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Abstract

This paper provides an overview of the Generalised Beam Theory (GBT) fundamentals and reports
on the novel formulations and applications recently developed at the TU Lisbon: the use of con-
ventional GBT to derive analytical distortional buckling formulae and extensions to cover (i) the
buckling behaviour of members with (i;) branched, closed and closed/branched cross-sections and
(i2) made of orthotropic and elastic-plastic materials, and (ii) the vibration and post-buckling be-
haviours of elastic isotropic/orthotropic members. In order to illustrate the usefulness and potential
of the new GBT formulations, a few numerical results are presented and briefly discussed. Finally,
some (near) future developments are briefly mentioned.

1. Introduction

Generalised Beam Theory (GBT) was first proposed by Richard Schardt in 1966 and has, since then,
fostered a vast amount of theoretical and applied research activity at the University of Darmstadt.
However, due to the fact that practically all publications originating from this research group were
available exclusively in German (including the book published by Schardt in 1989), GBT had vir-
tually no impact for non-German-speaking researchers up until the early 90s. This situation was
altered by J.M. Davies, who learnt about GBT in the mid 80s and, almost single-handed, dissem-
inated it among the English-speaking technical and scientific communities together with his Ph.D.
students Leach and Jiang, Davies employed GBT to perform in-depth investigations on the buckling
behaviour of cold-formed steel members and, in particular, showed that this approach is a valid
and often advantageous alternative to finite element or finite strip analyses (Davies, 1998, 2000).
Moreover, it appears that Davies can also be credited with encouraging Schardt to start publishing
in English (Schardt, 1994a,b).

Although GBT has recently attracted considerable attention from several researchers around the
world (e.g., Rendek and Baldz, 2004; or Simao and Silva, 2004), it seems fair to say that the vast
majority of the novel formulations and applications originated from the Technical University of
Lisbon — this can be attested by the review paper recently published by the authors (Camotim et
al., 2004), which summarises the work carried out prior to 2004. Therefore, the objective of this
work is to provide a follow-up of that paper, by (i) reporting on the research activity concerning
GBT undertaken in the last couple of years and (ii) addressing the developments expected for the
foreseeable future. At this stage, it should be pointed out that, due to space limitations, it is only
possible (i) to provide a brief overview of the new findings, (ii) to present a very small number of
illustrative examples and (iii) to mention the main references, where the interested reader may find
much more detailed accounts of all these topics dealt with in this paper.
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Figure 1. Thin-walled member (a) geometry, axes/displacements; (b) cross-section discretisation.
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Figure 2. Lipped channel first thirteen deformation mode in-plane shapes.

1.1. Conventional GBT

In this paper, conventional GBT designates the formulation intended to perform stability (bifurcation)
analyses of thin-walled members with unbranched (folded-plate) thin-walled members and made of
linear elastic isotropic materials (e.g., most cold-formed steel profiles) — this designation stems from
the fact that both (i) the vast majority of Schardt’s publications and (ii) all of Davies’s work concern
members with these characteristics. Moreover, all the recently developed GBT formulations can be
viewed, to a smaller or larger extent, as modifications or extensions of this conventional one.

A conventional GBT analysis involves (i) a cross-section analysis, leading to the GBT deform-
ation modes and corresponding modal mechanical properties, and (ii) a member linear stability
analysis, to obtain the member bifurcation stress resultants and associated buckling mode shapes
(e.g., Davies, 1998; or Schardt, 1994a). In the case of the arbitrary g-walled member shown in
Figure 1(a) and for the cross-section discretisation depicted in Figure 1(b) (¢ + 1 natural and m
intermediate nodes), the performance of the cross-section analysis leads to the system of g +m + 1
GBT equilibrium equations (one per deformation mode)

