A typical example of thixotropic behav-
ior of liquid is given in Figure 4.18, show-
ing the relationship of viscosity versus
shear rate. The upper part of a curve was
measured on increasing shear rate; on re-
verse measurement (shear rate decreas-
ing from maximum to minimum),
viscosity is lower than on ascending shear
rate change. The lower part of the curve
represents viscosity of a medium with
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Figure 4.19. Hysteresis loop in continu-
ous change of shear rate formed due to
thixotropic properties of a liquid. An ar-
row shows the direction of changes of ex-
perimental conditions in viscosity
measurement.



structure changed by previous deformation. Measurements are used to charac-
terize thixotropic properties of material and their quantitative measure is an
area of a hysteresis loop between two curves in Figure 4.19.

Structural effects in highly filled liquids can lead to a very peculiar rheological
phenomenon called dilatancy, which is volume increase caused by shear. De-
formation of moist sand or concrete are typical examples of dilatancy. Mixture
becomes dry under pressure but recovers and becomes moist after the pressure
is removed.32 Solid particles in such materials are in a state of close packing. Un-
der shear, particles must be separated and liquid acts as a lubricant. Particle
coating by liquid increases volume.33

The change of rheological properties on deformation and rest reflects the struc-
tural rearrangement caused by application of external forces. In this sense,
thixotropy is a consequence of structure rupture and rheopexy of structure
build-up. It can be expected that external forces more likely promote rupture
rather than a build-up of structure, and that is why thixotropic effects are more
common than rheopexy, the latter being a very special case in materials with
some kind of unusual intermolecular interactions; for example, strong ionic in-
teraction or hydrogen bonding.

It is important to emphasize that in both cases, a new class of phenomena is
discussed within the frame of rheology, that is, kinetics of physical or chemical
processes in a material related to the effect of stress. Kinetic effects in rheologi-
cal systems can be called rheokinetics or chemorheology.

There are two main cases of chemorheological effects. One of them is a change
of stresses (relaxation) in deformed materials as a result of chemical reaction
initiated by stress. This phenomenon is particularly important for rubbers, as
was investigated in fundamental works by Tobolsky.34 The second case regards
chemical reactions of polymerization, curing of oligomers, and chemical trans-
formations in polymeric chains.35 All these chemical reactions result in consider-
able changes of rheological properties (not only viscosity) of a material.
Certainly this type of phenomena is especially important in applications of poly-
mer technology (synthesis and processing).

Changes in the matter structure are followed by changes in its properties.
They lead to new values of parameters characterizing these properties; for ex-
ample, viscosity of a liquid or modulus of elasticity of a solid. The set of these pa-
rameters differs for any actual state of a material structure. Results also depend
on the conditions of measurements of these properties. From this description, it

96 Rheological equations of state



is apparent that the behavior of material is non-linear, and the effects are
caused by transformations of a physical structure of matter. That is why rheo-
logical effects related to structural transformations of a material can be called
physical non-linearity of rheological behavior. In discussion of non-Newto-
nian flow, it already has been mentioned that the idea of physical non-linearity,
as a reason for this effect, was introduced by Ostwald1 under the name of struc-
ture viscosity. A similar reason can lead to other rheological effects.

4.1.8 NON-LINEAR ELASTICITY

According to the Hooke Law the dependence of elastic deformations on stress is
linear and the modulus of elasticity (the ratio of stress and deformation) is a ma-
terial constant. This idea looks quite natural because any complicated function,
such as σ ε= f( ), can be expanded into a power series. The first (linear) member
will always be dominating, because at ε <<1 and at n > 1, the ε εn << . Thus,
higher members of the series are negligible in comparison with the linear mem-
bers.

Sometimes large elastic deformations are treated as a second-order effect. If
one expands the functionσ ε= f( ) into a power series, then the term “large elastic
deformations” means that the second (quadratic) member of a series becomes
comparable to the linear member. When ε <<1, the quadratic member is negligi-
ble, but as ε approaches 1 and exceeds it, then the “second-order” effect becomes
dominant.

Even for some ordinary materials, at rather low deformations, the Hooke Law
appears not exactly true, the dependence σ ε( ) is non-linear and, as demon-
strated by Bernoulli, approximately at the same time when Hooke formulated
his Law, properties of some materials are better described by power law:

σ εE
m= K

where K and m are empirical constants (m is not equal to 1).
It is worth mentioning that Bernoulli conducted his experiments with biologi-

cal materials which are rather complicated in their structure, while Hooke dealt
with rather simple homogeneous materials.

The properties become more complex for materials which can withstand large
deformations (ε > 1). This is a case especially important for rubbers, some poly-
mer solutions, and colloid systems (for example, dispersions of aluminum
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naphthenates). Draw ratio,λ, for these materials can reach values of an order of
10 and even more. In such cases, the non-linearity of stress versus deformation
dependence is evident as a typical rheological effect.

There are some popular equations for describing dependence of draw ratio on
the stress of rubbers. The most often used formula, the so-called
Kuhn-Guth-Mark equation,36,37 can be written (for uniaxial extension) as

σ λ λE
2 -1= G ( )∞ − [4.26]

where G∞ is an equilibrium modulus, and λ draw ratio.
Sometimes “conventional” stress, σ o , (drawing force divided by initial

cross-section of a sample) is used instead of the true stress,σ, (force divided by a
current cross-section of a sample, taking into account changes of the cross-sec-
tion along drawing). If the volume of a sample does not change during deforma-
tion (very close to reality for rubbers), the relationship between conventional
and true stresses is very simple

σ σ λo E=

and Eq 4.26 takes the following form

σ λ λo
-2= G ( )∞ − [4.27]

It is easy to show that within the limit of small deformations (at draw ratio
λ ε→ 1or << 1), Eq 4.26 becomes

σ εE = 3G∞ [4.28]

It means that, within the limit of small deformations, the Hooke Law is valid,
and the Young modulus equals 3G∞ .

The divergence from linearity ofσ ε( )dependence, predicted by Eq 4.26, is illus-
trated in Figure 4.20. It is quite evident that non-linear effects appear at rather
large deformations. Initial slope of the curve (dotted line in Figure 4.20) equals
3(λ - 1), corresponding to Eq 4.28.

It is important to emphasize that Eq 4.26 is a single-constant equation (con-
tains only one parameter G∞ ). Another single-constant equation for large defor-
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mation was proposed by Bartenev and
Khazanovitch.38 For uniaxial extension it
has the following form

σ λ λE

-1 2
= A( )−

where A is an empirical constant.
Numerous other equations for large defor-

mations, discussed in scientific literature
and used in practice, are multi-parametric.
Among them is the Mooney - Rivlin equa-
tion,39 which is the most popular equation.
For uniaxial extension, this equation is writ-
ten in the following form

σ λ λ λ λE 1
2 -1

2
-2= 2[C ( ) + C ( )]− − [4.29]

where C1 and C2 are empirical <%-5>con-
stants (parameters).

Quite different two-parameter equation of
power type, for large deformations, was pro-
posed.40 For uniaxial extension it has the fol-
lowing form:

σ λ λE
n \n 2

= 2B( \ ) [4.30]

where B and n are empirical constants. Eq 4.30 is close to the equation earlier
discussed by Ogden41 and can be treated as an analogue to the power law for
non-Newtonian liquids (Eq 4.5).

Certainly, experimental data on uniaxial extension at large deformations (like
any other set of experimental data) can be described in many different ways by
means of equations of various mathematical structure. It seems that there is
only one formal limitation: existence of a linear region in the limit of small defor-
mations. There are some other inevitable limitations for use of arbitrary stress
versus deformation equations and they will be discussed below on the basis of
general principles for constructing rheological equations of state. That is why
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Figure 4.20. Stress versus deforma-
tion dependence predicted by the
Kuhn-Guth-Mark equation. Dotted
line is linear stress versus deforma-
tion dependence.



other possibilities for describing large deformation will be discussed below
within the frame of a general theory of elastic bodies (Chapter 6).

Large elastic deformations lead to numerous macro-effects and they can be a
source of some effects which might be treated as independent rheological effects;
for example, large elastic deformations during shear are intimately related to
the Weissenberg effect, and perhaps, at least in some cases, they correspond to
non-Newtonian flow of “elastic” (i.e., capable of superposition of flow and recov-
erable deformations) liquids.

There are some direct consequences of large elastic deformations in different
media. For solids, it includes the so-called Poynting effect.42 It consists of ex-
tension of a body when sheared. It leads to an increase of its length, even though
in a classical Hookean solid the deformation of one type (twisting) must not in-
fluence deformation of another (longitudinal extension). It is interesting to men-
tion that, according to original experimental data, axial deformations observed
in the Poynting effect are proportional to the squared angle of twisting. That is
why the Poynting effect and some other related manifestations of large elastic
deformations are sometimes called effects of the second order.

An increase of a diameter (swelling) of liquid streams is another manifestation
of large elastic deformations. When an elastic liquid leaves a capillary (or a die),
its diameter increases above a diameter of a channel, though a diameter of
stream in flow of classic Newtonian liquid must decrease. The origin of this ef-
fect, called die swelling or the Barus effect,43 is also related to large elastic de-
formations developed during the flow through a channel.44

Large elastic deformations can act in combination with other rheological ef-
fects. One of the most interesting cases includes superposition of large elastic
deformations and thixotropy, when large deformations destroy the inherent
structure of a material. This situation is typical, for example, for filled rubbers
(rubbers containing reinforcing filler such as carbon black) or crystalline solid
plastics. In this case, repeated deformations (stretching - compression cycle or
periodic large amplitude shearing) lead to change of observed stress versus de-
formation dependence which approach some “equilibrium” shape only after sev-
eral loading-unloading cycles. The phenomenon is called the Mullins effect.45

In discussion of the theory of deformations (Chapter 3), it was shown that some
non-linear effects may occur purely for geometrical reasons and can be ex-
plained and described if we want to use “correct” (or corrected) measures of the
effect. For example, introduction of Hencky’s measure of deformations allows
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one to “linearize” the behavior of a material because deformations are summa-
rized in accordance with a linear rule. That is why corresponding phenomena,
which are only due to geometrical transformations of a body and can be excluded
by introducing “proper” quantitative measures of an effect, can be treated as
geometrical non-linearity in rheological behavior.

4.1.9 VISCOELASTIC BEHAVIOR
(TIME EFFECTS AND SUPERPOSITION OF FLOW AND ELASTIC DEFORMATIONS)

Superposition of viscous and elastic behavior is a typical and important rheo-
logical effect characteristic of real materials. This phenomenon is called
viscoelasticity. It can be observed in deformation of all materials, even such as
metals and stones, on the one hand, and water and oil, on the other. The differ-
ence is only in the relative participation of elastic and plastic components and
the sensitivity of the method used for their investigation.

The idea of viscoelasticity of solids was introduced into scientific discussions
by Lord Kelvin (W. Thomson), who applied this concept to deformation of the
Earth.46 Long-term, very slow deformations of metals under stress, damping of
vibrations of bells, and many other phenomena of this type are all consequences
of viscoelastic properties of real materials.47 However, the most important class
of materials possessing viscoelastic properties include polymers (rubbers, plas-
tics, solutions) because viscoelastic phenomena are observed in deformations of
these materials in ordinary time-scale (seconds, minutes, and hours), while ob-
servation of viscoelastic effects for other materials requires either very short
(fraction of a second) or very long (years) time-scales.

There are two main phenomena related to viscoelastic properties of a material.
They are creep and relaxation, though viscoelastic behavior of a material can
be observed in numerous other experiments and applied situations.

Creep is slow development of deformations at a constant stress. For a Hookean
elastic body, application of a constant stress creates constant deformation,
which appears (practically) instantaneously and does not change as long as
stress continues to be constant. For a Newtonian liquid, application of constant
stress leads to flow with a constant rate of deformation. The behavior, called
creep, is illustrated in Figure 4.21. We can distinguish three different cases:

• limited creep - deformation reaches its maximum level and after that does
not change; this behavior reflects viscoelastic properties of solids
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• limited rate of deformation - after a transient period, constant rate of defor-
mation is set. This constant value of deformation rate is given by the curve 2,
the behavior reflects visco-elastic properties of liquids which flow at con-
stant rate of deformation

• accelerated creep - not only deformation but also the rate of deformation
show limitless increase until the rupture of a body; this situation is typical
for both liquids and solids, if stresses are sufficiently high and exceed cohe-
sive strength of material.

In the first case shown in Figure 4.21,
full deformation is completely elastic (or
reversible). It means that, if an external
force is removed, the initial dimensions of
a body are completely restored. In two
other cases, full deformation consists of
elastic (reversible) and plastic (irrevers-
ible) components. It means that after re-
moval of an external force, the initial
dimensions of a body are only partially be
restored. This difference is demonstrated
in Figure 4.22, which can be treated as a
continuation of first two curves in Figure
4.21. The portions of curves, after the dot-
ted line x-x, reflect behavior of a material
after removal of an external force; the re-
sulting deformation is zero in the first
case and there is a residual deformation,
ε f , in the second case (the third case in
Figure 4.21 gives similar picture as the
second case).

Creep is an important property of many materials which are not very “rigid”
or/and fragile. Creep is practically non-existing in metals at room temperature
but it becomes a very serious problem if a metal is used close to its melting tem-
perature, as characteristic, for example, for high-temperature steels used in gas
turbines. Creep is also important for parts working under high stresses for a
long time, for example, pipes under internal pressure. Creep is of special impor-
tance in different types of plastics, including reinforced plastics, highly filled
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stant rate of deformation - marked at the
curve (curve 2), and accelerated creep
(curve 3).



polymers (for example, solid
propellants), because they are
used at temperatures not far be-
low their melting temperature.
That is why measurement of
creep is very popular in polymer
material science.

Relaxation is a slow decay of
stresses at constant deforma-
tion. For a Hookean body, stress
continues to remain constant
during preservation of deforma-
tion. For a Newtonian liquid,
stress cannot act if rate of defor-
mation is absent (it is absent at
constant deformation, because

the derivative of a constant is zero). In real bod-
ies, stress decay is not instantaneous but re-
quires time as shown in Figure 4.23. One can
distinguish two possible situations, as illus-
trated in Figure 4.23:

• stress may dissipate and completely disap-
pear - this is a case of stress relaxation in a
visco-elastic liquid

• part of an initial stress,σ ∞ , can be stored in a
material for unlimited time, in the case of a
visco-elastic solid.

Both basic visco-elastic phenomena can be con-
sidered as a mutual delay in change of stress and
deformation. Thus, it is necessary to introduce
time as a factor determining the stress versus

deformation relationship and accept that an unambiguous correlation between
stress and deformation does not exist.

In fact, the concept of relaxation is much wider than only slow decay of
stresses. Maxwell, who introduced an idea of relaxation in physics,48 used this
term to designate delayed restoration of a molecular structure of matter dis-
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moval of stress for a visco-elastic solid body with re-
sidual deformation, εf , (curve 1) and visco-elastic
liquid (curve 2).

Figure 4.23. Relaxation in
visco-elastic liquids (curve 1)
and solids (curve 2). Residual
stress equals σ∞.



torted by any external factor or (maybe) simply by a statistical fluctuation. Then
we can understand relaxation as restoration of an equilibrium state, disturbed
for any reason.

Any time effect is a consequence of various transformations of inherent struc-
ture of a material and kinetic processes of this restoration. In this line of
thought, the visco-elastic behavior can be treated as a thixotropic effect of some
kind. At least in some cases, both phenomena are intimately related to each
other. However, as a general rule, visco-elasticity is considered as an independ-
ent phenomenon and the theory of this effect (Chapter 7 is devoted to the com-
plete discussion of this theory) is constructed regardless of analysis of structural
and/or kinetic processes which may take place in a body.

In practical applications, relaxation is always considered when a material or a
structure as a whole is deformed. A rather obvious example of relaxation is of-
fered by damping of vibrations by shock-absorbers in cars and other transport
devices. Exploitation of seals in pressure vessels is another example. In initial
state, seals can be very tightly pressed by screws. The relative positions of a
cover and a vessel are not changed during work (i.e., deformation of a seal con-
tinues to be constant) but due to relaxation; a material becomes unstressed and
sealing becomes not as tight as it was in the beginning.

4.1.10 FLOW AROUND SOLID OBSTACLES

Flow of liquid around a solid body (obstacle) is an interesting and important ex-
ample from hydrodynamics. The effect is the same when a stream flows around
a solid body or a body moves through a liquid medium, similar to river flow un-
der the bridge or a ship moving in a sea. In both situations, the hydrodynamic re-
sistance to movement is of interest.

Classical experimental and theoretical investigations (initiated by A. Eiffel in
the 19th century) showed that the general hydrodynamic picture can be demon-
strated as in Figure 4.24, and there are two characteristic effects observed:

• existence of a point at which a stream is diverted by a body, and this point is
characterized by the value of an azimuthal angle, β*

• formation of vortices after passing the point of first contact between a body
and a stream; they appear even in laminar flow and remain stable after pass-
ing a solid body in the form of so-called Karman’s strip.

These effects are observed in flow around any solid body with smooth curva-
ture (spheres, cylinders, ovals, and so on). It is worth mentioning that the hydro-
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dynamic resistance in all
cases is primarily determined
by the pressure of a stream be-
fore the point of contact, and
contribution of viscous friction
does not exceed 2% of the total
resistance. Heat and mass ex-
change processes between a
liquid and a solid body during
these process is of special sig-
nificance in the design of heat
exchange equipment.

It is important to emphasize that the value of the azimuthal angle,β*, found in
flow of numerous Newtonian liquids is rather constant and close to 82o in the
range of the Reynolds Number from 3×102 to 3×105. This range covers the transi-
tion zone from laminar to turbulent flow, typical of real technological applica-
tion.

Experiments and some theoretical studies showed that the azimuthal angle,
β*, is lower than 82o for non-Newtonian liquids. A more pronounced effect is ob-
served if liquid is not purely viscous but also has elastic properties (for example,
polymer solutions, some biological liquids, etc.). The following new effects are
observed here: the position of the point of stream diversion becomes variable
and moves upstream. The shift can be so large that β* reaches 180o and flow ap-
proaches an undisturbed pattern flowing around a body in the range of the
Reynolds Numbers mentioned above.

This is a consequence of rheological properties of a medium, namely, elasticity
of a liquid. This effect is frequently used in technology where liquids are modi-
fied to impart elastic properties.

4.1.11 PHASE TRANSITIONS INDUCED BY DEFORMATIONS

Deformations of some materials can lead to phase (or at least to relaxation)
transition under isothermal conditions. Treating this phenomenon as a rheolog-
ical effect (though one may think that there is some conditionality in such treat-
ment) has the following reasons:

• it happens with materials which manifest many other rheological effects dis-
cussed above
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Figure 4.24. The picture observed when a liquid flows
around a solid body at transient range of the Reynolds
Numbers between laminar and turbulent regions.



• it leads to a very strong change in rheological properties of matter during its
deformation

• at least in some cases, several rheological effects discussed above can be ex-
plained based on the idea of phase or relaxational transition occurring as a
consequence of deformation.

There are some very typical and practically important situations observed in
deformation of polymer solutions and melts related to transitions caused by de-
formations and therefore treated as rheological effects. They are:

• necking - formation of a sharp contraction in uniaxial stretching of many
amorphous and crystalline polymers at some critical deformation; further
stretching occurs through transition of an initial width into a uniform nar-
row “neck”

• orientational dewetting (or phase separation) - at very high rates of ex-
tension of some polymer solutions, polymer becomes insoluble (it means that
transition into a two-phase system takes place) and polymer precipitates
from solution; similar effects were observed in shear when phase transition
shifted along the temperature scale on increase in shear rate

• spurt in flow - at high stresses, polymer, moving along a channel, loses its
fluidity and begins to slip from a solid wall of a channel. This phenomenon is
caused by flow-to-rubbery state transition

• orientational crystallization - deformation can shift temperature of equi-
librium crystallization and thus it influences kinetics of isothermal phase
transition; this effect is well known in stressed rubbers. Crystallization un-
der deformation in loaded parts radically changes their mechanical proper-
ties and can lead to an unexpected breakage during operation.

Phase and relaxational transitions caused by deformations lead to very sharp
changes in rheological properties of a material. That is why effects related to
transitions can be classified as phase non-linearity in rheological behavior.

4.2 GENERAL PRINCIPLES

Formulation of rheological equation of state requires answers to the following
questions:

• rheological effects are observed (as a rule) in rather simple unidimensional
deformations - how to describe them in three-dimensional space?

• many different effects coexist - can they be considered as independent or are
at least some of them a consequence of the same inherent mechanism?
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• rheological properties of a material are measured under some chosen condi-
tions - is it possible to predict behavior of a material in other situations?
What is the minimal range of experiments necessary to make a valid predic-
tion for a full set of different stress states?

• are the empirical methods, used to generalize different experimental re-
sults, not contradictive?

Let us assume that sets of experimental data were obtained for different condi-
tions of deformation; for example, in uniaxial extension and simple shear. Each
such set of data can be described by an empirical equation. The final interpreta-
tion would be simple if both observed cases of rheological behavior of the same
material would not offer two different manifestations of inherent properties of
matter. Then both stress versus deformation equations must be considered as
consequences of a general rheological equation of state of a material. In other
words, equations for different geometrical modes of deformation must be com-
patible.

There are some general limitations for rheological equations of state to pro-
duce compatible stress versus deformation relationships for different geometri-
cal modes of deformation. The limitations will be discussed below, whereas
rheological equations of state for main groups (types) of materials will be ana-
lyzed in Chapters 5 and 6. In particular, it will be demonstrated that stress ver-
sus deformation (or rate of deformation) equations written above can be treated
as consequences of some general rheological equations of state. Moreover, the
same equations for one-dimensional deformation can be obtained from quite dif-
ferent rheological equations of state, i.e., the same experimental data can be
generalized in a different way. These different equations of state give non-equiv-
alent predictions for other deformation modes. That is why, in order to establish
the correctness of the equation of state, it is necessary to have experimental data
from several different geometrical modes of deformation.

Let us discuss characteristic and important cases, illustrating the above prob-
lem in regard to properties of anisotropic materials. It has been known for years
that mechanical properties of even such old and popular material as cast iron
are different in extension and compression. This means that it is incorrect to
predict behavior of this material in engineering application based on results of
measurement of its properties in extension if material actually works in com-
pression mode.
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The situation becomes even more complex if one considers properties of
monocrystals or reinforced plastics. Modulus of elasticity (and in fact all other
physical properties) of monocrystals depend on orientation of an applied force in
respect to crystallographic axes and it is quite possible to find some different val-
ues of modulus which depend on a type of crystal symmetry. In real
polycrystalline material, this effect is averaged, but it is not for monocrystals.

In reinforced plastics, modulus and all other mechanical properties depend on
orientation of a force in relation to orientation of reinforcing fibers and their ar-
rangement. All this means that attempts to build the rheological equation of
state of such anisotropic materials, based on results of one-dimensional experi-
mental data, are absolutely futile. Instead, it is necessary to carry out a set of dif-
ferent experiments for various geometries of deformation.

Anisotropic properties of material can be considered, within the limit of small
deformations, and in such a case, interpretation is a part of classical linear the-
ory of elasticity. But modulus of elasticity of anisotropic materials must be
treated as a tensor by itself. Anisotropy of material properties is a particular
kind of rheological behavior of a material and it certainly does not exclude any
particular direction of all other rheological effects (for example, visco-elastic be-
havior or thixotropy).

General principles of constructing rheological equations of state were intro-
duced in modern rheological literature in some fundamental works, primarily
by Oldroyd,49 Truesdell,50 and Coleman et al.51 The principles must be followed to
assure that at least some of the equations used for describing rheological effects
in deformation of real materials have physical meaning and the above-formu-
lated questions receive proper answers.

First of all, it is necessary to limit the use of tensor components for formulating
rheological equations of state because physical laws must not depend on choice
of coordinate system. This idea, which can be called the principle of coordi-
nate invariance, requires all rheological relationships to be formulated
through invariants of an appropriate tensor but not through their components.
If the equation is written in invariants, it is still possible to discuss observed or
predicted effects in a convenient coordinate system using tensor components as
compounded variables.

In order to pursue this principle, it is convenient to introduce two fundamental
physical concepts related to deformations. They should describe the most gen-
eral result of action of force. The first result of deformation can be accumulation
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of work of external forces in the form of elastic energy. This stored energy is
characterized by the value of elastic potential, W, which is a specific stored en-
ergy (energy related to the unit volume). The second possible result of deforma-
tion is dissipation of work of external forces, i.e., its irreversible transition to
heat. This effect is characterized by intensity of heat dissipation, A, which is
a quantity of heat produced in a unitary volume of a material.

Introduction of the concept of elastic potential and intensity of heat dissipation
gives grounds for a very general classification of different materials:

• If during deformation, W ≠ 0 and A = 0, a material has pure elastic response,
and it can be called an elastic body.

• If during deformation, A ≠ 0 and W = 0, a material is a pure viscous liquid.
• Finally, if during deformation only part of the work produced by external

forces is stored in a material and the other part dissipates, i.e., W ≠ 0 and
A ≠ 0, a material is a visco-elastic body.

These three types of rheological behavior will be discussed in the three subse-
quent Chapters of the book.

The concepts of elastic potential and heat dissipation are very fruitful for for-
mulating rheological equations of state, because both values are physical objects
not connected to any coordinate system. When these concepts are used in rheo-
logical equations of state, they must be represented as functions of invariants to
follow the principle of coordinate invariance. This can be invariants of kinematic
(deformation or rate of deformation) or dynamic (stress) tensors but not their ar-
bitrary components. Certainly, if the equation of state is formulated as a de-
pendencies of W and A on invariants of kinematic or/and dynamic tensors, it is
always possible to arrive at the relationship between their components.

The direct consequence of the principle of coordinate invariance is the neces-
sity to express scalar values, met in rheological equations of state, as functional
invariants of kinematic and/or dynamic tensors, but not of their components.
These scalar values are physical properties of an individual material. For exam-
ple, it can be viscosity or modulus of elasticity. They can change under deforma-
tion, but dependencies of the constants characterizing conditions of deformation
must enter into rheological equations of state only in the form of functions of ten-
sor invariants.

In the next step, physical laws should be related to the definite site (point) of a
material in a form that allows one to follow material moving in space. It means
that a rheological equation of state must describe behavior of a material, regard-
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less of the possible motions of an observer. This approach has already been men-
tioned in Chapter 3 in our discussion of large deformations and is called the
principle of material objectivity. The direct consequence of this principle is
the requirement of transformations of deformation and stress tensor from mov-
ing to a fixed coordinate system (according to the rules of tensor transforma-
tions) in order to give an observer the possibility to see what happens with a
material.

There are some other ideas which are also accepted in constructing rheological
equations of state. There is an easily grasped idea, stating that material has
memory of its prehistory (i.e., the manner of stress and deformation changes can
influence the current state of material) but material cannot predict future
events. This is called a principle of determinism.

Also, it is considered as a general rule that only short-range interactions are
important, i.e., stress and deformation behavior at some point are influenced
only by the nearest neighbors of this point, which is called a principle of local
action.

Although the above-cited principles are a general basis for formulating rheo-
logical equations of state (constitutive equations) of various materials and are
considered as objective laws, it is possible to find real physical examples which
do not obey some of them. For example, for liquid crystals and other materials
possessing inner macrostructure, which cannot be neglected, the idea of local ac-
tion can be invalid.

Rheological equations of state must describe mechanical behavior of all possi-
ble real materials. It is therefore important to answer the following question:
where is the place of individual properties of a material? There are two levels in
answering this question. First, the difference between behavior of various me-
dia is reflected in the form of a rheological equation of state used to describe pe-
culiarities of their deformational properties. Second, the difference of two
materials with similar rheological properties (i.e., expressed by the equivalent
rheological equations of state) is reflected in absolute values of scalar coefficient
entering the equation.

For example, water and steel are different materials, one of them is a liquid
and the second is a solid, and the difference in their properties is reflected by the
necessity to use quite different rheological equations of state for description of
their mechanical behavior, i.e., the Newton or Hooke Laws. Water and paint are
both liquids but with different specific behavior at various levels of stress; that is
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why we need to use different rheological equations of state for these two forms of
matter, though both of them are liquids. Finally, water and oil are both Newto-
nian liquids and the distinction of their behavior is hidden in the difference of
their coefficient of viscosity.

4.3 CONCLUDING REMARKS

Investigating deformational properties of real materials, one encounters many
“new” effects compared with “ideal” models of a linear liquid (Newtonian liquid)
or a linear solid (Hookean solid). These effects must be treated as special rheo-
logical phenomena. Understanding their origin, correlation with inherent
structure of matter, and quantitative description are the main problems dis-
cussed in theoretical, experimental, and applied rheology.

The most important and evident rheological effects are:
• non-Newtonian viscosity - dependence of apparent viscosity calculated as

for Newtonian liquids for a particular geometry and flow conditions for dif-
ferent rates of flow

• plastic behavior - lack of deformation if stress does not exceed some critical
level

• Weissenberg effect - existence of normal stresses in shear flow, or appear-
ance of a three-dimensional stress state in uni-dimensional deformation

• transient (or time-dependent) behavior. It can have numerous and inter-
penetrating manifestations: thixotropy and rheopexy, i.e., reversible
change of inherent structure of matter, its destruction or building, under ap-
plied stresses; dilatancy, i.e., reversible volume changes under shearing;
visco-elastic behavior, i.e., delayed deformation after stress application
(creep) or remaining stress after applying deformation (relaxation)

• anomalies in uniaxial extension - probability of uniform stretching at
large extension ratio, increase of longitudinal (extensional) viscosity as a
function of deformation and rate of extension

• flow instability, particularly melt fracture, which is not related to the
classical Reynolds inertial turbulence but connected with elasticity of a flow-
ing liquid; appearance of secondary flows, and so on

• non-linear elasticity as a result of large elastic deformations - compli-
cated stress versus deformation dependence and consequences of geometri-
cal non-linearity, particularly the Poynting effect - extension of twisted
wires.
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Generally speaking, all rheological phenomena can be treated as non-linear
effects, bearing in mind that they manifest themselves as a departure of me-
chanical behavior of real material from the prediction of linear models, repre-
sented by the Newton and Hooke Laws.

It is reasonable to distinguish between different “degrees” of non-linear behav-
ior. Different rheological effects which are non-linear phenomena originate from
three general principle causes:52

• Non-linear effects can be caused by geometrical reasons and can be nothing
more than a direct consequence of large elastic deformation. Typical results
of such effects were discussed in Chapter 3, concluding that it is necessary to
introduce other measures of deformation to characterize the deformed state
of material. Such an approach allows one to exclude non-linearity. It is rea-
sonable to think that the Weissenberg effect (at least within the limit of very
low rates of deformation) and the Poynting effect are two main consequences
of geometrical non-linearity, or large elastic deformation. Non-linear ef-
fects of such kind are observed in static (or equilibrium) conditions or in slow
flows.

• Non-linear effects can be related to changes (or “rupture”) of the inherent
structure of material. At different stresses available at various rates of de-
formation, incomparable materials are encountered, having new values of
essential parameters, such as viscosity or elastic modulus. This type of
non-linearity is the most typical for colloidal systems and filled polymeric
materials. Structural non-linearity can be one of the reasons for
non-Newtonian viscous flow, and it is the cause of the Mullins effect. It is
worth noting that in discussion of structural non-linearity, it is useful to add
kinetic arguments to rheological considerations.

• Strong non-linear effect can be observed if material transits into a new
relaxational or phase state due to the action of deformation. Rheological
properties of material in different phase or relaxational state are quite dif-
ferent because of changes along the transition. This type of rheological be-
havior, which can be called phase non-linearity, is encountered, for
example, during polymer crystallization in extension. Amorphous phase
separation is observed in flowing polymer solution or rupture of visco-elastic
stream (“melt fracture”) which occur at high rates of deformation. It is worth
mentioning that in discussion of phase non-linearity, it is useful to add ther-
modynamic arguments to rheological considerations.
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Based on the above discussion, it is possible to build a hierarchy of non-linear
rheological effects, characterized by the following terms:

geometrical structural phase
weak strong breaking
static kinetic thermodynamic

Many real materials are multi-component compositions. Different compo-
nents of material can behave differently at the same rates of deformation, i.e.,
above-mentioned types of non-linearity can appear at different conditions of de-
formation. For example, any real polymer is polydisperse, i.e., it consists of com-
ponents of different rheological properties. Thus, a certain level of deformation
rate is sufficient for appearance of non-linear behavior for a part of a material,
but this level of deformation rate might not be adequate to cause non-linear be-
havior of other components of the same system. It is also possible that different
modes of non-linearity are characteristic for various components of complex ma-
terial. For example, filled polymer melt can manifest non-linear behavior of one
type, due to particular properties of a visco-elastic polymeric matrix, and the
other type due to rupture of the structure of a filler. It means that in real practi-
cal application, superposition of various non-linear effects of different types can
be expected.

As a general rule, rheological phenomena are observed in analysis of one-di-
mensional deformation, although one of the most interesting characteristic rhe-
ological effects is a limited probability of maintaining one-dimensional stress
state for some materials.

Experimental points obtained under different conditions of measurement
(stress versus deformation or/and versus time) can be approximated by different
equations. Thus, the central problem in rheology is the compatibility of equa-
tions used for quantitative description of various rheological phenomena.

There are two sides to the problem:
• it is important to relate the explanations to analogous phenomena, but ob-

served for different geometrical modes of deformation (for example, flow in
shear and extension must correlate - but how?), they need to be treated as re-
lated consequences of the single relationship between forces and deforma-
tions
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• it is of importance to correlate different rheological effects; for example,
non-Newtonian flow, normal stresses in shear, and large elastic deforma-
tions in the quest to understand their common source.

In this aspect, the concepts of rheological equation of state occupy the cen-
tral position in the description and generalization of experimental data. There
are some important (physical) limitations, determining the fact that not every
analytical equation can be used as a rheological equation of state. These limita-
tions are expressed as the following principles:

• coordinate invariance - behavior of a medium does not depend on choice
of a coordinate system; that is why the rheological equation of state must be
formulated, not in the form of components of stress and deformation tensors,
but as their invariants

• material objectivity - behavior of a medium does not depend on movement
of an observer or a body as a whole

• determinism - a material can remember its past, which influences its be-
havior in a current moment, but does not know future events

• local action - only the nearest surrounding may influence behavior of a
body at a point not the events happening far from this point.

In spite of all these limitations, freedom in constructing rheological equations
of state is rather wide. Therefore, it is very important to choose equations which
are not too complicated to be used for practical calculations and which can be
correlated with the physical structure (or content) of matter. The first is neces-
sary for industrial and technological application of rheology, and the second is of
basic value if one considers rheology as one of the fields of physical chemistry of-
fering background for objective quantitative characterization of the properties
of matter.

There are two possible general types of body reaction on the action of external
forces:

• storing the work in the form of elastic potential
• irreversible loss of this work by heat dissipation.
In accordance with these fates of energy which was delivered by the work of ex-

ternal forces, we can distinguish between elastic (solid) bodies and viscous liq-
uids. The intermediate situation when the work done is partly stored and partly
dissipated is also possible, and this is the case of visco-elastic materials.

In construction of rheological equations of state, the elastic potential and in-
tensity of heat dissipation must be expressed as functions of invariants of kine-
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matic and/or dynamic tensors. The difference in mechanical behavior of various
materials is reflected in the form of the rheological equation used, and the val-
ues of scalar coefficients (“material constants”) which are parameters of this
equation, customizing properties of a material.

The last general remark is rather evident for a rheologist but may look strange
for a non-professional or even for an engineer. From practical or technological
point of view, in the great majority of cases, one can definitely distinguish be-
tween solid bodies and fluids, i.e., they are qualitatively different entities. For
rheology, the difference between them is quantitative rather than qualitative,
and it is preferable to qualify them, not into solids and liquids but as materials
with dominating solid-like and liquid-like behavior under real conditions. The
difference appears as a consequence of the ratio of the time scale (duration) of
observation and the inherent (characteristic) time scale of a material.
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5

RHEOLOGICAL VISCOUS FLUIDS

5.1 DEFINITIONS

The concept of a liquid seems rather evident. Nobody doubts that water or
gasoline are liquids. But what about tooth paste or adhesive? These simple ex-
amples show that it is not sufficient to imply that a liquid is a material which can
flow. It is necessary to introduce a more rigorous definition and compare behav-
ior of real materials with such a definition.

We may think that a liquid is a material which undergoes unrecoverable (ir-
reversible) deformations, i.e., changes in shape remain after the action of ex-
ternal forces is removed. It should be noted that the definition must encompass
all real materials. For example, one would need to consider metals as liquids be-
cause during some technological operations, e.g., punching of golden articles,
wire-drawing of silver or rolling steel ingots, we undoubtedly create unrecover-
able deformations. These examples show that the above definition is too wide.
Indeed, it covers two types of behavior: viscous and visco-plastic. In the first
case, unrecoverable deformations (or flow) can be detected at any stress, re-
gardless how small it may be. In the second case, unrecoverable deformations
appear only when stress overcomes some definite level, which is called yield
stress or yield point. It means that a visco-plastic medium can be called a “liq-
uid” only with some precautions. Nevertheless, treating deformation of
visco-plastic materials, at stress exceeding yield stress as a flow, looks quite rea-
sonable.
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We can also define a liquid as a material which can flow (or is capable of unre-
coverable deformations) under the action of infinitesimal (small) stress.
Formally, this definition looks quite acceptable. But an experimentator may ask
two questions:

First: Perhaps if stress is decreased by one (two, three, etc.) orders of magni-
tude, it is possible to reach the yield point at which flow, at very low stress, does
not occur, i.e., in the case of any liquid, one deals with a visco-plastic liquid, but
the yield stress is so small that it cannot be observed under experimental condi-
tions but can be attained if conditions change. This assumption may have rather
serious consequences. Doubt was expressed even for such a classical liquid as
water. Indeed, it is never certain that the level of stress attained in an experi-
ment is sufficiently low to assume that a material is a liquid from an experi-
mental point of view.

The possibility to flow under infinitesimal stress means that a liquid at rest
cannot store any stress. Indeed, if outer boundaries of body (treated as a liquid)
are motionless, no stress should exist in the whole volume of the body. This is
true with some reservations only. For example, flow inside a body having mo-
tionless boundaries can appear as a result of temperature gradient in a liquid.
Nevertheless, this idea can also be considered as a definition of a liquid state.
Contrary to such behavior, liquid visco-plastic media (“liquids”) can store resid-
ual stresses equal to the yield stress.

Second: Perhaps during the period of observation (or experiment) unrecover-
able deformations are so small that they cannot be detected, even though they
exist. If an experiment is prolonged, flow of a material under investigation
should occur.

Rheologists like to cite a famous exclamation by the Bible’s Deborah: “The
mountains melted from before the Lord”, bearing in mind that in the scale of eter-
nity, the Lord really can observe flow of rocks (mountains). That is true, and the
general answer to the problem raised by the theoretician lies in the comparison
of “inherent” time scale of a material, tinh, and time of observation, tobs. This char-
acteristic inherent time, tinh, can be treated as time of relaxation, i.e., time neces-
sary for recovery of a stable structure state after removal of external forces.
Then, we can introduce the dimensionless criterion tobs/tinh (see also Eq 4.17),
called the Deborah Number, De:

De = tobs/tinh
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If De > 1, material behaves like a liquid, which occurs when tinh is small and re-
laxation happens very quickly (in comparison with time of observation). In the
opposite time scale (when De < 1), unrecoverable deformations cannot be de-
tected and we cannot discover flow and treat a material as a liquid.

We then can define liquid as a material which relaxes very quickly, and this
definition gives the concept of liquid, not as a state of a matter, but as a kind of
behavior. Therefore, one should consider liquid-like behavior of a material,
which answers the second question regarding rigorous definition of a liquid.

Finally, a very general definition of a liquid might be constructed on the basis
of energy concept (see Section 4.2). Any action is connected with energy con-
sumption. Two types of energy used for material deformation might be consid-
ered: the energy stored in the material and its return after the removal of
external forces. Storage of energy is characteristic for an elastic medium (elastic
behavior in rheological media is discussed in Chapter 6). The second reaction
consists of energy dissipation by its conversion to heat, which is characteristic
for viscous liquids, because viscous resistance to movement means heat dissipa-
tion of the work produced by the forces applied.

A viscous liquid then, can be defined as a medium deformed in such a manner
that energy needed for deforming completely dissipates in the process of
deformation. In essence, it means that no energy source for further deformation
exists in the material after the action of external forces ceases and that is why
deformation cannot be recovered (no driving force exists for the process).

Certainly, intermediate cases may exist when energy of deformation is partly
stored in a material and only part of this energy can be dissipated. Such is the
case of a viscoelastic body, in particular, of a viscoelastic liquid. We shall not con-
sider such liquids here, only a viscous liquids, without any elastic effects, since
all of Chapter 7 is specifically devoted to media properties having a combination
of viscosity and elasticity.

