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Preface

The H∞ norm as a measure has been thoroughly embedded in control
theory during the last few years. Although the H∞ norm has been used
in control for a long time (a concept like bounded real is nothing else
than an H∞ norm bound), there was a gigantic surge in research efforts
towards the minimization of the H∞ norm of the closed loop system in
the last 10 years. A fairly complete solution is now available.

This book tries to bring the reader up to date with respect to the,
in our view, most elegant solution to the H∞ control problem: the state
space approach. This book contains numerous references towards other
approaches to this theory which the reader can use as a starting point for
further research.

We have tried to start this book at a basic level with the prerequisites
being graduate level courses on linear algebra and state space systems.
On the other hand, we included the most general solutions available at
the time this book was written. At some times this presented a trade-off
and we refer to the literature for the intuition behind some of the abstract
concepts introduced in this book.

This book is the result of my work as a Ph.D. student at the De-
partment of Mathematics of Eindhoven University of Technology in the
Netherlands from October 1987 until October 1990. Numerous people
contributed by assisting me whenever problems arose. In particular, I
would like to thank Harry Trentelman, Malo Hautus and Ruth Curtain.
Clearly they were not the only ones who offered their continuous support
and assistance while preparing this book. The Dutch control community
organized in the System and Control Theory Network consists of a great
group of people. Whomever I asked for a favour or some assistance was
always willing to help. I would like to thank them all.

Last but not least I would like to thank my family for their moral
support during these years.

Ann Arbor Anton Stoorvogel
July, 1991
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Chapter 1

Introduction

In this book, we study the H∞ control problem. This problem was origi-
nally formulated in [Za]. The motivation for this problem should become
abundantly clear in this book. In this first chapter, we introduce a number
of natural problems whose solutions depend on the results of H∞ control.
This chapter will be more or less a justification of the extensive research
effort in the area of H∞ control, and in particular, why we have written
a book on this subject.

In section 1.1 we formulate and explain the importance of robustness
and, in section 1.2, we sketch very briefly the basic H∞ control problem.
The section on robustness outlines the importance of the problems of un-
certain systems and the gap metric, which are explained in reasonable
detail in sections 1.3 and 1.4, respectively. These problems are formu-
lated with the same objective of improving the robustness although from
a completely different point of view and both have a solution which is
intimately connected to H∞ control. We shall also explain the mixed-
sensitivity problem in this chapter. This is in essence already formulated
as an H∞ control problem and it is practically the only H∞ control pro-
blem which has already been applied in practice. To conclude this chapter
we shall outline the H∞ control problems we shall treat in this book.

1.1 Robustness analysis

Control theory is concerned with the control of processes with inputs and
outputs. We would like to know how we can achieve a desired goal we
have for the output of our plant by choosing our inputs.

Example 1.1 : Assume that we have a paper-making machine. This
machine has certain inputs: wood-pulp, water, pressure and steam. The

1



2 Introduction

wood-pulp is diluted with water. Then the fibres are separated from the
water and a web is formed. Water is pressed out of the mixture and the
paper is then dried on steam-heated cylinders (this is of course a very
simplified view of the process). The product of the plant is the paper.
More precisely we have two outputs: the thickness of the paper and the
mass of fibres per unit area (expressing the quality of the paper). We
would like both outputs to be equal to some desired value. That is, we
have a process with a number of inputs and two goals: we would like to
make the deviation from the desired values of the thickness and of the
mass of fibres per unit area of the paper produced as small as possible. ✷

The first step is to find a mathematical model describing the behaviour of
our plant. The second step is to use mathematical tools to find suitable
inputs for our plant based on measurements we make of all, or of a subset,
of our outputs. However, we apply these inputs to our plant and not to
our model. Since our model should be simple enough for the mathemat-
ical tools of step 2 (for instance in this book we require that the model
be linear) the model will not describe the plant exactly. Because we do
not know how sensitive our inputs are with respect to the differences be-
tween model and plant, the obtained behaviour might differ significantly
from the mathematically predicted behaviour. Hence our inputs will in
general not be suitable for our plant and the behaviour we obtain can be
completely surprising.

Therefore it is extremely important that, when we search for a control
law for our model, we keep in mind that our model is far from perfect.
This leads to the so-called robustness analysis of our plant and suggested
controllers. Robustness of a system says nothing more than that the
stability of the system (or another goal we have for the system) will
stand against perturbation (structured or unstructured, depending on
the circumstances).

The classic approach to this problem from the 1960s was the Linear
Quadratic Gaussian (LQG) theory. In that approach the uncertainty is
modelled as a white noise Gaussian process added as an extra (vector)
input to the system. The major problem of this approach is that our un-
certainty cannot always be modelled as white noise. While measurement
noise can be quite well described by a random process, this is not the
case with parameter uncertainty. If we model a = 0.9 instead of a = 1,
then the error is not random but deterministic. The only problem is that
the deterministic error is unknown. Another problem of main importance
with parameter uncertainty is that uncertainty in the transfer from inputs
to outputs cannot be modelled as state or output disturbances, i.e. extra
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inputs. This is due to the fact that the size of the errors is relative to the
size of the inputs and can hence only be modelled as an extra input in a
non-linear framework.

In the last few years several approaches to robustness have been stud-
ied mainly for one goal: to obtain internal stability, where instead of try-
ing to obtain this for one system, it is necessary for a class of systems
simultaneously. It is then hoped that a controller which stabilizes all
elements of this class of systems also stabilizes the plant itself.

In this chapter two approaches to this problem will be briefly dis-
cussed. Both approaches are in a linear, time-invariant setting and result
in an H∞ control problem.

1.2 The H∞ control problem

We now state the H∞ control problem. Assume that we have a system Σ:

Σ✛y

✛

✛u

✛z w

(1.1)

We assume Σ to be a linear time-invariant system either in continuous
time or in discrete time. We note that Σ is a system with two kinds
of inputs and two kinds of outputs. The input w is an exogenous input
representing the disturbance acting on the system. The output z is an
output of the system, whose dependence on the exogenous input w we
want to minimize. The output y is a measurement we make on the system,
which we shall use to choose our input u, which in turn is the tool we
have to minimize the effect of w on z. A constraint we impose is that
this mapping from y to u should be such that the closed-loop system is
internally stable. This is quite natural since we do not want the states to
become too large while we try to regulate our performance. The effect of
w on z after closing the loop is measured in terms of the energy and the
worst disturbance w. Our measure, which will turn out to be equal to the
closed-loop H∞ norm, is the supremum over all disturbances unequal to
zero of the quotient of the energy flowing out of the system and the energy
flowing into the system. A more precise definition is given in chapter 2.

Note that this problem formulation in itself does not have any con-
nection with robustness.
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Example 1.2 : Assume that we have the following system:

Σ :



ẋ = − u + w,

y = x,

z = u.

It can be checked that a feedback law which minimizes the effect of w on
z in the above sense is given by:

u = εx

where ε is a very small positive number. On the other hand it is easily seen
that a small perturbation of the system parameters might yield a closed-
loop system which is unstable. Hence for this controller, the internal
stability of the closed-loop system is certainly not robust with respect to
perturbations of the state matrix. ✷

1.3 Stabilization of uncertain systems

As already mentioned, a method for handling the problem of robustness
is to treat the uncertainty as additional input(s) to the system. The LQG
design method treats these inputs as white noise and we noted that pa-
rameter uncertainty is not suitable for treatment as white noise. Also the
idea of treating the error as extra inputs was not suitable because the
size of the error might be relative to the size of the inputs. This yields
an approach where parameter uncertainty is modelled as a disturbance
system taking values in some range and modelled in a feedback setting
(which allows us to incorporate the “relative” character of the error).
We would like to know the effect with respect to stability of the “worst”
disturbance in the prescribed parameter range (we want guaranteed per-
formance so, even if the worst happens, it should still be acceptable). If
this disturbance cannot destabilize the system, then we are certain (under
the assumption that the plant is exactly described by a system we obtain
for some value of the parameters in the prescribed range) that the plant
is stabilized by our control law.

It is easy to verify that parameter uncertainty in a linear setting can
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very often be modelled as:

ΣK

Σ
✻

✛

❄

✛

z

y u

w (1.2)

Here the system ΣK represents the uncertainty and if the transfer
matrix of ΣK is zero, then we obtain our nominal model from u to y. The
system ΣK might contain uncertainty of parameters, ignored dynamics
after model reduction or discarded non-linearities. The goal is to find
a feedback law which stabilizes the model for a large range of systems
ΣK . In chapter 11 we shall give some examples of different kinds of
uncertainties which can be modelled in the above sense. We shall also
show what the results of this book applied to these problems look like.
At this point, we only show by means of an example that a large class
of parameter uncertainty can be considered as an interconnection of the
form (1.2).

Example 1.3 : Assume that we have a single-input, single-output system
with two unknown parameters:

Σn :

{
ẋ = −ax + bu,

y = x.

where a and b are parameters with values in the ranges [a0 − ε, a0 +
ε] and [b0 − δ, b0 + δ] respectively. We can consider this system as an
interconnection of the form (1.2) by choosing the system Σ to be equal to:

Σ :




ẋ = −a0x + b0u + w,

y = x,

z =

(
1
0

)
x +

(
0
1

)
u.

and the system ΣK to be the following static system:

w =
(
a− a0 b− b0

)
z.

It is easily seen that by scaling we may assume that ε = δ = 1. ✷
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If we want to use some special structure of the system ΣK (e.g. that ΣK

is static and not dynamic as in the above example), then we have to resort
to the so-called µ-synthesis of J. Doyle (see [Do2, Do3]) or to the (similar)
theory of real stability radii (see [Hi]). µ-synthesis has the disadvantage
that this method is so general that, at this moment, no reasonably effi-
cient algorithms are available to improve robustness via µ-synthesis. The
same is true for the related approach of working with real stability radii.
The available technique for µ-synthesis is to use an H∞ upper bound (de-
pending on scales) for µ which is consequently minimized by choosing an
appropriate controller. The result is again minimized over all possible
choices for the scales.

On the other hand, if we want to find a controller from y to u such that
the closed-loop system is stable for all stable systems ΣK with H∞ norm
less than γ, then it has been shown (see [Hi]) that the problem is equiv-
alent to the following problem: find a controller which is such that the
closed-loop system (if the transfer matrix of ΣK is zero) is internally sta-
ble and the H∞ norm from w to z is strictly less than γ−1. This problem
can be solved using the techniques given in this book.

1.4 The graph topology

When we treat parameter uncertainty as we did in the previous section
then we need to know explicitly how this uncertainty is structured in our
system. In many practical cases we do not have such information and for
these cases a different approach is needed.

We could formulate the problem abstractly as follows: assume that
some nominal plant is given and some controller stabilizes this plant.
Does the same controller also stabilize systems which are “close” to our
nominal plant?

The problem in this formulation is how to define the concept of dis-
tance between two systems. Since systems are in fact nothing else than
input–output operators a natural distance concept would be the induced
operator norm. However, in this case an unstable system must be seen as
an unbounded operator and hence this distance concept cannot be used
to define distances between unstable systems. On the other hand, it is
quite possible that our plant is unstable and hence we need a concept
of distance which is still valid in the case of one or both of the systems
being unstable. The graph topology turns out to yield a useful distance
concept for these cases.

When do we call two systems close to each other? Firstly, if we have
a controller which internally stabilizes one system, then it should also
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be internally stabilizing for the other system. Secondly, if we apply the
same stabilizing controller to each one of the systems, then the closed-loop
systems should be close to each other, measured in the induced operator
norm. Note that both closed-loop systems are stable and hence this
operator norm is always finite. The first requirement is natural because
we consider robustness of internal stability. The second requirement is
added because we would like to prevent other performance criteria from
being highly sensitive to perturbations even though stability is preserved.

Next, we shall formalize the above intuitive reasoning. We define the
graph topology for the set of linear time-invariant and finite-dimensional
systems. A sequence of systems {Σn} is said to converge to Σ in the
graph-topology if the following holds:

• For every controller ΣF which stabilizes Σ, there exists a natural
number N such that for all n > N , the controller ΣF internally
stabilizes Σn.

• For every controller ΣF which stabilizes Σ denote the closed-loop
operator by GF and the closed-loop operator obtained by applying
ΣF to Σn by GF,n. Then

‖GF − GF,n‖∞ → 0 as n→∞.

Here ‖ · ‖∞ denotes the induced operator norm which will be formally
defined in section 2.5.

The graph topology has been introduced in [Vi]. In [Zh] it was shown
that this topology is always equal to the gap topology (in [Zh] this is also
shown for more general classes of infinite-dimensional systems). The gap
topology is yet another topology that can be applied to define conver-
gence between possibly unstable plants. However, the gap topology is
metrizable and hence we can now really discuss the distance between two
plants. Note that the concept of coprime-factor perturbations as used in
[Gl4, MF] again yields the same topology (see [Vi], in [GS] it was shown
that the gap metric is related to so-called normalized coprime-factor per-
turbations).

Now, the problem of finding a maximally robust controller in this
setting is defined as follows: for each internally stabilizing controller of
the nominal plant we search for the distance to the nearest system in
the gap metric which is not stabilized by our controller. This is called
the stability margin of the controller. Finally we search for the controller
with the largest stability margin. The above problem has been reduced
in [GS, Hab, Zh] to an H∞ control problem.



8 Introduction

1.5 The mixed-sensitivity problem

The mixed-sensitivity problem is a special kind of H∞ control problem.
In the mixed-sensitivity problem it is assumed that the system under
consideration can be written as the following interconnection where ΣF

is the controller which has to satisfy certain prerequisites.

ΣF

ΣW1

Σ

ΣV

ΣW2
✲ ✲

✻
✲

✻

✻

✲

❄

❄ ✲ ✲

z1 w̃

w
yur z2+

− +

+◦ ◦
(1.3)

ManyH∞ control problems can be formulated in terms of an intercon-
nection of the form (1.3). We shall show as an example how the tracking
problem can be formulated in the setting described by the diagram (1.3).
We first look at the following interconnection:

ΣF Σ✲ ✲
✻

✲ ✲
yur +

−
◦ (1.4)

The problem is to regulate the output y of the system Σ to look like
some given reference signal r by designing a precompensator ΣF which
has as its input the error signal, i.e. the input of the controller is the
difference between the output y of Σ and the reference signal r. To prevent
undesirable surprises we require internal stability. We could formulate the
problem as “minimizing” the transfer function from r to r − y. As one
might expect we shall minimize the H∞ norm of this transfer function
under the constraint of internal stability. The transfer matrix from r to
u should also be under consideration. In practice the process inputs will
often be restricted by physical constraints. This yields a bound on the
transfer matrix from r to u. These transfer matrices from r to r − y and
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from r to u are given by:

S := (I +GGF )
−1 ,

T := GF (I +GGF )
−1 ,

respectively, where G and GF denote the transfer matrices of Σ and ΣF .
Here S is called the sensitivity function and T is called the control sen-
sitivity function. A small function S expresses good tracking properties
while a small function T expresses small inputs u. Note that there is
a trade-off: making S smaller will in general make T larger. We add a
signal w to the output y as in (1.3). Then the transfer matrix from w to
y is equal to the sensitivity matrix S and the transfer matrix from w to
u is equal to the control sensitivity matrix T .

As noted in section 1.2 the H∞ norm can be viewed as the maximum
amount of energy coming out of the system, subject to inputs with unit
energy. However, if we apply the Laplace transform, then we obtain a
frequency-domain characterization. For a single-input, single-output sta-
ble system the H∞ norm is equal to the largest distance of a point on the
Nyquist contour to the origin. Hence the H∞ norm is a uniform bound
over all frequencies on the transfer function. Although we assume the
tracking signal to be, a priori, unknown, it might be that we know that
our tracking signal will have a limited frequency spectrum. It is in gen-
eral impossible to track signals of very high frequency reasonably well.
On the other hand, since in general the model is only accurate up to a
certain frequency, since we have bandwidth limitations on actuators and
sensors and since we have problems implementing controllers with a large
bandwidth, we only require the system to track signals of frequencies up
to a certain bandwidth. In this situation straightforward application of
H∞ control might yield bad results because it only investigates a uni-
form bound over all frequencies. Also, certain frequencies may be more
important than others for the error signal and the control input.

Thus in diagram (1.3), the systems ΣW1, ΣW2 and ΣV are weights
which are chosen in such a way that we put more effort in regulating
frequencies of interest than one uniform bound. For practical purposes the
choice of these weights is extremely important. For single-input, single-
output systems expressing performance criteria into requirements on the
desired shape of the magnitude Bode diagram is well established (see, e.g.
[FL, Hor]). This immediately translates into the appropriate choice for
the weights. On the other hand, for multi-input, multi-output systems it
is in general very hard to translate practical performance criteria into an
appropriate choice for the weights. It should be noted that in practical
circumstances it is often better to minimize the integrated tracking error
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as we do in section 11.4 (this forces a zero steady-state tracking error).
This can also be incorporated in the weights and is simply one way to
emphasize our interest in tracking signals of low frequency.

In this way, we obtain the interconnection (1.3). Note that the trans-
fer matrix from the disturbance w̃ to z1 and z2 is(

GW1TGV

GW2SGV

)
(1.5)

where GW1, GW2 and GV are the transfer matrices of ΣW1, ΣW2 and ΣV ,
respectively. Note that we can also use these weights to stress the relative
importance of minimizing the sensitivity matrix S with respect to the
importance of minimizing the control sensitivity matrix T by multiplying
GW1 by a scalar.

We want to find a controller which minimizes the H∞ norm of the
transfer matrix (1.5) and which yields internal stability. This problem
can be solved using the techniques we present in this book.

1.6 Main items of this book

As already mentioned, this book will deal with several aspects of H∞ con-
trol. In recent years many papers have been published on this subject
and, in this section, we want to describe briefly the new contributions this
book makes to the existing theory. We shall consider the time-domain
approach to H∞ control, which has received a large impulse from the
paper [Do5]. This book is self-contained but we will put emphasis on the
following aspects of the time-domain approach to H∞ control:

• Singular systems

• Differential games

• The finite horizon H∞ control problem

• The minimum entropy H∞ control problem

• Discrete time systems.

First we introduce some notation and give some preliminary results in
chapter 2. In chapter 3, we give some results on the state feedback
H∞ control problem of which the main results were already basically
known in the literature. We have added this chapter for the sake of
completeness and in order to have the results available for the rest of the
book. In chapters 4 and 5 we extend the known H∞ theory to so-called
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singular systems. In chapter 6 we discuss the differential game and its re-
lation toH∞ control. Next, in chapter 7, we discuss the minimum entropy
H∞ control problem. In chapter 8 we study the finite horizon H∞ control
problem. Then, in chapters 9 and 10, we investigate the H∞ control pro-
blem for discrete time systems. In chapter 11 we will apply the derived
theory to find results for several robust stabilization problems. We will
also give a worked-out design example of an inverted pendulum on a cart.
Finally chapter 12 contains a number of concluding remarks. Appendix
A gives the details of the state decomposition on which the proofs of our
results for singular systems are based. Appendix B contains the proofs
of two technical lemmas from chapter 5.

We shall discuss the main subjects of this book in some detail in the
next five subsections.

1.6.1 Singular systems

In the paper [Do5] linear finite-dimensional time-invariant systems were
considered which satisfy two kinds of essential assumptions:

• The subsystem from the control input to the output should not have
invariant zeros on the imaginary axis and its direct-feedthrough
matrix should be injective.

• The subsystem from the disturbance to the measurement should not
have invariant zeros on the imaginary axis and its direct-feedthrough
matrix should be surjective.

Invariant zeros are defined in chapter 2. For the moment it suffices to
think of invariant zeros as points in the complex plane where the transfer
matrix loses rank.

Throughout this book we shall make the same assumption with res-
pect to invariant zeros, by excluding invariant zeros on the imaginary axis
for both subsystems. A discussion of the difficulty of invariant zeros on
the imaginary axis is given in chapter 12.

We define singular systems (contrary to regular systems) to be sys-
tems which do not satisfy at least one of the two above assumptions on
the direct-feedthrough matrices. In chapters 4 and 5 we shall extend the
results from [Do5] to the class of singular systems.

These singular systems are more difficult to analyse. In the case that
the direct-feedthrough matrix from the control input to the output is not
injective then either the system has an invariant zero at infinity or the
subsystem from the control input to the output is not injective.
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• An invariant zero at infinity. This is as difficult as invariant
zeros on the imaginary axis. The problems with invariant zeros
on the imaginary axis are explained in chapter 12. Basically the
method of handling an invariant zero is to choose a controller which
creates a pole in the same point. Then the invariant zero is cancelled
via pole-zero cancellation. Because of our requirement of internal
stability this is only possible for invariant zeros in the open left half
plane. For invariant zeros in the open right half plane it is clearly
not possible. In the case of an invariant zero on the imaginary axis
we can achieve this cancellation approximately by creating a pole
in the left half plane which is very close to the imaginary axis. A
treatment like this for invariant zeros on the imaginary axis is given
in [HSK]. At the moment we are only interested in invariant zeros
at infinity. In general, the so-called central controller (as given
in section 5.5) will be non-proper in this case. Hence we indeed
have a pole in infinity which “cancels” our invariant zero at infinity.
However, it will turn out that we can approximate this controller
by a proper controller. It will be shown that the problem of this
approximation can be reduced to the problem of almost disturbance
decoupling. In this problem one is looking for conditions under
which we can find internally stabilizing controllers which make the
H∞ norm arbitrarily small. Since this problem has been solved in
[OSS1, OSS2, Tr, WW] we were able to use these results.

• The system from the control input to the output is not
injective. This implies that there are several inputs which have
the same effect on the output. Using a geometric approach this
non-uniqueness can be filtered out. This is done explicitly in [S2].
We do the same in this book but more implicitly because we handle
invariant zeros at infinity at the same time.

On the other hand, the subsystem from the disturbance to the measure-
ment might not be surjective. The problems related to this fact play a
completely dual role and we shall tackle these problems by relating them
to the problems of a dual system.

In [Do5] necessary and sufficient conditions are given for regular sys-
tems under which the existence of an internally stabilizing controller
which makes the H∞ norm less than some, a priori given, number γ > 0
is guaranteed. These conditions are in terms of two algebraic Riccati
equations. For singular systems these Riccati equations will be replaced
by quadratic matrix inequalities. This is completely analogous to Linear
Quadratic (LQ) optimal control where for singular systems the role of the
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algebraic Riccati equation is replaced by a linear matrix inequality.
Finally, a few words about the interest in singular systems. First of

all, for mathematicians removing annoying assumptions is always of inter-
est. Moreover, singular systems do arise in natural control problems, for
example the problem of treating parameter uncertainty via the method
discussed in section 1.3 will often yield H∞ control problems for singular
systems. This is worked out in more detail in chapter 12. Another exam-
ple is the problem of Loop Transfer Recovery (see [Ni]) which also yields
H∞ control problems for singular systems.

Another reason for looking at singular systems is the omnipresent
requirement of reduced-order controllers. By assuming that k states are
observed without noise, it can be shown that the dynamic order of the
controller can be reduced by k. However, to show this property we need
to use singular systems (see [St13]).

Finally, a major reason for looking at singular systems is that quite
often in applications direct-feedthrough matrices appear which are nearly
singular. The results of [Do5] may still be applied but for deriving numer-
ically reliable algorithms it is useful to know exactly what will happen if
the direct-feedthrough matrices are no longer injective or surjective.

1.6.2 Differential game

As we mentioned in the previous subsection, the conditions under which
we can make the H∞ norm less than some, a priori given, number, are
either in terms of the solutions of two algebraic Riccati equations or in
terms of the solutions of two quadratic matrix inequalities. The solutions
of these equations or inequalities have no direct meaning in H∞ control.
On the other hand, it would be good for the overall picture if we could
understand the role of these solutions better.

We shall try to achieve this in chapter 6 for a special case. First
of all we assume that we have a continuous time system. Secondly we
only investigate the special case of state-feedback. In chapters 3 and 4 it
will be shown that in this case we have only one Riccati equation or one
quadratic matrix inequality.

It turns out that the theory of differential games yields the desired
understanding of the role of the solution of either equation or inequality.
The quadratic form associated with the solution of our Riccati equation
turns out to be a Nash equilibrium for a differential game with a special
cost criterion. The quadratic form associated with the solution of our
quadratic matrix inequality turns out to be an almost Nash equilibrium
for a differential game with the same cost criterion.

It is shown that being able to make the H∞ norm strictly less than
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our, a priori given, bound γ is a sufficient condition for the existence of
an almost Nash equilibrium. On the other hand, being able to make the
H∞ norm less than or equal to γ is a necessary condition for the existence
of an almost Nash equilibrium. Note that the cost criterion explicitly
depends on our bound γ.

1.6.3 The minimum entropy H∞ control problem

Besides robustness we often require controllers to yield a satisfactory per-
formance. Therefore if we model uncertainty as we did in section 1.3 then
we might have the following interconnection:

Σ

ΣK

✛z2

✛

✛

✛ ✛

✲ ✲

w2

✛y u

z1 w1

(1.6)

We assume that uncertainty is affecting the given system Σ via the un-
known system ΣK and we want to achieve a certain level of robustness
with respect to internal stability and simultanuously attain a certain per-
formance on the transfer matrix from w1 to z1. The latter performance
requirement will be assumed to be the minimization of a quadratic perfor-
mance criterion (which can be expressed in terms of the H2 norm, defined
in the next chapter, of the closed-loop transfer matrix by adding suitable
weighting). Other criteria might be suitable and are interesting open
problems for future research.

The above goal can be translated into the following objective: find
a controller from y to u such that the closed-loop system is internally
stable, the closed-loop transfer matrix from w2 to z2 has H∞ norm less
than some, a priori given, number γ and the H2 norm of the closed-loop
transfer matrix from w1 to z1 is minimized over all controllers which
satisfy the first two conditions.

The above problem is still a completely unsolved problem. To simplify
the problem the H2 norm is replaced by an auxiliary cost function. This
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auxiliary cost function is an upper bound for the H2 norm and it is hoped
that by minimizing this auxiliary cost function instead of the H2 norm we
still get a satisfactory performance.

The above problem has been investigated in [Mu] for regular systems
under the assumption that z1 = z2 and w1 = w2. In general this auxiliary
cost function is not very intuitive but in this special case we can replace
it by an entropy function which yields more insight. In literature more
general cases have been investigated (see [BH2, HB, HB2, RK]) and it
remains an active research area. In this book we will investigate the
special case z1 = z2 and w1 = w2 for singular systems. Our proofs are
self-contained and in our opinion more straightforward then the proofs
given in [Mu].

1.6.4 The finite horizon H∞ control problem

As already remarked in section 1.2 the H∞ control problem is concerned
with minimizing the H∞ norm. The H∞ norm is equal to the maximum
over all disturbances w of the quotient of the amount of energy going into
the system and the amount of energy coming out of this system. In the
standard H∞ control problem, this energy is measured over an infinite
time interval [0,∞). This might not always be realistic in practical appli-
cations. Therefore, in the finite horizon H∞ control problem we minimize
the same norm except that the energy is measured over a finite time in-
terval [0, T ] for some given T > 0. This problem was solved for regular
systems in [Li5]. We will extend these results to singular systems.

1.6.5 Discrete time systems

Early results for the H∞ control problem were derived for the continuous
time case. In the first chapters of this book we shall only concern ourselves
with continuous time systems. However, in practical applications one is
often concerned with discrete time systems.

One major reason is that to control a continuous time system one
often applies a digital computer on which we can only implement a dis-
crete time controller. One possible approach is to derive a continuous
time H∞ controller and then discretize the controller to be able to use
your computer. This approach is followed in papers like [KA].

A direct digital design where a sample and hold function of given
bandwidth are already incorporated into the plant (so-called sampled-
data systems) and we design a discrete time controller for this system is
a much better way to discover the limitations of our design. Although
basically a much harder problem, major steps forward have been made
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(see [Ch, Ch2, KH, SK]). In these papers the problem is reduced to a
discrete time H∞ control problem of which a solution is therefore needed.

Also, certain systems are in themselves inherently discrete and cer-
tainly for these systems it is useful to have results available forH∞ control
problems.

One approach to solve the discrete time H∞ control problem, is to
apply a transformation in the frequency-domain which transforms dis-
crete time systems to continuous time systems. The transformation we
have in mind is for instance discussed in [Gen, appendix 1]. With this
transformation discrete time H∞ functions are mapped isometrically onto
continuous time H∞ functions. One can then use the results available for
continuous time systems and afterwards apply the inverse transformation
on the controller thus obtained.

However, this transformation is not always attractive. It maps sys-
tems with a pole in 1 into non-proper systems. Also it clouds the un-
derstanding of specific features of discrete time H∞ control because of its
complexity. If it is possible to derive results for discrete time systems,
why not apply these results directly instead of performing this unnatural
transformation. Another problem is that the state feedback H∞ control
problem is transformed into a continuous time measurement feedback
H∞ control problem where indeed one might have problems observing the
state. This prevents an understanding of discrete time H∞ controllers as
an interconnection of a state feedback and an observer since this distinc-
tion is scrambled by the transformation.

Therefore, in chapters 9 and 10 we shall derive results for the discrete
time state feedback H∞ control problem and the discrete time measure-
ment feedback H∞ control problem, respectively. We shall only consider
discrete time analogues of regular systems, and hence it might not be too
surprising that our conditions are formulated in terms of discrete time
algebraic Riccati equations.



Chapter 2

Notation and basic properties

2.1 Introduction

In this chapter we introduce the notation and definitions we shall use
throughout this book. Moreover, we give a number of basic properties
we shall need further on. Most of these properties will not be proven
here but we shall give appropriate references. In this book we deal with
both discrete time systems as well as continuous time systems. Therefore,
two sections of this chapter are split up into a discrete time part and a
continuous time part in order to emphasize the differences. While reading
this book, one should always keep in mind that we want to minimize the
output with respect to the worst case disturbance. This goal is all we
want to achieve and we shall try to achieve it under several different
circumstances.

Let R denote the real numbers, C denote the complex numbers and
let N denote the non-negative integers. Let C+ (C0, C−) denote the set
of all s ∈ C such that Re s > 0 (Re s = 0, Re s < 0). Finally by D (δD,
D+) we denote the set of all s ∈ C such that |s| < 1 (|s| = 1, |s| > 1).

2.2 Linear systems

2.2.1 Continuous time

Except for chapters 9 and 10 we shall investigate systems with continuous
time. These systems are described by a differential equation and two
output equations.

Σ :



ẋ = Ax + Bu + Ew,

y = C1x + D11u + D12w,

z = C2x + D21u + D22w.

(2.1)

17
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We shall always assume that x, u,w, y and z take values in finite-dimension-
al vector spaces: x(t) ∈ Rn, u(t) ∈ Rm, w(t) ∈ Rl, y(t) ∈ Rq and
z(t) ∈ Rp. The system parameters A, B, E, C1, C2, D11, D12, D21 and
D22 are matrices of appropriate dimensions. We assume that the system
is time-invariant, i.e. the system parameters are independent of time. Ex-
cept when stated explicitly, we shall always assume that the initial state
is zero, i.e. x(0) = 0. The input w is the disturbance working on the
system, whose effect on one of the outputs we want to minimize. The
input u is the control which we use to achieve this goal. The output y
is the measurement on the basis of which we choose our input u. The
output z is the output we want to make small relative to the size of the
disturbance w. More precisely, we are searching for a feedback from y to
u, denoted by ΣF , such that the closed-loop system Σ×ΣF mapping w to
z has a small induced norm. If all information on the system is available
for feedback, i.e. y = (x,w), or if the state is available for feedback, i.e.
y = x, then we shall often delete the second equation in (2.1).

In several chapters the indices of the C- and D-matrices are different
from the indices used in system (2.1). This is done to simplify the no-
tation in the respective chapters. When comparing results from different
chapters the reader should be careful whether these differences arise or
not.

When we apply an input u and a disturbance w with initial condition
x(0) = ξ then we shall denote by xu,w,ξ and zu,w,ξ the state and the
output of system (2.1), respectively. In the case that we have zero initial
condition we shall write xu,w and zu,w instead of xu,w,0 and zu,w,0.

Quite often, we shall look at two special subsystems, one in which we
restrict attention to the system from u to z:

Σci :

{
ẋ = Ax + Bu,

z = C2x + D21u,
(2.2)

and one in which we restrict attention to the system from w to y:

Σdi :

{
ẋ = Ax + Ew,

y = C1x + D12w.
(2.3)

If we only have one input and one output, as in the above two systems,
then we can associate with a system the quadruple of the four system pa-
rameters. For the sake of simplicity we shall often write, for instance, the
system (A,B,C2,D21) when, formally, we should write down the system
equations (2.2).

The system equations will always be denoted by a Σ with some index
to identify different systems. The input–output operator mapping the
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inputs to the outputs with zero initial state will always be denoted by G
with, again, some index to identify various operators. Finally, the transfer
matrix of a system which, for instance for the system Σci, is defined by

Gci(s) := C2 (sI −A)−1B +D21,

will always be denoted by G with some index.
We shall investigate three kinds of feedback. In order of increasing

generality: static state feedback, static feedback and dynamic output
feedback. For the first two we shall always implicitly assume that the
measurement is y = x and y = (x,w), respectively.

A dynamic output feedback is a system of the form

ΣF :

{
ṗ = Kp + Ly,

u =Mp + Ny.
(2.4)

Except for chapter 8 we shall assume that the controller is time-invariant.
If D11 �= 0, then the equations (2.1) and (2.4) together might not have
a unique solution for given w. This is clearly undesirable and related to
the concept of well-posedness. Hence if D11 �= 0, then we only consider
controllers such that I−D11N is invertible (for all t if N is time-varying).
This guarantees that the equations (2.1) and (2.4) together have a unique
solution for given w. Moreover, it is a necessary and sufficient condition
to guarantee that the closed-loop system is well-posed (for a detailed
discussion of well-posedness see [Wi2]).

If the interconnection is well-posed, then the closed-loop system Σ×
ΣF will be of the form:

Σcl :




(
ẋ

ṗ

)
= Ae

(
x

p

)
+ Eew,

z = Ce

(
x

p

)
+ Dew.

for certain matrices Ae(t), Ee(t), Ce(t) and De(t). Obviously, if we put
x(0) = 0, p(0) = 0, then the closed-loop system Σcl defines a Volterra
integral operator Gcl : Ll2 → Lq2 given by

(Gclw) (t) = z(t) =
∫ t

0
Ce(t)Φe(t, τ)Ee(τ)w(τ) dτ +De(t)w(t),

where Φe(t, τ) is the transition matrix of Ae(t). If the controller is time-
invariant the matrices Ae(t), Ee(t), Ce(t) and De(t) are independent of
time and Φ(t− τ) = eAe(t−τ).
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If the interconnection is well-posed, then it is called internally stable
if, with w = 0, for every initial state of the system and every initial state
of the controller the state of the system and the state of the controller in
the interconnection converge to zero as t→∞. If the controller is given
by (2.4) and the system is given by (2.1), then this is equivalent to the
requirement that the matrix(

A+BN(I −D11N)−1C1 B(I −ND11)−1M

L(I −D11N)−1C1 K + L(I −D11N)−1D11M

)
(2.5)

be asymptotically stable, i.e. all its eigenvalues lie in the open left half
complex plane. For systems with discrete time, asymptotic stability will
have a different meaning (see the next subsection). Moreover, note that
if D11 = 0, then the interconnection is always well-posed. In that case
the matrix (2.5) simplifies considerably and is equal to(

A+BNC1 BM

LC1 K

)
. (2.6)

For a finite-dimensional system (A,B,C,D) we shall call the matrix A
the state matrix of the system. Accordingly, the matrix (2.5) or (2.6)
will be referred to as the closed-loop state matrix. We shall call B the
input matrix, C the output matrix and D the direct-feedthrough matrix.
Finally, the dimension of the state space is called the McMillan degree of
the realization.

After applying the compensator ΣF described by the static feedback
law u = F1x+ F2w the closed-loop transfer matrix is given by

GF (s) := (C2 +D21F1) (sI −A−BF1)−1 (E +BF2) + (D22 +D21F2) .

(2.7)

Just as for dynamic compensators, the closed-loop system is called inter-
nally stable if, with w = 0 and for all initial states, the state converges to
zero as t→∞. It is easy to check that the closed-loop system is internally
stable if, and only if, the matrix A+BF1 is asymptotically stable. This
can also be derived from the dynamic feedback case discussed above by
noting that

y =

(
I

0

)
x+

(
0
I

)
w

and that the matrix (2.6) then becomes equal to A + BF1. Here K is a
0× 0 matrix and hence disappears and N = ( F1 F2 ). A compensator
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described by a static state feedback law u = Fx can be considered as a
special case of a static feedback law and the above definitions will be used
correspondingly.

We shall say that matrices P and Q satisfy dual properties if P
satisfies a certain property for the system (2.1) if, and only if, QT satisfies
the same property for the dual system defined by

ΣT :



ẋ = ATx + CT

1 u + CT
2w,

y = BTx + DT
11u + DT

21w,

z = ETx + DT
12u + DT

22w.

2.2.2 Discrete time

In chapters 9 and 10 we shall investigate systems with discrete time.
These systems are described by a difference equation and two output
equations.

Σ :



σx = Ax + Bu + Ew,

y = C1x + D11u + D12w,

z = C2x + D21u + D22w.

(2.8)

where σ denotes the shift-operator, which is defined by

(σx) (k) := x(k + 1).

We shall only investigate shift-invariant systems, i.e. we assume through-
out that the system parameters do not depend on time. All assumptions
and definitions for continuous time as given in the previous subsection
have an analogous meaning in discrete time. However, one point has to
be discussed explicitly.

A dynamic output feedback is a system of the form

ΣF :

{
σp = Kp + Ly,

u =Mp + Ny.
(2.9)

As in the previous section we define the interconnection to be internally
stable if the interconnection is well-posed and if, with w = 0, for every
initial state of the system and for every initial state of the controller the
state of the system and the state of the controller in the interconnection
converge to zero as t → ∞. If the controller is given by (2.9) and the
system is given by (2.8) then this is equivalent to the requirement that
the matrix (2.5) is asymptotically stable, i.e. all its eigenvalues lie in the
open unit disc. Note that for systems with continuous time asymptotic
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stability of a matrix has a different meaning. That is, we still have the
same matrix as in the continuous time case only this time its eigenvalues
should be in the open unit disc instead of the open left half plane.

Later on we shall also need a backwards difference equation of the
form

σ−1x = Ax + Bu.

A function x fromN∪{−1} toRn is said to be a solution of this backwards
difference equation if

x(k − 1) = Ax(k) +Bu(k),

for all k ∈ N .

2.3 Rational matrices

In this section we recall some basic notions on rational matrices which
are either applied to system matrices (which will be defined on the next
page) or transfer matrices.

Let R[s] denote the ring of polynomials with real coefficients. Let
Rn×m[s] be the set of all n × m matrices with coefficients in R[s]. An
element of Rn×m[s] is called a polynomial matrix. Linear polynomial
matrices of the form sE − F are sometimes called a matrix pencil. R(s)
denotes the field of rational functions with real coefficients, i.e. R(s) is
the quotient field of R[s]. Let Rn×m(s) be the set of all n ×m matrices
with coefficients in R(s).

An element of Rn×m(s) is called a rational matrix. A rational ma-
trix G is called stable if G has no poles in the closed right half complex
plane. G is called proper if lims→∞G(s) exists, and strictly proper if this
limit is zero. Moreover, for a given proper rational matrix G, the ma-
trix lims→∞G(s) is called the direct-feedthrough matrix. Note that the
direct-feedthrough matrix of a system is equal to the direct-feedthrough
matrix of its transfer matrix.

By rankK we denote the rank of a matrix as a matrix with entries in
the field K. We shall often write only rank in the case that K = R or
K = C (note that for a real matrix the rank over C always equals its rank
over R). Moreover, we often use the term normal rank for rankK where
K = R(s).

We shall first discuss a number of properties of polynomial matrices.
A square polynomial matrix is called unimodular if it is invertible over
the ring of polynomial matrices. Two polynomial matrices P and Q are
called unimodularly equivalent if unimodular matrices U and V exist
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such that Q = UPV . In this book, we denote the fact that P and Q are
unimodularly equivalent by P ∼ Q. It is well known (see [Ga]) that for
any P ∈ Rn×m[s] there exists Ψ ∈ Rn×m[s] of the form

Ψ =




ψ1 0 · · · 0 0 · · · 0

0
. . .

. . .
.
..

.

..
.
..

.

..
. . .

. . . 0 0 · · · 0

0 · · · 0 ψr 0 · · · 0

0 · · · 0 0 0 · · · 0

...
...

...
...

...

0 · · · 0 0 0 · · · 0




such that P ∼ Ψ. Here ψi are monic polynomials with the property that
ψi divides ψi+1 for i = 1, . . . , r − 1.

The polynomial matrix Ψ is called the Smith form of P (see [Ga]).
The polynomials ψi are called the invariant factors of P . Their product
ψ = ψ1ψ2 · · ·ψr is called the zero polynomial of P . The roots of ψ are
called the zeros of P . The integer r is equal to the normal rank of P
as defined before. If s is a complex number, then P (s) is an element of
Cn×m. It is easy to see that rankR(s)P = rank P (s) for all s ∈ C if, and
only if, P is unimodularly equivalent to the constant n×m matrix(

Ir 0
0 0

)
,

where Ir is the r × r identity matrix.
Next we recall some important facts on the structure of a linear sys-

tem Σci = (A,B,C,D). The (Rosenbrock) system matrix of Σci is defined
as the polynomial matrix

Pci :=

(
sI −A −B
C D

)
.

The invariant factors of Pci are called the transmission polynomials of
Σci. The transmission polynomials unequal to 1 are called the non-trivial
transmission polynomials of Pci. The zeros of Pci are called the invariant
zeros of Σci. Clearly, s ∈ C is an invariant zero of Σci if, and only if,

rankPci(s) < rankR(s)Pci.

This concept of invariant zeros (see e.g. [Ro]) will play an important role
in this book.

It is easy to see that if F ∈ Rm×n and if Pci,F is the system matrix
of Σci,F := (A+BF,B,C +DF,D), then Pci ∼ Pci,F . In particular, this
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implies that the transmission polynomials of Σci and Σci,F coincide and,
a fortiori, that the invariant zeros of Σci and Σci,F coincide.

We can also associate with the system Σci the controllability pencil

L(s) :=
(
sI −A −B

)
,

and the observability pencil

M(s) :=

(
sI −A
C

)
.

A special case which is often investigated in H∞ control theory is the
case that D is injective and CTD = 0. In which case the invariant zeros
of Σci are the zeros of M . That is, the invariant zeros of Σci are the
unobservable eigenvalues of (C,A).

A system Σci = (A,B,C,D) is called left- (right-) invertible if the
transfer matrix of Σci is left- (right-) invertible as a rational matrix. This
is equivalent to the requirement that the system matrix of Σci be left-
(right-) invertible as a rational matrix. It can be shown that a system is
left-invertible if, and only if, the input–output operator associated with
this system is injective. However, it is in general not true that right-
invertibility implies surjectivity of the input–output operator. We define
the class of functions C∞

0 as the class of infinitely often differentiable
functions on [0,∞) such that all derivatives are equal to zero in zero.
Then the continuous time system Σci is right-invertible if, and only if,
the input–output operator as a map from C∞

0 to C∞
0 is surjective. A

discrete time system is right-invertible if all sequences f with f(0) =
f(1) = . . . = f(n) = 0 are contained in the image of the input–output
operator. Here n is equal to the dimension of the state space.

2.4 Geometric theory

In this section we recall some basic notions from the geometric approach
to linear system theory. We shall use the geometric approach only for
continuous time systems and one should note that although we could use
the geometric approach for discrete time systems too, its usefulness for
our problems is mainly restricted to continuous time systems.

We first introduce the important concepts of controlled invariance
and conditioned invariance (see [SH, Wo]).
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Definition 2.1 : A subspace V of Rn is said to be A-invariant if AV ⊆ V.
A subspace V of Rn is said to be conditioned invariant (also called (C,A)-
invariant) if a linear mapping G exists such that

(A+GC)V ⊆ V.

A subspace V of Rn is said to be controlled invariant (also called (A,B)-
invariant) if a linear mapping F exists such that

(A+BF )V ⊆ V. ✷

Note that the alternative terminology of (C,A)-invariant and (A,B)-in-
variant is such that the only difference in the terminology for these two
concepts is the order of the matrices. One has to remember that these
two properties are in fact associated to the system (A,B,C, 0) where
(A,B)-invariance means that a state feedback F exists which makes the
subspace V invariant under the closed-loop state matrix A + BF while
(C,A)-invariance means that an output injection G exists which makes
this subspace invariant under the state matrix A+GC. Finally, we would
like to remark that these properties are dual to each other: V is (C,A)-
invariant if, and only if, V⊥ is (AT, CT)-invariant.

The following well-known lemma is a convenient tool for checking
whether these properties hold for a certain subspace (see [SH, Wo]).

Lemma 2.2 : A subspace V of Rn is (C,A)-invariant if, and only if,

A (V ∩ kerC) ⊆ V.

A subspace V of Rn is (A,B)-invariant if, and only if,

AV ⊆ V + imB. ✷

We now define a number of particular linear subspaces of the state space,
among which is the strongly controllable subspace. The latter will play a
key role throughout this book.

Definition 2.3 : Consider the system

Σci :

{
ẋ = Ax + Bu,

z = Cx + Du.
(2.10)
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We define the strongly controllable subspace T (Σci) as the smallest sub-
space T of Rn for which a linear mapping G exists such that:

(A+GC)T ⊆ T , (2.11)
Im (B +GD) ⊆ T . (2.12)

We also define the detectable strongly controllable subspace Tg(Σci) as the
smallest subspace T of Rn for which a linear mapping G exists such that
(2.11) and (2.12) are satisfied and moreover A + GC |Rn/T is asymp-
totically stable.

A system is called strongly controllable if its strongly controllable sub-
space is equal to the whole state space. ✷

We also define the dual versions of these subspaces:

Definition 2.4 : Consider the system (2.10). We define the weakly un-
observable subspace V(Σci) as the largest subspace V of Rn for which a
mapping F exists such that:

(A+BF )V ⊆ V, (2.13)
(C +DF )V = {0}. (2.14)

We also define the stabilizable weakly unobservable subspace Vg(Σci) as
the largest subspace V for which a mapping F exists such that (2.13) and
(2.14) are satisfied and moreover A+BF | V is asymptotically stable.

A system is called strongly observable if its weakly unobservable sub-
space is equal to {0}. ✷

We can give intuitive interpretations of these subspaces. V(Σci) is the
subspace of all x0 ∈ Rn such that for the system (2.10) with initial
condition x(0) = x0 there exists an input function u on [0,∞) such that
the output function y of the system is identical zero on [0,∞). Vg(Σci)
has the same interpretation but with the extra constraint on the input u
that the resulting state trajectory x(t) converges to 0 as t→∞.

On the other hand, T (Σci) consists of all x0 ∈ Rn such that for the
system (2.10) with initial condition x(0) = x0 and for all ε > 0 there
exist T > 0 and an input function u such that the resulting state satisfies
x(T ) = 0 while the L1-norm of the output y is less than ε, i.e. we can
steer the initial state x0 to 0 in finite time and, at the same time, we can
make the L1-norm of the output y arbitrarily small. An interpretation
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of Tg(Σci) can be given in terms of observers but is not very intuitive.
Therefore, we shall not explain this interpretation in this book.

Note that V(Σci) and T (Σci) are dual subspaces, i.e. V(Σci)⊥ =
T (ΣT

ci). Also Vg(Σci) and Tg(Σci) are dual subspaces. The following
lemma gives explicit recursive algorithms to calculate these subspaces.

In this lemma we need the concept of modal subspace of a matrix A.
Let some region Cd of the complex plane be given which is symmetric with
respect to the real axis. The subspace X is called the modal subspace of A
with respect to Cd if X is the largest A-invariant subspace of Rn such that
if we restrict the mapping A to X then its spectrum is contained in Cd.
By C−1X where X is some linear subspace, we shall denote {x |Cx ∈ X}.

Lemma 2.5 : The strongly controllable subspace T (Σci) is the limit of
the sequence of subspaces {Ti(Σci)} generated by the recursive algorithm:

T0(Σci) := {0},
Ti+1(Σci) := {x ∈ Rn | ∃ x̃ ∈ Ti(Σci), u ∈ Rm such that

x = Ax̃+Bu and Cx̃+Du = 0} (2.15)

Ti(Σci) (i = 0, 1, . . .) is a non-decreasing sequence of subspaces which
attains its limit in a finite number of steps. In the same way V(Σci)
equals the limit of the sequence of subspaces {Vi(Σci)} generated by:

V0(Σci) := Rn,

Vi+1(Σci) := {x ∈ Rn | ∃ ũ ∈ Rm, such that
Ax+Bũ ∈ Vi(Σci) and Cx+Dũ = 0} (2.16)

Vi(Σci) (i = 0, 1, . . .) is a non-increasing sequence of subspaces which also
attains its limit in a finite number of steps. Moreover, if G is a mapping
such that (2.11) and (2.12) are satisfied for T = T (Σci) and if F is a
mapping such that (2.13) and (2.14) are satisfied for V = V(Σci), then
we have the following two equalities:

Tg(Σci) = [T (Σci) + Xb(A+GC)]∩ < T (Σci)+C−1 im D | A+GC >(2.17)

Vg(Σci) = V(Σci) ∩ Xg(A+BF )+ < A+BF | V(Σci) ∩B kerD > (2.18)

Here Xb(A+GC) denotes the modal subspace of the matrix A+GC with
respect to the closed right half complex plane and Xg(A + BF ) denotes
the modal subspace of the matrix A + BF with respect to the open left
half complex plane. Moreover, < A + BF | V(Σci) ∩ B kerD > denotes
the smallest A+BF invariant subspace containing V(Σci) ∩B kerD and
finally, < T (Σci) + C−1 im D | A + GC > denotes the largest A + GC
invariant subspace contained in T (Σci) +C−1 im D. ✷
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Proof : This is all well known except for possibly (2.17) and (2.18) in
the case that the D-matrix is unequal to zero. This can be proven by first
showing that a G exists satisfying (2.11) and (2.12) for which (2.17) holds
and after that, showing that the equality is independent of our particular
choice of G satisfying (2.11) and (2.12). The same can be done for (2.18).
Details are left to the reader.

We shall give some properties of the strongly controllable subspace at
this point which will come in handy in the sequel (see [Ha, SH] ). The
following lemma can be easily checked using the properties (2.11) and
(2.12) of the strongly controllable subspace.

Lemma 2.6 : For all F ∈ Rm×n, the strongly controllable subspace
T (Σci) is (C +DF,A+BF )-invariant. ✷

Lemma 2.7 : Let F0 be such that DT(C + DF0) = 0. T (Σci) is the
smallest (C +DF0, A+BF0)-invariant subspace containing B ker D. ✷

Proof : Let T be the smallest (C + DF0, A + BF0)-invariant subspace
containing B ker D. We know that T (Σci) is (C+DF0, A+BF0)-invariant
by lemma 2.6. Moreover, in definition 2.3 we have T1(Σci) = B ker D.
Since the Ti(Σci) are non-decreasing this implies that T (Σci) ⊇ B ker D.
Therefore we have T ⊆ T (Σci).

Conversely we know:

∃G1 : im (C +DF0)→ Rn [(A+BF0) +G1(C +DF0)] T ⊆ T ,
∃G2 : im D →Rn im (B +G0D) = B ker D ⊆ T .

Since DT(C + DF0) = 0 the above two mappings G1 and G2 can be
combined to one linear mapping G such that

G|im (C+DF0) = G1,

G|im D = G2,

and hence we have found a G such that (A + GC)T ⊆ T and im (B +
GD) ⊆ T . Thus we find T ⊇ T (Σci) and therefore T = T (Σci).

We also have the following result available (see [Ha]).
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Lemma 2.8 : Assume that we have the system (2.10) with (C D) sur-
jective. The system is strongly controllable if, and only if, the system
matrix(

sI −A −B
C D

)
(2.19)

has full row rank for all s ∈ C. ✷

Note that this last lemma immediately implies that a strongly controllable
system with (C D) surjective is controllable by applying the Popov–
Belevitch–Hautus criterion (this result is true in general but it only fol-
lows from the above lemma if (C D) is surjective). A major reason
why strongly controllable systems are interesting is the following corol-
lary which can be derived after some effort from lemma 2.8:

Corollary 2.9 : Assume that we have the system (2.10) with (C D)
surjective. Denote the transfer matrix of Σci by Gci. If the system is
strongly controllable, then Gci has a polynomial right inverse. ✷

Note that this implies that the mapping from u to z is surjective as a func-
tion from C∞

0 to C∞
0 . Hence we can achieve any desired output in C∞

0 . The
problem we shall encounter is that we cannot realize a polynomial part
of a transfer matrix by a dynamic feedback of the form (2.4). It will turn
out that it is possible to approximate the effect of the polynomial part of
the desired controller arbitrarily well by the effect of a controller which
is of the form (2.4). In other words, we shall not try to approximate the
non-proper controller (which might be a legitimate alternative approach),
but only the closed-loop transfer matrix this non-proper controller gives
us.

2.5 The Hardy and Lebesgues spaces

2.5.1 Continuous time

We define the function space H1∞ as the set of all functions f on the open
right half plane which are analytic and which satisfy

‖f‖∞ := sup
s∈C+

|f(s)| <∞. (2.20)
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This function space is a Banach space with respect to the norm ‖ · ‖∞.
It can easily be seen that the set of all proper rational functions with
no poles in the closed right half plane is contained in H1∞. Note that
one can define such a Banach space of analytic functions on any simply
connected region which is not equal to the whole complex plane. This is a
direct consequence of Riemann’s mapping theorem (see [Ru]). By H∞ we
denote all matrices with coefficients in H1∞. Note that the transfer matrix
of an internally stable system with continuous time will be in H∞ (hence
it is not surprising that for discrete time systems we should replace the
right half plane by the complement of the closed unit disc). On the space
H∞ we define the following norm:

‖G‖∞ := sup
s∈C+

σ1 [G(s)] .

Here σ1[·] denotes the largest singular value. Note that it is not a norm
in the strict sense since H∞ is not a vector space (we cannot add matrices
with different dimensions). However, any subset of H∞ of matrices with
the same dimensions is a well-defined vector space on which ‖ · ‖∞ is a
norm which makes this space into a Banach space. This norm will be
referred to as the H∞ norm.

We define H1
2 as the set of all functions f on the open right half plane

which are analytic and which satisfy

‖f‖2 := sup
α∈R

(
1
2π

∫ +∞

−∞
f(α+ iω)f∗(α+ iω) dω

)1/2

<∞.

By H2 we denote the set of matrices with elements in H1
2 . On this space

we define the following norm:

‖G‖2 := sup
α∈R

(
1
2π

∫ +∞

−∞
Trace G(α+ iω)G∗(α+ iω) dω

)1/2

.

Again, any subset of H2 of matrices with the same dimensions is a well-
defined vector space on which ‖ · ‖2 is a norm which makes this space
into a Banach space. Actually these subsets are Hilbert spaces since this
norm is generated by an inner product. This norm will be referred to as
the H2 norm. Clearly any strictly proper stable rational matrix is in H2 .
Both H2 and H∞ are special cases of the so-called Hardy spaces named
after G.H. Hardy (1877–1947).

We define the space L∞ as the space of essentially bounded measur-
able matrix valued functions on the imaginary axis. On this space we
define the following norm

‖F‖∞ := sup
ω∈R

σ1 [F (iω)] <∞. (2.21)
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With respect to this norm, subsets of all matrix valued functions in L∞
with the same dimension form a Banach space. For general matrix val-
ued functions in H∞ we can identify a boundary function to the analytic
function which is, a priori, only defined on the open left half plane. This
boundary function is in L∞ and its L∞-norm is equal to the H∞ norm
of the original function (see [Yo]). Note that rational matrices in H∞ do
not have poles on the imaginary axis and hence this boundary function is
simply the rational matrix itself evaluated on the imaginary axis. Since,
in the above sense, we can embed H∞ isometrically into L∞ we shall use
the same notation for the H∞ -norm and the L∞-norm in this book.

Define Ln2 as the set of all Lebesgue measurable functions f from R
to Rn for which

‖f‖2 :=
(∫ ∞

0
‖f(t)‖2 dt

)1/2

<∞,

where ‖ · ‖ denotes the Euclidian norm. With respect to the norm ‖ · ‖2
the function space Ln2 is a Banach space. It is even a Hilbert space since
the L2-norm is induced by the following inner product

< f, g >2 :=
∫ ∞

0
< f(t), g(t) > dt,

where < ·, · > denotes the standard Euclidian inner product. By L2 we
denote the set of all f for which an n exists such that f ∈ Ln2 . Note that
the inverse Laplace transform g of a vector-valued function ḡ ∈ H2 is in
L2 and by Parseval’s theorem (see [Ru]) this is an isometrical mapping
from H2 to L2. Note that we can similarly define L2(−i∞, i∞) of square
integrable vector-valued functions on the imaginary axis. In that case
we can embed a vector-valued function from H2 into L2(−i∞, i∞) and,
via the Laplace transform, the latter is isometrically equivalent with L2.
This embedding proceeds as in H∞ by defining a boundary function.