ECik¢k,xxxx - GDik¢k,xx + EBir¢r + W;'T,oinkd’k,xx =0, (1

where (i) (-) x = d(-)/dx, (ii) ¢x(x) are modal amplitude functions, (iii) £, G are Young’s and
shear moduli, (iv) Wj‘.fo are uniform (usually single-parameter) pre-buckling stress resultants and
(v) the various matrix/tensor components are related to the cross-section stiffness (Cik, Djk, Bik)
and geometric effects (X j;x). Together with its boundary conditions, system (1) defines a standard
eigenvalue problem, the solution of which (i) can be obtained by means of several standard methods
(e.g., finite differences, finite elements or Galerkin’s method) and (ii) yields the member bifurcation
stress resultants and buckling modes. The latter are combinations of the GBT deformation modes,
illustrated in Figure 2 for the case of a lipped channel cross-section (¢ = 5 and m = 7).
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Figure 4. (a) Unbranched open, (b) branched open, (c) unbranched closed, (d) branched closed and (e) arbitrary branched
open/closed thin-walled cross-sections.

1.2. Recent Developments

The novel GBT applications and formulations addressed in this paper concern (i) the development
of distortional buckling formulae (using the conventional GBT), (ii) the buckling analysis of mem-
bers (ii;) with arbitrary cross-section shapes (branched and/or closed multi-cell) and (ii») made
of isotropic/orthotropic elastic or isotropic elastic-plastic materials, (iii) the vibration analysis of
isotropic/orthotropic elastic folded-plate members (loaded or unloaded) and (iv) the post-buckling
analysis of isotropic/orthotropic elastic folded-plate members. This sequence is kept in the presenta-
tion and the various applications and/or formulations are grouped according to the type of structural
analysis (buckling, vibration or post-buckling).

2. Buckling Analysis

2.1. Distortional Buckling Formulae

Since GBT allows for the possibility of performing approximate buckling analyses including any
number of deformation modes, one may develop analytical formulae providing accurate distortional
buckling stress estimates for lipped channel, Z-section and rack-section columns, beams and beam-
columns with several support conditions (Silvestre and Camotim, 2004a,b). These formulae are
obtained through symbolic GBT-based bifurcation analyses that include only either one (columns) or
two (beams and beam-columns) cross-section distortional deformation modes: modes § (symmetric)
and 6 (anti-symmetric) in Figure 3, where this procedure is illustrated for the case of lipped channel
members. Extensive parametric studies showed that the buckling stress estimates provided by the
GBT-based formulae (i) are consistently accurate and (ii) always compare favourably with the values
yielded by formulae previously developed by other authors.

2.2. Cross-Section Shape

The cross-section of a thin-walled member is classified according to its mid-line, which may be
(1) open or closed and (ii) branched or unbranched (see Figure 4). As mentioned earlier, the con-
ventional GBT is valid only for folded-plate members, i.e., members with open unbranched cross-
sections. Thus, in order to extend its application to all other cross-section shapes, one must modify
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Figure 5. (a) Determination of the additional deformation modes accounting for shear deformation and (b) the 10 most
relevant deformation modes of a narrow rectangular hollow cross-section.

the cross-section analysis procedure — since the member analysis remains unaltered, both system (1)
and its boundary conditions retain their forms. This task has now been completed for any conceivable
cross-section shape and comprised the following three stages:

®

(ii)

(iii)

The first extension concerned (unbranched) single-cell closed cross-sections and involves the
inclusion of four additional deformation modes, which (i) are related to the shear deformation
of the cross-section mid-line and (i2) stem from the imposition of unit transverse displacements
in each wall, while preventing all the other ones, as shown in Figure 5(a) (Gong¢alves and Cam-
otim, 2004a). Moreover, one must incorporate the term fs Gtvjv;ds in the analysis, to account
for the virtual work associated with the shear strains. The 10 most relevant deformation modes
of a narrow rectangular hollow section are displayed in Figure 5(b) and one notices that, besides
the global (1-4) and local-plate (6-10) modes, similar to the ones yielded by the conventional
GBT, a novel distortion (not distortional) mode 5 appears — together with mode 4, it models
the cross-section shear deformation (Gongalves and Camotim, 2004b).