The energy concept dividing materials according to their reaction to the work
of deformation is the most general approach of characterization of a material
type. Such a concept is not related to any considerations of local values of
stresses and deformations and does not need to be related to observation of ma-
terial behavior in coordinate axis. In this sense, the energy approach is invari-
ant to a coordinate transformations and satisfies general requirements of
rheological equations of state.
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5.2 NEWTONIAN LIQUID

The idea of Newtonian and non-Newtonian behavior of liquids was intro-
duced in discussion of rheological effects describing the development of rheology
as a separate branch of natural science (Chapter 4). We shall now discuss a gen-
eral approach to the concept of Newtonian liquid, bearing in mind the common
principles of rheology formulated in Chapter 4.

One-dimensional (trivial) definition of Newtonian (or Newton-Stokes) liquid is
given in Eq 1.1 for simple shear. It is very easy to convert this equation, using
tensor notation:

σ ηij ij= 2 D [5.1]

and for simple shear

&γ= 2D =
u
xij

1

2

∂
∂

[5.2]

which refers to the standard definition, Eq 1.1. Further discussion concerns the
concept of a Newtonian liquid in an invariant form.

In order to apply the definition of a liquid as a material for which all work done
in deformation dissipates, one needs to express the intensity of dissipation, A, as
a function of deformation rate in a rheological definition of a liquid. The A is a
physical object invariant to the choice of a coordinate system, which is why the
rate of deformation also must be represented through its invariants.

This general approach allows for the following definition of the Newtonian liq-
uid:

A = 4 D2− η [5.3]

where D2 is the second invariant of the rate of deformation tensor.
Intensity of dissipation, A, is expressed as

A = ij ij∑ σ γ&
where σ ij are components of the stress tensor, &γij are components of the rate of
deformation tensor, and η is (Newtonian) viscosity.
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The second invariant of the rate of deformation tensor is

D = + + ( + + )2 11 22 11 33 22 33 12
2

13
2

23
2

& & & & & & & & &γ γ γ γ γ γ γ γ γ−

Combining the expressions for A and D2 with the definition, Eq 5.3, and consid-
ering coefficients in tensor notations, one comes to the starting formula of the
Newton-Stokes liquid, Eq 1.1.

It is interesting and instructive to draw the relationship between stress and
rate of deformation for uniaxial elongation based on the general (invariant) defi-
nition, Eq 5.3.

Stress tensor for uniaxial extension is expressed as

σ σ11 E=

whereσ E is the drawing stress and all other components of the stress tensor are
absent (equal to zero).

The rate of deformation tensor has only diagonal non-vanishing terms. It
should be assumed that a liquid is incompressible. In this case (see Chapter 2),
the first invariant of the deformation tensor equals zero. Thus, its time deriva-
tive (i.e., the first invariant of the rate of deformation tensor) also equals zero
and we have

D = + + = 01 11 22 33& & &γ γ γ [5.4]

For an axially symmetrical body, for example, for a cylinder,

& & &γ γ γ22 33 11= = 1
2

−

Therefore, A is evidently equal to

A = 11 11σ γ&

For uniaxial extension, considering relationship between components of the
rate of deformation tensor, we have
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D = 3
42 11− &γ

which leads to the following relationship between drawing stress and rate of de-
formation in uniaxial extension

σ ηγE 11= 3 & [5.5]

The coefficient between normal stress, σ E , and the rate of deformation is called
elongational viscosity, λ, and according to Eq 5.5

λ η=3

which is Trouton equation, discussed above. In fact, it demonstrates that both
equations (Newton and Trouton equations) represent the same type of rheologi-
cal behavior, i.e., the Newtonian liquid (liquid obeying the Newton Law in
shear) will obey the Trouton Law in uniaxial extension and vice versa.

The same result can be obtained, not only by using the idea of intensity of dissi-
pation, but also by exploring the decomposition of stress and the rate of deforma-
tion tensors into spherical and deviatoric parts.

The stress tensor can be decomposed into spherical and deviatoric parts in the
following manner:

σ
σ

σ δ σ
=

0 0
0 0 0
0 0 0

=
3

+
3

2 0 0
0 -1 0
0 0 -1

E
E

ij
E





























where the first member is a spherical part (negative hydrostatic pressure) and
the second term is a deviator of the stress tensor.

For uniaxial stretching of a symmetric body, using the above mentioned rela-
tionship between components of the rate of deformation tensor, we can write:
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The spherical component in the rate of deformation tensor is absent which is the
consequence of the incompressibility of liquid. The spherical part in the stress
tensor is present but its value is immaterial for rheological behavior of liquid (re-
gardless of the hydrostatic pressure, the volume of liquid remains unchanged).
If we compare deviatoric parts of both tensors, we again come to the Trouton
equation for elongational viscosity, which equals 3η.

The general definition (Eq 5.3) of the Newtonian liquid also allows one to calcu-
late elongational “viscosity”, now measured in biaxial extension.

Let us find the relationship between drawing (normal) stresses,σ σ σE 11 22= = ,
(σ33 equals zero) and rate of deformation, & & &ε ε ε= =11 22. According to Eq 5.4, in
this case, &ε 33 0= .

For biaxial extension

A = 2 ; D = 3E 2
2σ ε ε& &−

and then in accordance with fundamental Eq 5.3, we have

σ ηεE = 6 & [5.6]

It is possible to treat the coefficient of this Equation (i.e., the coefficient of pro-
portionality between stress and rate of deformation) as elongational viscosity, in
the same manner as done for the Newton and Trouton Laws. Then, the biaxial
“elongational viscosity” equals6η (not3ηas in uniaxial extension). These two
examples (uniaxial and biaxial extension) show that “viscosity” of a liquid can be
different, depending on its definition.

These simple examples demonstrate that results of different experiments can
be considered as consequences of the same rheological equation of state (consti-
tutive equation) if formulated in a generalized (tensor) form. Also, it is clear that
invariants must be used in the formulation of rheological equations of state for
liquids in relationships between components of stress and rate of deformation
tensors.
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A Newtonian liquid is the simplest incompressible linear liquid and its rheo-
logical properties are completely described by a single parameter, its shear vis-
cosity. In fact, it implies that a liquid is isotropic. But anisotropic liquids, i.e.,
liquids with properties dissimilar in different directions, can also exist (for ex-
ample, in liquid crystals). Even if such liquid is linear, a single coefficient of vis-
cosity is not sufficient for complete representation of its viscous properties. If we
measure viscosity by creating shear at different planes, we will obtain dissimi-
lar values of “viscosity”.1 For such anisotropic liquids, it appears necessary to
characterize their properties by a tensor of viscosities,1 though practical de-
termination of components of this tensor can appear a very complex problem.

In order to give an impression of the possible range of changes of viscosity for
real liquids let us list some typical values:

Gases 0.1 mPa⋅s
Water (at 20oC) 1 mPa⋅s
Sulphuric acid 30 mPa⋅s
Lubricating oils 0.1 - 3 Pa⋅s
Glycerin 2 Pa⋅s
Oligomers 10 mPas - 10 Pa⋅s
Glues, paints 1 - 200 Pa⋅s
Melts of thermoplasts 100 Pas - 100 kPa⋅s
Rubbers and rubber compounds 10 kPas - 10 MPa⋅s
Bitumens 100 kPas - 100 MPa⋅s
Melted inorganic glasses 1 MPas - 100 GPa⋅s
Glassy liquids 100 GPa⋅s

The viscosity of liquids can vary in a wide range of values exceeding 15 decimal
orders.

5.3 NON-NEWTONIAN LIQUIDS

According to the discussion in Chapter 4, any viscous liquid is a medium for
which intensity of heat dissipation in deformation is expressed as a function of
kinematic and/or dynamic invariants. The simplest equation representing the
idea is the Newton Law written as Eq 5.3. Certainly this equation does not de-
scribe other effects characteristic for non-Newtonian liquids.
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The formal way of generalization was proposed by Rivlin2,3 who advanced the
idea that intensity of energy dissipation is a linear function of the second and
third invariant of the deformation rate tensor. This assumption can be written
as

A = 4 D + D2 c 3− η η [5.7]

where the first member is Newtonian input to stress tensor and the second one is
a non-Newtonian addition. The coefficient of proportionality, ηc , is called
“cross-viscosity”.

The dissipative function (Eq 5.5), describing behavior of the Reiner liquid,
predicts the existence of normal stresses (Weissenberg effect) as a second-order
phenomenon (normal stresses are proportional to the squared shear rate) but no
other special rheological effects, including non-Newtonian viscosity. Moreover,
the predicted sign of a normal stress is opposite to experimentally observed val-
ues. It is important to emphasize that in the Reiner liquid, normal stress ap-
pears for pure viscous medium (stored elastic energy is absent) but is not related
to rubbery elasticity of a material. It also contradicts the experimental evidence,
because we know that normal stresses always accompany, or are accompanied
by large elastic deformations.

The model of the linear Reiner liquid does not reflect the mechanical behavior
of any real material known to date; nevertheless, this model is very interesting
for two reasons: firstly, it shows the rigorous way of generalizing a rheological
equation of state through introducing different invariants of the kinematic ten-
sor; secondly, it shows that not every formal way of constructing rheological
equations of state leads to realistic results. Bearing this conclusion in mind, the
Reiner viscous liquid model mostly has historical relevance.

Development of ideas concerning construction of rheological models of
non-Newtonian behavior takes various routes. First of all, the third invariant
was not used as an argument in rheological equations of state. Then the second
invariant of the rate of deformation tensor was used as an argument for a scalar
material constant, identifying properties of a material. It reflects the idea that
deformation influences the inherent properties of a medium, and this is the rea-
son for non-Newtonian behavior.
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For one-dimensional deformation, this concept can be written in the following
form

σ η γij 2 ij= 2 (D )& [5.8]

According to this equation, we assume that rate of deformation (expressed
through its second invariant) influences apparent viscosity of a liquid. The form
of the function η(D2) can vary, depending on individual properties of material.

Certainly, this equation can be treated as a generalization of Eq 5.3, and in this
case, it is written as

A = 4 (D )D2 2− η [5.9]

One of the most popular (widely used for various applied calculations) models
of non-Newtonian flow is a power law, written as

σ γ= K n
&

Apparent viscosity in this model is a decreasing function of shear rate or shear
stress

η σ
γ

γ σ= = K = K 1
n

n-1
n-1
n

&

& [5.10]

and as a rule n < 1. A generalized (three-dimensional) form of the power law
takes the following form

σ γij 2

n-1
n

ij= 2K 1
2

D










 & [5.11]

For one-dimensional shear flow this equation can be written as

σ γ γ= K n-1
& &

where apparent viscosity is expressed as in Eq 7.10.
Eq 5.10 can be applied to unidimensional axial extension of a liquid cylindrical
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stream. In this case, components of the rate of deformation tensor are

& & & & & &γ λ γ γ λ γ11 22 33 ij= ; = = 1
2

; = 0 for i j− ≠

where the first component of the rate of deformation tensor is the rate of exten-
sion. The D2 can be found from equation

D = 3
42

2− &λ

Let us suppose that, as usual, apparent viscosity is a decreasing function of
shear rate (and of D2). It means that in a three-dimensional generalization of the
power law, one may expect that the function η(D2), as the invariant characteris-
tic of a material, must be decreasing as well. This leads to the conclusion that the
increase of rate of extensional deformation must cause the decrease in apparent
viscosity, measured in uniaxial extension. Moreover, one can see that if we take
the condition between shear and extensional rate of deformation as

& &λ γ= 1

3

we arrive at the Trouton Law, which becomes true for any viscous liquid at ap-
propriate condition of comparison between shear and extension.

On the other hand, we know that for many “rheological” liquids the Trouton
Law is not correct, which is apparently not related to non-Newtonian behavior of
a purely viscous liquid but is hidden in its other rheological properties, in fact, in
its elasticity. The divergence from the Trouton Law in properties of some liquids
demonstrates that the possibility of describing properties of a liquid by equation
in one geometrical mode of deformation does not automatically lead to correct-
ness of its three-dimensional generalization and its application to another mode
of deformation. Indeed, viscous properties of two liquids can be the same in
shear but quite different in uniaxial extension.
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5.4 VISCO-PLASTIC LIQUIDS

Rheological equation of state for a visco-plastic liquid was introduced in Chap-
ter 4. One-dimensional rheological properties of a Bingham visco-plastic me-
dium are expressed by Eq 4.7. The main problem in generalization of the
Bingham equation is the formulation of a three-dimensional criterion of
yielding. This problem is typical in finding the three-dimensional criterion of
strength in mechanics of rupture of solids or plasticity for solid plastic materi-
als. The common question is: how to write the condition of rupture in a compli-
cated (three-dimensional) scheme of loading, if the strength of material was
measured in unidimensional extension.

Certainly, the answer to both analogous questions (regarding the strength and
the yield stress) lies in the use of invariants of the stress tensor, and this crite-
rion must be formulated through invariants of the stress tensor.

As a general rule, the influence of the hydrostatic pressure (or the first invari-
ant of the stress tensor) is immaterial in a rheological problem, if pressure is not
very high. This fact has been already mentioned in discussion of the
Weissenberg effect in Chapter 4. The criterion of yielding for different main
stresses must be found, and the yield stress,σ yE , should be a function of the sec-
ond invariant of the stress tensor. This approach is equivalent to the one used in
the theories of strength of solids. Moreover, the main analytical approximations
used in these theories also are used for the yield stress.

Different conditions (criteria) of the threshold of yielding (strength, plasticity)
in multi-dimensional loading were proposed and used. The most popular and
simple equation for the yield stress is based on the old idea which determines the
meaning of the critical value of the maximal shear stress (the Treska -
Saint-Venant criterion). It assumes that if the yield stress in simple shear is
σ yE , the same material being stretched in one direction begins to flow at normal
stress,σ E , calculated as (see relationships between normal and shear stresses in
Chapter 2):

σ σ σ σE yE yE E= 2 ; = 0.5 [5.12]

Then, if the principle stresses in a multi-dimensional stress field are σ σ1 2, ,
and σ3 , the Treska - Saint-Venant criterion of yielding is given by
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An alternative approach used for determination of the threshold of yielding is
known as the von Mises criterion and is assumed as a condition of reaching
some critical value of the intensity of shear stresses. It is formulated through
principle stresses as

( ) + ( ) + ( ) = 21 2
2

1 3
2

2 3 yE
2σ σ σ σ σ σ σ− − − [5.13]

where σ E is the yield stress in uniaxial extension.
It is interesting to note that the von Mises criterion of yielding can be called an

energetic criterion, because it is possible to show that the left side of Eq 5.13 rep-
resents (for the Hookean solid) specific energy of elastic deformation required to
change the form of a body (calculated for a point). It means that the material be-
gins to flow when it has stored a critical amount of elastic energy while changing
its form (not volume, since we do not take into account the first invariant of the
stress tensor).

The correspondence between the shear yield stress and the critical normal
stress, according to the von Mises criterion, can be written as

σ σ σyE
E

E=
3

0.577≈ [5.14]

Comparing Eqs 5.12 and 5.14, one can see that Treska - Saint-Venant and von
Mises criteria are rather close to each other.

5.5 SOME BASIC PROBLEMS

5.5.1 INTRODUCTION

Some basic problems of hydrodynamics are discussed below in order to demon-
strate typical examples of application of rheological equations of state for main
types of “rheological” liquids. The term “hydrodynamic” should not lead to con-
fusion. Use of this term does not imply that it is related specifically to water (“hy-
dro-”) but to any viscous fluid.
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The transition from rheological equation of state (or constitutive equation) of a
liquid to a hydrodynamic problem is equivalent to the transition from discussing
the situation “at a point” to considering flow of a liquid in a volume. It requires
one to combine the following elements:

• rheological equation of state (see Chapter 4)
• equilibrium (balance) equations (see Chapter 2); in the isothermal case, it is

an equation of force balance only
• boundary conditions.
The last element is yet to be defined. The use of boundary conditions is very

typical and common for solving any differential equation. Below, we shall dem-
onstrate the importance of this factor for hydrodynamic problem-solving in a
volume.

In the subsequent sections, we shall discuss basic hydrodynamic patterns
which are most frequently observed in applications. Real situations can be very
complex; at the same time, they can be expressed by relatively simple models.

The choice of examples discussed below is determined by the possibility to inte-
grate differential equations of flow to obtain a solution in analytical form. It is
done only for illustrative purposes, because equations of flow for practically any
geometrical pattern (even very complex) can be solved numerically, with desir-
able accuracy, by computer calculations. This is also true for different rheologi-
cal equations of state which are used for investigation of various hydrodynamic
situations. In this respect the majority of solutions discussed below are exact so-
lutions, contrary to their solutions obtained by computational methods, which
are approximate solutions, even though their divergence from an exact solution
can be as small as required.

All examples discussed in this Section are related to laminar flow and are not
applicable to turbulent flow. Meanwhile, turbulence can be considered as
non-Newtonian (“rheological”) flow of some special kind, because in a turbulent
regime the Newton-Stokes relationship between shear stress and shear rate is
not valid, and as a consequence, for example, the relationship between flow rate
and pressure in flow through a channel appears to be different than predicted
for a Newtonian liquid.

The solution of different hydrodynamic problems includes understanding of:
• distribution of hydrostatic pressure and components of the velocity vector in

space in which flow takes place; four variables are functions of four basic hy-
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vation of mass)
• integral characteristics of stream, such as complete force applied to a moving

body, output (or flow rate) of a liquid flowing through a channel, and pres-
sure which must be applied to create predetermined flow rate.

Flow in different geometrical forms is used for numerous applications. Among
them are:

• problems of transportation of different liquids (so-called inner problems -
flow of liquids inside channels with solid external boundaries)

• movement of solid bodies in liquids (so-called outer problems - a liquid flow
around solid boundaries)

• purely rheological problems, such as comparison of theoretical predictions
with experimental observations (cannot be solved “at a point” but only for
volumetric flow) or determination of constants in rheological equations of
state.

First, two items on the list can be formulated for any space situation and arbi-
trary geometry of solid boundaries of a channel or moving solid body, because
they are determined by the practical value of the situation under discussion.
The problems of the third group are considered, as a general rule, for rather sim-
ple geometrical forms of solid boundaries, because only for such simple forms is
it possible to build an apparatus for comparison of theoretical prediction and ex-
perimental observation resulting in an evident and easy-to-grasp result.

5.5.2 PLANE UNIDIMENSIONAL FLOW

Figure 5.1 explains the exam-
ple. Let us consider flow along
the z-axis, then assume that
the size of parallel planes in
x-direction is unlimited (at
least much larger than the dis-
tance between planes equal to
H), which allows one to neglect
all changes which can happen
along the x-coordinate. It
means in particular that

A. Ya. Malkin 133

Figure 5.1. Scheme of plane unidimensional flow and
system of coordinates used for formulating basic hy-
drodynamic equations.

drodynamic equations (three balance equations and an equation of conser-



V = 0; V
x

= 0; p
x

= 0x
∂
∂

∂
∂

Besides

∂
∂

∂
∂

V
z

= 0; p
y

= 0

This shows that there is only one component of velocity, Vz, different from zero
(therefore, below we shall use the symbol V without subscript index). V can be a
function of the y-coordinate only. Pressure can be a function of the z-coordinate
only, i.e.,

V = V(y); p = p(z)

Steady flow is considered, and therefore any inertial effect does not need to be
taken into account and inertial members in the equilibrium equations can be
omitted.

Consequently, there is a need for only one balance equation:

dp
dz

= d
dy

− σ [5.15]

where

σ σ σ≡ yz zy=

The left-hand side of this equation is a function of z only, and the right-hand
side member is a function of y only. It means that equality can exist if both mem-
bers are constant. Then, the general solution of Eq 5.15, considering the bound-
ary conditions, can be written as

σ σ= dp
dz

yw − [5.16]
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where σ w is the shear stress acting (or applied) at the solid boundary (at the
plane). If the area of planes is S and total tangential force F, then

σ w = F
S

It is important to emphasize that the general solution (Eq 5.16) is not related to
any rheological model, i.e., it is valid for any material. It is true because as long
as stress, but not velocity distribution, is discussed, it does not involve any rheo-
logical equation of state.

The last general postulate should include the gradient of pressure. Assuming
that

dp
dz

= const

one can write

dp
dz

= P
L

∆

where ∆P is the pressure drop (difference of pressures at the ends) in a channel
where flow takes place, and L is the length of this channel.

(i) Drag flow. The important case of Eq 5.16 includes flow in the absence of a
pressure gradient: dp/dz = 0, when

σ σ= = constw

In this case, shear stress is uniform throughout the whole volume between
planes, regardless of rheological properties of a liquid. This type of flow is possi-
ble when one plane is moved relative to the other and “drags” a liquid. This type
of behavior is called drag flow. Because shear stress is constant throughout a
gap between planes, the shear rate must be also constant (in steady flow), since,
for any non-Newtonian liquid, shear rate is an unambiguous function of shear
stress
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dV
dt

= const

which gives a linear velocity profile through a gap between planes:

V = V y
Hw

where Vw is the velocity of a moving plane (velocity of the other plane is assumed
to be equal zero).

The last equation can be rewritten in dimensionless form

V
V

=
z

β [5.17]

where β is a dimensionless coordinate

β= y
H

The solution (Eq 5.17) is represented in Figure 5.2. The presence of linear ve-
locity profile and constant shear rate in the gap is evident. Constant shear stress
leads to a constant rate of shear. The volumetric output, Q, in drag flow is calcu-
lated as

Q =
V
2

BHw [5.18]

where B is the size of planes in the x-di-
rection.

The possibility to realize flow with con-
stant shear stress is an unique method of
constructing flow curves. Varying shear
stress (changing total force), the shear
rate is determined by the ratio
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&γ=
V
H

w [5.19]

Then, the pairs of values “shear stress - shear rate” are obtained.
The experiment can be reversed: we can set velocity, Vw, of a moving plane,

measure total force, F, and calculate shear stress as the ratio of F/S.
In practical realization, it is not necessary to have flat planes; they can be

curved into cylinders. Circular drag flow between two coaxial cylinders was in-
vestigated by Couette,1 and thus the problem is called the Couette problem.
Also, other drag flows (not only circular) are often called the Couette problem. If
the gap between two coaxial cylinders is much smaller than their radii, one can
neglect their curvature and treat them as parallel plates.

Let the radius of the outer cylinder be Ro, the radius of the inner cylinder Ri,
and the condition

R R
R

<< 1o i

o

−
[5.20]

is fulfilled. The system of two coaxial cylinders is then treated as parallel planes

H = R R ; S= 2
R + R

2
Lo i

o i− π

where L is the height of the cylinders.
Linear velocity is expressed as

V = Rω

where ωis angular velocity (measured in rad/s), R is the radius of an outer or in-
ner cylinder which are almost the same if the condition 5.20 is valid.
The shear rate in the gap is

&γ ω= R
R Ro i−

[5.21]

A. Ya. Malkin 137



The existence of shear stresses leads to torque, M, expressed as

M = 2 R H = 2 R Ho
2

o i
2

iπ σ π σ [5.22]

where H is the height of cylinders (more exact: height of a gap filled with flowing
liquid).

The last equation allows one to estimate the inhomogeneity of stress field in
the gap between two coaxial cylinders. Since M = const,

σ
σ

αi

o

o

i

2

=
R
R









 ≡

If Ro/Ri is close to 1, then we have an “almost” homogeneous stress field.
This configuration is often used in viscometric practice in so-called rotational

viscometers. The most important point here is the possibility to find shear stress
and shear rate independently and regardless of any rheological model, i.e., this
configuration can be treated as an absolute method of determining a flow curve
of a non-Newtonian liquid with unknown rheological properties. Certainly, this
method works when the condition 5.20 is fulfilled. If we know shear stress from
the torque (Eq 5.22) and shear rate from angular velocity (Eq 5.21), we can eas-
ily find apparent viscosity in accordance with the Newton-Stokes definition of
“viscosity”:

η σ
γ π ω

≡ −
&

=
M(R R )

2 R H
o I

o
3

[5.23]

where it is assumed that an outer cylinder is rotating and M is the torque mea-
sured also for an outer cylinder. Changes in Eq 5.23 must be introduced if an in-
ner cylinder is rotating, or if we measure the torque applied to an inner cylinder.

If the gap between cylinders is not small in relation to the radius of the inner
cylinder, the general solution for a liquid with arbitrary rheological properties
does not exist. Indeed, velocity distribution in circular flow between two coaxial
cylinders with an arbitrary (not an obligatory small) gap between them depends
on rheological properties of a liquid. The exact solutions can be found for some
shear rate versus shear stress laws. The simplest case is surely a Newtonian liq-
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uid. In this case, when an outer cylinder is rotating with angular velocity, ωo ,
and angular velocity of an inner cylinder is ωi , velocity distribution is expressed
by a formula

V(r) =
( R R )r + ( )R R

(R r )r
o o

2
i i

2 2
o i i

2
o
2

o
2

i
2

ω ω ω ω− −
−

[5.24]

where V is the Vϕ (circular) component of the velocity vector and r is a current ra-
dius ( Ro > r > Ri). Special cases, whenω ωo i= 0or = 0, are formally included in Eq
5.24.

The distribution of shear stress is

σ η ω ω
=

2 ( )R R

(R R )r
o i o

2
i
2

o
2

i
2 2

−
−

[5.25]

where η is viscosity of a Newtonian liquid.
The torque in flow of a Newtonian liquid is expressed as

M =
4 L( )R R

R R
o i i

2
o
2

o
2

i
2

πη ω ω−
−

[5.26]

The torque is the same for any value of radius, which is why the current radius,
r, does not enter Eq 5.26.

Eq 5.26 is the basic equation for determination of viscosity of Newtonian liq-
uids. If two parameters, torque, M, and difference of angular velocities, ω ωo i− ,
are measured (in practice, as a general rule, one of the velocities equals zero),
viscosity can be calculated as a measure of the ratio of these parameters:

η
ω ω

= KM

o i−
[5.27]

where K is a geometrical factor, i.e., the value determined by geometrical sizes of
an instrument used for measurement. In a cylinder - cylinder rotational
viscometer
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K =
R R

4 HR R
o
2

i
2

i
2

o
2

−
π

When a rotational viscometer is used as an instrument for absolute measure-
ments, the value of a geometrical factor, K, is found from the sizes of instrument
elements. If this apparatus is used for comparative measurement, the value of K
is found from a calibration experiment in which the torque and angular velocity
are measured for a liquid with known viscosity. Then Eq 5.27 is used in order to
find the K-value for the instrument.

The rotation of a cylinder in an infinite volume is an interesting limiting case
(Ro∴χ4 ∞ ). Velocity distribution in flow of a Newtonian liquid in an infinite vol-
ume is expressed by the equation

V = R
r

2ω [5.28]

whereωis an angular velocity of cylinder rotation, R a radius of cylinder, and r a
current radius (distance from the axis of a rotating cylinder). Eq 5.28 shows that
velocity decreases to zero “at infinity”, i.e., sufficiently far from a rotating cylin-
der.

The torque applied to rotate a cylinder in an infinite volume is calculated ac-
cording to the equation

M = 4 HR2πηω

Rotation of a cylinder in an unlimited volume is a model case used in many real
situations when a size of a rotating body is much smaller than the size of a sam-
ple (for example, rotation of a screw propeller in a sea).

Numerous experiments were carried out to confirm theoretical predictions on
the relationship of torque, rate of rotation, and geometrical sizes of rotating bod-
ies. All of them demonstrated good correlation between theory and experimen-
tal results in limits of a laminar flow. It proves the basic assumptions used in
building the theory, and in particular, the validity of the Newton-Stokes rheo-
logical equation for many real liquids.
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It is interesting to investigate the situation when a gap between cylinders is
filled with visco-plastic liquid. Let the shear stress at an inner cylinder be calcu-
lated in usual manner as

σ
πi

i

= M
2 R H

[5.29]

and shear stress at an outer cylinder is

σ σ αo i
-1=

It is evident that

σ σo i<

The whole volume of a material flows if

σ σo y>

i.e., stress at any point of a material exceeds the yield point. If this condition is
not valid, we have a situation when a solid (non-fluid) layer exists near an outer
cylinder (up to the value of a radius where shear stress becomes equal to yield
stress), and this solid layer rotates together with an outer cylinder.

(ii) Flow under pressure. Let us assume that both boundary surfaces are mo-
tionless and flow between planes along the y-axis is provoked by the pressure
gradient gradP = ∆P/L. The shear stress profile is given by Eq 5.16, which can be
written as

σ σ= P
L

yw − ∆ [5.30]

It is convenient to draw a coordinate system in such a manner that the plane
y = 0 would coincide with a middle section of a gap (plane of symmetry). Then co-
ordinates of the boundary parallel planes are +H/2 and -H/2. It is easy to under-
stand that the flow through a channel is symmetrical and
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dv
dy

= 0 at y = 0

i.e., the velocity profile has a maximum at the middle plane (or at y = 0). If dV/dy
= 0, then shear stress also equals zero, which means that

σ w = P
L

∆ [5.31]

The shear stresses, shown in Figure 5.3,
have a linear profile. The shear stress is zero
at the axis of a stream, and maximal at the
wall, as calculated from Eq 5.31.

The last two conclusions (existence of the
maximum in velocity profile at the axis of a
stream and linear profile of shear stresses)
are valid for any liquid. The velocity profile
must be different because linear change in
shear stress leads to linear change of shear
rate only for a Newtonian liquid; in all other
cases, velocity profiles for “rheological” liq-
uids will be non-linear.

Figure 5.4 demonstrates three typical situations:
• velocity profiles for Newtonian liquid (a)
• non-Newtonian liquid (b)
• visco-plastic liquid (c).
The first case (flow of a Newtonian liquid) is the simplest case. The linear pro-

file of stress is automatically reflected by a linear profile of shear rate and thus a
parabolic profile of velocity. It looks like this:

V(y) = H
8

P
L

[1 (2 ) ]
2

2− −
η

β∆ [5.32]

The “minus” sign before the right-hand side of this equation shows that flow oc-
curs in a direction opposite to the gradient of pressure, and β is a dimensionless
distance from the axis of a channel: β = y/H.
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The volumetric output in the flow of a Newtonian liquid under a pressure gra-
dient is expressed in the following manner:

Q = BH
12

P
L

3

−
η

∆ [5.33]

Shear rate profile and the value of the shear rate at the wall (maximal shear
rate) can be calculated as often required in applications, especially in the theory
of viscometry:

&γo 2
= 6Q

BH
[5.34]

It is useful to introduce a value of the average velocity, Vo, determined as

V = Q
BHo

i.e., volumetric output divided by the area of the cross-section. Then

V = H
12

P
Lo

2

−
η

∆
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It is interesting to note that the maximal velocity at the axis of a channel, Vmax,
equals

V = 3
2

Vmax o

Now, we can write the equation for the velocity distribution in a dimensionless
form

V V
V

= 3
2

[1 (2 ) ]*

o

2≡ − β [5.35]

where V* is dimensionless velocity.
Finally, if pressure, which must be created to produce some average velocity of

a stream in a plane tube of the length, L, is of interest, it can be calculated as

∆P = 12 V L
H

o 2
η [5.36]

Let us carry out a similar analysis for non-Newtonian liquids. First of all, we
can see that non-linear relationship between shear stress and shear rate results
in the rate of shear profile, though its value at the axis is zero as before. Then the
velocity profile becomes non-parabolic (but with the maximum at the axis of a
stream).

Let us assume that the rheological properties of a liquid are expressed by a
power law often used in the theory of polymer processing. This relationship can
be written as follows

σ = K dV
dy

dV
dy

n-1


 




where K and n are constants of the rheological equation and the segment writ-
ten before rate of shear can be treated as apparent viscosity depending on shear
rate.
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Such “power” liquid velocity profile is expressed by the equation

V(y) = n
n+ 1

| P|
KL

H
2

1 2

1
n

n+1
n

n+1
n∆


 


 


 


 −










β  [5.37]

where β = y/H as before.
Maximal velocity (at the axis of a channel) is

V = n
n+ 1

H
2

| P|
KLmax

n+1
n

1
n


 


 


 


∆

and it is easy to find an average velocity

V = 1+ n
1+ 2n

Vo max

For n = 1, these relationships take the form of the above-written expressions
for a Newtonian liquid; therefore, the rheological effects cause modification in
the velocity profile, with all the evident consequences of this phenomenon.

Shear rate profile is easily calculated as a derivative of velocity. Two points are
of particular interest. The first is the zero value at the axis, although it does not
give useful information, because shear stress is also zero, giving a quite trivial
relationship between these variables. The second point is much more interest-
ing. It is a point at the wall. We can calculate shear stress at this point according
to Eq 5.31 to find shear rate at the wall as

&γw 2
= 2(2n+ 1)Q

nBH
[5.38]

Shear rate at a wall, in flow of a “power” liquid, can be expressed through the
corresponding value of a Newtonian liquid

& &γ γw o= 2n+ 1
3n
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where the value &γo is calculated from Eq 5.34.
It is then possible to construct a flow curve “point-by-point”, changing volumet-

ric output or pressure gradient and thus changing shear rate and shear stress.
The relationship between pressure drop and volumetric output in flow of a

“power” liquid is given by:

∆P = 2 LB 2n + 1
n

K Q
H

n+1
n n

2n+1



 


 [5.39]

It is evident that the last equation can be written as

∆P = K Qn
n [5.40]

where Kn is the geometrical factor which is evidently calculated as

K = 2 2n+ 1
n

LB
H

n
n+1

n

2n+1



 




It is worth mentioning that the power-type relationship between pressure gra-
dient and volume output reflects the power law for the relationship between
shear stress and shear rate. For the Newtonian liquid, the same relationship is
also true and n = 1, i.e., the linear relationship exists between volume output
and pressure gradient.

Let us now discuss the main peculiarities of flow of visco-plastic liquid in a
plane channel under pressure. If the shear stress at the wall, calculated from Eq
5.31, is lower than the yield stress, no movement through a channel occurs, and
the material behaves like a solid body. If shear stress at the wall and layers near
the wall exceed the yield point, then flow becomes possible in this layer but not
in the central zone of a channel, and the velocity profile appears as shown in Fig-
ure 5.4c.

(iii) Superposition. In some applications (for example, in theoretical analysis of
processing of polymeric materials in extruders), it is important to understand
velocity profiles, when flow is generated by superposition of drag due to the
movement of a boundary plane and pressure gradient, and observe superposi-
tion of effects discussed above.
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The general picture, illustrating velocity profiles, is shown in Figure 5.5. The
middle picture shows a pure drag flow. The left picture illustrates a very inter-
esting situation when an exit is closed so that the net output is zero. In this case,
the areas between velocity profile and a vertical (zero) line are equal on positive
and negative sides. It means that output created by drag of a boundary plane is
compensated by negative (or “back”) flow under pressure. The right picture rep-
resents typical superposition of drag and pressure streams oriented in the same
direction. The existence of the drag component of flow is proven by the non-zero
value of velocity at the upper boundary plane.

Now, let us analyze an analytical expression for velocity profiles in superposi-
tion of drag and pressure flow. Such analysis is easy for a Newtonian liquid be-
cause we can simply summarize velocity profiles for both components of a
stream. The result of calculations in dimensionless variables is as follows:

V(y)
V

= 3 (1 )H
6 V

P
Lw

3

w

β β β
η

− − ∆ [5.41]

where β = y/H is a dimensionless coordinate, as before.
It is quite evident that Eq 5.41 contains two members. The first is a reflection

of drag flow, and the second represents flow under a pressure gradient. The
same is true for integral characteristics of flow, i.e., volumetric output:
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tion of drag and pressure flow.



Q =
V H

2
H
12

P
L

w
3

−
η

∆ [5.42]

(the width of a channel, B, is omitted from both members of Eq 5.42).
Again, we see that volume output consists of two components: the first is re-

lated to drag flow, and the second originates from existence of a pressure gradi-
ent along a channel.

It is especially interesting to separate the case of zero output represented by
the left picture in Figure 5.5. If Q = 0, we can calculate the pressure created by a
movement of a boundary plane. This pressure is

∆P =
6V

H
Lw

2

η

The structure of this equation demonstrates that the pressure created is pro-
portional to the viscosity of a liquid (i.e., high pressures can appear only for
highly viscous liquids) and velocity of a moving boundary plane.

We can introduce a value of volume output due to pressure gradient, QP, and
volume output due to drag, QD. Then, a dimensionless ratio is a measure of mu-
tual inputs of pressure and drag:

ξ
η

≡ Q
Q

= H
6 V

P
L

P

D

2

w

∆ [5.43]

Two particular cases are of primary interest:
at ξ = -1, output is zero (the exit is closed)
at ξ = 0, there is a pure drag flow and pressure gradient is absent.

All other cases reflect superposition of both factors and their relative “weight”
is determined by the value of ξ.

If a flowing liquid is characterized by non-Newtonian properties, the general
physical idea of superposition of drag and pressure flow remains valid. More-
over, characteristic pictures drawn in Figure 5.5 are also valid. That is why in
discussion of Figure 5.5 we did not mention what “rheological” kind of a liquid it
represents. Depending on rheological character of liquid, the analytical expres-
sions for velocity profiles and output must be modified. Besides, the method of
calculation of net output, as an arithmetic sum of drag and pressure outputs cal-
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culated separately, which has been used above, may become invalid. There is no
simple method for calculating inputs of both components. It appears necessary
to solve the balance equations for any new type of rheological liquid and analyze
a solution on an individual basis. Such solutions are not of general value, which
is the main point in discussion of superposition of drag and pressure flow of
non-Newtonian liquids.

5.5.3 FLOW THROUGH STRAIGHT TUBES UNDER PRESSURE

Flow through a straight channel (tube), with arbitrarily chosen cross-section,
under pressure gradient, is a classical hydrodynamic problem. It is often called
the Poisseuille problem, though Poisseuille himself studied flow in channels
with round cross-section only. The importance of this problem is determined by
the fact that flow in straight tubes is a very realistic model for numerous appli-
cations, such as transport of oil and oil products, pumping water in city net-
works, and many others.

The example of flow through straight tubes under a pressure gradient has
been already discussed in the case of flow between two parallel plates
(Figure 5.4).This discussion concentrates on the situation when the cross-sec-
tion of a tube is circular with a radius, R.

We can immediately state that the relationship between pressure gradient
and volume output is expressed by Eq 5.40 and for a Newtonian liquid (n = 1)

Q = K| P|∆

The value of the geometrical factor, K, depends on the form of a cross-section of
a channel. In flow of a Newtonian liquid through a channel, with a round
cross-section, the geometrical factor is

K = R
8 L

4π
η

and the solution of the Poisseuille problem is the very well-known
Hagen-Poisseuille equation:

Q = R
8

| P|
L

4π
η

∆ [5.44]
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An equation for a velocity profile in the flow of a Newtonian liquid is given by

v(r) = 1
4

P
L

(R r )2 2

η
∆ − [5.45]

where r is a current radius.
The average velocity Vo is

V Q
R

= R
8

| P|
Lo 2

2

≡
π η

∆

Since the pressure gradient is proportional to flow output, it is easy to write the
velocity distribution along a radius through output:

v(r) = 2Q
R

(R r )
4

2 2

π
−

The velocity profile is parabolic and the maximal velocity, Vmax, at the axis of a
tube is

V = PR
4 L

= 2Q
R

= 2Vmax

2

2 o
∆

η π
[5.46]

Velocity profile can be written in dimensionless form

v
V

= v
2V

= (1 )
max o

2−β

where β = r/R is a dimensionless radius of a tube.
The velocity profile is known and thus it is possible to calculate shear rate dis-

tribution along a radius. Two points are of particular interest. The first of them
is quite evident: velocity profile is symmetrical and shear rate at the axis is zero.
The second point is a position at the wall of a channel. The shear rate at the wall
is

&γ
πw,N 3

= 4Q
R

[5.47]
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Shear stress distribution along a radius is the same as in a parallel plate con-
figuration, i.e., linear:

σ σ β= P
2L

(R r) = (1 )w
∆ − − [5.48]

where σw is shear stress at the wall of a tube:

σ w = PR
2L

∆ [5.49]

It is evident that the ratio of shear stress to shear rate calculated at the same
point (at the wall of a channel) is indeed the viscosity based on Newton - Stokes
definition:

η= PR
8QL

4∆ [5.50]

In fact, Eq 5.50 is the Hagen - Poisseuille equation, which is widely used for
measuring viscosity of various liquids determined from the ratio of pressure gra-
dient to volume output if geometrical sizes of a channel (its radius and length)
are known.

Linear relationship between output and pressure gradient, in flow of a Newto-
nian liquid through straight tubes, is of a general nature, only geometrical fac-
tor is varying. For example, if a cross section of a tube is not round but elliptical
the geometrical factor is

K = 1
4 L

a b
a + b

el

3 3

2 2η
π

where a and b are semi-axes of an ellipsis.
It is quite natural that, if a = b the factor Kel becomes the geometrical factor for

a round tube. It is also interesting that, if a → ∞ and b = H/2, we arrive at the
geometrical factor for flow of a Newtonian liquid between two parallel plates.

The next example is flow through a gap between two coaxial round tubes along
the axis. Let the radii of the tubes be Ro for an outer tube and Ri for an inner tube
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and β = Ri/Ro. The geometrical factor for a Newtonian liquid, in this case, is

K =
R

8 L
(1 ) (1 )

ln(1 )c
o
4

4
2 2π

η
β β

β
− − −











Again, we arrive at the boundary cases: if Ri = 0, we return to the flow through a
tube with a round cross-section. And if the gap is very narrow and β→ 1, we ar-
rive at flow between two parallel plates.