In chapter 8 we shall discuss the function space L2 over a finite in-
terval [0, T ] for some T > 0. We define Ln2 [0, T ] as the set of all Lebesgue
measurable functions f from [0, T ] to Rn for which

‖f‖2 :=
(∫ T

0
‖f(t)‖2 dt

)1/2

<∞.

The context will always make clear which ‖ · ‖2 is intended. The H2 norm
will only be applied to transfer matrices while the L2 norm will only
be used for input–output signals. The use of the L2[0, T ] norm will be
restricted to chapter 8.

For a more detailed expose of the spaces introduced above we refer
to [Ho, RR, Ru, Yo].
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In this book we shall frequently use a time-domain characterization
of the H∞ norm. Let Σ × ΣF be the closed-loop system when we apply
a controller ΣF of the form (2.4) to the system Σ given by (2.1). If
the closed-loop system is internally stable, then the closed-loop transfer
matrix GF is in H∞ . Denote by Gci the closed-loop operator mapping
w to z. The H∞ norm is equal to the L2-induced operator norm of the
closed-loop operator, i.e.

‖GF ‖∞ = ‖GF ‖∞ := sup
w

{ ‖Gciw‖2
‖w‖2

w ∈ Ll2, w �= 0
}
. (2.22)

Because of the above equality we shall often refer to the L2-induced oper-
ator norm of the closed-loop operator GF as the H∞ norm of GF . By the
H∞ norm of a stable system we denote the H∞ norm of the corresponding
transfer matrix.

In chapter 8 we shall search for a controller which minimizes the
L2[0, T ]-induced operator norm. This norm will also be referred to as the
H∞ norm because of its relation with (2.22) and is defined by:

‖G‖∞ := sup
{‖Gw‖2
‖w‖2

| 0 �= w ∈ Ll2[0, T ]
}
.

Note that for the finite horizon H∞ control problem we admit time-
varying controllers. This implies that the closed-loop input–output op-
erator G is a Volterra integral operator whose Laplace transform will, in
general, not exist.

A system (A,B,C,D) is called inner if the system is internally stable
and the input–output operator G is unitary, i.e. G maps Lm2 into itself
and G is such that for all f ∈ Lm2 we have

‖Gf‖2 = ‖f‖2.

Often inner is defined as a property of the transfer matrix but in our
setting this is a more natural definition. It can be shown that G is unitary
if, and only if, the transfer matrix of the system, denoted by G, satisfies:

GT(−z)G(z) = G(z)GT(−z) = I, (2.23)

for all z �∈ σ(A) where σ(·) denotes the spectrum. A transfer matrix G
satisfying (2.23) is called unitary. Note that if G is unitary then G will
not be automatically stable. If the transfer matrix is unitary and stable
we call it inner. In general, for an operator from Lm2 to Lp2, in literature
two concepts, inner and co-inner, are defined which coincide if m = p.
Since we only need the latter case of p = m, we shall not make this
distinction.
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We now formulate a result from [Gl].

Lemma 2.10 : Assume that we have a system Σci described by (2.10)
where u and z take values in the same vector space Rk and where A
is asymptotically stable. The system Σci is inner if a matrix X exists
satisfying:

(i) ATX +XA+ CTC = 0,

(ii) DTC +BTX = 0,

(iii) DTD = I. ✷

Remarks :

(i) If (A,B) is controllable the reverse of the above implication is also
true. However, in general, the reverse does not hold. A simple
counter example is given by Σci := (−1, 0, 1, 1) which is inner but
for which (ii) does not hold for any choice of X.

(ii) Note that since A is asymptotically stable, the (unique) matrix
X satisfying part (i) of lemma 2.10 is equal to the observability
gramian of (C,A). We know, for instance, that X > 0 if, and only
if, (C,A) is observable. In general we only have X ≥ 0.

Inner systems are often used in H∞ control. Lemma 2.12 is one of the
main reasons why this class of systems is interesting. However, we first
give a preliminary lemma needed to prove the lemma in which we are
mainly interested.

Lemma 2.11 : Let K ∈ Rn×n(s) be such that

• K ∈ L∞ and ‖K‖∞ < 1,

• (I −K)−1 ∈H∞ .

Then we have K ∈H∞ . ✷
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Proof : We know that ‖K(s)‖ < 1 for all s on the imaginary axis.
Therefore det (I − αK(s)) �= 0 for all s ∈ C0 and for all α ∈ [0, 1]. The
Nyquist contour of det I −αK, which is defined as the contour {det (I −
αK(s) | s ∈ C0 }, therefore has the same winding number around zero for
all α ∈ [0, 1]. Since the winding number for α = 0 is zero we find that
the winding number for α = 1 is also zero. However plus or minus the
winding number is equal to the number of poles minus the number of
zeros of (I−K)−1 in the right half plane (depending on the direction one
follows on the contour, see [Ru]). Since I −K has no zeros in the right
half plane (its inverse is in H∞ ) it does not have poles in the right half
plane either and therefore its inverse I −K is stable.

We now give the result which shows the importance of inner systems
to H∞ control. The original result was obtained in [Re]. Our adapted
version however stems from [Do5]:

Lemma 2.12 : Suppose that two systems Σ1 and Σ2, both described by
some state space representation, are interconnected in the following way:

Σ1

Σ2

❄

✛

✻

✛

y

z w

u (2.24)

Assume that Σ1 is inner and that its transfer matrix G has the following
decomposition:

G

(
w

u

)
=:

(
G11 G12

G21 G22

)(
w

u

)
=

(
z

y

)
(2.25)

which is compatible with the sizes of w, u, z and y, such that G−1
21 ∈ H∞

and G22 is strictly proper.
Under the above assumptions the following two statements are equiv-

alent:

(i) The closed-loop system (2.24) is internally stable and its closed-loop
transfer matrix has H∞ norm less than 1.

(ii) The system Σ2 is internally stable and its transfer matrix has H∞
norm less than 1. ✷
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Proof : Denote the transfer matrix of Σ2 by G2 and denote the closed-
loop transfer matrix of the interconnection (2.24) by Gcl. By G with some
index we denote the input–output operator associated with the transfer
matrix with the same index.

(i) ⇒ (ii): Note that if the closed-loop system (2.24) is internally
stable, then Σ2 is stabilizable and detectable. We have

Gcl = G11 +G12G2 (I −G22G2)
−1G21.

Note that I−G22G2 is invertible as a rational matrix since G22 is strictly
proper. Assume that G2 has a pole on the imaginary axis or has L∞
norm larger than or equal to one. Then, an s0 on the imaginary axis
exists such that s0 is not a pole of G2 and s0 is such that there exists
an 0 �= y ∈ Cq for which ‖G2(s0)y‖ ≥ ‖y‖ (in the case that we have to
choose s0 =∞ we simply replace all transfer matrices evaluated in s0 by
their respective direct-feedthrough matrices). Define

u = G2(s0)y,
w = G−1

21 (s0)(I −G22(s0)G2(s0))y,
z = G11(s0)w +G12(s0)u.

Note that(
z

y

)
= G(s0)

(
w

u

)
.

Hence, since G(s0) is a unitary matrix, we have ‖z‖2+‖y‖2 = ‖w‖2+‖u‖2.
We already know that ‖y‖ ≤ ‖u‖ which implies ‖z‖ ≥ ‖w‖. However,
z = Gcl(s0)w and since ‖Gcl‖∞ < 1 this yields a contradiction. Hence G2

is in L∞ and has L∞ norm strictly less than 1. The closed-loop system is
internally stable which implies that (I −G22G2)−1 and G2(I −G22G2)−1

are in H∞ . Moreover G22G2 is in L∞ and has L∞ norm strictly less than
1. By applying lemma 2.11 this implies that I −G22G2 is in H∞ . Using
that G2(I−G22G2)−1 is in H∞ we find that G2 is in H∞ and hence stable.
Combined with the detectability and stabilizability of the realization of
Σ2 this yields the desired result.

(ii) ⇒ (i) First note that, since both Σ1 and Σ2 are internally stable,
the interconnection is internally stable if, and only if, I −G22G2 has an
inverse in H∞ . We have ‖G2‖∞ < 1 and G22, as a submatrix of a unitary
matrix, satisfies ‖G22‖∞ ≤ 1. Hence, using a small gain argument, it can
be shown that I −G22G2 has an inverse in H∞ .

That Gcl has H∞ norm less than 1 remains to be proved. Since G21 is
invertible over H∞ there exists µ > 0 such that

µ‖G−1
21 (I − G22G2) ‖∞ < 1.
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Let w ∈ Ll2 be given. We have

y = (I − G22G2)
−1 G21w

and thus we get µ‖w‖2 ≤ ‖y‖2. Let u = G2y. Since G in unitary and
‖G2‖∞ < 1 we find

‖z‖22 = ‖w‖22 + ‖u‖22 − ‖y‖22
≤ ‖w‖22 +

(
‖G2‖2∞ − 1

)
‖y‖22

≤ ‖w‖22 + µ2
(
‖G2‖2∞ − 1

)
‖w‖22

=
(
1 + µ2

(
‖G2‖2∞ − 1

))
‖w‖22.

Because 1 + µ2(‖G2‖2∞ − 1) < 1 we find that ‖Gcl‖∞ < 1.

Note that the above theorem can be extended to time-varying systems
(see [RNK]).

2.5.2 Discrete time

In chapters 9 and 10 we shall discuss systems with discrete time. In this
subsection we shall repeat the definitions and results from the previous
subsection but adapted to the discrete time case.

For the discrete time case we define the function space H1∞ as the
set of all functions f which are analytic outside the closed unit disc and
which satisfy

‖f‖∞ := sup
z∈D+

|f(z)| <∞.

This function space is a Banach space with respect to the norm ‖ · ‖∞. It
can easily be seen that the set of rational functions with all poles inside
the open unit disc is contained in H1∞. By H∞ we denote all matrices
with coefficients in H1∞. On this space we define the following norm:

‖G‖∞ := sup
z∈D+

σ1 [G(z)] .

Note that any subset of H∞ of matrices with the same dimensions is a
Banach space with respect to this norm. This norm will be referred to as
the H∞ norm. As in the continuous time case for rational matrices G we
have the following equality:

‖G‖∞ = sup
z∈δD

σ1 [G(z)] .
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Note that we use the same notation as in the continuous time case al-
though in discrete time the role of the right half plane is replaced by the
complement of the closed unit disc. Since it will always be clear from the
context whether we have discrete time or continuous time this will cause
no confusion.

Define 9n2 as the set of all Lebesgue measurable functions f from N
to Rn for which

‖f‖2 :=
( ∞∑

k=0

‖f(k)‖2
)1/2

<∞.

With respect to the norm ‖·‖2 it can be shown that 9n2 is a Banach space.
It is even a Hilbert space since this 92-norm is induced by the following
inner product:

< f, g >2 :=
∞∑
k=0

< f(k), g(k) >,

where < ·, · > denotes the standard Euclidian inner product. By 92 we
denote the set of all f for which an n exists such that f ∈ 9n2 .

As in the continuous time case we shall use a time-domain charac-
terization of the H∞ norm. Let Σ × ΣF be the closed-loop system when
we apply a controller ΣF to the system Σ. If the closed-loop system is
internally stable (as a discrete time system!), then the closed-loop trans-
fer matrix GF is in H∞ . Denote the closed-loop operator mapping w
to z with zero initial conditions by GF . The H∞ norm is equal to the
92-induced operator norm of the closed-loop operator, i.e.

‖GF ‖∞ = ‖GF ‖∞ := sup
w

{ ‖GFw‖2
‖w‖2

w ∈ 9l2, w �= 0
}
. (2.26)

Because of the above equality, we often refer to the 92- induced operator
norm of GF as the H∞ norm of GF (like the continuous time case).

As in the continuous time case a system (A,B,C,D) is called inner if
it is internally stable and the input–output operator is a unitary operator
from 9k2 into itself. The input–output operator is unitary if, and only if,
the transfer matrix of the system, denoted by G, satisfies:

GT(z−1)G(z) = G(z)GT(z−1) = I. (2.27)

We now formulate a result from [St6] which itself is a generalization of a
result from [Gu]. A proof can be given by simply writing out (2.27).
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Lemma 2.13 : Assume that we have a system

Σci :

{
σx = Ax + Bu,

z = Cx + Du,

where A is asymptotically stable and where u and z both take values in
the same vector space Rm. The system Σci is inner if a matrix X exists
satisfying:

(i) X = ATXA+ CTC,

(ii) DTC +BTXA = 0,

(iii) DTD +BTXB = I. ✷

Remark : As in the continuous time case it can be shown that the
reverse implication holds if (A,B) is controllable. A counter example for
the general case is this time given by Σci := (0.5, 0, 1, 1).

We shall now rephrase lemma 2.12 for discrete time systems. We shall
not prove this result since the proof of lemma 2.12 needs only minor
adjustments to yield a proof of our discrete time version.

Lemma 2.14 : Suppose that two systems Σ1 and Σ2, both described by
some state space representation, are interconnected in the following way:

Σ1

Σ2

❄

✛

✻

✛

y

z w

u (2.28)

Assume that Σ1 is inner. Moreover, assume that if we decompose the
transfer matrix G1 of Σ1:

G1

(
w

u

)
=:

(
G11 G12

G21 G22

)(
w

u

)
=

(
z

y

)
(2.29)

compatible with the sizes of w, u, z and y, then we have G−1
21 ∈ H∞ and

G22 is strictly proper.
The following two statements are equivalent:



2.6 (Almost) disturbance decoupling problems 39

(i) The closed-loop system (2.28) is internally stable and its closed-loop
transfer matrix has H∞ norm less than 1.

(ii) The system Σ2 is internally stable and its transfer matrix has H∞
norm less than 1. ✷

2.6 (Almost) disturbance decoupling problems

In this section we shall discuss the problems of (almost) disturbance de-
coupling for continuous time systems. The disturbance decoupling prob-
lems for discrete time systems are defined in a similar way. We discuss
both the case of state feedback as well as the case of dynamic measurement
feedback. In this book our central objective is minimizing the H∞ norm
of the closed-loop system over all internally stabilizing controllers. This
section discusses the special case that this infimum is 0 (almost distur-
bance decoupling) and under which conditions the infimum is attained
(disturbance decoupling). Several people contributed to this area. For
the problem of disturbance decoupling excellent references are [SH, Wo].
For the problem of almost disturbance decoupling prime references are
[OSS1, OSS2, Tr, WW, Wi5, Wi6].

We start by defining the several problems and after that we state
several known solutions to the respective problems and some extensions.
These extensions are concerned with the inclusion of direct-feedthrough
matrices which were in general excluded in the literature. We shall mainly
present results we need and not the most general results available.

Definition 2.15 : Consider the system

Σ :

{
ẋ = Ax + Bu + Ew,

z = Cx + Du.
(2.30)

We say that the Disturbance Decoupling Problem with internal Stability
(denoted by DDPS) is solvable if a state feedback u = Fx exists for Σ
such that the closed-loop system Σcl is internally stable, i.e. A + BF is
asymptotically stable, and such that Σcl has a transfer matrix which is
equal to 0.

We say that the Almost Disturbance Decoupling Problem with internal
Stability(ADDPS) is solvable if for all ε > 0 a state feedback u = Fx exists
for Σ such that the closed-loop system Σcl is internally stable and Σcl has
H∞ norm less than ε. ✷
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We also define related problems for the case of dynamic measurement
feedback:

Definition 2.16 : Consider the system (2.1). We say that the Distur-
bance Decoupling Problem with Measurement feedback and internal Sta-
bility (DDPMS) is solvable if a controller ΣF of the form (2.4) exists such
that the closed-loop system Σ×ΣF is well-posed, internally stable and has
a transfer matrix which is equal to 0.

We say that the Almost Disturbance Decoupling Problem with Mea-
surement feedback and internal Stability (ADDPMS) is solvable if for all
ε > 0 a controller ΣF of the form (2.4) exists such that the closed-loop
system Σ×ΣF is well-posed, internally stable and has H∞ norm less than
ε. ✷

It was shown in [Tr, Wo, Wi5] that necessary and sufficient conditions for
the solvability of DDPS and ADDPS can be stated in terms of the strongly
controllable subspace, T (Σci), and the stabilizable weakly unobservable
subspace, Vg(Σci), associated with the system Σci = (A,B,C,D). (In [Tr,
Wi5] the subspace T (Σci) is denoted by R∗

b( ker C) while D is assumed
to be equal to 0.) The exact result is as follows:

Theorem 2.17 : Consider the system (2.30) with zero initial condition.
Let T (Σci) and Vg(Σci) denote the strongly controllable subspace and the
stabilizable weakly unobservable subspace, respectively, associated with the
system Σci = (A,B,C,D).

(i) The disturbance decoupling problem is solvable if, and only if,

ImE ⊆ Vg(Σci).

(ii) Assume that Σci is such that

Vg(Σci) + T (Σci) = Rn.

In this case a sequence of matrices Fn exists such that the controllers
ΣF,n of the form u = Fnx, when applied to Σ, yield closed-loop
systems which are internally stable for all n and such that the closed-
loop transfer matrices Gcl,n are strictly proper and satisfy:

‖Gcl,n‖∞ → 0 as n→∞ (2.31)
‖Gcl,n‖2 → 0 as n→∞ (2.32)

where ‖ · ‖2 denotes the H2 norm. In particular the almost distur-
bance decoupling problem with internal stability is solvable. ✷
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Proof : The first part of this theorem is proven in [St11]. Therefore, we
shall only prove the second part of this theorem since this is the result we
shall explicitly use in this book. It is an extension of [OSS2] in the sense
of including (2.32). On the other hand, it is an extension of [Tr] since it
includes direct-feedthrough matrices.

By definition 2.4 we know a mapping F̃ exists such that

(A+BF̃ )Vg(Σci) ⊂ Vg(Σci) (2.33)
(C2 +D2F̃ )Vg(Σci) = {0} (2.34)

and such that A + BF̃ | Vg(Σci) is asymptotically stable. Let Π denote
the canonical projection Rn → Rn/Vg(Σ). By (2.33) and (2.34) linear
mappings Ā, B̄ and C̄ exist such that

ĀΠ = Π(A+BF̃ ), (2.35)
B̄ = ΠB, (2.36)

C̄Π = C2 +D2F̃ . (2.37)

We then define the system:

Σfs :

{
ṗ = Āp + B̄u,

z = C̄p + D2u.
(2.38)

It can easily be shown by induction using algorithm 2.5 that for i =
0, 1, . . . we have Ti(Σfs) = ΠTi(Σci). Hence we have:

T (Σfs) = ΠT (Σci) = Π {T (Σci) + Vg(Σci)} = ΠRn = Rn/Vg(Σci).

This implies that the system (2.38) is strongly controllable.
Let F0 and M be such that
(
C̄ +D2F0

)T
D2 = 0, (2.39)

ker D2 = im M. (2.40)

Using lemma 2.7, it is straightforward to check that

T (Σfs) = T (Ā+ B̄F0, B̄M, C̄ +D2F0, 0).

Hence by [Tr, Theorem 3.25] we know that for all ε > 0 an F̄ exists such
that:

‖
(
C̄ +D2F0

)
e((Ā+B̄F0)+B̄MF̄)t ‖1 < ε (2.41)

‖
(
C̄ +D2F0

)
e((Ā+B̄F0)+B̄MF̄)t ‖2 < ε (2.42)
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and such that Ā + B̄F0 + B̄MF̄ is asymptotically stable. Here ‖ · ‖1
denotes the L1 norm which is defined by

‖M‖1 :=
∫ ∞

0
‖M(t)‖ dt.

Define F := F̃ +
(
F0 +MF̄

)
Π then

A+BF | Vg(Σci) = A+BF̃ | Vg(Σci),
Π(A+BF ) =

(
Ā+ B̄F0 + B̄MF̄

)
Π.

It is easy to show that this implies that A+BF is asymptotically stable.
Moreover we have:

(C2 +D2F ) e(A+BF )t =
(
C̄ +D2F0

)
e((Ā+B̄F0)+B̄MF̄)tΠ (2.43)

for all t ≥ 0. Using (2.43) we find for all s ∈ iR (Use that | est | = 1 ):

‖ (C2 +D2F ) (sI − (A+BF ))−1 ‖

= ‖
∫ ∞

0
(C2 +D2F ) e((A+BF )−sI)t dt‖

≤
∫ ∞

0
‖ (C2 +D2F ) e((A+BF )−sI)t‖ dt

= ‖ (C2 +D2F ) e(A+BF )t‖1
= ‖

(
C̄ +D2F0

)
e((Ā+B̄F0)+B̄MF̄)tΠ‖1

≤ ε.

This implies that the closed-loop transfer matrix Gcl has H∞ norm less
than ε. By applying Parseval’s theorem (see [Ru]) it can be shown that
(2.42) implies that Gcl also has H2 norm less than ε.

Since ε was arbitrary, this implies the existence of the desired se-
quence Fn.

As an immediate consequence of the above we obtain the following fact: if
Σci = (A,B,C,D) is strongly controllable, then for all ε > 0 a static state
feedback u = Fx exists such that the closed-loop system has H∞ norm
less than ε and such that A+BF is asymptotically stable.

In chapter 6 we shall need a different version of theorem 2.17 which
includes initial states:

Lemma 2.18 : Assume that the system (A,B,C, 0) is strongly control-
lable. Then for all bounded sets V ⊂ Rn and all ε > 0 there exists
F ∈ Rm×n such that
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(i) A+BF is asymptotically stable.

(ii) For all w ∈ Ll2 and all ξ ∈ V we have ‖z‖2 ≤ ε (‖w‖2 + 1), where z
is given by

ẋ = (A+BF )x + Ew, x(0) = ξ ∈ V,
z = Cx.

✷

Proof : Let M1 be such that for all ξ ∈ V we have ‖ξ‖ < M1. Apply
theorem 2.17 to (2.30) with E = I and D = 0. We find that for all ε > 0
a matrix F exists such that A+BF is asymptotically stable and

‖C(sI −A−BF )−1)‖2 ≤
ε

M1
, ‖C(sI −A−BF )−1‖∞ ≤ ε

‖E‖ + 1
.

The last inequality clearly implies:

‖C (sI −A−BF )−1E‖∞ < ε.

Using the above it can be shown straightforwardly that F satisfies (ii) for
this choice of ε and V.

We shall now discuss the (almost) disturbance decoupling problems with
measurement feedback and internal stability. For the disturbance decou-
pling problem with measurement feedback and internal stability we have
the following result from [SH, St11] available:

Theorem 2.19 : Let the following system Σ be given:

Σ :




ẋ = Ax + Bu + Ew,

y = C1x + D1w,

z = C2x + D2u.

(2.44)

The following conditions are equivalent:

(i) (A,B) is stabilizable, (C2, A) is detectable and

(a) Im E ⊆ Vg(Σci) +BKerD2,

(b) Ker C2 ⊇ Tg(Σdi) ∩ C−1
1 ImD1,

(c) Tg(Σdi) ⊆ Vg(Σci).

where Σci = (A,B,C2,D2) and Σdi = (A,E,C1,D1).
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(ii) The disturbance decoupling problem with measurement feedback and
internal stability is solvable, i.e. a controller of the form (2.4) for Σ
exists such that the closed-loop system is internally stable and has
a transfer matrix which is equal to 0. ✷

For ADDPMS we shall only present sufficient conditions for solvability.
These conditions are all we need in this book. General necessary and
sufficient conditions for solvability are, as far as we know, not available.

Theorem 2.20 : Let the system (2.44) be given. Assume that Σ satisfies
the following two rank conditions:

rank

(
sI −A −B
C2 D2

)
= n+ rank

(
C2 D2

)
∀ s ∈ C0 ∪ C+, (2.45)

and

rank

(
sI −A −E
C1 D1

)
= n+ rank

(
E

D1

)
∀ s ∈ C0 ∪ C+. (2.46)

Under the above assumptions a sequence of controllers ΣF,n of the form
(2.4) exists such that the closed-loop systems are internally stable for all n
and the closed-loop transfer matrices Gcl,n are strictly proper and satisfy:

‖Gcl,n‖∞ → 0 as n→∞ (2.47)
‖Gcl,n‖2 → 0 as n→∞ (2.48)

In particular the almost disturbance decoupling problem with measurement
feedback and internal stability is solvable. ✷

Remark: in fact in [St13] it is shown that we can find a sequence of
controllers of McMillan degree n− rank ( C1 D1 )+ rank D1 satisfying
(2.47) and (2.48). In other words, if we observe k states directly we only
have to build an observer for n−k states which then gives us a controller
of McMillan degree n − k. In our proof we shall restrict attention to
controllers of McMillan degree n.

Before we can prove this result we have to do some preparatory work.
A system (A,B,C2,D2) satisfying (2.45) has all its invariant zeros in C−

and is right-invertible. The property that a system has all its invariant
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zeros in the open left half complex plane is called minimum-phase. In the
same way a system (A,E,C1,D1) satisfying (2.46) is left-invertible and
minimum-phase. We can express the rank conditions (2.45) and (2.46) in
terms of the subspaces introduced in section 2.4 (see [Fr, SH3]):

Lemma 2.21 : The rank condition (2.45) is satisfied if, and only if,

Vg(Σci) + T (Σci) = Rn,

where Σci = (A,B,C2,D2). The rank condition (2.46) is satisfied if, and
only if,

V(Σdi) ∩ Tg(Σdi) = {0},
where Σdi = (A,E,C1,D1). ✷

Proof of theorem 2.20 : Let ε > 0. We first choose a mapping F
such that:

‖ (C2 +D2F ) (sI −A−BF )−1 ‖∞ <
ε

3‖E‖ + 1
, (2.49)

‖ (C2 +D2F ) (sI −A−BF )−1 ‖2 <
ε

3‖E‖ + 1
, (2.50)

and such that A+BF is asymptotically stable. This can be done accord-
ing to lemmas 2.17 and 2.21. Next choose a mapping G such that:

‖ (sI −A−GC1)
−1 (E +GD1) ‖∞

< min
{

ε

3‖D2F‖+ 1
,

‖E‖
‖BF‖+ 1

}
, (2.51)

‖ (sI −A−GC1)
−1 (E +GD1) ‖2 <

‖E‖
‖BF‖+ 1

, (2.52)

and such that A + GC1 is asymptotically stable. The dual version of
theorem 2.17 guarantees the existence of such a G. We apply the following
feedback compensator to the system (2.44):

ΣF,G :

{
ṗ = Ap + Bu + G (C1p− y) ,
u = Fp.

(2.53)

The closed-loop system is given by (where e:=x-p):

Σcl :




(
ẋ

ė

)
=

(
A+BF −BF

0 A+GC1

)(
x

e

)
+

(
E

E +GD1

)
w,

z =
(
C2 +D2F −D2F

)(x
e

)
.
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It is clear that this is an internally stabilizing feedback. The transfer
matrix from w to z can be shown to be equal to:

(C2 +D2F ) (sI −A−BF )−1E

− (C2 +D2F ) (sI −A−BF )−1BF (sI −A−GC1)
−1 (E +GD1)

−D2F (sI −A−GC1)
−1 (E +GD1) .

Using (2.49), (2.50), (2.51) and (2.52) it can be easily shown that this
closed-loop transfer matrix has H∞ and H2 norm less than ε.

We conclude this section by noting that we can extend our results to the
more general system (2.1) by some standard loop shifting arguments as
discussed in sections 4.6 and 5.6. However, we should be careful. As
discussed in example 4.4, we should make a careful distinction between
proper and non-proper controllers.



Chapter 3

The regular full-information
H∞ control problem

3.1 Introduction

Both in this chapter and in the next one, we discuss the H∞ control
problem where all states are available for feedback. We also discuss the
alternative where all states and the disturbance are available for feedback.

The state feedback H∞ control problem was the first to be solved using
time-domain techniques. The main ideas stem from the stabilization of
uncertain systems where one of the problems is to find a controller which
maximizes the complex stability radius of some system with structured
uncertainty (see [Kh5, Pe, Pe2, Pe4, RK2, ZK]). This is closely related to
the H∞ control problem since this problem can be reduced to the problem
of finding a controller which minimizes the H∞ norm of some related
system. Later these ideas were applied directly to H∞ control theory
(see [Kh2, Kh3, Pe3, Pe5, ZK2]). The main result of these papers is
the following: there exists an internally stabilizing state feedback which
makes the H∞ norm less than some a priori given bound γ > 0 if, and only
if, a positive definite matrix P and a positive constant ε exist such that
P is a stabilizing solution of an algebraic Riccati equation parametrized
by ε. A main drawback of this result is that the Riccati equation is
parametrized. However, under certain assumptions it turned out that
this parameter could be removed (see [Do5, St, Ta]). The assumptions
are twofold. Firstly the direct-feedthrough matrix from control input to
output should be injective. Secondly a certain subsystem should have
no invariant zeros on the imaginary axis. In this chapter we shall give
necessary and sufficient conditions for the existence of a suitable controller
under these assumptions. In the next chapter we shall then remove the
first assumption.

47
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We shall generalize the results in [Do5, St, Ta] since we shall not
assume that the direct-feedthrough matrix from control input to output
is zero. Moreover we do not need any extra assumptions besides the two
assumptions mentioned above.

It will be shown that a “suitable” controller (i.e. an internally stabi-
lizing controller such that the closed-loop system has H∞ norm less than
some a priori given bound γ > 0) exists if, and only if, the following
condition is satisfied: a positive semi-definite stabilizing solution of a
certain algebraic Riccati equation exists and, moreover, a given matrix,
explicitly specified in terms of the system parameters, is positive definite.
This Riccati equation has an indefinite quadratic term. Riccati equa-
tions of this type first appeared in the theory of differential games (see
[Ban, Ma, We]) and have different properties from the Riccati equation
used in linear quadratic control and Kalman filtering which all have a
definite quadratic term (see, e.g. [Wi]). Our proof will have a strong
relation to differential games. Differential games are discussed in more
detail in chapter 6.

We shall show in the present chapter that, if an arbitrary “suitable”
compensator exists, then a “suitable” static feedback also exists. In the
next chapter we shall show that this property is not necessarily true if we
remove our assumption on the direct-feedthrough matrix. We shall give
an explicit formula for one “suitable” static feedback. It will be shown
that if we only allow for static state feedback, then we have to make an
extra assumption to guarantee existence of a suitable controller.

The main ideas for this chapter stem from [PM, Ta].
The outline of this chapter is the following. In section 3.2 we shall

give the problem formulation and our main results. In section 3.3 we give
an intuitive proof of the necessity part. This is done because the formal
proof is rather technical so it appeared to be a good idea to first explain
how we obtained the necessary intuition for the formal proof. In section
3.4 we shall then prove necessity in a formal way and in section 3.5 we
shall prove sufficiency.

3.2 Problem formulation and main results

We consider the linear, time-invariant, finite-dimensional system:

Σ :

{
ẋ = Ax + Bu + Ew,

z = Cx + D1u + D2w,
(3.1)

where for each t we have that x(t) ∈ Rn is the state, u(t) ∈ Rm the
control input, w(t) ∈ Rl the disturbance and z(t) ∈ Rq the output to be
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controlled. A,B,E,C,D1 and D2 are matrices of appropriate dimensions.
We want to minimize the effect of the disturbance w on the output z
by finding an appropriate control input u. More precisely, we seek a
compensator ΣF described by a static feedback law u = F1x+ F2w such
that after applying this feedback law to the system (3.1), the resulting
closed-loop system Σ × ΣF is internally stable and its transfer matrix,
denoted by GF , has minimal H∞ norm.

Although minimizing theH∞ norm is always our ultimate goal, in this
chapter as well as in the rest of this book, we shall only derive necessary
and sufficient conditions under which we can find an internally stabilizing
compensator which makes the resulting H∞ norm of the closed-loop sys-
tem strictly less than some a priori given bound γ. In principle one can
then obtain the infimum of the closed-loop H∞ norm over all internally
stabilizing compensators via a search procedure (a simple binary search
procedure is straightforward, for more advanced, quadratically conver-
gent, algorithms see [S, S2]).

We are now in the position to formulate our main result.

Theorem 3.1 : Consider the system (3.1) and let γ > 0. Assume that
the system (A, B, C, D1) has no invariant zeros on the imaginary axis
and D1 is injective. Then the following three statements are equivalent:

(i) A static feedback law u = F1x+F2w exists such that after applying
this compensator to the system (3.1) the resulting closed-loop system
is internally stable and the closed-loop operator GF has H∞ norm
less than γ, i.e. ‖GF ‖∞ < γ.

(ii) (A,B) is stabilizable and a δ < γ exists such that for all w ∈ Ll2 an
u ∈ Lm2 exists such that xu,w ∈ Ln2 and ‖zu,w‖2 ≤ δ‖w‖2.

(iii) We have

DT
2

(
I −D1

(
DT

1D1

)−1
DT

1

)
D2 < γ

2I. (3.2)

Moreover, there is a positive semi-definite solution P of the algebraic
Riccati equation

0 = ATP + PA+ CTC

−
(
BTP +DT

1C

ETP +DT
2C

)T(
DT

1D1 DT
1D2

DT
2D1 DT

2D2 − γ2I

)−1(
BTP +DT

1C

ETP +DT
2C

)

such that Acl is asymptotically stable where:

Acl := A−
(
B E

)(DT
1D1 DT

1D2

DT
2D1 DT

2D2 − γ2I

)−1(
BTP +DT

1C

ETP +DT
2C

)
.
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If P satisfies the conditions in part (iii), then a controller satisfying the
conditions in part (i) is given by:

F1 := − (DT
1D1)

−1 (DT
1C +BTP ) , (3.3)

F2 := − (DT
1D1)

−1DT
1D2. (3.4)

✷

Remarks :

(i) Note that our assumption that D1 is injective together with (3.2)
guarantees the existence of the inverse in the algebraic Riccati equa-
tion and in the definition of Acl.

(ii) The implication (i)⇒ (ii) is trivial. Hence we only need to prove (ii)
⇒ (iii) ⇒ (i). The first step will be done in section 3.4 and in the
section thereafter we shall complete the proof. We shall only prove
this theorem for the case thatD2 = 0. The proof for the general case
can be found in [St9] and is a straightforward extension although it
requires some extra algebraic manipulations.

(iii) The case that either one of the assumptions made in the theorem
above is not satisfied will be discussed in the next chapter. The
extension to the case that D1 is not necessarily injective is in the
author’s opinion completely satisfactory. However, an elegant ex-
tension of the above result to the case that invariant zeros on the
imaginary axis are allowed is still an open problem.

In a large part of the literature one is searching for an internally stabilizing
static state feedback which makes the H∞ norm less than γ, rather than
a feedback that is also allowed to depend on w. This is clearly more
acceptable from a practical point of view. In practice one might be able to
measure the state in some special cases but one does not apply a feedback
depending on a measurement of the disturbance. From the above theorem
it is immediately obvious that if D2 = 0 then we can not do better by
general static feedback than we can by static state feedback. The next
theorem gives necessary and sufficient conditions for the existence of a
suitable static state feedback.

Theorem 3.2 : Consider the system (3.1). Let γ > 0. Assume that the
system (A, B, C, D1) has no invariant zero on the imaginary axis and
D1 is injective. Then the following statements are equivalent:
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(i) A static state feedback law u = Fx exists such that after applying
this compensator to the system (3.1) the resulting closed-loop system
is internally stable and the closed-loop operator GF has H∞ norm
less than γ, i.e. ‖GF ‖∞ < γ.

(ii) We have

DT
2D2 < γ2I.

Moreover, there is a positive semi-definite solution P of the algebraic
Riccati equation

0 = ATP + PA+ CTC

−
(
BTP +DT

1C

ETP +DT
2C

)T(
DT

1D1 DT
1D2

DT
2D1 DT

2D2 − γ2I

)−1(
BTP +DT

1C

ETP +DT
2C

)

such that Acl is asymptotically stable where:

Acl := A−
(
B E

)(DT
1D1 DT

1D2

DT
2D1 DT

2D2 − γ2I

)−1(
BTP +DT

1C

ETP +DT
2C

)
.

If P satisfies the conditions in part (ii), then a controller satisfying the
conditions in part (i) is defined by:

F := −
(
DT

1

(
I − γ−2D2D

T
2

)−1
D1

)−1

×

[
DT

1C +BTP +DT
1D2

(
γ2I −DT

2D2

)−1 (
DT

2C + ETP
)]

(3.5)

✷

Remarks :

(i) Note that the only difference between part (iii) of theorem 3.1 and
part (ii) of this theorem is that we already have DT

2D2 < I instead
of having the chance of obtaining this condition after a preliminary
disturbance feedforward. The condition DT

2D2 < I is clearly nec-
essary for the existence of a “suitable” state feedback, since if we
are only allowed to apply state feedback then we cannot change D2.
The surprising part is that it is also sufficient: if DT

2D2 < I and if
a “suitable” feedback exists, then there is also a “suitable” static
state feedback.
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(ii) If DT
2D1 = 0, then the compensator suggested is the same as the

compensator suggested in theorem 3.1. Hence only if DT
2D1 �= 0 we

can possibly do better by allowing disturbance feedforward.

In this book we only prove the above results for the case that D2 = 0.
In that case we can restrict attention to static state feedbacks and the
results of theorems 3.1 and 3.2 melt together. The general case can be
proven along the same lines as we are following in this chapter. The
difference being that we have fewer algebraic manipulations and some
technicalities become straightforward. We feel that this allows the reader
to get a better understanding of the main core of the proof.

3.3 Intuition for the formal proof

Since the approach proving the result of this chapter is crucial for this
book and is used again in chapter 9 for discrete-time systems, we first
explain and prove the results intuitively. In the next section we give a
formal proof.

Clearly making the H∞ norm as small as possible is directly related
to the following “sup-inf” problem:

inf
f

sup
w 
=0

{ ‖zu,w‖2
‖w‖2

w ∈ Ll2, f : Lm2 → Ln2 causal and u = f(w)
}

(3.6)

for the initial condition x(0) = 0. We know from more classical results
on “inf-sup” problems that when the criterion function is not quadratic
then it is nearly impossible to solve this problem explicitly. Therefore
we note that if the number defined by (3.6) is smaller than some bound
γ > 0 then clearly

inf
f

sup
w

{
‖zu,w‖22 − γ2‖w‖22 w ∈ Ll2, f causal and u = f(w)

}
≤ 0

(3.7)

for initial condition x(0) = 0. However, for H∞ control we have an extra
constraint since we require our controller to be internally stabilizing. In-
ternal stability is a property which is related to all initial conditions of
the system. Thus, in order to be able to build this constraint into our
“inf-sup” problem, we investigate (3.7) for an arbitrary initial condition
x(0) = ξ. We define

C(u,w, ξ) := ‖zu,w,ξ‖22 − γ2‖w‖22
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and we investigate

C̄∗(ξ) := inf
f

sup
w

{
C(u,w, ξ) | f causal, u = f(w), w ∈ Ll2

such that xu,w,ξ ∈ Ln2 }

for arbitrary initial state x(0) = ξ. A related problem is the following:

C∗(ξ) := sup
w

inf
u

{
C(u,w, ξ) | u ∈ Lm2 , w ∈ Ll2 such that xu,w,ξ ∈ Ln2

}
for arbitrary initial state x(0) = ξ. It can be easily shown that, without
the extra assumption that f should be causal, the above two problems are
equivalent. The surprising fact is that even with the extra assumption of
causality these problems are equal, i.e.

C∗(ξ) = C̄∗(ξ) ∀ξ ∈ Rn. (3.8)

The main difference with our original problem formulation is that we do
not require causality, i.e. u(t) may depend on the future of w. This was
excluded in our original formulation because we only look at controllers
of the form (2.4) which are automatically causal. The surprising fact is
that our formal proof will show that we cannot do better by allowing for
a non-causal dependence on w (note that this is not true for discrete time
systems as shown in chapter 9). From now on we only investigate C∗(ξ).
It can be shown that C∗(ξ) <∞ for all ξ ∈ Rn if the number defined by
(3.6) is strictly less than γ.

Next by using a method from [Mo] it can be shown that a matrix P
exists such that C∗(ξ) = ξTPξ for all ξ ∈ Rn. (The same method can
be used to show that for a large class of optimization problems with a
quadratic cost criterion the optimal cost is also quadratic.)

We denote by xu,w,ξ,t(τ) and zu,w,ξ,t(τ) respectively the state and the
output of our system at time τ > t if we apply inputs u and w and
x(t) = ξ. We define:

C(u,w, ξ, t) :=
∫ ∞

t
‖zu,w,ξ,t(τ)‖2 − γ2‖w(τ)‖2 dτ.

Our system is time-invariant and therefore we find

C∗(ξ, t) := sup
w

inf
u

{
C(u,w, ξ, t) | u ∈ Lm2 , w ∈ Ll2

such that xu,w,ξ,t ∈ Ln2 }
= ξTPξ.

Now we make the, illegal, move to assume a priori that u is indeed a
causal function of w (which, at this point, we justify by the equality
(3.8)). Then the last “sup-inf” problem can be rewritten and we find
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0 = sup
w|[0,t]

inf
u|[0,t]

sup
w|(t,∞)

inf
u|(t,∞)

∫ ∞

0
‖zu,w,ξ(τ)‖2 − γ2‖w(τ)‖2 dτ − ξTPξ

= sup
w|[0,t]

inf
u|[0,t]

∫ t

0
‖zu,w,ξ(τ)‖2 − γ2‖w(τ)‖2dτ + xT(t)Px(t)− ξTPξ

where u ∈ Ln2 and w ∈ Ll2 should be such that xu,w,ξ ∈ Ln2 . We differen-
tiate this expression with respect to t and take the derivative at t = 0,
acting as if this expression were differentiable and as if we were allowed to
interchange the supremum and infimum with the differentiation operator.
We then obtain

0 = sup
w(0)

inf
u(0)

‖z(0)‖2 − γ2‖w(0)‖2 + d

dt
xT(t)Px(t)

t = 0

We can now investigate this latter expression and note that we thus ob-
tained a static “sup-inf” problem which we can solve explicitly. Writing
this out in terms of the system parameters of our system Σ (remember
that we have D2 = 0) as defined by (3.1) then yields:

0 = sup
w(0)

inf
u(0)


 ξ

u(0)
w(0)




T
A

TP + PA+ CTC BTP + CTD1 ETP

PB +DT
1C DT

1D1 0
PE 0 −γ2I




 ξ

u(0)
w(0)




Next we define

q := u+ (DT
1D1)

−1 (BTP +DT
1C) ξ,

p := w − γ−2ETPξ,

where we assume that W is invertible. Finally, we denote by R(P ) the
right hand side of the algebraic Riccati equation in theorem 3.1. By using
Schur complements we can then rephrase our previous “sup-inf” problem
in the form

0 = sup
p
inf
q



ξ

q

p




T 

R(P ) 0 0
0 DT

1D1 0
0 0 −γ2I






ξ

q

p


 .

The above equality should be true for all initial conditions ξ ∈ Rn. This
implies R(P ) = 0. This is one of the two conditions given in part (iii) of
theorem 3.1 (note that the first condition is superfluous since D2 = 0).
The optimal p and q are zero, i.e.

w∗(0) = γ−2ETPξ,

u∗(0) = − (DT
1D1)

−1 (BTP +DT
1C) ξ.
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However, we can show in the same way that these equalities are satisfied
by the optimal u∗ and w∗ for all t, i.e.

w∗(t) = γ−2ETPx∗(t),
u∗(t) = − (DT

1D1)
−1 (BTP +DT

1C)x
∗(t),

which implies that

ẋ∗ = Aclx
∗.

Since x∗ ∈ Ln2 for all initial conditions ξ ∈ Rn this implies that Acl is
asymptotically stable. This is the last condition in part (iii) of theorem
3.1. We shall formalize the above reasoning in the next section to yield a
rigorous and reasonably elegant proof.

3.4 Solvability of the Riccati equation

Throughout this section we assume that there exists a δ < γ such that
condition (ii) of theorem 3.1 is satisfied. Note that, as mentioned before,
we only give a proof for the case D2 = 0. Hence we shall assume through-
out the next two sections that D2 = 0. We show that this implies that
there exists a matrix P satisfying condition (iii) of theorem 3.1. For the
time being we assume that

DT
1C = 0 (3.9)

and γ = 1. We derive the more general statement at the end of this
section. We first define the following function

C(u,w, ξ) := ‖zu,w,ξ‖22 − ‖w‖22.

In order to prove the existence of the desired P we shall investigate the
following “sup-inf” problem:

C∗(ξ) := sup
w

inf
u

{
C(u,w, ξ) | u ∈ Lm2 , w ∈ Ll2 such that xu,w,ξ ∈ Ln2

}
for arbitrary initial state ξ. Since condition (ii) of theorem 3.1 holds, it
will turn out that the “sup-inf” is finite for all initial states. Moreover we
shall show that there exists a P ≥ 0 such that C∗(ξ) = ξTPξ. It will be
proven that this matrix P exactly satisfies condition (iii) of theorem 3.1.

For given w ∈ Ll2 and ξ ∈ Rn, we shall first infimize the function
C(u,w, ξ) over all u ∈ Lm2 for which xu,w,ξ ∈ Ln2 . After that we shall
maximize over w ∈ Ll2.

As a tool we shall use Pontryagin’s maximum principle. This only
gives necessary conditions for optimality. However in [LM, Section 5.2]
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a sufficient condition for optimality is derived over a finite horizon. The
stability requirement xu,w,ξ ∈ Ln2 allows us to adapt the proof to the infi-
nite horizon case. We start by constructing a solution to the Hamilton–
Jacobi–Bellman boundary value problem associated with this optimiza-
tion problem.

Let L be the positive semi-definite solution of the following algebraic
Riccati equation:

ATL+ LA+ CTC − LB (DT
1D1)

−1
BTL = 0 (3.10)

for which

AL := A−B (DT
1D1)

−1BTL (3.11)

is asymptotically stable. The existence and uniqueness of such L is guar-
anteed under the assumptions that (A, B, C, D1) has no invariant ze-
ros on the imaginary axis, D1 is injective and (A,B) is stabilizable (see
[Wi7]). Let w ∈ Ll2 be given. We define

r(t) := −
∫ ∞

t
eA

T
L(τ−t)LEw(τ) dτ

(t ∈ [0,∞) ). Note that r is well defined since AL is asymptotically stable.
Next we define x+ and η by the equations:

ẋ+ = ALx+ +B (DT
1D1)

−1
BTr + Ew (3.12)

η = −Lx+ + r (3.13)

where x+(0) = ξ. It can be easily checked that r, x+ and η are all L2

functions. Moreover we have

lim
t→∞ r(t) = lim

t→∞x+(t) = lim
t→∞ η(t) = 0. (3.14)

After some calculations, we find the following lemma:

Lemma 3.3 : Let ξ ∈ Rn and w ∈ Ll2 be given. The function η as
defined by (3.13) satisfies:

η̇ = −ATη + CTCx+. (3.15)

✷
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In the statement of Pontryagin’s Maximum Principle this equation is the
so-called “adjoint equation” and η is called the “adjoint state variable”.
We have constructed a solution to this equation and we shall show that
this η indeed yields a minimizing u. The proof is adapted from [LM,
Theorem 5.5]:

Lemma 3.4 : Let the system (3.1) be given. Moreover let w and x(0) =
ξ be fixed. Then

u+ := (DT
1D1)

−1
BTη

= arg inf
u
{ C(u,w, ξ) | u ∈ Lm2 such that xu,w,ξ ∈ Ln2 } . ✷

Proof : Since w is fixed it is sufficient to minimize

‖zu,w,ξ‖22 = C(u,w, ξ) + ‖w‖22.
It can be easily checked that x+ = xu+,w,ξ. Let u ∈ Lm2 be an arbitrary
control input such that xu,w,ξ ∈ Ln2 . Since xu,w,ξ ∈ Ln2 and ẋu,w,ξ ∈ Ln2
we have

lim
t→∞xu,w,ξ(t) = 0. (3.16)

For all t ∈ R+ we find

‖zu,w,ξ(t)‖2 − 2
d

dt
ηT(t)x(t) = ‖Cx(t)‖2 − 2xT(t)CTCx+(t)

−2ηT(t)Ew(t) + [DT
1D1u(t)− 2BTη(t)]T u(t) (3.17)

and

‖zu+,w,ξ‖2 − 2
d

dt
ηT(t)x+(t) = −‖Cx+(t)‖2 − 2ηT(t)Ew(t)

+ [DT
1D1u+(t)− 2BTη(t)]T u+(t). (3.18)

If we integrate (3.17) and (3.18) from zero to infinity, subtract from each
other and use (3.14), (3.16) we find (note that x(0) = x+(0) = ξ)

‖zu+,w,ξ‖22 − ‖zu,w,ξ‖22 = −
∫ ∞

0
‖C [x(t)− x+(t)] ‖2 dt +

∫ ∞

0
[DT

1D1u+(t)− 2BTη(t)]T u+(t)− [DT
1D1u(t)− 2BTη(t)]T u(t) dt

Using the definition of u+ we also find for each fixed t ∈ R+ that

[DT
1D1u+(t)− 2BTη(t)]T u+(t) = inf

v
[DT

1D1v − 2BTη(t)]T v. (3.19)
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Combining the last two equations then yields

‖zu+,w,ξ‖22 ≤ ‖zu,w,ξ‖22. (3.20)

which is exactly what we had to prove. Since D1 is injective it is straight-
forward to show the minimizing v in (3.19) is unique and hence the min-
imizing u is unique.

We are now going to maximize over w ∈ Ll2. This will then yield C∗(ξ).
Define F(ξ, w) := (x+, u+, η) and G(ξ, w) := zu+,w,ξ. It is clear from the
previous lemma that F and G are bounded linear operators (linear in
(ξ, w) not in ξ and w separately). Define

C(ξ, w) := ‖G(ξ, w)‖22 − ‖w‖22, (3.21)

‖w‖C := (−C(0, w))1/2 . (3.22)

It can easily be shown, using condition (ii) of theorem 3.1 with γ = 1,
that ‖.‖C defines a norm on Ll2. Moreover we find

‖w‖2 ≥ ‖w‖C ≥ ρ‖w‖2 (3.23)

where ρ > 0 is such that ρ2 = 1 − δ2 and δ is such that condition (ii) of
theorem 3.1 with γ = 1 is satisfied. Hence ‖.‖C and ‖.‖2 are equivalent
norms.

Note that lemma 3.4 still holds if condition (ii) of theorem 3.1 does
not hold. However the result that ‖.‖C is a norm and that even ‖.‖C and
‖.‖2 are equivalent norms is the essential property which is implied by
condition (ii) of theorem 3.1 and which is the key to our derivation.
We have

C∗(ξ) = sup
w∈Ll

2

C(ξ, w). (3.24)

We can derive the following properties of C∗:

Lemma 3.5 :

(i) For all ξ ∈ Rn we have

0 ≤ ξTLξ ≤ C∗(ξ) ≤ ξTLξ

1− δ2 , (3.25)

where L as defined by (3.10) and the stability of (3.11) and where
δ is such that condition (ii) of theorem 3.1 is satisfied.
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(ii) For all ξ ∈ Rn there exists an unique w∗ ∈ Ll2 such that C∗(ξ) =
C(ξ, w∗). ✷

Proof : Part (i): It is well known that L, as the stabilizing solution of
the algebraic Riccati equation (3.10), yields the optimal cost of the linear
quadratic problem with internal stability (see [Wi7]). Hence ‖G(ξ, 0)‖22 =
C(ξ, 0) = ξTLξ. Therefore we have 0 ≤ ξTLξ ≤ C∗(ξ). Moreover

C(ξ, w) = ‖G(ξ, w)‖22 − ‖w‖22
≤ (‖G(ξ, 0)‖2 + ‖G(0, w)‖2)2 − ‖w‖22
≤

(√
ξTLξ + δ‖w‖2

)2
− ‖w‖22

≤ ξTLξ

1− δ2 .

Part (ii) can be proven in the same way as in [Ta]. First it is shown that
‖.‖C satisfies:

−‖wα − wβ‖2C = 2 C(ξ, wα) + 2 C(ξ, wβ)− 4 C (ξ, 1/2 (wα + wβ)) (3.26)

for arbitrary ξ ∈ Rn. Then it can be shown that a maximizing sequence
of C(ξ, w) is a Cauchy sequence with respect to the ‖.‖C -norm and hence,
since ‖.‖C and ‖.‖2 are equivalent norms, there exists a maximizing L2

function w∗. Using (3.26) it is straightforward to show uniqueness.

Define H : Rn → Ll2 by Hξ := w∗.

Lemma 3.6 : Let ξ ∈ Rn be given. w∗ = Hξ is the unique L2-function
w satisfying

w = −ETη, (3.27)

where (x, u, η) = F(ξ, w). ✷

Proof : Define (x∗, u∗, η∗) = F(ξ, w∗). Moreover, we define

w0 := −ETη∗
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and (x0, u0, η0) := F(ξ, w0). We find

‖zu0,w0,ξ(t)‖2 − ‖w0(t)‖2 − 2
d

dt
ηT

∗ (t)x0(t) =

‖w0(t)‖2 − ‖zu∗,w∗,ξ(t)‖2 + ‖zu∗,w∗,ξ(t)− zu0,w0,ξ(t)‖2.

We also find:

‖zu∗,w∗,ξ(t)‖2 − ‖w∗(t)‖2 − 2
d

dt
ηT

∗ (t)x∗(t) =

‖w0(t)‖2 − ‖zu∗,w∗,ξ(t)‖2 − ‖w∗(t)−w0(t)‖2. (3.28)

Integrating the last two equations from zero to infinity and subtracting
from each other gives us

C(ξ, w∗) = C(ξ, w0)− ‖w0 − w∗‖22 − ‖zu0,w0,ξ − zu∗,w∗,ξ‖22.

Since w∗ maximizes C(ξ, w) over all w, this implies that w0 = w∗. Thus
we find that w∗ satisfies (3.27).

That w∗ is the only solution of the equation (3.27) can be shown in
a similar way. Assume that, apart from w∗, also w1 satisfies (3.27). Let
(x1, u1, η1) := F(ξ, w1). From (3.28) we find

‖zu∗,w∗,ξ(t)‖2 − ‖w∗(t)‖2 − 2
d

dt
ηT

∗ (t)x∗(t) = ‖w∗(t)‖2 − ‖zu∗,w∗,ξ(t)‖2.

(3.29)

We also find:

‖zu1,w1,ξ(t)‖2 − ‖w1(t)‖2 − 2
d

dt
ηT

∗ (t)x1(t) = ‖zu1,w1,ξ(t)‖2 − ‖w1(t)‖2

+2wT
∗ (t)w1(t)− 2zT

u∗,w∗,ξ(t)zu1,w1,ξ(t).

Hence, if we integrate the last two equations from 0 to ∞ and subtract
from each other we get

C(ξ, w∗) = C(ξ, w1)− ‖w∗ − w1‖2C . (3.30)

Since w∗ was maximizing we find ‖w∗−w1‖C = 0 and hence w∗ = w1.

Next, we show that C∗(ξ) = ξTPξ for some matrix P . In order to do that
we first show that η∗ is a linear function of x∗:
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Lemma 3.7 : There exists a constant matrix P such that

η∗ = −Px∗. (3.31)

✷

Proof : We shall first look at time 0. From (3.13) it is straightforward
that η∗(0) depends linearly on (ξ, w∗). By lemma 3.6 we know w∗ is
uniquely defined by equation (3.27). If we investigate the initial condition
ξ = αξ1+βξ2 and if we define wp = αHξ1+βHξ2 then it is easy to check
that wp, ξ satisfies equation (3.27) and hence wp = Hξ. In this way we
have shown that H : ξ → w∗ is linear. Since w∗ depends linearly on
ξ, this implies that η∗(0) depends linearly on ξ and hence there exists a
matrix P such that η∗(0) = −Pξ.

We shall now look at time t. The sup-inf problem starting at time t
with initial state x(t) can now be solved. Due to time-invariance we see
that w∗ restricted to [t,∞) satisfies (3.27) and hence, for this problem,
the optimal x and η are x∗ and η∗. But since t is the initial time for this
optimization problem, which is exactly equal to the original optimization
problem, we find equation (3.31) at time t with the same matrix P as at
time 0. Since t was arbitrary this completes the proof.

Lemma 3.8 : The matrix P defined by lemma 3.7 satisfies

C∗(ξ) = ξTPξ. (3.32)

✷

Proof : We integrate equation (3.29) from zero to infinity. By (3.14) we
find

C(ξ, w∗) + 2ηT
∗ (0)ξ = −C(ξ, w∗).

Since C(ξ, w∗) = C∗(ξ) and η∗(0) = −Pξ we find (3.32).

Using the above it will be shown that this matrix P satisfies condition
(iii) of theorem 3.1.
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Lemma 3.9 : Assume that the system (A,B,C,D1) has no invariant
zeros on the imaginary axis. Moreover assume that D1 is injective. Fi-
nally assume that DT

1C = 0 and γ = 1. If the statement in part (ii) of
theorem 3.1 is satisfied, then there exists a symmetric matrix P satisfying
part (iii) of theorem 3.1. ✷

Proof : By lemma 3.7 we have η∗ = −Px∗. Using this we find that:

w∗ = ETPx∗, (3.33)
u∗ = − (DT

1D1)
−1BTPx∗.