Next, a methodology that can handle arbitrarily branched open cross-sections was developed,
thus overcoming difficulties related to (iiy) the proper selection of the elementary warping and
flexural functions and (iip) the solution of the statically indeterminate folded-plate problem
(Dinis et al., 2006). One must view the cross-section as a combination of an unbranched sub-
section and an ordered sequence of branches, which leads to the straightforward identification
of the dependent natural nodes, i.e., the natural nodes where the warping displacements cannot
be imposed (they must be calculated) — the number of such nodes is equal to Y (my,; — 2),
with the summation extending to all branching nodes and m,,; being the number of walls
emerging from branching node i. These concepts are illustrated in Figure 6, where (ii1) the
cross-section depicted in Figure 6(a) has six dependent nodes (see Figure 6(e)) and (iiz) two
possible combinations of an unbranched sub-section and the corresponding branch sequence are
displayed in Figures 6(b)—(d) (note that in both cases one must go up to second-order branches).
Finally, Gongalves et al. (2006) have just developed the “definitive” formulation, in the sense
that it is applicable to fully arbitrary cross-sections, namely those combining closed cells with
open branches. A brief description of the steps and procedures involved in this formulation is
presented next and illustrated through the cross-section depicted in Figure 7(a): an I-shaped
section with closed cells separating the web from the unequal flanges — it has 13 walls, 2 closed
cells and 12 natural nodes (6 branching ones):
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Figure 6. Illustrative branched section (a) geometry and two possible (b) unbranched sub-sections, (c) first-order branches,
(d) second-order branches and (e) independent/dependent natural nodes.
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Figure 7. (a) Cross-section geometry and (b) dependent and independent natural nodes.

(iii.1) Choice of the dependent natural nodes — Figures 7(b)—(bs) show two possible choices for
the 6 dependent and 6 independent natural nodes to be considered in the analysis.

(iii.2) Determination of the “warping initial shape functions”, by imposing elementary functions
at each independent natural node and assuming that Vlassov’s hypothesis holds in all walls,
i.e., following the methodology developed by Dinis et al. (20006).

(iii.3) Determination of the “local-plate initial shape functions”, by imposing elementary flexural
functions at each intermediate node — 13 intermediate nodes were included in the illustrative
example (mid-points of each internal wall and free ends of the external ones).

(iii.4) Identification of the conventional deformation modes, yielded by the simultaneous diagon-
alisation of the stiffness matrices [Cix] and [Bjx]. In the case of the illustrative example,
one identifies 19 deformation modes, 11 of which are shown in Figure 8: 5 warping (2—6)
and 6 local-plate (13-18) — note that modes 2—4 are “rigid-body” ones and mode 1 (axial
extension) has been omitted.

(iii.5) Sequential imposition of unit membrane shear strains in each wall belonging to a closed
cell, keeping all remaining walls free of those strains, and determination of the correspond-
ing “initial shear shape functions”. In the example, 6 unit shear strains are imposed (3 per
closed cell), by combining u and v displacements — enforcing these unit strains may be a
quite cumbersome task and some guidelines on how to carry it out can be found in the work
by Gongalves et al. (2006).
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Figure 8. In-plane shapes of the 17 most relevant warping (2—6), shear (7-12) and local-plate (13-18) modes.

(iii.6) Identification of the shear deformation modes, again by simultaneously diagonalising
matrices [Cix] and [Bix]' — in this case, one obtains the 6 shear deformation modes (7-12)
shown in Figure 8.

2.3. Material Behaviour

A GBT formulation applicable to members made of materials other than isotropic and linear elastic
requires modifications that depend on the specific type of material behaviour.” This task has been
carried out for (i) orthotropic linear elastic materials (e.g., laminated plate fibre-reinforced plastics —
FRP) and (ii) isotropic non-linear elastic-plastic materials (e.g., stainless steel or aluminium). In the
former case, first addressed about four years ago (Silvestre and Camotim, 2002), the layer (lamina)
plane-stress constitutive law reads

Oxx Qll Ql2 Q13 Exx
oss (= | Q12 On Q23 Ess (- ©))
Oxs 013 023 033 Vs

where Q; j are “transformed reduced stiffness components” depending on the layer (i) fibre and
plastic matrix material properties and (ii) fibre orientation (Jones, 1999). Moreover, the mechanical
behaviour of a laminated plate member also varies with its layer properties and configuration (Sil-
vestre and Camotim, 2002). In the most general case (arbitrary orthotropy, i.e., anisotropy), the GBT
system (1) becomes