The geometrical factors are also calculated and their analytical forms are
known for channels with different regular cross-sections, for example for rectan-
gular or triangle channel, for a channel formed by two round tubes with shifted
axes, and so on. These solutions are represented by infinite sums of different
structure and they will not be reproduced here only because they are too bulky.
Moreover analytical expressions of geometrical factors can be obtained for a
channel of an arbitrary cross-section without special problems by means of com-
puter calculations. They also can be found experimentally for model or real
channels.

The situation becomes more complicated for non-Newtonian liquids because
the geometrical factor depends on the kind of a rheological equation of state used
for calculation. As an example, let us discuss relationships for a “power” liquid
bearing in mind that Eq 5.40 is always valid.

In flow of a “power” liquid through a straight channel with a round cross-sec-
tion, we have the following velocity profile

v(r) = n
n+ 1

R P
2L

K 1- r
R

1+n
n

1
n

1
n

1+n
n∆


 


 


 





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


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Then,

V = n
n+ 1

R K P
2Lmax

1 + n
n

-
1
n

1
n∆


 



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and the average velocity is related to the maximal velocity by

V = 1+ n
3+ n

Vo max

If n = 1, the last equation transits to the above discussed equation for a Newto-
nian liquid. This is also true for all relationships obtained for a “power” liquid.

Volume output - vs - pressure gradient for a “power” liquid is calculated from
the following equation:

Q = n
1+ 3n

R K P
2L

1
1 + 3n

-
1
n

1
n∆


 




The equation used in the theory of capillary viscometry is an expression for
shear rate at the wall:

& &γ γw w, N= 3+ n
4

[5.51]

i.e., wall shear rate for a “power” liquid is related to the corresponding value cal-
culated for a Newtonian liquid in accordance to Eq 5.47.

Apparent viscosity of a non-Newtonian liquid, η, can be found as a ratio of
shear stress to shear rate at the same point - at the wall:

η π= 1
2(3+ n)

P
L

R
Q

4∆ [5.52]

In the case of n = 1, this equation transits to the Hagen - Poisseuille equation
and apparent viscosity is constant. For a non-Newtonian liquid, it is not true be-
cause apparent viscosity becomes shear rate or pressure dependent. In this case
Eq 5.52 allows one to construct the flow curve, i.e., to find the dependence of ap-
parent viscosity and shear rate, calculated by volume output, or shear stress,
calculated from pressure gradient.

Analogous equations can be obtained for different non-Newtonian liquids but
in real practice only “power” liquid flow curves are used for applications. In this
case, Eq 5.40 is used as a basic equation, and the geometrical factors are calcu-
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lated or found experimentally for channels of a different cross-section.
The other, very important case, thoroughly investigated by many authors, is a

flow of visco-plastic, non-Newtonian liquid.
Let us write one-dimensional rheological equation of state of a visco-plastic liq-

uid, similar to Chapter 4 (Eq 4.7), in the form

&γ
η

σ σ= 1 ( )
p

y−

which has correct meaning when σ σ> y .
The flow of a visco-plastic liquid through a tube occurs only when shear stress

at the wall (maximal shear stress existing in a material) exceeds the yield stress,
i.e., when

σ σw y>

If this condition is fulfilled, a flow occurs in a layer adjacent to wall. It is clear
that, at an axis of a symmetrical tube, the shear stress is zero and there is cen-
tral zone near the axis where stresses are always lower than the yield stress. It
means that, in movement of a visco-plastic liquid through a tube, there is
two-zone pattern: flowing layer near a wall and non-deformable plug-like zone
around an axis. This pattern has been already shown in Figure 5.4c, and it is the
same for any cross-section of a straight channel.

Volume output in movement of a visco-plastic liquid is a sum of two compo-
nents - flow through a near-wall ring and plug movement at the central zone.
The solution of the hydrodynamic problem for a visco-plastic liquid is known as
the Buckingham - Reiner equation

Q = R
8

P
L

1 4
3

+ 1
3

4

p

4π
η

β β∆ −





[5.53]

where

β σ
σ

= w

y
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The equation is written in the form of the classical Hagen - Poisseuille equa-
tion (item in the front of the square brackets) and a correction term (inside the
square brackets), which reflects the effect of plasticity.

If we have the movement of a visco-plastic liquid, under sufficiently high pres-
sure gradient with developed flow zone, for example if β< 0.5, then it is possible
to use the approximate form of Eq 5.53:

Q R
8

1 4
3

4

p

≈ −

 


π

η
β

The structure of Eq 5.53 allows one to rewrite it with variables used for a New-
tonian liquid using shear stress and shear rate values related to a wall:

&γ σ
η

β βw, N
w

p

4= 1 4
3

+ 1
3

−
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


[5.54]

where as before

σ γ π
ηw w, N

4

p

= PR
2L

; = R
8

∆
&

Another form of the last equation for β < 0.5 is

σ σ η γw y p w, N= 4
3

+ &

If the real shear rate at a wall, in movement of a visco-plastic liquid, is to be
found, it can be done using the following equation

& &γ γ β
β βw, VP w, N 4

= 3(1 )
3 4 +

− −
−

[5.55]

Values of shear stress and shear rate measured at the same point (at a wall)
can be used for constructing flow curves of visco-plastic liquids.
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Many other solutions of different hydrodynamic problems are known for
visco-plastic liquids. Their main feature is the existence of a non-deformable
plug in a zone where stresses are lower than the yield stress in one-dimensional
flows or its invariant analogue in multi-dimensional deformation pattern. Ana-
lytical solutions of these hydrodynamic problems are used for various applica-
tions related to practical use of such materials, for example transportation of
greases through tubes or their work in bearings, designing pumping devices for
paints, displacement of sealants, and so on.

5.5.4 PENETRATION OF A CYLINDER INTO A VISCOUS MEDIUM

The penetration of a symmetrical hard (solid) body into a viscous medium is a
model of numerous real applications, for example, the technology of metal roll-
ing, stamping of plastic materials, moving auger in a soil or oil layer, and so on.

It is possible to separate three main cases:
• flow of a liquid between two coaxial cylinders along their walls - Figure 5.6a
• penetration of a solid body into a vessel with a bottom - Figure 5.6b
• penetration of a solid body into an infinite ”sea" - Figure 5.6c.
The general similarity of all three cases is that they are all drag flows originat-

ing from the movement of solid borders. In this sense they are close to the drag
flow discussed above. It is especially evident in the first case, because if the gap
between cylinders is small we arrive at flow of a liquid between two parallel
planes. However, if the gap is not small we meet with a new problem.

The velocity distribution in flow of a Newtonian liquid between two cylinders
as in Figure 5.6c is described by the equation

v(r) =
(V + V )lnr R

lnR R
Vi o i

o i
i− [5.56]

Certainly it is very easy to change this equation for changing directions of
movement of both cylinders or to analyze the case when one of the cylinders is
not moving ( Vo or Vi is zero).

Let us discuss the situation shown in Figure 5.6b. In the general case, the
shape of both bodies (a penetrating body and a vessel) can be quite arbitrary, i.e.,
radii of an inner cylinder, Ri, and an outer cylinder, Ro, are functions of the coor-
dinate z, directed along the axis of cylinders: Ri(z) and Ro(z). Then, two cases are
possible: a penetrating body has a sharp top or a flat bottom of the radius R. In
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the latter case Ri(z = 0) = R.
The main parameter of interest in this problem is the resistance force F which

must be applied in order to push a penetrating body into a viscous liquid. This
value consists of two components:

• due to viscous friction along the side surface of a penetrating body, Ff; it can
be found if we know shear stresses on the surface;

• due to pressure acting onto the penetrating body Fp; this value is also a sum
of two components - pressure on the side surface of a penetrating body, Fp,1,
and pressure acting on the flat bottom, Fp,2. The first component is absent if Ri

is constant, i.e., if a penetrating body is a straight cylinder of a constant ra-
dius, R. The second component is absent if a penetrating body has a sharp
top and R = 0.

Let us assume that the gap between a penetrating body and an outer vessel is
small, so we can treat the flow as uni-dimensional. The velocity of a movement of
a penetrant is V and is assumed to be constant. At the initial moment, a pene-
trating body touches a surface, then it begins to sink into a liquid forcing a liquid
up to a gap. The height of a layer is H, and the distance from the top of a pene-
trating body to the bottom of a vessel is l, both values are changing in time, pro-
portional to sinking of a body into a liquid.
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All conclusions concerning resistance force can be made if we know two charac-
teristics of the flow - velocity and pressure distributions. Certainly both depend
on rheological properties of a liquid. Let us analyze the problem for a Newtonian
liquid.

The general solution for the velocity distribution in flow between cylinders is
known. It looks rather bulky though, in fact, it is not too complicated:

V (r) = V
lnr R

lnR R
+ 1

4
p
z

r
R lnr R R lnr R
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o

i o
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2
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


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[5.57]

where r is a current radius.
The pressure gradient enters Eq 5.57 and it must be found independently. The

pressure distribution is

p(z) = 4 V dz
(R + R )lnR R (R R )H

z

o
2

i
2

o i o
2

i
2

−
− −∫η [5.58]

Now, we can calculate all components of the resistance force.
In order to find Ff, we need to know shear stresses at the solid surface. They are

found from

σ η=
dv
dr

, at r = R (z)z
i



 




Then we can calculate shear friction component of resistance

F = 2 V
(R R )dz

(R + R )lnR R (R R )
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2

πη ∫
−

− −
[5.59]

The integral can be easily calculated if both functions Ri(z) and Ro(z) are
known, and they are known because in analysis of any real problem, the shape of
a penetrating body and a vessel are known.

The component of the resistance, originated from pressure acting onto the side
surface of a solid body Fp,1, is calculated as
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F = 2 p(z)R (z)
dR
dz

dzp,1
0

H

i
iπ∫ [5.60]

where p(z) is pressure distribution given by Eq 5.58.
Certainly, it is seen that Fp,1 = 0 if dRi(z)/dz = 0, as has been mentioned above.
The component of the resistance, due to pressure acting on the bottom of a pen-

etrating body is calculated as

F = 3
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[5.61]

where R is a radius of a flat bottom.
If R = 0 (a penetrating body has a sharp top) this component of the resistance

force is absent.
An interesting and important case is a narrow gap between two cylinders:

δ= R R << Ro i i−
In this case all above written formulas can be simplified and the approximate

relationships are as follows.
Resistance due to shear friction force:

F 6 V
R

dzf
0

H
i
2

2
≈ ∫πη

δ
[5.62]

Resistance due to pressure on the side surface:

F 12 V
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Resistance due to pressure on the bottom of a penetrating body:
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[5.64]
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It is rather evident that the relative impact of all these components on a net re-
sistance force differs, and it depends the depth of penetration of a body into a liq-
uid besides all other factors concerned. It can be analyzed quantitatively based
on Eqs 6.62 - 6.64, but it is clear that the role of pressure acting on a bottom of a
penetrating body increases when the body approaches the bottom of a vessel.

Let us consider the situation when a round cylinder is penetrating into a cylin-
drical vessel. In this case we have: Ri = R = const and Ro = const. Let us assume
that Ro - R << R, i.e., the gap between cylinders is narrow. In this case Fp,1 = 0. It is
also reasonable to think that Ff < Fp,2. Then, the following equation allows one to
calculate the resistance force

F V 3
2

R
l

+ 6R H4

3

3

3
≈


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


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δ
[5.65]

We can introduce the depth of penetration, ξ, and obtain

H 1+ R
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The final expression for the resistance force is as follows
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[5.66]

This solution of the hydrodynamic problem under discussion can be used for
designing dampers, calculating forces in hot stamping of metals and plastics
when a puncheon is pressing in a liquid medium during a technological process.

If an outer cylinder is absent, it describes penetration of a solid body into infi-
nite liquid medium, as in Figure 5.6c. We may analyze this problem for the case
when a penetrating body is a thin flat plane (Figure 5.7). The velocity of penetra-
tion is constant and equal to V. In this case, on the contrary to the above dis-
cussed, the flow of a liquid is two-dimensional and the component of velocity vz

depends on two coordinates y and z.
The solution of the problem regarding the velocity distribution in a liquid me-

dium is known:
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where ρ is density of a liquid and Erf(x) is an
error function determined by the equation
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Now, the final expression for the resistance force, F, for a thin plane penetrat-
ing into a viscous Newtonian liquid and the depth of penetration, H, can be
found. For a plane of the width B, considering two sides of plane, the following
equation is valid:

F = 4B HV3
1
2ηρ

π

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




 [5.68]

The situation included in Figure 5.6c - penetration of a cylinder into an infinite
medium - can also be analyzed theoretically. The analytical solution of this prob-
lem is known and can be found in textbooks on hydrodynamics.

It is worth saying that the last problem is very important for penetration of a
tube into different media, for example in oil industry. In this case, the soil can be
treated as a Newtonian liquid and the known solutions can be applied to this
problem only as the first approximation. In fact, real rheological properties of a
medium must be taken into consideration, i.e., those of a soil and an oil layer.
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The solution of this problem can be reached if a proper description of the rheo-
logical properties of a medium is used, followed by the same formal operations
which have been utilized in analyzing the problem for a Newtonian liquid.

5.5.5 RESISTANCE TO ROTATION OF A THIN DISK IN A LIQUID

Let a thin disk rotate in a viscous fluid around its axis. The width of a disc is
much smaller than its radius, R, which allows one to neglect the edge effects (the
so-called von Karman problem).5 It is necessary to find the resistance to a ro-
tation as a function of its speed and R. This problem is a model for many real
technological operations, for example, for mixing a liquid by rotation of an agita-
tor.

The torque, M, is determined for a Newtonian liquid as

M = 4 r
V

z
dr

0

R
2

z=0

πη ϕ∫
∂
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







 [5.69]

where z-coordinate axis is oriented normal to the surface of a disc, r-coordinate
axis coincides with the radius of a disc, and Vϕ is a circular component of the ve-
locity vector.

Detailed calculations of the rate of shear field and then a torque give the follow-
ing result

( )M = 11.8R4 3
1
4ηρΩ [5.70]

where Ω is the rate of rotation, and ρ density.
In the theory of mixing (agitation), the dimensionless coefficient of viscous fric-

tion, Cmf, is usually used. Then, it is easy to demonstrate that the dependence of
this coefficient on the dimensionless characteristic Reynolds Number is

C = 1.8
Re

mf 0.5
[5.71]

where the Reynolds Number for the problem under discussion is expressed as
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Re = R2Ωρ
η

The numerical value of the coefficient in Eq 5.71 is a result of approximate so-
lution of the hydrodynamic problem. In fact, it can be rather different if we take
into account the edge effect and some other details. Nevertheless, Eq 5.71 is a
good approximation and gives results close to experimental data. Meanwhile,
two limitations must be remembered:

• Eq 5.71 is valid for laminar flow only
• Eq 5.71 is found for a Newtonian liquid.

Transition to turbulent flow changes the law
of resistance. It can be representative if we
consider the dependence of the dimensionless
coefficient of viscous friction on the Reynolds
Number in logarithmic coordinates (Figure
5.8). At Re < Re* (in laminar flow), Eq 5.71 is
obeyed. In transition to the turbulent zone at
Re > Re*, where Re* is the critical value of the
Reynolds Number corresponding to lami-
nar-to-turbulent transition, the viscous resis-
tance has larger effect than predicted by this
equation (dotted line in the range of Re >Re*).
Figure 5.8 resembles Figure 4.18, and indeed
it represents the same phenomenon of the de-
pendence of hydrodynamic resistance on the
rate of flow.

For non-Newtonian flow, Eq 5.71 needs to be modified without changing its
structure. The expression for the Reynolds Number reflects non-Newtonian
properties of a liquid, as in the case of a power-type liquid discussed above. The
value of the numerical coefficient in Eq 5.71 can be different than the 1.8 ob-
tained for a Newtonian liquid. The exact value depends on the rheological prop-
erties of a real liquid and can be found theoretically and/or experimentally for a
real situation of torque resistance during rotation of a disk in various “rheologi-
cal” liquids.
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5.5.6 CONVERGING (DIVERGING) FLOWS

Converging (or diverging) flows take place when a cross-section of a channel is
changing along its axis. Flow in channels with changing cross-section (diffusors
- channels with decreasing cross-section, and confusors - channels with increas-
ing cross-sections) is a rather standard situation in different technological appa-
ratuses and transportation pipes. Therefore, this problem was thoroughly
studied theoretically, and exact solutions are known for Newtonian liquids only.
In all other cases, solutions for “rheological” liquids are found by numerical
methods.

The size of a cross-section can be quite arbitrary, but two cases are of main in-
terest to model real situations. That is:

• flow through a cone channel
• flow in a channel formed by two flat inclined planes.

Basic diagram of flow in a flat
diffusor6 is shown in Figure 5.9, where
definitions of coordinate axes are given
in a cylindrical coordinate system.

We can assume that there is only one
non-zero component of velocity, which
is radial velocity, as shown in Figure
5.9. Velocity equals zero at the walls,
and the velocity profile is symmetrical
to the plane α = 0.

The solution of a hydrodynamic prob-
lem of a Newtonian liquid flow is
known, and one can find it in text-books

on hydrodynamics. It is expressed in the
form of elliptic functions, and velocity
profile and pressure gradient can be cal-
culated for any particular case. For

non-Newtonian liquids, a solution of the problem of converging (or diverging)
flow can be analyzed by computer methods only.

One of the interesting results of the theory of diverging flow of a Newtonian liq-
uid in a diffusor is proof of the fact that a pure converging flow can exist only for
sufficiently small angles, α o , or
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α αo max< [5.72]

where 2 maxα is some critical value of the angle between plates and it depends on
the Reynolds number, Re.

For the problem under discussion

Re = Q
B

=
r V

B
oρ

η
α

η

where Q is volume output, B width of a channel (in the direction perpendicular
to the plane of a drawing), Vo average velocity, and r and α are current coordi-
nates.

If the condition 5.72 is not obeyed, zones with back-streams appear. These
zones can exist near walls, or zones with direct and back streams can alternate,
and the number of such zones depends on Re.

The exact analytical solution for α max is known, though it is rather complex.
For Re > 1 (in the limits of laminar flow), a simple approximate relationship
takes place:

α max
10.2
Re

≈

i.e., the value of α max is small.
In the situation when an angle α o is very small, velocity profile can be calcu-

lated as
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[5.73]

So, the velocity profile at each cross-section (determined for r = const) is para-
bolic, and Eq 5.73 is very similar to the well-known Haven-Poisseuille solution
for flow of a Newtonian liquid through a flat tube. It is quite an expected result,
but it is important to emphasize that it is valid only for very small values of α o ,
i.e., for slightly diverging flat tubes. In the opposite case, velocity profiles appear
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to be non-parabolic.
Let us consider some peculiarities of flow in converging channels (confusors).

Again, simple analysis can be done for Re > 1. In this case, we come to the inter-
esting result: velocity profile appears almost flat for the main part of cross-sec-
tion of a channel, and only near walls is there an abrupt decrease of velocity up to
zero at the walls. It means that viscous resistance occurs in a very thin (narrow)
layer near the walls. According to the theory, the size of this layer is proportional
to (Re)-1/2. This fact is the base for the theory of a boundary layer which explores
the general ideas: effects of viscous resistance to flow are important only at short
distances from the solid surfaces, and then viscous effects are negligible.

The general approach to the theory of flow in conical diverging (converging)
channels is very similar to the analysis of flow in a flat channel with changing

cross section. It is convenient to analyze the
problem in a spherical coordinate system,
where the origin is at the apex of a cone (Fig-
ure 5.10). The flow is symmetrical in respect
to the axis of a cone and two components of
velocity Vr and Vα are present, where r is ra-
dial, and α angular coordinates.

Even for a Newtonian liquid, the solutions
of hydrodynamic (balance) equations are
known in the form of a series only. In the
first approximation (when only the older
member of the series is preserved), pressure
distribution in flow through a round cone
channel is represented in the following
manner:
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η γ
π γ γ

[5.74]

where γ α α=cos and is a current angle calculated from an axis of a cone,
γ αo o= cos , whereα o is an angle between a solid wall of a cone and its axis, r, is a
current radius of a diffusor, ro is a radius of the edge cross section, po is pressure
in this section, and Q is a volume output.
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The preservation of the first member of a series for p(r) is valid for viscous liq-
uids when their viscosity is sufficiently high. This is true for many liquids, such
as polymer melts or crude oils, but for low viscosity liquids, it is necessary to uti-
lize the full solution of a problem, which can be found in standard textbooks on
hydrodynamics.

The pressure drop is proportional to the volumetric output and this is a feature
typical for Newtonian liquids. In a general case, we can think that the relation-
ship between volumetric output and pressure drop, for a Newtonian liquid, must
be linear and can be expressed by an equation

Q = K P∆
η

where ∆P is the pressure drop providing volumetric output, Q, for a Newtonian
liquid having viscosity, η, and K is the geometrical factor depending on the size
of a channel.

The exact expression for K is rather complex, and the first approximation can
be found from Eq 5.74. However, one can find a simpler equation for K, based on
the following arguments. If we consider a conical channel as a sum of round
channels of the length dl, with changing radius, r, it seems reasonable to sum-
marize pressure drops, dp, for all segments of a channel. This values can be cal-
culated from the Hagen-Poisseuille equation, resulting in the expression for ∆P.
Along the way we shall find the following result

K = 3
8L

R R

R R R + R
1
3

2
3

1
2

1
2

2
2

2
2

π
+











where R1 is a radius of a conical channel at the entrance, R2 is a radius of a coni-
cal channel at the exit, and L is the length of a channel (between radii R1 and R2).
However, this result is not adequate for the rigorous solution expressed by the
known series or even its first approximation represented by Eq 5.74.

We can expect that for “rheological” liquids, the relationship between pressure
drop and volumetric output will appear non-linear. Indeed, for a power-type liq-
uid, this relationship is expected to be
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Q = K ( P)(n)
n∆

where the geometrical factor, K(n), can be calculated theoretically from the solu-
tion of a balance equation. Again, it seems that calculating K(n) and summarizing
pressure drop in cylindrical segments of a channel of the length, dl, can lead to
inadequate results.

If a liquid is visco-plastic, the central zone will be motionless, as in flow in cy-
lindrical channels, because shear stress at the axis is absent, and stresses are
less than yield stress near the axis. It is clear that the radius of this plug-like
zone is changing along its length.

A very interesting, special case is a flow of an elastic liquid (i.e., a liquid able to
store large deformation in the course of flow) through a conical channel. Let the
radius of a conical channel be changing along its length from R1 to R2. Then,
bearing in mind that the volume output is constant, we can calculate average ve-
locities at entrance and exit sections Vo,1 and Vo,2. They are

V = Q
R

; V = Q
R

o,1

1
2 o,2

2
2π π

It means that the flow in a conical channel is accelerating and an extensional
gradient of velocities appears. The gradient of velocity equals

&ε =
V V

L
o,1 o,2−

and the extension ratio is

λ =
R
R

1

2

2










Flow of an elastic liquid in a conical channel leads to uniaxial extension, and its
characteristics can be found using the last two equations.

Extension of an elastic liquid in its flow through a conical channel can be effec-
tively used for creation of an orientation which is fixed beyond the exit section of
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a channel. This idea is a basis for the technological operation which is utilized in
production of high-strength and high-modulus polymeric filaments.

5.5.7 MOVEMENT OF A BALL THROUGH A VISCOUS FLUID

The hydrodynamic problem of calculating the force required for a sphere to
move through a viscous liquid was first analyzed by Stokes, and is known as the
Stokes problem.7

Two cases are possible and are
considered in theory. The first is a
steady movement of a solid body
in unlimited (infinite) volume
(see Figure 5.11a). In this case,
solid walls are absent or placed so
far from a moving ball that their
influence is negligible. The sec-
ond case is a movement of a solid
body in a vessel (Figure 5.11b)
where the influence of walls on
the hydrodynamic situation must
be taken into account. The latter
case is close to the situation dis-
cussed above, when the problem
of penetrating a symmetric body
into a symmetric vessel was ana-
lyzed.

A solid ball moving through a viscous liquid is a very popular model of numer-
ous real situations. The simplest of them is the process of sedimentation of solid
particles due to gravitational forces. A moving body does not need to have a
spherical shape but a defined geometrical shape instead. It is a model of various
bodies moving in a sea (submarines and many others). That is the reason why
calculation of a resistance to movement of solid bodies through a viscous liquid is
a very important problem met in different applications.

According to a well-known solution by Stokes, the force, Fs, necessary to sup-
port the steady movement of a ball in a Newtonian liquid is calculated as

F = 6 RVs πη [5.75]
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where R is a radius of a ball (sphere), V velocity of the steady movement.
Further analysis shows that this solution is valid at low Reynolds Numbers

calculated as

Re = 2RVρ
η

where ρ is density of a liquid.
It was shown that influence of inertial forces (i.e., transition to situations when

Re is not small) can be analyzed using correction factors. According to
Goldstein’s calculations, the exact formula for resistance to movement of a ball,
when Re is not small, is as follows

F = F 1+ 3
16

Re 19
1280

Re +s
2−





K

where FS is the Stokes force calculated from Eq 5.75.
It is evident that the second member in the brackets (linear correction term)

can be neglected in comparison with 1 when the Reynolds Number is of the order
of 0.1.

The movement of a ball due to gravitational forces is of special interest. In this
situation, the moving force, P, is calculated as a difference between weight of a
ball and hydrostatic flotation force:

P = 4
3

R g( )3
s 1π ρ ρ− [5.76]

where g is the gravitation constant,ρs density of a moving solid body,ρ1 density
of a liquid.

In the steady movement, Fs calculated from Eq 5.75 and P calculated from
Eq 5.76 are equal, and then we can find the velocity of steady movement

V = 2
9

gR2 s 1ρ ρ
η
−

[5.77]
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If velocity is measured and densities of a solid ball and liquid are known, Eq
5.77 can be used to determine viscosity of a Newtonian liquid. It is quite evident
that

η ρ ρ= 2
9

gR
V

( )
2

s 1− [5.78]

This formula can be used only with the following limitations:
• it is valid for steady movement of a ball
• it is possible to neglect the influence of walls of a vessel
• rheological properties of a liquid are described by the Newton-Stokes Law
• movement of a ball is rather slow and Re < 0.1.
If movement of a ball is not very slow, and inertial effects must be taken into

consideration, the equation for viscosity calculation must be modified:

η η ρ
ρ ρ

= 1 27
16

V
gRs

2
1

s 1

−
−









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where ηs is viscosity, calculated according to the Stokes formula, Eq. 5.77. The
second member in the brackets is a correction factor for inertial effects.

A very special modification of the Stokes problem is related to the situation
when a moving ball is not a solid but liquid and its viscosity is ηo . Theoretical cal-
culations show that in this case the velocity of steady movement can be calcu-
lated as9

V = 2
3

g( )R +
2 + 3

o
1

2 o

o

ρ ρ
η

η η
η η

−
[5.79]

where ρ o is density of a liquid ball, and ηo its viscosity.
It is evident that if ηo → ∞, we may apply Eq 5.77 for a solid ball moving in a

viscous liquid. Another limiting case is connected with the assumption that
η ηo << , for example, the case of a gas bubble in a viscous liquid. Then

V = 1
3

g R2

− ρ
η

[5.80]
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The “minus" sign, in the last equation, shows that a gas bubble moves in a direc-
tion opposite to the positive coordinate axis, i.e., up rather than down as in for-
mer cases.

Both Eqs 5.79 and 5.80 can be used for practical applications in different tech-
nological problems related to liquid-liquid separation, degassing, and so on.

Eq 5.77 is a linear relationship between velocity and reciprocal viscosity. Then,
for a Newtonian liquid, the resistance to movement of a ball can be written as

F = K Vη [5.81]

where K is a geometrical factor. For a spherical body

K = 6 Rπ

For solid bodies of various shapes, Eq 5.81 seems to stay valid but the problem
of calculation of the geometrical factor is quite independent and requires sepa-
rate theoretical or experimental determination. Sometimes, the same equation,
as for a sphere, is used, and in such case, R means some geometrical parameter.
For example, if a moving body is a thin disk of a radius, R, and a disc is moving in
the direction perpendicular to its plane, then

R = 8a
3π

If this disk is moving along its plane, then

R = 16a
9π

Other situations (for example, ellipsoids, cylinders, and so on, moving in a New-
tonian liquid) also can be investigated by methods of theoretical hydrodynamics
which allow us to establish values of the geometrical factor. Nevertheless, in
practice, especially for bodies of complicated geometrical shape (for example,
submarines), it is preferable and more reliable to find values of K experimen-
tally or on the basis of some empirical formulas.
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It is also useful to have a formula for calculation of stress field around a moving
ball. The complete stress distribution can be calculated but the solution is rather
complex. The most important value is the maximum shear stress. It acts at the
surface of a ball and can be found as

σ ρ ρmax s 1= R
3

( )g− [5.82]

Now, let us consider what happens if a ball moves, not in infinite liquid space,
but in a vessel where the influence of its walls cannot be neglected; for example,
if a ball is falling in a cylindrical tube.

Theoretical analysis shows that in this case, Eq 5.77 for viscosity must be mod-
ified by adding a correction factor. According to the well-known calculations by
Faxen-Ladenburg, viscosity of a Newtonian liquid is expressed as8

η η= 1 2.104 R
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4

where Ro is a radius of an outer cylinder (tube) along which a ball is moving and
ηs is viscosity calculated from the Stokes equation (5.77).

It is easily seen that corrections become comparable with 1 at (R/Ro) > 0.01.
Then, in many practical cases, the introduction of corrections is necessary, and
only in some special cases, is it reasonable to neglect the influence of the walls of
a vessel.

If a liquid is non-Newtonian, the resistance force can be found by numerical so-
lution of hydrodynamic equations with an appropriate constitutive equation.
Simple final expressions are absent, but we can think that, for a “power law” liq-
uid, the dependence of the resistance to movement, F, at velocity, V, can be ex-
pressed by the power equation

F = K V(n)
n

where K(n) is a geometrical factor, as before, and n an exponent in a power law (of
the rheological equation of state).
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In application to shear-rate dependent viscosity, results of determination of
apparent viscosity depend on a driving force, or shear stress. In this case the fol-
lowing procedure is useful: it is necessary to make measurements and calculate
apparent viscosity at different shear stresses and then extrapolate experimen-
tal data to “zero” conditions (zero shear stress or zero shear rate). This limiting
“zero” apparent viscosity can be treated as a quite reliable value of maximum
Newtonian viscosity.

The method of extrapolation can be rather arbitrary. For example, we can as-
sume that in the range of relatively low shear stress, the dependence of apparent
viscosity on shear stress is expressed as

η η
σ

=
1+ A

o
2

where ηo is maximum (“zero-shear”) Newtonian viscosity and A is constant.
Then, Newtonian viscosity is found by extrapolation of η σ( )dependence toσ = 0

in coordinates η σ-1 2− . Shear stress is calculated from Eq 5.82.
Other methods of extrapolation, to σ = 0 in various coordinate systems used to

determine “zero-shear” Newtonian viscosity, can also be found in the literature.
If a liquid is visco-plastic, then it can flow (i.e, a ball can move through such a

medium) only if maximal shear stress calculated from Eq 5.82 exceeds yield
stress. In the opposite case, a medium behaves as a solid and it is irrelevant to
consider resistance to the movement of a ball.

5.5.8 COMPRESSION OF A LIQUID BETWEEN TWO PARALLEL DISKS

Let a Newtonian liquid be placed between two parallel round plates (discs).
The liquid layer is compressed because of bringing the plates together
(Figure 5.12). This problem was first analyzed by Reynolds.10

There are peculiarities of flow under discussion, as follows:

• It is reasonable to assume that the radial component of velocity dominates,
i.e.,

v << vz r
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and besides

∂
∂

∂
∂

v
r

<<
v
z

r z

(orientation of the axes is shown
in Figure 5.12).

• Inertial forces are neglected, i.e., we
analyze the case of relatively low
values of the Reynolds Number.

• The flow is symmetrical in respect to
the axis passing through the center
of the disks.

Two different basic cases are of pri-
mary interest:

• flow induced by the preset constant velocity of the upper plate moving down:

at z = h, vz = -V = const, and vr = 0

where h is the distance between parallel plates.
• flow generated by a constant force applied to the upper plate.

Let the velocity of the upper plate, -V, be known. Then, we would like to know
• time dependence of the force which resists approaching the disks and must

be applied in order to support movement
• velocity and pressure profiles.
First, let us consider the situation when a liquid completely fills the space be-

tween disks and when they are approaching each other the surplus of a liquid
squeezes out the gap and does not take part in further consideration, so the vol-
ume of a liquid in the gap decreases with time.

It is evident that, at V = const, the distance between disks, h, is linearly de-
creasing with time because

v = dh
dt

A. Ya. Malkin 175

Figure 5.12. Compression of a liquid layer
between two parallel plates (discs) squeez-
ing out a liquid from the gap.



The solution of the problem under discussion for velocity distribution is

v = 1
2

p
r

(z hz)r
2

η
∂
∂

− [5.83]

and we need to know pressure distribution

∂
∂

−p
r

=
6 v

h
r

3

η
[5.84]

finally we have

v
V

= 3 ( )r 2α γ γ− [5.85]

where dimensionless sizes are used:

α γ= r
h;

= z
h

Pressure distribution along the radius is

p = p + 3 V
h R

(1 )o 3 2

2η ζ− [5.86]

where ζ = r/R is a dimensionless radius, and po is pressure at the outer free sur-
face, at r = R.

The integral of p(r) along the radius gives the full force, F, required to create
movement with constant velocity

F = 3 VR
3h

4

3

πη [5.87]

The resistance to approaching plates increases with h-3, and h grows (at
V = const) linear to time. These results show why it is so difficult to squeeze out a
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liquid from narrow gaps pressing solid boundary
surfaces: when the distance between surfaces, h, be-
comes very small, the force grows rapidly up to un-
limitedly high values, and a very thin film of a liquid
always stays in a gap.

Let us now discuss the situation when the size of
discs is large and a liquid stays in the gap between
discs (Figure 5.13), i.e., we wish to compress a small
liquid drop. In this case the condition of constant liq-
uid volume is valid

π πR h = R ho
2

o
2

where Ro and ho are initial radius and height of a liquid droplet, respectively, and
R and h are current (time-dependent) values of the droplet sizes.

In this situation the resistance force is calculated as

F =
3 VR h

h
o
4

o
2

5

πη

and, in the case of constant volume of a liquid droplet, the resistance force in-
creases with h-5, i.e., even faster than in the former case, when a liquid is
squeezed out the gap.

If a liquid placed between plates is non-Newtonian, it is not very difficult to
make all necessary calculations and find all analogous formulas for velocity and
pressure distribution, resistance force, and so on. The form of these formulas de-
pends on the accepted rheological equation of state of a liquid.

However, if a liquid is not only viscous but viscoelastic (see Chapter 7), the gen-
eral solution does not exist.

When a compressing force, but not a velocity, is preset, the movement of an up-
per plate becomes slower and slower when discs are approaching each other be-
cause of increasing resistance to flow in a narrow gap, which again
demonstrates how difficult it is to squeeze out a liquid from a narrow gap.

The results of theoretical calculations discussed above are widely used in the
rubber industry. There are some standard methods to characterize raw materi-
als by their behavior in compression between parallel plates (in so-called com-
pression plastometers). These methods are particularly convenient for such
highly viscous liquids as raw rubbers.
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of a liquid between two
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Perhaps the main application of the flow of a liquid between compressing
plates is related to understanding the performance characteristics of greases in
sliding bearings, and this problem successfully models the main peculiarities of
grease performance. However, industrial greases are very often visco-plastic
and/or viscoelastic liquids, and when quantitative characteristics of their per-
formance are of interest, it requires rigorous analysis of the complete hydrody-
namic problem with an appropriate rheological equation of state. In this case,
taking into account plasticity of a liquid is especially important, because it is
easy to imagine that a thin layer of a solid-like material will stay in the gap be-
tween solid surfaces, and this circumstance prevents the contact of sliding bod-
ies.

5.5.9 HYDRODYNAMICS OF ROLLING

The situation shown in Figure
5.14 is a model of many indus-
trial applications including roll-
ing of metal slabs, stretching
wires, processing of plastics and
rubber compounds, and so on.
That is why this model was in-
vestigated for different rheologi-
cal liquids. In order to give an
idea about main peculiarities of
the model, we shall cite some re-
sults primarily related to flow of
a Newtonian liquid.11

Let a flat slab (strip) of a viscous
or visco-plastic liquid pass
through the gap between two

rolls, with the driving force for this movement being the rotation of the rolls. The
initial width of a strip is 2H and the width of a gap is 2h, H and h being much less
than the radius of the rolls, R. The main characteristic parameter of the stream
is the outstripping factor, δ, determined as

δ=
Q Q

Q
o

o

−
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where Qo is an apparent quantity of a material which would pass through the
gap if a material is solid-like and moves with the circumferential velocity of the
rolls:

Q = 2 RBho ω

where B is the length of the rolls, ωis angular velocity (frequency of rotation),
and Q is a real quantity of a material passing through a gap between the rolls:

Q = 2 v dy
0

h

x∫ [5.88]

vx is a velocity component directed along the x-axis.
Theoretical calculations give the following approximate expression for the

δ-factor in rolling of a Newtonian liquid:

δ α
α
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+ 1
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whereα = H/h andβ= h/R are dimensionless geometrical parameters andβ<<1.
It appears that the δ-factor is completely determined by geometrical sizes of

the apparatus used. This is true for a Newtonian liquid. But in fact (and experi-
ments confirm it) theδ-factor depends on rheological properties of liquid and can
be distinguished from the values calculated using Eq 5.89.

Theory also gives formulas for pressure distribution along the surface of rolls,
net force, F, which moves rolls apart, and power consumption in roll rotation.
For a Newtonian liquid, F can be expressed by a linear relationship:

F = Kηω

where K is a geometrical factor, calculated via α β, , and R.
There are a lot of publications devoted to calculations of the dependencies of

the force, F, on geometrical sizes of an apparatus and rheological properties of a
material for non-Newtonian and visco-plastic liquids. The results were obtained
by either analytical or finite element analysis methods and can be used to design
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industrial equipment and determine its technological characteristics. The final
formulas and applied guidelines for calculations can be found elsewhere.12 One
important fact worth mentioning: for “rheological” liquids, the dependence of F
on angular velocity is not linear as for a Newtonian liquid; this result is quite
analogous to other above-discussed conclusions for flows of different types when
we transit from Newtonian to non-Newtonian liquids.

5.5.10 FLOW IN A LUBRICANT LAYER

This is a rather special but very important
case of flow, modelling deformations of a
grease in a gap, not in compression (as dis-
cussed in previous section), but in a tangential
movement. In fact, it is a development of a the-
ory of flow between two round cylinders when
eccentricity (shift in position of axes of cylin-
ders) exists, as shown in Figure 5.15. It is a
model of a radial bearing with a lubricant and
shift of a bob (rotating shaft) from the common
axis can be initiated by a radial force.

Theoretical calculations10,13 give the angular
distribution of pressure. If we integrate this

distribution through an angle, we arrive at the main result of the theory of lubri-
cation. This result is a proof that an additional radial supporting force appears,
and this force prevents shift of a bob from the common axis and favors its stabili-
zation in rotation. This force, F, is calculated as

F =
6 SR V

(1+ 2 )( 1)

i i
2

2 2 2
1
2

η α

δ α α −
[5.90]

where Ri is a radius of a bob (inner cylinder or a rotating shaft), Vi is a speed at
the surface of a bob (Vi =ωRi),ωis frequency of rotation, S is the surface of a bear-
ing (S = 2πRiL), L is the length of a bob,δis the average gap between cylinders
(δ = Ro - Ri), Ro is a radius of an outer cylinder, α is dimensionless eccentricity:
α δ ε= and ε is eccentricity, i.e., the distance between axes of inner and outer
cylinders.
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It is also possible to find the torque, M, for a rotating bob. The resulting equa-
tion is

M =
SV R 2 (2+ )

(1+ 2 )( 1)

i i
2

2 2
1
2

η
δ

α α

α α −
[5.91]

There is a correspondence between eccentricity and two main parameters: sup-
porting force, F, and torque, M. Eq 5.90 can be rewritten as

F
6 SV R

=
2

i i

δ
η

γ

where

γ α

α α
=

(1+ 2 )( 1)

2

2 2
1
2−

is a function of eccentricity.
Then, it can be easily demonstrated that at low values of γ (i.e., at low radial

forces or - what is more important - at high velocities of rotation)α grows unlim-
itedly (i.e., eccentricity, ε, becomes very
small). It means that an increase in rate of
rotation really results in stabilization of the
position of a bob close to the axis of an outer
cylinder.