Thus we get

ẋ∗ = Aclx∗

where Acl as defined in theorem 3.1. Since x∗ ∈ Ln2 for every initial state ξ
we know that Acl is asymptotically stable. Next we show that P satisfies
the algebraic Riccati equation as given in theorem 3.1. From (3.15) and
(3.31) combined with (3.33) we find

−PAcl = ATP + CTC.

Using the definition of Acl this equation turns out to be equivalent to the
algebraic Riccati equation. Next we show that P is symmetric. Note that
both P and PT satisfy the algebraic Riccati equation. Using this we find
that

AT
cl (P − PT) + (P − PT)Acl = 0.

Since Acl is asymptotically stable this implies that P = PT. P can be
shown to be positive semi-definite by combining lemma 3.5 and (3.32).

From lemma 3.9 we can derive the implication (ii) ⇒ (iii) in theorem 3.1
without the assumption γ = 1 and without the assumption DT

1C = 0:

Corollary 3.10 : Assume that (A, B, C, D1) has no invariant zeros
on the imaginary axis. Moreover assume that D1 is injective. If part (ii)
of theorem 3.1 is satisfied, then there exists a symmetric matrix P ≥ 0
satisfying part (iii) of theorem 3.1. ✷
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Proof : First we scale the γ to 1, i.e. we set Enew = E/γ. The rest of the
system parameters do not change. Then we apply a preliminary feedback
u = F̃ x+ v such that DT

1 (C +D1F̃ ) = 0. Denote the new A,C and Enew

by Ã, C̃ and Ẽ. For this new system part (ii) of theorem 3.1 is satisfied
for γ = 1. We also know that by applying a preliminary state feedback
the invariant zeros of a system do not change. Therefore our new system
does not have invariant zeros on the imaginary axis. Hence, since for
this new system we also know that DT

1 C̃ = 0, we may apply lemma 3.9.
Thus we find conditions in terms of the new parameters. Rewriting in
terms of the original parameters gives the desired conditions in part (iii)
of theorem 3.1.

3.5 Existence of a suitable controller

In this section we shall show that if there exists a matrix P satisfying the
conditions in part (iii) of theorem 3.1, then the feedback as suggested by
theorem 3.1 satisfies condition (i). To this end we shall assume throughout
this section that there is a matrix P satisfying the conditions in part (iii)
of theorem 3.1 (which are the same as the conditions on P in part (ii)
of theorem 3.2). Moreover we assume that (3.2) is satisfied and we set
γ = 1. The implications will only be proven under the assumption γ = 1.
Just as in the proof of corollary 3.10 the general case can be reduced to
the special case γ = 1 by scaling.

We define the following system:

ΣU :



ẋU = AUxU + BUuU + Ew,

yU = C1,UxU + + w,

zU = C2,UxU + D21,UuU ,

(3.34)

where

AU := A−B (DT
1D1)

−1 (DT
1C +BTP ) ,

BU := B (DT
1D1)

−1/2 ,

C1,U := − ETP,

C2,U := C −D1 (DT
1D1)

−1 (DT
1C +BTP ) ,

D21,U := D1 (DT
1D1)

−1/2 .
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Lemma 3.11 : The system ΣU as defined by (3.34) is inner. Denote
the transfer matrix of ΣU by GU . We decompose GU :

GU

(
w

uU

)
=:

(
G11,U G12,U

G21,U G22,U

)(
w

uU

)
=

(
zU

yU

)

compatible with the sizes of w, uU , zU and yU. Then G21,U is invertible as
a rational matrix and its inverse is in H∞ . Moreover G22,U is strictly
proper. ✷

Proof : Since P satisfies the conditions of part (iii) of theorem 3.1 it is
easy to check that X = P satisfies the equations (i) and (ii) of lemma
2.10 for the system ΣU with inputs w, uU and outputs zU , yU . Indeed, the
algebraic Riccati equation in theorem 3.1 is equivalent to the equation (i)
of lemma 2.10. Also, by simply writing out the equations in the original
system parameters of system (3.1) we find conditions (ii) and (iii) of
lemma 2.10.
Moreover, we know that P ≥ 0 and the equation (i) of lemma 2.10 can
be rewritten as

PAU +AT
UP +

(
CT

1,U
CT

2,U

)( C1,U

C2,U

)
= 0.

Note that Acl = AU − EUC1,U . Therefore, since Acl is asymptotically
stable we find that (C1,U , AU) is detectable. Using standard Lyapunov
theory it can then be shown that AU is asymptotically stable. (A more
precise proof can be based on the proof of corollary A.8.) By applying
lemma 2.10 we thus find that ΣU is inner.

To show that G−1
21,U

is an H∞ function we can write down a realization
for G−1

21,U
and use the expression for Acl as given above.

Lemma 3.12 : Assume that the conditions in part (iii) of theorem 3.1
are satisfied. In that case the compensator ΣF described by the feedback
law u = F1x, where F1 is given by (3.3) satisfies condition (i) of theorem
3.1. ✷

Proof : First note that for this particular feedback the transfer matrix
GF as given by (2.7) is equal to G11,U and, moreover, A+BF1 is equal to
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AU . This implies that the compensator ΣF is internally stabilizing. Be-
cause G21,U is invertible over H∞ we can derive the following inequalities:

‖G11,U‖2∞ + ‖G−1
21,U
‖−2

∞ ≤ ‖
(
G11,U

G21,U

)
‖2∞ ≤ 1, (3.35)

which shows that we have ‖GF ‖∞ < 1. The second inequality in (3.35)
follows because a submatrix of an inner matrix has H∞ norm less than or
equal to 1.

Note that theorem 3.1 for γ = 1 is simply a combination of corollary 3.10
and lemma 3.12. The general result (for D2 = 0) can then be obtained
by scaling. The case that D2 �= 0 needs a similar proof but it takes some
extra algebra.



Chapter 4

The general full-information
H∞ control problem

4.1 Introduction

As we already mentioned in section 3.1 the full-information H∞ control
problem was discussed in many papers. We showed that if we make two
assumptions on the system parameters, then we could derive elegant,
necessary and sufficient conditions under which an internally stabilizing
controller exists which makes the H∞ norm of the closed-loop system less
than some, a priori given, bound. Moreover, under these assumptions, it
was possible to derive an explicit formula for one “suitable” controller.
These assumptions were:

• The direct-feedthrough matrix from the control input to the output
is injective.

• The subsystem from the control input to the output has no invariant
zeros on the imaginary axis.

In this chapter we shall discuss the general full-information H∞ problem
where these conditions are not necessarily satisfied. We shall remove the
first assumption in an, in our opinion, elegant way. The second assump-
tion is removed in [S3] but in this reference the first assumption is still
made. At this moment no satisfactory method is available which removes
both assumptions at the same time. Some methods to remove the second
assumption will be briefly discussed in section 4.7.

In [Kh2, Kh3, Pe3, Pe5, ZK2] conditions were derived for the existence
of suitable controllers without these assumptions. However, these condi-
tions are in terms of a family of algebraic Riccati equations parametrized
by a positive constant ε. In the previous chapter we derived condi-
tions which were expressed in terms of one single Riccati equation. The
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problem is that this Riccati equation no longer exists when the direct-
feedthrough matrix from control input to output is not injective. In
this chapter we shall discuss the method from [St2]. We shall express
our conditions in terms of a quadratic matrix inequality and a number
of rank conditions. In the case that the direct-feedthrough matrix is
injective it will be shown that the quadratic matrix inequality together
with one rank condition reduces to the algebraic Riccati equation from
the previous chapter. This quadratic matrix inequality is reminiscent of
the dissipation inequality appearing in linear quadratic optimal control
(see [Gee, SH2, Tr, Wi7]). The existence of solutions satisfying the rank
conditions can be checked by solving a reduced order Riccati equation.
However, in contrast with the previous chapter, we are not able to derive
an explicit formula for one controller, if one exists, which is internally
stabilizing and which makes the H∞ norm of the closed-loop system less
than some, a priori given, bound γ.

We shall first assume that the direct-feedthrough matrix from distur-
bance to output is zero and we shall show at the end of this chapter how
the general result can be obtained. This is done to prevent the complexity
of the formulas from clouding the comprehension of the reader.

The outline of this chapter is as follows. In section 4.2 we briefly
recall the problem to be studied and give a statement of our main result.
We shall also show how the results of this chapter reduce to the results
from chapter 3 in the case that the direct-feedthrough matrix from control
input to output is injective. In section 4.3 we shall prove necessity and in
section 4.4 we shall show sufficiency. These sections will strongly depend
on the decompositions as introduced in appendix A. In section 4.5 we
shall discuss techniques to construct a suitable controller. In section 4.6
we shall give a method to solve the full-information H∞ control problem
in case the direct-feedthrough matrix from disturbance to output is un-
equal to zero. Finally, in section 4.7, we shall give methods for handling
invariant zeros on the imaginary axis. None of these methods for handling
invariant zeros on the imaginary axis is completely satisfactory, but com-
bining the results of this chapter with the results from [S3] will probably
yield elegant conditions. However, this still has to be investigated.

4.2 Problem formulation and main results

We consider the finite-dimensional, linear, time-invariant system

Σ :

{
ẋ = Ax + Bu + Ew,

z = Cx + D1u,
(4.1)
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where, for each t, x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
w(t) ∈ Rl is the disturbance and z(t) ∈ Rq is the output to be controlled.
A,B,E,C and D1 are matrices of appropriate dimensions. As in the
previous chapter we would like to minimize the effect of the disturbance
w on the output z by finding an appropriate control input u. More
precisely, we seek a compensator ΣF described by a static state feedback
law u = Fx such that after applying this feedback law in the system
(4.1), the resulting closed-loop system Σ×ΣF is internally stable and its
transfer matrix, denoted by GF , has H∞ norm strictly less than some,
a priori given, bound γ. In principle one can then obtain, via a search
procedure, the infimum over all internally stabilizing compensators of the
H∞ norm of the closed-loop operator (see e.g. [S, S2]).

For any real number γ > 0 and matrix P ∈ Rn×n we define a matrix
Fγ(P ) ∈ R(n+m)×(n+m) by

Fγ(P ) :=

(
PA+ATP + γ−2PEETP + CTC PB +CTD1

BTP +DT
1C DT

1D1

)
. (4.2)

If γ = 1 we shall simply write F (P ) instead of F1(P ). Clearly if P is
symmetric, then Fγ(P ) is symmetric as well. If Fγ(P ) ≥ 0, then we
shall say that P is a solution of the quadratic matrix inequality at γ.
Note the close relationship of this quadratic matrix inequality with the
dissipation inequality used in [Gee, Wi7]. The difference being the extra
term γ−2PEETP in the upper left corner. If P satisfies the dissipation
inequality then the system (with w = 0) is dissipative with supply rate
zTz and storage function −xTPx (for a definition of these concepts we
refer to [WW2, Wi3, Wi4]). On the other hand, if P satisfies the quadratic
matrix inequality then there is a feedback w = Fx such that the closed-
loop system is dissipative with supply rate zTz − γ2wTw and storage
function −xTPx. Note that we are clearly not interested in feedbacks of
the disturbance. However, the disturbance w wants to make the quotient
zTz − γ2wTw large. It turns out that by making the system dissipative
with this storage function and supply rate the disturbance is doing this
in some way. The above is only meant to give some intuition behind the
introduction of this quadratic matrix inequality.

In addition to (4.2), for any γ > 0 and P ∈ Rn×n, we define a
n× (n+m) matrix pencil Lγ(P, s) by

Lγ(P, s) :=
(
sI −A− γ−2EETP −B

)
. (4.3)

Again if γ = 1 we shall write L(P, s) instead of L1(P, s). We note that
Lγ(P, s) is the controllability pencil associated with the system

ẋ =
(
A+ γ−2EETP

)
x+Bu.
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Gci will denote the transfer matrix of the system Σci := (A,B,C,D1)
which is a subsystem of Σ as described by (4.1). We are now in the
position to formulate the main result of this chapter:

Theorem 4.1 : Consider the system (4.1). Let γ > 0. Assume that the
system (A,B,C,D1) has no invariant zeros on the imaginary axis. Then
the following three statements are equivalent:

(i) A static feedback law u = Fx exists such that after applying this
compensator to the system (4.1) the resulting closed-loop system is
internally stable and the closed-loop operator GF has H∞ norm less
than γ, i.e. ‖GF ‖∞ < γ.

(ii) (A,B) is stabilizable and for the system (4.1) a δ < γ exists such
that for all w ∈ Ll2 there exists an u ∈ Lm2 such that xu,w ∈ Ln2 and
‖zu,w‖2 ≤ δ‖w‖2.

(iii) A real symmetric solution P ≥ 0 to the quadratic matrix inequality
Fγ(P ) ≥ 0 exists such that

rank Fγ(P ) = rankR(s)Gci (4.4)

and

rank

(
Lγ(P, s)
Fγ(P )

)
= n+ rankR(s)Gci ∀s ∈ C0 ∪ C+. (4.5)

✷

Remarks :

(i) The implication (i) ⇒ (ii) is trivial. Hence we only need to prove
(ii)⇒ (iii)⇒ (i). The first step will be done in the next section and
in the section after that we shall complete the proof. We shall only
prove this result for γ = 1, the general result can be easily obtained
by scaling.

(ii) The case that the assumption concerning the invariant zeros on the
imaginary axis is not satisfied will be discussed in section 4.7. The
extension to the more general system (3.1), where D2 is arbitrary,
will be discussed in section 4.6.
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Before embarking on a proof of this theorem we would like to point out
how the results from the previous chapter for D2 = 0 and D1 injective
can be obtained from our theorem as a special case. First note that in
this case we have

rankR(s)Gci = rank D1 = m

Define

Rγ(P ) := PA+ATP + γ−2PEETP + CTC

− (PB + CTD1) (DT
1D1)

−1 (BTP +DT
1C) .

Furthermore, define a real (n+m)× (n+m) matrix by

S(P ) :=

(
I − (PB + CTD1) (DT

1D1)−1

0 I

)
.

Then clearly we have

S(P )Fγ(P )S(P )T =

(
Rγ(P ) 0

0 DT
1D1

)
.

From this we can see that the conditions Fγ(P ) ≥ 0 and rankR(s)Fγ(P ) =
m are equivalent to the single condition Rγ(P ) = 0. We now analyse the
second rank condition appearing in our theorem. It is easy to verify that
for all s ∈ C we have


I 0 B (DT

1D1)
−1

0 I − (PB + CTD1) (DT
1D1)

−1

0 0 I




(
Lγ(P, s)
Fγ(P )

)
=



sI −A− γ−2EETP +B (DT

1D1)
−1 (BTP +DT

1C) 0
Rγ(P ) 0

BTP +DT
1C DT

1D1


 .

Consequently, if Rγ(P ) = 0, then for each s ∈ C the condition

rank

(
Lγ(P, s)
Fγ(P )

)
= n+ rankR(s)Gci. (4.6)

is equivalent to

rank
(
sI −A− γ−2EETP +B (DT

1D1)
−1 (BTP +DT

1C)
)
= n
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and hence, since (4.6) should hold for all s ∈ C0 ∪ C+, we find that this is
equivalent to the requirement that the matrix

A+ γ−2EETP −B (DT
1D1)

−1 (BTP +DT
1C)

is asymptotically stable. Theorem 3.1 for the case that D2 = 0 is then
obtained immediately.

4.3 Solvability of the quadratic matrix
inequality

In this section we shall establish a proof of the implication (ii) ⇒ (iii)
in theorem 4.1: assuming that the condition in part (ii) is satisfied we
shall show that there is a solution of the quadratic matrix inequality that
satisfies the two rank conditions. As announced just after theorem 4.1 we
shall only prove this result for γ = 1. Therefore throughout this section
we assume that γ = 1.

Consider our system (4.1). For the special case that D1 is injective,
we already have theorem 3.1 available. Our proof will use this result.

This time we do not make assumptions on the matrix D1. Choose
bases in the state space, the input space and the output space as in ap-
pendix A (where D is replaced by D1) and apply the preliminary feedback
u = F0x+ v where F0 is given by (A.1). We obtain the system

Σ̂ :

{
ẋ = (A+BF0)x + Bv + Ew,

z = (C +D1F0)x + D1v
(4.7)

After this transformation, in terms of our decomposition, we have the
equations (A.5)–(A.7). We can consider our control system as the inter-
connection of the subsystem Σ̃ given by the equations (A.5) and (A.7)
and the subsystem Σ0 given by (A.6). This interconnection is depicted in
picture (A.8). The idea we want to pursue is the following. We know con-
dition (ii) of theorem 4.1 is still satisfied after the preliminary feedback,
i.e. there exists a δ < 1 such that for all w ∈ Ll2 there exists a v ∈ Lm2
such that

• ‖zv,w‖2 ≤ δ‖w‖2,
• xv,w ∈ Ln2 .

(4.8)

Then, for a given w, let v be such that these conditions are satisfied.
Define v1 as the first component of v and take x3 as the third component
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of xv,w. Interpret (v1, x3) as an input for the subsystem Σ̃ defined by the
equations (A.5) and (A.7). It then follows from (4.8) that

• ‖z1‖22 + ‖z2‖22 ≤ δ2‖w‖22,
• x1 ∈ Ln2 .

Moreover note that the fictitious input x3 ∈ L2. Since w ∈ L2 was arbi-
trary we note that Σ̃ satisfies condition (ii) of theorem 4.1 with “inputs”
(v1, x3), disturbance w and output (z1, z2). The crucial observation is
now that the direct-feedthrough matrix of Σ̃ is injective (see lemma A.2).
Thus we can apply theorem 3.1 to the system Σ̃. Before doing this we
should make sure that (A, (B11, A13)) is stabilizable and that Σ̃ci given
by (A.12) has no invariant zeros on the imaginary axis. It is easy to see
that if (A,B) is stabilizable, then (A, (B11, A13)) is also stabilizable. Fur-
thermore if Σci = (A,B,C,D1) has no invariant zeros on the imaginary
axis, then the same holds for Σ̃ci (see lemma A.3). Consequently, we may
apply theorem 3.1 to Σ̃ and we obtain:

Corollary 4.2 : Consider the system (4.1). Assume that (A,B,C,D1)
has no invariant zeros on the imaginary axis. Moreover, assume that part
(ii) of theorem 4.1 is satisfied. Then a real symmetric solution P1 ≥ 0
to the algebraic Riccati equation R(P1) = 0 exists, where R is defined by
(A.17), such that Z(P1) is asymptoticaly stable, where Z is defined by
(A.18). ✷

The basic idea pursued in section A.2 is that there is a one–one relation
between solutions of the algebraic Riccati equation R(P1) = 0 and solu-
tions of the quadratic matrix inequality Fγ(P ) ≥ 0 which satisfy the first
rank condition (4.4). This is formalized in theorem A.6. The implica-
tion (ii) ⇒ (iii) is then obtained directly by combining corollary 4.2 with
theorem A.6.

4.4 Existence of state feedback laws

In this section we give a proof of the implication (iii) ⇒ (i) in theorem
4.1. We shall first explain the idea of the proof. Again, we consider the
parameters of our control system with respect to the bases of appendix
A and after applying the preliminary feedback u = F0x + v where F0 is
defined by (A.1). In this way we obtain the system Σ̂ defined by (4.7).
Also, as in the previous section, we consider our control system as the
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interconnection of the subsystem Σ̃ given by the equations (A.5) and (A.7)
and the subsystem Σ0 given by (A.6). Suppose that the quadratic matrix
inequality has a positive semi-definite solution at γ = 1 such that the
rank conditions (4.4) and (4.5) hold. Then, according to theorem A.6,
the algebraic Riccati equation associated with the subsystem Σ̃ (with
“inputs” v1 and x3) has a positive semi-definite solution P1 such that the
corresponding matrix Z(P1), defined by (A.18), is asymptotically stable.
Thus, by applying theorem 3.1 to the subsystem Σ̃, we find that the
“feedback law”

v1 = −
(
D̂TD̂

)−1
BT

11P1x1, (4.9)

x3 = − (CT
23C23)

−1 (AT
13P1 + CT

23C21) x1, (4.10)

applied to the system Σ̃ yields an internally stable system and the closed-
loop transfer matrix has H∞ norm smaller than 1. Now what we shall do
is the following: we shall construct a state feedback law for the original
system (4.1) in such a way that in the subsystem Σ̃ the equality (4.10)
holds approximately and the equality (4.9) holds exactly. The closed-loop
transfer matrix of the original system will then be approximately equal
to that of the subsystem Σ̃ and will therefore also have H∞ norm smaller
than 1.

In our proof an important role will be played by a result in the context
of the problem of almost disturbance decoupling as studied in [Tr] and
[Wi5]. The results we need are recapitulated in section 2.6. We shall now
formulate and prove the converse of corollary 4.2:

Theorem 4.3 : Consider the system (4.1). Assume that (A,B,C,D1)
has no invariant zeros on the imaginary axis. Assume that a real sym-
metric solution P1 ≥ 0 to the algebraic Riccati equation R(P1) = 0 ex-
ists, where R is defined by (A.17), such that Z(P1), defined by (A.18),
is asymptotically stable. Then F ∈ Rm×n exists such that A + BF is
asymptotically stable and such that after applying the state feedback law
u = Fx to Σ we have ‖GF ‖∞ < 1. ✷

Proof : Clearly it is sufficient to prove the existence of such state feed-
back law v = Fx for the system (4.7). Let this system be decomposed
according to (A.5)–(A.7). Choose

v1 = −
(
D̂TD̂

)−1
BT

11P1x1
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and introduce a new state variable q3 by

q3 := x3 + (CT
23C23)

−1 (AT
13P1 + CT

23C21) x1

Then the equations (A.5)–(A.7) can be rewritten as

ẋ1 = Ã11x1 +A13q3 + E1w, (4.11)

(
ẋ2

q̇3

)
=

(
A22 A23

A32 Ã33

)(
x2

q3

)
+

(
B22

B32

)
v2 +

(
Ã21

Ã31

)
x1 +

(
E2

Ẽ3

)
w, (4.12)

(
z1

z2

)
=

(
C̃1

C̃2

)
x1 +

(
0
C23

)
q3. (4.13)

Here we used the following definitions:

Ã11 := A11 −A13(CT
23C23)−1(AT

13P1 + CT
23C21)

−B11(D̂TD̂)−1BT
11P1,

Ã21 := A21 −A23(CT
23C23)−1(AT

13P1 + CT
23C21)

−B21(D̂TD̂)−1BT
11P1,

Ã31 := A31 −A33(CT
23C23)−1(AT

13P1 + CT
23C21)

−B31(D̂TD̂)−1BT
11P1

+(CT
23C23)−1(AT

13P1 + CT
23C21)Ã11,

Ã33 := A33 + (CT
23C23)−1(AT

13P1 + CT
23C21)A13,

C̃1 := −D̂(D̂TD̂)−1BT
11P1,

C̃2 := C21 − C23(CT
23C23)−1(AT

13P1 + CT
23C21),

Ẽ3 := E3 + (CT
23C23)−1(AT

13P1 + CT
23C21)E1.

By corollary (A.8), we know that Ã11 is asymptotically stable. According
to theorem 3.1, if in the subsystem formed by the equations (4.11) and
(4.13) we have q3 = 0, then its transfer matrix from w to z has H∞ norm
smaller than 1. Moreover, by corollary (A.8), we know that Ã11 is asymp-
totically stable. Hence, there exist M > 0 and ρ > 0 such that for all w
and q3 in L2 we have

‖z‖2 < (1− ρ)‖w‖2 +M‖q3‖2 (4.14)

Also, since Ã11 is asymptotically stable, M1,M2 > 0 exist such that for
all w and q3 in L2 we have

‖x1‖2 < M1‖w‖2 +M2‖q3‖2. (4.15)
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We claim that the following system is strongly controllable:[(
A22 A23

A32 Ã33

)
,

(
B22

B32

)
,
(
0 I

)
, 0

]
(4.16)

This can be seen by the following transformation:

I 0 0
0 I A33 − Ã33

0 0 I






sI −A22 −A23 −B22

−A32 sI −A33 −B32

0 I 0




=



sI −A22 −A23 −B22

−A32 sI − Ã33 −B32

0 I 0


 .

Since the first matrix on the left is unimodular and the second matrix
has full row rank for all s ∈ C (combine lemmas 2.8 and A.2), the matrix
on the right has full row rank for all s ∈ C. Hence the system (4.16) is
strongly controllable by lemma 2.8.

Consider now the almost disturbance decoupling problem for the sys-
tem (4.12) with output q3 and “disturbance” (x1, w). According to lemma
2.17 the strong controllability of (4.16) implies that there exists a feedback
law

v2 = F1

(
x2

q3

)

such that in (4.12) we have

‖q3‖2 <
ρ

2
(M +M1M + ρM2)

−1 {‖w‖2 + ‖x1‖2} (4.17)

for all w and x1 in L2, and such that the matrix

Ã :=

(
A22 A23

A32 Ã33

)
+

(
B22

B32

)
F1

is asymptotically stable. Combining (4.14), (4.15) and (4.17) gives us

‖z‖2 <
(
1− ρ

2

)
‖w‖2

for all w in L2. Summarizing, we have shown that if in our original system
(4.7) we apply the state feedback law

v1 = −
(
D̂TD̂

)−1
BT

11P1x1

v2 = F1

(
x2

x3 + (CT
23C23)

−1 (AT
13P1 + CT

23C21) x1

)
,

(4.18)
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then for all w ∈ Ll2 we have ‖z‖2 < δ‖w‖2 with δ < 1. Thus, theH∞ norm
of the resulting closed-loop transfer matrix is smaller than 1.
It remains to be shown that the closed-loop system is internally stable.
We know that

‖
(
sI − Ã11

)−1
A13‖∞ ≤M2 (4.19)

‖
(
0 I

) (
sI − Ã

)−1
(
Ã21

Ã31

)
‖∞ ≤ ρ

2
(M +M1M + ρM2)

−1

≤ 1
2M2

(4.20)

The closed-loop state matrix resulting from the feedback (4.18) is given
by

Acl :=




Ã11

(
0 A13

)
(
Ã21

Ã31

)
Ã




Assume that (xT, yT, zT)T is an eigenvalue of Acl with eigenvalue λ with
Re λ ≥ 0. It can be seen that

x =
(
λI − Ã11

)−1
A13z, (4.21)

z =
(
0 I

) (
λI − Ã

)−1
(
Ã21

Ã31

)
x. (4.22)

(Note that the inverses exist due to the fact that Ã11 and Ã are stable
matrices.) Combining (4.19) and (4.21) we find ‖x‖ ≤ M2‖z‖ and com-
bining (4.20) and (4.22) yields ‖x‖ ≥ 2M2‖z‖. Hence x = z = 0. This
would however imply that ( yT 0 )T is an unstable eigenvector of Ã.
Since Ã is asymptotically stable this yields a contradiction. This proves
that the closed-loop system is internally stable.

Again using the one–one relation between solutions of the Riccati equation
and solutions of the quadratic matrix inequality as given in theorem A.6,
the implication (iii) ⇒ (i) in theorem 4.1 is now obtained by combining
theorem A.6 and theorem 4.3.

Remarks : In the regular case (i.e. D1 injective) it is quite easy to
give an explicit expression for a suitable state feedback law. This was
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done in theorem 3.1. In the singular case (i.e. D1 is not injective) a
suitable state feedback law is given by u = F0x+ v. Here, F0 is given by
(A.1) and v = ( vT

1 vT
2 )T is given by (4.18). The matrix P1 is obtained

by solving the quadratic matrix inequality or, equivalently, by solving
the reduced order Riccati equation R(P1) = 0 where R is defined by
(A.17). The matrix F1 is a “state feedback” for the strongly controllable
auxiliary system (4.12). This state feedback achieves almost disturbance
decoupling between the “disturbance” (x1, w) and the “output” q3. The
required accuracy of decoupling is expressed by (4.17). A conceptual
algorithm to construct F1 is given in section 4.5. In this section we
also discuss the numerical reliability of several algorithms available in the
literature.

4.5 The design of a suitable compensator

Several algorithms are available in the literature for the construction of a
suitable compensator for singular H∞ control problems. The best-known
algorithm is a small perturbation of the system parameters such that
the perturbed system becomes regular. We can then apply the results of
the previous chapter where a suitable controller is given explicitly. This
method is outlined in subsection 4.7.2.

An alternative approach is to use the steps outlined in this chapter.
In other words, bring the system in the form of the basis of appendix
A. Then a suitable controller is given by (4.18) where F1 should be such
that (4.17) is satisfied. Hence the problem is reduced to finding a state
feedback for the strongly controllable system defined by the quadruple in
(4.16) such that the closed-loop H∞ norm is less than:

δ :=
ρ

2
(M +M1M + ρM2)

−1

∥∥∥∥∥
(
Ã21 E2

Ã31 Ẽ3

)∥∥∥∥∥
where all matrices are as defined in the previous section. We shall de-
scribe a method which is an adapted version of the one given in [Tr]. An
alternative method is described in [OSS1].

We denote the first three matrices of the quadruple in (4.16) by Ã,
B̃ and C̃ respectively.

(i) We construct a new basis for the state space. We shall construct it
by induction. Choose 0 �= x1 ∈ ker C̃ ∩ im B̃ and, if such x1 exists,
choose v1 such that Bv1 = x1. If x1 does not exist then set i = 0
and Si = {0} and go to item (ii).
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Assume that {x1, . . . , xi} and {v1, . . . , vi} are given. Denote by
Si the linear span of {x1, . . . , xi}. If (Ãxi + im B̃) ∩ ker C̃ ⊂ Si
and im B̃ ∩ ker C̃ ⊂ Si then go to step (ii). Otherwise, if (Ãxi +
im B̃)∩ ker C̃ �⊂ Si then choose v such that Ãxi+ B̃v ∈ ker C̃ and
Ãxi+B̃v �∈ Si. Set xi+1 = Ãxi+B̃v and vi+1 = v. If (Ãxi+ im B̃)∩
ker C̃ ⊂ Si, then choose v such that B̃v ∈ ker C̃ and B̃v �∈ Si. Set
xi+1 = B̃v and vi+1 = v. Set i := i + 1 and repeat this paragraph
again.

(ii) DefineR∗
a( ker C̃) = Si. Define a linear mapping F such that Fxj =

vj , j = 1, . . . , i and extend it arbitrarily to the whole state space.
In [Tr] it has been shown that ÃR∗

a( ker C̃)+ im B̃ = T (Σht) = Rn.
Therefore we can extend the basis of Si, {x1, . . . , xi} to a basis of
Rn which can be written as

B̃v1, AF B̃v1, . . . , Ar1
F B̃v1,

B̃v2, AF B̃v2, . . . , Ar2
F B̃v2,

...
...

...
B̃vi, AF B̃vi, . . . , Ari

F B̃vi,

B̃vi+1, . . . , B̃vk,

where AF = Ã + B̃F and where we may have to extend our set
{v1, . . . , vi} with some vectors vj, j = i+1, . . . , k in order to obtain
a basis of Rn. Moreover, for j = 1, . . . , i we should have

B̃vj , AF B̃vj , . . . , A
rj−1
F B̃vj ∈ ker C̃.

We define rj = 0 for j = i+ 1, . . . , k.

(iii) We define the following sequence of vectors. For j = 1, . . . , k we
define:

xj,1(n) :=
(
I + 1

nAF

)−1
B̃vj

xj,2(n) :=
(
I + 1

nAF

)−1
AFxj,1(n)

...
...

...

xj,rj+1(n) :=
(
I + 1

nAF

)−1
AFxj,rj(n)

It is easily shown that xj,h(n)→ Ah−1
F B̃vj as n→∞ for j = 1, . . . , k

and h = 1, . . . , rj+1. Therefore, for n sufficiently large, the vectors

{xj,h(n), j = 1, . . . , k; h = 1, . . . , rj + 1}
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are linearly independent and hence form a basis of Rn again. Let
N be such that for all n > N these vectors indeed form a basis.

(iv) For all n > N define a linear mapping F̄n by

F̄nxj,1(n) := −nvj
F̄nxj,2(n) := −n2vj

...
...

F̄nxj,rj+1(n) := −nrj+1vj

for j = 1, . . . , k. This determines F̄n uniquely. Define Fn := F+F̄n.
It is shown in [Tr] that the spectrum of Ã + B̃Fn is the set {−n}.
Moreover, we have

lim
n→∞ ‖C̃e

(A+BFn)t ‖1 = 0

Choose n such that the impulse response has L1 norm smaller than
δ.

We would like to conclude this section by comparing the three methods
mentioned in this section. Several numerical problems arise:

(i) In order to transform the system in the bases of appendix A we
need the subspace T (Σci). The construction of this subspace as
given in lemma 2.5 depends strongly on the determination of kernels
and images of matrices. However, a rank evaluation is needed to
determine, e.g. the kernel, and this is known to be a numerically
ill-posed problem. To determine this subspace we can also use the
algorithm as described in [SS]. This has the same problem but this
algorithm has been thoroughly tested via examples and seems to
work well.

(ii) The method described in this section and also the method described
in subsection 4.7.2 involves a parameter (ε and 1/n respectively)
which goes to infinity. This also results in numerical problems.

Fortunately there is an easy and numerically reliable test whether the
resulting feedback is stabilizing and satisfies the H∞ norm bound for the
closed-loop system. A good algorithm to calculate the H∞ norm can be
found in [BBK, BS]. In other words, we can check whether the numerical
problems resulted in a bad design.

The algorithm in [OSS1, OSS2] also involves rank evaluations. How-
ever, by using the infinite zero structure and especially the different
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timescales of eigenvalues that go to infinity, this algorithm results in feed-
backs with lower gain to achieve the same level of disturbance decoupling.
Ozcetin et al.’s work shows that combining the results in this book on the
singular H∞ control problem with their algorithm yielded better results
(i.e. lower feedback gain) in all the examples they tried when compared
to the often proposed technique of subsection 4.7.2.

4.6 A direct-feedthrough matrix from disturbance

to output

In this section we shall show how to handle the state feedback case for
the more general system

Σ :

{
ẋ = Ax + Bu + Ew,

z = Cx + D1u + D2w.
(4.23)

(i.e. we allow for D2 �= 0). We shall use a technique from [Gl6] to reduce
this problem to the problem studied in section 4.2. Throughout this
section we shall assume that γ = 1. The more general result can be
easily derived by scaling. There is one notable difference between the
regular case and the singular case if the extra direct-feedthrough matrix
is present. In the regular case conditions (i) and (ii) of theorem 3.1 are
equivalent. This is not true in the singular case. An easy counter example
is the following:

Example 4.4 : Let the following system be given:

Σ :

{
ẋ = u,

z = x + 100w.

After applying an arbitrary static feedback of the form u = f1x+ f2w the
closed-loop transfer matrix will be given by

gf (s) =
f2

s− f1
+ 100.

Clearly ‖gf‖∞ ≥ 100. However, if we set u = −100ẇ, then z = 0 for all
w which are differentiable and satisfy w(0)=0 (if w is not differentiable
or if w(0) �= 0, then we can approximate w arbitrarily by a differentiable
function w1 which satisfies w1(0) = 0). This implies that condition (ii)
of theorem 3.1 is satisfied but on the other hand condition (i) of theorem
3.1 is certainly not satisfied. This yields the desired contradiction. ✷
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In general the controllers we would need in the case that condition (ii) is
satisfied while condition (i) is not satisfied will be non-proper, i.e. they will
include differentiations of the disturbance. Since this is very undesirable
we shall focus all our attention on controllers of the form (2.4). We shall
restrict ourselves to the case of state feedback, i.e. y = x. The result for
the full-information case, i.e. y = (x,w), can be obtained in a similar way.

It is easily seen that when there exists a dynamic controller of the
form (2.4) where y = x which makes the H∞ norm less than 1 then
‖D2‖ < 1. We therefore assume that ‖D2‖ < 1. We define the following
matrices

AD := A+ E (I −DT
2D2)

−1
DT

2C,

BD := B + E (I −DT
2D2)

−1DT
2D1,

ED := −E (I −DT
2D2)

−1/2 ,

CD := (I −D2D
T
2 )

−1/2 C,

D1,D := (I −D2D
T
2 )

−1/2
D1.

Using these matrices we define the following system:

ΣD :

{
ẋD = ADxD + BDuD + EDwD,

zD = CDxD + D1,DuD.
(4.24)

We have the following lemma connecting ΣD and Σ:

Lemma 4.5 : Let ΣF be a dynamic controller of the form (2.4). Con-
sider the following two systems:

Σ

ΣF

❄

✛

✻

✛

y = x

z w

ũ

ΣD

ΣF

❄

✛

✻

✛

yD = xD

zD wD

uD
(4.25)

The system on the left is the interconnection of Σ described by (4.23) and
ΣF described by (2.4). The system on the right is the interconnection
of ΣD described by (4.24) and the same feedback compensator ΣF . The
following two conditions are equivalent

(i) The system on the left is internally stable and the closed-loop trans-
fer matrix from w to z has H∞ norm less than 1.
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(ii) The system on the right is internally stable and the closed-loop
transfer matrix from wD to zD has H∞ norm less than 1. ✷

Proof : We define the following static system

ΣΘ :

(
zΘ

yΘ

)
=

(
D2 (I −D2D

T
2 )

1/2

− (I −DT
2D2)

1/2 DT
2

)(
wΘ

uΘ

)
.

It is straightforward to check that ΣΘ is inner. We investigate the follow-
ing two interconnections:

Σ

ΣD

ΣΘ

✛y = x

✛

✛ũ

✛

✛yD = xD

✛

✛uD

✛

❄
✻

z w

zΘ wΘ

yΘ = wD zD = uΘ
(4.26)

Then it is easily shown that these systems have identical realizations.
Next, we investigate the following interconnections:

Σ

ΣD
ΣF

ΣF

ΣΘ

❄

✛

✻

✛

❄

✛

✻

✛

❄
✻

y = x

z w

ũ

zΘ

yD = xD uD

wΘ

yΘ = wD zD = uΘ

(4.27)

Because for the system on the left and the system on the right in (4.26)
we have identical realizations it is immediate that in (4.27) the system on
the left is internally stable and has H∞ norm less than 1 if, and only if,
the system on the right is internally stable and has H∞ norm less than 1.

We would now like to apply lemma 2.12 to the interconnection on
the right where Σ1 = ΣΘ and Σ2 is the dashed system. As required,
ΣΘ is inner and the 2,1 block of its transfer matrix is invertible in H∞ .
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However, the 2,2 block of its transfer matrix, G22, is not strictly proper.
On the other hand, if one checks the proof of lemma 2.12 it is easily seen
that the requirement that G22 is strictly proper is only needed to show
that I−G22G2 is invertible as a rational matrix, where G2 is the transfer
matrix of the dashed system. It is easy to check that I−G22G2 evaluated
at infinity is equal to I −DT

2D2. Hence, since I −DT
2D2 is invertible, the

rational matrix I − G22G2 is invertible. This implies that the result of
lemma 2.12 is still valid. Therefore in (4.27) the system on the right is
internally stable and has H∞ norm less than 1 if, and only if, the dashed
system is internally stable and has H∞ norm less than 1.

Combining, we find that in (4.27) the system on the left is internally
stable and has H∞ norm less than 1 if, and only if, the dashed system is
internally stable and has H∞ norm less than 1. By noting that the system
on the left in (4.27) is equal to the system on the left in (4.25) and the
dashed system in (4.27) is equal to the system on the right in (4.25) this
completes the proof.

We can also derive the following result:

Lemma 4.6 : Assume that the system Σ and the system ΣD, described
by (4.23) and (4.24), respectively, are given. The invariant zeros of
(A,B,C,D1) are equal to the invariant zeros of (AD, BD, CD,D1,D). ✷

Proof : We have the following relationship between the system matrices
of the systems (A,B,C,D1) and (AD, BD, CD,D1,D) respectively:(

I EDT
2 (I −D2D

T
2 )

−1/2

0 (I −D2D
T
2 )

1/2

)(
sI −AD −BD

CD D1,D

)
=

(
sI −A −B
C D1

)
.

Since the first matrix on the left is unimodular, the above equality im-
mediately gives the desired result.

We shall now state and prove the results for the more general system
(4.23). The following theorem generalizes theorem 3.2.

Theorem 4.7 : Let the system Σ described by (4.23) be given. Assume
that (A,B,C,D1) has no invariant zeros on the imaginary axis. Then
the following three statements are equivalent:
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(i) A compensator ΣF described by the static state feedback law u = Fx
exists such that the closed-loop system Σ × ΣF is internally stable
and has H∞ norm less than 1.

(ii) A compensator ΣF of the form (2.4) with y=x exists such that the
closed-loop system Σ × ΣF is internally stable and has H∞ norm
less than 1.

(iii) We have ‖D2‖ < 1 and ΣD defined by (4.24) satisfies condition (iii)
of theorem 4.1 with γ = 1. ✷

Proof : The implication (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii): Note that if there is a dynamic state feedback which

makes the H∞ norm less than 1, then ‖D2‖ < 1. By lemma 4.5 if there
is an internally stabilizing controller ΣF which makes the H∞ norm less
than 1, then the same controller is internally stabilizing for the system
ΣD defined by (4.24) and this controller also makes the H∞ norm of the
closed-loop system ΣD × ΣF less than 1. By lemma 4.6 ΣD satisfies
the assumptions of theorem 4.1 and we already know that ΣD satisfies
condition (ii) of theorem 4.1. Therefore condition (iii) of theorem 4.1 is
satisfied for the system ΣD.

(iii) ⇒ (i): By lemma 4.6 the system ΣD satisfies the assumptions
of theorem 4.1 and moreover condition (iii) of theorem 4.1 is satisfied.
Therefore, the system ΣD satisfies condition (i) of theorem 4.1. This
implies that for the system ΣD there is an internally stabilizing static
state feedback which makes the closed-loop H∞ norm less than 1. Finally
by lemma 4.5 this state feedback satisfies condition (i) of theorem 4.7 for
the system Σ.

4.7 Invariant zeros on the imaginary axis

In this section we shall discuss two methods which can be used to solve
the H∞ problem with zeros on the imaginary axis. A method we shall
not discuss and which is given in [S3] will probably lead to much more
elegant conditions but these conditions are too complex to explain here in
detail (some discussions on this alternative method are given in subsection
12.2.1).
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4.7.1 Frequency-domain loop shifting

The basic method (see [Kh2, Li3, Sa]) here is based on applying a trans-
formation in the frequency-domain. This method is applicable for the
full-information feedback case. On the other hand, for the state feedback
case we have, after transformation, a problem with measurement feed-
back which we can only solve using techniques which will be given in the
next chapter. Therefore we assume that y = (x,w).

For all ε > 0 we define the following transformation:

G(s) −→ G̃(s) := G

(
ε+ s
1 + εs

)

and instead of minimizing the H∞ norm of a system described by the
transfer matrix G we minimize the H∞ norm of a system described by
the transfer matrix G̃. If I − εA is invertible a state space realization of
G̃ is given by:

Σ̃(ε) :




ẋ = Ãx + B̃u + Ẽw,

ỹ = C̃1x + D̃11u + D̃12w,

z = C̃2x + D̃21u + D̃22w,

(4.28)

where

Ã := (A− εI)(I − εA)−1,

B̃ := (1− ε2)(I − εA)−1B,

Ẽ := (1− ε2)(I − εA)−1E,

C̃1 :=

(
(I − εA)−1

0

)
,

C̃2 := C(I − εA)−1,

D̃11 :=

(
ε(I − εA)−1B

0

)
,

D̃12 :=

(
ε(I − εA)−1E

I

)
,

D̃21 := D1 + εC(I − εA)−1B,

D̃22 := D2 + εC(I − εA)−1E.

Assume that a compensator Σ̃F described by u = F̃1x + F̃2w for Σ̃(ε)
exists such that the closed-loop system is internally stable, the closed-
loop transfer matrix G̃cl has H∞ norm less than 1 and, moreover, the
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matrix I − εBF1 is invertible (the latter we can always achieve by an
arbitrarily small perturbation). We define

F :=
(
F̃1(I + εBF̃1) F̃2

)(I − εA −ε(E −BF̃2)
0 I

)
. (4.29)

The feedback u = F ỹ applied to the same system Σ̃(ε) but with ỹ instead
of y = (x,w) yields the same closed-loop system and is hence internally
stabilizing and the closed-loop transfer matrix is G̃cl.

If we apply the feedback ΣF described by u = Fy to our original
system, then the closed-loop system ΣF × Σ, with transfer matrix Gcl,
is related to the closed-loop system Σ̃(ε)× Σ̃F , with transfer matrix G̃cl,
via the above transformation, i.e.

G̃cl(s) = Gcl

(
ε+ s
1 + εs

)
.

Moreover, it can be shown that the state matrix of the closed-loop system
Σ × ΣF has all its eigenvalues inside a circle D̃ which is symmetric with
respect to the real axis and lies in the left half plane between −ε and −1/ε.
Hence the closed-loop system is certainly internally stable. Denote the
set of all s ∈ C outside that circle by D̃+. We have

1 > ‖G̃F ‖∞ = sup
s∈C+

‖G̃F (s)‖ = sup
s∈D̃+

‖GF (s)‖

≥ sup
s∈C+

‖GF (s)‖ = ‖GF ‖∞.

Hence ΣF makes the H∞ norm of the closed-loop transfer matrix GF

strictly less than 1.
On the other hand, if, for the system Σ, there is a stabilizing static

compensator ΣF with y = (x,w) which makes the H∞ norm of the closed-
loop system strictly less than 1 then it can be shown that ε1 > 0 exists
such that for all 0 < ε ≤ ε1 the transformed system Σ̃(ε) with the same
compensator Σ̃F but with measurement ỹ is internally stable and the
H∞ norm of the closed-loop system is strictly less than 1.

Now for all but finitely many ε > 0 the system Σ̃(ε), described by
(4.28) is such that (Ã, B̃, C̃2, D̃21) has no invariant zeros on the imagi-
nary axis. Therefore to check if for Σ̃(ε) there is an internally stabilizing
feedback which makes the H∞ norm of the closed-loop system less than
1 we can use the results of the previous section.

We can formalize the above intuition in the following theorem. We
shall not formally prove this theorem.
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Theorem 4.8 : Let a system Σ be given described by (4.23). For all
ε > 0 such that I−εA is invertible we define Σ̃(ε) by (4.28). The following
two statements are equivalent:

(i) For the system Σ there is a static feedback ΣF described by u =
F1x+F2w which is internally stabilizing and which makes the H∞
norm of the closed-loop system less than 1.

(ii) ε1 > 0 exists such that for all 0 < ε < ε1 the matrix I − εA is
invertible and the subsystem (Ã, B̃, C̃, D̃1) of Σ̃(ε) has no invariant
zeros on the imaginary axis. Moreover, ε1 can be chosen such that
for all 0 < ε < ε1 a feedback Σ̃F exists for Σ̃(ε) of the form u =
F̃1x + F̃2w which is internally stabilizing and makes the H∞ norm
of the closed-loop system less than 1. ✷

Remarks

(i) Note that we can check part (ii) for some ε > 0 using the methods
from the previous section. The problem is that we do not know how
small we must make ε. If for some ε > 0 part (ii) is not satisfied,
then either part (i) is not true or part (ii) is true for some smaller
ε. Therefore we are never sure.

(ii) A controller satisfying part (ii) such that I − εBF̃1 is invertible can
be transformed into a controller u = Fy which satisfies part (i)
where F is defined by (4.29). This condition is a well-posedness
condition we need since the system Σ̃(ε) with measurement ỹ has
D̃11 �= 0.

(iii) The advantage of this method is that controllers for Σ found in this
way will yield closed-loop systems which have all poles inside D̃ and
hence inside the left half plane. Since poles close to the imaginary
axis with high imaginary part are outside D̃ they can never be
eigenvalues of the closed-loop state matrix. Since this kind of ill-
damped, high-frequency poles is highly undesirable from a practical
point of view this is a nice property.

(iv) We think that this transformation should make it clear to the reader
that transformations in the frequency-domain are not well-suited for
the state feedback case or for the full-information case. Often these
problems are transformed into systems with measurement feedback
where we might really have trouble observing the state. This is the
reason why most of the approaches we shall discuss in section 5.1
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for the H∞ control problem with measurement feedback are often
not very suitable to treat the special cases of state feedback and
full-information feedback.

4.7.2 Cheap control

In this subsection we shall briefly describe how the method used in [Kh3,
Kh2, Pe3, Pe5, ZK2] still gives necessary and sufficient conditions for the
existence of internally stabilizing controllers which make the H∞ norm of
the closed-loop system less than 1 even when we have invariant zeros on
the imaginary axis. This subsection is worked out in more detail in [St].

We assume that we have a system Σ of the form (4.23). For each
ε > 0 we define the following system:

Σ̃(ε) :

{
ẋ = Ax + Bu + Ew,

z = C̃x + D̃1u + D̃2w,
(4.30)

where

C̃ =



C

εI

0


 , D̃1 =



D1

0
εI


 , D̃2 =



D2

0
0


 .

The structure of the perturbations on the matrices is such that it is easy
to show that any controller ΣF of the form (2.4) with y = x has the
property that ΣF is internally stabilizing when applied to Σ if, and only
if, the same controller ΣF is internally stabilizing when applied to Σ̃(ε)
(for y = (x,w), the same is true).

Let ΣF be internally stabilizing when applied to Σ. Denote the closed-
loop operator by GF . Moreover denote the closed-loop operator when the
controller is applied to Σ̃(ε) by G̃F (ε). Then we have

‖GF ‖∞ ≤ ‖G̃F (ε1)‖∞ ≤ ‖G̃F (ε2)‖∞

for all 0 ≤ ε1 ≤ ε2. Hence if we have an internally stabilizing controller
which makes the H∞ norm of the closed-loop system less than 1 when
applied to the system G̃F (ε), then the same controller is internally stabi-
lizing and makes the H∞ norm of the closed-loop system less than 1 when
applied to the original system. Thus we can obtain the following result:

Theorem 4.9 : Let a system Σ be given by (4.23). For all ε > 0 define
Σ̃(ε) by (4.28). The following two statements are equivalent:
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(i) For the system Σ there is a feedback ΣF of the form (2.4) with y = x
which is internally stabilizing and which makes the H∞ norm of the
closed-loop system less than 1.

(ii) ε1 > 0 exists such that for all 0 < ε < ε1 there is a feedback ΣF

of the form (2.4) for Σ̃(ε) with y = x which is internally stabilizing
and which makes the H∞ norm of the closed-loop system less than
1.

Any controller satisfying part (ii) for some ε > 0 also satisfies part (i).
✷

On the other hand for the system Σ̃(ε) the subsystem (A,B, C̃, D̃1) does
not have any invariant zeros and hence certainly no invariant zeros on the
imaginary axis. Moreover, D̃1 is injective. Hence we may apply the results
of chapter 3 to the system Σ̃(ε) to obtain necessary and sufficient condi-
tions for the existence of internally stabilizing controllers which make the
H∞ norm of the closed-loop system less than 1.

If we compare the method of the previous subsection with the method
of the current subsection, then we see that the method of this subsection is
much easier. First of all because we do not have to apply transformations
on the controller. Secondly because for all ε > 0 the system (4.30) is
well defined and satisfies the assumptions of chapter 3. In contrast the
system (4.28) is not always well defined and for certain values of ε > 0
there may be invariant zeros on the imaginary axis. Moreover, in general
it will only satisfy the conditions of chapter 4 and at this point the reader
is probably aware of the fact that the necessary and sufficient conditions
of chapter 4 are more difficult to check than the necessary and sufficient
conditions of chapter 3.

Both methods have the disadvantage that the conditions cannot ac-
tually be checked since both condition (ii) of theorem 4.8 and condition
(ii) of theorem 4.9 have to be checked for an infinite number of ε > 0.

One of the main reasons for using the method of the previous subsec-
tion is because all closed-loop poles will be placed inside a circle in the
open left half plane and therefore the closed-loop system will not have
ill-damped high-frequency poles. Hence the method has advantages from
an engineering point of view.

4.8 Conclusion

In this chapter we have completed the results on the full-information
H∞ control problem. It turns out that as long as we do not have in-
variant zeros on the imaginary axis, we find nice, checkable, necessary
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and sufficient conditions under which there exist an internally stabilizing
controller which makes the H∞ norm of the closed-loop system less than
some, a priori given, bound γ. In the case that we have a regular pro-
blem we have one Riccati equation and, if one exists, an explicit formula
for one suitable controller. On the other hand, for the singular problem
we have a quadratic matrix inequality and a couple of rank conditions.
Using a state space decomposition, the latter conditions can be shown to
be equivalent to a reduced order Riccati equation (see appendix A). A
problem is that we do not have an explicit formula for the desired con-
troller and there may be numerical problems when trying to find such a
controller.

When there are invariant zeros on the imaginary axis the methods of
section 4.7 can be used. However, these methods are not really satisfac-
tory and one would have to investigate the technique used in [S3] better
to obtain nicer conditions for the general case (the conditions we have in
mind are suggested in subsection 12.2.1).



Chapter 5

The H∞ control problem with
measurement feedback

5.1 Introduction

In the previous two chapters we investigated two special cases of the
H∞ control problem with measurement feedback, namely y = x and y =
(x,w). In this chapter we shall investigate the more general system (2.1).

Around 1984 practically all the work on H∞ control theory with
measurement feedback was done with a mixture of time-domain and
frequency-domain techniques (see [Do3, Fr2, Gl, Gl6]). The main draw-
back of these methods was that it yielded high order controllers. In
[Li, Li2] it was shown that the order of the controller could be reduced
considerably: it was proven that for the one block H∞ control problem
(the matrices D12 and D21 appearing in (2.1) are both square matrices)
and for the two block H∞ control problem (either the matrix D12 or the
matrix D21 in (2.1) is a square matrix) there are always “suitable” con-
trollers with an order no greater than the order of the plant.

During the last few years the H∞ control problem with measurement
feedback was investigated via several new methods:

• The interpolation approach. In fact, the interpolation approach
already has quite a history and several authors have worked on this
problem (see e.g. [Gr, Kh, Li3, Za2]). However, it can only treat
the special case of a one-block H∞ control problem. One should
note that the classic interpolation techniques were used for discrete
time systems. At first the continuous time case was treated via a
frequency-domain transformation to the discrete time case (a linear
fractional transformation as given in [Gen, appendix 1]).

• The time-domain approach (see [Do5, Kh3, Kh4, Pe, Ta]). This
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method was the first to suggest the use of Riccati equations in
H∞ control, which was an important breakthrough. The detailed
formulations of the results obtained via this method will be given
in this chapter.

• The polynomial approach (see [Bo, Kw, Kw2]). This method
starts with a polynomial left (or right) coprime factorization of the
transfer matrix of the system. Then it is shown that a controller
which minimizes the H∞ norm of the closed-loop system is a so-
called equalizing solution of a certain minimization problem. Con-
ditions for obtaining an internally stabilizing controller which min-
imizes the H∞ norm are then given in terms of diophantine equa-
tions. The current research in this area is to investigate the relation
between these diophantine equations and the conditions found in
other methods.

• The J-spectral factorization approach (see [Gr2, HSK, Ki]).
This method is strongly based on the classic frequency-domain ap-
proach. The conditions for the existence of an internally stabilizing
controller which makes the H∞ norm of the closed-loop system less
than some, a priori given, bound are given in terms of a rational ma-
trix which should have a so-called J-spectral factorization. Whether
such a factorization exists can be checked via the solvability of cer-
tain algebraic Riccati equations.

All of these methods show that if suitable controllers exist, then a suitable
controller can be found of the same complexity as the original plant. A
second feature that all of these methods have in common is a number of
basic assumptions they all have to make. The assumptions are twofold.
Firstly two direct-feedthrough matrices should be injective and surjective,
respectively. Secondly, two given subsystems should not have invariant
zeros on the imaginary axis. These assumptions exclude, for instance, the
special cases of state feedback and full-information feedback.

A special feature of the time-domain approach we are using through-
out this book is that it first solves the full-information feedback case as
we did in the previous chapters and then uses these results to obtain the
general result.

Under the basic assumptions mentioned above and using the time-
domain approach, the necessary and sufficient conditions for the existence
of internally stabilizing controllers which make theH∞ norm of the closed-
loop system less than some, a priori given, bound γ are the following: two
given Riccati equations should have positive semi-definite solutions and
the product of these two matrices should have spectral radius less than
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γ2. These two Riccati equations are not coupled and in fact one of them
is the same as the Riccati equation from chapter 3. The other Riccati
equation is dual to the first one and is related to the problem of state
estimation. The coupling condition that the product of the solutions of
these Riccati equations should have spectral radius less than γ2 is very
hard to explain intuitively. It is a kind of test whether state estimation
and state feedback combined in some way yield the desired result: an
internally stabilizing feedback which makes the H∞ norm less than γ.
The most general result under these assumptions is stated without proof
in [Gl3].