Cikk,xxxx + Hik@r xxx — DikPkxx + FikPicx + Bikdk — X jix Wi oPrxx = 0 3

and its boundary conditions must be modified accordingly. It is worth noting (i) the additional tensors
Hji and Fjj, accounting for material coupling effects between torsion and longitudinal/transversal
flexure, and (ii) that, due to the layer-variation of the material properties, the various tensor com-
ponents are now mechanical properties — material constants and geometrical characteristics fused
together. Another aspect that deserves to be mentioned is the need to include in the analysis de-
formation modes that take into consideration the non-linearity of the warping displacement variation
within the width of each wall and, therefore, are also associated with membrane shear strains, i.e.,
do not satisfy Vlassov’s assumption (Silvestre and Camotim, 2004c; Silvestre, 2005). The warping

1 Since the conventional and shear modes are not identified jointly, the overall matrices [C;x] and [Bjg] are not diagonal
— only their principal sub-matrices exhibit this property.

2 Although most of the novel GBT formulations have not yet been applied to other than isotropic and linear elastic
members, this is a straightforward (even if time-consuming) task that is planned for the near future.
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Figure 9. Lipped channel ten most relevant shear modes associated with non-linear warping.

configurations of this set of additional shear deformation modes are shown in Figure 9, for the case
of a lipped channel cross-section.

Concerning the buckling analysis of isotropic non-linear elastic-plastic members, one begins
by recalling that, if no strain reversal occurs along the fundamental equilibrium path, an elastic-
plastic solid and its “hypoelastic comparison solid”” have identical critical bifurcation stresses/loads
(Hill, 1958). Thus, by (i) monitoring the evolution of the instantaneous moduli (on the fundamental
path) and (ii) adopting incremental constitutive relations, it is possible to determine the member
plastic bifurcation behaviour using non-linear elastic stability theory. For fundamental states with
only longitudinal normal stresses, the plane-stress incremental constitutive relations read

B . . .B
Oy Eyy E;p O Exx

. B _ . . . B M M

Ogg =1 Ezy Ex»n O Egg , o = Eré], “4)
-B b -B

ol 0 0 G Vs

where (i) 6;; and &;; are stress-rate and strain-rate components, (ii) E; j and G are the instantaneous
elastic and shear moduli, (iii) E7 is the longitudinal uniaxial tangent modulus and (iv) (-)? and
()™ are superscripts identifying bending and membrane terms. The material uniaxial stress-strain
law is commonly described by Ramberg—Osgood type expressions (Rasmussen, 2003) and, due to
the well-known “plate plastic buckling paradox” (Hutchinson, 1974), both J,-deformation and J,-
flow small strain plasticity theories were included in the GBT formulation (Gongalves and Camotim,
2004, 2005). After the incorporation of the instantaneous moduli, the hypoelastic bifurcation analysis
leads to the system of incremental GBT equations

Cikq’bk,xxxx - Dikq‘bk,xx + Bikq’bk + Xikq‘bk,xx =0 (5)

and associated boundary conditions, where (i) functions qbk provide the deformation mode amplitude
rates and (ii) all tensor components are load-dependent through the instantaneous moduli (Gongalves
and Camotim, 2005). Note that (5) is applicable to rather general (uniaxial-stress) loading conditions
— the only restriction is that they must satisfy the basic hypothesis of Hill’s “comparison solid”
concept: the material behaviour may be assumed as hypoelastic in the close vicinity of the bifurcation
point (Hill, 1958; Hutchinson, 1974).