The limiting situation corresponds to the
case of α → ∞. This case can be modeled as
shown in Figure 5.16: an inclined plate is
moving relative to a flat surface. Change of
the distance between plates is characterized
by the linear relationship

h= h 1+ k x
ao



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

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surface and a sliding inclined plate.



where the meaning of notations a, x, h, and ho is given in Figure 5.16 and k char-
acterizes the inclination of the upper plate. Coordinate axes are also shown in
this Figure.

Sliding of a flat plate is a limiting case of the full theory, which corresponds to a
slightly forced or very quickly rotating shaft when the eccentricity is small. In
this situation, a supporting force, F, also appears, and it is calculated as

F = 6 VBa
k h

ln(1+ k) 2k
2+ k

2

2
o
2

η −





[5.92]

where B is the size of plates in the direction perpendicular to the plane of the
drawing.

It is easy to prove that P passes through a maximum at k ≈1.2, and at this value
of k, maximal value of the supporting force is

F 0.16 V a B
h

max

2

o
2

≈ η

It is also possible to find the resistance force, P, which acts against the direc-
tion of movement (sliding) of an upper plate

P = VBa
kh

4ln(1+ k) 6k
2+ k

2

o

η −
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


[5.93]

Thus, due to the appearance of a supporting force, F, a lubricating layer can re-
sist pressure and this is the physical reason why a lubricant works.

Though the classical theory of lubrication was developed for a Newtonian liq-
uid, in fact, the majority of lubricants used in industry are “rheological” liquids
and the whole theoretical structure built for a Newtonian liquid must be re-
peated for any other liquid if quantitative results are expected. It is relatively
simple for a pure viscous liquid, but introduction of elasticity leads to many new
effects which depend on real properties of a medium (or, in other words, on the
rheological model used). Therefore no general solution exists, but the main idea
concerning the existence of a supporting force in a lubricant layer is valid for any
liquid.
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5.6 CONCLUDING REMARKS

In real life we meet with liquids very often. In some cases we cannot be quite
sure whether a material is a liquid or not. This is true, for example, for such sub-
stances as resins (especially at low temperatures), bitumen, semi-liquid glasses,
glues, and so on. Therefore, we need a rigorous definition of a liquid. Such defini-
tion can be based on the idea that liquid is a material which flows, i.e., its defor-
mations are irreversible, and for a pure liquid, no elastic deformation can
exist. Moreover, liquid is a substance which can flow at infinitesimally small
stresses. However, this definition requires estimation of a time factor, because
development of deformation proceeds in time and always there is a danger that
an experimenter did not have enough time to observe any deformations at all.
That is why it is correct to consider liquid-like behavior of matter “from an ex-
perimental point of view”. If relaxation takes place much quicker than defor-
mation (or stress) is measured, it is reasonable to treat this substance as a
liquid.

Another approach to an idea of flow of a liquid is related to the concept of dissi-
pation of energy supplied to create flow: work done for deformation of a liquid
is completely converted to heat (dissipates), which is opposite to deformation of
solids, where work is completely stored, or to viscoelastic media, where work is
partly stored.

The position intermediate between solids and liquids is occupied by
visco-plastic bodies: they cannot flow up to some limit of stress (yield stress)
and at low stress they behave as solid-like bodies. But at stress higher than the
yield stress, such media flow, i.e., they behave as typical liquids. The level of the
yield stress can be very low (infinitesimally small), and that is why, in practice,
it is not always possible to distinguish between pure viscous and visco-plastic
media.

Rheological equation of state (constitutive equation) for any liquid can be for-
mulated either in terms of relationship between invariants of stress and rate of
deformation tensors or as energy dissipated as a function of invariants of these
tensors. In this case, the criterion of yielding for a visco-plastic liquid must be
also established in terms of invariants of the stress tensor.

One of the fundamental concepts in rheology is an idea of a Newtonian (or
Newton - Stokes) liquid. This is the simplest linear liquid, i.e., liquid for
which linear relationships between components of stress and rate of deforma-
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tion tensors exist. The coefficient for this linear relationship is viscosity (or
Newtonian viscosity), and according to the definition, viscosity of Newtonian
liquids is a material characteristic of a liquid which does not depend on condi-
tions of flow (i.e., on stresses or rates of deformation).

Viscosity of a Newtonian liquid can be measured at different geometrical
schemes of deformations. As a general rule, the term viscosity is related to shear
flow, and this coefficient is a constant of proportionality between shear stress
and rate of shear. All other coefficients of viscosity are related to this value. For
example, a coefficient between normal stress and rate of extension measured in
uni-dimensional stretching, called Trouton viscosity, is equal to the
three-fold value of the shear viscosity of this liquid. It means that shear viscosity
is a unique material parameter of a Newtonian liquid.

However, if a liquid is anisotropic (as liquid crystals), some independent vis-
cosities exist even in a linear model of a liquid, and viscosity appears to be a ten-
sor value by itself.

Many real liquids are non-Newtonian. It means that their apparent coeffi-
cient of viscosity, determined as a ratio of shear stress to shear rate of deforma-
tions, depends on conditions of flow. Various mathematical models of
non-Newtonian flow have been proposed, discussed in literature, and used for
solving applied problems. Among them, one of the most popular is the so-called
“power” liquid. This liquid is characterized by power dependence of shear
stress on shear rate.

Different mathematical equations are proposed for visco-plastic liquids, too.
The simplest of them is the Bingham model. In this model, shear rate is pro-
portional to the difference between current shear stress and the yield stress. But
apparent viscosity of the Bingham model is not constant, but rather, is a de-
creasing function of shear stress.

Rheological models of liquids are used by for comparison of different liquids.
This comparison can be done for two levels:

• different liquids can be distinguished by the constitutive equation which de-
scribes their flow properties in the best way

• liquids of the same rheological type can be distinguished by the values of ma-
terial constants which enter these equations as numerical coefficients.

The main field of application for rheological equations of state (constitutive
equations) is in solving hydrodynamic problems, which are described by
balance equations with appropriate boundary conditions.
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To solve a hydrodynamic problem means:
• to find space distribution of stresses, velocities, and pressures for a certain

volume determined by solid boundaries
• to establish relationship between integral force and kinematic parameters

of flow, such as pressure drop and output in flow through channels (inner
problems) or resistance force and velocity for movement of a solid body
through a liquid (outer problems).

There is a great variety of hydrodynamic problems because the number of pos-
sible configurations of channels through which liquids flow and solid bodies
moving inside a liquid is unlimited. But some situations are very typical and are
widely-used for modelling real technological and engineering situations. These
are: plane uni-dimensional flow, flow through tubes with different constants
and changing cross-section, movement of solid bodies in a liquid, compression of
a liquid layer between planes, rotating rolls, and so on.

These are only a few examples, and certainly many other hydrodynamic situa-
tions exist. For any of them, the hydrodynamic problem can be solved by analyti-
cal and/or computer methods.

If any of these hydrodynamic situations is analyzed for a Newtonian liquid, we
can expect that a linear relationship between integral force (or torque) and kine-
matic parameters (velocities) takes place. For non-Newtonian liquids, analo-
gous relationships are nonlinear. In the case of visco-plastic media, motionless
zones appear in areas where stresses do not exceed yield stress of a material.

Some hydrodynamic problems for a Newtonian liquid can be solved analyti-
cally; others require applying approximate or computer methods to find solu-
tions. For non-Newtonian liquids, mathematics becomes (as a general rule) too
complex to find solution in an analytical form and the methods of computational
analysis are used.
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6

ELASTIC SOLIDS

6.1 DEFINITIONS

The concept of an elastic solid is an idealization of the real behavior of numer-
ous materials. Some of them are close to this model − for example, steel and
stone. Others are rather far from this ideal model, but in some applications they
can also be treated as elastic solids − for example, wood, rubber, and concrete.
These examples show that the elastic solid is in fact a concept of behavior rather
than a particular material. On the other hand, the same material can behave as
a solid-like or liquid-like material, depending on the time-scale of observation.
Consequently, the type of rheological behavior is determined by the Deborah
Number, i.e., the ratio of inner and outer time-scales.

The basic idea of an elastic solid has already been formulated in Chapter 4.
The elastic solids are materials which completely store work of their deforma-
tion and return energy after removal of the outer forces.

Another approach to the idea of elastic solids can also be advanced. If elastic
solids are treated as materials with an unambiguous relationship between
stresses and deformations, i.e., if we know the stress field, we know the space
distribution of deformations, and vice versa.

The main point in both concepts is absence of time or time-effects. If deforma-
tion is time-dependent (in a permanent stress field), it is always a characteristic
feature of viscous (or dissipative) behavior of matter, though it can be combined
with elasticity.
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The next step in formulating the rheological model of an elastic solid, i.e., in
writing its rheological equation of state (or constitutive equation), is a transition
from components of stress and deformation tensors observed in any experiment
dealing with invariant formulation. It can be an expression for elastic potential
(stored energy) as a function of invariants of stress or deformation tensor or
both. It can also be a relationship between invariants of stress and deformation
tensors. Both approaches work in formulating rheological equation of state, and
the result can be reformulated from the energy concept to the components of
stress-vs-deformation tensors.

This transition is based on a fundamental expression for elastic potential
(stored energy):

dW = d
i j

ij ij∑ ∑ σ ε [6.1]

Continuing, we arrive at the following evident formula for the stress compo-
nents calculated from an elastic potential

σ
εij

ij

= W∂
∂

[6.2]

and if we know W as a function of deformations, then components of the stress
tensor can be easily calculated from Eq 6.2.

It is also important to have a method of conversion from the stress-vs-deforma-
tion relationship, written in invariants, to the elastic potential function. W can
be written as a function of three invariants:

W = W(E1, E2, E3)

where E1, E2, and E3 are invariants of the tensor of large deformations.
Then using the ordinary rule of differentiating complex functions, we have

σ
ε εij

ij k=1

3

k

k

ij

= W = W
E

E∂
∂

∂
∂

∂
∂∑ [6.3]
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The last equation gives an answer to the problem formulated above: indeed, if a
function W(E1, E2, E3) is known, we can calculate components of the stress tensor
from Eq 6.3.

6.2 HOOKEAN ELASTIC MATERIAL

The initial formulation of the concept of the Hookean elastic material has been
given for uniaxial extension by Eq 1.2.

σ εE = E

where E is the elastic (Young) modulus.
Sometimes a constant reciprocal to the elastic modulus is also used. This con-

stant is called compliance, I:

I= 1
E

or

ε σ= I E

Analogous relationships can be written for other geometrical schemes of defor-
mation. For bulk (volume) compression, we have

ε v = 1
B

|p|

where ε v is a relative change of volume:

ε v
V

V
= ∆

p is hydrostatic pressure and B is bulk modulus of compressibility.
Linear elastic behavior in shear is expressed by the equation
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ε σ= 1
G

[6.4]

Here ε is shear, G is the shear modulus, and σ is tangential (shear) stress.
In Chapter 3, discussing uniaxial extension, we introduced the values of the

Young modulus, E, and the Poisson coefficient (ratio), µ. Evidently, there
are many characteristics of linear rheological behavior of a material - bulk,
shear, Young moduli, Poisson coefficient. It is also possible to think about other
types of deformations (e.g., biaxial extension), and it would be necessary to in-
troduce “moduli” characterizing linear behavior of a material. Then the main
questions are:

• how to write the general rheological equation of state for such material, re-
flecting its linear elastic properties in different modes of deformations which
would include all these relationships?

• what is a minimal number of independent characteristic constants
(“moduli”) describing all types of deformation of a material?

The first, most straightforward attempt to construct the general rheological
equation of state for a linear elastic material appears to consist of an assumption
of linear relationship between corresponding components of the stress and de-
formation tensors, such as

σ εij ij= k [6.5]

where k should be an universal constant characterizing properties of a material.
But this approach is evidently wrong. Indeed:

• experiments show that the constant k is not universal because coefficients of
linear equations for bulk compression, extension, and shear are different
and this is not reflected in the concept of the linear relationship between cor-
responding components of stress and deformation tensors

• in uniaxial extension,ε22 andε33 (in directions perpendicular to the line of ex-
tension) are not zero because an extended body compresses in perpendicular
directions, but the components of the stress tensorσ22 andσ33 are absent, and
this means that there is no simple correlation between σij and σij.

Therefore, one needs to find a different form of invariant description of rheo-
logical properties of a linear (Hookean) elastic material.
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The basic idea of constructing such a description is related to the fact that in
uniaxial extension, not only the form but a volume of a body changes, and these
are different and independent effects. In a more general sense, we assume that
shape (form) and bulk (volume) changes in deformation are independent phe-
nomena and must be considered separately. That is why we need to introduce at
least two independent constants for complete characterization of resistance of a
material to volume changes, on one hand, and the resistance to shape changes,
on the other. This recalls the idea of splitting stress and deformation tensors
into spherical (isotropic) and deviatoric parts.

Assuming that linear relationships between spherical and deviatoric parts of
both tensors exist separately

I = kE1 1 [6.6]

and

σ ε′ ′ij ij= 2G [6.7]

where I1 is the first invariant of the stress tensor (measure of hydrostatic pres-
sure); E1 is the first invariant of the deformation tensor (measure of relative vol-
ume changes); σ′ ij are deviatoric components of the stress tensor, ε′ ij are
deviatoric components of the deformation tensor; and k and G are material con-
stants, the first of them characterizing resistance to volume and the second one,
shape changes of a material.

If we recall that hydrostatic pressure

p =
I
3
1− [6.8]

then Eq 6.6 can be rewritten as

p = BE1−

where B = -k/3 is the bulk modulus of elasticity. The two fundamental coeffi-
cients, B and G, are sometimes called Lamé factors.
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The value of G in Eq 6.7 is the shear modulus, and the coefficient 2 in Eq 6.7 re-
lates the formal definition of components of the deformation tensor.

We can assume that Eqs 6.6 and 6.7 are valid for any type of deformation and
that they are the invariant definition of a Hookean elastic material (body). It is
important to connect the constants in Eqs 6.6 and 6.7 with those which are di-
rectly measured in a standard experiment - uniaxial extension.

Let σ E to be the extensional (normal) stress, and discuss the situation in the
limits of instantaneous deformations. Then, as shown in Chapter 3,

ε σ ε ε µε11
E

22 33 11=
E

; = = −

and

E = (1 2 )
E1

E− µ σ

where E is the Young modulus and µ the Poisson ratio.
Hydrostatic pressure, p, in uniaxial extension is

p = = -
3i

ii
E−∑ σ σ

Then, according to Eq 6.6, we come to the equality

σ µ σE E

3
= B(1 2 )

E
−

and then we have

E = 3(1 2 )B− µ

This equation also gives us useful information because
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σ µ σ
E

o= 2G(1+ )
E

and as a final result

E = 2G(1+ )µ

We can now calculate any pair of constants for any pair of variables, as summa-
rized below.

• for known constants E and µ

B= E
3(1 2 )

;
− µ

G = E
2(1+ )µ

• for known constants B and G

E = 9BG
3B+ G

; µ = 3B 2G
6B+ 2G

−

• for known G and µ

E = 2G(1+ );µ B= 2G(1+ )
3(1 2 )

µ
µ−

• and for known E and G

B= EG
3(3G E)

;
−

µ = E 2G
2G
−

This set of relationships allows one to find any value of a material constant
from two other values measured experimentally. It is important to note that in a
general case there are only two independent constants which need to be
measured. It is interesting to consider the expression for the bulk modulus via
constants E and µ.

It is quite evident that when we compress a body, its volume cannot increase; it
can only decrease or may not change at all, if a body is incompressible. It means
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that there is a principle limitation:

B 0≥

Then, it is also evident that E >0, and this inequality can be fulfilled only if

µ ≤ 0.5

The particular case of incompressible material is of special interest. The fact is
that for many solids

B >> G

i.e., it is much easier to change the shape of a body than its relative volume (den-
sity).

In some cases, it is reasonable to accept that B→ ∞, i.e., to think that some ma-
terials are completely incompressible. It is a good model (or it is almost true) for
all liquids and rubbers. Then we have two simple relations

µ =05.

and

E = 3G

It means that for incompressible media there is only one independent or “free”
material constant.

Now, we can reformulate the rheological equation of state for a linear Hookean
elastic material in terms of the elastic potential function. Let us consider (for the
sake of simplicity) an incompressible body. Then, E1 = 0, and W can be a function
of E2 and E3 only.

The simplest idea is an assumption of linear relationship between W and E2,
i.e.,

W = -BE2 [6.9]
where B is a material constant.
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Then we can use Eq 6.9 to calculate all items entering this equation. It is easily
seen that

∂
∂

−E
=2

ii
iiε

ε (both indices are the same)

and

∂
∂
E

= -1
2

2

ij
ijε

ε (indices are different)

As a result we come to the linear relationship between deviatoric components
of the stress and deformation tensors as indicated by Eq 6.7, i.e., the conclusion
is equivalent to the above-formulated concept of a Hookean elastic material. It
means that Eq 6.9 can be treated as an invariant definition of an incompressible
linear elastic body in the limits of small deformations.

Though both definitions are equivalent, it seems that Eq 6.9 does not offer any
additional advantages in comparison with the standard definition describing
the relation between components of stress and deformation tensors. However, it
is not completely true, and when we come to the discussion of finite (large) defor-
mations of an elastic body, we may see that formulation of the rheological equa-
tion of state through an elastic potential function is preferable because it is more
evident and elegant.

It should be useful to illustrate the real range of changes in modulus for some
typical materials:

Material Young modulus
High modulus, oriented fibers > 300 GPa
Steels 200 GPa
Copper, aluminum, and alloys 100 GPa
Stones 40 - 60 GPa
Engineering plastics 10 GPa
Ice 10 GPa
Wood 1 - 10 GPa
Leathers 1 - 100 MPa
Rubbers 0.1 - 1 MPa
Polymer and some colloid solutions 1 - 100 Pa
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Certainly, all values, listed for illustrative purposes, give only an impression of
the ranges of possible values of elasticity modulus. The Young modulus can
change in the range of more than 11 decimal orders. On the contrary, the Pois-
son ratio is a much more conservative value. The ordinary range of its values is
0.3-0.4, and only for rubbers is it very close to 0.5.

6.3 LINEAR ANISOTROPIC MATERIALS

One of the main ideas used in all the above formulations is the concept of iso-
tropic properties of a material, i.e., the elastic modulus is the same, regardless of
the direction of deformation. Meanwhile, there are many elastic bodies which
are characterized by the existence of dependence of their properties on the direc-
tion of deformation. Such bodies are called anisotropic. Typical and important
representatives of anisotropic elastic bodies are monocrystals, liquid crystals,
wood, reinforced plastics; all these materials and many others possess an inher-
ent regular structure which leads to anisotropy of their properties.

Rheological equation of state of such “structured” materials must reflect the
anisotropy of their properties. Then, in a general case, we can write the follow-
ing expression for the components of the stress tensor:

σ εij
l=1

3

m=1

3

ijlm lm= k∑ ∑ [6.10]

i.e., it is assumed that σij depends on all components of the deformation tensor.
The set of constants kijlm are in fact components of the tensor of moduli. So rhe-
ological properties of an elastic anisotropic material are represented by a tensor,
i.e., by the set of its components, not by two independent factors (Young modulus
and Poisson ratio) as was the case of an ideal Hookean solid.

Elastic potential for an anisotropic elastic material is

W = k
i,j l,m

ijlm il jm∑ ∑ ε ε [6.11]

The tensor kijlm is symmetrical, and this fact diminishes the number of inde-
pendent constants characterizing elastic properties of a material. This number
in fact depends on the class of symmetry of a solid.
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It can be proven that for the highest class of symmetry, the number of inde-
pendent constants is 21. This is true for crystals of triclinic symmetry. For
monoclinic crystals we have only 13 independent constants. For orthorhombic
crystals there are 9 independent constants, and for cubic crystal, only 3 inde-
pendent constants (“moduli”) still remain valid. For isotropic bodies with infi-
nite axes of symmetry (amorphous or polycrystal where differences of properties
are averaged because of coexistence of large number of individual anisotropic
crystals oriented statistically in space), the number of constants is only two, and
we come back to an ideal Hookean material.

6.4 LARGE ELASTIC DEFORMATIONS IN SOLIDS

Discussion of large elastic deformations in solids is the most important for rub-
bers and rubber compounds because their main characteristic is their ability to
undergo large recoverable deformations. Articles made of rubbery materials
(elastomers) work in various applications in which they are subjected to a
three-dimensional stress state. Meanwhile, as a general rule, the mechanical
testing of these (and other) materials is carried out in uni-dimensional exten-
sion.

Some equations describing dependence of normal (extensional) stress on the
ratio of extension has been already brought to attention in Chapter 4. Now, our
main goal is to find ways for generalizing these equations in order to have a pos-
sibility to transit from the results obtained in experiment to predictions of me-
chanical behavior in arbitrary geometrical schemes of deformation (or loading).
It means that the task is to formulate a rheological equation of state (constitu-
tive equation) for rubbery materials in an invariant form.

An invariant form of the Hooke Law, i.e., of the linear relationship between
stresses and deformations, has been formulated above: Eq 6.9, as a linear de-
pendence of an elastic potential on the second invariant of the deformation ten-
sor. In the limits of the Hooke Law, it is the tensor of infinitesimal deformations.
As discussed in Chapter 3, in the case of large deformations, it is necessary to
utilize the theory of finite deformations and use some measures of large defor-
mations. It is a quite natural way for the generalization of the Hooke Law,
though we must not forget the ambiguity of measures of large deformations,
which may lead to different possibilities of representation of the relationship
under discussion.
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Rubbery materials can be treated as incompressible because their Poisson ra-
tio is very close to 0.5. The first invariant of the deformation tensor, in the limit
of small deformations, has the sense of volume changes (see Chapter 3), and that
is why in this limit E1 = 0. In the range of large deformations, E1 does not have
such a simple sense, but the condition of constant volume at deformations of any
type permits us to diminish the number of independent invariants to two, be-
cause the equality

(1 + E1)(1 + E2)(1 + E3) = 1 [6.12]

is always valid for incompressible materials.
Then, we can exclude any invariant representing it as a function of two others.

For example, it can be the third invariant which is expressed by means of Eq
6.12 as

E = 1
(1+ E )(1+ E )

13
1 2

− [6.13]

Then, we can consider a dependence of W on two independent variables only:

W = W(E1, E2)

As the first approximation (or as the first reasonable simple idea), let us as-
sume that an elastic potential is a linear function of the first invariant of the ten-
sor of large deformations:

W = AE1 [6.14]

Let us analyze the consequences of this supposition, i.e., Eq 6.14, for different
geometries of deformation.

Eq 6.14, in an expanded form, can be written as

W = A( + + ) = A
1

2
+

1
2

+
1

21 2 3
1
2

2
2

3
2

γ γ γ λ λ λ− − −








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or

( )W = A
2

+ +1
2

2
2

3
2λ λ λ [6.15]

where λi are principle ratios of extension.
This formula is equivalent to the linear relationship between an elastic poten-

tial, W, and the first invariant, CI, of the Cauchy - Green tensor of large deforma-
tions

W = A
2

(C 3)I − [6.16]

Let us consider now the problem of three-dimensional elongation of a body “at
a point” by calculating elastic potential of deformations in the principle axes.
From the definition of W, it is easy to show that elastic potential is expressed via
principle ratios of extension as

dW =
d

+
d

+
d

1
1

1
2

2

2
3

3

3

σ λ
λ

σ λ
λ

σ λ
λ

We know that for incompressible materials

λ λ λ1 2 3 1=

and

d( ) = 01 2 3λ λ λ

Then, after some simple rearrangements, we come to the following formula for
dW:

dW = ( )
d

+ ( )
d

1 2
1

1
1 2

2

2

σ σ λ
λ

σ σ λ
λ

− −
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Based on Eq 6.15, we can come to the following expression for dW:

dW = A ( )
d

+ ( )
d

1
2

3
2 1

1
2
2

3
2 2

2

λ λ λ
λ

λ λ λ
λ

− −









Direct comparison of two latter formulas for dW gives the following system of
equations

σ σ λ λ1 3 1
2

3
2− = −A( )

[6.17]
σ σ λ λ2 3 2

2
3
2= A( )− −

The last system of equations is a solution to the problem of calculation of nor-
mal stresses at known principal elongations.

Certainly, this solution is not complete because we have only two separate
equations for three independent variables, σ1, σ2, and σ3. This result is not unex-
pected because we consider deformations in an incompressible medium. The
last limitation means that, in principle, stresses can be determined as σ ij + C,
where C is a constant which cannot be determined unambiguously. Superposi-
tion of arbitrary hydrostatic pressure changing stress state of a medium does
not influence its deformations. As a result, the system of Eq 6.17 determines
components of the stress tensor in relation to constant C, depending on hydro-
static pressure.

Therefore, the general solution in determining principle stresses in a three-di-
mensional deformation state ( i.e., when deformations are known or preset) can
be written, in accordance to Eqs 6.17, in the following form:

σ λ1 1
2= A + C

σ λ2 2
2= A + C

[6.18]

σ λ3 3
2= A + C

where the constant C might be found if hydrostatic pressure is known before-
hand.
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Now, it is possible to analyze the main cases of deformations of an elastic solid
body with rheological properties obeying Eq 6.14. It is quite evident that in uni-
axial extension along the axis x1, we haveσ2 = 0 andσ3 = 0. If the elongation ratio
λ1 along the axis x1 is equal to λ , the condition of the constant volume of a body
under deformation results in the following relationship:

λ λ λ2 3= =
-1

2

Then, any of the last two equations of the system [6.18] gives

C = A -1− λ

Finally, we come to the formula for normal stress in uniaxial extension for a
material with rheological properties described by Eq 6.14:

σ λ
λ1

2= A 1−





 [6.19]

It is a well-known equation, which was included in Chapter 4 as one of the pos-
sible methods of representation of experimental data for large deformations of
elastic materials. This equation is a consequence of Eq 6.14 or a generalization
of experimental data obtained in uniaxial extension, described by Eq 6.19.

There is not much new information in these statements. They only show that
there is a possibility to apply Eq 6.14 to other modes of deformation than uniax-
ial extension. Simple shear is one of the most interesting and relatively easy to
study by experimental methods. This mode of deformation can be realized by
twisting a thin-walled cylinder. In simple shear, the principal elongations are
calculated as

λ β1 = cotan ; λ β2 = tan ; λ 3 1=

and the meaning of the angle β was explained in Chapter 3.
Now, we can calculate an elastic potential
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W = 1
2

A 2γ

where γ is a magnitude of shift.
The following equation for shear stresses is obtained

σ
γ

γ= dW
d

= A [6.20]

In accordance with Eq 6.14, the dependence of shear stress on deformation in
shear must be linear and thus the value of the constant A in this equation has
the meaning of shear modulus. However, if a material really behaves in shear,
as predicted by Eq 6.20, its modulus of elasticity in uniaxial extension is not ex-
pected to be equal to 3A as for a Hookean solid, and in extension the dependence
of stress on deformation is non-linear, as described by Eq 6.19.

Therefore, the following points can be made:
• shear behavior of two different kinds of material (Hookean and described by

the rheological equation of state, 6.14) can be the same, even though they are
quite different rheological materials, as proven by the difference in their be-
havior in extension. It is the proof of the thesis that investigation of
stress-deformation behavior in one mode of loading does not yet give enough
basis for estimating the type of rheological model of a material

• elastic potential (Eq 6.14) predicts non-linear behavior of a material in ex-
tension and this non-linearity is a direct consequence of large deformations
by itself. This rheological equation of state contains only one material con-
stant, which has the meaning of the shear modulus, and can be used for pre-
diction of deformation behavior of a material at any mode of loading.

Elastic potential (Eq 6.9) is an invariant rheological equation of state describ-
ing properties of a Hookean material and that is why it can be called the Hooke
potential.

Elastic potential in the form of Eq 6.14 was formulated in publications by
Kuhn, Guth, James, Mark, and others as a result of the molecular (kinetic) sta-
tistical theory of rubbery elasticity. That is why it can be called the
Kuhn-Guth-James-Mark potential.

The potential function (Eq 6.14) was proposed for rubbers and indeed it can be
considered as a first approximation describing deformations of rubbers in equi-
librium conditions. The last limitation implies that we do not consider time ef-

202 Elastic solids



fects, though effects of such kind are quite typical for rubbers and
stress-vs-deformation relationships.

The idea of representation of rheological properties of solid materials via an
elastic potential function W(C1, C2) is quite equivalent, after some formal mathe-
matical transformations, to representing it as a function W(C1,C1

-1), i.e., it is pos-
sible to use first invariants of the Cauchy-Green and Finger tensors of large
deformations. There is great freedom in varying any conceivable form of this
function in an attempt to fit various experimental data. Formally, no limitations
in approximating a function W(C1, C1

-1) exist because any of them obey the gen-
eral principle of invariance. Certainly, in real practice it is desirable to search
for these approximations in the simplest possible form.

The most simple form is linear, and one of the examples of linear elastic poten-
tial is given by Eq 6.14, but it contains only one argument C1. Then the next pos-
sible approximation is a combination of linear functions in the form

W = AC1 +BC2 [6.21]

where A and B are material constants.
This elastic potential can be rewritten via principle of extension ratios. After

quite evident mathematical transformation, we come to the following formula:

W = G ( + + ) + G
1

+
1

+
1

1 1
2

2
2

3
2

2
1
2

2
2

3
2

λ λ λ
λ λ λ









 [6.22]

where “new” constants, G1 and G2, are expressed by “old” ones, A and B, as

G = A B
2

; G = B
41 2

−

and the final result is

W = G (C 3) + G (C 3)1 1 2 1
-1− − [6.23]

This result confirms the above-mentioned general idea about equivalence of
functions W(C1, C2) and W(C1,C1

-1). An elastic potential in the form of Eq 6.23 was
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proposed independently and based on different concepts by Mooney and Rivlin
and is called the Mooney-Rivlin potential.

Let us illustrate the role of the second term in Eq 6.23 by discussing predictions
of stress-deformation dependencies for uniaxial extension and shear.

In uniaxial extension

λ λ λ λ λ1 2 3
-= ; = =

1
2

where λ is an extension ratio.
Using formulas for components of stresses discussed above, we can show that

normal stress in the direction of stretching is

σ λ
λ

λ
λE 1

2
2 2

= 2 G 1 + G 1−





 −
















 [6.24]

with two other stress components absent.
Sometimes, it is more traditional to relate acting force, not to the current but to

the initial crosssection of a stretched sample. This section is λ times larger than
a current section and that is why an “engineering” (or conventional) stress,σ e , is

σ
λ

λ
λe 1

2
2

= 2 G +
G 1






 −





 [6.25]

The structure of Eq 6.25 demonstrates that addition of the second item in Eq
6.23 leads to the “correction” term in Eq 6.25, and if G2 = 0, we come back to the
well-known formula for the stress related to a one-member elastic potential
function. The difference is connected with the item 2G2/λ in Eq 6.25. The influ-
ence of this correction can be estimated if we remember that according to the ex-
perimental data, G2 ≈0.1G1, but addition of the second item is of principle value,
especially considering that other relationships between both constants are not
excluded.

Let us discuss shear deformations calculated in accordance with predictions of
Eq 6.25. It is easy to show that Eq 6.25 leads to the following dependence of
shear stress, σ, on deformation, γ,
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σ γ= 2(G + G )1 2 [6.26]

where the sum (G1 + G1) is shear modulus, and the potential (Eq 6.25), similar to
the rheological equation of state (Eq 6.23), predicts linear behavior in shear,
though it is non-linear in extension.

Repeatedly, this is a proof that the same rheological behavior in deformations
of one type (in this case, in linear stress-vs-deformation in shear) does not mean
that the type of deformation under other conditions (in the case under discus-
sion - stress-vs-deformation in uniaxial extension) must be the same. The result
demonstrates again that data obtained in experiments of one type cannot be a
criterion for the choice of rheological equation of state (constitutive equation)
and cannot be used for unambiguous predictions of stress-vs-deformation de-
pendencies in different modes of deformations.

Eqs 6.21 or 6.23 can be formally treated as first approximations (first members
of a series) for some non-linear functions W(C1, C2) or W(C1, C1

-1). If we add some
other members, with their own material constants, we may expect to improve
correspondence between the theoretical predictions and the experimental data.
In particular, it is important for shear studies because the linear relationship in
Eq 6.26 is not a realistic result.

If linear functions (Eq 6.21 or Eq 6.23) are not sufficient, we can try to add the
quadratic member and write an expression for an elastic potential as

W = AE + BE + ME = G (C 3) + G (C 3) + G (C 3)1 2 1
2

1 1 2 1
-1

3 1
2− − − [6.27]

where A, B, M, G1, G2, and G3 are material constants and the latter three are ex-
pressed via A, B, and M.

Based on Eq 6.27, the following formula for normal engineering stress in uni-
axial extension can be derived:

σ
λ

λ λ
λe 1

2
3

2

2
= 2 G +

G
+ G 1






 −





 [6.28]

It is evident that Eq 6.28 contains a new quadratic term with its own material
constant in a “correction” member, compared to Eq 6.25. Certainly, three empir-
ical constants allow us to fit experimental points much better than one or even
two “free” constants in Eq 6.25, and that is why Eq 6.28 approximates different
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experimental data quite satisfactorily. Moreover, Eq 6.28 predicts non-linear
stress-vs-deformation dependence in a simple shear.

The most general form of an elastic potential function is

W = K (C 3) (C 3) (C 3)
, , =0

, , 1 2 3
α β γ

α β γ
α β γ

∞

∑ − − −

where K , ,α β γ are empirical constants and K000 = 0 because elastic energy of an
undeformed body is assumed to be zero.

For an incompressible material, C3 = 0, and we can obtain a simpler general
form of elastic potential:

W = K (C 3) (C 3)
, =0

, 1 2
α β

α β
α β

∞

∑ − −

A very interesting and principle problem arises concerning the practical possi-
bility of finding W as a function of invariants. The general answer to this prob-
lem is that it is necessary to compare results of experiments carried out at
different geometrical schemes of loading. For example, a normal stress in uniax-
ial extension for an arbitrary function W(C1, C2) can be expressed as

σ λ
λ λE

2

1 2

= 2 1 W
C

+ 1 W
C

−







∂
∂

∂
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


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




The dependence of shear stress on deformation (its measure will be written as
γ) for simple shear can be formulated as

σ = W
C

+ W
C1 2

∂
∂

∂
∂











The normal and shear stresses depend on an elastic potential function in a dif-
ferent manner. Comparing dependencies ofσ E normalized by 2(λ2 -λ-1) andσ nor-
malized by 2γ, the difference is evident from comparison of the right sides of both
expressions, and it is possible to calculate an elastic potential function.
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Certainly, other types of fundamental experiments can also be used to find an
elastic potential function W(C1, C2) but it is essential that at least two different
geometrical schemes of loading should be used and compared.

The idea that a function W(E1, E2) can be expanded into a power series, and
that it is possible to use any desirable member of series, allows one to reach a
reasonable degree of correspondence between a theoretical curve and experi-
mental data, achieved by adding new arbitrary (“free”) empirical constants.

The same idea can be realized in a somewhat different way. From the very be-
ginning, we can think that an elastic potential has the form of Eq 6.14, but in re-
ality a material “constant” is not constant but depends on deformations. It must
be expressed as a dependence of A on invariants of the deformation tensor. It
means that non-linearity appears not only as a consequence of large deforma-
tions by itself but also as a function of some physical phenomenon (for example,
structure transformations happening in the course, and as a consequence, of
large deformations), i.e., if the simplest quasi-linear potential ( Eq 6.14) is not
sufficient for fitting experimental data, then a physical non-linear effect is en-
countered.

Both approaches - expanding the dependence W(E1, E2) into a power series or
treating the material parameter A in Eq 6.14 as a function of invariants of the
deformation tensor - are a rather formal generalization of Eq 6.14. Meanwhile,
Eq 6.14 can be based on some reasonable physical arguments (“statistical theory
of rubber elasticity”) but its generalization has no such physical ground and
must be treated as an empirical relationship invented for fitting experimental
data.

The last remark in this Section relates to the time effects. Generally speaking,
time must not be mentioned in this Chapter at all, because this concept is not con-
sistent with the idea of elastic (instantaneous) reaction of a material to applied
force. This fundamental idea already has been emphasized when we said that
all stress-vs-deformation relationships discussed in this Chapter are valid for
equilibrium conditions. However, there is a great difference between instanta-
neous and equilibrium reactions and the gap between both is the field of time ef-
fects. Moreover, large deformations and rubbery elasticity on the whole are
relevant primarily to polymeric materials and various time effects (relaxation
and all others). That is why it is very important (and in some cases very difficult)
to separate time effects and distinguish “pure” (equilibrium) stress-vs-deforma-
tion dependence. Nevertheless, all the above is true for equilibrium deforma-
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tions. Constructing elastic potential and comparing theoretical results with
experimental data, we must be very careful in order not to go outside the bound-
aries of this principle limitation.

6.5 LIMITS OF ELASTICITY

The idea of elastic behavior of a material has its natural limits. It is evident
that when stress or deformation exceeds a certain value, the material breaks. It
is opposite to the behavior of liquid, in which case the deformations (or flow)
seems to continue unlimitedly, if transition to instability of any kind does not oc-
cur. The rupture of a solid body can also be treated as a limit of a steady regime of
deformations.

The stress increase eventually can lead to a macro-rupture of a body and also to
a phenomenon which can be called an elastic-to-plastic transition. Indeed, nu-
merous experiments show that many materials behave, up to some critical
stress (or deformation), as elastic. After this critical state has been reached, the
deformations may grow unlimitedly as if a material became a liquid: this phe-
nomenon is called plasticity. The situation reminds us visco-plastic behavior
discussed in Chapter 5. As in the case of visco-plastic liquids, a solid material ca-
pable of elastic-to-plastic transition is not linear because the relationship be-
tween stresses and deformations in a plastic range is not linear.

The difference between the two phenomena is rather formal but essential. We
are not monitoring what happened to a visco-plastic medium before the yield
point; in fact, the deformations are neglected up to this point and the rheological
behavior of material is only considered at stresses exceeding the yield stress. It
is quite opposite to the evaluation of behavior of plastic solids at stresses lower
than the limits of plasticity (a limiting stress analogous to the yield stress), and
deformations in this range are treated as purely elastic. Also, as a general rule,
there is not much attention given to behavior after this limit has been exceeded.
Particularly, the point of behavior change is of principle interest for evaluation
of solid-like behavior.

The critical stress (limit of plasticity or yield stress) is a characteristic point di-
viding two ranges with different rheological behavior. For liquid, it is the lowest
point and measurement begins at stresses higher than this point; for solids, it is
the value of highest strain up to which a material is still elastic and thus can be
treated as a solid. Nevertheless, in both cases the method of calculation of this
state for multi-axial stress state is of primary importance and interest.
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We have already discussed the practical implications of such behavior in liq-
uids. In the case of solids, the limit of plasticity determines:

• the maximal permissible load in engineering designs (because it is a mea-
sure of the material strength)

• force which must be applied in different technological operations affecting
plastic deformations such as shaping of materials which proceeds by plastic
(irreversible) deformations.

It is easy to find these limiting stresses in the regime of uniaxial extension or at
any other simple (uni-dimensional) scheme of deformation. In many real situa-
tions, the superposition of different components of the stress tensor occurs at
any point. It is thus necessary to estimate some “equivalent” stress which
would lead to the critical state.

For this discussion, it is not important to distinguish which critical state is con-
sidered, because from a formal point of view, the rupture, yielding, or plasticity
are phenomena treated by the same terms in the language of invariants of stress
and/or deformation tensors.

Then, the main question is: which method of calculation must be followed to es-
timate the equivalent stress? The answer to this question depends on the con-
cept of strength discussed below. Certainly, the independent key question is:
what are the reasons for the material rupture? The discussion of physical causes
and possible mechanisms of this phenomenon is out of the scope of rheology (or
the mechanics of continuum). That is why the answer to this key question is
given in terms of stresses and deformations only, i.e., in scientific terms.

There are different possible answers to this question and they can be formu-
lated as the hypothesis of strength. Among others, the four following concepts
are of primary importance. Below, we shall formulate them for the rather simple
case when only two components of the stress tensor (normal, σ E , and shear, σ,
stresses) act, though it is not difficult to extend our reasoning to the complete
tensor of stresses.

α : According to a concept of maximal normal stresses, a criterion of rupture
is the exceeding of maximal principal stress. Then the criterion of strength is

1
2

[ + ( + 4 ) ] <[ ]E E
2 2 1

2σ σ σ σ
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where [σ] is the maximal permissible stress, or strength.

β: According to the concept of maximal deformations, the criterion of
strength for Hookean bodies is

1
2

( + ( + 4 ) 1
2

( ( + 4 ) <[ ]E E
2 2

E E
2 21

2
1
2σ σ σ µ σ σ σ σ− −





where µ is the Poisson ratio (coefficient).
For other rheological models, this criterion certainly looks different.

γ: According to the concept of maximal shear stresses, the criterion of
strength is

σ σ σ σmax E
2 2= ( + 4 ) <[ ]

1
2

δ: According to the concept of maximal potential energy of deformation of a
Hookean solid, we have

( + 3 ) <[ ]E
2 2 1

2σ σ σ

This condition is also known as the von Mises criterion, and for simple
shear, when σ E = 0, it is simplified to the condition

σ σ= [ ]

3

This rather simple form of the criterion is directly related to a Hookean model of
rheological behavior of a material, and for other materials the same criterion
can be written in a different way, adopting the idea of a critical level of stored en-
ergy (at some point), but the reason for rupture remains valid.