In the literature two methods have been proposed to solve theH∞ pro-
blem without assumptions on the direct-feedthrough matrices and with-
out assumptions on the invariant zeros. For the special case of full-
information feedback, these methods are discussed in section 4.7. Using
the first method discussed in subsection 4.7.1, which applies a transforma-
tion in the complex plane combined with the results in [Do5, Kh3, Pe, Ta],
we still have to make assumptions: two given subsystems should be left
and right invertible respectively. The second method combined with the
methods of the latter papers can tackle the most general case. These
methods, however, have the drawback that the conditions are in terms of
Riccati equations which are parametrized by some parameter ε > 0.

In this chapter we shall present a method which, independently of the
latter papers, solves the measurement feedback case using the results of
our previous chapter. In contrast to [Do5, Kh3, Pe, Ta] we shall impose no
assumptions on the direct-feedthrough matrices. However, we still have
to exclude invariant zeros on the imaginary axis. Our method will not
have the above-mentioned drawback of a parametrized Riccati equation.
Also our results reduce to the known results in [Do5, Ta] when these
singularities of the direct-feedthrough matrices do not occur.

Another advantage of our (weaker) assumptions will be that the spe-
cial cases of state feedback and full-information feedback fall within the
framework of the general problem formulation.

The necessary and sufficient conditions under which there exists an
internally stabilizing dynamic compensator which makes the H∞ norm
strictly less than some a priori given bound γ are formulated differently
from recent publications [Do5, Ta]. As mentioned above, in these papers
the conditions are formulated in terms of two given Riccati equations.
However, when there are singularities of the direct-feedthrough matrices
these Riccati equations do not exist. To replace the role of these Riccati
equations we have two quadratic matrix inequalities. The solution of each
of these quadratic matrix inequalities has to satisfy two rank conditions.
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Moreover, we have a condition which couples these two matrix inequal-
ities. The spectral radius of the product of the two solutions of these
matrix inequalities should be smaller than γ2. In the regular case the
quadratic matrix inequality together with the corresponding first rank
condition reduces to a Riccati equation and the second rank condition
guarantees that it is a stabilizing solution of the Riccati equation. As for
the regular case, the first matrix inequality with the two corresponding
rank conditions exactly forms the necessary and sufficient conditions for
the existence of a “suitable” state feedback as derived in chapter 4. The
second quadratic matrix inequality with the remaining two rank condi-
tions are, again as in the regular case, dual to the first matrix inequality
and the first two rank conditions.

Our proof will use ideas given in [Do5] to solve the regularH∞ problem
with measurement feedback but is independent of the results in [Do5] and
is entirely self-contained. Most of the results of this chapter already ap-
peared in [St4].

The outline of this chapter is as follows: In section 5.2 we formulate
the problem and present the main result for the case when two given
direct-feedthrough matrices are zero. Moreover, we show that in the re-
gular case and the state feedback case this result reduces to the known
results in [Do5] and chapter 4, respectively. In section 5.3 it is shown
that the conditions for the existence of a suitable compensator as given
in our main theorem are necessary and sufficient. It is shown that the
problem of finding such a compensator is equivalent to finding such a
compensator for a certain transformed system, i.e. we prove that any
compensator which internally stabilizes this new system and makes the
H∞ norm of the closed-loop system less than γ has the same properties
when applied to the original system and vice versa. This new system
has some desirable properties and, using the results from section 2.6,
it is shown that for this new system we can even make the H∞ norm
of the closed-loop system arbitrarily small. In section 5.4 a method for
finding the desired compensator is discussed. In section 5.5 we discuss the
characterization of all stable closed-loop systems with H∞ norm less than
γ which we can obtain via a suitable feedback and the related question
of characterization of all controllers which achieve this H∞ norm bound
for the closed-loop system. In section 5.6 we shall briefly discuss how
to extend the results to the case that all direct-feedthrough matrices are
allowed to be unequal to zero. We conclude in section 5.7 with some final
remarks. The proofs of section 5.3 depend upon the basis transformations
of appendix A and are given in appendix B since they are rather technical
and detract from the main ideas of the proof.
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5.2 Problem formulation and main results

We consider the linear, time-invariant, finite-dimensional system:

Σ :




ẋ = Ax + Bu + Ew,

y = C1x + D1w,

z = C2x + D2u,

(5.1)

where for all t we have that x(t) ∈ Rn is the state, u(t) ∈ Rm is the
control input, w(t) ∈ Rl is the unknown disturbance, y(t) ∈ Rp is
the measured output and z(t) ∈ Rq is the unknown output to be con-
trolled. A, B, E, C1, C2, D1, and D2 are matrices of appropriate
dimensions. Note that compared with system (2.1) we assume that two
direct-feedthrough matrices are zero. In section 5.6 it will be shown how
this assumption can be removed. As in the previous chapters we would
like to minimize the effect of the disturbance w on the output z by finding
an appropriate control input u. This time, however, the measured output
y is not necessarily (x,w) or x but is a more general linear function of
state and disturbance. In general the controller has less information and
hence the necessary and sufficient conditions for the existence of inter-
nally stabilizing controllers which make the H∞ norm of the closed-loop
system less than some given bound will be stronger. It will turn out that
we need an extra quadratic matrix inequality which tests how well we can
observe the state and the disturbance.

More precisely, we seek a dynamic compensator ΣF described by (2.4)
such that after applying the feedback ΣF to the system (5.1), the resulting
closed-loop system is internally stable and has H∞ norm strictly less than
some a priori given bound γ. We shall derive necessary and sufficient
conditions under which such a compensator exists.

A central role in our study of the above problem will be played by the
quadratic matrix inequality. For γ > 0 and P ∈ Rn×n we again consider
the following matrix:

Fγ(P ) :=


 ATP + PA+ CT

2C2 + γ−2PEETP PB + CT
2D2

BTP +DT
2C2 DT

2D2


 .

Recall that if Fγ(P ) ≥ 0, we say that P is a solution of the quadratic
matrix inequality at γ. Note that this is the same quadratic matrix
inequality as the one we used in the previous chapter (see (4.2), where C
and D1 are replaced by C2 and D2 respectively).
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We also define a dual version of this quadratic matrix inequality. For any
γ > 0 and matrix Q ∈ Rn×n we define the following matrix:

Gγ(Q) :=


 AQ+QAT + EET + γ−2QCT

2C2Q QCT
1 + EDT

1

C1Q+D1E
T D1D

T
1


 .

If Gγ(Q) ≥ 0, we say that Q is a solution of the dual quadratic matrix
inequality at γ. In addition to these two matrices, we define two matrices
pencils, which play dual roles:

Lγ(P, s) :=
(
sI −A− γ−2EETP −B

)
,

Mγ(Q, s) :=

(
sI −A− γ−2QCT

2C2

−C1

)
.

We note that Lγ(P, s) is the controllability pencil associated with the
system:

ẋ =
(
A+ γ−2EETP

)
x + Bu.

Note that Lγ is the same controllability pencil as the one we used in
the previous chapter (see (4.3)). On the other hand Mγ(Q, s) is the
observability pencil associated with the system:

{
ẋ =

(
A+ γ−2QCT

2C2
)
x,

y = −C1x.

Finally, we define the following two transfer matrices:

Gci(s) := C2 (sI −A)−1B +D2,

Gdi(s) := C1 (sI −A)−1E +D1,

where Gci is the same transfer matrix as the one used in the previous
chapter with C and D1 replaced by C2 and D2 respectively. Let ρ(·)
denote the spectral radius. We are now in a position to formulate the
main result of this chapter.

Theorem 5.1 : Consider the system (5.1). Assume that both the system
(A,B,C2,D2) as well as the system (A,E,C1,D1) have no invariant zeros
on the imaginary axis. Then the following two statements are equivalent:
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(i) For the system (5.1) a time-invariant, finite-dimensional dynamic
compensator ΣF of the form (2.4) exists such that the resulting
closed-loop system, with transfer matrix GF , is internally stable and
has H∞ norm less than γ, i.e. ‖GF ‖∞ < γ.

(ii) There are positive semi-definite solutions P,Q of the quadratic ma-
trix inequalities Fγ(P ) ≥ 0 and Gγ(Q) ≥ 0 satisfying ρ(PQ) < γ2,
such that the following rank conditions are satisfied

(a) rank Fγ(P ) = rankR(s)Gci,

(b) rank Gγ(Q) = rankR(s)Gdi,

(c) rank

(
Lγ(P, s)
Fγ(P )

)
= n+ rankR(s)Gci ∀ s ∈ C0 ∪ C+,

(d) rank
(
Mγ(Q, s) Gγ(Q)

)
= n + rankR(s)Gdi ∀ s ∈ C0 ∪ C+.

✷

Remarks :

(i) Note that the conditions on P in part (iii) of theorem 4.1 are ex-
actly the same as the conditions on P in part (ii) of the above theo-
rem. Hence the conditions on P are related to the full-information
H∞ control problem. The conditions on Q are exactly dual to the
conditions on P . It can be shown that the existence of Q is related
to the question how well we are able to estimate the state x on the
basis of our observations y. For instance, if y = x it will be shown
that Q = 0. The test of whether we are able to estimate and control
simultaneously with the desired effect is expressed in the coupling
condition ρ(PQ) < γ2.

(ii) The construction of a dynamic compensator satisfying (i) can be
done using a method that will be described in section 5.4. It turns
out that it is always possible to find a compensator of the same
dynamic order as the original plant. In fact, in [St13] it has been
shown that we can find a suitable controller of McMillan degree
n− rank ( C1 D1 ) + rank D1.

The case where D1 is surjective and D2 is injective is called
the regular H∞ control problem (or regular case) as opposed to the
singular H∞ control problem (or singular case) where either one of
these assumptions is not satisfied. In the regular case an explicit
formula for one controller satisfying part (i) can be given (see [Gl3]).
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That is, if P and Q exist satisfying the conditions of part (ii) of
theorem 5.1, then a controller satisfying part (i) is given by:

ΣF :

{
ṗ = KP,Qp + LP,Qy,

u =MP,Qp,

where

MP,Q := −
(
DT

2D2

)−1 (
DT

2C2 +BTP
)
,

LP,Q :=
[
EDT

1 +
(
I − γ−2QP

)−1
Q
(
CT

1 + γ−2PEDT
1

)] (
D1D

T
1

)−1
,

KP,Q := A+ γ−2EETP +BMP,Q − LP,Q

(
C1 + γ−2D1E

TP
)
.

For the regular H∞ control problem, it is possible to parametrize
all suitable controllers. This will be discussed in section 5.5.

(iii) By corollary A.7 we know that a solution P of the quadratic matrix
inequality Fγ(P ) ≥ 0 satisfying (a) and (c) is unique. By dualizing
corollary A.7 it can also be shown that a solution Q of the dual
quadratic matrix inequality Gγ(Q) ≥ 0 satisfying (b) and (d) is
unique. The existence of P and Q can be checked via state space
transformations and investigating reduced order Riccati equations.

(iv) We shall prove this theorem only for the case γ = 1. The general
result can then be easily obtained by scaling.

Before we prove this result we shall look more closely to the result for
two special cases:

State feedback: C1 = I, D1 = 0.
In this case we have y = x, i.e. we know the state of the system. The first
matrix inequality Fγ(P ) ≥ 0 together with rank conditions (a) and (b)
does not depend on C1 or D1 so we cannot expect a simplification there.
However, Gγ(Q) does get a special form:

Gγ(Q) =

(
AQ+QAT + EET + γ−2QCT

2C2Q Q

Q 0

)
.
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Using this special form it can be easily seen that Gγ(Q) ≥ 0 if, and only
if, Q = 0. For the rank conditions it is interesting to investigate the
normal rank of Gdi. We have:

rankR(s)Gdi = rankR(s) (sI −A)
−1E = rank E. (5.2)

By using the equality (5.2), it can be easily checked that Q = 0 satisfies
the rank conditions (b) and (d). The condition ρ (PQ) < γ2 is trivially
satisfied if Q = 0. We find that in this case condition (ii) of theorem 5.1
becomes:

There exists a positive semi-definite solution P of the quadra-
tic matrix inequality Fγ(P ) ≥ 0 such that the following two
rank conditions are satisfied:

(i) rank Fγ(P ) = rankR(s)Gci,

(ii) rank

(
Lγ(P, s)
Fγ(P )

)
= n+ rankR(s)Gci, ∀ s ∈ C0 ∪ C+

which is exactly the result obtained in the previous chapter (see theorem
4.1).

Regular case: D1 surjective and D2 injective.
In this case it can be shown in the same way as in chapter 4 that Fγ(P ) ≥ 0
together with rank condition (a) is equivalent to the condition:

ATP + PA+CT
2C2 + γ−2PEETP

− (PB + CT
2D2) (DT

2D2)
−1 (BTP +DT

2C2) = 0.

The dual version of this proof can be applied to the dual matrix inequality
Gγ(Q) ≥ 0 together with rank condition (b). These conditions turn out
to be equivalent to the condition:

AQ+QAT + EET + γ−2QCT
2C2Q

− (QCT
1 + EDT

1 ) (D1D
T
1 )

−1 (C1Q+D1E
T) = 0.

The two remaining rank conditions (c) and (d) turn out to be equivalent
to the requirement that the following two matrices be asymptotically
stable:

A+ γ−2EETP −B (DT
2D2)

−1 (BTP +DT
2C2) ,

A+ γ−2QCT
2C2 − (QCT

1 + EDT
1 ) (D1D

T
1 )

−1
C1.

Together with the remaining condition ρ (PQ) < γ2, we thus obtain ex-
actly the same conditions as [Do5, Gl3].
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5.3 Reduction of the original problem to an
almost disturbance decoupling problem

In this section theorem 5.1 will be proven. We shall show that the problem
of finding a suitable compensator ΣF for the system (5.1) is equivalent to
finding a suitable compensator ΣF for a new system which has some very
nice structural properties. On the basis of the results in section 2.6 we
can show that for this new system the (almost) disturbance decoupling
problem with measurement feedback and stability is satisfied. Clearly,
this implies that we can find for this new system, and hence also for our
original system, a suitable compensator. We recall that in the remainder
of this chapter we assume that γ = 1. Define F (P ), G(Q), L(P, s) and
M(Q,S) to be equal to F1(P ), G1(Q), L1(P, s) and M1(Q, s), respec-
tively.

Lemma 5.2 : Assume that the systems (A,B,C2,D2) and (A,E,C1,D1)
have no invariant zeros on the imaginary axis. If a dynamic compensator
ΣF exists such that the resulting closed-loop system is internally stable
and has H∞ norm less than 1, then the following two conditions are sat-
isfied:

(i) There is a symmetric solution P ≥ 0 of the quadratic matrix in-
equality F (P ) ≥ 0 satisfying the following two rank conditions:

(a) rank F (P ) = rankR(s)Gci,

(b) rank

(
L(P, s)
F (P )

)
= n+ rankR(s)Gci, ∀ s ∈ C0 ∪ C+.

(ii) There is a symmetric solution Q ≥ 0 of the dual quadratic matrix
inequality G(Q) ≥ 0 satisfying the following two rank conditions:

(a) rank G(Q) = rankR(s)Gdi,

(b) rank
(
M(Q, s) G(Q)

)
= n+rankR(s)Gdi, ∀ s ∈ C0∪C+.

✷

Proof : Since there is an internally stabilizing feedback which makes
the H∞ norm of the closed-loop system less than 1 for the problem with
measurement feedback, it is easy to check that condition (ii) of theorem
4.1 is satisfied. This implies, according to theorem 4.1, the existence
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of a matrix P satisfying the conditions in part (i) of the above lemma.
By dualization it can be easily shown that there also exists a matrix Q
satisfying the conditions in part (ii) of the above lemma.

Assume that there exist matrices P and Q satisfying conditions (i) and
(ii) in lemma 5.2. We make the following factorization of F (P ):

F (P ) =


 CT

2,P

DT
P


(

C2,P DP

)
(5.3)

where C2,P and DP are matrices of suitable dimensions. This can be done
since F (P ) ≥ 0. We define the following system:

ΣP :




ẋP = APxP + BuP + EwP ,

yP = C1,PxP + D1wP ,

zP = C2,PxP + DPuP ,

(5.4)

where AP := (A+EETP ) and C1,P := (C1 +D1E
TP ). We first derive

the following lemma

Lemma 5.3 : Assume that the systems (A,B,C2,D2) and (A,E,C1,D1)
have no invariant zeros on the imaginary axis. In that case the systems
(AP , B,C2,P ,DP ) and (AP , E,C1,P ,D1) have no invariant zeros on the
imaginary axis either. ✷

Proof : Note that the system (AP , E,C1,P ,D1) can be obtained from the
system (A,E,C1,D1) by applying the preliminary feedback u = ETPx+
v. Therefore, the invariant zeros of the two systems coincide. Hence the
system (AP , E,C1,P ,D1) has no invariant zeros on the imaginary axis.
The rank condition (b) of lemma 5.2 can be reformulated as

rank

(
sI −AP −B
C2,P DP

)
= n+ rank

(
C2,P DP

)
, ∀ s ∈ C0 ∪ C+.

This immediately yields that (AP , B,C2,P ,DP ) has no invariant zeros on
the imaginary axis.

Next, we derive the following relation between the systems Σ and ΣP :
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Lemma 5.4 : Let P satisfy the conditions (i) of lemma 5.2. Moreover,
let an arbitrary dynamic compensator ΣF be given, described by (2.4).
Consider the following two systems, where the system on the left is the
interconnection of (5.1) and (2.4) and the system on the right is the
interconnection of (5.4) and (2.4):

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣP

ΣF

❄

✛

✻

✛

yP

zP wP

uP
(5.5)

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix
from w to z has H∞ norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix
from wP to zP has H∞ norm less than 1. ✷

Proof : see appendix B for the proof.

We assumed that for the original system (5.1) there exists an internally
stabilizing dynamic compensator such that the resulting closed-loop ma-
trix has H∞ norm less than 1. Hence, by applying lemma 5.4, we know
that the same compensator is internally stabilizing for the new system
(5.4) and yields a closed-loop transfer matrix with H∞ norm less than 1.
Moreover we know by lemma 5.3 that ΣF satisfies the assumptions on
the invariant zeros needed to apply lemma 5.2. Therefore, if we consider
for this new system the two quadratic matrix inequalities we know that
there are positive semi-definite solutions to these inequalities satisfying a
number of rank conditions. We shall now formalize this in the following
lemma.

For arbitrary X and Y in Rn×n we define the following matrices:

F̄ (X) :=


 AT

P
X +XAP + CT

2,P
C2,P +XEETX XB + CT

2,P
DP

BTX +DT
P
C2,P DT

P
DP


 ,

Ḡ(Y ) :=


 APY + Y AT

P
+ EET + Y CT

2,P
C2,PY Y CT

1,P
+EDT

1

C1,PY +D1E
T D1D

T
1


 ,
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L̄(X, s) :=
(
sI −AP − EETX −B

)
,

M̄(Y, s) :=

(
sI −AP − Y CT

2,P
C2,P

−C1,P

)
.

Moreover we define two new transfer matrices:

Ḡci(s) := C2,P (sI −AP )
−1B +DP ,

Ḡdi(s) := C1,P (sI −AP )
−1E +D1.

Lemma 5.5 : Let P and Q satisfy conditions (i) and (ii) in lemma 5.2,
respectively. Assume that the systems (A,B,C2,D2) and (A,E,C1,D1)
have no invariant zeros on the imaginary axis. Then we have the following
two results:

(i) X := 0 is a solution of the quadratic matrix inequality F̄ (X) ≥ 0
and the following two rank conditions are satisfied:

(a) rank F̄ (X) = rankR(s)Ḡci,

(b) rank

(
L̄(X, s)
F̄ (X)

)
= n+ rankR(s)Ḡci, ∀ s ∈ C0 ∪ C+.

(ii) A symmetric matrix Y exists which satisfies the quadratic matrix
inequality Ḡ(Y ) ≥ 0 together with the following two rank conditions:

(a) rank Ḡ(Y ) = rankR(s)Ḡdi,

(b) rank
(
M̄(Y, s) Ḡ(Y )

)
= n+rankR(s)Ḡdi, ∀ s ∈ C0∪C+,

if, and only if, I − QP is invertible. Moreover, in this case there
is a unique solution Y := (I −QP )−1Q. This matrix Y is positive
semi-definite if, and only if,

ρ (PQ) < 1. (5.6)

✷

Proof : see appendix B for the proof.

Proof of (i) ⇒ (ii) in theorem 5.1 : The existence of P and Q satis-
fying the quadratic matrix inequalities and the corresponding four rank
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conditions can be obtained directly from lemma 5.2. We know by lemma
5.3 that the two subsystems (AP , B,C2,P ,DP ) and (AP , E,C1,P ,D1) have
no invariant zeros on the imaginary axis. We also know by lemma 5.4
that a dynamic compensator exists for the transformed system ΣP which
internally stabilizes the system and makes the H∞ norm of the closed-
loop system less than 1. By applying lemma 5.2 to this new system we
find that a matrix Y ≥ 0 exists satisfying part (ii) of lemma 5.5. Hence
by lemma 5.5 we have (5.6) and therefore all the conditions in theorem
5.1, part (ii) are satisfied.

We are now going to prove the reverse implication (ii) ⇒ (i) in theorem
5.1. Therefore we no longer assume that there exists an internally sta-
bilizing compensator which makes the H∞ norm less than 1. Instead we
assume that matrices P and Q exist satisfying part (ii) of theorem 5.1.

In order to prove the implication (ii) ⇒ (i) in theorem 5.1 we trans-
form the system (5.4) once again, this time however using the dual-
ized version of the original transformation. By lemma 5.5 we know
Y = (I −QP )−1Q ≥ 0 satisfies Ḡ(Y ) ≥ 0 . We factorize Ḡ(Y ):

Ḡ(Y ) =

(
EP,Q

DP,Q

)(
ET

P,Q
DT

P,Q

)
. (5.7)

where EP,Q and DP,Q are matrices of suitable dimensions. We define the
following system:

ΣP,Q :




ẋP,Q = AP,QxP,Q + BP,QuP,Q + EP,Qw,

yP,Q = C1,PxP,Q + DP,Qw,

zP,Q = C2,PxP,Q + DPuP,Q,

(5.8)

where

AP,Q := AP + Y CT
2,PC2,P ,

BP,Q := B + Y CT
2,PDP .

Note that the subsystems (AP , B,C2,P ,DP ) and (AP , E,C1,P ,D1) of ΣP

have no invariant zeros on the imaginary axis by lemma 5.3. By applying
the dual version of lemma 5.5 (i.e. the combination of lemmas B.3 and
B.4) to the system ΣP,Q with the corresponding matrix inequalities we
observe that XP,Q := 0 and YP,Q := 0 satisfy the matrix inequalities and
the corresponding rank conditions for this new system. It is easy to show
that this implies:

rank

(
sI −AP,Q −BP,Q

C2,P DP

)
= n+ rank

(
C2,P DP

)
, ∀ s ∈ C0 ∪ C+ (5.9)
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and

rank

(
sI −AP,Q −EP,Q

C1,P DP,Q

)
= n+ rank

(
EP,Q

DP,Q

)
, ∀ s ∈ C0 ∪ C+. (5.10)

Equation (5.9) implies that the subsystem from uP,Q to zP,Q is right-
invertible and minimum-phase. On the other hand, equation (5.10) im-
plies that the subsystem from w to yP,Q is left-invertible and minimum-
phase. By applying lemma 5.4 and its dualized version the following
corollary can be derived:

Corollary 5.6 : Let an arbitrary compensator ΣF of the form (2.4) be
given. The following two statements are equivalent:

(i) The compensator ΣF applied to the system Σ described by (5.1), is
internally stabilizing and the resulting closed-loop transfer matrix
has H∞ norm less than 1.

(ii) The compensator ΣF applied to the system ΣP,Q described by (5.8),
is internally stabilizing and the resulting closed-loop transfer matrix
has H∞ norm less than 1. ✷

Remark : We note that even if, for this new system, we can make the
H∞ norm arbitrarily small, for the original system we are only sure that
the H∞ norm will be less than 1. It is possible that a compensator for the
new system yields an H∞ norm of say 0.0001 while the same compensator
makes the H∞ norm of the original plant only 0.9999.

In section 2.6 we have shown how to solve the H∞ problem for a system
satisfying the extra conditions (5.9) and (5.10). It turned out that for
such a system we can even make the H∞ norm arbitrarily small. We are
now able to complete the proof of theorem 5.1:

Proof of the implication (ii) ⇒ (i) of theorem 5.1: Since we can
transform the original system into a system satisfying (5.9) and (5.10) we
know by lemma 2.20 that we can find an internally stabilizing dynamic
compensator for this new system such that the closed-loop transfer matrix
has H∞ norm less than 1. By applying corollary 5.6 we know that this
compensator ΣF satisfies the requirements in theorem 5.1, part (i).
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5.4 The design of a suitable compensator

In this section we shall give a method to calculate a dynamic compensator
ΣF such that the closed-loop system is internally stable and, moreover,
the closed-loop transfer matrix has H∞ norm less than 1. We shall derive
this ΣF step by step, using the following conceptual algorithm:

(i) Calculate P and Q satisfying part (ii) of theorem 5.1. This can,
for instance, be done using lemma A.6. If they do not exist or if
ρ(PQ) ≥ 1 then a feedback satisfying part (i) of theorem 5.1 does
not exist and we stop.

(ii) Perform the factorizations (5.3) and (5.7). We can now construct
the system ΣP,Q as given by (5.8).

We now start solving the almost disturbance decoupling problem with
measurement feedback for the system (5.8) we obtained in step (ii). We
shall rename our variables and assume that we have a system in the form
(5.1) which satisfies (2.45) and (2.46). We use the results as derived in
section 2.6. We have to construct matrices F and G such that (2.49) and
(2.51) are satisfied and, moreover, such that A + BF and A + GC1 are
asymptotically stable. We shall only discuss the construction of F . The
construction of G can be obtained by dualization.

(iii) Construct Vg(Σci) by using lemma 2.5.

(iv) Construct an F̃ such that (2.33) and (2.34) are satisfied and, more-
over, such that A+BF̃ | Vg(Σci) is asymptotically stable.

(v) Let Π be the canonical projection Rn → Rn/Vg(Σ) and let Ā, B̄
and C̄ be such that (2.35)–(2.37) are satisfied. Construct the system
Σfs as given by (2.38).

(vi) Construct F0 andM such that (2.39) and (2.40) are satisfied. Define
the following matrices:

(a) Ã := Ā+ B̄F0,

(b) B̃ := B̄M ,

(c) C̃ := C̄ +D2F0.

and the system

Σht :

{
ẋ = Ãx + B̃u

z = C̃x
(5.11)
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In this way we obtain a strongly controllable system (5.11), for which we
have to find a static state feedback law u = F̄ x such that the closed-
loop system is internally stable and such that the closed-loop impulse
response has H∞ norm smaller than ε/(3‖E‖ + 1). This can be done via
the technique as outlined in section 4.5.

We construct G by dualizing the construction of F and the required
dynamic compensator is finally given by (2.53).

Note that for the regular case we can stop after step (iv) since in this
case Vg(Σci) = Rn and hence Π defined in step (v) equals 0. Moreover, the
technique presented will clearly yield high-gain feedback. This is generally
necessary, but for the singular case it might be possible to prevent it. The
latter problem, when and how to prevent high-gain feedback, is still open
and will need more research.

Note that the numerical problems mentioned in section 4.5 also arise
in this construction. The alternative methods mentioned in that section
can also be used for the general problem with measurement feedback.

5.5 Characterization of achievable closed-loop sys-

tems

A characterization of all controllers which achieve the required H∞ norm
bound has been given in [Do5, Ta]. This was a kind of ball around the
so-called central controller (which is given in remark (ii) after theorem
5.1). This central controller has the alternative interpretation as the
controller which minimizes the entropy function defined in chapter 7.
However, this characterization of all suitable controllers is only done for
the regular H∞ control problem. The question we would like to address
in this section is whether similar characterizations can be given for the
singular H∞ control problem.

In our opinion it is not possible to obtain a characterization similar
to the one obtained in [Do5]. This is due to the fact that the so-called
central controller might be non-proper. But it turns out that it is much
easier to characterize the closed-loop systems with H∞ norm less than 1
we can obtain via a suitable dynamic compensator.

Let Σ, ΣP and ΣP,Q be defined by (5.1), (5.4) and (5.8) respectively.
In appendix B we construct a system ΣU which satisfies all conditions of
lemma 2.12. Moreover, for all controllers ΣF of the form (2.4) the system
on the left and the system on the right in (B.7) have the same transfer
matrix. Compared to the system on the left the system on the right has
some extra uncontrollable stable dynamics. Similarly we can construct a
system ΣV such that ΣP,Q and ΣP are related via ΣV in the same way as
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ΣP and Σ are related via ΣU . This construction goes via dualization and
therefore ΣT

V
(instead of ΣV ) will satisfy the conditions of lemma 2.12.

To conclude this argument we look at the following interconnections:

Σ

ΣP,QΣF

ΣF

ΣV

ΣU

❄

✛

✻

✛

❄
✻

❄
✻

❄
✻

✛ ✛

y

z w

u

zU

yP uP

wU

yV = wP,Q uV = zP,Q

yU = wV uU = zV

(5.12)

By the arguments above, the system on the left and the system on the
right have the same realization except for some stable uncontrollable or
unobservable dynamics on the right hand side. We denote the system
inside the dashed box by X. We also denote the orthogonal projectors
on the image of (C2,P DP ) and (ET

P,Q
DT

P,Q
) by Π1 and Π2 respectively.

Finally, we denote the interconnection of ΣU and ΣV by Σ̃C . The system
Σ̃C is a system with inputs (wU , uV ) and output (zU , yV ). By setting
uV = Π1ũV and ỹV = Π2yV we define a new system from (wU , ũV ) to
(zU , ỹV ) which we denote by ΣC. Finally by definition of Π1 and Π2 we
can find a system Q such that X = Π1QΠ2 and ‖X‖∞ = ‖Q‖∞. We can
then simplify the picture (5.12):

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣC

Q
❄

✛

✻

✛

wQ

zC wC

zQ

(5.13)

We can now derive the following theorem:

Theorem 5.7 : Let Σ and ΣC be as defined before. We have the following
relationships between the interconnections in picture 5.13.
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(i) For any controller ΣF of the form (2.4) which internally stabilizes
the interconnection on the left and makes the the transfer matrix
from w to z strictly proper and its H∞ norm less than 1, we can
find a stable, linear, time-invariant, finite-dimensional and strictly
proper system Q with H∞ norm less than 1, such that the intercon-
nections on the left and the right have the same closed-loop transfer
matrix. Moreover, the system on the right is internally stable.

(ii) Conversely, for any stable, linear, time-invariant, finite-dimensional
and strictly proper system Q with H∞ norm less than 1, the inter-
connection on the right is internally stable. Moreover, a compen-
sator ΣF exists which internally stabilizes the interconnection on
the left and the difference between the transfer matrices of the two
interconnections has an arbitrarily small H∞ norm. ✷

Proof : Part (i) For any compensator ΣF which satisfies these condi-
tions we define X as the system described by the dashed box in (5.12). It
is immediate that by definition of Π1 and Π2 that a system Q exists such
that X = Π1QΠ2 and ‖Q‖∞ = ‖X‖∞. We know that ΣU satisfies the
conditions of lemma 2.12 and we know that ΣF makes the H∞ norm of
the interconnection on the right in (5.12) less than 1. Lemma 2.12 then
yields that the interconnection of the bottom three blocks on the right in
(5.12) has H∞ norm less than 1 and is internally stable. We know that
ΣT

V
also satisfies the conditions of lemma 2.12. Therefore, application of

the dual version of this lemma yields that the dashed box in (5.12), which
is by definition equal to X, is stable and has H∞ norm less than 1. By
construction Q then satisfies the same properties.

Part (ii) Assume a system Q which satisfies the conditions is given.
Let ε > 0 be given. We first show that we can find a compensator ΣF

such that the dashed box in (5.12) with transfer matrix GF,d is internally
stable and satisfies ‖GF −Π1QΠ2‖∞ < ε. We define the following system:

Σn :




ẋn =

(
AP,Q 0
0 F

)
xn +

(
BP,Q

0

)
u +

(
EP,Q

G

)
w,

y =
(
C1,P 0

)
xn + DP,Qw,

z =
(
C2,P −H

)
xn + DPu,

where (F,G,H, 0) is a realization of Π1QΠ2 with F asymptotically stable.
The latter can always be found since Q is stable and strictly proper. Note
that if we apply ΣF from y to u in Σn then the transfer matrix from w to
z is equal to GF,d−Π1QΠ2. Therefore, we have to check whether we can
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find a stabilizing controller ΣF for Σn which makes the H∞ norm of the
closed-loop system arbitrarily small. We already noted that ΣP,Q is such
that equations (5.9) and (5.10) are satisfied. It is then easily checked that
Σn satisfies the conditions of theorem 2.20 and hence the result follows by
applying theorem 2.20. It remains to be shown that this ΣF also makes
the transfer matrices of the interconnections in picture (5.13) arbitrarily
close in H∞ norm. Note that ΣC is asymptotically stable. Let its transfer
matrix be decomposed in four (stable) components:(

zC

wX

)
= GC

(
wC

zX

)
=

(
G11,C G12,C

G21,C G22,C

)(
wC

zX

)

Using the fact that the closed-loop transfer matrices of the two intercon-
nections in picture (5.12) are equal we find that the closed-loop transfer
matrix of the interconnection on the left in picture (5.13) is equal to

G11,C +G12,CGF,d (I −G22,CGF,d)
−1G21,C (5.14)

It is straightforward that the interconnection on the right in (5.13) is
equal to:

G11,C +G12,CΠ1QΠ2 (I −G22,CΠ1QΠ2)
−1G21,C (5.15)

Therefore, since ‖GF,d − Π1QΠ2‖∞ can be made arbitrarily small, since
‖G22,CGF,d‖∞ < 1 and since all terms are stable, it is immediate that the
difference between the transfer matrices in (5.14) and (5.15) can be made
arbitrarily small in H∞ norm.

Remarks:

(i) The above theorem states that the interconnection on the right in
(5.13) where Q is an arbitrary stable, linear, time-invariant, finite-
dimensional system with H∞ norm less than 1 parametrizes a class
of stable systems with H∞ norm strictly less than 1 which contains
all systems we can obtain via a suitable controller applied to Σ.
The remaining systems can be arbitrarily well approximated by a
closed-loop system obtained by applying a suitable controller to Σ.
In some way our class is the closure of all attainable stable closed-
loop systems with H∞ norm less than 1 (not formally, since our
class is not closed).

(ii) The above characterization can be extended to include non-strictly
proper closed-loop plants. However, in that case we have to con-
strain Q in the sense that Π1Q(∞)Π2 = D2ND1 for some matrix
N .
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(iii) This theorem is not valid to characterize time-varying closed-loop
systems. We apply the dual version of lemma 2.12. Lemma 2.12 is
still true for time-varying systems (see [RNK]). However ΣV does
not satisfy the conditions of lemma 2.12. Instead ΣT

V
satisfies the

conditions of this lemma. Therefore, in the above proof we apply
the dual version of lemma 2.12. However, this dualization argument
is not valid for time-varying systems. Specifically, if we require in
lemma 2.12 that G−1

12 ∈ H∞ instead of G−1
21 ∈ H∞ then the lemma

is still valid for time-invariant systems but not for time-varying
systems.

We would like to complete this section by showing how the above is
simplified if we have a regular problem, i.e. if D1 is surjective and D2

is injective. First of all, we have an explicit expression for ΣP in (5.4)
with CP and DP given by (B.3) and (B.4) without the need for the special
basis of appendix A. Hence we have an explicit expression for ΣU in (B.6).
Some straightforward calculations then yield the following realization for
ΣC:

ΣC :




ẋU = AxU +B
[
MP,Qe+ (DT

2D2)
−1DT

2 zQ

]
+ EwC

ė = KP,Qe+ LP,Q(C1xU +D1w) + SP,QzQ

wQ = DT
1 (D

T
1D1)−1 [C1xU +D1w − (C1 +D1E

TP )e] ,
zU = C2xU +D2MP,Qe+ zQ,

(5.16)

where

MP,Q := −(DT
2D2)−1(DT

2C2 +BTP ),
LP,Q := [EDT

1 + (I −QP )−1Q(CT
1 + PEDT

1 )](D1D
T
1 )

−1,

KP,Q := A+ EETP +BMP,Q − LP,Q(C1 +D1E
TP ),

SP,Q := [B + Y (CT
2 D2 + PB)](DT

2D2)−1DT
2 ,

Moreover, in this special case where D1 is surjective and D2 is injective,
for every stable system Q with H∞ norm strictly less than 1 we can find
a (unique) system ΣF such that the interconnections in (5.13) are both
internally stable and have the same transfer matrix. Here the closed-loop
system is not necessarily strictly proper. This ΣF is equal to the following
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interconnection:

ΣE

Q
❄

✛

✻

✛

wQ

u y

zQ

(5.17)

where

ΣE :




ṗ = KP,Qp+ LP,Qy + SP,QzQ,

wQ = DT
1 (D

T
1D1)−1[y − (C1 +D1E

TP )p],
u =MP,Qp− (DT

2D2)−1DT
2 zQ,

Therefore, (5.17) where Q is stable and has H∞ norm strictly less than
1, is a characterization of all controllers which yield a stable closed-loop
system with H∞ norm strictly less than 1. A proof of this can be derived
by finding an explicit expression for ΣP,Q and then noting that ΣF should
be such that the dashed box in (5.12) is equal to Π1QΠ2. The special
properties of ΣP,Q then allow us to express ΣF uniquely as a function of
Q.

Note that because we investigate the regular case (D1 injective and
D2 injective), we have an exact characterization of all suitable closed-loop
systems and of all suitable controllers. In the singular case we can only
characterize a kind of closure of the set of all suitable closed-loop systems
and we cannot characterize all suitable controllers.

It should be noted that if we set Q = 0 then we obtain the central
controller (as given in remark (ii) after theorem 5.1) and the correspond-
ing closed-loop system. Note that the central controller can be given
an interpretation as minimizing the entropy (see chapter 7) and as the
optimal controller for the linear exponential Gaussian stochastic control
problem (see [BvS, Wh]).

For the regular case this characterization is completely similar to the
characterization given in [Do5, Ta].

5.6 No assumptions on any direct-feedthrough

matrix

In this section we shall briefly discuss how we can extend our result in
theorem 5.1 to the more general system (2.1). We set γ = 1 but the
general result can be easily obtained by scaling. For this system we still



5.6 General direct-feedthrough matrices 113

have to assume that both the system (A,B,C2,D21) as well as the system
(A,E,C1,D12) have no invariant zeros on the imaginary axis. We first
tackle the extra direct-feedthrough matrix D22 and after that the extra
direct-feedthrough matrix D11.

5.6.1 An extra direct-feedthrough matrix from disturbance
to output

The method we use for the case D22 �= 0 is as the method presented
in section 4.6 and stems from [Gl6]. If there is an internally stabilizing
feedback of the form (2.4) that makes the H∞ norm less than 1 for the
system Σ described by (2.1), then it is easy to check that a matrix S must
exist such that I − SD11 is invertible and

‖D22 +D21 (I − SD11)
−1 SD12‖ < 1. (5.18)

We assume that an S satisfying (5.18) exists (note that in section 4.6 we
assume that S = 0 satisfies (5.18), this section extends this result). We
define the following system:

ΣS :



ẋS = ASxS + BSuS + ESwS,

yS = C1,SxS + D11,SuS + D12,SwS,

zS = C2,SxS + D21,SuS.

(5.19)

where

D̃22 := D22 +D21 (I − SD11)
−1 SD12,

ES := −
(
E +B (I − SD11)

−1 SD12

)(
I − D̃T

22D̃22

)−1/2
,

C2,S :=
(
I − D̃22D̃

T
22

)−1/2 (
C2 +D21 (I − SD11)

−1 SC1

)
,

D12,S := (I −D11S)
−1D12

(
I − D̃T

22D̃22

)−1/2
,

D21,S :=
(
I − D̃22D̃

T
22

)−1/2
D21 (I − SD11)

−1 ,

AS :=
(
A+B (I − SD11)

−1 SC1

)
− ESD̃

T
22C2,S,

BS := B (I − SD11)
−1 − ESD̃

T
22D21,S ,

C1,S := (I −D11S)
−1 C1 −D12,SD̃

T
22C2,S,

D11,S := (I −D11S)
−1D11 −D12,SD̃

T
22D21,S .

We can then derive the following lemma:
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Lemma 5.8 : Let ΣF be a dynamic controller of the form (2.4) defining
an operator GF from y to u. Consider the following two systems:

Σ

Σ̃F

❄

✛

✻

✛

y

z w

u

ΣS

ΣF

❄

✛

✻

✛

yS

zS wS

uS

Here Σ̃F is a compensator defined by the operator u = (GF + S)y. The
system on the left is the interconnection of Σ described by (2.1) and Σ̃F .
The system on the right is the interconnection of ΣS described by (5.19)
and the feedback compensator ΣF . The following two conditions are equiv-
alent:

(i) The system on the left is well-posed, internally stable and the closed-
loop transfer matrix from w to z has H∞ norm less than 1.

(ii) The system on the right is well-posed, internally stable and the
closed-loop transfer matrix from w to z has H∞ norm less than 1.

✷

Remark : Note that we have to assume that the interconnection is well-
posed. For the interconnection of Σ and ΣF described by (2.1) and (2.4),
this requirement is equivalent to the condition that the matrix I −D11N
is invertible.

Proof : We define the following static system

ΣΘ :

(
zΘ

yΘ

)
=


 D̃22

(
I − D̃22D̃

T
22

)1/2

−
(
I − D̃T

22D̃22

)1/2
D̃T

22



(
wΘ

uΘ

)
.

Let Σ̃ be the system we obtain by applying to Σ the preliminary static
output feedback u = Sy+v, where S is such that (5.18) is satisfied. Then
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we note that in the picture

Σ̃
ΣS

ΣΘ

✛y

✛

✛v

✛

✛yS

✛

✛uS

✛

❄
✻

z w

zΘ wΘ

wS zS = uΘ

the system on the left and the interconnection on the right have identi-
cal realizations. Moreover, note that the interconnection on the right is
always well-posed. The rest of the proof is as the proof of lemma 4.5.

In the same way as lemma 4.6 we are able to derive the following lemma:

Lemma 5.9 : Let S be such that (5.18) is satisfied. Assume that Σ and
ΣS are described by (2.1) and (5.19) respectively.

The systems (A,B,C2,D21) and (AS, BS, C2,S,D21,S) have the same
invariant zeros. Also, the invariant zeros of the systems (A,E,C1,D12)
and (AS, ES, C1,S,D12,S) are equal. ✷

Thus we are able to obtain the following theorem:

Theorem 5.10 : Consider the system Σ described by (2.1). Assume that
the systems (A,B,C2,D21) and (A,E,C1,D12) have no invariant zeros
on the imaginary axis. Then the following statements are equivalent:

(i) A compensator Σ̃F of the form (2.4) exists such that the closed-loop
system Σ × Σ̃F is well-posed, internally stable and has H∞ norm
less than 1.

(ii) An S exists such that (5.18) is satisfied and if, for this S, we de-
fine the system ΣS by (5.19), then for ΣS a controller ΣF of the
form (2.4) exists such that the interconnection ΣS × ΣF is well-
posed, internally stable and has H∞ norm less than 1. Moreover the
subsystems (AS, BS, C2,S,D21,S) and (AS, ES, C1,S,D12,S) have no in-
variant zeros on the imaginary axis. ✷
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Remarks :

(i) Note that if we find a controller Σ̃F with associated input–output
operator G̃F satisfying part (ii), then we know that a controller
with input–output operator G̃F + S satisfies part (i). Conversely, if
we find a controller ΣF with associated input–output operator GF
satisfying part (i) then the controller with associated input–output
operator GF − S satisfies part (i).

(ii) Remember that the existence of suitable controllers for the system
ΣS is independent of our specific choice for the matrix S satisfying
(5.18).

(iii) In this way we have reduced the problem of finding necessary and
sufficient conditions under which there exists an internally stabiliz-
ing controller which makes the H∞ norm of the closed-loop system
less than 1 to the same problem for the system ΣS. However, for
the latter system we have D22 = 0. In the next subsection we show
how we can reduce it to the same problem for a system which has
both D11 = 0 and D22 = 0. We can show that after these two
steps for the system obtained in this way the two subsystems do
not have invariant zeros on the imaginary axis if, and only if, the
two subsystems for the original system (2.1) do not have invariant
zeros on the imaginary axis. Hence we may apply theorem 5.1 to
this new system.

5.6.2 An extra direct-feedthrough matrix from control to
measurement

In this section we investigate a system Σ, described by (2.1) withD22 = 0.
It has been shown in the previous subsection how we can reduce the
problem of finding internally stabilizing controllers which make the closed-
loop H∞ norm less than 1 to the same problem for a system with D22 = 0.
In this subsection we shall show how we can reduce it even further to the
case that both D11 = 0 as well as D22 = 0.

We define the following system:

Σ̃ :



ẋ = Ax + Bu + Ew,

y = C1x + D12w,

z = C2x + D21u.

(5.20)

Assume that for the system Σ we have a controller ΣF of the form (2.4)
such that the interconnection Σ × ΣF is well-posed, i.e. I − D11N is
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invertible. Moreover, assume that this controller is internally stabilizing
and makes the H∞ norm less than 1. We define the following controller

Σ̃F :

{
ṗ = K̃p + L̃y,

y = M̃p + Ñy,
(5.21)

where

K̃ := K + L (I −D11N)−1D11M,

L̃ := L (I −D11N)−1 ,

M̃ := (I −ND11)−1M,

Ñ := N (I −D11N)−1 .

Then it is easily shown that Σ̃F is an internally stabilizing feedback for the
system Σ̃. Moreover, the interconnection Σ̃× Σ̃F and the interconnection
Σ×ΣF have identical realizations and hence the interconnection Σ̃× Σ̃F

has H∞ norm less than 1.
On the other hand, assume that we have a controller Σ̃F of the form

(5.21) for Σ̃ which is internally stabilizing and makes theH∞ norm strictly
less than 1. Note that this interconnection is always well-posed. We know
that for all ε > 0 there exists a matrix Z with ‖Z‖ < ε such that

I +
(
Ñ + Z

)
D11

is invertible. Denote the controller we obtain by replacing Ñ by Ñ+Z by
Σ̂F (Z). It is easy to see that for sufficiently small ε (and hence sufficiently
small Z) the closed-loop system, after applying the compensator Σ̂F (Z)
to Σ̃, is still internally stable and still has H∞ norm less than 1. Assume
that Z is chosen like this then the controller ΣF of the form (2.4) and
defined by

K := K̃ − L̃
(
I +D11

(
Ñ + Z

))
D11M̃,

L := L̃
(
I +D11

(
Ñ + Z

))−1
,

M :=
(
I +

(
Ñ + Z

)
D11

)−1
M̃,

N :=
(
I +

(
Ñ + Z

)
D11

)−1 (
Ñ + Z

)
,

is internally stabilizing for the system Σ and the closed-loop system Σ×ΣF

has H∞ norm less than 1.
In the above we derived the following theorem:
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Theorem 5.11 : Let the system Σ described by (2.1) with D22 = 0 be
given. Then the following statements are equivalent:

(i) A compensator ΣF of the form (2.4) exists such that the closed-loop
system Σ × ΣF is well-posed, internally stable and has H∞ norm
less than 1.

(ii) For the system (5.20) a controller of the form (5.21) exists which
is internally stabilizing and makes the H∞ norm less than 1. ✷

Remarks : Thus we see that we can reduce the problem of finding a
controller which is internally stabilizing and which makes the H∞ norm
less than 1 (a suitable controller) for the system Σ described by (2.1) with
D22 = 0 to the problem of finding a suitable controller for the system
we obtain by setting D11 = 0 in (2.1). The system we thus obtain has
D11 = 0 as well as D22 = 0. In the previous subsection we showed how we
could reduce the problem of finding a suitable controller for the general
system (2.1) to the problem of finding a suitable controller for a system
of the same form (2.1) but with D22 = 0. In both steps the property
that the two subsystems have no invariant zeros on the imaginary axis
is preserved. Hence, if for some general system Σ of the form (2.1) we
need to find a suitable controller and if the subsystems (A,B,C2,D21)
and (A,E,C1,D12) have no invariant zeros on the imaginary axis, then
we can reduce this problem to the problem of finding a suitable controller
for a system on which we may apply the main result of this chapter :
theorem 5.1.

5.7 Conclusion

In this chapter we have given a complete treatment of the H∞ problem
with measurement feedback without restrictions on the direct-feedthrough
matrices. However, how we can treat invariant zeros on the imaginary
axis remains an open problem. This problem is studied in [S4]. Other
open problems are the determination of the minimally required dynamic
order of the controller and the characterization of the behaviour of the
feedbacks and closed-loop system if we tighten the bound γ. The latter
problem has already been investigated. It is possible that the infimum
over all stabilizing controllers of the closed-loop H∞ norm is never at-
tained, attained by a non-proper controller or attained by a proper con-
troller (see [Fr2]). Using the ideas of this chapter it might be possible to
characterize whether we can attain the infimum by a proper controller.
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Finally, it would be interesting to characterize all controllers which
achieve the H∞ norm bound. For the singular problem a major step has
been made in section 5.5. However, this mainly focuses on achievable
closed-loop systems instead of suitable controllers.

In our opinion this chapter again gives extra support to our claim
that the approach to solve the H∞ problem in the time-domain is a much
more intuitive and appealing approach than the other methods used in
recent papers. Only when using frequency-related weighting do we lose
the intuition of the meaning of the filters. Hence, when discussing choices
of the filters it might be preferable to work in the frequency-domain.
However, for intuition when actually solving the H∞ control problem,
one is really better off in the time-domain.



Chapter 6

The singular zero-sum differential
game with stability

6.1 Introduction

In this chapter we shall consider the zero-sum linear quadratic finite-di-
mensional differential game. This is an area of research which was rather
popular during the seventies (see e.g. [Ban, Ma, BO, Sw]).

In the last few years, the solution of the regular H∞ control problem
(see chapter 3 and [Do5, Kh3, Pe]) turned out to contain the same kind
of algebraic Riccati equation as the one appearing in the solution of the
zero-sum differential game (see [Ban, Ma, Sw]). This Riccati equation has
the special property that the quadratic term is, in general, indefinite, in
contrast to, for instance, the equation appearing in linear quadratic op-
timal control theory (see [Wi7]), where the quadratic term in the Riccati
equation is always definite.

Since in H∞ control theory the solution of the algebraic Riccati equa-
tion has no meaning in itself it is interesting to give a more intuitive
characterization such as a Nash equilibrium in the theory of differential
games. Recently, a number of papers appeared which studied a zero-sum
differential game with the goal of obtaining such a characterization (see
[Pe2, Pe3, We]). A very recent book on the relation between H∞ and
differential games is [BB].

In chapter 4 it has been shown that if the direct-feedthrough matrix
from the control input to the output is not injective then, instead of
an algebraic Riccati equation, we get a quadratic matrix inequality. A
similar phenomenon also occurs in linear quadratic optimal control theory,
although in that case we get a linear matrix inequality (see [Wi7]).

This chapter is concerned with the zero-sum differential game in
the case that the direct-feedthrough matrix is not injective. It will be

120
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shown that, as expected, existence of equilibria is related to solutions of a
quadratic matrix inequality. By using results from H∞ control theory, we
are able to derive necessary conditions for the existence of an equilibrium,
which, to our knowledge, has not been done in previous papers. We shall
study the differential game with certain stability requirements since it
turns out to give results which indeed centre around the same solution of
the quadratic matrix inequality as the one which appears in H∞ control.
If we assume detectability, then the problems with and without stability
turn out to be equivalent.

We give this treatment of the differential game in this book although
the formal proofs of the results on H∞ control theory do not depend on
results derived in this chapter. The reason for nevertheless including this
chapter lies in the fact that the intuition, which yielded the results on
H∞ control, mostly stems from this chapter. The results of this chapter
have already appeared in [St3].

The outline of this chapter is as follows: in section 6.2 we formulate
the problem and give our main results. In section 6.3 we prove the exis-
tence of an equilibrium under certain sufficient conditions. After that, in
section 6.4 we derive necessary conditions for the existence of equilibria.
The proofs in these two sections are very much concerned with the spe-
cific choice of bases and other results of appendix A. In section 6.5 we
show that if the direct-feedthrough matrix from control input to output
is injective, then the necessary conditions of section 6.4 are also sufficient.
We conclude in section 6.6 with some remarks.

6.2 Problem formulation and main results

We shall consider the zero-sum, infinite horizon, linear quadratic differ-
ential game with cost criterion

J (u,w) =
∫ ∞

0
zT(t)z(t) − wT(t)w(t)dt, (6.1)

and dynamics given by the following linear and finite-dimensional system

Σ :

{
ẋ = Ax + Bu + Ew, x(0) = ξ,

z = Cx + Du.
(6.2)

Here, for all t we have x(t) ∈ Rn, u(t) ∈ Rm, w(t) ∈ Rl and z(t) ∈
Rp. A,B,C,D and E are matrices of appropriate dimensions. Note that
contrary to the other chapters we shall in general consider systems with
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initial state unequal to zero. We assume that (A,B) is stabilizable. We
define the following class of functions:

Uk
fb =

{
v : Rn ×R → Rk | ∀x ∈ Ln2 v(x(.), .) ∈ Lk2

}
.

Note that we can consider Lk2 as a subset of Uk
fb by identifying with each

function v ∈ Lk2 a function ṽ ∈ Uk
fb as follows:

ṽ(x, t) := v(t) ∀x ∈ Rn, t ∈ R+.

We also define the following class of functions:

Um
st (ξ) :=

{
u ∈ Um

fb | ∀ w ∈ Ll2 : (u,w) is an admissible pair

for initial value ξ} .

We call (ũ, w̃) ∈ Um
st×U l

fb an admissible pair for initial value ξ if by setting
u(.) = ũ(x(.), .) and w(.) = w̃(x(.), .) the differential equation (6.2) has a
unique solution xu,w,ξ on [0,∞) which satisfies xu,w,ξ ∈ Ln2 . Hence by
the definition of Ufb we have u ∈ Lm2 and w ∈ Ll2. This implies that
the resulting output trajectory satisfies zu,w,ξ ∈ Lp2 and hence J (u,w) as
defined in (6.1) is well-defined. We shall only consider inputs of this form.
Since (A,B) is stabilizable the class of admissible pairs is non-empty for
every initial state ξ.

We shall call u a minimizing player and its goal is to minimize the
cost criterion J (u,w). In the same way we shall call w a maximizing
player which would like to maximize the cost criterion J (u,w).

Definition 6.1 : The system (6.2) with criterion function (6.1) is said
to have an equilibrium if, for every initial value ξ, u0 ∈ Um

st (ξ) and w0 ∈
U l
fb exist such that (u0, w0) is an admissible pair and, moreover,

J (u0, w) ≤ J (u0, w0) ≤ J (u,w0),

for all u ∈ Um
st (ξ) and w ∈ U l

fb such that (u,w0) and (u0, w) are admissible
pairs. ✷

Note that in the theory of differential games, this is often called a Nash
equilibrium. The existence of an equilibrium is, in general, too strong a
condition. We shall define a weaker version.
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Definition 6.2 : The system (6.2) with cost criterion (6.1) is said to
have an almost equilibrium if a function J ∗ : Rn → R exists such that
for all ε > 0 and for every state ξ ∈ Rn there are u0 ∈ Um

st (ξ) and
w0 ∈ U l

fb such that (u0, w0) is admissible and, moreover,

J (u0, w) ≤ J ∗(ξ) + ε,
J (u,w0) ≥ J ∗(ξ)− ε, (6.3)

for all u ∈ Um
st (ξ) and w ∈ U l

fb such that (u,w0) and (u0, w) are admissible
pairs. ✷

Remarks :

(i) Note that an equilibrium certainly defines an almost equilibrium
since, in this case, we can find u0 and w0 such that J ∗(ξ) :=
J (u0, w0) satisfies (6.3) for ε = 0.

(ii) Note that if either u0 or w0 is fixed, then choosing the other input
in Ufb such that we have an admissible pair, results in well-defined
functions in L2 for the state, the minimizing player and the max-
imizing player. Hence in definition 6.2 and also in definition 6.1
we can, without loss of generality, assume that u and w are in L2

instead of Ufb. In this case there are no longer any restrictions on w
because (u0, w) is admissible for all w ∈ Ll2 since u0 ∈ Um

st (ξ). This
condition is rather unusual in zero-sum linear quadratic differential
games. Intuitively it means that we hand over the responsibility of
the condition x ∈ Ln2 to the minimizing player. Without this as-
sumption it is possible that u0 and w0 exist such that

J (u0, w) ≤M1

J (u,w0) ≥M2

for all u and w such that (u0, w) and (u,w0) are admissible pairs
and M2 > M1. Clearly (u0, w0) is not admissible but neither u0

nor w0 will change since that would be contrary to their objectives
of minimizing and maximizing the cost criterion respectively. To
prevent such a deadlock we hand over the responsibility for x ∈ Ln2
to one of the players. An example of this phenomenon is given by
the system{

ẋ = x+ u+ w,
z = u,

with u0 = w0 = 0.
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We shall derive conditions for the existence of an almost equilibrium.
Since we do not assume that the D matrix is injective it is not surprising
that, as in the singular LQ problem, we find a matrix inequality instead
of a Riccati equation. We repeat a number of definitions already used in
chapter 4:

F (P ) :=

(
ATP + PA+ CTC + PEETP PB + CTD

BTP +DTC DTD

)
.