3. Vibration Analysis

Given the well-know mathematical similarity between the stability (bifurcation) and vibration eigen-
value problems, the derivation of a GBT vibration formulation constitutes a relatively easy task: it
suffices to replace the geometric effects by their dynamic counterparts, as done by Schardt and Heinz
(1991) for isotropic linear elastic members, and by Silvestre and Camotim (2004d), for orthotropic
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linear elastic laminated plate members. Very recently, these authors proposed a novel combined
formulation that makes it possible to analyse the vibration behaviour of loaded orthotropic members
(Silvestre and Camotim, 2005a,b). In this case, the GBT system of equilibrium equations reads

(Kik + W2Gix — 0> Mit) e + (Kij — 0> Mij)g; =0, (©6)
(Knk — @ Mp )i + (Knj — 0> Mpj)gpj =0, @)

and corresponds to the assembly of two subsystems, both including coupling components — while
the first is associated with the conventional modes (see Figure 2 — amplitudes ¢y), the second is
related to the shear modes (see Figure 9 — amplitudes ¢ ;). The system is expressed in terms of dif-
ferential operators concerning linear stiffness (Kix, Kij, Kni, Knj), geometric stiffness ($ix) and
mass (M;x, M;j, Mui, Mp;) effects. The boundary conditions include generalised normal and shear
stress resultants, involving terms that stem from (i) normal stress equilibrium and (ii) the variation of
the shear stresses along the cross-section wall thickness. For composite members displaying cross-
ply orthotropy (the case of the illustrative example presented in Section 6.2) the system (6)—(7) may
be rewritten in matrix form as (Silvestre and Camotim, 2005a,b)

(Cetxxxx — Dedxx + Bed + Ces @ 1) — EWA Xem xx)
— &V’ (Redp — Qexx + Qes @ ) = 0, (8)

(Cset.xxx + Cs @ — Ds @) — Ev? (Qsedp,x + Qs @) = 0, )

where (i) the subscripts (-)¢, (-)s and (-)¢s stand conventional, shear and coupling conventional-
shear mode quantities, and (ii) the various dynamic stiffness matrices R;; and Q; account for the
effects of mass forces related to the in and out-of-plane cross-section translations, rotations and
translation-rotation couplings. By making (i) ég = 1l and éy = 0, (ii)) ép = Oand &y = 1 or
(i) &g = ¥ (0 < ¢ < 1) and &y = 1, this system defines linear eigenvalue problems associated
with (i) buckling analyses, (ii) a free vibration analyses of load-free members and (iii) free vibration
analyses of loaded members — in the last case, the loads W,2 are known a priori and w? are the
problem eigenvalues.

4. Post-Buckling Analysis

A previously developed and numerically implemented non-linear GBT formulation to analyse the
post-buckling behaviour of initially imperfect isotropic linear elastic folded-plate members (Silvestre
and Camotim, 2003) was recently extended to encompass orthotropic FRP composite members
(Silvestre and Camotim, 2004e; Silvestre, 2005). This involved major modifications with respect
to the conventional GBT, namely (i) to employ the stress-strain relations given in (2) and (ii) to
consider the non-linear strain-displacement relations

L 5 2, I I .
Uy + 2(1)))( + w,x) W xx — U x Z(U’X + w,x) + ZW xx,

Exx =
1 2 2 - 1 -2 _2 _
Ess = Vi + 2(1))5 + w,s) — W55 — Vs — 2(1))5 + w,s) + zw g5,
Ves = Us+Vx+VxVs+WiWs — 2Zw,xs - L_l,s - ‘_),x - ﬁ,x‘_),s - w,xw,s + Zzw,xm (10)

where the bars identify the terms associated with the initial imperfections. Moreover, one must also
include an additional set of transverse extension deformation modes in the cross-section analysis,
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Figure 10. Lipped channel eight most relevant transverse extension modes.

which (i) account for the “bowing effect” stemming from the transverse bending of cross-section
walls and (ii) do not comply with Vlassov’s assumption — they stem from the sequential imposition
of unit transverse and null warping displacements at both the natural and intermediate nodes. The
configurations of the eight most relevant transverse extension deformation modes of a lipped channel
cross-section are displayed in Figure 10.

After (i) incorporating (10) into the principle of virtual work, (ii) performing several operations,
described in detail elsewhere (Silvestre and Camotim, 2003; Silvestre, 2005) and (iii) including the
special cross-section analysis, one is led to the member equilibrium equations, written variationally
as

8Uy + 8Up + 8U3 — 8Uy — 8U, — U3 + 811, + 811, = 0, an

where (i) the strain energy terms 6U1, §U> and §Us are linear, quadratic and cubic functionals of
the mode amplitude functions ¢;, (ii) their “bar counterparts” contain the imperfection amplitude
functions ¢; and (iii) the STI terms stand for the virtual work done by distributed or concentrated
external loads.