One may see that all four concepts of strength give close, but not equivalent,
predictions concerning conditions of rupture, to some extent differing in estima-
tion of relative input of normal and shear stresses into critical value of an equiv-
alent limiting stress.
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6.6 SOME BASIC PROBLEMS

6.6.1 GENERAL FORMULATION

Let us discuss some fundamental problems of deformations of elastic bodies. It
is important that in some situations, stress distribution in a body can be found,
regardless of the rheological properties of a material (see Chapter 2); in other
cases, the same is true for deformations (see Chapter 3). But in the general case,
it is impossible to find (to calculate) stresses and deformations in a body if we do
not know the rheological properties of a material (i.e., the relationship between
stress and deformation “at a point”). Indeed, stress and deformation distribu-
tions must be found by solving balance (equilibrium) equations with appropri-
ate boundary conditions and stresses entering these equations via rheological
equations of state (constitutive equations). Therefore, the system of equations is
not closed or incomplete, i.e., the number of variables is less than the number of
equations, if not including rheological equations of state.

One of the most important and general problems for an elastic body is formu-
lated as a task of calculating stress and displacement (or deformations) distribu-
tions of a bar (beam) loaded at its ends by an arbitrary combination of stresses
and torques. It is called the Saint-Venant problem.

The general approach to solving this and many other problems is based on the
physical idea (or supposition) known as the Saint-Venant principle. Accord-
ing to this concept: any statically equivalent set of forces and torques produces
the same stress distribution at distances far enough from the site of force appli-
cation. This assumption excludes from consideration some areas near the ends
of a bar (beam) and states that details of force distribution (where they act) are
immaterial for solutions of balance equations almost throughout the whole vol-
ume of a bar.

Certainly, the principle contains some ambiguous terms, such as “enough”and
“almost”. This uncertainty must not astonish, because the Saint-Venant prob-
lem and all other problems of such kind are not pure mathematical but physical
tasks, and it is necessary to find some physical arguments for their solution. One
such physical concept is a rheological equation of state which is not an inherent
part of a mathematical formulation but must be taken “from an outside”. An-
other is the Saint-Venant principle, which governs transition from outer forces
to the inner situation inside a material and cannot be rigorously proven. How-
ever, the latter is not a very serious limitation because, as a general rule, it is
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reasonable to think that an uncer-
tain distance from an end must be
of the order of a linear size of a bar
end. The longitudinal size of a bar is
much larger than its transverse
size, which means that all solutions
of the Saint-Venant problem are
valid throughout the major part of a
bar, but not close to its ends. In fur-
ther discussion, the solutions will
be given “excluding ends”.

The value of the Saint-Venant
principle for solving the balance
equations is related to the possibil-
ity to change a complex, not very
definite set of outer forces to some
simple model combinations of a

force and a torque, which must only satisfy one condition: be statically equiva-
lent to the initial set.

The Saint-Venant principle allows us to bring the general problem to four inde-
pendent model situations (Figure 6.1):

• uniaxial extension
• bending by a pair of forces (by a torque)
• bending by a transverse force
• torsion by a torque.

The Saint-Venant problem does not envelope all possible cases of loading and
deformations but contains many important situations.

6.6.2 UNIAXIAL EXTENSION (FIGURE 6.1a)

The primary analysis of the problem was given in Chapter 3. A bar (beam)
loaded by a constant force F has a uniform stress field:

σ σ σ σx E y z= = F
S

= const; = = 0
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Figure 6.1. Model cases of loading a beam (bar).
a: uniaxial extension; b: bending by a torque; c:
bending by a transverse force; d: torsion by a
twisting torque.



where x is a longitudinal direction (along an axis of a bar), y and z are transverse
directions, and S is an area of a crosssection of a bar.

If we are interested to know deformations, it is necessary to apply a rheological
equation of state. For example, if the Hooke Law is valid, deformations are also
uniform and are calculated as:

• in direction of stretching

ε σ
x

E=
E

where E is the Young modulus
• and in transverse directions for a symmetrical cross section

ε ε µε µ σ
y z x

E= = =
E

− −

where µ is the Poisson coefficient.
These relationships are a complete solution of the Saint-Venant problem for

stretching of a bar made of a Hookean elastic material.
Hooke himself considered the possibility of non-linear relationship between

stresses and deformations, for example, expressed by a power-type equation

σ εE
n= K

where K and n are material constants.
In this case, at σ E = const, we have an evident solution

ε σ
=

K
E

1
n








If rheological properties of material are described by the exponential function
(6.15), and σ E = const, then for large deformations (elongation ratio λ >>1), we
have

σ λE
2= A
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and

ε λ σ
= 1=

A
E

1
2

− 





 [6.29]

where ε is an “engineering” measure of deformations.
Now we must distinguish between two conditions: σ E = const and F = const.

The difference between the two cases is immaterial for infinitesimal deforma-
tions because we can neglect changes of a crosssectional area in the course of
stretching, but it would not be true for large deformations. Eq 6.29 relates to the
conditionσ E = const, but in the case F = const, we must use Eq 6.19, which gives

ε λ σ= 1= 1
A

= 1
A

F
SE−

The last equation looks linear, as an analogue of the Hooke equation, but in
fact it is not, because the value σ E entering this equation is not a real stress but
some conventional measure of stress only.

Any other rheological equation of state also can be used to calculate deforma-
tions. Perhaps it is worth repeating that all of them give unambiguous corre-
spondence between stresses and deformations, and that time does not enter any
of these equations. It is a special case of purely elastic bodies, opposite to viscous
fluids (Chapter 5) and viscoelastic materials (Chapter 7).

Measurements of forces (and stresses) and deformations are very simple and
practical for uniaxial extension. That is why it is a basic experiment in numer-
ous applications.

Two measurements are of primary importance:
• standardized testing of a material
• determining the characteristic rheological parameters of a material.
The first is of absolute importance, regardless of any particular rheological

properties of a solid. The only requirement which must be imposed is to follow
very rigorously the standard conditions of an experiment. In such a case, unam-
biguous results of comparison of different materials will be obtained, useful for
quality testing of industrial products and other purposes.
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The second experimental approach is based on assumption of a type of rheolog-
ical behavior of a material under testing. Comparing experimental and calcu-
lated stress-vs-deformation curves, a conclusion as to the correctness of the
assumption and numerical values of material parameters entering the constitu-
tive equation can be derived. It is necessary to emphasize that a negative an-
swer to the question of correspondence between the experimental and
calculated results is sufficient to reject the theoretical model, but a positive an-
swer is not sufficient to accept it. Various rheological models can give the same
relationships in an experiment of one type; thus experiments of different types
must be carried out to confirm or to reject a proposed rheological equation of
state.

6.6.3 BENDING BY A TORQUE (FIGURE 6.1b)

If static forces acting at the ends of a bar are equivalent to a torque, M, bending
the bar, it is possible to prove that the stress distribution is the same along the
length of a bar at all crosssections.

This balance equation for each crosssection is given by

s
Ezds = M∫ σ

where ds is an infinitesimal area (part of crosssection), z is a distance from point
ds to a so-called neutral axis. Integration is done for a whole crosssection of an
area s.

Stresses are absent at a neutral axis which passes through a center of gravity
of a crosssection and is perpendicular to the plane where normal stresses act.
Only normal stresses act at this point and they counteract the bending moment,
M. No shear stresses are present, at least within the limits of small deforma-
tions.
Stress distribution across a section of a bar depends on the type of rheological be-
havior of a material. It is possible to show that for a Hookean material, this dis-
tribution can be represented by an equation:

σ E = Mz
I

[6.30]
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The value I is given by the equation:

I= z ds
s

2∫
Integration is carried out for the whole crosssection of a bar. I is an axial (or

equatorial) moment of inertia. It is the main geometrical characteristic of the
shape of crosssection on bending.

Eq 6.30 shows that there is a lin-
ear distribution of stresses along
the height of a crosssection (see
Figure 6.2). This is true if a bar is
made of a material with rheological
properties described by the Hooke
Law.

The value I characterizes the
bending rigidity of a bar. For a
Hookean body the following rela-
tionship can be proven:

1 = M
EIρ

whereρ is a radius of curvature of a bar (more exactly, a neutral axis of a bar). It
is evident that with I increasing, bar bending diminishes (ρ higher).

If the bar cross-section is circular (R - radius), then

I= R
4

4π

For a rectangular cross-section (h - height, b - width):

I= bh
12

3

Eq 6.30 indicates that maximum stresses appear at a surface of a bar (at the
highest value of z), and that they are positive (stretching) on one side and nega-
tive (compressive) on the other. This again shows that the surface is the most
vulnerable part. It may then be understood why surface reinforcement (harden-
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a crosssection of a bar.



ing, chemical treatment, etc.) is frequently used in engineering practice. Also,
special profiles with increased surface (e.g., T-beams) are used for bars sub-
jected to bending forces.

If material is non-Hookean, stress distribution throughout the crosssection
differs. The geometrical analysis of bending leads to a linear distribution of de-
formation along a distance from a neutral axis:

ε
ρ

= z

Only for a Hookean solid, linear stress distribution is observed:

σ ε
ρE = E = E z

After some rearrangements, the last formula gives Eq 6.30.
In all other cases, stress distribution is more complex. Bending of elastic solid

with transition to plastic deformation is one interesting example. A plastic zone
appears at a surface. When normal stress reaches a yield threshold, this zone
moves inside the material, with an increase in torque. Stress distribution at
|z| ≥ z*

σ σE y= z
z*

and at |z| ≥ z* (closer to bar surface):

σ σ= signzy

where z* is a distance from a neutral axis to a boarder of a plastic zone, and the
symbol sign means that the sign of a stress is determined by the sign of z-coordi-
nate, i.e., stresses can be positive or negative, depending on direction from the
neutral axis.

When a plastic zone appears, a torque, M, is calculated from the equation
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M =
z*

I + Sy
e y p

σ
σ

where Ie is a moment of inertia of an elastic core (material remains elastic), and
Sp is a static moment of one of the plastic zones:

S = 2 b(z)zdzp
z*

h

∫

Here h is height of a cross-section and b is width of a section (inside a plastic
zone). In the general case, b varies along z.

6.6.4 BENDING BY A TRANSVERSE FORCE (FIGURE 6.1c)

There are various modes
possible by which a trans-
verse force can be applied to
a bar. However, the princi-
ple concept can be under-
stood from analysis of a sim-
ple model situation when a
force is applied at the end of
a bar along the x-axis and
perpendicular to the axis of
a bar (z-axis), as shown in
Figure 6.3.

Let us consider the equilibrium state of any section of a bar at the distance, z,
from an opposite end of this bar (taken as a 0 point). Evidently, a static equilib-
rium is reached when a bending moment in this section equals to

M(z) = F(L - z)

and a transverse force is constant and equal to F.
Longitudinal distributions of bending moments and transverse forces are

shown in Figure 6.4. At the cross-section of a bar on the surface of a wall, a force,
F, and a bending moment, M, have the following relationship
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Coordinate system shown.



M = FL

Any section is subjected to the
bending torque, and a force ex-
erted produces stress. The re-
sultant superimposed action of
a moment, M(z), and a force, F,
at an arbitrary section of a bar
is further discussed.

In the previous Section, it was
concluded that applying torque
results in the appearance of
normal stresses across a
cross-section of a bar. Cer-
tainly, normal stresses cannot
balance action of a transverse
force, F, because they are per-
pendicular to each other. It
means that application of a
transverse force, F, results in
shear stresses.

Two problems thus exist which must be solved consecutively:
• it is necessary to find torque and force distribution along a bar acting at each

cross-section; this distribution is a result of action of outer forces in static
equilibrium preserved at any section of a bar;

• torques and forces at any section result in normal and shear stresses and
their calculation is based on balance equations which must be satisfied at
any local “point” of a cross-section of a bar.

The problem of calculating normal stresses as a result of torque action has
been discussed already. Now, we shall discuss the results of action of transverse
force leading to shear stress.

Distribution of shear stress in a cross-section depends on its configuration. If a
cross-section is symmetrical and the line of application of a force, F, passes
through the axis of this symmetry, then the shear stress distribution is a func-
tion of the y-coordinate only and in a general case can be written as
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Figure 6.4. Longitudinal distributions of a bending
torque, M, and a transverse force, F, for a bar loaded
at its end.



σ(y) = F
I

f(y)
x

where Ix is a moment of inertia relative to a vertical transverse axis x (as in Fig-
ure 6.3) and f(y) is a function of a vertical coordinate y only.

For example, if a cross-section is rectangular, and its vertical size is H, the hor-
izontal size is b, then σ(y) is expressed as follows:

σ(y) = 3F
2bh

1 2y
H

2

−

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
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
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where y = 0 is a horizontal axis of a rectangle.
Then maximal shear stress σmax acts at an axis and it is

σ max = 3F
2bH

If a cross-section is a circle with a radius, R, the maximal shear stress acts at
the horizontal axis and it is

σ
πmax 2

= 4F
3 R

The theory of bending by a transverse force gives three main results:
• stress distribution at any cross-section of a bar, offering concept of strength

and rupture of a material;
• deformation of a material at any point;
• deflection (macrodeformation or macrodisplacement) of a bar.
There are two distributions at any cross-section of a bar (beam) bent by a

transverse force:
• distribution of normal stresses σ E (y)
• distribution of shear stresses σ(y).
One can findσ E andσ for any point of a cross-section. Therefore, it is important

to calculate principle stresses as a function ofσ E andσ. According to the theoret-
ical results included in Chapter 2, it is easy to show that
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σ σ σ σ σ1,2 E E
2 2

3= 1
2

[ ( + 4 ) ]; = 0
1
2± [6.31]

In order to calculate deformations at any point, it is necessary to use a rheologi-
cal equation of state. In the simplest case, it is the Hooke Law, and the resulting
formulas can be easily found in numerous textbooks on strength of materials.

Deflection of a bar depends on its rigidity. The latter term is evident, on a quali-
tative level, and as a quantitative term rigidity of a Hookean body is determined
by a product EIx, where Ix is the moment of inertia of a cross-section of a bar.

Deflection of a bar loaded by a transverse force varies along the length of a bar.
It is quite evident that maximal deflection, fmax, for a force applied at the end of a
bar (as shown in Figure 6.3) takes place at this end. Its absolute value is

f = FL
3EImax

3

x

where L is a length of a bar.
The mode of loading shown in Figure 6.3 is only one of possible cases of the ap-

plication of a transverse forces. Certainly, the number of possible schemes of
loading is unlimited, and each of them models real situations met in engineering
practice. Theory of strength of materials gives methods used for calculation of
bending torques and transverse forces at any cross-section of a bar. These meth-
ods are based on general balance equations of a bar, which were illustrated by
the above-discussed example of transverse force applied at the end of a bar.

Another interesting example is given below to demonstrate the differences in
results for two cases. This is a loading
of a bar by a transverse force applied at
the central plane with a position of
both ends of a bar fixed in space, allow-
ing bar to turn, as shown in Figure 6.5.
This mode of loading is typical in many
applications, and in particular, this
scheme is used for testing materials
according to standards.
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Figure 6.5. A bar loaded by a transverse
force applied at the center.



A bending torque (moment) and a trans-
verse force distribution for this mode of
loading are drawn in Figure 6.6.

Let us discuss characteristic parameters
for a bar of the length, L. Some of them are
quite evident from the balance equations.
That is:

• forces acting at the ends of a bar Fo and
FL (resistance of supports) are equal to

F = F = F
2o L

• torque (bending moment) at the cen-
tral plane of a bar which is the maximal
torque Mmax is

M = FL
4max

The central plane is the most “vulnerable” crosssection because a bending
torque and a transverse force are maximal here. Based on these values of a mo-
ment and a force, one can find stresses for any shape of a crosssection (as was
done above) and estimate the strength of a bar according to the accepted concept
of rupture.

The other useful parameter needed in engineering practice is the maximal de-
flection, fmax. Certainly, it occurs in a central plane and is equal to

f = FL
48EImax

3

x

More examples can be found in other textbooks and/or reference books. It
should be remembered from this discussion that the majority of formulas avail-
able in these books are valid for Hookean materials.
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Figure 6.6. Distributions of a trans-
verse force and a bending torque along
a bar loaded at the central plane.



Our next discussion is devoted to the cases of some of the simplest deviations
from Hookean behavior. The first illustration is the situation when properties of
a material are different in compression and extension. In bending, the different
layers of a bar are either compressed or stretched.

For example, in application of a force as in Figure 6.5, lower layers of a bar are
stretched and upper ones are compressed. It does not influence the result of ap-
plied calculations if a material is Hookean. But even in the case when behavior
of a material is still Hookean but moduli in extension, ET, and compression, EC,
are different, the results of calculations differ as well. In fact, it can be proven
that all formulas obtained for a Hookean material can be used but the Hooke
modulus of elasticity must be substituted by an apparent modulus, Ea, which is
calculated via moduli in extension, ET, and compression, EC, as

E = E
2(E E )

(1+ (E E )
a T

T C

T C

21
2

1
2


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
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


[6.32]

The Eq 6.32 can be used to determine the modulus of elasticity in compression.
For this purpose, the modulus in extension, in a standard experiment of speci-
men stretching, must be determined and then an apparent modulus in bending
must be measured according to the schemes in Figures 6.3 or 6.5. As a result, the
modulus of compression can be calculated from Eq 6.32.

The next illustration of non-Hookean behavior in bending by transverse force
is related to the case when rheological properties of a solid (elastic) material are
described by a power law:

σ εE
n= A

where A and n are material parameters of a non-Hookean body.
Let a crosssection of a bar be a rectangle of the height, H, and width, B. We

shall discuss the mode of loading shown in Figure 6.5. The moment of inertia of a
crosssection, Ix, is BH3/12. If rheological properties of a material are Hookean,
then according to the above formulas, its flexure in a central plane is
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f = FL
4EBH

max

3

3

If rheological properties are described by a power law, the expression for a maxi-
mal flexure becomes

f = n
n+ 1

L
2H

n + 2
2

FL
ABH

max

3

2

1
n



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It is evident that for n = 1, the latter equation transforms to the equation for
flexure of a Hookean body. It is essential to note that the moment of inertia of a
crosssection does not appear in the latter equation in a clear form, meaning that
the theory of stresses and deformations for any non-Hookean material must be
redesigned when a rheological equation of state (constitutive equation) is cho-
sen.

Let us now discuss such a rheological effect as plasticity in relation to bending.
In Section 6.5, it was emphasized that there are some natural limits of elastic be-
havior of solids. One of them is determined by plasticity of materials. According
to this rheological model, a material can be treated as an elastic (Hookean) up to
the yield stress σy, and at σE = σy, yielding takes place.

Plastic behavior of solids results from spreading of a plastic zone from the point
at which the stress state attains a critical point corresponding to the yield stress.

According to the theory of bending of a Hookean body, the most vulnerable
point is positioned at the surface of a bar. If a crosssection is a rectangle, yielding
occurs when a torque is

M = BH
6y

2

yσ

It is possible to increase the bending moment, but such action does not result in
increase of stress because it cannot exceed the yield stress. It means that by in-
creasing the torque, a plastic zone is widened. Then, if M > My, transverse stress
distribution is as shown in Figure 6.7. In this case, the plastic zone corresponds
to a part of a crosssection in which σE = σy = const.
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Plastic behavior in bending leads to the ef-
fect of plastic collapse in flexure, which is
evident from the dependence of deflection,
d, at the central plane of a bar on the ap-
plied load, F, as in Figure 6.5. When a plas-
tic zone appears and then begins to spread
throughout a cross-section, the deflection
increases with a higher rate than a trans-
verse force because the resistance (rigidity)
of a material also decreases. This effect is il-
lustrated in Figure 6.8. The initial slope of a
straight line is equal to (L3/4EBH2) since it
is within a Hookean limit. Then, at the
point A, a plastic zone appears and an accel-
eration of the deflection growth is observed.
Finally, at some critical force, Fy, calculated
as

F = BH
Ly

2

yσ

the deflection increases limitlessly without
a further increase in force because at this
point a plastic zone occupies the whole
cross-section. This unlimited growth of the
deflection can be called plastic collapse.

It is also interesting to mention that in the
range of forces between FA and Fy, a plastic
zone is spreading not only into the center of
a bar throughout the cross-section but also
from the central plane to the end supports.

In the previous discussion, it was as-
sumed that a line of application of a trans-
verse force passes through the center of a
cross-section. In reality, it is not always the
case, as shown in Figure 6.9. A line of force
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Figure 6.7. Stress distribution
through a crosssection of a plastic ma-
terial when yielding begins.

Figure 6.8. Dependence of deflection,
in a centrally loaded beam, on a load if
stresses pass through the yield point.



action can pass through the center
of a cross-section. According to the
fundamental Saint-Venent princi-
ple, this situation can be substi-
tuted by a statically equivalent sum
of a transverse forces passing
through the center and a twisting
moment (torque) as drawn in Fig-
ure 6.9. It shows that by-force can
be represented as a combination of
bending (discussed above) and tor-
sion (discussed in the next Section).

6.6.5 TORSION OF A BAR (FIGURE 6.1d)

Torsion or twisting of bars (beams) is a very popular model of numerous cases
of applied engineering practice. Indeed, shafts, power transmissions, twisting
springs, screws, and many other devices are subjected to twisting torques, fre-
quently causing deformation and even breakdown of these components. It is
thus important to have a method for calculating stresses acting in a bar and its
deformations.

The formulation of the problem consists of the application of a twisting torque
(moment), Mz, (around the z-axis) at an end of a bar. Then, it is possible to show
that only shear stresses σxz and σyz are non-zero and that they do not depend on
the z-coordinate, i.e., the distribution of stresses is constant along the axis of a
bar, though stresses depend on transverse coordinates. It is necessary to find
stresses and deformations in a bar. Besides stresses and deformations “at a
point”, it is also important to estimate the relative angle of turn, φsp, of a
cross-sections along the length of a bar. This value is defined as an angle of a rel-
ative turn of two cross-sections, separated from each other by distance, L.

A general solution to the problem under discussion is rather complex, but sim-
ple and quite evident results for ordinary shapes of a cross-section can also be
obtained. For a circular cross-section, the distribution of shear stresses along
the radius σ(r) is
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Figure 6.9. Bending by a transverse force pass-
ing the center of a cross-section.



σ =
M
I

rz

p

[6.33]

where Ip is a polar moment of inertia of a cross-section, defined for an arbitrary
geometrical form of a cross-section as

I = r dsp
2

s
∫

Then for a round cross-section, Ip is

I = R
2p

4π

and for a cylindrical cross-section

I = R
2

(1 )p

4
4π β−

where R is an outer radius of a cylinder, andβis the ratio of inner to outer radii of
a cylinder.

The maximal shear stress σmax is

σ
π

βmax
z

3

4=
2M

R
(1 )− [6.34]

For a thin-walled cylinder when β << 1, shear stress can be considered as con-
stant through the wall, and calculated as

σ
π δ δ

=
2M

(2R + )
z

2

where R is a radius of a cylinder and δ is the width of a wall (δ << R).
For a round cross-section β = 0 and σmax can be found as
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σ
πmax

z
3

=
2M

R

Torsion of a straight bar causes a turn of neighboring cross-sections along the
length of a bar relative to each other. The angle of a turn,φ, depends on rheologi-
cal properties of a material. For a Hookean body

φ(z) =
M
GI

zz

p

[6.35]

i.e., φ is a linear function of a longitudinal coordinate z.
If a net length of a bar is L, the angle of a turn between ends of a bar φmax is

φmax
z

p

=
M L
GI

where G is shear modulus of a Hookean body.
The relative angle of turn can be found as

φsp
z

p

=
M
GI

and the maximal stress can be correlated with the relative angle of turn

σ max sp= GRφ [6.36]

The value of the product GIp can be called rigidity in torsion, and the higher
this product is, the lower the value of turn along the length of a bar.

In the engineering practice of design of shafts, transmitting power, etc., the ac-
ceptable limit for the twisting torque can be chosen, either based on maximal
stress (if strength is a limiting factor) or a number of permissible turns calcu-
lated as an angle of twisting per an unit of length (if rigidity is a limiting factor).
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In twisting of round bars, when deformations are
small, all cross-sections remain parallel to each
other. In other shapes of cross-sections, even for
such simple ones as square or elliptic, the
deplanation effect takes place, even in the limit of
infinitesimal deformations, i.e., distortion of plane
sections is necessary to maintain a continuity of
deformations.

In engineering practice, it is common to observe
defects on the surface of a shaft. Such local defects
are especially important for torsion effects because

shear stresses are maximal at the surface. A typical example is shown in Figure
6.10, where a small semi-round hole of a radius, Rh, is made on the surface of a
bar (shaft). In this case, the maximal shear stress is

τ max
p

h
sp

h= 2MR
I

1
R
2R

= 2GR 1
R
2R
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and comparing this formula with Eq 6.36, one can see that a small surface defect
results in doubling shear stresses.

Crosssections other than circular can also be met in engineering practice. In
many cases, the analytical solutions to boundary problems are also known,
though they can be formulated to series or approximate formulas. For example,
for a shaft of a rectangular crosssection (H is its height, and B is its width), maxi-
mal shear stress can be calculated as

σ
π πmax sp 2

GB 1 8 1

cos H
2B

≈ φ −
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[6.37]

However, discussing deformations in twisting of non-round bars, we must not
forget about the effect of deplanation, which always appears in all these cases.

In the case of torsion of thin-walled cylindrical shafts, it is easy to follow the ef-
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Figure 6.10. Cross-section of
a round shaft with surface
defect.



fect of plasticity in relation to the yield stress in shear, σy, because stresses are
almost uniform throughout the crosssection. If we accept that yielding in shear
deformations takes place according to the von Mises condition, then

σ σ= 3 y

we can find that the torque value, My, causing yielding is

M =
2 3

(2R + )y y
2π σ δ δ

In the case of a non-uniform stress field, the critical condition is reached at a
certain point but not throughout the whole crosssection simultaneously.

6.6.6 TEMPERATURE STRESSES

Change in temperature results in expansion (or compression) of a material. If
deformations of such kind are prevented by outer boundaries, internal stresses
appear in a body. This effect is well known and must be taken into account in nu-
merous applications. For example, it is important to maintain gaps between
neighboring rail sections because the temperature change would otherwise dis-
tort them.

In the simplest model of temperature
stresses, we can consider a bar between two
rigid (non-deformed) walls (Figure 6.11). In
fact, it is model of an above-mentioned situa-
tion of a rail section placed between two others.
Let temperature of a bar increase by T, assum-
ing that walls prevent free movement of the
bar. It means that the normal stresses appear
in a material and their value can be calculated
as

σ αE = E T∆ [6.38]

whereα is a coefficient of linear thermal expansion, and E is the Young modulus,
as usual.
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Figure 6.11. A bar placed between
two rigid walls: stresses appear-
ing due to temperature increase.



Temperature stresses exist not only in bodies restricted by outer boundaries
but in materials which may have unrestricted movement but the temperature
field inside them is not homogeneous. In this situation, stresses at boundaries
are absent but they exist inside a body and their value depends on temperature
distribution.

6.6.7 CYLINDER UNDER INTERNAL PRESSURE

We shall consider stresses and deformations in walls of a thin-walled cylinder
with an internal pressure, P. This scheme is a quite evident model of many real
situations, for example, tanks working under pressure.

A definition of a thin-walled cylinder is

δ << R

where δ is the width of a wall, and R is an inner radius of a cylinder.
The primary discussion concerning components of the stress tensor in a

thin-walled cylinder has been already included in Chapter 2. Here, some addi-
tional “rheological” arguments are introduced to this discussion.

α For a Hookean body (in the limits of small deformations), it is easy to find de-
formations. According to the definition of the Hookean body, it is evident that

ε σ µσθ θ= 1
E

( )z−

where ε θ is a circumferential component of the deformation tensor, and σ θ and
σ z are components of the stress tensor.

Components of the stress tensor for different modes of loading of a cylinder
(open or closed ends) were calculated in Chapter 2. Now, we can find deforma-
tions.

β Let an elastic material become plastic at some value of yield stress, σy. There
are two components of the stress tensor σθ and σz acting in a wall. According to
the von Mises criterion, the relationship between the yield stress and compo-
nents of the stress tensor is as follows,
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σ σ σ σ σθ θy
2

z
2

z= ( + )
1
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If ends of a cylinder are open, σz = 0, and

σ σθ = z

If a cylinder is sealed (ends are closed)

σ σθ =
2

3
y

From the above equations, one can find critical (limiting) pressure correspond-
ing to a transition of a material into a “plastic state”.

γ Let us discuss the situation when rheological properties of a solid body are
described by the Mooney-Rivlin potential function which is formulated via the
first and second invariants of the tensor of large deformations

W = A
2

(I 3) + B
2

(I 3)1 2− −

where A and B are material constants.
If one assumes that a material is incompressible, then it is possible to show

that the stress components are

σ λ λ
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where λ θ and λz are principle ratios of extension in two directions.
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The general solution for λ θ and λz can be found from these equations without
problems. It is simpler to illustrate the solution for the case when B = 0, the more
so when B << A, and it is reasonable to neglect B in comparison with A. For this
case

λ λ
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Now, we can excludeλz in equations for stress components, and findσθ andσz in
an analytical form. Perhaps the final expression looks cumbersome, but it is
quite possible to use it to calculate deformations of, for example, an elastic cylin-
der made of a rubbery material under an internal pressure.

6.6.8 PRESSURE INSIDE A SPHERE

Let us attempt to calculate stresses and deformations in the wall of a sphere
loaded by internal pressure, p. It is evident that due to the central symmetry of
the body, all shear components of the stress tensor are equal zero, and normal
stresses (which are the principle stresses) must be found in a polar (spherical)
coordinate system. Two of them are equal (σ σθ = φ), and we need to calculate ra-
dial normal stress σr, where θ,φ, and r are spherical coordinates.

If an inner radius of a sphere is Ri and outer radius is Ro we have the following
boundary conditions

at r = Ri σr = -p;
at r = Ro σr = 0.

where r is a current radius (R r Ri o≤ ≤ ).
The solution for a Hookean medium is well known and is expressed as
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where an “average” stress σav is
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Deformations and displacements can be easily calculated according to the defi-
nition of a Hookean body.

Now, it is interesting to investigate the critical conditions for elastic-to-plastic
transition. If we assume that this transition occurs due to the action of shear
stresses and is described by von Mises criterion, then maximal shear stress σmax

acts at the inner surface of a sphere and can be calculated as
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The critical value of pressure p* inside a sphere, which corresponds to elas-
tic-to-plastic transition, can be found from equation

p *= 2
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where σy is the normal stress at which elastic-to plastic transition (or yielding)
takes place in uniaxial extension.

The last equation allows one to calculate the limiting pressure in thin balloons
made of plastic materials or to find permissible pressure in high-pressure chem-
ical reactors.

6.6.9 STRESSES AND DEFORMATIONS IN MEMBRANES

Membranes loaded by forces normal to their surfaces are a standard element of
many engineering designs. In all these cases, a membrane can be regarded as a
thin sheet which does not resist shearing, and therefore, bending moments at all
points of a membrane are absent. A loaded membrane is a good approximation of
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shells, thin sheets, films, and so on.
In the limit of infinitesimal (or small enough) deformations, the shape of a

membrane does not change under loading. Static equilibrium and forces and
then stresses can be calculated from appropriate balance equations.

A typical example of a loaded membrane is a hemispheric cup under its own
weight. The stress analysis of this problem was conducted in Chapter 2. If defor-
mations are small, they can be easily calculated from the stress distribution ac-
cording to the Hooke Law. In this case, rheological arguments practically do not
add anything new to the stress analysis, except for deformations and relative
displacement points of a membrane, and since they are small, they do not result
in distortion of a shape of a membrane.

The situation becomes more complex if large (final)
deformations occur, and one must consider large dis-
placements and distortions of the shape of a mem-
brane. As an example, let us follow deformations in a
flat membrane which budges due to the action of ex-
ternal forces (Figure 6.12). This is a typical case of
large deformations and it is rather instructive to fol-
low complications which appear in the analysis of
this problem due to large deformations and distortion
of a shape of a membrane.

First of all, we do not know the final shape of a membrane which is definitely
different than its initial shape. In the case under discussion, it is reasonable to
think that an initially flat sheet becomes closer to a sphere. Then, its shape can
be approximated by a formula

r = Rsinα

where R is a radius of a membrane and α is an angle calculated from an axis of
symmetry.

Balance equations show that specific (i.e., calculated per unit of the length of a
membrane) circumferential force, F, and meridional force, Fθ, are the same and
both can be found as

F = F =
Pr

2sin
=

PR
2lθ α
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Figure 6.12. Budging of
a flat membrane due to



where P is pressure required to bulge a membrane.
As a result of this equality, both components of principle extension ratios must

also be equal:

λ λθ = 1

Both extension ratios can be easily found from purely geometrical arguments
and they are

λ λθ = = R + (R r )

R + (R a )
1

2 2

2 2

1
2

1
2

−
−

where 2a is the initial size of a membrane.
Extension ratios can also be expressed via central (maximal) deflection,

f, which is related to R by an equation

R =
a + f

2f

2 2

Substituting, we obtain

λ λθ = =1 +
fh
a1 2

It is interesting to calculate the third principle extension ratio,λ r . From the as-
sumption of the constant volume of a material in deformations, the value of λ r is
calculated from equation

λ
λ λθ

r
1

2

2
=

1
=

1

1 +
fh
a









The last equation shows that the reduction of membrane thickness is not uni-
form. It does not occur near the ends of a membrane (where h = 0 andλ = 1) and it
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the largest at the top, where h = f and

λ r,max
2 -2= [1+ (f a) ]

In further analysis, it is confirmed that the assumption about spherical form of
a deformed sheet is rather artificial, and as a result, one may come to the conclu-
sion that deformations are absent at the ends of a membrane, meaning that
stresses must be zero at the edge. Certainly, this is not the actual case and such
a solution is invalid near the edge. That is why it is reasonable to use an aver-
aged value of λ r , determined as
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Two other averaged values of extension ratios are
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We can use any stress-vs-deformation relationship to calculate λ i, av for known
stresses in a membrane. They are

σ
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where δo is the initial thickness of a membrane and its final thickness δ is ex-
pressed as
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For example, let a non-linear relationship between stresses, σ, and deforma-
tion, ε, be expressed by an elastic potential (6.14). Then

σ σ λ
λθl 2 4

= = A 1−







where

λ λ λ θ≡ lN =

For the purpose of further simplification, we can assume thatλ >> 1, and then

σ λE
2= A

Now, it is possible to show that the resulting formula has the following form:
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The last equation allows us to calculate the
deflection, f, as a solution of the quadratic
equation and to find dimensions of a de-
formed membrane.

6.6.10 CONTACT (LOCAL) STRESSES

Let us assume that a force, F, is acting nor-
mal to the surface of an elastic body at “a
point”. Formally, it means that the intensity
(specific force, or force divided by an area on
which it acts) of the local force at this point is
infinite. In reality, any force, even very local-
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ized, acts on some finite area and stresses cannot be infinite. Moreover, any force
results in deformations of a material and reorganizes an area where it is ap-
plied. The stresses created are called contact stresses, and they are discussed
below. Now, we shall consider the case of “point” application of a force (Figure
6.13).

Though a force cannot be applied to “a point”, this scheme is a good model of nu-
merous real situations; for example, nails driven into a solid wall, a heavy wheel
on a road, a ball in a ball bearing, etc.

Solution of the problem under discussion can be easily formulated in polar co-
ordinates, which are introduced as

x = r cos ; y = r sinθ θ

where r is the distance from the point of force application andθ is a polar angle.
Then, it is possible to find that for a Hookean elastic material, absolute values

of the components of the stress tensor are

σ
π

θ θxx
2= 2F sin

r
cos

σ
π

θ θyy
2= 2F sin

r
sin

σ
π

θ θxy
2= F sin

r
sin

It is also possible to find principal stresses

σ σ
π

θ
1 2= 0; = 2F sin

r

Certainly, all these equations are invalid in the close vicinity of the point of
force application because the true force distribution around this point is not
properly modeled. Nevertheless, the results of calculations are rather interest-
ing because they show that stresses are decreasing rather slowly from the point
of force application, proportional to the distance from this point.
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If a material becomes plastic, which happens with stresses exceeding the yield
stress (when σ σ> y ), we arrive at a rather interesting picture drawn in a quali-
tative form in Figure 6.13. Near the top of a wedge penetrating into a solid body,
a plastic zone appears, surrounded by an elastically deformed material. This
scheme of deformation reflects a situation common to many technological pro-
cesses of the shaping of solid (elastic) materials which become capable to plastic
deformations atσ σ> y (i.e., they conserve a new form created by an action of ex-
ternal forces if they exceed the yield stress). Certainly, the form of material de-
formation can vary, but a zone of plastic deformation appears near the sharp
edges of material breakdown; for example, near the corners of a rectangular
punch. If the rheological equation of state (constitutive equation) of such elastic
material, transiting into a plastic state at σ σ> y , is known, then it is possible to
calculate stress and deformation distributions through the volume of a body.

Calculation of contact stresses in solid bodies under force, F, deserves some ex-
planation. It is so-called Hertz problem, and its solution depends on the shape
of the body which exerts this force. If both materials are Hookean and their rheo-
logical properties are characterized by the same value of the Young modulus, E,
the equations, for the main cases, are well known. For example, if two contacting
bodies are spherical, the maximal stress, σmax, is calculated as

σ max
2 1 2

2

1 2
2

= 0.388 FE
(R + R )

(R R )

1
3


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
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where R1 and R2 are radii of contacting spheres.
If one of the spheres is replaced by a flat plane (i.e. if R1 = 0 and R→ ∞), we have
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It is interesting to mention that in all cases when two Hookean bodies are in con-
tact, and one of them is a sphere, the maximal stress is proportional to the com-
plex (FE2)1/3. As a general rule, an elastic material can sustain great contact
stresses. It is explained that a contact force leads to a three-dimensional com-
pressive stress state, which is not as dangerous to a material as tensile stresses.
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It is possible to prove that the most dangerous point is positioned not on the sur-
face at the place of a contact but at some distance under the point of contact, and
the principle stresses in this point are lower than the maximal stress, σmax. That
is why plastic deformations with the yield stress exceeded occur inside the vol-
ume of contacting bodies before they can spread to the surface.

6.7 CONCLUDING REMARKS

A great number of materials used in engineering practice and in numerous ap-
plications can be treated as solids or elastic solids. It means that the energy of
deformation is stored in a material, and after the action of external forces ceases,
this stored energy is used for restoration of the initial form of a body. In this
sense, we may say that an elastic material remembers the history of its deforma-
tion. An ideal elastic material stores and returns the energy of deformation com-
pletely and instantaneously. It is interesting to mention that the work of
deformation of an ideal elastic material does not depend on the route from the
initial to the final configuration. That is why stored energy is a potential func-
tion (i.e., a function which does not depend on the manner of movement in space
of variables but depends on positions of starting and final points in this space
only).

Certainly the concept of ideal elasticity is only a model of behavior of real solid
materials in which elastic (recoverable) deformations dominate. In reality, nei-
ther is storage of energy of deformation complete (part of it dissipates even
though it can be only a slight part of the full energy involved) nor is the reaction
of a material after removal of external loading instantaneous (though it can be
very rapid). Moreover, the same material can behave differently, depending on
the time-scale of deformations. An idea of elasticity is primarily related to the
behavior of a material, rather than to the material itself, though this difference
does not appear obligatory and in some cases can be evaluated in specially-de-
signed experiments (in a very prolonged observation only).

Moreover, even if a material is elastic (or close to the ideal elastic behavior),
this type of rheological property can exist up to a definite limit of stresses. This
limit is restricted by one of the two reasons:

• rupture of a material when stresses exceed its strength
• transition to a plastic state if stresses exceed the yield stress of a material.
Both critical situations are predicted on the basis of a concept of an “equiva-

lent” state calculated as a function of invariants of stress and/or deformation
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tensors. This formal approach does not answer the question regarding the rea-
sons for rupture or elastic-to-plastic transition, and generally the answer is out
of sphere of rheology, belonging rather to the physics of solid state. This is not
surprising because the reason for material to obey the Hooke Law is not dis-
cussed in mechanics (or rheology of continuum) since it belongs to the physics of
solids. According to the classification of the rheological effects (Chapter 3), we
only can state that both phenomena can be treated as manifestations of phase
non-linearity in the rheological behavior of a solid material. It is rather evident
from transition to plastic state, for example, in neck formation on uniaxial
stretching, but the same can be valid in relation to rupture.

The existence of the limiting point for elastic materials is outside of the concept
of elasticity and must be introduced from some independent arguments. This
point is very important for all applications, because a model of an elastic mate-
rial is very widely used for countless engineering problems and it is necessary to
know the limits of its applicability.