We call a symmetric matrix P ∈ Rn×n a solution of the quadratic matrix
inequality if F (P ) ≥ 0. Furthermore, we define

L(P, s) :=
(
sI −A− EETP −B

)
,

and finally we define Gci(s) := C(sI −A)−1B+D. We shall now present
the main results of this chapter:

Theorem 6.3 : Consider the system (6.2) with cost criterion (6.1) and
assume that (A,B) is stabilizable. An almost equilibrium exists if the
following condition is satisfied:

A positive semi-definite solution P of F (P ) ≥ 0 exists such that

(i) rank F (P ) = rankR(s)Gci,

(ii) rank

(
L(P, s)
F (P )

)
= n+ rankR(s)Gci, ∀s ∈ C+ ∪ C0.

Moreover J ∗(ξ) = ξTPξ defines an almost equilibrium and for each boun-
ded set of initial values and for each ε > 0 we can find static state feed-
backs Fu, Fw such that u0 = Fux and w0 = Fwx satisfy (6.3) for all initial
values in that set. ✷

Remarks :

(i) If the matrix D is injective, the existence of P satisfying the condi-
tions of theorem 6.3 guarantees the existence of an (exact) equilib-
rium.

(ii) We shall show that P also satisfies the following equality:

ξTPξ = inf
u∈Um

st (ξ)

sup
w∈Ll

2

J (u,w).
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(iii) Note that these sufficient conditions for the existence of an al-
most equilibrium are nothing other than the requirement that the
H∞ norm of the closed-loop system can be made less than 1 by a
suitable state feedback u = Fx.

The next theorem shows the necessity of the above conditions:

Theorem 6.4 : Consider the system (6.2) with cost criterion (6.1). As-
sume that (A,B) is stabilizable and assume that (A,B,C,D) has no in-
variant zeros on the imaginary axis. If an almost equilibrium exists, then
the following condition is satisfied:

A positive semi-definite solution P of F (P ) ≥ 0 exists such that

(i) rank F (P ) = rankR(s)Gci,

(ii) rank

(
L(P, s)
F (P )

)
= n+ rankR(s)Gci, ∀s ∈ C+.

Moreover, in the case that D is injective, the above condition is also
sufficient for the existence of an almost equilibrium. ✷

Remarks : Although in the case that D is injective we can prove the ex-
istence of an almost equilibrium under the conditions of theorem 6.4, we
find time-varying state feedback laws for u0 and w0 contrary to the con-
ditions of theorem 6.3 under which we could find time-invariant feedback
laws. Moreover, the conditions of theorem 6.3 guaranteed the existence
of an (exact) equilibrium when D is injective. This time we only find an
almost equilibrium.

6.3 Existence of almost equilibria

In this section we assume that a matrix P satisfying the conditions of
theorem 6.3 exists. We shall show that there exists an almost equilibrium.
Moreover, if D is injective, we show that an (exact) equilibrium exists.
The proof will be strongly related to the proof given in section 4.4. We
first apply the preliminary feedback as defined in appendix A, i.e. u =
F0x+ v where F0 is defined by (A.1). We obtain the system

Σ̂ :

{
ẋ = (A+BF0)x + Bv + Ew,

z = (C +DF0)x + Dv.
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For this system we define the cost criterion:

Ĵ (v,w) =
∫ ∞

0
zT(t)z(t)− wT(t)w(t)dt. (6.4)

Clearly this system has an (almost) equilibrium if, and only if, the original
system Σ has an (almost) equilibrium. Moreover, for initial condition ξ,
(u,w) is an admissible pair if, and only if, (v,w) = (u − F0x,w) is an
admissible pair. Finally, if v = u−F0x, then we have Ĵ (v,w) = J (u,w).
Therefore in the remainder of this section we may investigate the system
Σ̂, instead of Σ, with cost criterion (6.4).

We shall use the following lemma which will give theorem 6.3 as an
almost direct result.

Lemma 6.5 : Let P be given such that F (P ) ≥ 0. Choose the bases of
appendix A so that P has the form (A.15). Then for all admissible pairs
(v,w) we have:

Ĵ (v, w) = ‖z‖22 − ‖w‖22

= ξTPξ +
∫ ∞

0

x1(τ)TR(P1)x1(τ)dτ + ‖C23q3‖22 + ‖D̂ṽ1‖22 − ‖w̃‖22.

(6.5)

where R(P1) is defined by (A.17) and

q3 := x3 + (CT
23C23)

−1 (AT
13P1 + CT

23C21) x1, (6.6)

ṽ1 := v1 +
(
D̂TD̂

)−1
BT

11P1x1, (6.7)

w̃ := w − ETPx. (6.8)

Moreover the dynamics in these new coordinates are given by

ẋ1 = Ā11x1 +A13q3 +B11ṽ1 + E1w̃ (6.9)(
ẋ2

q̇3

)
=

(
A22 A23

A32 Ã33

)(
x2

q3

)
+

(
B22

B32

)
v2 +

(
Ā21

Ā31

)
x1 +

(
B21

B31

)
ṽ1 +

(
E2

Ẽ3

)
w̃

(6.10)(
z1

z2

)
=

(
C̃1

C̃3

)
x1 +

(
0
C23

)
q3 (6.11)
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Here we used the definitions given just after (4.13) in chapter 4. Moreover
we used the following three definitions

Ā11 := Ã11 + E1E
T
1 P1,

Ā21 := Ã21 + E2E
T
1 P1,

Ā31 := Ã31 + E3E
T
1 P1. ✷

Remarks :

(i) Note that the system dynamics given here are almost the same as
the system dynamics given in (4.11)– (4.13). Only in chapter 4 we
set ṽ1 = 0 and we did not make the transformation from w to w̃.

(ii) Note that Ā11 and Ã11 are both asymptotically stable by theorem
A.6 and corollary A.8 respectively.

(iii) When D is injective the above lemma simplifies considerably. In
that case, we find

Ĵ (v,w) = ‖z‖22 − ‖w‖22
= ξTPξ +

∫ ∞

0
x1(τ)TR(P )x1(τ)dτ + ‖Dv‖22 − ‖w̃‖22.

where R(P ) is defined by

R(P ) = ATP + PA+ CTC + PEETP

− (BTP +DTC) (DTD)−1 (BTP +DT
1C)

Moreover,

ṽ := v + (DTD)−1
BTPx,

w̃ := w − ETPx,

and the dynamics are governed by:

ẋ = Āx + Bṽ + Ew̃,

z = C̄x + Dṽ,

where

Ā := A−B (DTD)−1 (BTP + CTD) + EETP,

C̄ := C −D (DTD)−1 (BTP + CTD).
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Proof : By using the system equations (6.2) we find

d

dt

[
xT(t)Px(t) − ξTPξ +

∫ t

0

z(τ)Tz(τ)− w(τ)Tw(τ) dτ
]

(6.12)

=


xv
w




T
A

T
F0
P + PAF0 + CT

F0
CF0 PB PE

BTP DTD 0
ETP 0 −I




xv
w




=


xv
w̃




T
A

T
F0
P + PAF0 + CT

F0
CF0 + PEETP PB 0

BTP DTD 0
0 0 −I




xv
w̃


 . (6.13)

where we have

AF0 := A+BF0,

CF0 := C +DF0,

and w̃ as given by (6.8) and F0 as defined by (A.1). We can now use the
decomposition as defined in (A.2) and we find that (6.13) is equal to:




x1

x3

v1

w̃




T


P1A11 + AT
11P1 + CT

21C21 + P1E1E
T
1 P1 P1A13 + CT

21C23 P1B11 0

AT
13P1 + CT

23C21 CT
23C23 0 0

BT
11P1 0 D̂TD̂ 0

0 0 0 −I






x1

x3

v1

w̃




When we finally use the definitions (6.6) and (6.7) and integrate the
equation (6.12) from 0 to ∞ we find the equation (6.5). Here we used
that

lim
t→∞x

T(t)Px(t) = 0,

since the pair (v,w) is admissible and hence x ∈ Ln2 and ẋ ∈ Ln2 . Moreover
(v,w) admissible implies that the integral in (6.5) is well-defined.

Assume that we have a matrix P such that F (P ) ≥ 0 and such that rank
F (P ) = rankR(s)Gci. Then in the bases of appendix A the matrix P can
be written in the form (A.15) with R(P1) = 0. The minimizing player
can control v1 and v2. As we did in chapter 4 we assume for the moment
that the minimizing player can control v1 and x3 and hence also ṽ1 and
q3. The maximizing player can control w̃. From the previous lemma it
is then intuitively clear that the minimizing player should set ṽ1 = 0 and
q3 = 0 and the maximizing player should set w̃ = 0 which would yield
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an equilibrium. Two things remain to be done. First we have to work
out how the minimizing player can control q3. It will turn out that the
minimizing player can control q3 arbitrarily but not exactly, which is the
reason why we find only an almost equilibrium and not an equilibrium
(if D is injective we do not have q3 and an exact equilibrium). Finally, it
has to be shown that the above choices guarantee that the corresponding
u and w are in the desired feedback classes. For this we have to use the
second rank condition that P satisfies.

We shall use lemma 6.5 together with lemma 2.18, which turns out
to be extremely useful for singular differential games, to prove theorem
6.3:

Proof of theorem 6.3 : The matrix P satisfies the conditions of
theorem 6.3. Let ε > 0 be given. First note that when we choose w̃ = 0,
i.e. w0 := ETPx then by lemma (6.5) we have:

Ĵ (v,w0) ≥ ξTPξ ≥ ξTPξ − ε,

for all v such that (v,w0) is an admissible pair. This is the second in-
equality in (6.3).

We have to construct u0 such that for all w ∈ L2 the first inequality
in (6.3) is satisfied. We have to do some preparatory work. We start by
choosing ṽ1 = 0, i.e.

v1 := −
(
D̂TD̂

)−1
BT

11P1x1.

We shall use the system dynamics given by equations (4.11)–(4.13). Since
P satisfies the conditions of theorem 6.3 we know by corollary A.8 that
the matrix Ã11 is asymptotically stable. Assume that we have an initial
value in some bounded set V. Then the mapping from q3 and w to x1 is
bounded, i.e. there are M1,M2,M such that for all q3 and w in L2 and
ξ ∈ V we have

‖x1‖22 ≤M1‖q3‖22 +M2‖w‖22 +M. (6.14)

Moreover, by theorem A.6 we know that Ā is stable and hence by equation
(6.9) we find that M3,M4 and M5 exist such that

‖x1‖22 ≤M3‖q3‖22 +M4‖w̃‖22 +M5. (6.15)

Consider the system given by the differential equation (4.12) with input
v2, state x2, q3 and output q3. It was shown in the proof of theorem 4.3
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that this system is strongly controllable. We assumed that ξ ∈ V for some
bounded set V. Therefore by lemma 2.18 we know we can find a feedback

v2 = F1

(
x2

q3

)
,

such that by applying that feedback in (6.10) (with once again ṽ1 = 0)
we have (simultanuously !!!):

‖q3‖22 ≤ (‖C23‖+ 1)−1 ε (εM1 +M + 1)−1
(
‖x1‖22 + ‖w‖22 + 1

)
, (6.16)

‖q3‖22 ≤ (‖C23‖+ 1)−1 (M1 +M2 + 1)−1
(
‖x1‖22 + ‖w‖22 + 1

)
, (6.17)

‖q3‖22 ≤ (M4 + 1)−1 (‖ETP‖+ 1)−1
(
‖x1‖22 + ‖w‖22 + 1

)
, (6.18)

for all ξ ∈ V and for all w ∈ L2 and x1 ∈ L2. Moreover, we have x2 ∈ L2.
Combining (6.16) and (6.17) with (6.14) we find

‖C23q3‖22 ≤ ‖w‖22 + ε.

By choosing

v2 = F1

(
x2

q3

)
, v0 =

(
v1

v2

)
,

we therefore find

Ĵ (v0, w) ≤ ξTPξ + ε.

It is also easy to check that for arbitrary w ∈ Ln2 we have x ∈ L2. This
gives the first inequality in (6.3). It remains to be shown that (v0, w0) is
an admissible pair. Choose v0 and w0 as defined above. Hence we have
ṽ1 = 0 and w̃ = 0 in the set of equations (6.9)–(6.11). Combining (6.15)
with (6.18) we find that x1 ∈ L2 and q3 ∈ L2. Moreover F1 was such that
the remaining state x2 ∈ L2. Therefore the pair (v0, w0) is admissible.
By noting that for each bounded set of initial values the u0 and w0 are
given by a static state feedback the proof is completed.

Remarks : The above proof is very simple when D is injective. Using
remark (ii) after lemma 6.5 and since R(P ) = 0 we find that the strategies

v0 := − (DTD)−1BTPx,

w0 := −ETPx,

define an (exact) equilibrium (note that the matrix Ā is stable since P is
a stabilizing solution of the algebraic Riccati equation).
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Corollary 6.6 : Let P ∈ Rn×n satisfy the conditions of theorem 6.3.
We have the following equality,

ξTPξ = inf
u∈Um

st (ξ)

sup
w∈Ll

2

J (u,w). (6.19)

✷

Proof : For any ε > 0 we can choose v = v0 as defined in the proof
of theorem 6.3. We have ṽ1 = 0 and ‖C23q3‖ ≤ ‖w̃‖ + ε and using the
equality in (6.5) we find

inf
v∈Um

st (ξ)

sup
w∈Ll

2

Ĵ (v,w) ≤ ξTPξ + ε. (6.20)

As we mentioned earlier the transformation from u to v is not essential and
can be easily reversed. Since (6.20) is true for all ε we find an inequality in
(6.19). By choosing w̃ = 0 for arbitrary u we find the opposite inequality
and hence equality.

6.4 Necessary conditions for the existence of al-
most equilibria

In this section we shall derive necessary conditions for the existence of an
almost equilibrium. This will be done by showing that the existence of an
almost equilibrium implies the existence of a feedback which makes the
H∞ norm of the closed-loop system less than or equal to 1. Our main tool
will be theorem 4.1 which gives necessary and sufficient conditions under
which we can make the H∞ norm of the closed-loop system strictly less
than γ. However, we have to do some work to find necessary conditions
for “less than or equal to γ”.

We define the following class of input functions:

U(Σ, w, ξ) = {u ∈ Lm2 | By applying u,w in Σ we have xu,w,ξ ∈ Ln2} .

We shall use the following lemmas.

Lemma 6.7 : Assume that for the system (6.2) with cost criterion (6.1)
there exists an almost equilibrium. Moreover, let the initial condition
ξ = 0.
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Under the above assumptions we have:

inf
u∈ U(Σ,w,0)

J (u,w) ≤ 0, ∀w ∈ Ll2. (6.21)

✷

Proof : We know that for any ε > 0 there exists u0 ∈ Ufb such that
(6.3) is satisfied. Choose an arbitrary w ∈ Ll2. We have

inf
u∈ U(Σ,w,0)

J (u,w) ≤ J (u0, w) ≤ J ∗(0) + ε.

This implies that for arbitrary λ > 0 we have

inf
u∈ U(Σ,w,0)

J (λu, λw) = inf
u∈ U(Σ,λw,0)

J (u, λw) ≤ J (u0, λw) ≤ J ∗(0) + ε.

But since ξ = 0 we have J (λu, λw) = λ2J (u,w). Hence

λ2 inf
u∈ U(Σ,w,0)

J (u,w) ≤ J ∗(0) + ε.

Since this is true for all λ > 0 we find (6.21).

The following lemma is a straightforward consequence of the definition of
an almost equilibrium and the definition of the feedback classes.

Lemma 6.8 : Assume that J ∗ defines an almost equilibrium for the
system (6.2) with cost criterion (6.1). For all ξ ∈ Rn we have:

inf
u∈Um

st (ξ)

sup
w∈Ll

2

J (u,w) ≤ J ∗(ξ). (6.22)

✷

Proof of the necessity part of theorem 6.4 : We define:

Jγ(u,w) :=
∫ ∞

0
zT(t)z(t) − γ2wT(t)w(t) dt = ‖z‖22 − γ2‖w‖22.

It is easy to see that Jγ(u,w) = J (u,w) for γ = 1. Let γ > 1 be given.
We have:

inf
u∈ U(Σ,w,0)

Jγ(u,w) = inf
u∈U(Σ,w,0)

J (u,w) − (γ2 − 1)‖w‖22,
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and hence by lemma 6.7 we have

inf
u∈ U(Σ,w,0)

‖zu,w,0‖22 − γ2‖w‖22 ≤ −(γ2 − 1)‖w‖22, (6.23)

for all w ∈ Ll2. Therefore, by applying theorem 4.1 to the system Σ, we
find that a positive semi-definite matrix Pγ exists such that Fγ(Pγ) ≥ 0
where Fγ is defined by (4.2) (with D1 replaced by D) and such that Pγ
satisfies the following two rank conditions,

rank Fγ(Pγ) = rankR(s)Gci,

rank

(
Lγ(Pγ , s)
Fγ(Pγ)

)
= n+ rankR(s)Gci, ∀s ∈ C+ ∪ C0,

where Lγ is defined by (4.3). Since by theorem 6.3 Pγ is an almost
equilibrium of a differential game with cost criterion Jγ which satisfies
corollary 6.6 it is easy to see that if γ ↓ 1 then Pγ increases i.e. Pγ1−Pγ2 ≥
0 if 1 < γ1 ≤ γ2. On the other hand by lemma 6.8 we have:

ξTPγξ = inf
u∈Um

st (ξ)

sup
w∈Ll

2

Jγ(u,w)

≤ inf
u∈Um

st (ξ)

sup
w∈Ll

2

J1(u,w)

≤ J ∗(ξ).

Hence limγ↓1 Pγ = P exists. Since rank Fγ(X) ≥ rankR(s)Gci for all
symmetric matrices X (see the proof of theorem A.6), by a continuity
argument it can be shown that our limit P satisfies the rank condition
(i) of theorem 6.4. In lemma A.6, part (iii), it has been shown that
the rank condition (ii) of theorem 6.3 implies that a certain matrix is
asymptotically stable. Therefore, again by a continuity argument, we
know that in the limit this matrix has all its eigenvalues in the closed
right half plane. This is equivalent with the rank condition (ii) of theorem
6.4 by lemma A.6, part (iii).

6.5 The regular differential game

We shall now show the last part of theorem 6.4. The problem we have
with the necessary conditions is that if we apply the u0 and w0 as we
derived them in section 6.3, then (u0, w0) is no longer admissible. The
trick we use is that we approximate w0 by a function w̃0 with compact
support. Then (u0, w̃0) is admissible and after some estimations it can
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be shown that we indeed have an almost equilibrium. This has been
recapitulated in the following theorem,

Theorem 6.9 : Assume that we have the system (6.2) with a cost crite-
rion given by (6.1). Furthermore assume that D is injective and that there
are no invariant zeros on the imaginary axis for the system (A,B,C,D).
If a matrix P exists such that F (P ) ≥ 0 and the rank conditions (i) and
(ii) in theorem 6.4 are satisfied, then an almost equilibrium exists. ✷

Remarks : This is an extension of the results in [Ma]. However there
is an essential difference because we require stability. This prevents some
nasty effects like the one mentioned in the example of [Ma]. However,
in this chapter the set of admissible inputs is no longer a simple product
space and this adds extra technical difficulties.

The proof will make use of two lemmas. The following lemma has been
proven in chapter 4 after the statement of theorem 4.1.

Lemma 6.10 : Assume that D is injective. Suppose a symmetric matrix
P is given. Then the following two conditions are equivalent

(i) F (P ) ≥ 0 and rankF (P ) = rankR(s)Gci,

(ii) R(P ) := PA+ATP + PEETP + CTC
− (PB + CTD) (DTD)−1 (BTP +DTC) = 0.

Moreover if P satisfies (i) (or equivalently (ii)), then the following two
conditions are equivalent for all s ∈ C:

(iii) rank

(
L(P, s)
F (P )

)
= n+ rankR(s)Gci,

(iv) the matrix A+EETP−B (DTD)−1 (BTP +DTC) has no eigenvalue
in s. ✷

Note that in the case that D is injective we have rankR(s)Gci = rankD.
At this point we shall recall the following, known, result for the LQ-
problem with stability (see [Wi7]).
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Lemma 6.11 : Consider the system (6.2) with cost criterion (6.1). Let
w = 0. Assume that (A,B) is stabilizable, that (A,B,C,D) has no in-
variant zeros in C0 and that D injective. Then we have the following:

inf
u∈U(Σ,0,ξ)

J (u, 0) = ξTLξ.

Here L ≥ 0 is the (unique) solution of the algebraic Riccati equation

ATL+ LA+ CTC − (PB + CTD) (DTD)−1 (BTP +DTC) = 0,

with the property that the matrix A−B (DTD)−1 (BTP +DTC) is asymp-
totically stable. ✷

Proof of theorem 6.9 : We know that we have a solution of R(P ) = 0
such that the matrix A + EETP − B (DTD)−1 (BTP +DTC) has all its
eigenvalues in the closed left half plane. P is related to the same linear
quadratic control problem with stability as L only the C matrix should
this time be replaced by C̃ satisfying C̃TC̃ = CTC + PEETP . This
immediately implies that P ≥ L.

Next, consider the following Riccati differential equation (RDE),

K̇ +KA+ATK + CTC = (KB + CTD) (DTD)−1 (BTK +DTC)

−KEETK, K(0) = L.

Let T > 0 be such that the solution of the RDE exists on [0, T ]. We know
such a T exists. For the system (6.2) we shall consider the finite horizon
differential game with endpoint-penalty. The cost criterion is given by

JT (u,w) =
∫ T

0
zT(t)z(t) − wT(t)w(t) dt + xT(T )Lx(T ).

It is well known (see [Ma]) that the optimal strategies for w and u are
given by

u0(t) := − (DTD)−1 (BTK(T − t) + CTD)x(t),
w0(t) := ETK(T − t)x(t),

and the corresponding equilibrium is J ∗
T (ξ) = ξTK(T )ξ. It can be seen

(using the interpretation of L as the cost defined in lemma 6.11) that
this problem is equivalent with the original problem with cost criterion
(6.1) when we add the additional constraint ∀t > T, w(t) = 0. This
constraint is weakened for increasing T and hence it is clear that for
increasing T the cost will increase since w is a maximizing player. That
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is, for T ≥ t1 ≥ t2 we have K(t1) ≥ K(t2). Moreover, let S(t) be
the solution of the RDE with endpoint S(T ) = P . Then S defines an
equilibrium of a differential game over the same finite horizon but with
endpoint-penalty x(T )TPx(T ). Since P is a stationary solution of the
RDE we know S(t) = P for all t ∈ [0, T ]. Because the endpoint-penalties
P and L of these two differential games satisfy P ≥ L we know that
P = S(t) ≥ K(t) ∀t < T . Since K(.) is an increasing solution of the
RDE which is bounded from above we know that K(.) exists for all t and
converges to a matrix K∞ which is a stationary solution of the RDE, i.e.
R(K∞) = 0. Note that K∞ ≥ L ≥ 0.

Next we claim that the matrix A1 := A−B (DTD)−1 (BTK∞ +DTC)
is asymptotically stable. To show this we rewrite the ARE in the following
form.

K∞A1 +AT
1K∞ +K∞EETK∞ + CTC+

(K∞B + CTD) (DTD)−1 (BTK∞ +DTC) = 0.

By applying an eigenvector x corresponding to an unstable eigenvalue λ
to both sides of this equation we find Reλ xTK∞x = 0, ETK∞x = 0,
Cx = 0 and (BTK∞ +DTC)x = 0. For Reλ > 0 we find that Ax = λx
andK∞x = 0. SinceK∞ ≥ L ≥ 0 this implies Lx = 0. This again implies
that λ is also an unstable eigenvalue of A − B (DTD)−1 (BTL+DTC).
However, since by lemma 6.11 this matrix is stable we have a contradic-
tion. If Reλ = 0, then we have:

Ax = λx, Cx = 0. (6.24)

Because D is injective it can be shown that every unobservable eigenvalue
of A is an invariant zero of (A,B,C,D). Hence (6.24) contradicts the fact
that we have no invariant zeros on the imaginary axis. Therefore we know
that A1 is stable.

We are now in the position to show that J ∗(ξ) = ξTK∞ξ is an almost
equilibrium of the system (6.2) with cost criterion (6.1). Let ε > 0 be
given. Choose T > 0 such that ξTK∞ξ − ξTK(T )ξ < ε. The following
u0, w0 turn out to satisfy (6.3):

u0(t) := − (DTD)−1 (BTK∞ +DTC)x(t),

w0(t) :=

{
ETK(T − t)x(t) for t < T,
0 otherwise.
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Indeed for admissible pairs (u,w) we can now rewrite the cost crite-
rion in the following way

J (u,w) = ξTK∞ξ −
∫ ∞

0
‖ (w(t)− ETK∞x(t)) ‖2dt

+
∫ ∞

0
‖D

(
u(t) + (DTD)−1 (BTK∞ +DTC)x(t)

)
‖2dt.

Since u0 is a stabilizing feedback it can be seen from this equation that
u0 satisfies its requirements. Another way of rewriting the cost criterion
when w(t) = 0 ∀t > T is given by

J (u,w) = ξTK(T )ξ − xT(T )Lx(T ) +
∫ ∞

T
zT(t)z(t)dt

+
∫ T

0
‖D

(
u(t) + (DTD)−1 (BTK(T − t) +DTC)x(t)

)
‖2dt

−
∫ T

0
‖ (w(t)− ETK(T − t)x(t)) ‖2dt.

Since, by lemma 6.11, the sum of the second and third term is non-
negative and the first term differs from J ∗(ξ) less than ε, it is easy to see
that w0 satisfies the second equation in (6.3). This proves that indeed an
almost equilibrium exists.

6.6 Conclusion

In this chapter the linear quadratic differential game was solved. We
could derive necessary conditions as well as sufficient conditions for the
existence of equilibria. However, for the derivation of the necessary con-
ditions we made the extra assumption that there are no invariant zeros
on the imaginary axis. Under this assumption we obtained necessary and
sufficient conditions for the existence of equilibria for the case that D is
injective (but not for the case that D is not injective).

Interesting points for future research would be to find necessary and
sufficient conditions in the case that either D is not injective or if there
are invariant zeros on the imaginary axis. Another point is the uniqueness
of equilibria. In our opinion the almost equilibrium is unique but we have
not been able to prove this claim. The almost equilibrium we find in
theorem 6.3 can be shown to be the smallest possible.

An interesting feature is that under the assumptions of theorem 6.3
the existence of an almost equilibrium guarantees the existence of an
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internally stabilizing controller which makes the H∞ norm of the closed-
loop system less than or equal to 1. Conversely, if there is an internally
stabilizing controller which makes the H∞ norm strictly less than 1, then
an almost equilibrium exists. This shows the strong relationship between
H∞ control and differential games. It is the view of the author that in
the initial surge of interest in H∞ control theory (especially with respect
to the state feedback case) the known results from the differential game
literature have not been taken into account seriously enough. However,
results as in this thesis are not trivial applications of these older results.
Stability requirements had to be added. Moreover, in many cases the
theory of differential games only supplies sufficient conditions for the ex-
istence of equilibria.



Chapter 7

The singular minimum entropy
H∞ control problem

7.1 Introduction

The H∞ control problem has been discussed extensively in the previous
chapters. However, H∞ controllers are designed to minimize the peak
value of the magnitude Bode diagram. It is well-known that using the
frequency-domain approach to H∞ control (see [Fr2, Kw, Kw2]) we find
closed-loop transfer matrices with a completely flat magnitude Bode dia-
gram. In the latter two papers this was even explicitly used to find suit-
able controllers. On the other hand the classical H2 or Linear Quadratic
Gaussian (LQG) control problem (see e.g. [AM]) the avarage value of the
magnitude over all frequencies is minimized. The latter is not very much
concerned with peaks as long as they have small width.

The above reasoning implies that H∞ control is well-suited for ro-
bustness analysis via the small-gain theorem. On the other hand, the
H2 or LQG cost criteria might have very large values. This leads to a
new problem: minimize the H2 norm under an H∞ norm bound. It is
hoped that the H∞ norm bound yields the desired level of robustness
while performance is optimized simultaneously via the minimization of
the H2 norm.

The minimum entropy H∞ control problem is defined as the problem
of minimizing an entropy function under the constraint of internal stabil-
ity of the closed-loop system and under the constraint of an upper bound
1 on the H∞ norm of the closed-loop transfer matrix. This means that we
want to minimize the entropy function evaluated for the same closed-loop
transfer matrix as the one on which we imposed the H∞ norm constraint.
It should be noted that the interest in minimizing this entropy function
is related to the fact that the entropy function is an upper bound to the

139
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cost function used in the LQG control problem. Therefore, it is hoped
that by minimizing this entropy function, one is minimizing the LQG
cost criterion at the same time. This has, as far as we know, never been
proven but this is the reason why the problem we discuss in this chap-
ter is sometimes referred to as the mixed LQG/H∞ or H2 /H∞ control
problem.

For the regular case, this problem was solved in [Gl5, Mu, Mu2]. It
was shown that a minimizing controller, which is often called the “cen-
tral controller”, always exists. This terminology is due to the fact that
the parametrization (given in section 5.5) of all internally stabilizing con-
trollers which yield a closed-loop system with H∞ norm less than 1, is
centered around this specific controller. We shall not discuss extensions
towards the more general case mentioned in subsection 1.6.3, i.e. the
interconnection (1.6) where we search for a compensator from y to u
such that the transfer matrix from w2 to z2 satisfies a certain H∞ norm
bound while the H2 norm of the closed-loop transfer matrix from w1 to
z1 is minimized over all internally stabilizing controllers. This extension
is discussed in [BH, BH2, Do4, HB, HB2, Kh6, ZK3]. The paper [Kh6]
has been extended to the singular case in [St14].

In this chapter we extend the results of [Mu] to the singular case.
We still exclude invariant zeros on the imaginary axis. This chapter is in
essence a combination of the results of chapters 4 and 5 with the results
from [Mu]. The results of this chapter have already appeared in [St10].
Note that the singular LQG control problem has been investigated in
[St12].

7.2 Problem formulation and results

Consider the linear time-invariant system:

Σ :




ẋ = Ax + Bu + Ew,

y = C1x + D1w,

z = C2x + D1u,

(7.1)

Here A,B,E,C1, C2,D1 and D2 are real matrices of suitable dimension.
Let G be a strictly proper real rational matrix which has no poles on the
imaginary axis and which is such that

‖G‖∞ < 1.

For such a transfer matrix G, we define the following entropy function:

J (G) := − 1
2π

∫ ∞

−∞
ln det (I −G∼(iω)G(iω)) dω (7.2)
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where G∼(s) := GT(−s). The following equality is derived easily using
the Lebesgue dominated convergence theorem:

J (G) := lim
s→∞−

1
2π

∫ ∞

−∞
ln det (I −G∼(iω)G(iω))

(
s2

s2 + ω2

)
dω

The latter expression was used in [Mu]. The minimum entropyH∞ control
problem is then defined as:

infimize J (Gcl) over all controllers which yield a strictly pro-
per, internally stable closed-loop transfer matrix Gcl with
H∞ norm strictly less than 1.

We shall investigate proper controllers of the form (2.4). It should be
noted that this class of controllers is restrictive since it will be shown
that in general for the singular problem the infimum is attained only by
a non-proper controller.

A central role in our study of the above problem will be played by
the quadratic matrix inequality. We shall use the notation and the main
result of chapter 5.

We can now formulate the main result of this chapter:

Theorem 7.1 : Consider the system (7.1). Assume that the systems
(A,B,C2,D2) and (A,E,C1,D1) have no invariant zeros on the imag-
inary axis and assume that a controller exists which is such that the
closed-loop system is internally stable and has H∞ norm strictly less than
1. The infimum of (7.2), over all internally stabilizing controllers of the
form (2.4) which are such that the closed system has H∞ norm strictly
less than 1, is equal to:

Trace ETPE + Trace (ATP + PA+ CT
2C2 + PEETP )(I −QP )−1Q

where P and Q are such that part (ii) of theorem 5.1 is satisfied. The
infimum is attained if, and only if,

(i) ImEQ ⊆ (I −QP )Vg(Σci) +BKerD2

(ii) KerC2,P ⊇ (I −QP )−1Tg(Σdi) ∩ C−1
1 ImD1

(iii) (I −QP )Vg(Σci) ⊇ Tg(Σdi)
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where Σci = (A+EETP,B,C2,P ,DP ) and Σdi = (A+QCT
1C1, EQ, C1,DQ).

The matrices C2,P ,DP , EQ,DQ are arbitrary matrices satisfying

F (P ) =


 CT

2,P

DT
P


(

C2,P DP

)
, (7.3)

G(Q) =


 EQ

DQ


(

ET
Q

DT
Q

)
. (7.4)

✷

Remarks:

(i) In the system (7.1) we have two direct-feedthrough matrices which
are identical to zero. We can extend the above result to the more
general case with all direct-feedthrough matrices possibly unequal
to zero. Consider the system (2.1). Due to the fact that the closed-
loop system must be strictly proper for the entropy to be finite,
there must be a preliminary static output feedback which makes
D22 equal to 0. We can remove D11 by the same argument as given
in subsection 5.6.2.

(ii) It is straightforward to prove that the conditions (i)–(iii) are inde-
pendent of the particular factorizations chosen in (7.3) and (7.4).
It can also be shown that conditions (i)–(iii) are automatically sat-
isfied if D2 and D1 are injective and surjective respectively.

(iii) In [Mu] an H∞ norm bound γ > 0 is used and a corresponding
entropy function depending on this bound γ. This result can be
obtained easily by dividing the matrices E and D1 by γ and by
multiplying the entropy function by γ2.

7.3 Properties of the entropy function

In this section we recall some basic properties of the entropy function as
defined in (7.2). These properties were derived in [Mu] but we give sep-
arate proofs because we only investigate what is called in [Mu] “entropy
at infinity” . This enables us to derive more straightforward proofs.

We can derive the following properties of our entropy function (7.2):
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Lemma 7.2 : Let G be a strictly proper, stable rational matrix such
that ‖G‖∞ ≤ 1. Then we have

• J (G) ≥ 0 and J (G) = 0 implies G = 0.

• J (G) = J (G∼) = J (GT). ✷

Proof : Straightforward.

Next, we relate our entropy function to the LQG cost criterion. First we
define the LQG cost criterion:

Definition 7.3 : Let Σ be given by

Σ :

{
dx = Axdt + C dw,

z = Cx.
(7.5)

Assume that A is stable. Let w be a standard Wiener process and de-
fine the solution to the first equation (which is a stochastic differential
equation) via Wiener integrals. Then the associated LQG cost is defined
as:

C(G) := lim
s→∞E

{
1
s

∫ s

0
zT(t)z(t)dt

}
,

where E denotes the expectation with respect to the noise. ✷

Using the above definition of the LQG cost we find:

Lemma 7.4 : Let Σ be defined by (7.5). Assume that A is stable and
let G be the transfer matrix from dw to z. We have:

J (G) ≥ C(G). ✷

Proof : It is well-known that the LQG cost is equal to TraceBTX̃B
where X̃ is the unique solution of the following Lyapunov equation:

X̃A+ATX̃ + CTC = 0
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A proof of lemma 7.4 can then be based upon corollary 7.7, by showing
that X ≥ X̃.

Remarks : We can define, via scaling, entropy functions with anH∞ norm
bound of γ instead of 1. Then it can be shown that as γ →∞ the entropy
cost function converges to the LQG cost.

Next, we give two key lemmas. Of the first lemma, the first part is equal
to lemma 2.12 while the second part originates from [Mu]. We give a
separate proof of the second part.

Lemma 7.5 : Suppose that two systems Σ and Σ2, both described by
some state space representation, are interconnected in the following way:

Σ

Σ2

❄

✛

✻

✛

y

z w

u (7.6)

Assume that the system Σ is inner. Moreover, assume that its transfer
matrix G has the following decomposition:

G

(
w

u

)
=:

(
G11 G12

G21 G22

)(
w

u

)
=

(
z

y

)
(7.7)

such that G−1
21 ∈ H∞ and such that G11, G22 are strictly proper. Under

the above assumptions the following two statements are equivalent:

(i) The closed-loop system (7.6) is internally stable and its closed-loop
transfer matrix Gcl has H∞ norm less than 1.

(ii) The system Σ2 is internally stable and its transfer matrix G2 has
H∞ norm less than 1.

Moreover, Gcl is strictly proper if, and only if, G2 is strictly proper.
Finally, if (i) holds and G2 is strictly proper then the following relation
between the entropy functions for the different transfer matrices is satis-
fied:

J (Gcl, 1) = J (G11, 1) + J (G2, 1). (7.8)

✷
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Proof : The first claim that the statements (i) and (ii) are equivalent,
has been shown in lemma 2.12. We know that G11 and G22 are strictly
proper. Combined with the fact that G is inner, this implies that G12

and G21 are bicausal. Using this, it is easy to check that G2 is strictly
proper if, and only if, Gcl is strictly proper.

We still have to prove equation (7.8). The following equality is easily
derived using the property that Σ is inner:

I −G∼
clGcl = G∼

21 (I −G∼
2 G

∼
22)

−1
(
I −G∼

2 G2

)
(I −G22G2)

−1G21

Therefore, we find that

ln det (I −G∼
clGcl) = ln det (I −G∼

11G11)

+ ln det (I −G∼
2 G2)− 2 ln det (I −G22G2) (7.9)

Moreover, if statement (i) is satisfied and if G2 is strictly proper then we
have

J (G2, 1) = − 1
2π

∫ ∞

−∞
ln det (I −G∼

2 (iω)G2(iω)) dω, (7.10)

J (G11, 1) = − 1
2π

∫ ∞

−∞
ln det (I −G∼

11(iω)G11(iω)) dω. (7.11)

Using the fact that G2 is strictly proper, stable and has H∞ norm strictly
less than 1 and the fact that G22 is also stable, strictly proper and has
H∞ norm less than or equal to 1, we know that ln det (I −G22(s)G2(s))
is an analytic function in the open right half plane and that a constant
M exists such that

| ln det (I −G22(s)G2(s)) | <
M

|s|2 ∀s ∈ C0 ∪ C+

This implies, using Cauchy’s theorem, that∫ ∞

−∞
ln det (I −G22(iω)G2(iω)) dω = 0 (7.12)

Combining (7.9),(7.10),(7.11) and (7.12) we find (7.8).

The following lemma is an essential tool for actually calculating the en-
tropy function for some specific system:
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Lemma 7.6 : Assume that a rational matrix G which has a detectable
and stabilizable realization (A,B,C,D) with detD = 1 is given. Also,
assume that G,G−1 ∈ H∞ and G has H∞ norm equal to 1. Then we
have:∫ ∞

−∞
ln |detG(iω)| dω = −π Trace BD−1C (7.13)

✷

Proof : Denote the integral in (7.13) by K and define

a := − Trace BD−1C.

We have (remember that ln |z| = Re ln z):

K = Re
(∫ ∞

−∞
ln detG(iω)− a

1 + iω
dω

)
+ a

∫ ∞

−∞
dω

1 + ω2
(7.14)

Next, it is easily checked that p(s) := ln detG(s) − a
1+s is a bounded

analytic function in C+ such that p(s) = O(1/s2) (|s| → ∞, Re s ≥ 0).
Hence, using Cauchy’s theorem we find

∫ ∞

−∞
p(iω) dω = 0. (7.15)

Combining (7.14) and (7.15) yields (7.13).

Corollary 7.7 : Let G be a strictly proper, stable transfer matrix with
H∞ norm strictly less than 1 and with stabilizable and detectable realiza-
tion (A,B,C, 0). Then we have:

J (G) = Trace BTXB (7.16)

where X is the unique solution of the algebraic Riccati equation:

XA+ATX +XBBTX + CTC = 0

such that A+BBTX is asymptotically stable. ✷
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Proof : The existence and uniqueness of X is a well-known result (see
e.g. [Ku]). It is easy to check that the transfer matrix M with realization
(A,B,−BTX, I) satisfies:

I −G∼G =M∼M

Moreover, M,M−1 ∈ H∞, i.e. M is a spectral factor of I − G∼G. We
have

J (G) = −1
π

∫ ∞

−∞
ln |detM(iω)| dω

and therefore (7.16) is a direct consequence of applying lemma 7.6 to the
above equation.

7.4 A system transformation

Throughout this section we assume that there are matrices P and Q
satisfying the conditions in theorem 5.1. Note that this is no restriction
when proving theorem 7.1. The existence of such P and Q is implied by
our assumption that an internally stabilizing controller exists which makes
the H∞ norm strictly less than 1. We use the technique from chapter 5 of
transforming the system twice such that the problem of minimizing the
entropy function for the original system is equivalent to minimizing the
entropy function for the new system we thus obtain. In the next section
we shall show that this new system satisfies some desirable properties
which enables us to solve the minimum entropy H∞ control problem for
this new system and hence also for the original system.

We factorize F (P ) as in (7.3). This can be done since F (P ) ≥ 0. We
define the following system:

ΣP :




ẋP = APxP + BuP + EwP ,

yP = C1,PxP + D1wP ,

zP = C2,PxP + DPuP ,

(7.17)

where AP := (A+ EETP ) and C1,P := (C1 +D1E
TP ).
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Lemma 7.8 : Let Σ and ΣP be defined by (7.1) and (7.17), respectively.
For any system ΣU of suitable dimensions consider the following inter-
connection:

ΣP

ΣU

✛yP

✛

✛uP

✛

❄
✻

zU wU

yU = wP zP = uU

(7.18)

and decompose the transfer matrix U of ΣU as follows:

U

(
wU

uU

)
=:

(
U11 U12

U21 U22

)(
wU

uU

)
=

(
zU

yU

)
,

compatible with the sizes of uU , wU , yU , and zU . Then the following holds:
a system ΣU of suitable dimensions exists such that:

(i) The system ΣU is inner

(ii) The transfer matrix U−1
21 is well-defined and stable

(iii) The transfer matrices U11 and U22 are strictly proper

(iv) J (U11, 1) = Trace ETPE

(v) The system Σ and the interconnection in (7.18) have the same trans-
fer matrix.

(vi) The interconnection in (7.18) is detectable from yP and stabilizable
by uP . ✷

Proof : In the basis of appendix A and if we have for the factorization of
F (P ) in (7.3) the matrices defined in (B.1) and (B.2) then such a system
ΣU is given by (B.5). Note that this factorization is unique up to unitary
transformation and therefore it is immediate that the result remains true
for an arbitrary factorization of F (P ) in (7.3).

Note that U21 is a spectral factor for I −U∼
11U11 which yields (iv) by

using the state space realization for U21 given in (B.5) and by applying
lemma 7.6.

Remarks : A state space realization for a system ΣU satisfying the
conditions of lemma 7.8 in case D2 and D1 are injective and surjective
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respectively is given, without the need of the bases in appendix A, by
(B.6).

Combining lemmas 7.5 and 7.8, we find the following theorem:

Theorem 7.9 : Let the systems (7.1) and (7.17) be given. Moreover,
let a compensator ΣF of the form (2.4) be given. The following two
conditions are equivalent:

• ΣF is internally stabilizing for Σ such that the closed-loop transfer
matrix Gcl is strictly proper and has H∞ norm strictly less than 1.

• ΣF is internally stabilizing for ΣP such that the closed-loop transfer
matrix Gcl,P is strictly proper and has H∞ norm strictly less than
1.

Moreover, if ΣF satisfies the above conditions then we have

J (Gcl, 1) = J (Gcl,P , 1) + Trace ETPE. ✷

Next, we make another transformation from ΣP to ΣP,Q. This transforma-
tion is exactly dual to the transformation from Σ to ΣP . We know there
exists a controller which is internally stabilizing for ΣP which makes the
H∞ norm of the closed-loop system strictly less than 1. Therefore if we
apply theorem 5.1 to ΣP we find that a unique matrix Y exists such that
Ḡ(Y ) ≥ 0 and

(i) rank Ḡ(Y ) = rankR(s)Ḡdi,

(ii) rank
(
M̄(Y, s) Ḡ(Y )

)
= n+ rankR(s)Ḡdi, ∀ s ∈ C0 ∪ C+,

where

Ḡ(Y ) :=


APY + Y AT

P
+ EET + Y CT

2,P
C2,PY Y CT

1,P
+ EDT

1

C1,PY +D1E
T D1D

T
1


 ,

M̄(Y, s) :=

(
sI −AP − Y CT

2,P
C2,P

−C1,P

)
,

Ḡdi(s) := C1,P (sI −AP )
−1E +D1.

In lemma 5.5 it has been shown that Y := (I −QP )−1Q satisfies the
above conditions. We factorize Ḡ(Y ):

Ḡ(Y ) =

(
EP,Q

DP,Q

)(
ET

P,Q
DT

P,Q

)
. (7.19)
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where EP,Q and DP,Q are matrices of suitable dimensions. We define the
following system:

ΣP,Q :




ẋP,Q = AP,QxP,Q + BP,QuP,Q + EP,Qw,

yP,Q = C1,PxP,Q + DP,Qw,

zP,Q = C2,PxP,Q + DPuP,Q,

(7.20)

where AP,Q := AP +Y CT
2,P
C2,P and BP,Q := B+Y CT

2,P
DP . Using theorem

7.9 and a dualized version for the transformation from ΣP to ΣP,Q we can
derive the following corollary:

Corollary 7.10 : Let the systems (7.1) and (7.20) be given. Moreover,
let a compensator ΣF of the form (2.4) be given. The following two
conditions are equivalent:

• ΣF is internally stabilizing for Σ such that the closed-loop transfer
matrix Gcl is strictly proper and has H∞ norm strictly less than 1.

• ΣF is internally stabilizing for ΣP,Q such that the closed-loop trans-
fer matrix Gcl,P,Q is strictly proper and has H∞ norm strictly less
than 1.

Moreover, if ΣF satisfies the above conditions then we have

J (Gcl, 1) = J (Gcl,P,Q, 1) + Trace ETPE + Trace C1,PY C1,P . ✷

From this corollary it is immediate that it is sufficient to investigate ΣP,Q

to prove the results in our main theorem 7.1. This is done in the next
section.

7.5 (Almost) disturbance decoupling and mini-

mum entropy

The first thing we would like to know is what we gain by our transfor-
mation from Σ to ΣP,Q. It turns out that we obtain in this way a system
of the form (7.1) such that part (ii) of theorem 5.1 is satisfied for P = 0
and Q = 0. This implies that:

rank

(
sI −AP,Q −BP,Q

C2,P DP

)
= n+ rank

(
C2,P DP

)
, (7.21)

rank

(
sI −AP,Q −EP,Q

C1,P DP,Q

)
= n+ rank

(
EP,Q

DP,Q

)
, (7.22)
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for all s ∈ C0 ∪ C+. Using these conditions we can apply theorem 2.20.
We obtain the following:

Theorem 7.11 : Consider the system (7.1). Assume that the systems
(A,B,C2,D2) and (A,E,C1,D1) have no invariant zeros on the imag-
inary axis and assume that a controller exists which is such that the
closed-loop system is internally stable and has H∞ norm strictly less than
1. The infimum of (7.2), over all internally stabilizing controllers of the
form (2.4) which are such that the closed system has H∞ norm strictly
less than 1, is equal to:

Trace ETPE + Trace (ATP + PA+ CT
2C2 + PEETP )(I −QP )−1Q

(7.23)

where P and Q are such that part (ii) of theorem 5.1 is satisfied. ✷

Proof : By corollary 7.10 and the non-negativity of the entropy function,
the infimum is always larger than or equal to (7.23). Next we choose a
sequence of controllers ΣF,n satisfying the conditions of theorem 2.20.
This is possible because of (7.21) and (7.22). These controllers applied to
ΣP,Q yield internally stable closed-loop systems and it is straightforward
to check that the closed-loop transfer matrices G̃cl,n,P,Q satisfy:

J (G̃cl,n,P,Q, 1)→ 0

as n → ∞. By applying corollary 7.10 we find that if we apply the
controllers ΣF,n to Σ then we find closed-loop systems which are internally
stable and the closed-loop transfer matrices Gcl,n are strictly proper, have
H∞ norm less than 1 and satisfy

J (Gcl,n, 1)→ Trace ETPE+

Trace (ATP + PA+ CT
2C2 + PEETP )(I −QP )−1Q

as n→∞, which completes the proof of this corollary.

Theorem 7.11 is in fact the main part of theorem 7.1. Exactly when the
infimum of the entropy function is attained is still to be investigated.
From the theory of almost disturbance decoupling (see [Tr]), it is well-
known that there is often only a non-proper controller which attains the
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infimum (note that because the interconnection should be well-posed it
is possible that not even a non-proper controller can attain the infimum).
However, we would like to know when it is possible to attain the infimum
by a proper controller. Note that the infimum is attained if, and only
if, we can find a controller for ΣP,Q which makes the closed-loop system
internally stable and the closed-loop transfer matrix G̃cl has H∞ norm
less than 1 and its entropy is equal to 0. However, the entropy is 0 if, and
only if, G̃cl = 0 by lemma 7.2. This reduces our original problem to what
is often called the disturbance decoupling problem with measurement
feedback and internal stability (DDPMS), i.e. the problem of finding a
stabilizing controller which makes the closed-loop transfer matrix equal
to 0 as discussed in section 2.6.

After some extensive calculations the following two equalities can be
derived:

Vg(A+ EETP,B,C2,P ,DP ) = Vg(AP,Q, BP,Q, C2,P ,DP )
Tg(A+QCT

1C1, EQ, C1,DQ) = (I −QP )Tg(AP,Q, EP,Q, C1,P ,DP,Q)

Applying theorem 2.19 then yields the proof of the final result in theorem
7.1.

7.6 Conclusion

In this chapter we have given a complete treatment of the singular min-
imum entropy H∞ control problem. We have an explicit formula for the
infimum. Moreover, we can characterize when the infimum is attained.
The construction of a controller can be done using some tools from the
geometric approach to control theory. However, this method is too ex-
tensive (though straightforward) to discuss in this chapter. Finally we
would like to note that this chapter gives a nice structured approach to
“entropy at infinity” with fewer technicalities than [Mu] where entropy
at infinity is simply a special yet important case.

A main open problem remains the problem of invariant zeros on the
imaginary axis. Moreover, we would like to have results on LQG itself
instead of the upper bound given by the entropy. A first start has been
made in [RK] but much more work has to be done. Finally, another
interesting extension is the general setup of subsection 1.6.3 where we
have two kinds of disturbances and two kinds of output to be controlled.
From one disturbance input to one of the outputs to be controlled we
want to satisfy an H∞ norm bound. For the closed-loop transfer matrix
from the other disturbance to the other output to be controlled we want
to minimize anH2 norm. In this way we can relate performance criteria to
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robustness criteria with much more arbitrary structure for the parameter
uncertainty. Some references are given in the introduction of this chapter.



Chapter 8

The finite horizon H∞ control
problem

8.1 Introduction

Most of the papers on the H∞ control problem mentioned in the previous
chapters discuss the “standard” H∞ problem: minimize the L2[0,∞)-
induced operator norm of the closed-loop operator over all internally sta-
bilizing feedback controllers.

A number of generalizations have appeared recently. One of these is
the minimization of the L2-induced operator norm over a finite horizon
(see [Li5, Ta]). As in the infinite horizon H∞ problem, difficulties arise if
the direct-feedthrough matrices do not satisfy certain assumptions (the
so-called singular case). This chapter will use the techniques from chap-
ters 4 and 5 to handle this problem for the finite-horizon case.

The following problem will be considered: given a finite-dimensional
system on a bounded time-interval [0, T ], together with a positive real
number γ, find necessary and sufficient conditions for the existence of
a dynamic compensator such that the L2[0, T ]-induced norm of the re-
sulting closed-loop operator is smaller than γ. In [Ta] and [Li5] such
conditions were formulated in terms of the existence of solutions to cer-
tain Riccati differential equations. Of course, in order to guarantee the
existence of these Riccati differential equations, certain coefficient matri-
ces of the system under consideration should have full rank (the regular
case). The present paper addresses the problem formulated above without
these full rank assumptions. We find necessary and sufficient conditions
in terms of a pair of quadratic matrix differential inequalities.

The results of this chapter have already appeared in [St7, Tr2]. The
detailed proof of the results is highly technical and can be found in [St7].
This paper discusses time-varying systems which satisfy a number of con-

154
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ditions. These conditions are more or less requirements that all the geo-
metric subspaces we use in appendix A and their dual versions, which we
can define for each t, are independent of time. For two important cases
these conditions are always satisfied:

• If the system is time-invariant (i.e. all coefficient matrices are con-
stant, independent of time).

• If the problem is regular in the sense as explained above.

In this chapter, contrary to [Li5, Ta], we shall assume that the system
is time-invariant. We shall try to give the main ideas of the proof which
follows the same lines as the proof of the results on the singular, infinite
horizon,H∞ control problem discussed in the previous chapters. However,
we shall not give all the technical details. For this, we refer to [St7]

The outline of this chapter is as follows: in section 8.2 we shall for-
mulate our problem and present our main result. In section 8.3 it will be
noted that if a controller exists which makes the L2[0, T ]-induced opera-
tor norm of the closed-loop operator less than 1 then matrices functions
P and Q exist satisfying a pair of quadratic matrix differential inequali-
ties, two corresponding rank conditions and two boundary conditions. In
the same section we shall introduce a system transformation with the,
by now standard, property: a controller “works” for this new system if,
and only if, the same controller “works” for the original system. Using
this transformation we shall show that another necessary condition for
the existence of the desired controller is that P and Q satisfy a cou-
pling condition: I − PQ is invertible for all t. In section 8.4 we shall
apply a second transformation, dual to the first, which will show that
the necessary conditions derived are also sufficient. This will be done by
showing that the system we obtained by our two transformations satisfies
the following condition: for all ε > 0 a controller exists which makes the
L2[0, T ]-induced norm of the closed-loop operator less than ε. We shall
end the chapter with a couple of concluding remarks.

8.2 Problem formulation and main results

Consider the linear time-invariant system

Σ :



ẋ = Ax + Bu + Ew,

y = C1x + D1w,

z = C2x + D2u.

(8.1)
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where x ∈ Rn is the state, u ∈ Rm the control input, w ∈ Rl an unknown
disturbance input, y ∈ Rp the measured output and z ∈ Rq the output
to be controlled. A, B, E, C1, D1, C2 and D2 are constant real matrices
of appropriate dimensions. In addition, we assume that some fixed time
interval [0, T ] is given. We shall be concerned with the existence and
construction of dynamic compensators of the form

ΣF :

{
ṗ(t) = K(t)p(t) + L(t)y(t),
u(t) =M(t)p(t) + N(t)y(t).

(8.2)

where K, L, M and N are real, matrix valued, continuous functions on
[0, T ]. The feedback interconnection of Σ and ΣF is the linear time-
varying system Σcl which yields a Volterra integral operator Gcl from w
to z as defined on page 19.

Thus, the influence of disturbances w ∈ Ll2[0, T ] on the output z can
be measured by the operator norm of Gcl, given in the usual way by

‖Gcl‖∞ := sup
{‖GFw‖2
‖w‖2

| 0 �= w ∈ Ll2[0, T ]
}
.

Here, ‖x‖2 denotes the L2[0, T ] norm of the function x. The problem that
we shall discuss in this chapter is the following:

given γ > 0, find necessary and sufficient conditions for the
existence of a dynamic compensator ΣF such that ‖Gcl‖∞ <
γ.

The problem as posed here will be referred to as the finite horizon H∞ con-
trol problem by measurement feedback. This problem was studied before in
[Li5, Ta]. However, these references assume that the following conditions
hold: D1 is surjective, D2 is injective. In the present chapter we shall
extend the results obtained in [Li5, Ta] to the case that D1 and D2 are
arbitrary.

A central role in our study of the problem posed is played by what
we shall call the quadratic differential inequality. Let γ > 0 be given.
For any differentiable matrix function P : [0, T ]→ Rn×n, define Fγ(P ) :
[0, T ]→ R(n+m)×(n+m) by

Fγ(P ) :=

(
Ṗ +ATP + PA+CT

2C2 + 1
γ2PEE

TP PB + CT
2D2

BTP +DT
2C2 DT

2D2

)
.

(8.3)

If Fγ(P )(t) ≥ 0 for all t ∈ [0, T ], then we shall say that P satisfies the
quadratic differential inequality (at γ). A dual version of (8.3) will also
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be important to us: for any differentiable Q : [0, T ] → Rn×n define
Gγ(Q) : [0, T ]→R(n+p)×(n+p) by:

Gγ(Q) :=

(
−Q̇+AQ+QAT + EET + 1

γ2QC
T
2C2Q QCT

1 + EDT
1

C1Q+D1E
T D1D

T
1

)
.