The central position in rheology of solids is occupied by the search for a valid
rheological equation of state (constitutive equation) used for description of me-
chanical behavior of real material. There are two rational ways to build a rheo-
logical equation of state for an elastic material. The first is based on the
fundamental concept of elasticity and representation of an elastic energy of de-
formations (or elastic potential function) in the form of a combination of stresses
and deformations. The second approach utilizes possible versions of reasonable
relationships between stresses and deformations. Both methods formulate rhe-
ological equations of state in invariant form, i.e., they are based on rational func-
tions and may relate invariants (or principal values) of the stress and
deformation tensors. It is always possible to switch from one method of formu-
lating to the other.

The simplest rheological equation of state of an isotropic elastic body is the
Hooke Law, which postulates the linear relationship between normal stresses
and deformations in uniaxial extension and introduces two rheological (mate-
rial) parameters

• the Young modulus, which is determined as a coefficient of proportionality
between stresses and deformations in uniaxial extension. The value recipro-
cal to the Young modulus is called elastic compliance (in extension)

• Poisson ratio, which is an absolute value of the ratio of transverse to longi-
tudinal deformations measured in uniaxial extension.
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Generalization of the Hooke equation to three-dimensional deformations can-
not be done in a straightforward way, because the simplest possible assumption
that all components of stress and deformation tensors are proportional to each
other is evidently wrong. Such generalization requires splitting of both tensors
into spherical and deviatoric parts, and only for these components of tensors
separately does the idea of linear proportionality work well and allow one to
build a reasonable rheological equation of state of the simplest elastic body
which is correct for the range of small (or infinitesimal) deformations. This is the
simplest possible model which includes two independent material parameters
(coefficients of proportionality) of a medium called the Lamé factors. Their
physical meanings are:

• modulus of volume compressibility, characterizing the resistance of a
material to homogeneous volume changes, under hydrostatic pressure,
without changes in shape of a body;

• shear modulus, characterizes resistance to changes in the form of a body at
its constant volume.

Any pair of constants can be recalculated to each other so there are only two in-
dependent constants which represent rheological properties of an isotropic elas-
tic material. Moreover, a medium is incompressible when Poisson ratio is 0.5
and only one independent constant describes mechanical behavior of an isotro-
pic elastic material. It can be the Young modulus or shear modulus.

If an elastic material is anisotropic, i.e., its properties depend on directions of
force application and deformation measurements, the number of independent
constants (moduli or compliances) is more than 2 and their exact quantity de-
pends on the class of symmetry of an anisotropic material. For example, it is true
for monocrystals, liquid crystals, reinforced plastics. The maximal number of in-
dependent constants for bodies of the highest class of symmetry is 21 and this
number diminishes with a decrease in the class of symmetry.

Elastic deformations can be large (in comparison with 1), and in this case, it is
necessary to refer to the theory of finite deformations in order to construct a rhe-
ological equation of state.

A general approach to solving this problem consists of an application of various
hypotheses concerning functional dependencies of an elastic potential on invari-
ant of the tensor of large deformations. The simplest case is an assumption of
linear dependence of an elastic potential on the first invariant of this tensor or
on the combination of the first and the second invariants, and so on. If it is not
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sufficient, it appears necessary to introduce higher members of the series with
own coefficients (material constants). The same results are achieved if we use
linear combinations of the Cauchy-Green and Finger tensors of large deforma-
tions.

In all these cases (even if we use linear members of the series only), the
stress-vs-deformation relationships in extension become non-linear, though
they may stay linear for shear deformations. It demonstrates that the same re-
sults obtained in an experiment of one type can be compatible with qualitatively
different results of an experiment in another geometrical scheme of sample
loading. It is thus necessary to combine different geometrical modes of loading if
a solid conclusion about the type of the rheological equation of state of a material
is expected.

Rheological equations of state of an elastic solids are used to solve boundary
problems, i.e., they are used to find stresses and deformations inside a body
loaded on its surface, and sometimes macro-deformations (for example, deflec-
tions and twisting of bars) are also a subject of investigation. There are different
classes of boundary problems. Among them, the Saint-Venant problem is one
of the most popular and important. This problem is formulated as a task of cal-
culating stresses and deformations in bars (beams) loaded at their ends in an ar-
bitrary manner, primarily by a stretching force, by a transverse force, by a
bending torque (moment), or by a twisting torque.

The general approach to solving this problem is based on the Saint-Venant
principle. According to this concept, the resulting distribution of stresses in-
side a material does not depend on detailed manner of force and torque applica-
tion at the ends of a beam, if direct vicinity of the ends is not of special interest.
This approach allows one to find normal and shear stresses (and then principle
stresses at any point) at any crosssection of a bar of an arbitrary form. These so-
lutions are very widely used in engineering practice for calculating strength of
materials. When stresses exceed the yield stress, plastic deformations appear in
the the center of action of maximal stresses, and plastic zones are spreading
throughout a sample.

Besides the Saint-Venant problem, other situations also can be investigated, if
the rheological equation of state of a material is known. The contact stresses in
case a highly localized force applied to the surface of a body can be other example
of application. As a result, the stress distribution through the volume of a body
can be found and the transition to plastic deformation at yield stress estimated.
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7

VISCOELASTICITY

7.1 INTRODUCTION

Rheological behavior related to viscoelasticity is the most relevant for the de-
scription of a majority of real materials. Viscoelastic effects exist in Newtonian
liquids (e.g., water) under special conditions of measurement, such as very high
frequencies. The other extreme of viscoelastic effects is offered by the example of
vibration damping in bells, due to “viscous” losses in metal.

In general, viscoelasticity is a combination (or superposition) of properties
characteristic for liquids (viscous dissipative losses) and solids (storage of elas-
tic energy). Therefore, a general definition of viscoelastic materials includes two
components — elastic potential and intensity of dissipative losses. However,
these two values are factors of a different dimension. The main characteristic
material constants (i.e., viscosity and modulus of elasticity) are also values of a
different dimension. The approach taken to combine elastic and viscous charac-
teristics of a material for description of its viscoelastic properties is worth a spe-
cial discussion because it leads to various models of a viscoelastic body.

Viscoelastic behavior can be considered as a slow (or delayed) development of
stresses and deformations in time, and this delay must not be confused with in-
ertial effects also characterized by a specific lag time. A very important, al-
though not explicit, word in the last sentence is “slow”. In order to discover
viscoelastic effects in regular liquids, we need to use ultra-high frequencies
(characteristic time of an experiment in this case is about 10-7 s), whereas time
delay effects, in deformations of concrete rods and plastic tubes under pressure,
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require years of observation (characteristic time is about 108 s). Moreover, one
can treat deformations of stones as a very slow process, realizing that it requires
geological periods of time (characteristic time is of the order of 1017 s; as we know
only the Lord has enough time to observe it).

The dimensionless criterion called the Deborah Number, De, was introduced
to be a measure of a ratio between characteristic time of observation, tobs, and the
time scale of inherent processes in a material, tinh. Then

De = tobs/tinh

The physical meaning of the value tinh is not identified here, and in fact, it can dif-
fer. In a general sense, tinh characterizes the rate of inherent rearrangement of
the material structure. Since the level of structure organization, its rupture and
restoration can vary, we can find very different values of characteristic times for
the same material. Therefore, in principle, different values of the Deborah Num-
ber are expected to exist.

The Deborah Number is especially important for viscoelastic phenomena be-
cause they always proceed in time. Since the time interval is very wide, we must
encounter a situation when the Deborah Number is of the order of 1, i.e., an ob-
server can “feel” that something happens with (or inside) a material. All this
means that complete description of viscoelastic phenomena includes experi-
ments which must occupy no less than 15 decimal orders along the time scale.
Certainly, in the majority of cases, this is not very realistic. Therefore, two gen-
eral approaches are usually taken to investigate viscoelastic phenomena:

• The measurement is done in a limited window along the time scale (for ex-
ample, from 10-1 to 103s) and the experimental data extrapolated beyond the
borders of the window

• Special methods are used to accelerate (or decelerate) viscoelastic processes
and then empirical (or semi-theoretical) approaches applied to modify the
time-scale. For example, one may increase temperature to accelerate the
process. Then, it is assumed that the change in temperature is equivalent to
some change in the time-scale (for example, what occurs at 100oC in 10 s re-
quires 104 s at 20oC).

Both general approaches are empirical, and even in the best case, if they are
based on some theoretical ideas, they may or may not be correct. Besides, any ex-
perimental data includes a scatter of points due to unavoidable errors of mea-
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surement. The scatter of predictions (extrapolations) from this not-ideally-clear
window, with dispersed field points, is increasingly wider the farther we depart
from the borders of the window. It is thus rather dangerous to make far extrapo-
lations, even though it is very attractive to observe deformations during 10 h
and predict further development of deformations for 10 years.

Viscoelastic phenomena belong to the fundamental rheological effects describ-
ing the relationship between stresses and deformations. A general theory of
viscoelasticity is thus based on three-dimensional analysis and consideration of
concepts as tensor values. Quite adequate understanding of basic ideas of
viscoelasticity is available for uni-dimensional deformations. Especially, it is
true, for small deformations when non-linear effects of any kind do not appear.
In this case, it is not the mode of deformations which is important. That is why,
in the following Sections of this Chapter, discussion of simple deformations and
stresses does not identify the geometrical mode of deformation.

In specialized books, one can find a very rigorous and complete account of the
theory of (linear) viscoelasticity. The first comprehensive account of the linear
theory of viscoelasticity was published by B. Gross,1 followed by several books
containing mathematical foundations and main results.2-4 There are also some
textbooks containing not only main results of phenomenological theory but also
numerous ideas concerning its physical meaning and illustrating applica-
tions.5-7 It is now a homogeneous theory, based on solid mathematical back-
ground, containing all necessary theorems and answers to pertinent questions.
However, following the line of this book, we do not attempt to prove statements
of the theory and conclusions discussed below. The major points −physical ideas
used in the theory, definitions, main results and relationships, not requiring
high mathematical analysis −are included for the practical purpose of their ap-
plication in observation of material behavior.

In order to complete this introduction, it is worth mentioning that those profes-
sionals who know the theory of electrical networks may notice that ideas, con-
clusions, and relationships of the theory of viscoelasticity can be restructured
into terms of electrical networks by simple substitution of symbols. The same is
true for the theory of dielectric properties of materials. The same mathematical
structure of the theory is used, even though the physical objects differ.
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7.2 DEFINITIONS

This Section is devoted to the quantitative theory of effects briefly described in
Chapter 4.

Three fundamental experiments form the basis for the discussion:
• creep
• relaxation
• periodic deformations.
It is possible to discuss any other time-dependent stress or/and deformation

modes, but these three are the simplest, and they allow us to define the main
concepts used for description of viscoelastic effects.

7.2.1 CREEP

At constant stress, σ o , applied at initial time (t = 0), slow (or delayed) develop-
ment of deformations, ε(t), is observed, and this phenomenon is called creep.
The function ε(t) can be considered as consisting of three components:

ε ε σ σ
η σ

σ(t) = (t, ) + (t, ) + t
( )o o o

o
oΨ [7.1]

whereε o is an instantaneous deformation, Ψ(t, )oσ a function describing delayed
development of deformations, η σ( )o viscosity, which (in a general case) can de-
pend on stress, t current time.

Another form of Eq 7.1 is

η
σ

σ σ
η σ

(t) = I(t) = I ( ) + (t, ) + t
( )o ψ [7.2]

where the value I(t) is called compliance, Io an instantaneous compliance, and
ψ(t) a creep function. Subscript zero at σ is omitted in this equation.

As pointed out above, in formulating Eqs 7.1 and 7.2, the type of deformation
(extension, shear, and so on) is not specific but it must be accepted that deforma-
tion is unidimensional.

A material is called linear viscoelastic if material parameters Io, ψ(t), and η
do not depend on stress; in the opposite case, material has non-linear
viscoelastic behavior.
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It is necessary to separate two main cases shown in Figure 4.20:
• if η is unlimitedly high, the last member in Eq 4.2 is absent and we deal with

a solid viscoelastic body. For linear viscoelastic solids, the value
ψ ψ → ∞∞ = (t ) is limited and the sum

I = I +o∞ ∞ψ [7.3]

is called equilibrium compliance.
• For viscoelastic liquids (curve 2 in Figure 4.20), deformation increases un-

limitedly due to the linear (in time) increase of input of the last item in Eq
7.2. For viscoelastic liquids, equilibrium compliance equals zero.

Accelerated growth of deformation in creep (as shown by the curve 3 in Figure
4.20) is characteristic for non-linear viscoelastic behavior and acceleration
starts at lower deformations.

Measurements of creep in long-term loading of materials are widely used for
many fabricated goods and parts of machinery, continuously exploited under
stress; for example, pipes for transporting gases under pressure. In all these sit-
uations, creep has a detrimental effect on applied properties of materials. How-
ever, in technological practice, creep is used as a method to produce orientation
in drawing of fibers, films, and so on, with posterior fixation of the oriented
state.

7.2.2 RELAXATION

At constant deformation, ε o , set at some initial moment of time, t = 0, we can
observe slow decay of stresses in time σ(t). This phenomenon is called relax-
ation. The function σ(t) can be presented as consisting of two components

σ ε ε ε(t) = (t, ) + E ( )o o oΦ ∞ [7.4]

where Φ(t, )oε is a function describing decay of stresses and E∞ represents a re-
sidual (non-relaxing) or equilibrium component of stress.

Another form of Eq 7.4 is

σ
ε

ε ε(t) = (t, ) + E ( )
o

φ ∞ [7.5]
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where φ(t, )ε is a function of stresses, called relaxation function (sometimes
this function is called relaxation modulus) and E∞ is called an equilibrium
modulus.

A material is called linear viscoelastic ifφ(t) and E∞ do not depend on initial de-
formation, ε; in the opposite case, material exhibits non-linear relaxation. As a
rule, even with non-linear behavior, E∞ does not depend on ε, but the rate of re-
laxation represented by the function φ(t) does.

Similar to creep, it is reasonable to separate two main cases:
• if E = 0∞ material is a viscoelastic liquid
• if E 0∞ > , it means that a material can support stresses and therefore it is

considered a viscoelastic solid. In the latter case, the value

E = (0) + Eo φ ∞ [7.6]

is called initial (or instantaneous) modulus.
Stress relaxation is a very important phenomenon in technological practice. If

it occurs with too slow a rate, the material is capable of storing residual (frozen)
stress, and this effect strongly influences its quality. A rapid relaxation can also
have adverse effect in use of some materials. For example, seals should exclude
gas or liquid leakages in equipments working under pressure. This can only be
achieved if a seal is continuously stressed during exploitation; relaxation leads
to loss of close contact between a seal and a solid wall of an apparatus.

7.2.3 PERIODIC OSCILLATIONS

It is the third well defined regime of deformations. The form of time-dependent
periodic deformation can be arbitrary but the theory deals with harmonic oscil-
lations. It is quite natural because a signal of any arbitrary form can be ex-
panded into Fourier series to form a harmonic function.

For mathematical convenience, periodic signals can be written in complex ex-
ponential functions exp(iωt) using Euler’s rule:

e t i ti tω ω ω= +cos sin

It can be assumed that stress, σ(t), changes as

σ σ ω(t) = eo
i t [7.7]
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where σ o is an amplitude of stress, and ωits frequency of oscillations.
One may expect that deformations will change periodically, and in the first ap-

proximation, ε(t) is described by a harmonic function with some delay with re-
spect to σ(t). Then

ε ε ω δ(t) = eo
i( t- ) [7.8]

where ε o is an amplitude value of deformations and δ the phase angle (i.e., a
value characterizing the phase difference in oscillations of stresses and defor-
mations); this value is also called loss angle and the physical meaning of this
term is discussed below.

If deformation, not stress, is a preset function, i.e.

ε ε ω(t) = eo
i t [7.9]

then stress is changing according to the equation

σ σ ω δ(t) = eo
i( t+ ) [7.10]

Certainly, Eqs 7.9 - 7.10 are equivalent to Eqs 7.7 - 7.8.
Now, let us introduce the main parameter used to characterize viscoelastic

properties of a material measured by periodic oscillations. It is a dynamic
modulus of elasticity, E*, determined as

( )E *= isino

o

σ
ε

σ
ε

δ δ= +o

o

cos [7.11]

It is evident that E* is characterized by two parameters: its absolute value

E =o
o

o

σ
ε

[7.12]

and phase angle, δ.
Both factors can depend on frequency and (in principle) on amplitude of defor-

mation. For a linear viscoelastic body, the amplitude dependencies of Eo and
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δ

δ are absent, which is an additional definition of linear viscoelastic behavior.
Dynamic modulus can be represented by two elements

E* = E + iE′ ′′ [7.13]

where

E = cos ; E = sino

o

o

o

′ ′ ′σ
ε

δ σ
ε

δ [7.14]

These parameters are called real and imaginary components of dynamic
modulus, respectively, or E′ is called storage modulus and E′ ′ loss modulus.

Absolute value of dynamic modulus is expressed through E and E′ ′ ′ as

|E |= [(E ) + (E ) ]* 2 2 1 2′ ′ ′ [7.15]

Instead of E* and its components E and E′ ′ ′ , their reciprocal values can also be
used. They are called dynamic compliance

I = I iI* ′ − ′ ′ [7.16]

determined as

I = cos ; I = sino

o

o

o

′ ′ ′ε
σ

δ ε
σ

δ [7.17]

The relationship between complex modulus and complex compliance is sim-
ple and evident

E I = 1* * [7.18]

and relationships between components of E* and I* are established from
Eq 7.18 according to the rules of operation with complex numbers. They can be
written as
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E = I

[(I ) + (I ) ]
; E = I

[(I ) + (I ) ]2 2 1 2 2 2 1/ 2
′ ′

′ ′ ′
′ ′ ′ ′

′ ′ ′
[7.19]

and vice versa:

I = E
[(E ) + (E ) ]

; I = E
[(E ) + (E ) ]2 2 1/ 2 2 2 1/ 2

′ ′
′ ′ ′

′ ′ ′ ′
′ ′ ′

[7.20]

The last useful final expression in the theory of periodic oscillations is derived
from Eqs 7.14 and 7.17. It connects loss angle with components of dynamic
modulus and compliance:

tan = E
E

= I
I

δ ′ ′
′

′ ′
′

[7.21]

When liquids are studied by a method of periodic oscillations, sometimes it is
more convenient to use rates of deformation rather than deformations them-
selves. If ε(t) is changing in accordance with Eq 7.8 then

&ε ε ε ω ωεω δ= d
dt

= i e = io
i( t- )

A new parameter, characterizing viscoelastic properties and defined as regu-
lar viscosity by the ratio of stress to rate of deformation, can be introduced. This
parameter is called dynamic viscosity and is expressed as

η σ
ε

σ
ε ω

δ δ η η*= = (sin icos ) =o

o&
− ′ − ′ ′ [7.22]

where

η σ
ε ω

δ
ω

η σ
ε ω

δ
ω

′ ′ ′ ′ ′ ′= sin = E ; = cos = Eo

o

o

o

[7.23]
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Any pair of the above-introduced parame-
ters is a complete measure of viscoelastic
properties of a material. It can be E′ and E′ ′
(or E′ and tanδ), or I′ and I′ ′ or η′ and η′ ′ . All
other parameters can be calculated from any
pair by means of simple algebraic operations
written above.

Concepts and definitions discussed above
can be visually interpreted by the graph
(Figure 7.1). Let deformations and stresses
be depicted by vectors with their length
equal to their amplitude values,| |oε and| |oσ ,
respectively. Vector of deformation rate is
also given. Coordinate axes are formed by
real and imaginary numbers. The angle be-
tween vectors of deformation and stress
equals the loss angle δ. Let all vectors in Fig-
ure 7.1 rotate counter-clockwise with angu-
lar velocity ω. It means that the angle
between the vectorσ o and abscissa equalsωt,

and between the vector ε o and abscissa is (ω δt − ).
This figure allows for the following interpretation of the main parameters con-

sidered in the theory of viscoelasticity. If we project the vector of stress onto the
vector of deformation, the value of σ δocos and the ratio of this projection to the
length of the vector of deformation gives the real component of dynamic modu-
lus, E′. If we take the projection ofσ o onto the direction perpendicular to the vec-
tor of deformation and calculate the ratio of this projection (equal to σ δo sin ) to
the length of the vector of deformation, the imaginary part of dynamic modulus,
E′ ′, is received.

If we project the vector of deformation onto the vector of stress and onto the
perpendicular direction to find the ratios of lengths, the definition of I′ and I′ ′ is
obtained. Then the analogous procedure with the vector of rate of deformation
leads to the components of dynamic viscosity.

The graphic interpretation of oscillatory measurements allows one to treat lin-
earity of viscoelastic behavior for a linear viscoelastic material:

• by changing the length of one of the vectors in Figure 7.1, all other vectors
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change proportionally to the first
• the angle between stress and deformation vectors does not depend on their

lengths and does not change during rotation of all vectors at any angular ve-
locity.

One more geometrical interpretation of viscoelastic behavior, very useful and
utilized in practice, can be obtained from rearrangement of Eqs 7.7 and 7.8 and
by excluding time as a parameter of these equations. The direct relationship be-
tween stress and deformation then has the following form:

σ
σ

ε
ε

δ σ
σ

ε
εo

2

o

2

2

o o

+ = sin + 2





































cosδ [7.24]

This equation is that of an ellipsis.
The following designations can be introduced in order to simplify the interpre-

tation of experimental results:

x = ; y =
o o

σ
σ

ε
ε

Then Eq 7.24 can be written as

x + y = sin + 2xycos2 2 2δ δ [7.25]

The characteristics (ellipsis) described by Eq 7.25 is drawn in Figure 7.2. Calcu-
lations show that the area of the ellipsis A is

A = sino oπε σ δ [7.26]

i.e., the area of the ellipsis is proportional to the amplitude values of stress and
deformation and depends on loss angle, δ.

There are two limiting cases important for further interpretation:
• if δ π= 2, then Eq 7.25 has the form:

x + y = sin2 2 2δ

it means that an ellipsis degenerates into a circle;
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• if δ = 0, then Eq 7.25 degenerates into

x = y

which is an equation of a straight line.
Graphic interpretation of stress-vs-deformation dependence in the form of el-

lipsis allows one to make some comments concerning inputs of elastic and
dissipative components in deformation of viscoelastic material. For this pur-
pose, let us calculate the work, W, produced during a cycle of deformation of a
viscoelastic body. This work is found as

W = (t)d
0

T

∫ σ ε [7.27]

where T = 2π ω is a duration of an oscillation cycle.
Direct calculations show that the work, W, is

W = sino oπε σ δ [7.28]

The identity of expressions in Eqs 7.26 and 7.28 is obvious and gives the inter-
pretation of the area of ellipsis in Figure 7.2 as the work produced during an os-
cillation cycle. Certainly, there is no elastic (stored) energy when a cycle is
completed, because otherwise an unlimited increase in stored energy from cycle
to cycle would be observed, which is physically impossible. That is why the en-
ergy calculated from Eq 7.28 reflects the work dissipated during a cycle of oscil-
lation. The ellipsis, as in Figure 7.2, is called a hysteresis loop because it
represents a delayed part of deformation.

Eq 7.28 allows one to propose the interpretation of a physical meaning of com-
ponents of dynamic modulus and compliance. If we substitute expressions for E′ ′
by I′ ′, the following equation is obtained:

W = E = Io
2

o
2πε πσ′ ′ ′ ′ [7.29]

Both values, E and I′ ′ ′ ′ , are measures of energy dissipation during periodical os-
cillations.

It is also possible to show that real components of dynamic modulus and com-
pliance, E and I′ ′, are measures of elasticity because energy stored (and then re-

256 Viscoelasticity



turned) during the cycle of oscillation is
proportional to them.

The loss angle can be found from Figure 7.2 by the
following simple method. The area of a rectangle
circumscribed around an ellipsis is equal to 4 o oσ ε .
The ratio of areas of an ellipsis to a circumscribed
rectangle equals sinδ/4. Then it is possible to find
the loss angle from this ratio without the measure-
ment of amplitudes of stress and deformation. This
approach is used in some standards, and instru-
mental measurements were introduced in studies
of damping characteristics of rubbers and rubber
compounds. Hysteresis loop surface area (see Fig-
ure 7.2) is a measure of mechanical losses on defor-
mation.

Now, we can come back to two limiting cases of the values ofδmentioned above.
If δ π= 2and sinδ= 1, the energy dissipation is at its maximum, typical for liq-
uid without any elastic properties. Ifδ= 0 and sinδ= 0, there is no energy dissipa-
tion, corresponding to the other limiting case of an elastic material without
viscous losses. In all other situations, intermediate cases are met in which the
value of the loss angle characterizes the ratio of viscous-to-elastic properties in
viscoelastic materials. By decreasing δ, and consequently decreasing viscous
losses, material transits from pure viscous to pure elastic.

In real practice, viscoelastic materials are in the form of springs, rings, and so
on. Engineering constructions must be as highly elastic as possible (losses must
be low). Shock-absorbers, sound isolators, and materials for many other similar
applications must possess a high dissipative function, meaning that the loss an-
gle of such materials must be as close to π/2 as possible.

The above-formulated functions are used to describe viscoelastic effects and
characterize properties of real materials. However, it is necessary to emphasize
that the definition of all these functions implies that they must be defined (mea-
sured) in the range of their arguments (time or frequency as a value reciprocal to
time) from zero and to infinity. It already has been mentioned that this is unreal,
and such a requirement is the main problem in practical applications of the
viscoelasticity theory. It is not a formal point but a serious physical limitation of
the theory. It is easy to write equations including these limits, and below, many
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equations of this kind are presented, including the above-introduced parame-
ters, because they are frequently used in the theory of viscoelasticity. At the
same, it is very difficult to use equations in practice because input of some
viscoelastic functions (creep, relaxation, dynamic modulus) beyond the limits of
their direct measurement (beyond an experimental “window”) can lead to uncer-
tain errors in predicting deformation behavior of a real material. We shall re-
visit this problem in the following sections of this chapter.

7.3 PRINCIPLE OF SUPERPOSITION

The general theory of viscoelasticity is designed to answer two related ques-
tions:

• either functions, introduced for formal description of deformations or
stresses in the fundamental experiments (creep, relaxation, periodic oscilla-
tion), are independent characteristics of material or they are inherently con-
nected to each other

• if one or some basic functions of viscoelastic material are known (have been
measured), can one describe its deformation-vs-stress behavior in any arbi-
trary mode of deformation (for example, find evolution of deformation for ar-
bitrary history of loading)?

The answer to these questions is the main content of the theory of
viscoelasticity. And this answer is: “yes”, all fundamental functions are inher-
ently related to each other, and “yes” to the second question means that we can
describe deformational behavior of material if at least one basic viscoelastic
function has been measured beforehand.

Both positive answers are founded based on the principle of linear super-
position of stresses and/or deformations. This principle was formulated by
Boltzmann.8-11 The concept may have different forms, but the basic idea is re-
lated to the mutual independence of all consequent events happening to the ma-
terial. In fact, it means that all materials are sufficiently weak, therefore they
cannot change the mode of reaction to an external action. The material reacts to
the next action as if no former action took place. In other words, the structure
and properties of material are not changed, regardless of its deformation, and
the last statement is a real physical meaning of the Boltzmann Principle.

Now, let us write the above-stated concept in the form of mathematical sym-
bols. Let the initial stress, acting from the moment t = 0, be equal toσ o . Then, de-
formations change according to Eq 7.2. At some point of time,t′, let stress change
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by ∆σ. The principle of linear superposition assumes that in this case, deforma-
tion changes accordingly:

ε σ ϕ
η

σ ϕ
η

(t) = I + (t) + t + I + (T t ) + t t
o o o







− ′ − ′





∆

Stress can change at any given time which follows. For any such moment of
time and any corresponding change of stress, one can add an independent item
in the last equation for ε(t).

Certainly, stress can change continuously, and bearing this in mind, we come
to the final integral (instead of sum) formulation of the Boltzmann principle of
linear superposition:

ε
η

σ(t) = I + (t t ) + t t d
0

t

o∫ ψ − ′ − ′





[7.30]

or

ε σ
η

(t) = d
dt

I + (t t ) + t t dt
0

t

0∫ ′
ψ − ′ − ′





′ [7.31]

The analogous line of arguments can be used to describe changes in deforma-
tion, and in this case, Eq 7.5 is a starting-point. The final result is quite similar
to Eq 7.31, and can be written as

σ ε ϕ(t) = d
dt

[ (t t ) + E ]dt
0

t

∫ ′
− ′ ′∞ [7.32]

The pair of symmetrical Eqs 7.31 - 7.32 is called the Boltzmann-Volterra
equations.12,13 They are the mathematical formulation of the principle of lin-
ear superposition.

It is possible to illustrate the behavior of viscoelastic material according to the
principle of superposition by the following example for elastic recoil (retarda-
tion) after forced deformation of a body.
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Let the history of deformations be as shown in Figure 7.3a: the external force
created deformation, ε o , and then (very rapidly) the same deformation but with
the opposite sign, - oε . When the force was acting during two short periods of
time, one could neglect partial relaxation at deformations ε εo oand − . The ques-
tion is: what happens if, at the moment A, the external force is removed? Ideal
elastic body immediately returns to its initial state, as shown by the vertical line
from the point A in Figure 7.3b. The behavior of viscoelastic body is quite differ-
ent, as illustrated by the line ABC in Figure 7.3c. The first part of this line, AB, is
retardation from the second deformation, - oε , not to zero but to a state deter-
mined by the first deformation, ε o . Only after that slow (delayed) action, a re-
turn to the zero state occurs.

Another very interesting (and important for technological applications) exam-
ple of influence of deformational prehistory on the behavior of a material is re-
lated to the processing of polymers (thermoplastics and rubber compounds).
During extrusion of continuous profiles, a molten material moves between a
screw and a barrel of an extruder, then it passes transient channels. Finally, it is
shaped in an outlet section of a die. It would be desirable that the shape of a final
profile is equivalent to the shape an outlet section of a die. On the contrary, the
material continues to react to all deformations which took place before the outlet
section of a die. As a result, distortion of its shape occurs; therefore, the final sec-
tion of a part can be very different than expected. The distortions can be so se-
vere that “melt fracture” (shown in Figures 4.14 and 4.15) is observed.

These and many other examples are characteristic for technological practice.
Viscoelastic materials have fading memory of the history of previous deforma-
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tions. In this sense, the integrals 7.31 and 7.32 are called hereditary integrals
because they summarize events which took place before the current moment of
time and are responsible for the stress (or deformation) state of a material at the
current moment.

The relaxation function φ(t) is a decreasing function. Therefore, its values are
higher when the argument is smaller. It means that the changes of deformation,
which happened earlier, influence stress in lesser degree than later changes. In
the first case, the value of the argument (t-t′) in Eq 7.32, for the fixed moment of
time, t, is smaller than for events which happened later because values of t′ are
smaller. In other words, a material continuously “forgets” what happened before
and therefore integrals in Eqs 7.31 and 7.32 form a model of material with “fad-
ing memory”.

It is interesting to outline the limiting cases. They are:
• liquid which “forgets” everything immediately (energy of deformation com-

pletely dissipates); in this case, the integral 7.32 transforms to the New-
ton-Stokes Law

• solid which “remembers” everything (energy of deformation is completely
stored), and in this case, the integrals 7.31 and 7.32 transform to the Hooke
Law.

Both Eqs 7.31 and 7.32 contain deformation and stress, and each of them can
be treated as an equation either of stress or deformation. Eq 7.31 determines the
development of deformations for known evolution of stresses. It can be consid-
ered as an integral equation forσ(t) if the functionε(t) is known. The same is true
for Eq 7.32. Therefore, it is possible to exclude these functions by substituting,
for example, the functionε(t) from Eq 7.31 to the right side of Eq 7.32. After some
formal mathematical rearrangements, the relationship between rheological pa-
rameters does not contain either σ(t) nor ε(t). The resulting equation includes
creep and relaxation functions in the following form:

E I + I (t) + E t + (t) + (t ) 1 + d (t t
d(t t )o o∞ ∞ ψ





′ ψ − ′

− ′
ϕ

η
ϕ

η






′∫ dt = 1

0

t

[7.33]

where E∞ is an equilibrium modulus, I0 an instantaneous compliance, η viscos-
ity, φ(t) a relaxation function, and ψ(t) creep function.

Eq 7.33 shows that the relaxation and creep functions are not independent but
related to each other by the integral equation. If one of these functions is known
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(measured, calculated, assumed), the other can be found from Eq 7.33. This
equation formally, and quite rigorously, confirms the above-formulated state-
ment that the behavior of material, in different modes of deformations, is gov-
erned by the same inherent properties.

Eqs 7.31 and 7.32 give mathematical ground for calculation of stress-vs-defor-
mation relationship at any arbitrary path of material loading. The only essen-
tial limitation in application of these equations is the requirement of linearity of
rheological behavior of a medium, i.e., independence of all material constants
and functions entered to these equations (instantaneous compliance, equilib-
rium modulus, viscosity, relaxation and creep functions) on stresses and defor-
mations.

Certainly, Eqs 7.31 and 7.32 are rheological equations of state for viscoelastic
materials. It is necessary to remember that everything discussed above is re-
lated to “a point” in the sense as adapted for a Newtonian liquid and a Hookean
solid and in general for any rheological equation of state. In order to find
stress-deformation distribution throughout a body, one must combine these
equations with equilibrium conditions (equations of conservation, introduced in
Chapter 2) and appropriate boundary conditions as suggested in Chapters 5 and
6 for any liquid and solid.

7.4 RELAXATION AND RETARDATION SPECTRA

Relaxation, ϕ (t), is a decreasing (at least not increasing) function of time. As a
first approximation, it is reasonable to estimate it by an exponential function:

ϕ θ(t) = E eo
-t/ [7.34]

where Eo is a instantaneous modulus andθ is a value called a relaxation time.
Relaxation process is described by a single exponential function called

Maxwell (or Maxwellian) relaxation. However, it is a rather rough approxima-
tion and it can be improved by increasing the number of exponents, i.e., by ex-
pansion of ϕ (t) into a sum of N exponents:

ϕ θ(t) = E e
i =1

N

i
-t/ i∑ [7.35]
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E = Eo
i =1

N

i∑

where Ei are called partial moduli, and θ i

are the set (or a spectrum) of relaxation
times.

Such spectrum can be called discrete and
can be drawn by a set of lines as in Figure
7.4, where each value of Ei (length of a line)
is put in correspondence to its argument
equal to θi. In the limiting case, the lines in
Figure 7.4 can fill all the graph if they are
situated very close and their tops form a
continuous curve. In this limiting case, we
have the transition from the sum in Eq
7.35 to the integral

ϕ θ θθ(t) = F( )e d
0

-t/
∞

∫ [7.36]

where the value F( )dθ θ plays a role of a partial modulus as in Eq 7.35 and the
function F(θ) is called a relaxation spectrum or a distribution of relaxation
times.

There is a mathematical theorem stating that any decreasing function (in our
case, the relaxation function, ϕ (t)), of any kind can be represented by its expo-
nential image, i.e., by the integral (Eq 7.36). This statement leads to the conclu-
sion that there is an unambiguous correspondence between any relaxation
function, ϕ (t), and the relaxation spectrum, F(θ).

In principle, a relaxation spectrum can be found as a solution of the integral in
Eq 7.36. Certainly, it is always possible to know the analytical form of the func-
tion ϕ (t) in its full interval from 0 to ∞. It appears simple in a theoretical ap-
proach, but not so easy in treatment of experimental data.

There are two reasons complicating a problem of the transition from experi-
mental points to solution of the integral Eq 7.36. Both reasons already have been
mentioned above: the first is an uncertainty in behavior of an experimental
function beyond the borders of measurements (close to zero and at high values of
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the argument, at t → ∞), and the second concerns the natural scatter of experi-
mental points, which makes the analytical approximation of these points, and
extrapolation beyond the experimental window, an ambiguous procedure.

It is very important to know the relaxation spectrum because in many theoreti-
cal investigations a relaxation spectrum, is directly related to molecular move-
ments and thus to molecular structure of matter. Therefore, many different
methods were proposed which give a solution of this problem. Below, comments
are included concerning their validity.

7.4.1 CALCULATING CONTINUOUS SPECTRUM

The method is based on direct solving of Eq 7.36. There are two possible ways
to do so. The first consists of analytical approximation of experimental points by
appropriate formula and direct solving of Eq 7.36 using numerous published ta-
bles of conversion of exponential images. The error of approximation must be
lower than an experimental error, and many such analytical approximations
are possible. Each of them gives a different spectrum.1-6 If the error of approxi-
mation is sufficiently low, it does not yet imply that the error of a calculated
spectrum is acceptable.

It is also possible to use the second, rather old, method6 of finding a rough solu-
tion of Eq 7.36. For this purpose, one can substitute an exponential function in
Eq 7.36 by its approximate expression:

exp(-t / ) 1 at t / < 1; t <θ θ θ≈
exp(-t / ) at t / 1; tθ θ θ= > >0

The idea of this (first order) approxima-
tion is seen from Figure 7.5. The continu-
ous exponential curve is changed by an
abrupt step. Eq 7.36 becomes:

ϕ θ θ
θ

(t) F( )d≈
∞

∫ [7.37]

In fact, it means that a term on the right
side of Eq 7.36 is omitted on the basis that
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the exponential decay will suppress the input from the function F(θ), assumed to
be rather low. The error of this approximation is unknown. Due to this process, a
very simple formula for calculation of F(θ) is obtained by differentiating both
sides of Eq 7.37 by the lower limit of the integral:

F( ) = d (t)
dt

at t =θ ϕ θ− [7.38]

The idea of this method can be used for higher approximations but the same
main disadvantages of uncertain errors still exist.

7.4.2 CALCULATING DISCRETE SPECTRUM

The practice of treating real experimental data of rheological investigations
shows that, in fact, any relaxation curve (decay of stresses) can be approximated
by the sum of 4-5 or (in the worst case) of 7-8 exponential items. A very limited
number of relaxation times is thus needed to describe experimental points with
permissible error within scatter of measurements.

Standard computer procedures of minimizing an error in finding constants of
some analytical formula are also available. This problem was under discussion
from the beginning of application of the linear theory of viscoelasticity to real ex-
perimental data and continues to be the focus of interest. The most important
goal is to minimize non-linear functional errors to which numerous publications
were devoted.14-18 In this case, it is a sum of N exponents with unknown weights
Ei and values of θ i . In this approach, one begins with N = 1 and increases the
number of exponents. Each step permits on to decrease the error of approxima-
tion. The last step and the final number of exponents is when an error of approxi-
mation becomes lower than permissible error of experiment.

In some theories, the set of relaxation times appears to be dependent but fol-
lows the definite rule. For example, the row of relaxation times obeys the follow-
ing rule:

θ θi o
-ni=

where θ o and n are constants (e.g., n = 2) and i are integers (i = 0, 1, 2, 3...).19 It
limits the possibility to vary the parameters of a relaxation spectrum because
there are only two independent parameters (θ o and n); moreover, since n is a re-
sult of molecular model calculations it cannot be treated as a fully independent
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parameter. Now the relaxation function takes the following form:

ϕ θ(t) = E
i =1

i
-ni

∞

∑ [7.39]

The procedure minimizes error of approximation but the set of constants under
search (Ei) is different from the general case based on Eq 7.35.

According to this approach, it is irrelevant to search for a “true” number of ex-
ponents (or relaxation times) in a discrete spectrum because the procedure of ap-
proximation should only be continued up to the limit of experimental error, after
which further effort is inconsequential. The minimal number of exponents
which correctly (within the limits of experimental error) describe results of mea-
surements should be used.

Discussion of the relaxation function, ϕ (t), can be almost repeated word for
word as regards the creep function, ψ(t). In the latter case, the resulting equa-
tion is as follows:

ψ −
∞

∑(t) = [I (1 e )]
i =1

i
-t/ iλ [7.40]

or in the form of the continuous spectrum:

ψ −
∞

∫(t) = ( )(1 e )d
0

-t/Φ λ λλ [7.41]

where Φ(λ) is called a retardation spectrum or a distribution of retardation
times.

The introduction of the integral kernel in Eq 7.40 in the form (1 e-t/− λ ) instead
of e-t/ θ is explained by the fact that ψ(t) is increasing, not decreasing (as ϕ (t)),
though its mirror reflection, or elastic recoil function, is also a decreasing func-
tion, as is shown in Figure 4.20, curve 1.

The change of an exponent function e-t/ θ for (1- e-t/ λ ) leads to small variations
in methods of approximation of spectrum. Instead of the step shown in Figure
7.5, one may write the following (first order ) approximate equalities:
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1 e 0 at t / < 1; t <-t/− ≈λ λ λ

1 e at t / 1; t-t/− ≈ > >λ λ λ1

Graphic interpretation of this approximation is essentially the same as in Fig-
ure 7.5, with an exception that the mirror reflection of Figure 7.5 is considered.

Discussion in relation to a relaxation spectrum, including arguments concern-
ing methods of its calculation, holds true for a retardation spectrum.

In real practice, the measurement of relaxation and retardation (or creep) is
performed for as wide a time range as possible to cover at least some decimal or-
ders of the argument. It is analogous to determining a flow curve (Chapter 5) in a
wide range of shear rates. The linear time scale is changed to logarithmic in or-
der to make experimental results easier to visualize (the same method was used
for flow curves in Chapter 5). This conversion is expressed by the following for-
mulas:

ϕ θ θθ(t) = H(ln )e dln
-

-t/

∞

∞

∫ [7.42]

and

ψ
∞

∞

∫(t) = L(ln )e dln
-

-t/λ λλ [7.43]

with the following obvious relationships between linear and logarithmic spectra

H(ln ) = F( )θ θ θ [7.44]

and

L(ln ) = ( )λ λ λΦ [7.45]
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The last problem to be discussed in this section concerns the interrelation be-
tween distribution of relaxation and retardation times. They are not equivalent,
though certainly they both originate from the same molecular phenomena and
thus are closely related to each other.

The existence of interrelation between relaxation F(θ) and retardation Φ( )λ
spectra can be proven if we take into account that F(θ) represents a relaxation
function,Φ( )λ represents a creep function, and both are connected by Eq 7.33. It
is illustrated in Figure 7.6. One can expect that a relationship between spectra
F(θ) and Φ( )λ also exists.20

If one of the pair of spectra is continuous, the second one is also continuous,
though they are not equivalent. If a relaxation spectrum is discrete, then a retar-
dation spectrum is also discrete. Besides, there is an interesting point rigorously
proven in the theory regarding correlation of numbers and positions of lines in a
pair of discrete spectra. In viscoelastic liquid (η < ∞ and G = 0∞ ), the number of
members (lines) in a relaxation spectrum is larger by one than the number of
members in a retardation spectrum, and the lines of a retardation spectrum are
arranged between the lines of a relaxation spectrum. For example, in
Maxwellian relaxation there is one relaxation time (Eq 7.34) but the retardation
spectrum is empty (no lines) and deformation of a Maxwellian viscoelastic liquid
at constant stress occurs without delay. In a viscoelastic solid, the number of
lines in both spectra is the same.

7.5 DYNAMIC AND RELAXATION PROPERTIES - CORRELATIONS

The dynamic characteristics (components of dynamic modulus and compli-
ance) can be correlated with the relaxation properties of material. Certainly, it
can be done based on the fundamental principle of linear superposition. In this
section, main theoretical results of correlations between dynamic and relax-
ation properties are discussed.

The components of the dynamic modulus are expressed through a relaxation
function as

G ( ) = (t)sin tdt
0

′
∞

∫ω ω ϕ ω [7.46]
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The inverse relationships, i.e., solution of Eqs 7.45 and 7.46, have the following
form:

G = (t)cos tdt
0

′ ′
∞

∫ω ϕ ω [7.47]

For a relaxation function ϕ (t), which is calculated from components of the dy-
namic modulus, it has a similar form:

ϕ
π

ω
ω

ω(t) = 2 G ( ) sin tdt
0

∞

∫
′ [7.48]

and

ϕ
π

ω
ω

ω(t) = 2 G ( ) cos tdt
0

∞

∫
′ ′ [7.49]

Two main conclusions can be drawn from Eqs 7.46 to 7.49:
• components of the dynamic modulus can be calculated if a relaxation func-

tion was measured (and vice versa)
• accuracy of such calculations is limited by the need to find the integrals in

these equations in limits from 0 to ∞, and uncertain input of “tails" of func-
tions on the right side of these integrals.

Analogous equations can be established for the components of dynamic compli-
ance. Rigorous calculations give the following results:

I ( ) =
t

cos tdt
0

′ ∂ψ
∂

∞

∫ω ω [7.50]

I =
t

sin tdt
0

′ ′ ∂ψ
∂

∞

∫ ω [7.51]
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The inverse relationships for a creep
function can also be written. They are
quite analogous to Eqs 7.48 and 7.49, with
an evident change of components of modu-
lus for compliance and relaxation function
for a derivative of a creep function.

The same conclusions apply to the possi-
bility of a mutual correlation between dy-
namic compliance and creep function, as
for the correlation between dynamic modu-
lus and a relaxation function as discussed
above.

The main sense of all equations given in
this section is, first of all, to demonstrate
the existence of relationships for all
viscoelastic characteristics under discus-

sion (they can be used for mutual calculations), and secondly, to emphasize the
fact that all these relationships are represented by the integral equations with
infinite limit, which complicates practical applications of these relationships.

Figures 7.6 and 7.7 show that components of dynamic modulus and compliance
can also be expressed through relaxation (retardation) spectra. The equations
below give a final result for G*(ω):

E ( ) = F( ) ( )
1+ ( )0

2

2
′

∞

∫ω θ ωθ
ωθ

[7.52]

E = F( ) ( )
1+ ( )0

2
′ ′

∞

∫ θ ωθ
ωθ

[7.53]

Analogous equations can be written for I ( )* ω , and they are

I ( ) = ( ) 1
1+ ( )

d + I
0

2 o′
∞

∫ω λ
ωλ

λΦ [7.54]
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I = 1 + ( ) ( )
1+ ( )

d
0

2
′ ′

∞

∫ωη
λ ωλ

ωλ
λΦ [7.55]

All these relationships have a
structure very similar to the
equations discussed above.
They show that it is possible to
establish correspondence be-
tween dynamic properties and
relaxation spectra, but real cal-
culations are rather complex
because of integral equations
with infinite limits.

Inverse transforms of Eqs
7.52 to 7.55 cannot be ex-
pressed in analytical form for
arbitrary dynamic functions. It

can be illustrated by constructing the first approximation formula related to re-
laxation spectrum and dynamic modulus.22,23 As in Figure 7.5, we change the
kernel in the equation for dynamic modulus stepwise:

( )
1+ ( )

0 at <
2

2

-1ωθ
ωθ

θ ω≈

( )
1+ ( )

at
2

2

-1ωθ
ωθ

θ ω≈ >1

The meaning of this approximation is il-
lustrated in Figure 7.8. Then, Eq 7.51
changes to

E F( )d
-1

′ ≈
∞

∫
ω

θ θ
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ing dynamic modulus and compliance.

Figure 7.8. Stepwise change of the ker-
nel in the integral equation for dynamic
modulus to calculate a spectrum (first
approximation).



After differentiating it by the lower limit of integral, the following approximate
equation for calculating a relaxation spectrum by dynamic modulus is obtained:

F( ) dE ( )
d

at =
2

-1θ ω ω
ω

θ ω≈ ′

Quite analogous equations can be written for all other dynamic functions un-
der discussion. Their accuracy is limited by an uncertain input of the “tail” of a
function used for calculations which has been cut off because of change in the
kernel in the integral equation by a rather rough step approximation − a com-
mon feature of all approximations used in solving integral equations applied in
the theory of linear viscoelasticity

Equations written in the last two sections and schemes in Figures 7.6 and 7.7
give the positive answer to the main question on the theory formulated above:
all viscoelastic characteristics of a material are related to each other and can be
mutually calculated. However, this answer is partially positive because of inevi-
table complications of these calculations, due to the special form of equations
connecting all viscoelastic functions.

7.6 RELATIONSHIPS BETWEEN CONSTANTS

In the main definitions and in all equations of the theory of viscoelasticity
there are some constants representing limiting cases (at t = 0 and t → ∞) of
stresses and deformations. These constants are:

η - viscosity at steady flow (constant when liquid is linear or Newtonian)
Io - instantaneous compliance
I∞ - equilibrium compliance
E∞ - equilibrium modulus
Eo - instantaneous modulus.
Discussion below concentrates on establishing the relationships between

these constants and relaxation characteristics of a material, such as creep and
relaxation functions, and a relaxation spectrum. To begin, it should be repeated
that some of the constants are characteristics for either viscoelastic solid or
viscoelastic liquid, which causes relationships between the constants to be dif-
ferent for these two types of viscoelastic materials.
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7.6.1 VISCOELASTIC SOLID

The definition of a solid is

1 = 0
η

It is a rather formal definition because material with viscosity of the order 1020

Pa⋅s (inorganic glass) is a solid, though formally it is a liquid having very high
viscosity. Nevertheless, this formal definition is important for rigorous classifi-
cation of viscoelastic materials.

Then, for a viscoelastic solid, when stress is preset:

I = 1
G

= 1
G + (0)o

o ∞ ϕ
[7.56]

and

I = I + ( )o∞ ψ ∞ [7.57]

For a viscoelastic solid when deformation is preset:

E = Io o
-1 [7.58]

E = 1
I + ( )

= I
o

-1
∞ ∞ψ ∞

[7.59]

and

E E = (0) = ( )
I [I + ( )]

=
I I
I Io

o o

o

o

− ψ ∞
ψ ∞

−
∞

∞

∞

ϕ [7.60]
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7.6.2 VISCOELASTIC LIQUID

The definition of a liquid is

η < ; E = 0∞ ∞

Then, one can derive the following relationships between the constants:

E = I = (0) = F( )do o
-1

0

ϕ θ θ
∞

∫ [7.61]

All other relationships vanish because E∞ = 0.
Two of the relationships listed above are of special interest: equation express-

ing instantaneous modulus by “zero” moment and viscosity by “ first” moment of
a relaxation spectrum:

E = F( )d ; = F( )do
0 0

∞ ∞

∫ ∫θ θ η θ θ θ [7.62]

Then, it is possible to determine a certain “average” relaxation time,θ av , as a ra-
tio η/ Eo

θ η
θ θ θ

θ θ
av

o

0

0

=
E

=
F( )d

F( )d

∞

∞

∫

∫

Certainly it is possible to define other characteristics of “averaged” relaxation
times, such as ratio of two consequent moments of a relaxation spectrum.

7.7 MECHANICAL MODELS OF VISCOELASTIC BEHAVIOR

Theory of viscoelasticity is treated above as a phenomenological generalization
of ideas concerning delayed effects in deformations or superposition of elastic
storage and viscous dissipative losses of energy during deformation. The con-
cepts of relaxation or slow return to the equilibrium state and creep can also be
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introduced from more general physical reasoning and illustrated by very visual
examples.

Let the state of a system be characterized by a certain parameter x and its
value corresponding to the equilibrium state by x∞ . Then, let us consider the
possible reaction of a system taken out of its equilibrium state. A system always
tends to return to the equilibrium state. Let us assume, according to the
Maxwell fundamental idea, that the rate of an approach, from any arbitrary
state, to the equilibrium state is proportional to the degree of divergence from
the equilibrium.

In the language of mathematics, this concept can be written in the form of a ki-
netic equation

dx
dt

= 1 (x x )− − ∞θ

where 1/θ is a kinetic factor, characterizing the rate of changes in the state of a
system.

The integral of this differential equation is

x = x e + xo
-t/ θ

∞ [7.63]

where xo is an initial value of x.
It is quite evident that if stress is substituted by parameter x, the equation de-

scribes mechanical relaxation, withθ being a characteristic time of relaxation of
this process and x∞ the residual stress, which equals zero for liquid.

Now, let us imagine a mechanical model constructed from a combination of a
spring and a plunger in a cylinder filled with a liquid (damper), with these two
elements connected in series (Figure 7.9). The spring is a model of an ideal
Hookean solid and its deformation is described by the equation

X = F
EH

where XH is a displacement of a lower end of a spring from the equilibrium
(non-loaded) state, E is the modulus of a spring, and F is the force applied at the
bottom of the model, causing its deformation.
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A plunger moving in a cylinder filled with vis-
cous liquid (damper) is a model of an ideal New-
tonian liquid and its deformation is described
by the equation

&X =
dX
dt

= F
N

N

η

where dXN/dt is the rate of displacement of a
plunger, η viscous resistance to a movement of
the plunger in the cylinder, proportional to vis-
cosity of liquid, F the same force which caused
the deformation of the spring.

It is evident that the full displacement of a
lower point of the model in Figure 7.9 is a sum of
the two components: the displacement of the
bottom of a spring and the movement of a
plunger. It can be written as follows:

X = X + XH N

and

& & &X = X + XH N

After substituting expressions for displacement of the elements of the model,
the equation for deformation of the whole model is obtained:

&
&F

E
+ F = X

η
[7.64]

Let us analyze the behavior of the mechanical model in Figure 7.9 (called
Maxwell model)when the step displacement is set up, or in other words, let us
find a relaxation function of this model. Integrating Eq 7.64 at the appropriate
boundary conditions gives
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F(t) = X Eeo
-tE/ η

or

F(t)
X

= (t) = Ee
o

-t/ϕ θ [7.65]

where Xo is an initial displacement of the bottom of the model, and θ η= E a
constant which can be called a relaxation time.

The complete equivalence of Eq 7.64 to expressions for relaxation of a liquid
having a single relaxation time (Eq 7.34) and the Maxwell concept of relaxation
as delayed approach to the equilibrium state (Eq 7.63) are quite evident. That is
why the model shown in Figure 7.9 is called the model of the Maxwell liquid. The
rheological equation of state, Eq 7.64, is called the equation of linear Maxwell
viscoelastic liquid.

The rheological properties of a linear Maxwell viscoelastic liquid are charac-
terized by the following parameters: viscosity, η, instantaneous modulus, E, and
the components of dynamic modulus which are expressed as

G ( ) = E ( )
1+ ( )

; G = E
1+ ( )

2

2 2
′ ′ ′ω ωθ

ωθ
ωθ
ωθ

and

tan = ( )-1δ ωθ

Certainly the mechanical model drawn in Figure 7.9 is a model of liquid be-
cause equilibrium modulus is zero.

A creep function of a Maxwell liquid is described by the equation

ψ(t) = (t) = 1
E

+ t

o

ε
σ η

This equation shows that, when a constant stress is preset, a step-like defor-
mation equals σ o E/ , and there is no delay in deformation.
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The mechanical model, repre-
sented in Figure 7.9, reflects the
viscoelastic behavior of a sin-
gle-relaxation-time liquid. In
line with phenomenological
generalization of a sin-
gle-time-relaxation in Eq 7.34
to the sum of exponents in
Eq 7.35, we can obtain the same
result using mechanical mod-
els. This aim is reached by the
same method of summarizing
exponential items, as in Eq
7.35. Indeed, let us join in paral-
lel a number of Maxwell models
with different values of parame-

ters. Then, the relaxation process, in this multi-relaxation-time Maxwell model,
is described by Eq 7.35 with a set of relaxation times, having different value for
every branch of a generalized model.

The rheological behavior of the generalized model is described by an equation
of the differential type containing time derivatives of stress and deformation (Eq
7.68).

Another way of constructing mechanical models consists in joining a spring
and a plunger moving in a cylinder with viscous liquid (damper), not in series, as
in Figure 7.9, but in parallel, as shown in Figure 7.10. This model is called the
Kelvin-Voigt model. The mechanical properties of both elements in this model
are the same as in the Maxwell model, but, contrary to the latter (deformations
of the components are added), stresses acting in the branches of a model are
added. The following equation describes the rheological properties of the Kel-
vin-Voigt model:

E + =ε ηε σ& [7.66]

In the standard experiment, when σ σ= = consto , the following creep function
of the Kelvin-Voigt model takes place:
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ψ −(t) = (t) = 1
E

(1 e )
o

-t/ε
σ

λ [7.67]

whereσ o E/ is the initial deformation, and consequently E-1 = Io is instantaneous
compliance, and λ η/= E is a retardation time.

It can be easily shown that the Kelvin-Voigt model represents the viscoelastic
behavior of a solid, because the model conserves residual stresses equal to E oε ,
whereε o is an instantaneous deformation. This model represents the properties
of a non-relaxing body (relaxation time is equal to infinity).

Generalizing the serially joined elementary models, one obtains the model of
viscoelastic solid behavior with a set of retardation times. Creep of the
multi-constant Kelvin-Voigt model is described by Eq 7.40.

In a general case deformation properties of any mechanical model constructed
from the Maxwell and Kelvin-Voigt elements can be represented by the equa-
tion:

n

N

n

n

n m

M

m

m

m
A d

dt
= B d

dt
∑ ∑ε σ [7.68]

where the order (M and N) of sums in Eq 7.68 depends on the structure of a me-
chanical model, and An and Bm are material constants of a model.

Thus, any mechanical model leads to the equation describing mechanical be-
havior of a material by a differential equation and this is equation of state of
differential type, contrary to equation of state of integral type such as Eqs
7.31 and 7.32. It means that differential equations correspond to line (discrete)
relaxation spectra, while integral equations correspond to continuous spectra.
This difference is not very important because any discrete spectrum can be ap-
proximated by a smooth curve and any continuous spectrum can be approxi-
mated by a set of lines; nevertheless, this difference exists and can be used in
applications for real calculations.

Whether the model represented by Eq 7.68 corresponds to a viscoelastic liquid
or to a viscoelastic solid is determined by the junior member of the left-hand
sum. If this member is of the zero-th order, i.e., calculation of the sum starts
from n = 0, it is a model of a solid. If the zero-th member is absent and the junior
member is of the first order (n = 1), it is a model of liquid. For the Maxwell model,
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N = 1 (there is only one member in the left-side sum) and M = 1. For the Kel-
vin-Voigt model also, N = 1 (but we have two members in the left-side sum be-
cause the junior member corresponds to n = 0) and M = 0 (only one member is
present in the right-side sum).

Varying the order of differential operators in Eq 7.68 and values of parameters
An and Bm, we are able to describe various special cases of viscoelastic behavior of
a material with any arbitrary relaxation properties. There is one fundamental
limitation: Eq 7.68 describes mechanical properties of a linear viscoelastic ma-
terial and cannot go beyond this limit if some modification of the initial idea is
not introduced.

After the Maxwell and Kelvin-Voigt models were proposed, many attempts
were performed to apply models to explain the behavior of real physical sub-
stances. In this approach, it was thought that the above-discussed models repre-
sent not only behavior but also molecular structure of a body. For example, in
considering relaxation properties of a very long (polymeric) molecular chain, it
was proposed that any part of such chain can be represented by the Maxwell
model.

Such an approach opens wide opportunities for constructing models of real ma-
terials expressed by combinations of elementary Maxwell and Kelvin-Voigt
models. Though some of these structures are very attractive, it is, however, nec-
essary to distinguish between models of a body structure and models of material
behavior, which are not the same (both are related to each other, not quite di-
rectly and not in an obvious way). Any mechanical model is a model of behavior,
and the stress-deformation relationship, describing movement of elements of a
mechanical model, gives equations which can closely approximate deformation
behavior of material. The model can be very deceiving because a real body does
not consist of springs and dampers.

The equations of differential type, like any other rheological equations, are
written for a “point”. If deformations are small, time derivatives entering Eq
7.68 are only partial time derivatives and nothing more. If deformations become
large, it appears necessary to substitute ε in Eq 7.68 by some measure of large
deformation to use their time derivatives as discussed in Chapter 3. This offers a
model of a viscoelastic medium capable of large deformations and leads to some
new rheological phenomena which can be treated as a weak non-linear effect.

The main goal of any mechanical model is to present a visual illustration of
the concept of creep, relaxation, and viscoelastic behavior occurring simulta-

280 Viscoelasticity



neously, and to demonstrate how rheological equations of differential type can
be obtained. The same goal (especially its second part — construction of rheolog-
ical models of differential type) can be reached by other methods, for example,
using models based on analogy to electrical properties. In this case, it is possible
to create electrical networks of any complexity consisting of resistors, condens-
ers and capacitors. The time dependencies of electrical current and voltage
would also be described by the same differential equations, such as Eq 7.68, and
they can be treated as electrical models of viscoelastic behavior. Such models
can also be very convenient in representing transient behavior of a viscoelastic
medium.

7.8 SUPERPOSITION

The idea of superposition (the discussion in this section must not be confused
with the Boltzmann principle of linear superposition expressed by Eqs 7.31 and
7.32) based on the influence of different factors on viscoelastic properties is
widely used in practice of investigating behavior of real materials. The basic
idea of this approach can be formulated in the following way: the same value of
any viscoelastic function can be obtained either by changing time (frequency) or
physical state of material, the latter governed by change in temperature, con-
centration of components, or other parameters. Sometimes, it can be a very un-
expected factor; for example, it can be a duration of exposure of a material to
ultraviolet radiation of the Sun (important for predicting long-term behavior of

organic glasses in illuminators of air-liners).
The idea of superposition is illustrated in Fig-

ure 7.11. Let us have two experimental points for
a creep function measured on the same time
base, t1, but at two different temperatures, T1 and
T2. The value of a creep function, ψ 2, can be ob-
tained in two ways; first, as shown in Figure 7.11,
by direct measurement at temperature T2 during
time t1, and second, at temperature T1, but with
time base t2. If we know a coefficient aT, which
characterizes temperature dependence of a creep
function, we can shift the point (t1, ψ 2) to the po-
sition (t2, ψ 2) as shown by the arrow in Figure
7.11.
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The temperature coefficient aT is

a = log
t
tT

2

1

[7.69]

or in a general form

a = t a (T)T
*

T [7.70]

where t* is a constant and aT(T) is a function characterizing temperature de-
pendence of viscoelastic properties. A very important supposition is that this
function is the same for any viscoelastic function; it can be proven by the exis-
tence of mutual interrelations between different functions characterizing the
viscoelastic behavior of materials.

Now, after shifting the point on the creep function (t1, ψ 2) into a new position
(t2,ψ 2), we have obtained two points on the isothermal (at T1) creep curve and we
can try to reconstruct the creep function curve as shown in Figure 7.11. In fact,
superposing results of measurements of viscoelastic functions on the limited
time (frequency) base or “window” (in Figure 7.11) (it is only one point at t1), one
has a possibility to extend the range of experimental determination of this func-
tion. It is a very important method because in real experimental practice we
rarely have a chance to make measurements beyond the range of 1-104 s or
10-2-103 Hz, except by using the method of superposition. We can extend this
range practically without limit and cover the range of 12-15 decimal orders in
time or frequency.

In many real situations, we do not know the temperature coefficient, aT(T), be-
forehand. In order to obtain its value, it is not sufficient to measure only one
point for every temperature. It is necessary to obtain a relationship with some
points having the same values of a viscoelastic function. This approach is illus-
trated in Figure 7.12. We have two sections of the G ( )′ ω dependencies measured
at two temperatures. In this case, the temperature coefficient is found as a dis-
tance between two curves at a height where the values of the modulus at two
temperatures appear to be the same, E o′ .

The reduced time-scale is calculated as t/aT and the reduced frequency scale,
asωaT. It is possible to find hundreds examples of application of the time-temper-
ature superposition in publications devoted to measuring properties of poly-
meric materials.6,7,24 In order to illustrate the strength of this method we shall
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discuss one conditional (but close to reality) example of superposition of dy-
namic modulus measured at rather limited frequency range (Figure 7.13). The
experimental “window” was no wider than 3 decimal orders and therefore only
very limited portions of the full G ( )′ ω dependence are known. Superposition
opens this window and we can now know the values of this dependence in a very
wide range of frequencies.

An empirical approach to time-temperature superposition is possible if all
neighboring portions of the curve have common points. We do not need to know
the aT(T) function. However, such treatment of data is not always possible, and
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in many cases, not even convenient. That is why it is important to know the aT(T)
function beforehand.

It was proven experimentally that two possible expressions have general
meaning for the aT(T) function. The first of them is the Arrhenius-Eyring expo-
nential equation, proposed as an analogue to the kinetic equation for the rates
of chemical reactions

a = AeT
E/ RT [7.71]

where A is a front-factor (coefficient), and E energy of activation of relaxation
processes.

It we choose some temperature To, as a reference point (i.e., if we reduce all ex-
perimental data to this selected temperature), then the Arrhenius-Eyring equa-
tion can be written as

a exp E
R

1
T

1
TT

o

= −


















 [7.72]

The second expression for the aT function, widely used for time-temperature su-
perposition of experimental data in various polymeric materials (it must be em-
phasized that polymeric materials and polymer-based compositions are the
main object for application of superpositions of different type), is the so-called
Williams-Landel-Ferry (WLF) equation, which can be written as25-27

loga =
-c (T T )

c + (T T )T
1 o

2 o

−
−

[7.73]

where To is the reference temperature, and c1 and c2 are constants depending on
the choice of the reference temperature.

If the glass temperature is assumed as a reference temperature the values of
these constants appear rather stable: c1 is close to 17.4 and c2 to 51.6. But in fact
it is a rough approximation and it is preferable to use individual values of the
constants which are different for various materials.

As a general rule, it is thought that the Williams-Landel-Ferry equation is true
in the temperature range from the glass transition temperature, Tg, up to
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Tg + 100oC. The Arrhenius-Eyring equation can successfully be used in the
range of temperatures approximately at T > Tg + 100oC.

If we know the form of temperature dependence of aT, it allows us not to have to
measure the function aT(T) in the whole range of temperatures but to restrict
measurement to some points only in order to verify the constants entering these
equations.

Method of superposition is not limited to reduction of data by means of chang-
ing temperature only. The state of a material can be changed for different rea-
sons. Variations in content (concentration) of a polymer in a solution is often
used to change its relaxation properties. Then we can realize time-concentration
superposition, and so on.

The method of superposition, used to reduce experimental data along the time
(frequency) scale, is a very powerful possibility to increase the range of observa-
tions. At the same time, it must be remembered that the main principle of the
method is based on the assumption that in changing the state of a material its
relaxation spectrum changes in the same manner for all relaxation times, i.e.,
no new relaxation process appears, no process disappears, and temperature de-
pendencies of all relaxation times in a spectrum are the same. The latter as-
sumption is confirmed by the fact that the temperature dependence of any
relaxation time is the same as viscosity; and we know that viscosity is the inte-
gral representation of all relaxation times (see Eq 7.62). At the same time, it is a
rather strong assumption which may not be fulfilled, especially if superposition
is carried out for initial experimental data obtained in a wide temperature
range. In fact, many cases are known in which this basic assumption was wrong.
One of the most evident examples is a phase transition. If it takes place in the
temperature range under discussion, it definitely leads to radical changes in re-
laxation properties. The danger is rather serious for crystallizable polymers be-
cause the process of their crystallization takes place in a wide temperature
range.

The second example is that of block-copolymers:28 the moveability of blocks of
different types (i.e., possibility to relax) appears in different temperature ranges
and reflects freezing of different relaxation modes. It means that different parts
of relaxation spectrum are characterized by different temperature dependen-
cies and direct superposition of all portions obtained at different temperatures
is incorrect in principle.
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The third example regards mixtures of different components. In this case, it is
quite obvious that temperature dependencies of relaxation properties of various
components in a mixture, if different, restrict the possibility of superposition of
portions of viscoelastic functions measured at different temperatures.

Examples discussed above show that time-temperature superposition is not a
universal method and has definite limitations. That is why one must be very ac-
curate in treating experimental data of a newly investigated material by this
method, especially if far extrapolation, beyond an experimental window, is at-
tempted.

7.9 APPLICATIONS OF LINEAR VISCOELASTICITY

There are three main lines of applications of the theory of linear viscoelasticity.
They are as follows:

• comparison of different materials through constants and functions intro-
duced and determined based on the theory

• calculation of the response of a material and predicting its behavior in arbi-
trary deformation using results of standard experiments and their theoreti-
cal relationships

• comparison of predictions of structure and molecular theories with experi-
mental data.

7.9.1 COMPARISON OF MATERIALS BY THEIR VISCOELASTIC PROPERTIES

We can think about two ways of comparison
of different materials. First, it is possible to es-
timate the type of a material and to determine
quantitatively such qualitative definitions as,
for example, “solid”, “rigid”, “stiff”, “mild”,
“fluid” and so on. Second, it is possible to com-
pare materials of the same type by values of
their constants; e.g., it is possible to distin-
guish two rigid materials with different resis-
tance to creep. These possibilities are
illustrated below.

As a first example, let us compare typical lin-
ear viscoelastic characteristics (frequency de-
pendencies of dynamic modulus) of a polymer

286 Viscoelasticity

Figure 7.14. Frequency depend-
encies of dynamic modulus of a
polymer melt (A) and a lightly
cured rubber (B), prepared from
this polymer.



melt and a slightly cured rubber prepared from the same material (Figure 7.14).
We can see that it is reasonable to select five regions of a frequency dependence
of dynamic modulus for a polymer melt. They are called:

I - flow (or terminal) zone
II - transient viscoelastic region
III - rubbery plateau
IV - transient leathery zone
V - glassy zone.
Certainly, all five parts of the E ( )′ ω curve can be observed for a single sample by

varying temperature, which results in changing physical (relaxation) states of a
material. Then, one can apply the method of frequency-temperature superposi-
tion and construct the generalized E ( )′ ω dependence by joining segments of the
full curve and shift along the frequency axis, such as curve A in Figure 7.14, con-
structed for a polymer which can melt at high temperatures (or flow at very low
frequencies).

The first two regions of the complete E ( )′ ω dependence for a cured rubber are
absent (curve B in Figure 7.14), though all other three parts stay practically un-
changed in comparison with the melt. It means that, based on the measurement
of the E ( )′ ω dependence for an unknown sample, one may find out that it is a lin-
ear polymer which can flow and be processed by regular methods or distinguish
it from rubber able to sustain higher temperatures and deformations without ir-
reversible changes of the shape.

The second example concerns the influ-
ence of molecular weight (length of a mo-
lecular chain). Figure 7.15 shows that, for
high molecular weight samples, all five re-
gions are observed in the E ( )′ ω curve. De-
creasing molecular weight leads to a shift
of low-frequency regions (flow and tran-
sient viscoelastic zones) of the complete
curve but does not affect the height of the
rubbery plateau and shape and position of
two other regions of the full E ( )′ ω depend-
ence. However, with a rather low molecu-
lar weight member of the same homologous
series, we lose a transient viscoelastic zone
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Figure 7.15. Frequency dependencies
of dynamic modulus for samples of the
same polymer but of different molecu-
lar weights. The arrow shows the di-
rection of increasing molecular
weight.



(marked as II in Figure 7.14) and rubbery plateau (marked as III in Figure 7.14),
though the flow zone and high-frequency (glassy) part of a curve are present.

It shows that we can distinguish between polymers having different molecular
weights by measuring their viscoelastic properties and comparing the position
of the flow zone and/or the length of a rubbery plateau. It can be used as a rela-
tive method of comparison of two polymers by measuring the length of a plateau
or frequencies for any arbitrary level of modulus in a flow zone. If molecular
weight dependence of these factors was known beforehand (for calibrated series
of samples), this approach could have been used as an absolute method of mea-
suring molecular weights of polymers.

The third example (Figure 7.16) is a compari-
son of a cured rubber and a gel. In both cases,
the first two regions (I and II in Figure 7.14) of
a complete E ( )′ ω dependence are absent, such
as for sample B in Figure 7.14. Addition of a
low molecular weight solvent shifts all other
parts of the curve, and in particular, lowers
the height of a rubbery plateau during transi-
tion from a cured rubber to a gel.

Figure 7.16 also represents the influence of
increasing density of network crosslinks in a
rubber. This factor is primarily reflected in the
height of a rubbery plateau and also in the val-
ues of modulus in a glassy state.

Examples shown in Figure 7.16 demonstrate
the idea of constructing rubbery materials of different rigidity. Suppose there is
a need for a soft rubbery material for eyesight-correcting covers. In this case, we
must prepare gels having the required value of rubbery modulus (on the pla-
teau). In another case, we may need a hard rubbery material for heavy tires, and
again, properties of material are characterized by the rubbery modulus. Regu-
lating the content of a plasticizer (low molecular weight solvent) and a harden-
ing solid additive, we can reach the necessary combinations of viscoelastic
properties in different frequency ranges needed for the application. For exam-
ple, sealants require definite elasticity in the low frequency range and aircraft
tires must be elastic at high frequencies because these products work under
quite different conditions, even though both must be elastic in application.

288 Viscoelasticity

Figure 7.16. Frequency depend-
encies of a cured rubber (R) and a
gel (G) prepared from the same
rubber. The influence of higher
density of a network of crosslinks
(curve R’) is also shown.



The last series of examples is, in fact, comparison of materials by their
viscoelastic properties in relations to different areas of their application. In all
these cases (as in many others), the main problem consists in the necessity to
formulate special conditions of application in terms of the theory of
viscoelasticity and to establish the required level of properties. In real life it can
be constants, such as viscosity or modulus, which are integrals (moments) of a
relaxation spectrum of a material, or they can be definite values of viscoelastic
functions at one or some frequencies or moments of time.

For example, it can be very important to know values of the creep function or
the relaxation function on the definite time basis, as already discussed in Chap-
ter 4. In this and analogous situations, one does not need to know the theory of
viscoelasticity or to make any calculations, but the application conditions must
be reproducible and a simulating experiment should be performed with all nec-
essary standard requirements regarding accuracy and statistics of experimen-
tal results. Moreover, in these cases we are not restricted by the limits of
linearity because application conditions do not obey any artificial limitations.

Measurements of viscoelastic properties of a material gives a quantitative
base for reference to different relaxational states: glassy, leathery, rubbery, and
so on. At the same time, it must be remembered that, in fact one does not con-
sider the state of matter but its behavior. If some definite frequency was chosen
for measurement of dynamic modulus (for example, standard frequency of 1 Hz),
the comparison of various materials under these test conditions is straightfor-
ward. On the other hand, the same material can look quite different in other fre-
quency ranges. A typical rubber can behave like a glass at very high frequency,

as proven by frequency-temperature superposi-
tion. For example, in tire application for air-
crafts, the high frequency behavior of rubber
must be considered, since a tire must damp vi-
brations and can suddenly break if it performs
like a glassy rather than a rubbery material.

In addition to primary classification of materi-
als in accordance with their main relaxational
states, some more precise conclusions can be
drawn from measuring the temperature de-
pendence of the loss tangent, tanδ. A typical ex-
ample of such dependence is shown in Figure
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Figure 7.17. Typical tempera-
ture dependence of mechanical
losses in periodic deformations
characterized by loss tangent.



7.17. There are maxima in tanδ and each of them is treated as a relaxational
transition. The most intensive high-temperature maximum is called the main or
α -transition and identified with glass transition temperature. Others, to the left
of the main transition (in the direction of lower temperatures), are marked by
letters of the Greek alphabet, starting from β, and are called secondary transi-
tions.

It is accepted that each relaxational transition identified with maximum of tan
δ corresponds to the condition

ωθ =1

whereωis the frequency at which temperature dependence of mechanical losses
is measured, and θ is a relaxation time.

During the experiment, the frequency is constant, and by changing tempera-
ture, one varies relaxation time. At some temperature, the above-formulated
condition is reached and it is a criterion of “transition”. It can be argued that this
condition corresponds to a maximum of tanδ; in particular, it can be illustrated
by a simple mechanical model of viscoelastic behavior including a single relax-
ation time.

One of the popular approaches to treating experimental data of the type shown
in Figure 7.17 relates the tanδ maximum with “freezing” or “defreezing” of mo-
lecular movements of different kinds. These data can be used to recognize molec-
ular process according to their position of “transition” along the temperature
scale. The other side of this approach is the idea that passing through the tem-
perature where tanδ maximum is achieved, we change the relaxation state and
spectrum of a material, and therefore the principle of temperature superposi-
tion can be applied in the temperature range between two transitions only.

In measuring temperature dependence of tanδ, we also do not need to know the
theory of viscoelasticity. It should be treated as a standard “one-point” (i.e., car-
ried out at one frequency) method of characterizing a material. This method is a
bridge for using measurements of viscoelastic properties of a material to under-
stand its molecular structure.
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7.9.2 CALCULATION OF THE RESPONSE

This line of application of the viscoelasticity theory is restricted by the linear-
ity requirement, because, at present no non-linear theory of viscoelasticity (see
the next section of this chapter) is treated as a solid base for a long-term predic-
tion of behavior of real materials or fits the empirical experimental data.

Within the limits of linear viscoelastic behavior, the problem of calculation of
responses to arbitrary loads is completely solved by the Boltzmann superposi-
tion principle. The relationships between viscoelastic functions were discussed
above. If we know a relaxation spectrum of a material, all other calculations are
only a technical problem. The major problem is the accuracy of determination of
a relaxation spectrum based on experimental data.

We shall illustrate real limits of calculation by an example concerning relax-
ation and creep of polycarbonate,29 a typical engineering plastic widely used in
industry. The relaxation curve is approximated by the so-called Kolhrausch
function30

σ γ α

(t) = Ae- t

where A, γ and α are empirical constants.
The values of the constants in this for-

mula were found by a computational pro-
cedure and they satisfy the condition:
points calculated with the set of selected
constants according to the Kolhrausch
function lie within the limits of possible
experimental error. These limits were
rather narrow, only about 5%. Then, the
creep function was calculated for three
possible sets of constants (satisfying the
above-formulated requirement). The re-
sults are represented in Figure 7.18,
where the exact creep function is also
drawn (dotted line). A calculated curve
can be rather far from the true creep
function and the error large. It was dem-
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Figure 7.18. The results of calculations of
the creep function. The relaxation curve
was approximated by the Kolhrausch
function with three different sets of con-
stants (curves 1, 2 and 3). Dotted line is
an exact creep function.



onstrated,29 that a real relaxation curve can be
approximated in different ways and the
method of approximation strongly influences
the results of calculations. Particularly, the re-
laxation curve can be approximated by a sum
of exponent functions (by discrete relaxation
spectrum) and only 5 members are sufficient to
cover a wide time range of relaxation.

Another example cited from the results of the
above-mentioned investigations of creep and
relaxation of polycarbonate demonstrates the
effect of non-linearity. Figure 7.19 shows two
sets of experimental points (open symbols)
measured in creep at different levels of stress
(different initial deformations) and curves cal-
culated from a relaxation curve, the latter
measured in the range of linear viscoelastic be-
havior of a material at very low instantaneous
deformation. At initial deformation (1%), the
behavior of a material in creep is linear and

quite well predicted by the theory of linear viscoelasticity from a relaxation
curve. But the creep function becomes strongly non-linear even at initial defor-
mation (2.5%), and the experimental points radically deviate from the calcu-
lated curve.

It is also worth noting that non-linear effects do not appear from the very be-
ginning of creep; instead, here is some initial period of creep where points lie
rather close to the calculated curve. It means that linearity in viscoelastic be-
havior is limited, not by stress (or deformation) level only but by the time factor,
i.e., a material can be linear in a short range of loading and become non-linear in
long-range loading. Certainly the duration of this range depends on stress level,
as illustrated by experimental data in Figure 7.20. The limit of linear
viscoelastic behavior (the limit can be determined with some experimental er-
ror, too) is a very strong function of stress. Experimental points in Figure 7.20
can be approximated by an expression

t = me* -aσ
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Figure 7.19. Creep of
polycarbonate at two levels of
stress: initial (instantaneous) de-
formation was 1% (1) and 2.5%
(2). Open marks - experimental
points, curves - calculated from a
relaxation curve in a linear
viscoelastic range. 20oC.



where m and a are empirical constants (the constant a can be called a stress-sen-
sitivity factor, and it equals 0.1 MPa-1 for experimental data in Figure 7.20; this
value depends on material under investigation).

The example shows that the theory of linear viscoelasticity can be applied in
practical calculations but the accuracy of predictions depends on:

• accuracy of initial experimental data
• method used for approximation of experimental points
• confidence of being inside the limits of linearity
• deformation and time ranges for which predictions are made.
All these factors are hard to estimate and this seriously limits the possibilities

of calculation based on the linear theory of viscoelasticity. It therefore should be
applied only when one is sure that the potential problems, listed above, are not
applicable; then the theory of linear viscoelasticity becomes a powerful method
of prediction based on limited experimental data.
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Figure 7.20. Dependence of the time, t*, corresponding to the limit of linear viscoelastic behavior
in creep on the level of stresses at different temperatures. Straight line approximating experimen-
tal points is an exponential function.



7.9.3 MOLECULAR THEORIES AND EXPERIMENTAL DATA

Any molecular theory claims to predict the behavior of real materials. One of
the broad areas for predictions is viscoelastic behavior, because relaxation ef-
fects are inherent to many materials and primarily to polymeric and colloid sys-
tems. That is why results of observations of viscoelastic behavior of different
materials are widely used for comparison with theoretical predictions based on
molecular models of materials.

As a general rule, the theory predicts a relaxation spectrum of a material, and
the main question is, which type of experiment is used for comparison with theo-
retical predictions? Frequency dependence of dynamic modulus is the most
widely-used method. It is explained by the fact that this dependence can be mea-
sured relatively simply in a very wide range of its argument.

A very important peculiarity of this line of applications of linear
viscoelasticity, which is not important in other cases, is the necessity to have re-
liable results of measurements of viscoelastic functions and their application to
very well characterized objects. The last requirement is especially important
but in many cases, it is quite difficult to have sufficient information about a sam-
ple needed for formulation and use of a molecular theory, rather than to simply
measure viscoelastic properties of the material. This is a main additional limita-
tion in comparison of experimental data with molecular theories. Nevertheless,
the reference to viscoelastic properties of a material is widely-used in modern
theoretical speculations.

7.10 NON-LINEAR VISCOELASTICITY. INTRODUCTION

Theory of linear viscoelasticity is a rather rare example of a specialized and
closed theoretical approach to describing behavior of a material. It has a rigid
mathematical structure, set of theorems, conclusions, and it can be used for
practical calculations of stress-deformation relationship in arbitrary regimes of
deformations (loading). The theory has two main limitations which were men-
tioned above. One of them is the necessity to use initial experimental data for
calculations, which can be determined only in a limited range of an argument
and with some experimental error. It can lead to errors in calculations which can
be much larger than an error of initial measurement, and as a rule, this error
cannot be estimated at all. It is a natural inherent limitation of the theory.