If Gγ(Q)(t) ≥ 0 for all t ∈ [0, T ] then we shall say that Q satisfies the
dual quadratic differential inequality (at γ). In the sequel let

Gci(s) := C2(Is−A)−1B +D2,

Gdi(s) := C1(Is−A)−1E +D1

denote the open-loop transfer matrices from u to z and w to y, respec-
tively. We are now ready to state our main result:

Theorem 8.1 : Let γ > 0. The following two statements are equivalent:

(i) A compensator ΣF of the form (8.2) exists such that ‖Gcl‖∞ < γ,

(ii) Differentiable matrix functions P and Q : [0, T ]→Rn×n exist such
that

(a) Fγ(P )(t) ≥ 0 ∀t ∈ [0, T ] and P (T ) = 0,

(b) rank Fγ(P )(t) = rankR(s)Gci ∀t ∈ [0, T ],

(c) Gγ(Q)(t) ≥ 0 ∀t ∈ [0, T ] and Q(0) = 0,

(d) rank Gγ(Q)(t) = rankR(s)Gdi ∀t ∈ [0, T ],

(e) γ2I −Q(t)P (t) is invertible for all t ∈ [0, T ]. ✷

The aim of this chapter is to outline the main steps and ideas involved in
a proof of the latter theorem. For a more detailed discussion we would
like to refer to [St7].

It can be shown that, in general, if Fγ(P ) ≥ 0 on [0, T ] then

rank Fγ(P )(t) ≥ rankR(s)Gci on[0, T ]

and, likewise, Gγ(Q) ≥ 0 on [0, T ] then

rank Gγ(Q)(t) ≥ rankR(s)Gdi on[0, T ]

This means that conditions (a) and (b) can be reformulated as: P is
a rank-minimizing solution of the quadratic differential inequality at γ,
satisfying the end-condition P (T ) = 0. A similar statement is valid for
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the conditions (c),(d). It can also be shown that if P satisfies (a), (b)
then it is unique. Also, this unique solution turns out to be symmetric
for all t ∈ [0, T ]. The same holds for Q satisfying (c) and (d).

It can be shown that for the special case whenD1 andD2 are assumed
to be surjective and injective, respectively, our theorem 8.1 specializes to
the results obtained before in [Li5, Ta].

It can also be shown that if the conditions in the statement of 8.1 part
(ii) indeed hold, then it is always possible to find a suitable compensator
with dynamic order equal to n, the dynamic order of the system to be
controlled.

8.3 Completion of the squares

In this section we shall outline the proof of the implication (i) ⇒ (ii) of
theorem 8.1. Consider the system Σ. Our starting point is the following
lemma:

Lemma 8.2 : Let γ > 0. Assume that there exists δ < γ such that for
all w ∈ Ll2[0, T ] we have

inf {‖zu,w‖2 − δ‖w‖2 |u ∈ Lm2 [0, T ]} ≤ 0. (8.4)

Then a differentiable matrix function P : [0, T ] → Rn×n exists such
that P (T ) = 0, Fγ(P )(t) ≥ 0 and rank Fγ(P )(t) = rankR(s)Gci for all
t ∈ [0, T ]. ✷

Proof : A proof of this can be given by using the techniques from chapter
3 (solve the regular case) and 4 (extend to the singular case).

Now, assume that the condition (i) in the statement of theorem 8.1 holds,
i.e. assume that a dynamic compensator ΣF exists such that ‖Gcl‖∞ =:
δ < γ. Therefore condition (8.4) is satisfied: let w ∈ Ll2[0, T ] and let z
be the closed-loop output with x(0) = 0 and p(0) = 0. Then z = zū,w,
where ū is the output of ΣF . Clearly

‖z‖2
‖w‖2

≤ ‖Gcl‖∞

and hence ‖zū,w‖2−δ‖w‖2 ≤ 0. Then also the infimum in (8.4) is less than
or equal to 0. Therefore we may conclude that, indeed, a differentiable
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matrix function P exists that satisfies conditions (a) and (b) of theorem
8.1.

The fact that (c) and (d) of theorem 8.1 also hold for a certain matrix
functionQ can be proven by the following dualization argument. Consider
the dual system

Σ′ :



ξ̇ = ATξ + CT

1 ν + CT
2 d,

η = BTξ + DT
2 d,

ζ = ETξ + DT
1 ν.

and apply to Σ′ the time-varying compensator

Σ′
F :

{
q̇(t) = KT(T − t)q(t) +MT(T − t)η(t),
ν(t) = LT(T − t)q(t) + NT(T − t)η(t).

It can be shown that if we denote by G̃cl the closed-loop operator of
Σ′×Σ′

F (with ζ(0) = 0, q(0) = 0), and if G3cl denotes the adjoint operator
of Gcl then the following equality holds:

G̃cl = R ◦ G3cl ◦R, (8.5)

where R denotes the time-reversal operator (Rx)(t) := x(T − t). Now, if
‖Gcl‖∞ < γ then also ‖G3cl‖∞ < γ and therefore, by (8.5), ‖G̃cl‖∞ < γ. We
can therefore conclude that the quadratic differential inequality associated
with Σ′ has an appropriate solution, say P̃ (t), on [0, T ]. By defining
Q(t) := P̃ (T − t) we obtain a function Q that satisfies (c) and (d) of
theorem 8.1.
Finally, we have to show that condition (e) of theorem 8.1 holds. We
shall need the following lemma:

Lemma 8.3 : Assume that P : [0, T ]→Rn×n exists such that Fγ(P )(t) ≥
0, ∀t ∈ [0, T ], and rank Fγ(P )(t) = rankR(s)G, ∀t ∈ [0, T ]. Then contin-
uous matrix functions C2,P and DP exist such that for all t ∈ [0, T ]

Fγ(P )(t) =

(
CT

2,P
(t)

DT
P
(t)

)(
C2,P (t) DP (t)

)
. (8.6)

✷
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Note that the non-trivial part of the above lemma is that this factorization
can be done with continuous factors. Assume that Fγ(P ) is factorized as
in (8.6). Introduce a new system, say ΣP , by

ΣP :



ẋP =

(
A+ 1

γ2EE
TP

)
xP + BuP + EwP ,

yP =
(
C1 + 1

γ2D1E
TP

)
xP + DT

1wP ,

zP = C2,PxP + DPuP .

(8.7)

We stress that ΣP is a time-varying system with continuous coefficient
matrices. For any dynamic compensator ΣF of the form (8.2), let Gcl,P

denote the operator from wP to zP obtained by interconnecting ΣP and
ΣF .

The crucial observation now is that ‖Gcl‖∞ < γ if, and only if,
‖Gcl,P‖∞ < γ, that is, a compensator ΣF “works” for Σ if, and only
if, it “works” for ΣP ! A proof of this can be based on the following
“completion of the squares” argument:

Lemma 8.4 : Assume that P satisfies (a) and (b) of theorem 8.1. As-
sume that xP (0) = x(0) = 0, uP (t) = u(t) for all t ∈ [0, T ] and sup-
pose that wP and w are related by wP (t) = w(t) − γ−2ETP (t)x(t) for all
t ∈ [0, T ]. Then for all t ∈ [0, T ] we have

‖z(t)‖2 − γ2‖w(t)‖2 = d

dt
(xT(t)P (t)x(t)) + ‖zP (t)‖2 − γ2‖wP (t)‖2.

Consequently:

‖z‖22 − γ2‖w‖22 = ‖zP‖22 − γ2‖wP‖22. (8.8)

✷

Proof : This can be proven by straightforward calculation, using the
factorization (8.6).

We could not use this argument in chapter 5 since the stability require-
ment makes a formal proof along these lines relatively hard. In the finite-
horizon case we do not have stability requirements and hence this argu-
ment can be applied.
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Theorem 8.5 : Let P satisfy (a) and (b) of theorem 8.1. Let ΣF be a
dynamic compensator of the form (8.2). Then

‖Gcl‖∞ < γ ⇔ ‖Gcl,P‖∞ < γ. ✷

Proof : Assume that ‖Gcl,P‖∞ < γ and consider the interconnection of
Σ and ΣF .

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣP

ΣF

❄

✛

✻

✛

yP

zP wP

uP

Let 0 �= w ∈ Ll2[0, T ], let x be the corresponding state trajectory of Σ and
define wP := w − γ−2ETPx. Then clearly yP = y, xP = x and therefore
uP = u. This implies that the equality (8.7) holds. We also have

‖zP‖22 − γ2‖wP‖22 ≤ (‖Gcl,P‖2∞ − γ2)‖wP‖22. (8.9)

Next, note that the mapping wP → wP + γ−2ETPxP defines a bounded
operator from Ll2[0, T ] to Ll2[0, T ]. Hence a constant µ > 0 exists such
that ‖wP‖22 < µ‖w‖22. Define δ > 0 by δ2 := γ2 − ‖Gcl,P‖2∞. Combining
(8.7) and (8.8) then yields

‖z‖22 − γ2‖w‖22 ≤ −δ2µ‖w‖22.

Obviously, this implies that ‖Gcl‖2∞ ≤ γ2 − δ2µ < γ2.

We shall now prove that condition (e) of theorem 8.1 holds. Again assume
that ΣF yields ‖Gcl‖∞ < γ. By applying a version of lemma 8.2 for time-
varying systems it can then be proven that the dual quadratic differential
inequality associated with ΣP :

Ḡγ(Y ) :=

(
−Ẏ +APY + Y AT

P
+ EET + 1

γ2Y C
T
2,P
C2,PY Y CT

1,P
+ EDT

1

C1,PY +D1E
T D1D

T
1

)
≥ 0

has a solution Y (t) on [0, T ], satisfying Y (0) = 0 and

rank Ḡγ(Y )(t) = rankR(s)

(
Is−AP (t) −E
C1,P (t) D1

)
− n (8.10)
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for all t ∈ [0, T ]. Here, we have denoted AP = A + γ−2EETP and
C1,P = C1 + γ−2D1E

TP . Furthermore, it can be shown that Y is unique
on each interval [0, t1] (t1 ≤ T ). On the other hand, it can be proven that
on each interval [0, t1] on which I − QP is invertible, the function Ỹ :=
(I − QP )−1Q satisfies Ḡγ(Y )(t) ≥ 0, Ỹ (0) = 0 and the rank condition
(8.10). Thus on any such interval [0, t1] we must have Y (t) = Ỹ (t).
Clearly, since Q(0) = 0, t1 : 0 < t ≤ T exists such that I − QP is
invertible on [0, t). Assume now that t1 > 0 is the smallest real number
such that I −Q(t1)P (t1) is not invertible. Then on [0, t1) we have

Q(t) = (I −Q(t)P (t)) Ỹ (t)

and hence, by continuity

Q(t1) = (I −Q(t1)P (t1)) Ỹ (t1). (8.11)

x �= 0 exists such that xT(I − Q(t1)P (t1)) = 0. By (8.11) this yields
xTQ(t1) = 0 whence xT = 0, which is a contradiction. We must conclude
that I −Q(t)P (t) is invertible for all t ∈ [0, T ].

This completes our proof of the implication (i) ⇒ (ii) of theorem 8.1

8.4 Existence of compensators

In the present section we shall sketch the main ideas of our proof of the
implication (ii)⇐ (i) of theorem 8.1. The main idea is as follows: starting
from the original system Σ we shall define a new system, ΣP,Q, which has
the following important properties:

(1 ) Let ΣF be any compensator. The closed-loop operator Gcl of the
interconnection Σ × ΣF satisfies ‖Gcl‖∞ < γ if, and only if, the
closed-loop operator of ΣP,Q×ΣF , say Gcl,P,Q, satisfies ‖Gcl,P,Q‖∞ <
γ.

(2 ) The system ΣP,Q is almost disturbance decouplable by dynamic
measurement feedback, i.e. for all ε > 0 there exists ΣF such
that ‖Gcl,P,Q‖∞ < ε.

Property (1) states that a compensator ΣF “works” for Σ if, and only if,
it “works” for ΣP,Q. On the other hand, property (2) states that, indeed,
there is a compensator ΣF that ”works” for ΣP,Q: take any ε ≤ γ and
take a compensator ΣF such that ‖Gcl,P,Q‖∞ < ε. Then by, property (1),
‖Gcl‖∞ < γ so ΣF works for Σ. This would clearly establish a proof of
the implication (ii) ⇐ (i) in theorem 8.1.
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We shall now describe how the new system ΣP,Q is defined. Assume
that P and Q exist satisfying (a) to (e) of theorem 8.1. Apply lemma
8.3 to obtain a continuous factorization (8.6) of Fγ(P ) and let the system
ΣP be defined by (8.7). Next, consider the dual quadratic differential
inequality Ḡγ(Y ) ≥ 0 associated with the system ΣP , together with the
conditions Y (0) = 0 and the rank condition (8.10). As was already noted
in the previous section, the conditions (c), (d) and (e) assure that there
is a unique solution Y on [0, T ] (In fact, Y (t) = (γ2I−Q(t)P (t))−1Q(t)).
Now, it can be shown that there exists a factorization

Ḡγ(Y )(t) =

(
EP,Q(t)
DP,Q(t)

)(
ET

P,Q
(t) DT

P,Q
(t)

)
,

with EP,Q and DP,Q continuous on [0, T ]. Denote

AP,Q(t) := AP (t) + Y (t)CT
2,P (t)C2,P (t),

BP,Q(t) := B + Y (t)CT
2,P (t)DP (t).

Then, introduce the new system ΣP,Q by:

ΣP,Q :




ẋP,Q = AP,QxP,Q + BP,QuP,Q + EP,Qw,

yP,Q = C1,PxP,Q + DP,Qw,

zP,Q = C2,PxP,Q + DPuP,Q,

Again, ΣP,Q is a time-varying system with continuous coefficient matrices.
We note that ΣP,Q is in fact obtained by first transforming Σ into ΣP and
by subsequently applying the dual of this transformation to ΣP . We
shall now first show that property (1) above holds. If ΣF is a dynamic
compensator, then let Gcl,P,Q be the closed-loop operator from wP,Q to
zP,Q in the interconnection of ΣP,Q with ΣF :

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣP,Q

ΣF

❄

✛

✻

✛

yP,Y

zP,Y wP,Y

uP,Y

Recall that Gcl denotes the closed-loop operator from w to z in the inter-
connection of Σ and ΣF . We have the following:
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Theorem 8.6 :

‖Gcl‖∞ < γ ⇔ ‖Gcl,P,Q‖∞ < γ. ✷

Proof : Assume that ΣF yields ‖Gcl‖∞ < γ. By theorem 8.5 then also
‖Gcl,P‖∞ < γ, i.e. ΣF interconnected with ΣP (given by (8.7)) also yields
a closed-loop operator with norm less than γ. It is easy to see that the
dual compensator Σ′

F (see section 8.3), interconnected with the dual of
ΣP :

Σ′
P,Q :




ξ̇ = AT
P
(T − t)ξ + CT

1,P
(T − t)ν + CT

2,P
(T − t)d

η = BTξ + DT
P
(T − t)d

ζ = ETξ + DT
1 ν

yields a closed-loop operator G̃cl,P (from d to ζ) with ‖G̃cl,P‖∞ < γ. Now,
the quadratic differential inequality associated with Σ′

P
is the transposed,

time-reversed version of the inequality Ḡγ(Y ) ≥ 0 and therefore has a
unique solution Ỹ (t) = Y (T − t) such that Ỹ (T ) = 0 and the correspond-
ing rank condition (8.10) holds. By applying theorem 8.5 to the system
Σ′

P
we may then conclude that the interconnection of Σ′

F with the dual
Σ′

P,Q
of ΣP,Q yields a closed-loop operator with norm less than γ. Again

by dualization we then conclude that ‖Gcl,P,Q‖∞ < γ. The converse im-
plication is proven analogously.

Property (2) is stated formally in the following theorem:

Theorem 8.7 : For all ε > 0 a time-varying dynamic compensator ΣF

exists such that ‖Gcl,P,Q‖∞ < ε. ✷

Due to space limitations, for a proof of the latter theorem we refer to
[St7]. The main difficulty is that ΣP,Q is time-varying and therefore it
is necessary to derive a time-varying version of theorem 2.20 (we do not
need (2.48) but we do need (2.47)). The basic steps are all the same but
the proof is based on [Tr, Theorem 3.25] of which we had to derive a
time-varying version.

By combining theorems 8.6 and 8.7 we immediately obtain a proof of
the implication (ii) ⇐ (i) in theorem 8.1.
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8.5 Conclusion

In this chapter we have studied the finite horizon H∞ control problem
by dynamic measurement feedback. We have noted that the results ob-
tained can be specialized to re-obtain results that were obtained before
(see [Li5, Ta]). The development of our theory runs analogously to the
theory developed in chapters 4 and 5 around the standardH∞ control pro-
blem (the infinite horizon version of the problem studied in the present
chapter). In the latter chapters the main tools are the so-called quadratic
matrix inequalities, the algebraic versions of the differential inequalities
used in the present paper. It should be noted that the geometric approach
from appendix A is not well-suited to treat time-varying systems. This
is why we cannot treat the time-varying case as in [Li5, Ta]. The formal
proof for the results in this chapter is also highly technical, mainly due to
the fact that the systems ΣP and ΣP,Q are time-varying. The reason why
the approach via appendix A still works is that the singular structure of
ΣP and ΣP,Q is time-invariant. A major open problem is how to treat the
time-varying singular H∞ or LQG control problem. A different approach
will be needed to derive the general result.



Chapter 9

The discrete time full-information
H∞ control problem

9.1 Introduction

As already mentioned in the previous chapters, in recent years a consider-
able number of papers have appeared on theH∞ optimal control problem.
However, most of these papers discuss the continuous time case. In the
next two chapters we shall discuss the discrete time case.

In the papers on H∞ control with continuous time several methods
were used to solve theH∞ control problem as discussed in section 5.1. Re-
cently, a paper has appeared solving the discrete timeH∞ control problem
using frequency-domain techniques (see [Gu]). The polynomial approach
has also been applied to discrete time systems (see [Gri]). In addition,
a couple of papers have appeared using a time-domain approach (see
[Bas, Li4, Ya]).

With respect to the papers which use a time-domain approach it
should be noted that the references [Bas, Li4, Ya] do not contain a proof of
the results obtained for the infinite horizon case and the papers [Bas, Ya]
make a number of extra assumptions on the system under consideration.
In [Bas, Li4, Ya] the authors first investigate the finite horizon problem
and then derive a solution of the infinite horizon problem by considering
it as a kind of limiting case as the endpoint tends to infinity.

In contrast, in the next two chapters we investigate the infinite hori-
zon case using a direct approach. We shall use time-domain techniques
which are reminiscent of those used in chapter 3 and the paper [Ta] which
deal with the continuous time case. The method used in the next two
chapters was derived independently of [Bas, Li4, Ya] and has already ap-
peared in [St5, St6]. After the appearance of the above papers, several
new papers and a book appeared on this subject using a state space ap-

166
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proach (see e.g. [BB, Ig, Wa]). Very recently the J-spectral factorization
approach has also been extended to discrete time systems (see [LMK]).

In this chapter we assume that we deal with the special cases that
either both disturbance and state are available for feedback or only the
state is available for feedback. This distinction has to be made since
there is a more essential difference between these two cases than in the
continuous time case. The more general case of measurement feedback is
discussed in the next chapter.

The assumptions we shall make are weaker than the assumptions
made in [Gu, Ya] and the same as the ones made in [Li4]. For the full-
information case we have to make two assumptions which are exactly the
discrete time analogues of the assumptions made in the regular continuous
timeH∞ control problem as discussed in chapter 3. Firstly, the subsystem
from control input to output should be left-invertible, and secondly, this
subsystem should have no invariant zeros on the unit circle.

As in the regular continuous time H∞ problem the necessary and suf-
ficient conditions for the existence of an internally stabilizing controller
such that the closed-loop system has H∞ norm less than 1 involve a posi-
tive semi-definite stabilizing solution of a given algebraic Riccati equation.
However, other than for the continuous time case, P has to satisfy an ad-
ditional assumption: a matrix depending on P should be positive definite
(in the continuous time case there also was a matrix which should be
positive definite but in that case this matrix was independent of P ).

Another difference with the continuous time case is that in the dis-
crete time case, even if D2 = 0, we cannot always achieve our goal with a
static state feedback. In general, we also need a static feedback depend-
ing on the disturbance. Moreover, in the continuous time case we could
not do better by allowing for non-causal compensators. This is not true
in the discrete time case.

The outline of this chapter is as follows: in section 9.2 we shall formu-
late the problem and give the main results. In section 9.3 we shall derive
necessary conditions under which an internally stabilizing feedback exists
which makes the H∞ norm less than 1. In section 9.4 we shall show that
these conditions are also sufficient. After that, in section 9.5 we shall give
but not prove some results on the discrete algebraic Riccati equation. We
shall investigate properties like uniqueness of solutions and methods to
calculate the solutions. We shall end with some concluding remarks in
section 9.6.
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9.2 Problem formulation and main results

We consider the following shift-invariant system:

Σ :

{
σx = Ax + Bu + Ew,

z = Cx + D1u + D2w,
(9.1)

where for each k, x(k) ∈ Rn is the state, u(k) ∈ Rm is the control input,
w(k) ∈ Rl is the unknown disturbance and z(k) ∈ Rp is the output to be
controlled. Moreover, A,B,E,C,D1 and D2 are matrices of appropriate
dimensions. Our objective is to find a compensator ΣF described by a
static feedback law u(k) = F1x(k) + F2w(k) such that the closed-loop
system is internally stable and for the closed-loop system the 92-induced
operator norm from disturbance w to the output z is less than 1, i.e. the
H∞ norm of the closed-loop system is less than 1.

In this chapter we shall derive necessary and sufficient conditions for
the existence of a suitable compensator ΣF . Moreover, in the case that
such a compensator exists we give an explicit formula for one static feed-
back law which yields a closed-loop system which is internally stable and
which has H∞ norm less than 1. We shall also derive similar conditions
for the existence of a suitable static state feedback. A characterization of
all suitable dynamic compensators will be given in section 10.5.

We first give a definition:

Definition 9.1 : An function f : 92 → 92, w → f(w) is called causal if
for any w1, w2 ∈ 92 and k ∈ N :

w1|[0,k] = w2|[0,k] ⇒ f(w1)|[0,k] = f(w2)|[0,k].

Such a function f is called strictly causal if for any w1, w2 ∈ 92 and k ∈ N
we have

w1|[0,k−1] = w2|[0,k−1] ⇒ f(w1)|[0,k] = f(w2)|[0,k]. ✷

A controller of the form (2.9) always defines a causal operator. In the
case that N = 0 this operator is strictly causal.

We now formulate our main result:

Theorem 9.2 : Consider the system (9.1) and assume that the sys-
tem (A,B,C,D1) has no invariant zeros on the unit circle and is left-
invertible. The following three statements are equivalent:
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(i) A compensator ΣF described by a static feedback law of the form
u = F1x+ F2w exists such that the closed-loop system is internally
stable and has H∞ norm less than 1, i.e. the closed-loop transfer
matrix GF satisfies ‖GF ‖∞ < 1.

(ii) (A,B) is stabilizable and for the system (9.1) a causal operator f :
9l2 → 9m2 and δ < 1 exist such that for all w ∈ 9l2 with u = f(w) we
have xu,w ∈ 9n2 and ‖zu,w‖2 ≤ δ‖w‖2.

(iii) A symmetric matrix P ≥ 0 exists such that
(a) V > 0, R > 0, (9.2)

where

V := DT
1D1 +BTPB,

R := I −DT
2D2 − ETPE

+
(
ETPB +DT

2D1

)
V −1

(
BTPE +DT

1D2

)
.

This implies that the matrix G(P) is invertible, where:

G(P ) :=

(
DT

1D1 DT
1D2

DT
2D1 DT

2D2 − I

)
+

(
BT

ET

)
P
(
B E

)
. (9.3)

(b) P satisfies the following discrete algebraic Riccati equation:

P = ATPA+ CTC

−
(
BTPA+DT

1C

ETPA+DT
2C

)T

G(P )−1

(
BTPA+DT

1C

ETPA+DT
2C

)
. (9.4)

(c) The matrix Acl is asymptotically stable, where:

Acl := A−
(
B E

)
G(P )−1

(
BTPA+DT

1C

ETPA+DT
2C

)
. (9.5)

Moreover, in the case that P satisfies part (iii), then the compensator ΣF

described by the static feedback law u(k) = F1x(k) + F2w(k) where

F1 := − (DT
1D1 +BTPB)−1 (BTPA+DT

1C) , (9.6)
F2 := − (DT

1D1 +BTPB)−1 (BTPE +DT
1D2) , (9.7)

satisfies the requirements in part (i). ✷
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Remarks :

(i) Necessary and sufficient conditions under which we can find an inter-
nally stabilizing feedback which makes the H∞ norm of the closed-
loop system less than some, a priori given, upper bound γ can easily
be derived from theorem 9.2 by scaling. We only prove the result
for D2 = 0. The general result can be proven along the same lines
and this proof can be found in [St6].

(ii) Note that part (ii) of theorem 9.2 is equivalent to the requirement
that a causal operator f exists such that the feedback law u =
f(x,w) satisfies part (ii). This follows from the fact that, after
applying the feedback, there exists a causal operator g mapping w
to x and therefore we could have started with the causal operator
u = f (g(w), w) in the first place. Conversely if we have the feedback
u = f(w), then we define f1(x,w) := f(w) which then satisfies the
requirements of the reformulated part (ii).

(iii) In the continuous time case (except for the singular case with D2 �=
0) we could not really do better when minimizing the H∞ norm of
the closed-loop system under the constraint of internal stability by
allowing for non-causal feedbacks. This is not true in the discrete
time case. Consider, e.g. the following system:


σx =

(
0 1
0 0

)
x +

(
0
10

)
u +

(
1
0

)
w,

z =



1 0
0 1
0 0


x +



0
0
1


u.

The feedback u = −σw/10 makes the H∞ norm of the closed-loop
system equal to 0.1. On the other hand, by a causal feedback we
cannot make the H∞ norm of the closed-loop system less than 1.

(iv) If we compare these conditions with the conditions for the contin-
uous time case as given in chapter 3 we note that condition (9.2)
(which is comparable to the condition (3.2) in theorem 3.1) now de-
pends on P and is still present if D2 = 0. A simple example showing
that this assumption is not superfluous is given by the system:

σx = u + 2w,

z =

(
1
0

)
x +

(
0
1

)
u.
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No feedback ΣF satisfying part (i) of theorem 9.2 exists but there
is a positive semi-definite matrix P satisfying (9.4) and such that
Acl = 0 and hence asymptotically stable, namely P = 1. However
for this P we have R = −1.

The general outline of the proof will be reminiscent of the proof given
in [Ta] and chapter 3 for the continuous time case. The extra condition
(9.2), the invertibility of (9.3) and the requirement of left-invertibility
instead of assuming that D1 is injective will give rise to a substantial
increase in the amount of intricacies in the proof.

From the above result we can easily derive necessary and sufficient
conditions when the system (A,B,C,D) has H∞ norm strictly less than
1. This is stated in the following corollary:

Corollary 9.3 : Let the system (A,B,C,D) be given with A stable. The
corresponding transfer matrix G has H∞ norm strictly less than 1 if, and
only if, there exists a matrix P ≥ 0 such that:

• N := I −DTD −BTPB > 0,

• P = ATPA+CTC + (ATPB + CTD)N−1(BTPA+DTC), and

• A+BN−1(BTPA+DTC) is asymptotically stable. ✷

As in the continuous time case it is interesting to know whether we really
need the disturbance feedback component or not. The following theorem
gives necessary and sufficient conditions under which we can obtain in-
ternal stability and an H∞ norm of the closed-loop system less than 1 by
using a static state feedback.

Theorem 9.4 : Consider the system (9.1) and assume that (A,B,C,D1)
has no invariant zeros on the unit circle and is left-invertible. The fol-
lowing statements are equivalent:

(i) A compensator ΣF described by a static state feedback law exists
such that the closed-loop system is internally stable and has H∞ norm
less than 1, i.e. the closed-loop transfer matrix GF satisfies ‖GF ‖∞ <
1.

(ii) A symmetric matrix P ≥ 0 exists such that
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(a) We have

DT
1D1 +BTPB > 0,

R1 := I −DT
2D2 − ETPE > 0. (9.8)

This implies that the matrix G(P) defined by (9.3) is invertible.

(b) P satisfies the discrete algebraic Riccati equation (9.4).

(c) The matrix Acl defined by (9.5) is asymptotically stable.

Moreover, in the case that P satisfies part (ii), then the compensator ΣF

described by the static feedback law u(k) = Fx(k) where

F := H−1
(
BTPA+DT

1C +
(
BTPE +DT

1D2

)
R−1

1

(
ETPA+DT

2C
))

(9.9)

satisfies the requirements in part (i) where

H := BTPB +DT
1D1 +

(
BTPE +DT

1D2

)
R−1

1

(
ETPB +DT

2D1

)
. ✷

Remarks : Note that the only difference with the conditions of theorem
9.2 is that the condition R > 0 is replaced by the condition (9.8). Note
that the latter condition indeed implies R > 0.

In the continuous time case we only needed the extra condition
DT

2D2 < I. This is not sufficient in discrete time as can be seen from the
following system:{

σx = u + 1/2w,
z = 8x + u.

The matrix P = 84 satisfies the conditions in part (iii) of theorem 9.2
but condition (9.8) is not satisfied. By state feedback the H∞ norm of the
closed-loop system cannot be made less than 3 while maintaining internal
stability. On the other hand with disturbance feedback we can make the
H∞ norm equal to 1/2.

The above theorem will only be proven for the special case that D2 =
0. This is done to make the formulae more tractable. It yields no extra
difficulties to extend the proof to the general case.

9.3 Existence of a stabilizing solution of the Ric-

cati equation

In this section we shall show that the existence of a causal operator f
and δ < 1 satisfying part (ii) of theorem 9.2 implies that a positive semi-
definite solution of the discrete algebraic Riccati equation (9.4) exists
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such that (9.5) is asymptotically stable and (9.2) is satisfied. We also
prove the implication (i) ⇒ (ii) of theorem 9.4. As mentioned before we
shall assume throughout the next two sections that D2 = 0. The method
used has a great similarity with the proof given in section 3.4. We shall
assume that

DT
1C = 0, (9.10)

for the time being and we shall derive the more general statement later.
Note that part (iii) of the remarks after theorem 9.2 guarantees that,
contrary to the continuous time case, we have to be concerned with causal
dependence of u on w. In order to prove the existence of the desired P
we shall investigate the following sup-inf problem:

C∗(ξ) := sup
w∈4l2

inf
u

{
‖zu,w,ξ‖22 − ‖w‖22 | u ∈ 9m2 such that xu,w,ξ ∈ 9n2

}
,

(9.11)

for arbitrary initial state ξ. It turns out that the conditions of part (ii)
of theorem 9.2 imply that C∗(ξ) is finite for every ξ. Moreover, it will be
shown that, as in section 3.4, a P ≥ 0 exists such that C∗(ξ) = ξTPξ.
At the end of this section we then prove that this P exactly satisfies
conditions (a)–(c) of theorem 9.2. We shall first infimize, for given w ∈ 92
and ξ ∈ Rn, the function ‖zu,w,ξ‖22 − ‖w‖22 over all u ∈ 92 for which
xu,w,ξ ∈ 92. After that we shall maximize over w ∈ 92.

As in chapter 3 our proof is based on Pontryagin’s maximum prin-
ciple. We shall use the ideas from [LM], together with our stability re-
quirement xu,w,ξ ∈ 92 to adapt the proof to the infinite horizon discrete
time case.

We start by constructing a solution of the adjoint Hamilton–Jacobi
equation which is a natural starting point if one wants to use Pontryagin’s
maximum principle.

Let L be such that DT
1D1+BTLB is invertible and such that L is the

positive semi-definite solution of the following discrete algebraic Riccati
equation:

L = ATLA+ CTC −ATLB (DT
1D1 +BTLB)−1

BTLA, (9.12)

for which

AL := A−B (DT
1D1 +BTLB)−1

BTLA,

is asymptotically stable. The existence of such L is guaranteed under the
assumption that (A,B,C,D1) has no invariant zeros on the unit circle
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and is left-invertible and, moreover, (A,B) is stabilizable (see [Si]). We
define

r(k) := −
∞∑
i=k

[X1A
T]i−k

X1LEw(i), (9.13)

where

X1 := I − LB (DT
1D1 +BTLB)−1

BT.

Note that r is well-defined since the matrix AL = XT
1A is asymptotically

stable which implies that X1A
T is asymptotically stable. Next we define

the functions y, x̃ and η by:

y := M−1BT [ATσr − LEw] , (9.14)
σx̃ = ALx̃+By + Ew, x̃(0) = ξ, (9.15)
η := −X1LAx̃+ r, (9.16)

where M := DT
1D1 + BTLB. Since AL and X1A

T are asymptotically
stable, it can be checked straightforwardly that, given ξ ∈ Rn and w ∈ 9l2,
we have r, x̃, η ∈ 92.

After some standard calculations, we find the following lemma:

Lemma 9.5 : Let ξ ∈ Rn and w ∈ 9l2 be given. The function η ∈ 9n2 is a
solution of the following backward difference equation:

σ−1η = ATη − CTCx̃, lim
k→∞

η(k) = 0. (9.17)

Here η is extended to a function from N ∪{−1} to Rn by choosing η(−1)
such that (9.17) is satisfied. ✷

In the statement of Pontryagin’s maximum principle this equation is the
so-called “adjoint Hamilton–Jacobi equation” and η is called the “adjoint
state variable”. We have constructed a solution to this equation and we
shall show that this η indeed yields a minimizing u. Note the difference
with the continuous time case where we could derive a differential equa-
tion forward in time, while in discrete time we can only derive a difference
equation forward in time when A is invertible. To prevent this kind of
difficulty it is assumed in [Gu] that A is invertible. The proof that η
yields a minimizing u is adapted from the proof of lemma 3.4:
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Lemma 9.6 : Let the system (9.1) be given. Moreover let w and ξ be
fixed. Then

ũ := − (DT
1D1 +BTLB)−1BTLAx̃+ y

= arg inf
u
{ ‖zu,w,ξ‖2 | u ∈ 9m2 such that xu,w,ξ ∈ 9n2 } . ✷

Proof : It is easy to check that x̃ = xũ,w,ξ. Define

JT (u) :=
T∑
i=0

‖Cxu,w,ξ(i) +D1u(i)‖2.

Let u ∈ 9m2 be an arbitrary control input such that xu,w,ξ ∈ 9n2 . We find

JT (u)− JT−1(u)− 2ηT(T )x(T + 1) + 2ηT(T − 1)x(T ) =

‖Cx(T )‖2 + [DT
1D1u(T )− 2BTη(T )]T u(T )

−2ηT(T )Ew(T ) − 2xT(T )CTCx̃(T ).

We also find

JT (ũ)− JT−1(ũ)− 2ηT(T )x̃(T + 1) + 2ηT(T − 1)x̃(T ) =

−‖Cx̃(T )‖2 + [DT
1D1ũ(T )− 2BTη(T )]T ũ(T )− 2ηT(T )Ew(T ).

Hence, if we sum the last two equations from zero to infinity and subtract
from each other, we find:

‖zũ,w,ξ‖22 − ‖zu,w,ξ‖22 =
∞∑
i=0

−‖C (x(i)− x̃(i)) ‖2+

+
∞∑
i=0

[DT
1D1ũ(i)− 2BTη(i)]T ũ(i)− [DT

1D1u(i) − 2BTη(i)]T u(i).

It is easy to check that BTη(i) = DT
1D1ũ(i) for all i. Therefore, for every

i we have

[DT
1D1ũ(i)− 2BTη(i)]T ũ(i) = inf

u
[DT

1D1u− 2BTη(i)]T u.

Together the last two equations imply that:

‖zũ,w,ξ‖22 ≤ ‖zu,w,ξ‖22,
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which is exactly what we had to prove. Since (A,B,C,D1) is left-invertible
it can easily be shown that the minimizing u is unique.

We are now going to maximize over w ∈ 9l2. This will then yield C∗(ξ).
Define F(ξ, w) := (x̃, ũ, η) and G(ξ, w) := zũ,w,ξ = Cx̃ + D1ũ + D2w.
It is clear from the previous lemma that F and G are bounded linear
operators. Define

C(ξ, w) := ‖G(ξ, w)‖22 − ‖w‖22,
‖w‖C := (−C(0, w))1/2 .

It is easy to show that ‖.‖C defines a norm on 9l2. Using the conditions
in part (ii) of theorem 9.2 it can be shown straightforwardly that

‖w‖2 ≥ ‖w‖C ≥ ρ‖w‖2, (9.18)

where ρ > 0 is such that ρ2 = 1− δ2 and δ is such that the conditions of
part (ii) of theorem 9.2 are satisfied. Hence ‖.‖C and ‖.‖2 are equivalent
norms. We have

C∗(ξ) = sup
w∈4l2

C(ξ, w).

We can derive the following properties of C∗. The proof is identical to the
proof of lemma 3.5 and is therefore omitted.

Lemma 9.7 :

(i) For all ξ ∈ Rn we have

0 ≤ ξTLξ ≤ C∗(ξ) ≤ ξTLξ

1− δ2 ,

where δ is such that part (ii) of theorem 9.2 is satisfied.

(ii) For all ξ ∈ Rn a unique w∗ ∈ 9l2 exists such that C∗(ξ) = C(ξ, w∗).
✷

Define H : Rn → 9l2, ξ → w∗. Unlike the explicit expression for ũ we can
only derive an implicit formula for w∗. However, we can show that w∗ is
the unique solution of a linear equation. This time we also omit the proof.
It is similar to the proof of lemma 3.6. The adaptations necessary are the
same as the difference between the proofs of lemma 3.4 and lemma 9.6.
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Lemma 9.8 : Let ξ ∈ Rn be given. Then w∗ = Hξ is the unique 92-
function w satisfying:

w = −ETη, (9.19)

where (x, u, η) = F(ξ, w). ✷

Next, we shall show that C∗(ξ) = ξTPξ for some matrix P . In order to
do that we first show that u∗, η∗ and w∗ are linear functions of x∗:

Lemma 9.9 : There exist constant matrices K1,K2 and K3 such that

u∗ = K1x∗, (9.20)
η∗ = K2x∗, (9.21)
w∗ = K3x∗. (9.22)

✷

Proof : We shall first consider time 0. By lemma 9.8 it is easy to see that
H : ξ → w∗ is linear. Hence the mapping from ξ to w∗(0) is also linear.
This implies the existence of a matrix K3 such that w∗(0) = K3ξ. From
(9.17) and lemma 9.6 it can be seen that u∗ and η∗ are linear functions
of ξ and w∗. This implies, since w∗ is a linear function of ξ, that u∗(0)
and η∗(0) are linear functions of ξ and hence K1 and K2 exist such that
u∗(0) = K1ξ and η∗(0) = K2ξ.

We shall now look at time t. The sup-inf problem starting at time
t with initial value x(t) can now be solved. Due to the time-invariance
property we see that w∗ restricted to [t,∞) satisfies (9.19) and hence for
this problem the optimal x and η are x∗ and η∗. But since t is the initial
time for this optimization problem, which is exactly equal to the original
optimization problem, we find equations (9.20)–(9.22) at time t with the
same matrices K1,K2 and K3 as at time 0. Since t was arbitrary this
completes the proof.

Lemma 9.10 : A matrix P exists such that σ−1η∗ = −Px∗. Moreover
for this P we find

C∗(ξ) = ξTPξ. (9.23)

✷
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Proof : We have

σ−1η∗ = ATη∗ − CTCx∗
= (ATK2 − CTC)x∗

We define P := − (ATK2 − CTC) using the matrices defined in lemma 9.9.
We shall prove that this P satisfies (9.23). We can derive the following
equation

‖zu∗,w∗,ξ(T )‖2 − ‖w∗(T )‖2 − 2ηT
∗ (T )x∗(T + 1) + 2η∗(T − 1)Tx∗(T ) =

‖w∗(T )‖2 − ‖zu∗,w∗,ξ(T )‖2.

We sum this equation from zero to infinity. Since limT→∞ η∗(T ) = 0 and
limT→∞ x∗(T ) = 0 we find

C(ξ, w∗) + 2ηT
∗ (−1)x∗(0) = −C(ξ, w∗).

Since C(ξ, w∗) = C∗(ξ) and η∗(−1) = −Pξ we find (9.23).

We shall now show that this matrix P satisfies conditions (a)–(c) of the-
orem 9.2. We first show part (a). Since we do not know yet if P is
symmetric we have to be a little bit careful. This essential step in our
derivation is new compared to the method used in chapter 3. This will
be the step where we have to take causality into account.

Lemma 9.11 : Let P be given by lemma 9.10. The matrices V and R
as defined in the part (iii) of theorem 9.2, condition (a) satisfy:

V + V T > 0,
R+RT > 0. ✷

Proof : By lemma 9.7 and lemma 9.10, we know (P + PT)/2 ≥ L
and therefore we find (V +V T)/2 ≥ DT

1D1 +BTLB. The latter matrix is
positive definite and hence (V +V T)/2 is positive definite, i.e. V +V T > 0.
We shall now look at the following “sup–inf–sup–inf” problem for initial
condition 0:

J (0) := sup
w(0)

inf
u(0)

sup
w+

inf
u+

‖zu,w‖2 − ‖w‖2, (9.24)
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where w+ := w|[1,∞) and u+ := u|[1,∞). We shall always implicitly add
the constraint that u+ is such that the resulting state x is in 92.

We know a causal operator f exists satisfying part (ii) of theorem 9.2
and hence this function makes the 92-induced operator norm strictly less
than 1 under the constraint x ∈ 9n2 . In (9.24) we set u = f(w). This is
possible since by causality we know that u(0) only depends on w(0) and
u+ depends on the whole function w. Thus we get:

J (0) = sup
w(0)

inf
u(0)

sup
w+

inf
u+

‖zu,w‖22 − ‖w‖22

≤ sup
w
‖zf(w),w‖22 − ‖w‖22 (9.25)

≤ 0. (9.26)

By lemma 9.10 we have:

sup
w+

inf
u+

‖zu+,w+,x(1)‖22 − ‖w+‖22 = x(1)TPx(1). (9.27)

Therefore, we can reduce (9.24) to the following “sup–inf” problem:

sup
w(0)

inf
u(0)

(
u(0)
w(0)

)T(
V BTPE

ETPB ETPE − I

)(
u(0)
w(0)

)
.

When we define

ũ(0) = u(0)− ETPBV −1w(0),

then we get

J (0) = sup
w(0)

inf
ũ(0)

(
ũ(0)
w(0)

)T (
V 0
0 −R

)(
ũ(0)
w(0)

)
. (9.28)

Since, by (9.26), J (0) is finite we immediately find that a necessary con-
dition is that w(0)TRw(0) ≥ 0 for all w(0), i.e. R+RT ≥ 0. We also note
that J (0) = 0.

Assume that R+RT is not invertible. Then a v �= 0 exists such that
vTRv = 0. Let w+(u(0)) be the 92-function which attains the optimum in
the optimization (9.27) with initial state x(1) = Bu(0) + Ev. We define
the function w by

[w(u(0))](t) :=

{
v if t = 0,
w+(u(0))(t) otherwise.

(9.29)

Assume that δ and f are such that part (ii) of theorem 9.2 is satisfied.
Define u by

u = f [w(u(0))]. (9.30)
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Since the map from u to w defined by (9.29) is strictly causal and since f
is causal, u is uniquely defined by (9.30). In order to prove this note that
u(0) only depends on w(u(0))(0) = v and hence w+ as a function of u(0)
is uniquely defined which, in turn, yields u. Denote u and w obtained in
this way by u1 and w1. By (9.25), (9.28) and since Rv = 0 we find that,
for this particular choice of w1 and u1, we have:

‖zu1,w1‖22 − ‖w1‖22
≥ inf

u
‖zu,w(u(0))‖22 − ‖w(u(0))‖22

= inf
ũ(0)

ũT(0)V ũ(0)− vTRv

= 0. (9.31)

On the other hand, using part (ii) of theorem 9.2 we find:

‖zu1,w1‖22 − ‖w1‖22 <
(
δ2 − 1

)
‖w1‖22 < 0,

since w1(0) = v �= 0. Therefore we have a contradiction and hence our
assumption that R + RT is not invertible was incorrect. Together with
R+RT ≥ 0 this yields R+RT > 0.

Lemma 9.12 : Assume that (A,B,C,D1) has no invariant zeros on the
unit circle and is left-invertible. Moreover, assume that DT

1C = 0. If the
statement in part (ii) of theorem 9.2 is satisfied, then a symmetric matrix
P ≥ 0 exists satisfying (a)–(c) of part (iii) of theorem 9.2. ✷

Proof : We define the matrices

M := DT
1D1 +BTLB > 0,

Z := I − ETX1LE.

We know that −(R + RT)/2 is the Schur complement of (V + V T)/2 in
G((P+PT)/2). By lemma 9.11 we know that R+RT > 0 and V +V T > 0.
Therefore G((P +PT)/2) has m eigenvalues on the positive real axis and l
eigenvalues on the negative real axis. We know G((P+PT)/2)−G(L) ≥ 0
since (P + PT)/2 ≥ L. An easy consequence of the theorem of Courant-
Fischer (see [Bel]) then tells us that G(L) has at least l eigenvalues on
the negative real axis. Since −Z is the Schur complement of M > 0 in
G(L) this implies that Z > 0.
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By lemma 9.10 we have η∗ = −σPx∗. By combining lemma 9.6 and
lemma 9.8 and rewriting the equations we find that u∗ and w∗ satisfy the
following equations:

w∗ = Z−1 {ETX1 (P − L) σx∗ +ETX1LAx∗} ,
u∗ = −M−1BT {(P − L)σx∗ + LAx∗ + LEw∗} .

Thus we get{
I +

[
BM−1BT −XT

1EZ
−1ETX1

]
(P − L)

}
x∗(k + 1) =

XT
1

{
A+ EZ−1ETX1LA

}
x∗(k). (9.32)

Since, by lemma 9.11, R as defined in theorem 9.2 is invertible, it can be
shown that the matrix on the left is invertible and hence (9.32) uniquely
defines x∗(k + 1) as a function of x∗(k). It turns out that (9.32) can be
rewritten in the form σx∗ = Aclx∗ with Acl as defined by (9.5). Since
x∗ ∈ 9n2 for every initial state ξ we know that Acl is asymptotically stable.
Next we show that P satisfies the discrete algebraic Riccati equation (9.4).
From the backwards difference equation in (9.17) combined with lemma
9.10 and the formula given above for w∗ we find:

P = ATPAcl + CTC

By some extensive calculations this equation turns out to be equivalent
to the discrete algebraic Riccati equation (9.4). Next we show that P
is symmetric. Note that both P and PT satisfy the discrete algebraic
Riccati equation. Using this we find that:

(P − PT) = AT
cl (P − PT)Acl.

Since Acl is asymptotically stable this implies that P = PT. P can be
shown to be positive semi-definite by combining lemma 9.7 and (9.23). It
remains to be shown that P satisfies (9.2). Since P is symmetric we know
that V and R are symmetric. (9.2) is then an immediate consequence of
lemma 9.11.

As we did in chapter 3, we can extend this result to systems which do not
satisfy (9.10). A proof can be derived similarly to the proof of corollary
3.10.
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Corollary 9.13 : Assume that (A,B,C,D1) has no invariant zeros on
the unit circle and is left-invertible. If part (ii) of theorem 9.2 is satisfied,
then a symmetric matrix P ≥ 0 exists satisfying (a)–(c) of part (iii) of
theorem 9.2. ✷

Next, we show the implication (i) ⇒ (ii) in theorem 9.4.

Proof of the implication (i) ⇒ (ii) in theorem 9.4 : First note that
by corollary 9.13 we know a matrix P exists satisfying (a)–(c) of part (iii)
of theorem 9.2. It only remains to be shown that (9.8) is satisfied. We
use the same kind of argument as used in lemma 9.11.

Note that a consequence of the fact that there is an internally sta-
bilizing feedback law u = Fx which makes the H∞ norm less than 1 is
that a function f exists satisfying part (ii) of theorem 9.2 where f has the
extra property that, for initial condition 0, the fact that x(t) = 0 implies
that u(t) = [f(w)](t) = 0. One suitable choice for f is given by

u(t) = [f(w)](t) := Fx(t) =
t∑

i=1

F (A+BF )t−iEw(i).

Next, we investigate the criterion (9.24) once again with initial condition
ξ = 0 but this time we restrain u by requiring that u(0) = 0. The inequal-
ities (9.25) and (9.26) then still hold because of our extra requirement on
f . Using (9.27) we can then reduce our “sup–inf–sup–inf” problem to the
following problem

J (0) = sup
w(0)

wT(0) (ETPE − I)w(0).

Since we know by (9.26) that J (0) is finite we find

S := ETPE − I ≤ 0.

It remains to be shown that this matrix is invertible. Assume not, then
a vector v �= 0 exists such that Sv = 0. We define by w+ the function
which attains the supremum in the optimization problem (9.27) with
initial condition x(1) = Ev. This function is well-defined by our previous
results. Next, we define the function w1 by

w1(t) :=

{
v if t = 0,
w+(t) otherwise.

(9.33)
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Moreover, we define the function u1 by u1 := f(w1). Because of our extra
condition on f and since ξ = 0, we know that u1(0) = 0. We know that
J (0) = 0 and hence by the inequality (9.25) we know that

inf
u

‖zu1,w1‖22 − ‖w‖22 ≥ 0. (9.34)

On the other hand, using part (ii) of theorem 9.2 we find:

‖zu1,w1‖22 − ‖w1‖22 <
(
δ2 − 1

)
‖w1‖22.

Combined with (9.34) this implies that w1 = 0. However w1(0) = v �= 0.
This yields a contradiction and therefore S is invertible.

9.4 Sufficient conditions for the existence of

suboptimal controllers

In this section we shall show that if there is a P satisfying the conditions
of theorem 9.2, then the feedback as suggested by theorem 9.2 satisfies
condition (i). In order to do this we first need a number of preliminary
results.

We define the following system:

ΣU :



σxU = AUxU + BUuU + EUw,

yU = C1,UxU + + D12,Uw,

zU = C2,UxU + D21,UuU + D22,Uw,

(9.35)

where

AU := A−BV −1 (BTPA+DT
1C) ,

BU := BV −1/2,

EU := E −BV −1 (BTPE) ,

C1,U := −R−1/2
(
ETPA− ETPBV −1 [BTPA+DT

1C]
)
,

C2,U := C −D1V
−1 (BTPA+DT

1C) ,

D12,U := R1/2,

D21,U := D1V
−1/2,

D22,U := D2 −D1V
−1 (BTPE +DT

1D2) ,

and V and R as defined in part (iii) of theorem 9.2 with D2 = 0.
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Lemma 9.14 : The system ΣU as defined by (9.35) is inner. Denote
the transfer matrix of ΣU by U . We decompose U :

U

(
w

uU

)
=:

(
U11 U12

U21 U22

)(
w

uU

)
=

(
zU

yU

)
,

compatible with the sizes of w, uU , zU and yU. Then U21 is invertible and
its inverse is in H∞ . Moreover U22 is strictly proper. ✷

Proof : It is easy to check that P as defined by conditions (a)–(c) of
theorem 9.2 satisfies the conditions (i)–(iii) of lemma 2.13 for the system
(9.35) with input (w, uU ) and output (zU , yU). Part (i) of lemma 2.13 turns
out to be equivalent to the discrete algebraic Riccati equation (9.4). Parts
(ii) and (iii) follow by simply writing out the equations in the original
system parameters of system (9.1).

Next we note that P ≥ 0 and

P = AT
UPAU +

(
CT

1,U
CT

2,U

)( C1,U

C2,U

)
. (9.36)

Since Acl = AU −EUD
−1
12,U

C1,U is asymptotically stable we know that the
pair (C1,U , AU) is detectable. Using standard Lyapunov theory it can then
be shown that AU is asymptotically stable.

To show that U−1
21 is an H∞ function we write down a realization for

U−1
21 and remember once again that Acl is asymptotically stable. The

proof is then trivial.

Lemma 9.15 : Assume that a matrix P exists satisfying the conditions
in part (iii) of theorem 9.2. In this case the compensator ΣF described
by the static feedback law u = F1x + F2w where F1 and F2 are given by
(9.6) and (9.7) satisfies condition (i) of theorem 9.2. ✷

Proof : First note that GF as given by (2.7) for this particular F is equal
to U11 and moreover A + BF1 is equal to AU . This implies that ΣF is
internally stabilizing and GF as a submatrix of an inner matrix satisfies
‖GF ‖ ≤ 1. Using the fact that U21 is invertible in H∞ , it can be shown
that the inequality is strict.
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Finally it can be quite easily seen that theorem 9.2 is simply a combination
of corollary 9.13 and lemma 9.15. Therefore the main result has been
proven. Next, we complete the proof of theorem 9.4.

Lemma 9.16 : Assume that there is a P satisfying the conditions in
part (ii) of theorem 9.4. In this case the compensator ΣF described by
the static state feedback law u = Fx where F as given by (9.9) satisfies
condition (i) of theorem 9.2. ✷

Proof : We apply the feedback u = F̃ x to the system ΣU where

F̃ := V −1/2BTPER−1/2.

We have, using (9.8):

F̃TF̃ = I −R−1/2 (I − ETPE)R−1/2 < I.

By lemma 2.14 we then know that the resulting closed-loop system is
internally stable and has H∞ norm less than 1. This closed-loop system
is the same as the one we obtain by applying the feedback law u = Fx to
our original system where F as defined in theorem 9.4. We conclude that
F indeed has the desired properties, i.e. F satisfies part (i) of theorem
9.4.

The choice of F̃ looks like a wild guess. Clearly it is not. The derivation of
the proofs of the last two lemmas was originally based on ΣP as defined
in the next chapter. It is shown in lemma 10.3 that the problem of
finding feedbacks for Σ is equal to the same problem for ΣP . We have
to be careful since this transformation also changes the measurement
equation. The compensator suggested in lemma 9.15 makes the closed-
loop transfer matrix of ΣP equal to 0. The feedback u = F̃ x makes the
closed-loop transfer matrix of ΣP equal to the direct-feedthrough matrix
from wP to zP . Since we only allow for state feedback we cannot do any
better. This was the way we originally derived the specific choices for
the different feedbacks. However, the above formal proofs are much more
straightforward.

The previous lemma yields the implication (ii) ⇒ (i) in theorem 9.4
as a corollary. This also completes the proof of theorem 9.4.
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9.5 Discrete algebraic Riccati equations

In this section we shall investigate uniqueness of stabilizing solutions of
the discrete algebraic Riccati equation and methods to check whether
such solutions exist and, if they exist, how we can find them. We shall
not prove the results of this section because these results are not needed
for our main results and to prevent a too extensive book. For details we
refer to [St15].

We investigate the existence of a matrix P such that:

• The matrix G(P ) defined by (9.3) is invertible.

• P satisfies the discrete algebraic Riccati equation (9.4).

• The matrix Acl defined by (9.5) is asymptotically stable.

In [Ig, Wa] solvability of the discrete time algebraic Riccati equation in-
troduced in this chapter is reduced to a generalized eigenvalue problem
for a symplectic pair. We show that this can be done if D1 is injective.
In general, no method is available for such a reduction. We first list a
number of properties for matrices satisfying these conditions.

Lemma 9.17 : A matrix P such that G(P ) is invertible, the discrete
algebraic Riccati equation (9.4) is satisfied and Acl is asymptotically stable
is uniquely defined by these three conditions. ✷

The above result is more or less the discrete time analogue of corollary
A.7 where we showed that a solution of the quadratic matrix inequality
satisfying two corresponding rank conditions is unique. The continuous
time result was proved by using the already known fact that in continuous
time a stabilizing solution of a algebraic Riccati equation is unique. This
is proven by reducing solvability to properties of modal subspaces of the
associated Hamiltonian matrix. (A modal subspace of H is simply the
largest H-invariant subspace S such that σ(A|S) is contained in some
prespecified area of the complex plane.) This cannot be used as a proof
of lemma 9.17. In discrete time we have only been able to prove the
following result:
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Lemma 9.18 : We assume that the matrices S and Ã are invertible
where S and Ã are defined by:

S :=

(
DT

1D1 DT
1D2

DT
2D1 DT

2D2 − I

)
, (9.37)

Ã := A−
(
B E

)
S−1

(
DT

1

DT
2

)
C. (9.38)

A matrix P satisfies the conditions of lemma 9.17 if, and only if, the
subspace

X := Im

(
I

P

)
, (9.39)

is the modal subspace of H associated to the open unit ball where H is
defined by

H :=

(
Ã+XÃ−TQ −XÃ−T

−Ã−TQ Ã−T

)
.

where

X :=
(
B E

)
S−1

(
BT

ET

)
,

Q := CTC − CT
(
D1 D2

)
S−1

(
DT

1

DT
2

)
C.

The matrix H is a symplectic matrix, i.e.

H

(
I 0
0 −I

)
HT =

(
I 0
0 −I

)
.

In particular, H has the property that λ is an eigenvalue of H if, and
only if, λ−1 is an eigenvalue of H. ✷

Because of the symplectic property of H we know that there is at most
one subspace which is H-invariant, for which the restriction of H to this
subspace is asymptotically stable and which is n-dimensional. We can
then conclude that a result of the above lemma is that a solution P of
our three conditions is unique. But only under the assumption that the
matrices S and Ã are invertible. For the proof of lemma 9.17 another
kind of proof was needed.