The second limitation is of a more fundamental nature which severely restricts
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capabilities of the theory, especially in applications for technical purposes. That
is a limitation of linearity. Some possible definitions of the limits of linear
viscoelastic behavior were introduced in discussing fundamental experiments
of viscoelasticity (relaxation, creep, periodic oscillations). This is independence
of viscoelastic functions and constants, appearing in the theory, on the level of
stresses and/or deformations. All these requirements are, in fact, reflections of
the concept of independence of a relaxation spectrum of a material to external
influences.

Many non-linear effects are observed in deformations of viscoelastic materials.
The main effects were listed and discussed in Chapter 4, and some main types of
non-linearity, with their inherent causes, formulated. The points below are de-
signed to illustrate fundamental reasons for non-linear phenomena:

• weak (geometrical) non-linear effects due to possibility of large deformations
of medium

• strong (structural) non-linear effects caused by changes in relaxation prop-
erties (spectrum) of a medium under external influence

• breaking (phase) non-linear effects, which are results of phase or
relaxational transitions caused by deformations. This physical cause leads
to significant change in relaxation properties of a media, not related to the
properties corresponding to the initial state of a material.

All types of non-linear effects can be found in deformations of viscoelastic ma-
terials. Consequently, in constructing rheological equations of state for
non-linear viscoelastic materials, we must take into account these levels of
non-linearity. Certainly, effects of the lower level are always present when
non-linear effects of higher level are observed. One can expect that strong
non-linear phenomena related to gradual changes in a relaxation spectrum will
be accompanied by large deformations, and so on. Moreover, the transition from
one level of non-linearity to the next, as a rule, is not abrupt, especially if we bear
in mind that the majority of real materials are multi-component and conditions
of transition are different for components of a material. Certainly the threshold
for transition is different for various materials.

For example: which deformations can be called large? The general answer is:
these which are comparable with 1 (i.e., 100%). But we saw that even at defor-
mation of an order of 2.5% (i.e., 0.0025) the behavior of polycarbonate in creep
appears to be non-linear (Figure 7.19). Moreover, non-linear effects in deforma-
tion of highly filled polymeric31,32 or colloidal plastic disperse systems33 (colloidal
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dispersion of naphthenate aluminum in low-molecular-weight solvent)34 become
quite obvious at deformations of about 0.1%. It is explained by the existence of a
very rigid structure of a solid compound, destroyed at this deformation and lead-
ing to change in relaxation spectrum and strong non-linear effect, such as, for
example, non-Newtonian flow and dependence of dynamic modulus on ampli-
tude of deformations.

It has already been mentioned (Chapter 4) that strong and phase non-linear
phenomena are kinetic effects because changes in a relaxation spectrum and
phase transitions occur in time. These time-effects superimpose on viscoelastic
time-effects, and the rheological approach must be combined with a kinetic one
in order to understand what happens to a material and to explain and describe
what we observe in the case of “non-linear effects”.

The last concluding remark in this Introduction to non-linear viscoelasticity is:
even though there is a complete theory of linear viscoelasticity, no such non-lin-
ear theory exists, and maybe cannot exist, but there can be many theories of
non-linear viscoelastic behavior which seem to explain various non-linear phe-
nomena. At the same time, no theory exists capable of covering all non-linear
cases because of the diversity of causes of non-linear effects. For example, it is
convenient to use a flow curve equation for a non-Newtonian flow for applied cal-
culations for transportation of a liquid in pipes, neglecting that a flow curve is
only a consequence of some more general rheological equation of state not
known.

7.10.1 LARGE DEFORMATIONS IN NON-LINEAR VISCOELASTICITY

The starting point for developing the concept of viscoelastic behavior in
non-linear range is the Boltzmann-Volterra equation (7.31). It is the most gen-
eral representation of viscoelastic response at infinitesimal deformations. The
next step regards the use of large (finite) deformations discussed in Chapter 3.

It is convenient to use two tensors for large deformations: the Cauchy - Green
tensor, Cij, and the Finger tensor, Cij

-1 , both are functions of two time moments:
an “initial” moment of time when a point of a body is in its reference state and a
current moment of time, i.e., the moment when deformations Cij andCij

-1 are mea-
sured relative to the reference state. In many cases, the initial (reference) state
is assumed to be isotropic at the point, although it is not always true. For exam-
ple, liquid crystalline polymers and reinforced plastics are very important ex-
ceptions (or to be more exact, they form another case) because these media are
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inherently anisotropic materials and rheological description of their properties
and behavior needs special theoretical understanding.

The idea of large deformations and their role in rheological behavior of real ma-
terials can be illustrated by an example of simple shear. For this purpose let us
write the components of the Cauchy - Green and Finger tensors for
unidimensional simple shear in the plane x1 - x2. Assuming that deformations at
the reference state are absent and that shear at the moment, t, equals γ, we can
write the components of the Cauchy - Green and Finger tensors as follows

C (t) =
0 0

0
0 0 0

and C =
- 0

0 0
0 0 0

ij
2

ij
-1

2γ
γ γ

γ γ
γ



























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Then, we need to formulate the Boltzmann superposition principle for large
deformations. One of the possible ways to do it is to use a form of rheological
equation of state of rubber-like liquid as proposed by Lodge:35

σ ij
0

t

ij
-1(t) = C m(t t )dt∫ − ′ ′ [7.74]

where m(t - t′) is called the memory function.
It is easy to show that the memory function is directly related to the relaxation

function by the following equations:

ϕ ϕ(t) = m(s)ds; m(t) = d (t)
dtt

∞

∫ − [7.75]

These equations show that the memory function is the same as for the linear
viscoelasticity limit and it does not depend on deformation. Using the measure
of large deformation, instead of infinitesimal deformation, we come to some new
results: presence of diagonal members in theCij

-1 tensor leads to the prediction of
the Weissenberg effect. It appears here as a natural consequence of finite defor-
mation, and it is really a second order effect because predicted normal stresses
are proportional to γ2. Then, using different combinations of the tensors Cij and
Cij

-1 , one can reach correct sign and value of normal stresses (within the limits of
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weak non-linearity). The statement “using different combinations” shows that
there are various possible paths for generalization of the linear theory of
viscoelasticity and we have no formal ground for unambiguous choice of either
version.

The second power of normal stresses in elastic deformation is a weak non-lin-
ear effect resulting from large deformation of a material, which is true for a
viscoelastic solid and liquid as well. The model of rubber-like liquid predicts
some new effects besides normal stresses in shear, important as reflections of
weak non-linearity. The first one is time dependence of tensile stress observed in
uniaxial extension performed at constant rate of deformation. For linear
viscoelastic liquid at constant rate of extension (and at constant rate of shear),
one expects that stress will grow to the limit of steady flow with constant (New-
tonian in shear and Trouton at extension) viscosity, and such level is reached at
t → ∞.

To illustrate what happens to rubber-like liquid, it is convenient to operate
with a single-relaxation-time model (a relaxation spectrum degenerates to a sin-
gle line relaxation time, θ) because this model gives very spectacular results.
Theory shows that in uniaxial extension of such viscoelastic (or rubber-like) liq-
uid, stress dependence on rate of deformation at t → ∞ is36

σ ε ηε
εθ εθ

( ) = 3
(1 2 )(1+ )

&
&

& &−
[7.76]

At very low rates of deformation (and the words “very low” mean that the
Weissenberg Number, We = &εθ << 1), we reach the limit of linear viscoelasticity:
the Trouton Law for extensional viscosity. Indeed, at We << 1≡ &εθ

λ σ
ε

η= = 3
&

Increase in the rate of deformation leads to the growth of elongational viscos-
ity, as can be derived from Eq 7.76, so the theory predicts increasing extensional
viscosity. However, the most intriguing result can be obtained at We → 0.5.
Eq 7.76 predicts, in this case, an unlimited growth of stress, which is physically
impossible. In fact, it means that at We > 0.5, steady elongational flow becomes
impossible, resulting in rupture of a stream to overcome some critical rate of de-
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formation, determined by the criterion We = 0.5.37,38

If a (linear) relaxation spectrum is not represented by a single but rather a set
of relaxation times, the expression for stress dependence on rate of deformation
becomes more complex, resulting in preclusion to reach a steady flow regime of
extension at sufficiently high rates of deformation. In the general case, the criti-
cal value (equal to 0.5) of the Weissenberg Number must be calculated through
the maximum relaxation time from a spectrum. Moreover, if a relaxation spec-
trum of a material is continuous and stretches up to infinity, then the state of
steady uniaxial flow becomes impossible at any low rate of deformation.

The prediction of unlimited growth and thus the rupture of material in uniax-
ial extension is very important because the model of rubber-like liquid explains
impossibility of increase in extension rate; for example, in the process of fiber
spinning (very much desired in technological practice) beyond the definite
threshold: a liquid jet would break, which helps to realize even weak non-linear-
ity as a result of large elastic deformations in order to observe this effect.

Now, let us discuss the next interesting and important phenomenon predicted
by the model of viscoelastic (rubber-like) liquid. This is constrained recoil of
such a liquid after cessation of shear deformation, γr , which is a function of time.
Recoverable deformations, γr (t), accompany flow of viscoelastic liquid and can be
measured after sudden (jump-like) cessation of flow. Recoverable deformations
at t → ∞, so-called ultimate (or “equilibrium”) recoil, γ∞ , are calculated as

γ τ ηγ
∞ =

E
=

Eo o

&
[7.77]

where η is viscosity (Newtonian viscosity for linear viscoelastic liquid) and E0

modulus of elasticity.
It is possible to prove that γel can also be calculated by means of the so-called

Lodge equation:

γ ψ γ
η

σ σ
σel

1 11 22

12

= =
2

& −
[7.78]
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where

ψ σ σ
γ1

11 22
2

=
2

−
&

is called coefficient of the first difference of normal stresses (see also p. 74).
Then, one can write a new relationship between material constants of a rub-
ber-like liquid

ψ η
1

2

o

=
E

[7.79]

The normal stresses can be expressed as a function of the moments of a relax-
ation spectrum because both components in Eq 7.79 are such moments (see Eq
7.62). Then normal stresses appear in the model of rubber-like liquid also as a
second-order effect, which can be connected with relaxation properties of me-
dium.

7.10.2 RELAXATION PROPERTIES DEPENDENT ON DEFORMATION

There is a great variety of non-linear models which take into account the sec-
ond level of non-linearity, i.e., changing relaxation properties as a function of de-
formations.39-41 If we go by the way of generalization of Eq 7.74, we can assume
that m(t) is a function not of time only but also of deformation. Because a mem-
ory function is a material parameter of matter, its dependence on deformation
must certainly be expressed through invariants of the deformation tensor.

Then, we can write

σ ij
0

t

ij
-1

1 2= C m[(t t );I ;I ]dt∫ − ′ ′ [7.80]

where I1 and I2 are invariants of the Cij
-1 tensor.

Eq 7.80 is a natural generalization of a model of a rubber-like liquid. However,
practical applications of Eq 7.80 meet with a major difficulty which is common
for non-linear models of such type. It is a problem of determining a memory func-
tion with its uncertain dependencies on invariants of the deformation tensor. To
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overcome this difficulty, Wagner42 proposed the use of a rather old observation
obtained from investigation of deformation of crosslinked rubbers. It was known
that in many practically important cases, a relaxation function (or a relaxation
modulus) at large deformations can be treated as a product of two independent
functions: the first one is a time-dependent memory function and the second is a
function of deformation (or in more general case, a function of invariants of the
deformation tensor), i.e., it is possible to separate the dependence of a memory
function on its arguments into two different dependencies based on a limited
number of arguments:

m(t,I ,I ) = m (t)h(I ,I )1 2 o 1 2 [7.81]

where m0(t) is a linear-limit memory function, and h(I1, I2) is called a damping
function, and the latter reflects the influence of deformation on relaxation prop-
erties of material.

It is rather difficult to separate the influence of both invariants on damping
function, h(I1,I2), because in simple (standard) experiments the two invariants
cannot be changed independently. There are some experimental result related
to large deformations in shear where a single measure of deformations, γ, can be
used. Wagner42 and Laun43 demonstrated that a damping function can be ap-
proximated by a single exponent

h( ) = e-nγ γ

and Soskey and Winter44 and Larson45 showed that experimental data can be
satisfactory fitted, if we express a damping function by a power law

h( ) = 1
1+ a b

γ
γ

Parameters a, b, and n in these expressions are empirical constants.
Other versions of a “non-linear” memory function are also known and their

generalization, as a function of invariants, can be found in the literature. For
our discussion, the most interesting is, first of all, the existence of the depend-
ence of relaxation properties on deformations, and secondly, the rather strong
influence of deformations, regardless of whether they are expressed by an expo-
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nential or a power function.
Eq 7.80 is able to predict strong non-linear phenomena. One can obtain the ex-

pression for non-Newtonian viscosity, which is written as

η γ ϕ
γ

γ γ( ) = (t ) d
d

[ h( )]
0

&

&

& &

∞

∫ ′

The final form of the dependence of non-Newtonian viscosity on rate of shear is
determined by the structure of a damping function. Regardless of its exact ex-
pression, one may state that the influence of shear appears more strongly on the
long-term side of a spectrum than at shorter relaxation times. In this sense, we
can say that shearing suppresses slow relaxation processes (they do not have
enough time to occur) and this phenomenon increasingly envelopes the part of a
relaxation spectrum (from the long-term side), the higher the rate of deforma-
tion is.

Eq 7.81 proposed by Wagner42 is popular in rheological literature because, in
the form used in Eq 7.80, it can describe many experimental data on non-linear
relaxation in the range of large deformations. Eq 7.80 also predicts non-qua-
dratic dependence of normal stress on shear rate at high rates of deformation,
i.e., it demonstrates that at high rates of deformation, the Weissenberg effect re-
flects not only weak but also strong non-linearity, as well.

Though Eq 7.80, with separation of arguments, as in Eq 7.81, looks very attrac-
tive for describing various rheological phenomena, there are at least two princi-
ple contradictions of theoretical predictions based on this approach and
experimental facts. First is the wrong prediction concerning the second differ-
ence of normal stresses: according to Eq 7.80, it equals zero, whereas, in fact, it is
not; second is the prediction of monotonous growth of normal stresses in tran-
sient shearing deformations, whereas, in fact, an overshoot takes place. It
proves that this approach is not universally acceptable.

The next step in understanding and describing non-linear viscoelastic behav-
ior is connected with so-called the K-BKZ model of rheological behavior,46,47

which incorporates both measures of large deformations, the Cauchy - Green,
Cij, and Finger,Cij

-1 , tensors. Again, there is some ambiguousness in constructing
rheological models because both measures of large deformations can enter rheo-
logical model as arbitrary form, but they allow one to select combinations which
give the best fit of experimental data.
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Different forms of the K-BKZ equation exist. If we explore the idea of separa-
tion of arguments in a memory function, as discussed above, we may come to the
following, relatively simple, expression for the K-BKZ model:

σ ij
0

t

1
ij

2
ij
-1= m(t t )[2 W

I
C (t ) 2 W

I
C (t )]dt∫ − ′ ∂

∂
′ − ∂

∂
′ ′ [7.82]

where W is an elastic potential depending on the invariants of the deformation
tensor, and this elastic potential is essentially the same as used in the theory of
elastic (rubbery) solids (see Chapter 6).

An elastic energy potential function in Eq 7.82 depends on the deformation and
therefore on time. The dependence W(I1,I2) must be determined experimentally
like a damping function in Eq 7.81. There is a vast number of publications de-
voted to experimental probing of the predictive strength of this model and deter-
mining elastic potential function. Meanwhile, the main advantage of Eq 7.82
over Eq 7.80 is in prediction of the non-zero second difference of normal stresses.
Freedom in combinating measures of deformations and dependency of elastic
potential on invariants of the deformation tensor provides great possibilities to
use the K-BKZ model to fit numerous experimental data and describe various
special effects in behavior of different rheological media.

Both equations (Wagner and K-BKZ) explore an idea of the influence of the de-
formation on a memory function and thus on a relaxation spectrum of a mate-
rial, but using it in a simplified form through separation of inputs of time and
deformation. It allows one to single out the linear limit of relaxation function.
Certainly, it is a particular case, but an important one. Moreover, transition to a
more general (and more complex) model of non-linear viscoelastic behavior, as a
rule, makes these equations almost unrealistic for practical applications.

There are many other, different approaches to constructing non-linear rheo-
logical equations of state for viscoelastic materials. We do not intend to review
all published theoretical ideas; only fundamental and applicable approaches
were discussed above. It is also worth mentioning that there are numerous at-
tempts to take into consideration weak (due to finite deformations) and strong
(due to deformational changes of a relaxation properties) non-linear phenom-
ena, but non-linear effects of the third level (phase non-linearity) do not appear
in rheological equations. However, the idea of fracture appears in many cases,
even as a result of a weak non-linearity as discussed for high rates of extension
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of a rubber-like liquid.
In the conclusion of this section, we shall shortly discuss the applied purposes

of non-linear theories of viscoelasticity. They are essentially the same as those of
the linear theory, but their applied value is even more pronounced because real
technical applications and technological operations take place at high rates of
deformation and reach large deformations. On the other hand, at present an ap-
plied meaning of non-linear theories is very limited. This is explained by diffi-
culties in determining material functions used in theories and the low reliability
of their predictions for experimental conditions other than those used to deter-
mine material functions.

A large number of investigations were performed to verify the correctness of
prediction of qualitative or (better) quantitative results of simple fundamental
experiments (simple shear, uni- and biaxial extension, transient regimes of
shear and extension) by different theories, but seldomly to solve applied techni-
cal problems. Only empirical or semi-theoretical equations for steady non-linear
phenomena, such as non-Newtonian flow of liquids or long-term creep of solids
and long-term prediction, including extrapolation, are rather widely used for
solving applied problems.

7.11 CONCLUDING REMARKS

Viscoelasticity is a combination of viscous dissipation and storage of defor-
mation energy. The phenomenon is common for practically all materials, though
its importance and potential possibility to observe viscoelastic effects is deter-
mined by the ratio of inherent time-scale (time of relaxation) and characteristic
time of deformation. Various effects explained by viscoelastic behavior are often
observed and are important for polymeric materials in the form of melts, solu-
tions, and colloidal dispersions, solids and reinforced plastics, rubbers and
foams. The main reason for its presence is their wide relaxation spectra, causing
the same order of value as duration of loading (deformation) to always exist.

There are three fundamental experiments which are treated as reflections of
viscoelastic behavior of a matter:

• creep - delayed development of deformations under action of constant force
(or stress)

• relaxation - slow decay of stresses at preserving constant deformation
• periodic oscillations - harmonic changing of stresses or deformations with

relative shift of deformation in relation to stress.
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These experiments can be carried out in any geometrical configuration of de-
formation, primarily at shear or uniaxial extension-compression.

The experiments allow one to find material characteristics of matter - creep
function, relaxation function, dynamic modulus (and compliance), in-
stantaneous modulus, equilibrium modulus and viscosity. If these mate-
rial functions do not depend on the level of deformation (and stress), material
has a linear viscoelastic behavior; in the opposite case, material is a
non-linear viscoelastic body.

For linear viscoelastic materials, the principle of superposition
(Boltzmann principle) is valid. According to the principle, reaction of a material
to all consequent deformations (or stresses) are independent and previous defor-
mation does not influence the reaction of the material to the next one. Mathe-
matical expression of this principle is done by a pair of the Volterra equations.

Creep and relaxation functions can be represented as sums (or at a limit as an
integral) of exponential items, and exponents in these expansions are relax-
ation and retardation spectra. Calculation of relaxation times in a spec-
trum is based on solving integral equations. In principle it can be done
unambiguously if a creep or a relaxation function are known exactly in a full
range of time, from zero to infinity. Since this is impossible, we are compelled to
use approximate methods in solving integral equations, based on analytical ap-
proximation and extrapolation of experimental data. However, accuracy of
these methods is limited by the unavoidable scatter of experimental points and
the ambiguity of their extrapolation beyond the experimental time or frequency
“window”.

Characteristics of a linear viscoelastic behavior of a material are interrelated
to each other by algebraic or integral equations and can be mutually recalcu-
lated. That is why the linear theory of viscoelasticity is a closed theory, contain-
ing all necessary equations in order to estimate mechanical behavior of a
material in arbitrary stress-deformation situation based on measurements of
any fundamental characteristic of viscoelastic properties of a material.

There is an important method of extending the experimental time (frequency)
“window” based on the idea of superposition of experimental data obtained at dif-
ferent temperatures or concentration in multi-component systems at some
other external factors, which should not be confused with the Boltzmann princi-
ple of superposition. This method is based on the idea that the same value of any
viscoelastic function can be reached either by changing time (frequency) scale or
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varying a value of an external factor (temperature, concentration and so on).
This experimental method allows us to separate parts of time-dependent curves
by their shift along the time-scale and thus to obtain a curve over a much wider
range of arguments than can be realized in a direct experiment.

The method of superposition is related to the idea that the dependencies of re-
laxation times in a spectrum are the same for all of them, and thus this principle
is not applicable if dependencies of different relaxation times in a spectrum on
an external factor (for example on temperature) are different.

The theory of linear viscoelasticity is used for:
• obtaining objective characteristics of a material, which can be correlated

with their molecular structure and/or content
• verification of conclusions from molecular theories which give grounds for

understanding the molecular structure of a material and intermolecular in-
teractions

• calculation of mechanical behavior of a material in arbitrary regimes of their
exploitation (but at rather low levels of stresses).

The theory of linear viscoelasticity works well only within the limit of infinites-
imal deformations. In increasing deformations, fundamental assumptions of
the theory, and primarily the principle of linear superposition, become inade-
quate. The theory requires generalization because numerous effects observed at
large deformations are definitely related to viscoelasticity of a material and are
especially important in real technological practice.

The methods of generalization of the classical theory of linear viscoelasticity
can differ, depending on the proposed and assumed mechanism of non-linear-
ity. Consequently, various theories of non-linear viscoelasticity were devel-
oped. The first step consists of the introduction of a measure of large
deformations instead of infinitesimal ones, which causes ambiguity of predic-
tions of non-linear viscoelastic effects.

The concept of rubber-like liquid (viscous liquid, capable to store large elas-
tic or reversible deformations in flow) allows us to explain phenomena related to
weak non-linear behavior, such as existence of normal stresses in shear flow,
which is an effect of the second (quadratic) order. Moreover, this model predicts
that at sufficiently high rates of uniaxial extension, a steady state flow becomes
impossible and a stream is broken, due to unlimited increase of stresses.

The concept of rubber-like liquid is not sufficient to understand and to describe
the strong non-linear effects; for example, non-Newtonian viscous flow of
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viscoelastic liquids. We need to explore the idea of changing (or modification) of
relaxation properties (or in general sense of changing spectrum) of a matter due
to large deformations as an inherent reason of strong non-linear effects. It can
be done on the basis of different theoretical or experimental considerations and
then we may arrive at different predictions concerning rheological behavior of a
material.

Efforts of numerous researches are directed primarily to comparison of predic-
tions of various existing non-linear theories with results of some principle exper-
iments in uni- or biaxial deformations. This offers the a possibility to find
material functions characterizing non-linear viscoelastic properties of a mate-
rial. However, general theories of viscoelasticity are rarely used for solving con-
crete applied problems. Only directly measured non-linear characteristics are
used for these purposes. For example, non-Newtonian flow curves are used to
solving tube transportation problems, and a creep function measured at high
(non-linear) range of stresses is used for predicting long-term deformations of
real engineering materials.

7.12 REFERENCES

1. B. Gross in Mathematical Structure of the Theories of Viscoelasticity,
Hermann, Paris, 1953.

2. D. E. Blend in The Theory of Linear Viscoelasticity, Oxford, 1968.
3. R. M. Christensen in Theory of Viscoelasticity. An Introduction, Academic Press,

New York, 1971.
4. N. W. Tschoegl in The Phenomenological Theory of Linear Viscoelasticity.

An Introduction, Springer, Berlin, 1989.
5. A. J. Staverman and R. R. Schwarzl in Die Physik der Hochpolymeren, vol. 4,

Ed. H. A. Stuart, Springer, 1956.
6. J. D. Ferry in Viscoelastic Properties of Polymers, 3rd Ed., Wiley, New York,

1980.
7. A. Tobolsky in Structure and Properties of Polymers,
8. L. Bolzmann, Pogg. Ann. Phys., 7, 624 (1876).
9. A. P. Alexandrov and Yu. S. Lazurkin, Zh. Techn. Phys., 9, 1249 (1939).
10. H. Leaderman in Elastic and Creep Properties of Filamentous Materials and

Other High Polymers, Washington, 1943.
11. T. Alfrey in Mechanical Behavior of High Polymers, New York, 1948.
12. V. Volterra in Theory of Functionals and Integrals and Integro-differential

Equations, 1931.
13. V. Volterra and J. Pérèz in Théorie générale des functions, Gauthier-Villars,

Paris, 1936.
14. M. Baumgaertel and H. H. Winter, Rheol. Acta, 28, 511 (1989); 31, 75 (1992).

A. Ya. Malkin 307



15. C. Ester, J. Honerkamp, and J. Weese, Rheol. Acta, 30, 161 (1991).
16. J. Honerkamp and J. Weese, Rheol. Acta, 32, 65 (1993).
17. A. Ya. Malkin, Rheol. Acta, 29, 512 (1990).
18. V. V. Kuznetsov, T. Holz, and A. Ya. Malkin, Rheol. Acta, in press.
19. P. E. Rouse, J. Chem. Phys., 21, 1272 (1953).
20. B. Gross, Quart. Appl. Math., 10, 74 (1952).
21. F. Schawarzl and A. Starerman, J. Appl. Sci. Res., A4, 127 (1953).
22. M. L. Williams and J. D. Ferry, J. Polym. Sci., 11, 169 (1953).
23. K. Ninomiya and J. D. Ferry, J. Colloid. Sci., 14, 36 (1959).
24. S. Glasstone, K. Leidler, and H. Eiring, J. Chem. Phys., 7, 1053 (1939).
25. H. Vogel, Phys. Zs., 22, 645 (1921).
26. G. Tammonn and W. Hesse, Zs. anorg. allgem. Chem., 156, 245 (1926).
27. M. L. Williams, R. F. Landel, and J. D. Ferry, J. Am. Chem. Soc., 77, 3701 (1955).
28. K. K. Lim, P. E. Cohen, and N. W. Tschoegl in Multicomponent Polymer Systems,

Ed. R. F. Gould, ACS, Washington, 1971.
29. A. Ya. Malkin, A. E. Teishev, and M. A. Kutsenko, J. Appl. Polym. Sci., 45, 237 (1992).
30. R. Kohlrausch, Pogg. Ann., 12, 397 (1847).
31. G. V. Vinogradov and A. Ya. Malkin, Inter. J. Polym. Mater., 2, 1 (1972).
32. A. Payne in Reinforcement of Elastomers, Ed. G. Kraus, Interscience, New York,

1965.
33. W. P. Pavlov, G. V. Vinogradov, W. W. Snizyn, and Y. E. Deinega, Rheol. Acta, 1, 470

(1961).
34. A. A. Trapeznikov, Rheol. Acta, 1, 617 (1961).
35. A. S. Lodge in Elastic Liquids, Academic Press, London, 1964.
36. G. V. Vinogradov and A. Ya. Malkin in Rheology of Polymers, Springer, 1980.
37. A. Ya. Malkin and G. V. Vinogradov, Vysokomol. Soed., 27A, 227 (1985).
38. A. Ya. Malkin, J. Rheol., 39 (1995), in press.
39. F. J. Lockett in Nonlinear Viscoelastic Solids, Academic Press, London, 1972.
40. R. I. Tanner in Engineering Rheology, Oxford University Press, 1985.
41. H. A. Barnes, J. F. Hutton, and K. Walters in An Introduction to Rheology,

Elsevier, 1989.
42. M. H. Wagner, Rheol. Acta, 15, 136 (1976); 18, 33 (1979).
43. H. M. Laun, Rheol. Acta, 17, 1 (1978).
44. P. R. Soskey and H. H. Winter, J. Rheol., 28, 625 (1984).
45. R. G. Larson, J. Rheol., 29, 823 (1985).
46. A. Kaye, Note No. 134, College of Aeronautics, Cranford, England, 1962.
47. B. Bernstein, E. A. Kearsby, and L. J. Zapas, J. Res. Nat. Bur. Stand, 68B, 103 (1964).

308 Viscoelasticity



NOMENCLATURE

A Front-factor (empirical coefficient)
A Intensity of heat dissipation (in viscous flow)
A Surface area (in shear)
An Rivlin-Ericksen tensor of the n-th order
a, b Semi-axes of an ellipsis
a, b, c Initial length of edges of a pipe
a*, b*, c* Length of edges of a pipe after deformation
aij Components of the gradient of velocity
aT Coefficient of temperature reduction
B Width of a channel
B Transverse size of a plane
B Bulk modulus of compressibility
Bn White-Metzner tensor of the n-th order
b Ratio of rotation speeds of two coaxial cylinders
b Width of a rectangular crosssection
C1, C2 Constants in the Mooney-Rivlin equation
Cij Components of the Cauchy-Green tensor
Cij

-1 Components of the Finger tensor
Cmf Dimensionless coefficient of viscous friction
c1, c2 Constants in the WLF equation
D Diameter of a tube
Di Invariants of the rate of deformation tensor
Dij Components of the rate of deformation tensor
d Linear size (in particular, diameter of a tube)
dij Components of the infinitesimal deformation tensor
di Principal values of the infinitesimal deformation tensor
dij

(dev) Deviatoric part of the dij-tensor
E Energy of activation
E Modulus of elasticity (Young modulus)
E* Complex (dynamic) modulus
E’ Real component of dynamic modulus (storage modulus)
E’’ Imaginary component of dynamic modulus (loss modulus)
Ea Apparent modulus of elasticity
Ei Partial moduli
Ei Invariants of the tensor of large deformations
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EC Elastic modulus in compression
ET Elastic modulus in extension
Eo Initial (instantaneous) modulus
Eo Absolute value of the dynamic modulus (in periodic oscillations)
E∞ Equilibrium modulus
F Normal force
Ff Resistance force due to viscous friction
Fi Force (in various situations)
Fn Normal force
Fp Resistance force due to pressure
Fp,1 Component of Fp related to action of pressure on a surface
Fp,2 Component of Fp related to action of pressure on a bottom
Fs Stokes force at movement of a ball through a liquid
Fy Force at the point of yielding
Fσ Tangential force
F(θ) Relaxation spectrum
f Deflection
fmax Maximal deflection
G Shear modulus
Gi Constants in the theory of rubber elasticity
G∞ Equilibrium modulus
g Gravitational constant
gij Components of the gradient of relative displacement
H Maximal sagging
H Distance
H Height (in various situations)
H(lnθ) Logarithmic relaxation spectrum
h Gap (constant or current) between two parallel surfaces
h Height of a rectangular cross-section
ho Initial distance between two approaching disks
h(t) Damping function (in non-linear viscoelasticity)
I Axial moment of inertia
Ii Invariants of the stress tensor
I* Complex dynamic compliance
I’ Real component of dynamic compliance
I’’ Imaginary component of dynamic compliance
Ii Partial compliance
Ii Invariants of stress tensor
Ip Polar moment of inertia
Io Instantaneous compliance
Ix Moment of inertia relative an x-axis
I∞ Equilibrium compliance
K, Kn Geometrical factors
Kc Geometrical factor for flow along the axis between two coaxial cylinders
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Kel Geometrical factor for an elliptic cross-section
K(n) Hydrodynamic factor for a “power” liquid
kijkl Components of the tensor of moduli (for an anisotropic solid)
L Length (of a tube, bar)
L Height of two coaxial cylinders
L(lnλ) Logarithmic retardation spectrum
l Distance from the top of a penetrating body to the bottom of a vessel
l Length (of a sample)
lo Initial length of a sample
M Torque
My Torque at the point of yielding (in flexure)
Mz Torque around the z-axis
m(t) Memory function (in viscoelasticity)
n Exponent of the power law in various rheological equations
ni Components of a vector showing the orientation (direction)
P Moving force (in the Stokes problem)
P Resistance force (in the lubrication theory)
p Hydrostatic pressure
p* Pressure corresponding to elastic-to-plastic transition
po Pressure at the edge crosssection of a confusor (or at the outer free surface)
Q Volumetric output (flow rate)
QD Volume output due to drag flow
Qp Volume output due to pressure gradient
q Distributed load (in Figure 2.12)
R, Ri Radius in various situations (of a tube, cylinder, sphere)
Ri Radius of an inner cylinder
Rh Radius of a hole (on a cross section of a bar)
Ro Radius of an outer cylinder
Ro Initial radius
r Radius-vector, current radius, radial coordinates
r Distance between two points in continuum
ri Components of radius-vector
ro Radius of the edge cross-section of a confusor
ro Radius of a hole
r, z, θ Cylindrical coordinates
S Area (of a surface in extension)
Sp Static moment of a plastic zone
s Distance between two points
T Total force
T Characteristic time of deformation (flow)
T Duration of an oscillation cycle
T, Ti Temperature (in various situations)
Tg Glass temperature
To Reference temperature
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t Current time
t* Time characterizing limit of linear viscoelasticity
t* Time constant
ti Time (in various situations)
tinh Characteristic inherent time (of a material)
tobs Time of observation
ui Components of displacement vector
V Velocity (average velocity)
Vx, Vz Components of the velocity vector
V* Dimensionless velocity
Vmax Maximal velocity (at the axis of a channel)
Vw Velocity of a moving wall of a channel
Vi Velocity of an inner cylinder
Vo Velocity of an outer cylinder
Vo Volume-averaged velocity
vi Volume
vi Components of the velocity vector
W Work (produced during a cycle of periodic deformations)
W Elastic potential
wij Components of the vorticity tensor
Xi Components of the vector of body forces
XH Displacement of a Hookean spring
XN Displacement of a Newtonian damper
Xo Initial displacement (of a Maxwellian model)
x Parameter
xo Initial value of x
x∞ Equilibrium value of x
x, y, z Cartesian coordinates
xi Coordinates of the Cartesian coordinate system
z* Distance from a neutral axis to a border of a plastic zone
A, B, C, K, M,
a, k, m, n, p Empirical constants of different equations

De Deborah Number
Re Reynolds Number
ReR Reynolds Number related to the radius of a tube
Re*, Re**, Re* Characteristic values of the Reynolds Number
T Taylor Number
We Weissenberg Number

α Angle (in different meanings); constant in various equations
α Coefficient of linear thermal expansion
α Dimensionless eccentricity of two coaxial cylinders
αo, αmax Different values of an angle
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β Dimensionless coordinate
β Angle (various meanings)
β* Critical value of an azimuthal angle in formation of vortices
γ Magnitude of shift (in simple shear)
γ Gradient of displacement
γ Empirical constant (in the Kolhrausch function)
γ Deformation in simple shear
γz Recoil strain (recoverable deformation in shear)
γ∞ Ultimate recoil (“equilibrium” recoverable deformation in shear)
γ = cosα Value used in the solution of the hydrodynamic problem of converging flow
γ = cosα o Value used in the solution of the hydrodynamic problem of converging flow
&γ Rate of deformation (shear rate)
&γw Rate of deformation (shear rate) at a wall
&γw,N Rate of deformation (shear rate) at a wall in flow of Newtonian liquid
&γw,VP Rate of deformation (shear rate) at a wall in flow of visco-plastic medium
∆li Elongation
∆P Pressure drop (pressure difference at the ends of a tube)
∆r Change of a radius
∆V Change of volume
δ, δo Width of thin elements (covers, gaps, and so on)
δ Difference of radii of two coaxial cylinders
δ Outstripping factor (in rolling)
δ Phase (loss) angle
δij Kronecker delta (the unit tensor)
ε Relative change in the distance between two points
ε Eccentricity of two coaxial cylinders
ε Ratio of the gap width between coaxial cylinders to the radius of an inner

cylinder;
ε Tensile strain
εf Residual deformation
εv Relative change of volume
εH Hencky measure of deformations
εij Components of the tensor of deformations
εo Instantaneous deformation
εo Amplitude of deformation (in periodic oscillations)
ε* Engineering measure of deformation
&ε Rate of axial deformation (gradient of velocity in extension)
ζ Dimensionless radius
η Shear viscosity (Newtonian, apparent)
ηo Initial (zero shear) viscosity
ηc Cross-viscosity (in Rivlin’s equation)
ηp Plastic (Bingham) viscosity
ηs Viscosity calculated by the Stokes formula
ηo Viscosity of a liquid droplet
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η* Complex dynamic viscosity
η′ Real component of dynamic viscosity (or dynamic viscosity)
η′ ′ Imaginary component of dynamic viscosity
θ Angle (in different meanings); angle coordinate
θ, θi Relaxation time
θav Average relaxation time
θij Components of the rotations (turns)
λ Draw (extension) ratio
λ Elongational (Trouton) viscosity
λ Characteristic retardation time
λ Dimensionless coefficient of friction
λ, λi Retardation time
λR Dimensionless coefficient of friction calculated through the radius of a tube
µ Poisson ratio
ξ Depth of penetration
ξ Dimensionless ratio of volume output
ρ Density
ρ Radius of curvature of a bar
ρl Density of a liquid
ρs Density of a solid
ρo Density of a liquid droplet
σ Stress; shear stress
σE Normal stress in extension; tensile stress
σe Conventional (engineering) stress
σi Stress at the surface of an inner cylinder
σij Components of the stress tensor
σij,α Components of the stress tensor at a plane inclined by an angle α
σo Stress at the surface of an outer cylinder
σw Shear stress at the wall of a channel
σy Yield stress; yield point
σyE Yield stress in simple shear
σo Amplitude of stress (in periodic oscillations)
σo Conventional stress (in uniaxial extension)
σ1, σ2 First and second differences of normal stresses
σi Principle values of the stress tensor
σ∞ Stored part of stress (in relaxation)
Φ Decay of stress function
Φ(λ) Retardation spectrum (spectrum of retardation times)
ϕ Relaxation function
ϕ Angle of turn
ϕmax Maximal angle of turn
ϕsp Relative angle of twisting (turn)
Ψ Delayed deformation function
Ψ1, Ψ2 First and second normal stress coefficients (in Weissenberg effect) according
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to recommended Nomenclature
ψ1, ψ2 First and second normal stress coefficients (in Weissenberg effect) according

to Eq 4.11
ψ Creep function
ω Frequency
ω Angular velocity
ωi Rate of rotation of the inner cylinder
ωo Rate of rotation of the outer cylinder
α λ, Empirical constants
α β γ, , Dimensionless geometrical parameters
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Concrete 1
Cone-and-plate (viscometer) 29-30
Couette problem 137
Creep 101-103, 248, 292-293
Cross equation 66
Cylinder
coaxial 71, 140
thin-walled 26, 29, 227

Deborah Number 80, 120-121, 187, 246
Deformation
engineering measure 41, 214
finite (large) 41-45, 57
Hencky measure 42
infinitesimal 37, 46, 48, 57
maximal 210
phase transition 105-106
principal 45
rate 39-40
tensor 36
transient 74-76
three-dimensional 56-57
unrecoverable 119
volumetric 47, 49
Deviator 18, 33
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Displacement 35, 40
Dilatancy 96
Drag flow 94, 135, 148
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Draw ratio 98
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Dynamic modulus 251-252, 268-269, 271
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Hereditary integrals 260
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Kuhn-Guth-Games-Mark potential 202
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Laminar flow 140, 163
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Lodge equation 299
Logarithmic spectrum 267
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Lubricant layer 180

Material objectivity 44
Maxwell model 276
Maxwell liquid 275, 277
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instantaneous 272
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storage 252
Mooney-Rivlin equation 99
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Mullins effect 100, 112

Necking 78, 90, 106
Newton Law 2, 61
Newtonian liquid 86, 122, 139, 173
Newtonian viscosity 62, 122
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Non-Newtonian behavior 3, 63

320 Subject Index



Observation scale 4
Orientational crystallization 106
Orientational dewetting 106
Oscillatory measurements 254
Ostwald-de Waele equation 67
Outstripping factor 178

Paints 1
Periodic oscillations 250
Phase non-linearity 112
Phenomenological models 2
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Reiner liquid 127
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behavior 93, 124
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Rubber-like behavior 207, 297
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Saint-Venant principle 45, 211, 244
Saint-Venant problem 211, 244
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Sealant 288
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Space scale 7
Stokes problem 169
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Taylor instability 84
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Temperature stresses 230
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Time effects 187
Time scale 7, 282
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Treska - Saint-Venant criterion 130-131
Trouton equation 77, 125, 129, 298
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Unidimensional flow 133
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Velocity 143
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behavior 76, 103, 245
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Newtonian 64
Trouton 77
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Volterra equation 305
Vorticity 40, 84
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Weissenberg effect 70-74, 297
Weissenberg Number 80, 87
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