In the case that the matrix Ã is not necessarily invertible we can
derive an extension of the previous lemma. We first need a definition:
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Definition 9.19 : A vector v is called an eigenvector of the matrix pair
(H1,H2) with eigenvalue λ if v �= 0 and H1v = λH2v. We call v an
eigenvector of the pair (H1,H2) with eigenvalue ∞ if v �= 0 and H2v = 0.
A subspace X is called a modal subspace with respect to D− of the pair
(H1,H2) if X is the largest subspace V for which a matrix S and an
asymptotically stable matrix Ā exist such that X = im S and H1S =
H2SĀ. ✷

Now we are able to give our extension of lemma 9.18:

Lemma 9.20 : Assume that S, defined by (9.37), is invertible. A ma-
trix P satisfies the three above-mentioned conditions if, and only if, the
subspace defined by (9.39) is the modal subspace with respect to the open
unit ball for the generalized symplectic pair (H1,H2) where

H1 :=

(
Ã 0
−Q I

)
,

H2 :=

(
I X

0 ÃT

)
,

where Ã as defined by (9.38) and X and Q as defined in lemma 9.18.
Moreover, (H1,H2) is a symplectic pair, i.e.

H1

(
I 0
0 −I

)
HT

1 = H2

(
I 0
0 −I

)
HT

2 .

In particular, λ is an eigenvalue of (H1,H2) if, and only if, λ−1 is an
eigenvalue of (H1,H2). The same is true for λ = 0 and λ = ∞ respec-
tively. ✷

We can reduce the condition that S should be invertible in our specific
case:

Lemma 9.21 : Assume that condition (i) of theorem 9.2 is satisfied. In
that case S defined by (9.37) is invertible if, and only if, D1 is injective. ✷
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Proof : Assume D1 is injective. Clearly if condition (i) of theorem 9.2
is satisfied then there exists a matrix F which solves the H∞ problem
“at infinity”, i.e. ‖D2 + D1F‖ < 1. This implies, using the orthogonal
projector I −DT

1 (D
T
1D1)−1D1, that

I −DT
2

(
I −DT

1 (D
T
1D1)−1D1

)
D2 > 0.

Therefore, the Schur complement of DT
1D1 in S in invertible. Thus we

find that also S is invertible.
It is trivial that S invertible implies that D1 is injective.

Hence if D1 is injective we have the possibility of calculating the solution
P of our three conditions. However, for discrete time Riccati equations
it is sometimes more desirable to have recursive algorithms as, e.g. is
given in [Fa] for a different type of Riccati equation. This is derived in
[WA, St15]. An extension of the use of symplectic pairs to the case that
D1 is not injective is useful. This is a subject of current research.

9.6 Conclusion

In this chapter the discrete time full-information H∞ control problem has
been investigated. As in the continuous time case the solvability is related
to an algebraic Riccati equation. However, in contrast to the continuous
time case, it turns out that, even in the case that D2 = 0 the feedback law
we find is in general not a state feedback but also requires a disturbance
feedback part. Another interesting feature is the condition R > 0 where
R now depends on the solution of the algebraic Riccati equation.

The assumptions made in this chapter are exactly the discrete time
versions of the two main assumptions which are made in the chapter 3.

Naturally, this chapter is a preliminary step towards the measurement
feedback case which will be elaborated in the next chapter.



Chapter 10

The discrete time H∞ control
problem with measurement
feedback

10.1 Introduction

The H∞ control problem with measurement feedback in continuous time
has been thoroughly investigated, for example in chapter 5 and the refer-
ences mentioned there. In this chapter we shall extend the result of the
previous chapter to the discrete time H∞ control problem with measure-
ment feedback.

One approach to this problem is to transform the system into a con-
tinuous time system, to derive controllers for the latter system and then
transform back to discrete time. However, in our opinion, it is more natu-
ral to have the formulae directly available in terms of the original physical
parameters, so their effect on the solution is transparent. This possibil-
ity might otherwise be blurred by the transformation to the continuous
time. Also, the numerical problems arising with this transformation and
the fact that discrete time systems with a pole in 1 are transformed into
non-proper systems are arguments in favour of a more direct approach.
Finally, consider sampled-data design where we take the sample and hold
functions of the digital implementation of our controller into account in
the design of our controller. In [Ch, KH, SK]) it has been shown that if we
use sampled-data design for a H∞ control problem of a continuous time
system then this can be reduced to a discrete time H∞ control problem.

The present chapter is reminiscent of chapter 5 which deals with the
continuous time case. The results of this chapter already appeared in
[St6].

We make the assumptions which yield an H∞ control problem which

190



10.1 Introduction 191

is the exact discrete time analogue of the regularH∞ control problem with
measurement feedback. The subsystem from the control input to the out-
put should be left-invertible and should not have invariant zeros on the
unit circle. Moreover, the subsystem from the disturbance to the mea-
surement should be right-invertible and again should not have invariant
zeros on the unit circle. Note that the left- and right-invertibility assump-
tions are automatically satisfied if the corresponding direct-feedthrough
matrices are injective and surjective, respectively.

As in the regular continuous time case, the necessary and sufficient
conditions for the existence of suitable controllers involve positive semi-
definite stabilizing solutions of two algebraic Riccati equations. Again,
the quadratic term in these algebraic Riccati equations is indefinite. How-
ever, other than in the continuous time case, the solutions of these equa-
tions have to satisfy another assumption: matrices depending on these
solutions should be positive definite. Another complication is that this
time the Riccati equations are coupled. The second Riccati equation is
the discrete time analogue of the equation for Y (see lemma 5.5). How-
ever, this time we did not succeed in expressing the existence and the
solution in terms of the solutions of the full-information Riccati equation
and its dual version. Recently it has been shown (see [Ig, Wa]) that if the
direct-feedthrough matrices from u to z and from w to y are injective and
surjective respectively then we can reduce our result to a result similar to
theorem 5.1: two uncoupled Riccati equations and a coupling condition
(a bound on the spectral radius of the product of the two solutions). As
for the regular H∞ control problem with measurement feedback (see sec-
tion 5.5) we find an explicit expression for all stable closed-loop systems
with H∞ norm less than 1 and an explicit expression for all internally
stabilizing controllers which result in such a closed-loop system.

The outline of this chapter is as follows. In section 10.2 we shall
formulate the problem and give our main results. In section 10.3, we shall
show the existence of stabilizing solutions of the two algebraic Riccati
equations and complete the proof that our conditions are necessary. This
is done by transforming the original system into a new system with the
property that a controller “works” for the new system if, and only if,
it “works” for the original system. In section 10.4 it is shown that our
conditions are also sufficient. It turns out that the system transformation
of section 10.3 repeated in a dual form gives exactly the desired results.
These transformations will lead to a characterization of all suitable closed-
loop systems and all suitable controllers in section 10.5. We shall end with
some concluding remarks in section 10.6.
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10.2 Problem formulation and main results

We consider the following shift-invariant system:

Σ :



σx = Ax + Bu + Ew,

y = C1x + + D12w,

z = C2x + D21u + D22w,

(10.1)

where for each k we have x(k) ∈ Rn is the state, u(k) ∈ Rm is the control
input, y(k) ∈ Rq is the measurement, w(k) ∈ Rl the unknown disturbance
and z(k) ∈ Rp the output to be controlled. A,B,E,C1, C2,D12,D21 and
D22 are matrices of appropriate dimension.

In this chapter we shall derive necessary and sufficient conditions for
the existence of a dynamic compensator ΣF of the form (2.9) which is in-
ternally stabilizing and which is such that the closed-loop transfer matrix
GF satisfies ‖GF ‖∞ < 1. By scaling the plant we can thus, in prin-
ciple, find the infimum of the closed-loop H∞ norm over all stabilizing
controllers. This will involve a search procedure. Furthermore, if a stabi-
lizing ΣF exists which makes the H∞ norm less than 1, then we derive an
explicit formula for one particular ΣF satisfying these requirements. Note
that the loop-shifting arguments in section 5.6 allow us to extend our re-
sults to the more general system, defined by (2.8) (we could also assume
for the moment that D22 = 0 and include it later via loop-shifting).

We can now formulate our main result:

Theorem 10.1 : Consider the system (10.1). Assume that the sys-
tem (A,B,C2,D21) has no invariant zeros on the unit circle and is left-
invertible. Moreover, assume that the system (A,E,C1,D12) has no in-
variant zeros on the unit circle and is right-invertible. The following
statements are equivalent:

(i) A dynamic compensator ΣF of the form (2.9) exists such that the
resulting closed-loop transfer matrix GF satisfies ‖GF ‖∞ < 1 and
the closed-loop system is internally stable.

(ii) Symmetric matrices P ≥ 0 and Y ≥ 0 exist such that

(a) We have

V > 0, R > 0, (10.2)

where
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V := BTPB +DT
21D21,

R := I −DT
22D22 − ETPE

+
(
ETPB +DT

22D21

)
V −1

(
BTPE +DT

21D22

)
.

This implies that the matrix G(P ) is invertible where:

G(P ) :=

(
DT

21D21 DT
21D22

DT
22D21 DT

22D22 − I

)
+

(
BT

ET

)
P
(
B E

)
. (10.3)

(b) P satisfies the discrete algebraic Riccati equation:

P = ATPA+ CT
2 C2

−
(
BTPA+DT

21C2

ETPA+DT
22C2

)T

G(P )−1

(
BTPA+DT

21C2

ETPA+DT
22C2

)
(10.4)

(c) The matrix Acl,P is asymptotically stable where:

Acl,P := A−
(
B E

)
G(P )−1

(
BTPA+DT

21C2

ETPA+DT
22C2

)
. (10.5)

Moreover, if, given the matrix P satisfying (a)–(c), we define the
following matrices:

Z := ETPA+DT
22C2 −

[
ETPB +DT

22D21

]
V −1

[
BTPA+DT

21C2

]
,

AP := A+ ER−1Z,

EP := ER−1/2,

C1,P := C1 +D12R
−1Z,

C2,P := V −1/2
(
BTPA+DT

21C2

)
+ V −1/2

[
BTPE +DT

21D22

]
R−1Z,

D12,P := D12R
−1/2,

D21,P := V 1/2,

D22,P := V −1/2
(
BTPE +DT

21D22

)
R−1/2,

then the matrix Y should satisfy conditions (d)–(f):
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(d) We have

W > 0, S > 0, (10.6)

where

W := D12,PD
T
12,P

+ C1,PY C
T
1,P
,

S := I −D22,PD
T
22,P

− C2,PY C
T
2,P

+(
C2,PY C

T
1,P

+D22,PD
T
12,P

)
W−1

(
C1,PY C

T
2,P

+D12,PD
T
22,P

)
.

This implies that the matrix HP (Y ) is invertible where:

H(Y ) :=

(
D12,PD

T
12,P

D12,PD
T
22,P

D22,PD
T
12,P

D22,PD
T
22,P

− I

)
+

(
C1,P

C2,P

)
Y
(
CT

1,P
CT

2,P

)
.

(10.7)

(e) Y satisfies the following discrete algebraic Riccati equation:

Y = APY A
T
P
+ EPE

T
P

−
(
C1,PY A

T
P
+D12,PE

T
P

C2,PY A
T
P
+D22,PE

T
P

)T

H(Y )−1

(
C1,PY A

T
P
+D12,PE

T
P

C2,PY A
T
P
+D22,PE

T
P

)
.

(10.8)

(f ) The matrix Acl,P,Y is asymptotically stable where:

Acl,P,Y := AP −
(
C1,PY A

T
P
+D12,PE

T
P

C2,PY A
T
P
+D22,PE

T
P

)T

H(Y )−1

(
C1,P

C2,P

)
. (10.9)

Where P ≥ 0 and Y ≥ 0 exist satisfying part (ii), a controller of the form
(2.9) satisfying the requirements in part (i) is given by:

N := −D−1
21,P

(
C2,PY C

T
1,P

+D22,PD
T
12,P

)
W−1,

M := −(D−1
21,P

C2,P +NC1,P ),

L := BN +
(
APY C

T
1,P

+ EPD
T
12,P

)
W−1,

K := Acl,P − LC1,P . ✷
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Remarks :

(i) Necessary and sufficient conditions for the existence of an internally
stabilizing feedback compensator which makes the H∞ norm less
than some, a priori given, upper bound γ > 0 can be easily derived
from theorem 10.1 by scaling.

(ii) If we compare these conditions with the conditions for the con-
tinuous time case (see [Do5, St2]), then we note that our Riccati
equations are coupled. In [Ig, Wa] it has been shown that if D21 is
injective and D12 is surjective then our conditions (d)-(f) are equiv-
alent to the existence of a matrix Q which is dual to P in the sense
that Q satisfies the same conditions as P but for the system ΣT

such that ρ(PQ) < 1. Moreover, in this case Y = Q(I −PQ)−1. In
other words, these papers derive a discrete time version of lemma
5.5.

(iii) Note that conditions (10.2) and (10.6) are this time depending on
P and Y (the continuous time conditions appear only if D22 �= 0
and in that case they are independent of the solutions of the two
algebraic Riccati equations). A simple example showing that the
assumption G(P ) invertible is not sufficient is given in the previous
chapter. Note that if R is not positive semi-definite, then matrices
like EP are ill-defined and we can not even look for a matrix Y
satisfying (10.6)–(10.9).

The proofs in this chapter will be strongly reminiscent of the proofs given
in chapter 5. They will depend on the results as derived in the previous
chapter. The details of the proof are much easier since we do not need
the bases from appendix A. This is a consequence of the fact that we
work with the discrete time analogue of a regular problem.

10.3 A first system transformation

Using the results of the previous chapter we can derive the following
result:

Lemma 10.2 : Assume that there exists a controller satisfying the con-
ditions in part (i) of theorem 10.1. Moreover, assume that (A,B,C2,D21)
has no invariant zeros on the unit circle and is left-invertible. Then a pos-
itive semi-definite matrix P exists satisfying conditions (a)–(c) of part (ii)
of theorem 10.1. ✷
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Proof : If there is a dynamic controller which is internally stabilizing
and which makes the H∞ norm of the closed-loop system less than 1 for
the problem with measurement feedback, then certainly condition (ii) of
theorem 9.2 holds. This implies that part (iii) of theorem 9.2 also holds,
which exactly yields the desired result.

We assume throughout this section that a positive semi-definite matrix
P exists which satisfies the conditions (a)–(c) of part (ii) of theorem 10.1.
By the above lemma we know that such a P exists when part (i) of
theorem 10.1 is satisfied. But naturally this matrix P with the desired
properties also exists when part (ii) of theorem 10.1 is satisfied.

In order to proceed with the proof of theorem 10.1 in this section we
shall transform our original system (10.1) into a new system. The problem
of finding an internally stabilizing feedback which makes theH∞ norm less
than 1 for the original system is equivalent to the problem of finding an
internally stabilizing feedback which makes the H∞ norm less than 1 for
the new transformed system. However, this new system has some very
desirable properties which make it much easier to work with. In partic-
ular, the disturbance decoupling problem with measurement feedback is
solvable. We shall perform the transformation in two steps. First we shall
perform a transformation related to the full-information H∞ problem and
next a transformation related to the filtering problem. These two trans-
formations are as the transformations used in chapter 5. However, be-
cause our problem is regular, we do not need the technical hardware from
appendices A and B.

We define the following system:

ΣP :



σxP = APxP + BuP + EPwP ,

yP = C1,PxP + + D12,PwP ,

zP = C2,PxP + D21,PuP + D22,PwP ,

(10.10)

where the matrices are as defined in the statement of theorem 10.1. Fur-
thermore, we define the following system

ΣU :



σxU = AUxU + BUuU + EUw,

yU = C1,UxU + + D12,Uw,

zU = C2,UxU + D21,UuU + D22,Uw,

(10.11)

where

AU := A−BV −1 (BTPA+DT
21C2) ,

BU := BV −1/2,
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EU := E −BV −1 (BTPE +DT
21D22) ,

C1,U := −R−1/2Z,

C2,U := C2 −D21V
−1 (BTPA+DT

21C2) ,

D12,U := R1/2,

D21,U := D21V
−1/2,

D22,U := D22 −D21V
−1 (BTPE +DT

21D22) ,

and V , R and Z are as defined in theorem 10.1.
Note that this system ΣU is the same as the system ΣU as used in

section 9.4 where C and D1 are replaced by C2 and D21 respectively
while D22 = 0 (since we assumed in the proofs of the previous chapter
that D2 = 0). A minor extension of the results in the previous chapter
(to the case that D22 is not necessarily 0) gives us that ΣU is inner and
satisfies the other properties of lemma 9.14.

We shall now formulate our key lemma.

Lemma 10.3 : Let P satisfy theorem 10.1 part (ii) (a)–(c). Moreover,
let ΣF be an arbitrary dynamic compensator in the form (2.9). Consider
the following two systems, where the system on the left is the interconnec-
tion of (10.1) and (2.9) and the system on the right is the interconnection
of (10.10) and (2.9):

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣP

ΣF

❄

✛

✻

✛

yP

zP wP

uP
(10.12)

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix
from w to z has H∞ norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix
from wP to zP has H∞ norm less than 1. ✷

Remarks : Note the relation with lemma 5.4. Although the systems ΣP

and ΣU in this chapter are discrete time systems and in chapter 5 we used
continuous time systems the proof of lemma 5.4 can still be used to prove
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the discrete time version with some minor alterations. We shall add the
proof for the sake of completeness.

Proof : We investigate the following systems:

Σ

ΣP
ΣF

ΣF

ΣU

❄

✛

✻

✛

❄

✛

✻

✛

❄
✻

y

z w

u

zU

yP uP

w

yU = wP uU = zP

(10.13)

The system on the left is the same as the system on the left in (10.12) and
the system on the right is described by the system (10.11) interconnected
with the system on the right in (10.12). A realization for the system on
the right is given by:

σ


 e

xP

p


=


Acl,P 0 0

∗ A+BNC1 BM

∗ LC1 K




 e

xP

p


+


 0
E +BND12

LD12


w

zU =
(
∗ C2 +D21NC1 D21M

) e

xP

p


+(D22 +D21ND12)w

where Acl,P is defined by (10.5) and e = xU −xP . The ∗’s denote matrices
which are unimportant for this argument. The system on the right is
internally stable if, and only if, the system described by the above set
of equations is internally stable. If we also derive the system equations
for the system on the left in (10.13), then we see immediately that, since
Acl,P is asymptotically stable, the system on the left is internally stable
if, and only if, the system on the right is internally stable. Moreover, if
we take zero initial conditions and both systems have the same input w,
then we have z = zU , i.e. the input–output behaviour of both systems is
equivalent. Hence the system on the left has H∞ norm less than 1 if, and
only if, the system on the right has H∞ norm less than 1.

We know ΣU is inner and satisfies the other properties necessary in
order to apply lemma 2.14 to the system on the right in (10.13) and hence
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we find that the closed-loop system is internally stable and has H∞ norm
less than 1 if, and only if, the dashed system is internally stable and has
H∞ norm less than 1.

Since the dashed system is exactly the system on the right in (10.12)
and the system on the left in (10.13) is exactly equal to the system on
the left in (10.12), we have completed the proof.

Using the previous lemma, we know that we only have to investigate the
system ΣP . This new system has some very nice properties which we shall
exploit. First we shall look at the Riccati equation for the system ΣP .
It can be checked immediately that X = 0 satisfies conditions (a)–(c) of
theorem 10.1 for the system ΣP .

We now dualize ΣP . We know that (A,E,C1,D12) is right-invertible
and has no invariant zeros on the unit circle. It is easy to verify that
this implies that (AP , E,C1,P ,D12) is right-invertible and has no invari-
ant zeros on the unit circle. Hence for the dual of ΣP we know that
(AT

P
, CT

1,P
, ET,DT

21) is left-invertible and has no invariant zeros on the
unit circle. If there is an internally stabilizing feedback for the system Σ
which makes the H∞ norm less than 1, then the same feedback is inter-
nally stabilizing and makes the H∞ norm less than 1 for the system ΣP .
If we dualize this feedback and apply it to the dual of ΣP , then it is again
internally stabilizing and again it makes the H∞ norm less than 1. We
can now apply corollary 10.2 which exactly guarantees the existence of a
matrix Y satisfying conditions (d)–(f) of theorem 10.1. Thus we derived
the following lemma, which shows that the conditions of theorem 10.1 are
necessary:

Lemma 10.4 : Let the system (10.1) be given with zero initial state.
Assume that (A,B,C2,D21) has no invariant zeros on the unit circle and
is left-invertible. Moreover, assume that (A,E,C1,D12) has no invariant
zeros on the unit circle and is right-invertible. If part (i) of theorem 10.1
is satisfied, then matrices P and Y exist satisfying (a)–(f) of part (ii) of
theorem 10.1. ✷

This completes the proof (i) ⇒ (ii). In the next section we shall prove
the reverse implication. Moreover, in the case that the desired ΣF exists
we shall derive an explicit formula for one choice for F which satisfies all
requirements.
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10.4 The transformation into a disturbance de-
coupling problem with measurement feed-

back

In this section we shall assume that matrices P and Y exist satisfying part
(ii) of theorem 10.1 for the system (10.1). We shall transform our original
system Σ into another system ΣP,Y . We shall show that a compensator is
internally stabilizing and makes theH∞ norm less than 1 for the system Σ
if, and only if, the same compensator is internally stabilizing and makes
the H∞ norm less than 1 for our transformed system ΣP,Y . After that
we shall show that ΣP,Y has a very special property: the Disturbance
Decoupling Problem with Measurement feedback and internal Stability
(DDPMS, as defined in section 2.6) is solvable.

We first define ΣP,Y . We transform Σ into ΣP . Then we apply the
dual transformation on ΣP to obtain ΣP,Y :

ΣP,Y :



σxP,Y = AP,Y xP,Y + BP,Y uP,Y + EP,YwP,Y ,

yP,Y = C1,PxP,Y + + D12,P,YwP,Y ,

zP,Y = C2,P,Y xP,Y + D21,P,Y uP,Y + D22,P,YwP,Y ,

(10.14)

where

Z̃ := APY C
T
2,P

+ EPD
T
22,P

−
(
APY C

T
1,P

+ EPD
T
12,P

)
W−1

(
C1,PY C

T
2,P

+D12,PD
T
22,P

)
,

AP,Y := AP + Z̃S−1C2,P ,

BP,Y := B + Z̃S−1D21,P ,

EP,Y :=
(
APY C

T
1,P

+ EPD
T
12,P

)
W−1/2

+Z̃S−1
(
C2,PY C

T
1,P

+D22,PD
T
12,P

)
W−1/2,

C2,P,Y := S−1/2C2,P ,

D12,P,Y := W 1/2,

D21,P,Y := S−1/2D21,P ,

D22,P,Y := S−1/2
(
C2,PY C

T
1,P

+D22,PD
T
12,P

)
W−1/2,

and W > 0 and S > 0 as defined in part (ii) of theorem 10.1. When we
first apply lemma 10.3 on the transformation from Σ to ΣP and then the
dual version of lemma 10.3 on the transformation from ΣP to ΣP,Y we
find:
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Lemma 10.5 : Let P satisfy theorem 10.1 part (ii) (a)–(c). Moreover
let an arbitrary dynamic compensator ΣF be given, described by (2.9).
Consider the following two systems, where the system on the left is the
interconnection of (10.1) and (2.9) and the system on the right is the
interconnection of (10.14) and (2.9):

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣP,Y

ΣF

❄

✛

✻

✛

yP,Y

zP,Y wP,Y

uP,Y

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix
from w to z has H∞ norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix
from wP,Y to zP,Y has H∞ norm less than 1. ✷

It remains to be shown that for ΣP,Y the disturbance decoupling problem
with internal stability and measurement feedback is solvable:

Lemma 10.6 : Let ΣF be given by:

σp = AP,Y p+BP,Y u+ EP,YD
−1
12,P,Y

(yP,Y − C1,Pp)
uP,Y = −D−1

21,P,Y
C2,P,Y p+D−1

21,P,Y
D22,P,YD

−1
12,P,Y

(yP,Y − C1,Pp),

The interconnection of ΣF and ΣP,Y is internally stable and the closed-
loop transfer matrix from wP,Y to zP,Y is zero. ✷

Remarks : Note that ΣF has the structure of an observer intercon-
nected with a full-information feedback when applied to ΣP,Y . When
applied to Σ it is still an observer interconnected with a full-information
feedback but the observer is a worst-case observer with an extra term
representing the “worst” disturbance.
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Proof : We can write out the formulae for a state space representation
of the interconnection of ΣP,Y and ΣF . We then apply the following basis
transformation:(

xP,Y − p
p

)
=

(
I −I
0 I

)(
xP,Y

p

)
.

After this transformation one immediately sees that the closed-loop trans-
fer matrix from wP,Y to zP,Y is zero. Moreover the closed-loop state matrix
(2.6) after this transformation is given by:

(
Acl,P,Y 0
LP,YC1,P Acl,P

)
.

Since Acl,P,Y and Acl,P are asymptotically stable matrices, this implies
that ΣF is indeed internally stabilizing.

This controller is the same as the controller described in the statement
of theorem 10.1. We know ΣF is internally stabilizing and the resulting
closed-loop system has H∞ norm less than 1 for the system ΣP,Y . Hence,
by applying lemma 10.5, we find that ΣF satisfies part (i) of theorem
10.1. This completes the proof of (ii) ⇒ (i) of theorem 10.1. We have
already shown the reverse implication and hence the proof of theorem
10.1 is completed.

10.5 Characterization of all suitable controllers
and closed-loop systems

In this section we shall give a characterization of all controllers which sta-
bilize the system such that the closed-loop system has H∞ norm strictly
less than 1. Moreover, we characterize all suitable closed-loop systems
obtained in this way. Note that we can do this because we have the dis-
crete time anologue of a regular problem. The derivation of the results
in this section is as the derivation in section 5.5 and will therefore be
omitted.

We define two systems:

ΣC :




ẋU = AxU +B
[
N (C1xU +D12w) +Me+ V −1/2S1/2zQ

]
+ Ew,

ė = Ke+ L(C1xU +D12w) +
(
BV −1/2S1/2 + Z̃S−1/2

)
zQ,

wQ =W−1/2 (C1xU +D12w −C1,P e) ,
z = C2xU +D21

[
N (C1xU +D12w) +Me+ V −1/2S1/2zQ

]
,
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where we used the definitions of theorem 10.1 while Z̃ is defined on page
200. Similarly we define:

ΣE :




ẋ1 = Kx1 + Ly −
(
B + Z̃S−1V 1/2

)
S−1/2V 1/2zQ,

wQ =W−1/2 (y − C1,Pe) ,
u =Mx1 +Ny − S−1/2V 1/2zQ,

where we used the same definitions. Next, we construct the following two
interconnections:

ΣE

Q
❄

✛

✻

✛

wQ

u y

zQ

ΣC

Q
❄

✛

✻

✛

wQ

z w

zQ

(10.15)

We can then derive the following theorem:

Theorem 10.7 : Let Σ be given by (10.1). Assume that the conditions
(ii) of theorem 10.1 are satisfied for Σ. Finally, let ΣC and ΣE denote
the two systems defined above.

Any controller of the form (2.9) which stabilizes Σ admits a realiza-
tion in the form of the left interconnection in picture (10.15) where Q
is a suitably chosen stable shift-invariant system with H∞ norm strictly
less than 1. The interconnection on the right is a realization for the cor-
responding closed-loop system. Conversely, for any stable shift-invariant
system Q with H∞ norm strictly less than 1 the interconnection on the
left is a controller which stabilizes Σ such that the closed-loop system has
H∞ norm strictly less than 1. Moreover, this closed-loop system is given
by the interconnection on the right in picture (10.15). ✷

The above theorem gives us a complete characterization of all suitable
controllers and of all suitable closed-loop systems. This result is com-
pletely analogous to the continuous time result.

It should be noted that if we set Q = 0 then we obtain the central
controller and the corresponding closed-loop system. Note that the cen-
tral controller can be given an interpretation as minimizing the entropy (a
discrete time version of the entropy function discussed in chapter 7) and
as the optimal controller for the linear exponential Gaussian stochastic
control problem (see [Wh]).
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10.6 Conclusion

In this chapter we have solved the discrete time H∞ control problem with
measurement feedback. It is shown that the techniques for the continuous
time case can be applied to the discrete time case. Unfortunately the for-
mulae are much more complex, but since we are investigating the discrete
time analogue of a regular system, it is possible to give a characterization
of all closed-loop systems and all controllers satisfying the requirements.
The extension to the finite horizon discrete time case (similar to chapter
8) is discussed in [Bas, Li4].

It would be interesting to find two dual Riccati equations and a cou-
pling condition as in [Ig, Wa] for the case that either D21 is not injective
or D12 is not surjective.

Nevertheless the results presented in this chapter show that it is pos-
sible to solve discrete time H∞ problems directly, instead of transforming
them to continuous time problems. The assumption of left-invertibility
is not very restrictive. When the system is not left-invertible this implies
that there are several inputs which have the same effect on the output
and this non-uniqueness can be factored out (see, for a continuous time
treatment, [S]). The assumption of right-invertibility can be removed by
dualizing this reasoning. However, at this moment it is unclear how to
remove the assumptions concerning zeros on the unit-circle.



Chapter 11

Applications

11.1 Introduction

In this book we have derived several results concerning the H∞ control
problem. In section 11.2, we apply the results of this book to a number
of problems related to robustness. However, these are again theoretical
results.

After that, in section 11.3 we shall discuss practical applications of
H∞ control theory. We shall put emphasis on giving references to a num-
ber of practical applications in literature. To conclude we give one design
example, an inverted pendulum, and shall study aspects of its robustness
and especially the limitations which H∞ control theory still posseses.

11.2 Application of our results to certain
robustness problems

In section 1.3 we discussed stabilization of uncertain systems. In this
section we are going to apply the results of this book to three different
types of uncertainty:

• Additive perturbations

• Multiplicative perturbations

• Perturbations in the realization of a system.

Each time we find a problem which can be reduced to an H∞ control
problem. The first two problems can be found in [MF, Vi]. The last
problem is discussed in [Hi]. The second and third problems will in general
yield singular H∞ control problems.

205
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11.2.1 Additive perturbations

Essentially the results of this subsection have already appeared in [Gl2].
Assume that we have a continuous time system Σ being an imperfect
model of a certain plant. We assume that the error is additive, i.e. we
assume that the plant can be exactly described by the following intercon-
nection:

Σ

Σerr

✲ ✲ ✲ ✲

✻

✲ ✲

❄

u y◦+

(11.1)

Here Σerr is some arbitrary system such that Σ and Σ+Σerr have the same
number of unstable poles. Thus we assume that the plant is described by
the system Σ interconnected as in diagram (11.1) with another system
Σerr. The system Σerr represents the uncertainty and is hence, by defi-
nition, unknown. In this subsection we derive conditions under which a
controller ΣF of the form (2.4) from y to u exists such that the intercon-
nection (11.1) is stabilized by this controller for all systems Σerr which do
not change the number of unstable poles and which have L∞ norm less
than or equal to some, a priori given, number γ. It should be noted that
an assumption like fixing the number of unstable poles is needed since
otherwise there are always arbitrary small perturbations that destabilize
the closed-loop system. In [Vi] the following result is given:

Lemma 11.1 : Let a controller ΣF of the form (2.4) be given. The
following conditions are equivalent:

(i) If we apply the controller ΣF from y to u to the interconnection
(11.1), then the closed-loop system is well-posed and internally sta-
ble for every system Σerr such that

(a) Σerr has L∞ norm less than or equal to γ.

(b) Σ and Σ+ Σerr have the same number of unstable poles.

(ii) ΣF internally stabilizes Σ and if Gci and GF denote the transfer
matrices of Σ and ΣF , respectively, then I −GciGF is invertible as
a proper rational matrix and ‖GF (I −GciGF )−1‖∞ < γ−1. ✷
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Assume that a stabilizable and detectable realization of Σ is given. Hence
Σ is described by some quadruple (A,B,C,D) with (A,B) stabilizable
and (C,A) detectable. We define a new system:

Σna :



ẋ = Ax + Bu,

y = Cx + Du + w,

z = u.

(11.2)

It is easy to verify that a controller ΣF of the form (2.4) applied to Σ
yields a closed-loop system that is well-posed and internally stable if,
and only if, the same controller ΣF from y to u applied to Σna yields a
closed-loop system which is well-posed and internally stable.

Moreover, assume that a controller ΣF from y to u of the form (2.4) is
given which, when applied to Σna, yields a well-posed and internally stable
closed-loop system. Then the resulting closed-loop transfer matrix is
equal to GF (I−GciGF )−1 where Gci and GF denote the transfer matrices
of Σ and ΣF , respectively.

Using the above reasoning we find that our original problem formu-
lation is equivalent to the problem of finding an internally stabilizing
controller for Σna which makes the H∞ norm of the closed-loop system
less than γ−1.

Next, we define Pa and Qa as the unique positive semi-definite ma-
trices satisfying the following two Riccati equations:

PaA+ATPa = PaBB
TPa,

QaA
T +AQa = QaC

TCQa,

such that the matrices A − BBTPa and A − QaC
TC are asymptotically

stable. Since (A,B) is stabilizable and (C,A) is detectable, existence
and uniqueness of Pa and Qa is guaranteed by standard linear quadratic
control (see [Ku]).

After applying theorems 5.1, 5.11 and 11.1 we find the following the-
orem:

Theorem 11.2 : Assume that a system Σ is given with a stabilizable and
detectable realization (A,B,C,D) such that A has no eigenvalues on the
imaginary axis. We define the related system Σna by (11.2) and let γ > 0
be given. The following three conditions are equivalent:

(i) A controller ΣF from y to u of the form (2.4) exists which, when
applied to the interconnection (11.1), yields a closed-loop system
that is well-posed and internally stable for all systems Σerr such
that:
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(a) Σerr has L∞ norm less than or equal to γ.
(b) Σ and Σ+ Σerr have the same number of unstable poles.

(ii) A controller ΣF from y to u of the form (2.4) exists which, when
applied to the system Σna, yields a closed-loop system that is well-
posed, internally stable and has H∞ norm less than γ−1.

(iii) We have ρ(PaQa) < γ−2.

Moreover, if Pa and Qa satisfy part (iii), then a controller of the form
(2.4) satisfying both part (i) as well as part (ii) is described by:

N := 0,
M := −BTPa,

L :=
(
I − γ2QaPa

)−1
QaC

T,

K := A−BBTPa − L(C −DBTPa). ✷

Remarks:

(i) Naturally the class of perturbations we have chosen is rather arti-
ficial. However, it is easy to show that, if we allow for perturba-
tions which add an extra unstable pole, then there are arbitrarily
small perturbations which destabilize the closed-loop system. On
the other hand, our class of perturbations does include all stable
systems Σerr with H∞ norm less than or equal to γ.

(ii) We want to find a controller satisfying part (i) for a γ which is as
large as possible. Note that part (iii) shows that for every γ smaller
than the bound [ρ(PaQa)]−1/2 we can find a suitable controller sat-
isfying part (i). In fact, we can find a controller which makes the
H∞ norm equal to [ρ(PaQa)]−1/2 (see [Gl2]) which is clearly the best
we can do.

(iii) It can be shown that the bound [ρ(PaQa)]−1/2 depends only on the
antistable part of Σ. Hence we could assume a priori that A has
only eigenvalues in the open right half complex plane (we still have
to exclude eigenvalues on the imaginary axis). In that case it can
be shown that Pa and Qa are the inverses of X and Y , respectively,
where X and Y are the unique positive definite solutions of the
following two Lyapunov equations:

AX +XAT = BBT

ATY + Y A = CTC
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Then it is easy to derive that our bound is equal to the smallest
Hankel singular value of Σ. This result was already known (see, e.g.
[Gl2]).

11.2.2 Multiplicative perturbations

The results of this subsection have already appeared in [St8]. We assume
that we once again have a continuous time system Σ being an imperfect
model of a certain plant. This time, however, we assume that the error is
multiplicative, i.e. we assume that the plant is exactly described by the
following interconnection:

Σ

Σerr

✲ ✲ ✲ ✲

✻

✲ ✲

❄

u y◦+

(11.3)

Here Σerr is some arbitrary system such that the interconnection (11.3)
has the same number of unstable poles as Σ. Thus we assume that the
plant is described by the system Σ interconnected as in diagram (11.3)
with another system Σerr. The system Σerr represents the uncertainty.
As for additive perturbations, our goal is to find conditions under which
a controller ΣF of the form (2.4) from y to u exists such that the in-
terconnection (11.3) is stabilized by this controller for all systems Σerr

which do not change the number of unstable poles of the interconnection
(11.3) and which have L∞ norm less than or equal to some, a priori given,
number γ. In [Vi] there is also a result for multiplicative perturbations:

Lemma 11.3 : Let a system Σ = (A,B,C,D) and a controller ΣF of
the form (2.4) be given. The following conditions are equivalent:

(i) If we apply the controller ΣF from y to u to the interconnection
(11.3), then the closed-loop system is well-posed and internally sta-
ble for every system Σerr such that

(a) Σerr has L∞ norm less than or equal to γ.

(b) The interconnection (11.3) and Σ have the same number of
unstable poles.
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(ii) ΣF internally stabilizes Σ and if Gci and GF denote the transfer
matrices of Σ and ΣF , respectively, then I −GciGF is invertible as
a proper rational matrix and ‖GciGF (I −GciGF )−1‖∞ < γ−1. ✷

Assume that a stabilizable and detectable realization of Σ is given. Hence
Σ is described by some quadruple (A,B,C,D) with (A,B) stabilizable
and (C,A) detectable. We define a new system:

Σnm :



ẋ = Ax + Bu + Bw

y = Cx + Du + Dw,

z = u.

(11.4)

As we did for additive perturbations we can once again rephrase our
problem formulation in terms of our new system Σnm. We first need
some definitions:

G(Q) :=

(
AQ+QAT +BBT QCT +BDT

CQ+DBT DDT

)

M(Q, s) :=

(
sI −A
−C

)

Gci(s) := C(sI −A)−1B +D

Moreover, we define Pm and Qm as the unique positive semi-definite ma-
trices satisfying the following conditions:

(i) • ATPm + PmA = PmBB
TPm

• A−BBTPm is asymptotically stable.

(ii) • G(Qm) ≥ 0

• rank G(Qm) = rankR(s)Gci

• rank
(
M(Qm, s) G(Qm)

)
= n+ rankR(s)Gci ∀ s ∈ C+ ∪ C0.

The existence of such a Pm was already discussed in the previous subsec-
tion and follows from standard regular Linear Quadratic control.

The first two conditions on Qm require that Qm is a rank-minimizing
solution of a linear matrix inequality. The same linear matrix inequality
is also appearing in the singular filtering problem (see [SH4], this problem
is dual to the singular linear quadratic control problem). Via the reduced
order Riccati equation associated with this linear matrix inequality (see
appendix A) it can be shown that the largest solution of the linear matrix
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inequality, whose existence is guaranteed since (C,A) is detectable (dual-
ize the results in [Gee, Wi7]), satisfies all the requirements on Qm. This
shows existence of Qm. Uniqueness was already guaranteed by corollary
A.7.

The above enables us to formulate our main result:

Theorem 11.4 : Let a system Σ be given with stabilizable and detectable
realization (A,B,C,D) and state space Rn. Moreover, let γ > 0 be given.
Assume that A has no eigenvalues on the imaginary axis and assume that
(A,B,C,D) has no invariant zeros on the imaginary axis. We define
the auxiliary system Σnm by (11.2). Under the above assumptions the
following three conditions are equivalent:

(i) A controller ΣF from y to u of the form (2.4) exists which, when
applied to the interconnection (11.3), yields a closed-loop system
that is well-posed and internally stable for all systems Σerr such
that:

(a) Σerr has L∞ norm less than or equal to γ.

(b) The interconnection (11.3) and Σ have the same number of
unstable poles.

(ii) A controller ΣF from y to u of the form (2.4) exists which, when
applied to the system Σnm, yields a closed-loop system that is well-
posed, internally stable and has H∞ norm less than γ−1.

(iii) Either A is stable or 1 + ρ(PmQm) < γ−2. ✷

Proof : The equivalence between (i) and (ii) is a direct result from lemma
11.3. To show the equivalence between (ii) and (iii) we have to investigate
four cases:

• A is stable: the matrices P := 0 and Q := Qm satisfy condition (iii)
of theorem 5.1.

• A is not stable and γ < 1: we define

P :=
Pm

1− γ2
, Q := Qm (11.5)

Then it is straightforward to check that P and Q are the unique
matrices satisfying all requirements of condition (iii) of theorem 5.1
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for Σnm except for possibly the condition on the spectral radius of
PQ for Σnm. Moreover, P and Q satisfy condition (iii) of theorem
11.4 if, and only if, P and Q satisfy the requirement ρ(PQ) < γ−2

of condition (iii) of theorem 5.1 (note that we have to replace γ by
γ−1).

• A is not stable and γ = 1: the stability requirement for P reduces
to the requirement that A is stable which, by assumption, is not
true.

• A is not stable and γ > 1: the unique matrices P and Q that
satisfy most of the conditions of part (iii) of theorem 5.1 are given
by (11.5). However, note that P ≤ 0 (P �= 0).

The equivalence between (ii) and (iii) is then for each of the above cases
a direct result from theorem 5.1.

Remarks:

(i) Our class of perturbations is rather artificial but it includes all stable
systems Σerr with H∞ norm less than or equal to γ if γ < 1. The
restriction γ < 1 does not matter since we know that part (iii) from
our theorem is only satisfied if γ < 1 (or A is stable but in that case
Σerr should be stable anyway).

(ii) As for additive perturbations, we have an explicit bound for the
allowable size of perturbations: part (iii) shows that for every γ
smaller than the bound [1 + ρ(PmQm)]−1/2 we can find a suitable
controller satisfying part (i).

(iii) For additive perturbations it could be shown that the upper bound
[ρ(PaQa)]−1/2 depends only on the antistable part of Σ. It should
be noted that this is not true for the bound [1+ρ(PmQm)]−1/2 which
we obtained for multiplicative perturbations.

(iv) Note that because this is, in general, a singular problem we have
not been able to find an explicit formula for a controller satisfying
part (i). Note that we know that a controller satisfies part (i) if,
and only if, this controller satisfies part (ii).

11.2.3 Perturbations in the realization of a system

The previous two classes of perturbations were directly concerned with the
perturbations of input–output operators or, as an alternative formulation,
with perturbations of transfer matrices. In contrast with the above, the
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theory of complex stability radii is concerned with perturbations of state
space realizations (an interesting overview article is [Hi]).

Assume some autonomous system is given:

ẋ = (A+D∆E) x.

A ∈ Rn×n,D ∈ Rn×l and E ∈ Rp×n are given matrices and ∆ expresses
the uncertainty which is structured by the matrices D and E. The com-
plex stability radius of the triple (A,D,E) is then defined as

rC(A,D,E) := inf
{
‖∆‖ | ∆ ∈ Cl×p such that A+D∆E is not stable

}
.

Naturally by allowing for complex perturbations the class of perturbations
is not very natural. But there are two good reasons for investigating
this complex stability radius. First of all, we can derive very elegant
results for the complex stability radius which we cannot obtain for the
real stability radius (defined as the complex stability radius but with the
restriction that ∆ should be a real matrix). Moreover, if we define Σ∆

as the feedback interconnection of some stable system ∆ = (F,G,H, J)
with Σci = (A,D,E, 0), i.e.

Σ∆ :

(
ẋ

ṗ

)
=

(
A+DJE DH

GE F

)(
x

p

)
, (11.6)

and the real dynamic stability radius rR,d by

rR,d(A,D,E) := inf {‖∆‖∞ | ∆ = (F,G,H, J) ∈ S is such that

∆× Σci described by (11.6) is not stable.} ,

where S denotes the class of quadruples of real matrices which define an
asymptotically stable system, then it is shown in [Hi] that the complex
stability radius is equal to the real dynamic stability radius. This makes
an investigation of the complex stability radius more important because
we investigate the real dynamic stability radius at the same time.

In [Hi] the following relation between H∞ control and the complex
stability radius is given:

Lemma 11.5 : We have

rC(A,D,E) = ‖G‖−1
∞ ,

where G denotes the transfer matrix of (A,D,E, 0). ✷
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Next we investigate the problem of maximization of the complex stability
radius. Let the system Σci be given by:

Σci : ẋ = (A+D∆E)x+Bu.

We search for a static state feedback u = Fx such that the closed-loop
stability radius rC(A + BF,D,E) is larger than γ. For any matrix P ∈
Rn×n we define :

Fγ(P ) :=

(
PA+ATP + ETE + γ2PDDTP PB

BTP 0

)
,

Lγ(P, s) :=
(
sI −A− γ2DDTP −B

)
,

Gci(s) := E(sI −A)−1B.

Using lemma 11.5 and theorem 4.1 we find the following result:

Theorem 11.6 : Assume that a system Σci = (A,D,E, 0) is given which
does not have invariant zeros on the imaginary axis. Let γ > 0. Then
the following two conditions are equivalent:

(i) There exists a matrix F ∈ Rm×n such that

rC(A+BF,D,E) > γ.

(ii) There exists a positive semi-definite matrix P such that

(a) Fγ(P ) ≥ 0,

(b) rank Fγ(P ) = rankR(s)Gci,

(c) rank

(
Lγ(P, s)
Fγ(P )

)
= n+ rankR(s)Gci, ∀s ∈ C0 ∪ C+. ✷

11.3 Practical applications

Many design problems can be reformulated in terms of constraints on
the largest and smallest singular values of the closed-loop transfer matrix
for each frequency (see, e.g. [Do, Hor].) This clearly gives an immedi-
ate starting point for rephrasing these problems as H∞ control problems.
To reformulate the performance requirements into a standard H∞ control
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problem, as we are studying in this book, requires the choice of appropri-
ate weights. Certainly for multiple-input/multiple-output (MIMO) sys-
tems this is not straightforward.

Basically the above translation step is easy for single-input/single-
output (SISO) systems where we can use the graphical tools like Bode-
and Nyquist diagrams; this is not possible for MIMO systems. Moreover,
directional information might be important for the performance criteria
and is clearly lost when using singular values as performance criteria. This
requires MIMO weights which translate directional information in terms
of singular values. The above should clarify why practical problems are
not solved as soon as you have read this book. A good understanding of
design trade-offs (as discussed in, e.g. [FL]) and your system are required
to construct weights which yield an H∞ control problem which suitably
reflects all your criteria.

Several examples have been treated in literature. These are physical
examples and reflect what you can and cannot do with H∞ control.

• An aircraft autopilot design: see [SLH, SC]

• Vertical plane dynamics of an aircraft: see [MF, M]

• Large space structure: see [SC2]

• Attitude control of a flexible space platform: see [MF]

• Gas turbine control: see [BW]

• Control design for a 90 MW coal fired fluidized bed boiler: see [Cr].

Basically the above examples discuss the choice of weights, after which
they simply apply the results as discussed in this book. The only differ-
ence is the book [MF]. These authors discuss a design method combining
loop-shaping with robustness requirements. The method is still relatively
ad-hoc and needs a more thorough foundation before guaranteeing the
kind of problems for which the method can be used.

One major class of problems in design is related to robustness, which
can be treated by H∞ control via the small gain theorem. However, for
real parameter variations and structured uncertainty the small gain the-
orem is very conservative. On the other hand, for high frequency uncer-
tainty, like bending modes and, in general, discarded dynamics, the theory
yields very good results. These problems are discussed more specifically
via the example of the inverted pendulum in the next section.

Up to to this moment we can, in general, only guarantee the existence
of controllers with McMillan degree equal to the sum of the McMillan de-
grees of the plant and all the weights. This implies that complex weights
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yield high-order controllers. However, in practice we would like to know
whether a controller of lower McMillan degree exists which still gives
an acceptable closed-loop performance. A main area of research, there-
fore, lies in reduced order H∞ controllers and in model reduction with an
H∞ criterion (see [BH, HB, Mu2]).

A possible theoretical extension of the theory given in this book can
be used to incorporate some specific performance constraints:

• Steady state disturbance rejection: the requirement that the
closed-loop transfer matrix is zero in zero.

• High gain roll-off: the requirement that the closed-loop transfer
matrix is strictly proper (or, in general that the k’th (k ≥ 0) deriva-
tive of G is strictly proper to guarantee a sufficiently fast roll-off.

These kind of conditions are all based on the requirement that the closed-
loop transfer matrix satisfies certain constraints on the imaginary axis.
Without proof we shall give the following result. This result stems basi-
cally from [HSK] and [Vi, lemma 6.5.9].

Theorem 11.7 : Let a system of the form (2.1) be given. Assume that
a compensator of the form (2.4) which is internally stabilizing exists such
that the closed-loop system has H∞ norm less than one. Moreover, assume
that for si ∈ C0 with i = 1, 2, . . . , j a static controller Ki exists such that
the resulting closed-loop transfer matrix Gi satisfies Gi(si) = 0. In this
case there is a time-invariant compensator ΣF of the form (2.4) and
with MacMillan degree less than n + j such that the closed-loop system
is internally stable, the closed-loop transfer matrix Gcl has H∞ norm less
than one and Gcl(si) = 0 for i = 1, 2, . . . , j. ✷

In the previous theorem si = ∞ is allowed but in this case we should
replace Gcl(si) by the corresponding direct-feedthrough matrix of Gcl.
Also, if we want the first k derivatives of G to be 0 then this can be
incorporated but it will yield an increase of k in the McMillan degree of
the controller.

Basically these requirements can also be incorporated via weights.
However, results like this facilitate the construction of weights. Specific
performance criteria like the ones above can be left out while constructing
weights and can be incorporated at a later stage.

Finally it should be noted that there are now several toolboxes avail-
able (see, e.g. [CS, Va]) using the software package Matlab which contain
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built-in tools to design controllers based on LQG and H∞ control tech-
niques. Singular systems cannot be treated with these toolboxes but
software is being developed also using Matlab (see [SE]).

11.4 A design example: an inverted pendulum

on a cart

We shall consider the following physical example of an inverted pendulum
on a cart:

✡
✡

✡
✡
✡
✡

M
❤ ❤

�

✲

✟

✲

ϕ

m

l

u

d

We assume the mass of the pendulum to be concentrated in the top with
mass m. l is the length of the pendulum and M is the mass of the cart.
To describe the position, d and ϕ express the distance of the cart from
some reference point and the angle of the pendulum with respect to the
vertical axis. The input u is the horizontal force applied to the cart. All
motions are assumed to be in the plane. We assume that the system
is completely stiff and the friction between the cart and the ground has
friction coefficient F . Finally let g denote the accelaration of gravity. We
then have the following non-linear model for this system:

(M +m)d̈+mlϕ̈ cosϕ−ml(ϕ̇)2 sinϕ+ F ḋ = u

lϕ̈− g sinϕ+ d̈cosϕ = 0

If l �= 0 and M �= 0, then linearization around ϕ = 0 yields the following
linear model:


ḋ

d̈

ϕ̇

ϕ̈


 =



0 1 0 0
0 − F

M −mg
M 0

0 0 0 1
0 F

lM
g(m+M)

lM 0






d

ḋ

ϕ

ϕ̇


+




0
1
M

0
− 1

lM


u

Denote these matrices by A and B respectively. Since g �= 0 our linearized
system is always controllable. Assuming our measurements are d and ḋ
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then the system is observable if m �= 0. If m = 0 the system is not
even detectable (which has a clear physical interpretation). However, it
turned out that although the system is observable, for many choices of
the parameters an unstable pole and zero almost cancel out. This makes
the system impossible to control. Therefore we have to add the angle ϕ
as a measurement, i.e. our measurement vector equals y = (d, ḋ, ϕ).

We would like to track a reference signal for the position. Moreover,
we require our controller to yield a robustly stable system with respect
to the several uncertainties that affect our system:

(i) Discarded non-linear dynamics

(ii) Uncertainties in the parameters F,m,M, l

(iii) Flexibility in the pendulum.

Finally we have to take into account the limit on the bandwidth and gain
of our controller. This is essential due to limitations on the sampling rate
for the digital implementation as well as limitation in the speed of the
actuators.

We look at the following setup:

W1 K

Σ
1/s W2

✛ ✛

✲
✲

✻

✲

✛
✛
✛

❄ ✲ ✲✲

uw

w

z

d

dc

e

u y

ew◦−

+

(11.7)

• dc is the command signal for the position d. We minimize the
weighted integrated tracking error where W2 is a first order weight
of the form

W2(s) := ε
1 + αs
1 + βs

By choosing α << β we obtain a low pass filter. This expresses
that we are only interested in tracking low-frequency signals. The
integrator also expresses our interest in low frequencies: it is one
way to guarantee zero steady state tracking error. Finally ε in the
weight is used to express the relative importance of tracking over
the other goals we have for the system.
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• We also minimize uw which is the weighted control input. W1 has
the same structure as W2. However, this time we choose α >> β to
obtain a high pass filter. We would like to constrain the open-loop
bandwidth and gain of the controller. This facilitates digital im-
plementation and it also prevents us pushing our actuators beyond
their capabilities. Finally, it prevents the controller stimulating
high-frequency uncertainty in the system dynamics, such as bend-
ing modes of the pendulum. Since we cannot incorporate open-loop
limitations directly in an H∞ design, we push the bandwidth and
gain down indirectly via this weight on u. However, it turned out
to be very hard to make the bandwidth small.

• z and w are new inputs and outputs we add to the system Σ to
express robustness requirements, i.e. the system Σ is of the form:

Σ :




ẋ = Ax + Bu + Ew,

y =



1 0 0 0
0 1 0 0
0 0 1 0


x,

z = C2x.

(11.8)

The matrices A and B are as defined before. On the other hand
E and C2 still have to be chosen. We shall use the technique of
complex stability radii described in subsection 11.2.3. For instance
if we want to guard against fluctuations in the parameters F and
m, the friction and the mass of the pendulum, then we choose E
and C2 as:

E :=




0
−1/M

0
1/lM


 , C2 :=

(
0 1 0 0
0 0 g 0

)
. (11.9)

A similar definition can be made to guard against fluctuations in
all parameters of the 2 differential equations due to discarded non-
linearities or flexibility of the beam. The latter are dynamic un-
certainties. It should be noted that the complex stability radius
might be conservative with respect to (real) parameter fluctuations.
On the other hand, for discarded dynamics or non-linearities the
complex stability radius is not conservative. We decided to guard
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against all fluctuations in the two differential equations. That is,
instead of (11.9), we choose E and C2 as:

E :=



0 0
1 0
0 0
0 1


 , C2 :=



1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 . (11.10)

On the basis of the above we start designing a controller K for the in-
terconnection (11.7) to minimize the H∞ norm from (w, dc) to (z, uw, ew)
where we manipulated, by hand, the parameters of the weights W1 and
W2 on the basis of the properties of the controllers. It turned out that
the system Σ is in general much more sensitive to perturbations in all
parameters of the differential equation then to perturbations in the pa-
rameters F and m. Therefore we incorporate in our design robustness
against all parameters of the differential equation. In other words Σ is
given by (11.8) where E and C2 are given by (11.10).

We would like to stress that optimal controllers have a tendency of
ruining every nice property of the system which is not explicitly taken
into account. Our design incorporated a γ iteration. However, we im-
plemented the minimum-entropy controller discussed in chapter 7 for a γ
approximately 10% larger than the infimum over all stabilizing controllers
of the closed-loop H∞ norm. It is our experience that this reduces the
bandwidth of the resulting controllers.

We shall give some facts illustrated by frequency and time-responses
of our controller and the resulting closed-loop system. We choose M =
1,m = .1, l = 1 and F = 0.1.

(i) The open-loop transfer matrix from u to x and from u to φ are
given by

Gxu(s) :=
(s + 3.13)(s − 3.13)

(s + 3.29)(s − 3.28)(s + 0.09)

Gφu(s) :=
−s2

(s + 3.29)(s − 3.28)(s + 0.09)

Hence, it is immediate that because of the near pole-zero cancella-
tion in the right half plane that we really need a measurement of
the angle φ.

(ii) Although not for every choice of the parameters, our final controller,
whose Bode magnitude diagram is depicted in figure 11.1, is stable.
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At this moment this desirable property cannot, however, be incor-
porated in our design criteria. We obtained a stable controller by
playing around with the parameters. The eigenvalues of the con-
troller are −45.7,−22.8,−4.04,−2.37,−1.3±0.51i and −0.667. The
fact that the controller has both very fast and relatively slow modes
suggests that via singular perturbation theory (see, e.g. [OM]) we
can reduce the order of the controller. There is, however, no theory
available for such an approach.

(iii) Our final controller can, according to the theory developed in sub-
section 11.2.3, stand fluctuations in the parameters F and m of
400%. Moreover, fluctuations in the parameters of the differential
equations of size less than 0.025 are allowed. The latter is not very
much but since most parameters are 0 they are in general quite
sensitive to fluctuations. Without taking robustness into account
the final controller could only stand fluctuations of size less than
0.000025. Some simulations suggested good robustness properties.

(iv) The time-responses as given in figures 11.5, 11.6 and 11.7 show little
overshoot and therefore the controller is expected to work well on
the non-linear model.

(v) The final controller still has quite a large gain and bandwidth as
can be seen from figure 11.1. The gain is for a large part due to the
fact that the controller is translating angles in radians into forces
in Newtons. In general the angles are much smaller than the forces,
which is to be expected. The large bandwidth is needed to be able
to stand sudden fluctuations in the angles. The bandwidth and
gain of the transfer matrix from dc to u is much smaller as shown in
figure 11.3. This transfer matrix is weighted more strongly in our
cost criterion than the effect of fluctuations in φ (since the angle is
not steered directly via a command signal).

(vi) Figure 11.2 shows that we have good tracking properties of low-
frequency command signals as required. Tracking can be improved
to 1 rad/sec. However, this results in a controller of much larger
bandwidth and gain.

(vii) The loop gain if we break the loop at the control input is given in
figure 11.4. The surprising part here is the cross-over angle which
is very small. The angle of the Bode diagram at the cross-over
frequency is related to the phase margin. The fact that this angle
is very small suggests a good phase margin.
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Figure 11.1: open loop magnitude Bode diagram of the controller
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Figure 11.2: magnitude Bode diagram from dc to d
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Figure 11.3: magnitude Bode diagram from dc to u
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Figure 11.4: magnitude Bode diagram of the loop gain from uc to u
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Figure 11.5: step response from dc to d and φ
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Figure 11.6: impulse response from dc to d and φ
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Figure 11.7: impulse response from φ to d and φ

To conclude, we would like to note that we can design controllers via
H∞ control similar as one used to do it via LQG control. However, it
is our belief that the H∞ norm makes it easier and more transparent
to incorporate several performance requirements in our cost criterion,
especially those performance requirements which are directly related to
robustness and magnitude Bode diagrams. However a lot of work still
needs to be done. In particular we have to gain experience similar to that
we have gained for LQG to translate our criteria into a well-formulated
H∞ problem.



Chapter 12

Conclusion

In this book we have derived several results concerning the H∞ control
problem. Naturally the research in this area is not completed by this
book and several interesting open problems remain. In this chapter we
first devote a section to a discussion of the main contributions of this book
to the active research area of H∞ control. In section 12.2, we discuss some
open problems which could be of interest for future research. Then, in
the last section, we give our final concluding remarks on this book.

12.1 Summary of results obtained

The results derived in this book are related to a number of research areas
within the framework of H∞ control:

• Singular systems

• Differential games

• Finite horizon H∞ control problem

• Minimum entropy H∞ control problem

• H∞ control for discrete time systems.

We shall briefly discuss our contributions to these five subjects.

12.1.1 Singular systems

For systems which are not necessarily regular, we derived necessary and
sufficient conditions for the existence of an internally stabilizing controller
which makes the H∞ norm strictly less than some, a priori given, number
γ. For the measurement-feedback case these conditions are in terms of

226
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solutions of two quadratic matrix inequalities and four associated rank
conditions. This can be shown to be equivalent to the existence of two
stabilizing solutions of reduced order Riccati equations.

In our opinion, our proof yields a nice understanding of the structure
of the H∞ control problem. However, our algorithm for finding a suitable
controller, if one exists, is still not completely satisfactory.

At this point we shall outline the main steps of the proof of theorem
5.1, which is our main result for singular systems. This is done because
the main steps give nice insight in the structure of theH∞ control problem
as we see it.

We start with a system of the form (5.1). We first investigate how well
we can regulate the system if we have all information of the state and the
disturbance available. We can derive necessary and sufficient conditions
under which we can find a controller which makes the H∞ norm less than
some bound γ (a so-called suitable controller), by investigating a sup-inf
problem:

sup
w

inf
u

{
‖zu,w,ξ‖22 − γ2‖w‖22 | u ∈ Lm2 , w ∈ Ll2 such that xu,w,ξ ∈ Ln2

}

(12.1)

for arbitrary initial state x(0) = ξ. We solved this problem using ideas
supplied by Pontryagin’s Maximum Principle. We did this explicitly for
regular systems and we extended it to general systems by some decom-
positions of the state space, the input space and the output space (that
this extension to the general case is related to the same sup-inf problem
can be seen more easily by investigating the results of chapter 6). We
find necessary and sufficient conditions under which a suitable controller
exists: there should be a positive semi-definite solution to a quadratic
matrix inequality which satisfies two rank conditions. This can be shown
to be equivalent to the existence of a stabilizing solution to an algebraic
Riccati equation (a reduced order Riccati equation if the system is sin-
gular). Although our proof might not be the most simple one available it
has one clear advantage. It shows that we cannot do better with respect
to minimizing the H∞ norm by allowing more general (e.g. non-linear or
non-causal) controllers.

We now return to the general case where we might have only partial
information on the state and the disturbance. If a suitable controller with
measurement feedback exists, then there is certainly a suitable controller
for the full-information feedback case. Hence, there is a positive semi-
definite solution to our quadratic matrix inequality and the corresponding
rank conditions. Then we can transform our original system Σ into a new
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system ΣP . A controller is suitable for Σ if, and only if, a controller is
suitable for ΣP (this is true for controllers with measurement feedback
and for controllers with state feedback). However this new system ΣP

has the interesting property that we can find state feedbacks which are
internally stabilizing and which make the H∞ norm of the closed-loop
system arbitrarily small (ADDPS, as discussed in section 2.6, is solvable).

The problem of whether we can measure the state well enough to find
a suitable controller with measurement feedback still remains. It turns
out that this problem is exactly dual to the problem of full-information
H∞ control: minimizing the induced norm from w to z for some sys-
tem Σt by full-information feedback is essentially the same problem as
building an observer for the state of ΣT

t which minimizes the induced
norm of the operator from w to x − x̂ where x̂ denotes the estimated
state. Hence, we immediately find necessary and sufficient conditions un-
der which we can observe the state of ΣP well enough: there should be
a positive semi-definite solution to a second quadratic matrix inequality
which has to satisfy two rank conditions (remember that we already had
a solution to one quadratic matrix inequality before our transformation
from Σ to ΣP ). Thus we obtain a necessary condition for the existence
of a suitable controller: we should have solutions of two quadratic matrix
inequalities and four corresponding rank conditions. These conditions are
also sufficient. To show this we apply a second transformation, dual to
the first, from ΣP to ΣP,Q. Again, a controller is suitable for ΣP if, and
only if, this controller is suitable for ΣP,Q. For ΣP,Q we can observe the
state arbitrarily well. Surprisingly enough ΣP,Q still has the same nice
property ΣP has: there is an internally stabilizing state feedback which
makes the H∞ norm of the closed-loop system arbitrarily small (ADDPS
is solvable). This implies that we can find a controller with measurement
feedback which is internally stabilizing and which makes the H∞ norm of
the closed-loop system associated with ΣP,Q arbitrarily small (ADDPMS
is solvable). We can make the H∞ norm of the closed-loop system equal
to 0 if the system Σ is regular (DDPMS is solvable), but we cannot do
this in general.

The conditions we thus obtained can be reformulated to yield the
conditions of theorem 5.1. The problem is that our second quadratic
matrix inequality as defined above is in terms of the system ΣP . Rewriting
this second matrix inequality with two corresponding rank conditions in
terms of Σ yields one quadratic matrix inequality, two rank conditions
and a coupling condition.
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12.1.2 Differential games

Differential games are not worked out in much detail in this book. How-
ever, some of the results obtained yield nice intuition.

Firstly we note that the quadratic form associated with the solution of
our quadratic matrix inequality yields an almost Nash equilibrium while
for the regular problem we obtain an (exact) Nash equilibrium.

Moreover, as we noted in the previous subsection, the results for
the regular state feedback H∞ control problem were derived by investi-
gating a sup-inf problem (12.1). The value of (12.1) is, as a function
of ξ, equal to the quadratic form given by the solution of the algebraic
Riccati equation. The general full-information H∞ control problem with
state feedback was solved by reducing the general problem to the regular
H∞ control problem. In chapter 6, while discussing differential games, we
find as a side result that the quadratic form associated with the solution
of the quadratic matrix inequality again yields the value of (12.1) as a
function of ξ. This is a nice result to complete the picture we have of the
H∞ control problem.

Another interesting fact is that a necessary condition for the existence
of an almost equilibrium is the possibility of making the H∞ norm less
than or equal to 1 and a sufficient condition is the possibility of making
the H∞ norm strictly less than 1. All of this holds under the constraint
of internal stability and with state feedback. This provides a natural
starting point for research for testing whether we can make the H∞ norm
less than or equal to 1, as done in [Gl6] for the regular case.

12.1.3 The minimum entropy H∞ control problem

In chapter 7 we discuss the minimum entropy H∞ control problem. We
only discussed a very limited case. In the general setup of subsection 1.6.3
we only discuss the case that we have one closed-loop transfer matrix
on which we want to satisfy an H∞ norm bound while minimizing the
H2 norm of this same transfer matrix. Not even that, we used only an
upper bound for the LQG cost criterion. This problem therefore appears
in one of the coming sections as one of the major open problems.

What did we do? By restraining attention to “entropy at infinity” we
could make the proofs of [Mu] more straightforward and less technical.
Moreover, we showed how you could extend this result to singular systems.
This chapter is meant to be a starting point for future research in this
area. In our opinion this chapter sketches ideas which could also be
applied to the more general case of subsection 1.6.3.
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12.1.4 The finite horizon H∞ control problem

In chapter 8 we discussed the L2[0, T ]-induced operator norm instead
of the usual H∞ norm which is equal to the L2[0,∞)-induced operator
norm. We derived conditions under which we could find a time-varying
controller which makes the L2[0, T ]-induced operator norm less than some
a priori given number γ > 0. Instead of a Riccati differential equation we
obtain, for singular systems, a quadratic differential inequality together
with a number of rank conditions. Solvability of this quadratic differential
inequality can be tested by using the basis of appendix A. It turns out
to be equivalent to a reduced-order Riccati differential equation.

For regular systems the techniques used can equally well be applied
to time-varying systems. This is not true for singular systems. Our proofs
are strongly based on the bases of appendix A and we have to make a
number of assumptions to make sure these bases are not time-varying.
This is not worked out in detail in this book but can be found in [St7].

12.1.5 Discrete time systems

For discrete time systems which are discrete time analogues of regular
continuous time systems, we were able to derive nice conditions: a suitable
controller exists if, and only if, there are positive semi-definite stabilizing
solutions to two algebraic Riccati equations. This certainly shows that
transformations to the continuous time case are not necessary and that
H∞ control can be applied directly to discrete time systems. However,
we should spend some time on deriving numerically reliable methods to
check whether these Riccati equations indeed have solutions or not and,
if they exist, to calculate the solutions.

The techniques used to derive this result were completely similar to
the techniques we used to derive the results for the regular continuous
time H∞ control problem. However, for discrete time systems there are
a number of extra technicalities and the formulae are rather complex
and cumbersome. On the other hand, there is one essential difference:
for continuous time systems we could do no better by allowing for non-
causal feedbacks. This is not true for discrete time systems: it is possible
to attain H∞ norms of the closed-loop system via non-causal controllers
which cannot be attained nor approximated by causal controllers.

12.2 Open problems

We shall mention some problems of interest in the next two subsections.
Clearly this list is not exhaustive and several other open problems remain.
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12.2.1 Invariant zeros

Throughout this book, we have excluded invariant zeros on the imaginary
axis for continuous time systems. For discrete time systems, invariant
zeros on the unit disc have been excluded. In this subsection we want
to discuss the difficulty of these invariant zeros intuitively. The reader
should not expect formal proofs in this section.

A treatment of invariant zeros on the imaginary axis for continuous
time systems is given in several papers, [HSK, S3, S4]. For the regular
state feedback case (no problems at infinity) the conditions in [S3] can, in
principle, be reformulated as: a solution of a Riccati equation exists for
which the matrix Acl as given in theorem 3.1 has all eigenvalues in the
open left half plane or in points on the imaginary axis which are invariant
zeros. Besides that, separate extra conditions have to be satisfied for each
invariant zero on the imaginary axis.

However, it is worthwhile to look for alternative formulations of the
results in [HSK, S3, S4] in order to obtain a better insight of what the
extra conditions which have to be satisfied when we have an invariant
zero on the imaginary axis look like.

Moreover, a numerical reliable way of finding a suitable controller, if
one exists, is needed. As in this book, in [S3, S4] a geometric approach
is chosen. This yields good understanding of the nature of the problems
but gives results which are in general numerically not very reliable.

Next, we shall try to show the difficulty of invariant zeros on the
imaginary axis for continuous time systems. Our approach is based on
the paper [HSK], which only treats the regular one block problem (D12

and D21 in (2.1) are both square invertible matrices).
The H∞ control problem with measurement feedback can be reduced

to the so-called model-matching problem (see [Fr2]). This is the following
problem:

inf
Q∈H∞

‖T1 − T2QT3‖∞, (12.2)

where T1, T2 and T3 are given matrices in H∞ . For the sole reason of
an easy exposition of the problems we assume that T2 and T3 are, as
rational matrices, right- and left-invertible, respectively. In this case for
Q1 := T+

2 T1T
+
3 (+ denotes a right cq. left inverse) we have

T1 − T2Q1T3 = 0.

However, in general, Q1 will not be in H∞ . The invariant zeros of the
two subsystems (A,B,C2,D2) and (A,E,C1,D1) (using the definitions of
theorem 5.1) are the only points in the complex plane where T2 and T3,
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respectively, might have a zero, i.e. lose rank. The right cq. left inverse
will then have a pole in these points. Hence if we have only invariant
zeros in the open left half plane, then Q1 will be in H∞ .

Invariant zeros in the open left half plane do not give rise to con-
straints on the attainable closed-loop system T1 − T2QT3. On the other
hand, invariant zeros in the open right half plane do yield constraints
on the attainable closed-loop system. A zero on the imaginary axis can,
however, be cancelled approximately by choosing Q such that it has a
pole in the left half plane arbitrarily close to the zero on the imaginary
axis. It turns out that for these points the only constraint is a condition
in terms of the transfer matrices evaluated in this point itself. If we have
only invariant zeros on the imaginary axis we find the constraint that
the infimum in (12.2) is less than 1 if, and only if, for all invariant zeros
s ∈ C0 a constant matrix Ks exists such that

‖T1(s)− T2(s)KsT3(s)‖ < 1.

For invariant zeros in the open right half plane this condition is necessary
but not sufficient for the infimum to be less than 1.

This shows that zeros on the imaginary axis and zeros in the right
half plane need a different approach and that is exactly the difficulty we
have in treating the most general case with both invariant zeros on the
imaginary axis as well as zeros in the open right half plane.

We expect that for the general case without assumptions on the sys-
tem and with continuous time, we can find the following necessary and
sufficient conditions for the existence of a suitable controller (we shall use
the notation as was already used in theorem 5.1): we think that the exis-
tence of matrices P and Q which satisfy the quadratic matrix inequalities
Fγ(P ) ≥ 0 and Gγ(Q) ≥ 0 and which satisfy the rank conditions (a) and
(b) of theorem 5.1 are conditions which are always needed.

For any s in the closed right half plane which is not an invariant zero
of either (A,B,C2,D2) or (A,E,C1,D1), rank conditions (c) or (d) of
theorem 5.1 should still be satisfied.

The condition for invariant zeros of (A,B,C2,D2) or (A,E,C1,D1)
in the open right half plane is that rank conditions (c) and (d) of theorem
5.1 should still be satisfied. However, for invariant zeros of (A,B,C2,D2)
or (A,E,C1,D1) on the imaginary axis the rank conditions (c) and (d)
should be replaced by some weaker condition.

12.2.2 Mixed H∞ /. . . problems

As we already noted in section 1.1 robustness plays a key role in control
theory. In this book we investigated H∞ control problems which play an
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essential role in robustness of internal stability as outlined in section 11.2.
However, it often happens that we are not only interested in robustness of
internal stability but in robustness analysis of other preformance criteria
as well.

Mixed Linear Quadratic Gaussian (LQG) and H∞ control problems
as introduced in subsection 1.6.3 are quite well suited for the above ob-
jective. We made a start with the discussion of this problem in chapter
7. For regular systems a quite extensive literature is already available
(see section 7.1). However all these papers discuss an entropy function
instead of the LQG criterion. The real mixed LQG/H∞ control problem
is still completely unsolved.

There are also other kinds of mixed problems which are of interest
but which have not received much attention. For instance, in the above
problems the sensitivity of the LQG criterion to system perturbations is
not incorporated in the controller design. Only the sensitivity of internal
stability to system perturbations is taken into account. The main problem
of course remains the trade-off between robustness and performance. This
also yields problems with respect to the required model accuracy and
bounds on the McMillan degree of the controller.

12.3 Conclusion of this book

In this book we have generalized existing theorems on the standard H∞
control problem. Interesting open problems at this moment are more spe-
cific applications of H∞ control which are non-standard, e.g. the above-
mentioned mixed problems. The main open problem at this moment is
related to the practical application of H∞ control. Although we feel that
the theoretical H∞ control problem and its structure are well understood
at the moment, the practical issue of the design of weights for multi-
input, multi-output systems lacks a systematic approach. Besides that,
theH∞ control problems with either invariant zeros on the imaginary axis
(unit disc for discrete time systems) or with problems at infinity are now
reasonably well understood but they need numerically more reliable al-
gorithms to check existence of suitable controllers and to calculate them,
if they exist.

We feel that this book and the large number of papers mentioned in
the references give a very thorough basic understanding of the H∞ control
problem. Nevertheless the subject will remain an important research area
in the near future. This is due to the fact that we still need to make
the step from basic understanding to design (how to apply all this nice
theory in practice). Moreover, because of the extreme importance of
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robustness and its strong correlation with H∞ , its relation with almost
all aspects of system and control theory is interesting. We could think
of identification with H∞ error bounds (see, e.g. [HJN, GK, GK2]) and
other combinations which at the moment might be far-fetched. However,
control engineers working in practice will be the first to acknowledge that
the main reason why they are sceptical about applying modern control
schemes is their concern about robustness. They sometimes even claim
that all modern schemes including controllers built with H∞ performance
criteria are not robust and only classical P(I)(D) controllers can be trusted
to control their expensive machinery. The control engineer in practice
should realize that, although we present this new tool of H∞ control in
a very mathematical setting, in fact H∞ control is nothing other then
applying the available theoretical machinery to the problem of obtaining
the desired shape of the closed-loop Bode diagram.

It is our belief that in the future H∞ will lead to robust and reliable
controllers but a lot of work has to be done in order to be ready to
tackle real-life control problems (which will often be MIMO systems) in
a structured and reliable way.



Appendix A

Preliminary basis transformations

A.1 A suitable choice of bases

In this section we shall choose bases to identify for systems (A,B,C,D)
with D not injective, a regular subsystem which contains all essential
features of the H∞ control problem. We start by applying a suitable state
feedback transformation u = F0x + v to the system Σci = (A,B,C,D).
It is transformed into a system Σci,F0 := (A+BF0, B,C +DF0,D) with
a very particular structure. We shall display this structure by writing
down the matrices of the mappings A+BF0, B,C +DF0,D with respect
to suitable bases in the input spaceRm, the state spaceRn and the output
space Rp. In this section we shall use the notation AF0 := A+BF0 and
CF0 := C +DF0 .

Our basic tool is the strongly controllable subspace. This subspace
has been defined and some of its properties have been given in section
2.4. We now define the bases which will be used in the sequel.

First choose a basis of the input spaceRm as follows. Let u1, u2, . . . , um
be a basis such that u1, u2, . . . , ui is a basis of kerD (0 ≤ i ≤ m). In other
words, decompose Rm = U1 ⊕U2 such that U2 = kerD and U1 arbitrary.
Next, choose a basis of the output space Rp as follows. Let z1, z2, . . . , zp
be an orthonormal basis such that z1, . . . , zj is an orthonormal basis of
imD and zj+1, . . . , zp is an orthonormal basis of (im D)⊥. (0 ≤ j ≤ p).
In other words, write Rp = Z1 ⊕Z2 with Z1 = imD and Z2 = (im D)⊥.
Because this is an orthonormal basis this basis transformation does not
change the norm ‖z‖.

235
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With respect to these decompositions the mapping D has the form

D =

(
D̂ 0
0 0

)
,

with D̂ invertible. Moreover B and C can be partitioned as

B =
(
B1 B2

)
, C =

(
Ĉ1

Ĉ2

)
.

It is easy to see that B2 = B ker D and ker Ĉ2 = C−1 imD. Next define
a linear mapping by

F0 :=

(
−D̂−1Ĉ1

0

)
. (A.1)

Then we have

C +DF0 =

(
0
Ĉ2

)
.

We now choose a basis of the state space Rn. Let x1, x2, . . . , xn be a basis
such that xs+1, . . . , xr is a basis of T (Σci)∩C−1imD and xs+1, . . . , xn is a
basis of T (Σci). (0 ≤ s ≤ r ≤ n) In other words, write Rn = X1⊕X2⊕X3

with X2 = T (Σci) ∩ C−1imD, X2 ⊕X3 = T (Σci) and X1 arbitrary.
It turns out that with respect to the bases introduced above AF0, B

and CF0 have a particular form. This is a consequence of the following
lemma:

Lemma A.1 : Let F0 be given by (A.1). Then we have

(i) (A+BF0)(T (Σci) ∩ C−1imD) ⊆ T (Σci)

(ii) imB2 ⊆ T (Σci)

(iii) T (Σci) ∩ C−1imD ⊆ ker Ĉ2. ✷

Proof :

(i) T (Σci) is (CF0, AF0)-invariant by lemma 2.6. This implies that

AF0 (T (Σci) ∩ ker CF0) ⊆ T (Σci).

Since kerCF0 = ker Ĉ2 = C−1imD, the result follows.
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(ii) Let Ti(Σci) be the sequence defined by (2.15). Then we know that
T1(Σci) = B ker D = imB2. Since Ti(Σci) is non-decreasing this
proves our claim.

(iii) This follows immediately from the fact that C−1imD = ker Ĉ2.

By applying this lemma we find that the matrices A+BF0, B, C +DF0

and D with respect to these bases have the following form.


A+BF0 =



A11 0 A13

A21 A22 A23

A31 A32 A33


 , B =



B11 0
B21 B22

B31 B32


 ,

C +DF0 =

(
0 0 0
C21 0 C23

)
, D =

(
D̂ 0
0 0

)
.

(A.2)

We apply the preliminary feedback u = F0x + v to the system Σ, given
by

Σ :

{
ẋ = Ax + Bu + Ew,

z = Cx + Du.
(A.3)

Denote the resulting system by ΣF0. We decompose x,v and z corre-
sponding to the bases in state, input and output space, i.e.

x =



x1

x2

x3


 , v =

(
v1

v2

)
, z =

(
z1

z2

)
.

We also decompose E and Ĉ1 corresponding to the bases defined:

Ĉ1 =
(
C11 C12 C13

)
, E =



E1

E2

E3


 . (A.4)

Hence we have

C =

(
Ĉ1

Ĉ2

)
=

(
C11 C12 C13

C21 0 C23

)
.

In our new bases the system ΣF0 then has the following form:

ẋ1 = A11x1 +
(
B11 A13

)(v1
x3

)
+ E1w, (A.5)
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(
ẋ2

ẋ3

)
=

(
A22 A23

A32 A33

)(
x2

x3

)
+

(
B22

B32

)
v2+

(
B21 A21

B31 A31

)(
v1

x1

)
+

(
E2

E3

)
w,(A.6)

(
z1

z2

)
=

(
0
C21

)
x1 +

(
D̂ 0
0 C23

)(
v1

x3

)
. (A.7)

As already suggested by the way in which we arranged these equations,
the system ΣF0 can be considered as the interconnection of two subsys-
tems. This is depicted in the following diagram:

v2 ✲
✲

v1 ✲

Σ0

Σ̃

❄

✻
x1 x3

✲

✲

w ∩

✲

(
z1

z2

)

(A.8)

In the picture (A.8), Σ̃ is the system given by the equations (A.5) and
(A.7). It has input space U1×X3×Rl, state space X1 and output spaceRp.
The system Σ0 is given by equation (A.6). It has input spaceRm×X1×Rl,
state space X2⊕X3 and output space X3. The interconnection is made via
x1 and x3 as in the diagram. Note that Σ̃ and ΣF0 have the same output
equation. However, in ΣF0 the variable x3 is generated by Σ0 while in Σ̃
it is considered as an input and is free.

The systems Σ̃ and Σ0 turn out to have some nice structural proper-
ties:

Lemma A.2 :

(i) C23 is injective,

(ii) The system,

Σ1 :=

[(
A22 A23

A32 A33

)
,

(
B22

B32

)
,
(
0 I

)
, 0

]
(A.9)

with input space U2, state space X2 ⊕ X3 (= T (Σci)) and output
space X3 is strongly controllable. ✷
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Proof :

(i) Let (xT
1 , x

T
2 , x

T
3 )

T be the coordinate vector of a given x ∈ Rn. As-
sume that C23x3 = 0. Let x̃ ∈ Rn be the vector with coordinates
(0T, 0T, xT

3 ). Then x̃ ∈ X3. In addition, x̃ ∈ T (Σci) ∩ kerĈ2 = X2.
Thus x̃ = 0 so x3 = 0.

(ii) Let T (Σ1) be the strongly controllable subspace of the system Σ1

given by (A.9). We shall prove T (Σ1) = X2 ⊕ X3. First note that
there exists G :=

(
GT

2 GT
3

)T

such that

[(
A22 A23

A32 A33

)
+

(
G2

G3

)(
0 I

)]
T (Σ1) ⊆ T (Σ1).

Also note that

im

(
B22

B32

)
⊆ T (Σ1).

Now assume that T (Σ1) ⊂ X2 ⊕ X3 with strict inclusion. Define
V ⊆ Rn by

V :=







0
x2

x3




(
x2

x3

)
∈ T (Σ1)


 .

Clearly, V ⊂ T (Σci) with strict inclusion. We claim that a linear
map G0 : Rp →Rn exists such that

(A+G0C)V ⊆ V, (A.10)

and

im (B +G0D) ⊆ V. (A.11)

Indeed, let C+
23 be any left inverse of C23 and define

G0 :=



B11 −A13

B21 G2

B31 G3




(
−D̂−1 0
0 C+

23

)
.

It is then straightforward to check (A.10) and (A.11). This, how-
ever, contradicts the fact that T (Σci) is the smallest subspace V for
which (A.10) and (A.11) hold (see definition 2.3). We conclude that
X2 ⊕X3 = T (Σ1).
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Our next result states that the zero structure of Σci = (A,B,C,D) is
completely determined by the zero structure of Σ̃ci defined by

Σ̃ci :=

[
A11,

(
B11 A13

)
,

(
0
C21

)
,

(
D̂ 0
0 C23

)]
. (A.12)

Note that Σ̃ci is a subsystem of Σ̃ (where Σ̃ is described by (A.5) and
(A.7)) in the same way as Σci is a subsystem of Σ (where Σ is described
by (A.3)).

Lemma A.3 : The non-trivial transmission polynomials of Σci and Σ̃ci,
respectively, coincide. ✷

Proof : According to section 2.3 the transmission polynomials of Σci =
(A,B,C,D) and Σci,F0 = (AF0 , B,CF0 ,D) coincide. Thus, in order to
prove the lemma, it suffices to show that the system matrix Pci,F0 of
Σci,F0 is unimodularly equivalent to a polynomial matrix of the form

(
P̃ci 0 0
0 I 0

)
,

where P̃ci is the system matrix of Σ̃ci. Since Σ1, as defined by (A.9), is
strongly controllable and ( 0 I ) is surjective, by lemma 2.8 the Smith

form of the system matrix P1 of Σ1 is equal to ( I 0 ). In addition we
clearly have

P1 ∼



sI −A22 0 −B22

−A22 0 −B32

0 I 0




∼



sI −A22 −B22 0
−A22 −B32 0
0 0 I


 ,

so we conclude that(
sI −A22 −B22

−A22 −B32

)
,
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is unimodularly equivalent to ( I 0 ). The proof is then completed by
noting that

Pci,F0 ∼




sI −A11 −B11 −A13 0 0
0 D̂ 0 0 0
C21 0 C23 0 0
−A21 −B21 −A23 sI −A22 −B22

−A31 −B31 sI −A33 −A32 −B32




∼
(
P̃ci 0 0
0 I 0

)
.

A consequence of the above lemma is that the invariant zeros of Σci and
Σ̃ci, respectively, coincide.

Our next lemma states that the normal rank of the transfer matrix

Gci(s) := C(sI −A)−1B +D, (A.13)

of the system Σci is equal to the number (rank D + dim X3) or, equiva-
lently,

Lemma A.4 : We have

rankR(s)Gci = rank

(
C23 0
0 D̂

)
. ✷

Proof : Define L(s) := sI −A. Then we have

rankR(s)

(
L 0
0 Gci

)
= n+ rankR(s)Gci. (A.14)

We also have(
L(s) 0
0 Gci(s)

)
∼

(
sI −AF0 −B
CF0 D

)

=




sI −A11 0 −A13 −B11 0
−A21 sI −A22 −A23 −B21 −B22

−A31 −A32 sI −A33 −B31 −B32

0 0 0 D̂ 0
C21 0 C23 0 0



.
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Since C23 and D̂ are injective we can make the (1,3), (1,4), (2,4) and (3,4)
blocks zero by unimodular transformations. Furthermore we make a basis
transformation on the output such that C23 has the form ( Ir 0 )T where
r = rank C23. Thus, after suitable permutation of blocks, the normal
rank of the latter matrix turns out to be equal to the normal rank of




sI − Ã11 0 0 0 0

−A21 sI − A22 −A23 −B22 0

−A31 −A32 sI − A33 −B32 0

C211 0 Ir 0 0

C212 0 0 0 0

0 0 0 0 D̂




.

Here Ã11 is a given matrix. Since, by lemma 4.2, the matrix in the centre
box has full row rank for all s ∈ C and rankR(s)(sI − Ã11) = dim X1 we
find

rankR(s)

(
L 0
0 Gci

)
= n+ rank

(
C23 0
0 D̂

)
.

Combining this with (A.14) gives the desired result.

To conclude we want to note that if D is injective, then the subspace U2

in the decomposition of Rm vanishes. Consequently, the partitioning of B
reduces to a single block and the partitioning of D reduces to ( D̂T 0 )T

with D̂ invertible. It is left as an exercise to the reader to show that
T (Σci) = {0} if, and only if, ker D ⊂ ker B. Thus, if D is injective, then
also T (Σci) = {0}. In that case the subspaces X2 and X3 appearing in
the decomposition of the state space Rn both vanish and the partitioning
of AF0 reduces to a single block.

A.2 The quadratic matrix inequality

We shall now derive some properties for matrices satisfying the quadratic
matrix inequality, i.e. matrices P such that

F (P ) :=

(
ATP + PA+ PEETP + CTC CTD + PB

DTC +BTP DTD

)
≥ 0.

We first derive a result which is one of the key lemmas of this book.
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Lemma A.5 : Assume that a symmetric P is a solution of F (P ) ≥ 0.
We have P T (Σci) = 0, i.e in our decomposition P can be written as

P =



P1 0 0
0 0 0
0 0 0


 . (A.15)

✷

Proof : Let F0 be given by (A.1). Since DTCF0 = 0 (this can be checked
easily) we may apply lemma 2.7. We define

M(P ) :=

(
I FT

0

0 I

)
F (P )

(
I 0
F0 I

)
. (A.16)

If F (P ) ≥ 0, then also

M(P ) =

(
PAF0 +A

T
F0
P + PEETP + CT

F0
CF0 PB

BTP DTD

)
≥ 0

We claim B ker D ⊆ ker P . Let u ∈ Rm be such that Du = 0. Then we
find

(
0T uT

)
M(P )

(
0
u

)
= 0

and hence, since M(P ) ≥ 0, we find

M(P )

(
0
u

)
= 0.

This implies PB = 0. Next we have to show that kerP is (CF0 , AF0)
invariant. Assume that x ∈ ker P ∩ ker CF0. Then

xT
(
PAF0 +A

T
F0
P + PEETP + CT

F0
CF0

)
x = 0.

Hence, by applying x to one side only, we find PAF0 = 0 and therefore
AF0x ∈ ker P . Since T (Σci) is the smallest space with these two prop-
erties we have T (Σci) ⊆ ker P .

Using the above we can derive the following result. Note that Gci is the
transfer matrix defined by (A.13).



244 Basis transformations

Theorem A.6 : Let P ∈ Rn×n be symmetric. The following two state-
ments are equivalent:

(i) P is a symmetric solution to the quadratic matrix inequality, i.e.
we have F (P ) ≥ 0. Moreover, rank F (P ) = rankR(s)Gci.

(ii) If P is in the form (A.15) and if we define

R(P1) := P1A11 +AT
11P1 + P1

(
E1E

T
1 − B11

(
D̂TD̂

)−1

BT
11

)
P1+

CT
21C21 −

(
AT

13P1 + CT
23C21

)T (
CT

23C23

)−1 (
AT

13P1 + CT
23C21

)
,

(A.17)

then we have R(P1) = 0.

Let s0 ∈ C be given. If (i) holds (or equivalently (ii)), then the following
statements are equivalent:

(iii) P satisfies

rank

(
L(P, s0)
F (P )

)
= n+ rankR(s)Gci.

(iv) The matrix Z(P1) defined by

Z(P1) := A11 + E1E
T
1 P1 −B11

(
D̂TD̂

)−1
BT

11P1

−A13 (CT
23C23)

−1 (AT
13P1 +CT

23C21) (A.18)

has no eigenvalue in s0. ✷

Proof : By (A.16) we have M(P ) ≥ 0 if, and only if, F (P ) ≥ 0 and
we also know that these matrices have the same rank. Assume that a
symmetric P satisfies M(P ) ≥ 0 and rank M(P ) = rankR(s)Gci. By
lemma A.5 we know that in our new basis we can write P in the form
(A.15). If we also use the decompositions (A.2) and (A.4) for the other
matrices we find that M(P ) is equal to


P1A11 + AT
11P1 + CT

21C21 + P1E1E
T
1 P1 0 P1A13 + CT

21C23 P1B11 0

0 0 0 0 0

AT
13P1 + CT

23C21 0 CT
23C23 0 0

BT
11P1 0 0 D̂TD̂ 0

0 0 0 0 0




.
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According to lemma A.4 the rank of this matrix equals the rank of the en-
circled matrix. Thus the Schur complement of this matrix must be equal
to 0. Since this condition exactly yields the algebraic Riccati equation
R(P1) = 0 where R is defined by (A.17), we find that P1 is a solution of
R(P1) = 0.

Conversely, if P1 is a solution of R(P1) = 0, then the Schur comple-
ment of the encircled submatrix of the above matrix is 0. Therefore it
satisfies the matrix inequality M(P ) ≥ 0 and the rank of the matrix is
equal to the normal rank of G. Hence P given by (A.15) satisfies the
required properties.

Now assume that (i) or (ii) holds. We shall prove the equivalence
of (iii) and (iv). Define Z(P1) by (A.18). We shall apply the following
unimodular transformation to the matrix in (iii):


I 0 0
0 I FT

0

0 0 I




(
L(P, s)
F (P )

)(
I 0
FT

0 I

)
.

Using the decomposition (A.2) the latter matrix turns out to be equal to


sI − A11 − E1ET
1 P1 0 −A13 −B11 0

−A21 − E2ET
1 P1 sI − A22 −A23 −B21 −B22

−A31 − E3ET
1 P1 −A32 sI − A33 −B31 −B32

P1A11 + AT
11P1 + CT

21C21 + P1E1ET
1 P1 0 P1A13 + CT

21C23 P1B11 0

0 0 0 0 0

AT
13P1 + CT

23C21 0 CT
23C23 0 0

BT
11P1 0 0 D̂TD̂ 0

0 0 0 0 0




By using Schur complements we can get the Riccati equation R(P1) = 0
in the 4,1 position and the matrix Z(P1) in the 1,1 position of the above
matrix. Furthermore, since D̂TD̂ is invertible we can make the 2,4 and
3,4 blocks equal to zero by a unimodular transformation. Since P1 is a
solution of R(P1) = 0, the 4,1 block becomes 0. Thus we find that the
above matrix is unimodularly equivalent to



sI − Z(P1) 0 0 0 0

∗ sI − A22 −A23 0 −B22

∗ −A32 sI − A33 0 −B32

0 0 0 0 0

0 0 0 0 0

0 0 CT
23C23 0 0

0 0 0 D̂ 0

0 0 0 0 0




.
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where ∗ denotes matrices which are unimportant for this argument.
Now, by lemma A.2, the encircled matrices together form the system

matrix of a strongly controllable system. Hence this system matrix is
unimodularly equivalent to a constant matrix ( I 0 ), where I denotes
the identity matrix of appropriate size. Therefore we can make the 2,1
and 3,1 blocks zero by a unimodular transformation.

Thus after reordering we find,

(
L(P, s)

F (P )

)
∼




sI − Z(P1) 0 0 0 0

0 sI − A22 −A23 −B22 −B22

0 −A32 sI − A33 −B32 −B32

0 0 CT
23C23 0 0

0 0 0 0 D̂TD̂

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0




.

It follows that the matrix on the left has rank n + rankR(s)G for some
s0 ∈ C if, and only if, s0 is not an eigenvalue of Z(P1). This proves that
(iii) and (iv) are equivalent.

Corollary A.7 : If there exists a symmetric matrix P such that F (P ) ≥
0 and moreover:

(i) rank F (P ) = rankR(s)Gci,

(ii) rank

(
L(P, s)
F (P )

)
= n+ rankR(s)Gci, ∀s ∈ C0 ∪ C+,

then this matrix is uniquely defined by the above inequality and the cor-
responding two rank conditions. ✷

Proof : By lemma A.6 a solution P must be of the form (A.15) where P1

is a solution of the algebraic Riccati equation R(P1) = 0 such that Z(P1)
is asymptotically stable. Denote the Hamiltonian matrix corresponding
to this algebraic Riccati equation by H. Then we have:

H

(
I

P1

)
=

(
I

P1

)
Z(P1).
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Since a Hamiltonian matrix has the property that λ is an eigenvalue if,
and only if, −λ is an eigenvalue of H we know that an n-dimensional
H-invariant subspace W such that H |W is asymptotically stable, must
be unique. This implies that P1 is unique and hence P is also unique.

We also have the following corollary of theorem A.6. The proof of this
result is strongly related to the proof that AU is stable in lemma 3.11.
Only we have a different and notationally more difficult Riccati equation.

Corollary A.8 : If a matrix P ≥ 0 exists such that F (P ) ≥ 0 and
moreover:

(i) rank F (P ) = rankR(s)Gci,

(ii) rank

(
L(P, s)
F (P )

)
= n+ rankR(s)Gci, ∀s ∈ C0 ∪ C+,

then P is in the form (A.15) and P1 is such that the matrix

A11 −B11

(
D̂TD̂

)−1
BT

11P1 −A13 (CT
23C23)

−1 (AT
13P1 + CT

23C21) (A.19)

is asymptotically stable. ✷

Proof : By theorem A.6 we know P1 is such that R(P1) = 0 and Z(P1)
is asymptotically stable where R is defined by (A.17) and Z is defined by
(A.18). Denote the matrix in (A.19) by Ã. It is easy to check that:

P1Ã+ ÃTP1 + P1N1P1 +N2 = 0,

where

N1 := E1E
T
1 +B11

(
D̂TD̂

)−1
BT

11 +A13 (CT
23C23)

−1AT
13 ≥ 0,

N2 := CT
21

(
I − C23 (CT

23C23)
−1CT

23

)
C21 ≥ 0.

Assume that λ is an eigenvalue of Ã with corresponding eigenvector x �= 0.
Then

2Re λxTP1x = −xT (P1N1P1 +N2) x.

Since P1 ≥ 0, N1 ≥ 0 and N2 ≥ 0 this implies that if Re λ ≥ 0, then
N1P1x = 0 which implies that E1E

T
1 P1x = 0. Thus, if Re λ ≥ 0 we find

λx = Ãx =
(
Ã+ E1E

T
1 P1

)
x = Z(P1)x.

However, since Z(P1) is asymptotically stable, this yields a contradiction.
Thus we have established that Re λ < 0 which in turn yields that Ã is
asymptotically stable.



Appendix B

Proofs concerning the system
transformations

In this appendix we shall prove two key lemmas of chapter 5 for which the
proofs are rather technical and are therefore deferred to this appendix.

Throughout this appendix we shall assume that we have chosen the
bases described in appendix A with D replaced by D2 and C replaced by
C2. Thus we know the matrices have the special form as given in (A.2)
and (A.4). In case D2 is injective we show what the results look like
without the use of the bases of appendix A.

B.1 Proof of lemma 5.4

We first have to do some preparatory work.
Let the matrix P satisfy the conditions of lemma 5.2 part (i). Hence

we know that in our new bases P has the form (A.15). It is easily shown
that it is sufficient to prove lemma 5.4 for one specific choice of C2,P and
DP . We define the following matrices:

C2,P :=


 D̂

(
D̂TD̂

)−1
BT

11P1 + C11 C12 C13

C23 (CT
23C23)

−1 (AT
13P1 + CT

23C21) 0 C23


 , (B.1)

DP :=


 D̂ 0

0 0


 ( = D2) . (B.2)

By writing down F (P ) in terms of the chosen bases and by using the fact
that P1 satisfies the algebraic Riccati equation R(P1) = 0, where R(P1) is
defined by (A.17), it can be verified, after some effort, that these matrices

248
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indeed satisfy (5.3). In case D2 is injective we define the matrices C2,P

and DP without making use of the bases of appendix A by

C2,P := D2 (DT
2D2)

−1 (BTP +DT
2C2) , (B.3)

DP := D2. (B.4)

Next, we define the following matrices:

Ã := A11 −A13 (CT
23C23)

−1 (AT
13P1 + CT

23C21)

−B11

(
D̂TD̂

)−1
BT

11P1,

C̃1 := −
(
D̂T

)−1
BT

11P1,

C̃2 := C21 − C23 (CT
23C23)

−1 (AT
13P1 + CT

23C21) ,

B̃11 := B11D̂
−1,

B̃12 := A13 (CT
23C23)

−1 CT
23 − P

†
1C

T
21

(
I − C23 (CT

23C23)
−1CT

23

)
,

where † denotes the Moore–Penrose inverse. We now define the following
system:

ΣU :




ẋU = ÃxU +
(
B̃11 B̃12

)
uU + E1wU ,

yU = −ET
1P1xU + wU ,

zU =

(
C̃1

C̃2

)
xU +

(
I 0
0 I

)
uU .

(B.5)

In case D2 and D1 are injective and surjective respectively we can define
the above system ΣU without the bases of appendix A by

ΣU :




ẋU = ÃxU + B(DT
2D2)−1DT

2 uU + EwU ,

yU = −ETPxU + wU ,

zU = C̃2xU + uU ,

(B.6)

where

Ã := A−B(DT
2D2)−1(BTP +DT

2C2),
C̃2 := C2 −D2(DT

2D2)−1(BTP +DT
2C2).

We have the following properties of the system ΣU :
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Lemma B.1 : The system ΣU is inner. Let U denote the transfer matrix
of ΣU . If we decompose U :

U

(
wU

uU

)
=:

(
U11 U12

U21 U22

)(
wU

uU

)
=

(
zU

yU

)
,

compatible with the sizes of uU , wU , yU , and zU then we have U−1
21 ∈ H∞

and U22 is strictly proper. ✷

Proof : By corollary A.8 we know that Ã is asymptotically stable and
hence ΣU is internally stable. Moreover by theorem A.6 the matrix
Z(P1) = Ã + E1E

T
1 P1 is asymptotically stable and therefore we have

U−1
21 ∈ H∞. The fact that U22 is strictly proper is trivial. It is easy to

check, using lemma A.6 part (ii), that P1 is the observability gramian of
ΣU . Moreover we have


(

0
0

) (
I 0
0 I

)

I
(
0 0

)




−ET

1 P1(
C̃1

C̃2

)

+




(
B̃T

11

B̃T
12

)

ET
1


P1 = 0.

This can be checked by simply writing out and using the fact that

kerP1 ⊂ ker
(
I − C23 (CT

23C23)
−1 CT

23

)
C21.

The result that ΣU is inner then follows by applying lemma 2.10.

Proof of lemma 5.4 : We have our special choice of C2,P and DP

given by (B.1) and (B.2). As already noted, taking this special choice
for CP and DP is not essential. We shall first compare the following two
systems:

Σ

ΣP
ΣF

ΣF

ΣU

❄

✛

✻

✛

❄

✛

✻

✛

❄
✻

y

z w

u

zU

yP uP

wU

yU = wP uU = zP

(B.7)



B.2 Proof of lemma 5.5 251

The system on the left is the same as the system on the left in (5.5) and
the system on the right is described by the system (B.5) interconnected
with the system on the right in (5.5). We decompose the state of Σ, x
into x1, x2 and x3 according to the choice of bases described in appendix
A and decompose the state of ΣP into x

1,P
, x

2,P
, x

3,P
with respect to the

same basis (note that Σ and ΣP have the same state space Rn). Writing
out all the differential equations using the decompositions of the matrices
given in (A.2),(A.4) we find the following realization for the system on
the right in (B.7):





ẋ

U
− ẋ1,P

ẋ
P

ṗ


=


Ã + E1ET

1 P1 0 0

∗ A + BNC1 BM

∗ LC1 K




x

U
− x1,P

x
P

p


+


 0

E + BND1

LD1


w

U

z =
(

∗ C2 + D2NC1 D2M
)x

U
− x1,P

x
P

p


+ D2ND1wU

The * denotes matrices which are unimportant for this argument. If we
also derive the system equations for the system on the left in (B.7) we see
immediately that, since Ã+E1E

T
1 P1 is asymptotically stable, the system

on the left is internally stable if, and only if, the system on the right is
internally stable. Moreover, if we take zero initial conditions and both
systems have the same input w, then we have z = zU , i.e. the input–
output behaviour of both systems is identical. Hence the system on the
left has H∞ norm less than 1 if, and only if, the system on the right has
H∞ norm less than 1.

By lemma B.1 we may apply lemma 2.12 to the system on the right
in (B.7) and hence we find that the closed-loop system is internally sta-
ble and has H∞ norm less than 1 if, and only if, the dashed system is
internally stable and has H∞ norm less than 1.

Since the dashed system is exactly the system on the right in (5.5)
and the system on the left in (B.7) is exactly equal to the system on the
left in (5.5) we have completed the proof.

B.2 Proof of lemma 5.5

We are now going to prove lemma 5.5. In fact, we shall prove the dual
version of this lemma since this is much more convenient for us. Otherwise
we would have to introduce a decomposition dual to the one used in
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appendix A and based on the weakly unobservable subspace. We first
factorize G(Q):

G(Q) :=

(
EQ

DQ

)(
ET

Q
DT

Q

)
.

Define AQ := A+QCT
2C2 and BQ := B +QCT

2D2 and the system:

ΣQ :




ẋQ = AQxQ + BQuQ + EQwQ,

yQ = C1xQ + DQwQ,

zQ = C2xQ + D2uQ.

(B.8)

First of all, we know that ΣF stabilizes Σ if, and only if, ΣT
F stabilizes

ΣT. Moreover, we know that ‖G‖∞ = ‖GT‖∞. Hence we can derive the
following dualized version of lemma 5.4 for this dual system ΣQ:

Lemma B.2 : Let Q satisfy lemma 5.2 part (ii). Moreover let an ar-
bitrary dynamic compensator ΣF be given, described by (2.4). Let the
following two systems be given where the system on the left is the inter-
connection of (5.1) and (2.4) and the system on the right is the intercon-
nection of (B.8) and (2.4).

Σ

ΣF

❄

✛

✻

✛

y

z w

u

ΣQ

ΣF

❄

✛

✻

✛

yQ

zQ wQ

uQ

Then the following statements are equivalent :

(i) The system on the left is internally stable and its transfer matrix
has H∞ norm less than 1.

(ii) The system on the right is internally stable and its transfer matrix
has H∞ norm less than 1. ✷

We shall now investigate what the matrices appearing in the matrix in-
equality and the rank conditions look like for this new system ΣQ:

F̃ (X) :=


 AT

Q
X +XAQ + CT

2C2 +XEQE
T
Q
X XBQ + CT

2D2

BT
Q
X +DT

2C2 DT
2D2


 ,
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G̃(Y ) :=


 AQY + Y AT

Q
+ EQE

T
Q
+ Y CT

2C2Y Y CT
1 + EQD

T
Q

C1Y +DQE
T
Q

DQD
T
Q


 ,

L̃(X, s) :=
(
sI −AQ − EQE

T
Q
X −BQ

)
,

M̃(Y, s) :=

(
sI −AQ − Y CT

2C2

−C1

)
.

Moreover, we define two new transfer matrices:

G̃ci(s) := C2 (sI −AQ)
−1BQ +D2,

G̃di(s) := C1 (sI −AQ)
−1EQ +DQ.

Using these definitions we have the following result:

Lemma B.3 : Let Q satisfy lemma 5.2 part (ii). Then Y = 0 is the
unique solution of the quadratic matrix inequality G̃(Y ) ≥ 0 satisfying the
following rank conditions

(i) rank G̃(Y ) = rankR(s)G̃di,

(ii) rank
(
M̃(Y, s) G̃(Y )

)
= n+ rankR(s)G̃di, ∀s ∈ C0 ∪ C+. ✷

Proof : It is trivial to check that G̃(0) ≥ 0. Moreover, since G̃(0) = G(Q)
and M̃(0, s) =M(Q, s) it remains to be shown that G̃di and Gdi have the
same normal rank. We have

rankR(s)G̃di = rankR(s)

(
sI −AQ EQ

−C1 DQ

)
− n

= rankR(s)


 sI −AQ EQE

T
Q

DQE
T
Q

− C1 DQE
T
Q

DQD
T
Q


− n

= rankR(s)

(
M(Q, s) G(Q)

)
− n

= rankR(s)Gdi.

The matrix Y is unique by the dualized version of corollary A.7. This is
exactly what we had to prove.
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Lemma B.4 : There is a solution X of the matrix inequality F̃ (X) ≥ 0
satisfying the following two rank conditions:

(i) rank F̃ (X) = rankR(s)G̃ci,

(ii) rank

(
L̃(X, s)
F̃ (X)

)
= n+ rankR(s)G̃ci, ∀s ∈ C0 ∪ C+,

if, and only if, I−PQ is invertible. Moreover in that case the solution is
unique and is given by X = (I − PQ)−1 P . We have X ≥ 0 if, and only
if:

ρ (PQ) < 1. ✷

Proof : We first make a transformation on F̃ (X):

Ftr(X) :=

(
I (I +XQ)FT

0

0 I

)
F̃ (X)

(
I 0

F0 (I +QX) I

)

=

(
ĀTX +XĀ+ C̄T

2 C̄2 +XMX XB

BTX DT
2D2

)

where,

Ā := A+BF0 +Q (C2 +D2F0)
T (C2 +D2F0) ,

C̄2 := C2 +D2F0,

M := (A+BF0)Q+Q (AT + FT
0 B

T) + EET +QC̄T
2 C̄2Q,

and F0 as defined in (A.1). We also transform the second matrix appear-
ing in the rank conditions:

W (X, s) :=


I 0 −QFT

0

0 I (I +XQ)FT
0

0 0 I



(
L̃(X, s)
F̃ (X)

)(
I 0

F0 (I +QX) I

)

=


 sI − Ā−MX −B
ĀTX +XĀ+ C̄T

2 C̄2 +XMX XB

BTX DT
2D2


 .
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We have the following equality:

rankR(s)G̃ci = rankR(s)

(
sI −AQ −BQ

C2 D2

)
− n

= rankR(s)

(
I QCT

2

0 I

)(
sI −AQ −BQ

C2 D2

)
− n

= rankR(s)

(
sI −A −B
C2 D2

)
− n = rankR(s)Gci.

Therefore the conditions that X ≥ 0 has to satisfy can be reformulated
as:

(i) Ftr(X) ≥ 0

(ii) rank Ftr(X) = rankR(s)Gci

(iii) rank W (X, s) = rankR(s)Gci + n, ∀s ∈ C0 ∪ C+.

Moreover, we note that T (A,B,C2,D2) = T (Ā,B, C̄2,D2). This can be
shown by using the fact that the new system is obtained by a state feed-
back and an output injection (note that B = B + Q(C2 + D2F0)TD2)
and the well-known fact that the strongly controllable subspace is invari-
ant under state feedback and output injection. This can be easily shown
using the algorithm (2.15). We now choose the bases from appendix A
where again C is replaced by C2 and D is replaced by D2. By lemma A.5
we know that if X exists, then it will have the form:

X =



X1 0 0
0 0 0
0 0 0


 , (B.9)

for some positive semi-definite matrix X1. Note that there is small differ-
ence since M is not necessarily positive semi-definite but it is easy to see
from the proof of lemma A.5 that this difference is not important. We
use this decomposition for X and the corresponding decompositions for
P and Q:

P =



P1 0 0
0 0 0
0 0 0


 , Q =



Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33


 .
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Together with the decompositions for the other matrices as given in (A.2)
and (A.4) we can decompose Ftr(X) correspondingly:




X1Ã11 + ÃT
11X1 + CT

21C21 +X1M11X1 0 X1Ã13 + CT
21C23 X1B11 0

0 0 0 0 0
ÃT

13X1 + CT
23C21 0 CT

23C23 0 0
BT

11X1 0 0 D̂TD̂ 0
0 0 0 0 0




where

Ã11 := A11 +Q11C
T
21C21 +Q13C

T
23C21,

Ã13 := A13 +Q11C
T
21C23 +Q13C

T
23C23,

M11 := A11Q11 +A13Q
T
13 +Q11A

T
11 +Q13A

T
13 + E1E

T
1

+Q11C
T
21 (C21Q11 + C23Q13) +Q13C

T
23 (C21Q11 + C23Q13) .

The rank condition: rank Ftr(X) = rankR(s)Gci is, according to lemma
A.4, equivalent with the condition that the rank of the above matrix is
equal to the rank of the submatrix:

(
CT

23C23 0
0 D̂TD̂

)
.

Therefore the Schur complement with respect to this submatrix should
be zero. This implies that if we define:

R̃(X1) := X1Ã11 + ÃT
11X1 + CT

21C21

+X1

(
M11 −B11

(
D̂TD̂

)−1
BT

11

)
X1

−
(
X1Ã13 +CT

21C23

)
(CT

23C23)
−1

(
ÃT

13X1 + CT
23C21

)

then X1 should satisfy R̃(X1) = 0. Moreover, if we decompose W (X, s)
correspondingly, then we can show by using elementary row and column
operations that for any matrix X in the form (B.9), where X1 satisfies
R̃(X1) = 0, and for all s ∈ C, the matrix W (X, s) has the same rank as



B.2 Proof of lemma 5.5 257

the following matrix:




sI − Z̃(X1) 0 0 0 0
∗ sI −A22 −A23 0 −B22

∗ −A32 sI −A33 0 −B32

0 0 0 0 0
0 0 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 0




, (B.10)

where

Z̃(X1) := Ã11 +M11X1 −B11

(
D̂TD̂

)−1
BT

11X1

−Ã13 (CT
23C23)

−1
(
ÃT

13X1 + CT
23C21

)
.

The matrix:

sI −A22 −A23 −B22

−A32 sI −A33 −B32

0 I 0


 ,

has full row rank for all s ∈ C by lemma A.2 part (ii) and lemma 2.8.
Hence the rank of the matrix (B.10) is n+rankR(s)Gci for all s ∈ C+∪C0

if, and only if, the matrix Z̃(X1) is asymptotically stable. Using this we
can now reformulate the conditions that X1 ≥ 0 has to satisfy:

(i) R̃(X1) = 0

(ii) Z̃(X1) is asymptotically stable.

In other words X1 should be the positive semi-definite stabilizing solution
of the algebraic Riccati equation R̃(X1) = 0. Denote the Hamiltonian
corresponding to this ARE by Hnew. We know that P1 is the stabilizing
solution of the algebraic Riccati equation R(P1) = 0 as given by (A.17).
Denote the Hamiltonian corresponding to this algebraic Riccati equation
by Hold. Then it can be checked that:

Hold =

(
I Q11

0 I

)
Hnew

(
I −Q11

0 I

)
. (B.11)
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Since P1 is the stabilizing solution of the Riccati equation correspond-
ing to the Hamiltonian Hold we know that the modal subspace of Hold

corresponding to the open left half plane is given by:

Xg(Hold) = Im

(
I

P1

)
. (B.12)

Combining (B.11) and (B.12) we find:

Xg(Hnew) = Im

(
I −Q11

0 I

)(
I

P1

)
= Im

(
I −Q11P1

P1

)
.

Therefore we know that a stabilizing solution to the algebraic Riccati
equation R̃(X1) = 0 exists if, and only if, I−Q11P1 is invertible and in this
case the solution is given by X1 = P1 (I −Q11P1)

−1. This implies that
X = P (I −QP )−1 = (I − PQ)−1 P . The requirement X ≥ 0 is satisfied
if, and only if, ρ(PQ) < 1, which can be checked straightforwardly. This
completes the proof.
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