5. Numerical Implementation

The solution of the buckling and vibration eigenvalue problems is obtained by means of either
(1) Rayleigh-Ritz’s or Galerkin’s method, in the case of simply supported members, i.e., members
with locally and globally pinned and free-to-warp end sections, or (ii) a GBT-based beam finite
element formulation that uses Hermitean cubic polynomials to approximate the buckling/vibration
modes, for members with other end support conditions (Camotim et al., 2004; Silvestre, 2005;
Gongalves and Camotim, 2005; Dinis et al., 2006). As for the solution of system (11), it requires
the development of another (non-linear) GBT-based beam finite element (also using Hermite and
Lagrange cubic polynomials to approximate ¢ (x) and ¢;(x)) and resorting to an incremental-
iterative numerical technique to determine the member equilibrium path (Silvestre and Camotim,
2003; Silvestre, 2005). After the usual integrations, the FEM system of algebraic equations reads

(K(()e) + K(le) + K(ze))d(e) i (K(Oe) + I‘(ge) + I_(£E))(_l(e) — fée), (12)

where (i) Kf,f) are linear (p = 0) and non-linear (p = 1,2) secant stiffness matrices, (i) d©,
and d© are the vectors of generalised and initial imperfection nodal displacements and (iii) tﬁe)
is the external applied force vector. The well-known Newton—Raphson predictor-corrector iterative

technique was employed to determine the member post-buckling equilibrium paths (e.g., Crisfield,
1991-1996).
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Figure 11. Geometrical and material properties: (a) buckling and (b) vibration and post-buckling.

6. Illustrative Examples

In order to illustrate the application and potential of the above GBT formulations, some numerical
results are presented and briefly discussed next. Even if buckling, vibration and post-buckling results
are included here, the space limitations make it impossible to cover more than a small fraction of the
different (i) features outlined earlier and (ii) possibilities offered by the various GBT analyses. All
the relevant geometrical and material properties of the thin-walled members analysed are given in
Figures 11(a)-(b) — note that the elastic-plastic uniaxial stress-strain law is described by a bi-linear
expression. For validation purposes, some GBT-based linear elastic results are compared with FEM-
based values yielded by the codes ADINA (Bathe, 2003) or ABAQUS (HKS, 2002) and adopting fine
shell element member discretisations.

6.1. Buckling

The results shown in Figures 12(a)-(b) and 13(a)—(b) concern the bifurcation behaviour of isotropic
elastic and elastic-plastic hat-section beams (uniform major axis bending) with end sections that
are locally and globally pinned and may warp freely (Gongalves and Camotim, 2005). While Fig-
ure 12(a) shows the 9 most relevant deformation modes (out of 15 — the cross-section discretisation
involved the following intermediate nodes: 3 in each web, 1 in the flange mid-point and 1 in each
stiffener free end), Figure 12(b) depicts three GBT-based buckling curves, corresponding to elastic
and elastic-plastic (Jo-flow and J,-deformation) beams and providing the variation of the critical
moment M with the normalised length L/h (logarithmic scale). In addition, the white dots in
Figure 12(b) stand for FEM-based elastic critical moments obtained using the code ADINA (Bathe,
2003).3 As for Figures 13(a)—(b), they make it possible to compare the ADINA (perspective) and
GBT-based (in-span cross-section) elastic critical buckling mode shapes of the beams indicated in
Figure 12(b): lengths L/h = 5 (six-wave local-plate buckling modes 7 +9) and L/ h = 10 (single-
wave distortional-flexural-torsional buckling modes 3 + 4 4 6). Although an in-depth discussion
of the results shown in these two figures is beyond the scope of this paper, the following general
comments and remarks are appropriate:

(i) The linear elastic M., values yielded by the GBT-based analyses practically coincide with the
ones obtained using ADINA. Moreover, one notices that the critical buckling mode nature varies
with L/h as follows: (i) local-plate buckling (modes 7 + 9) for short beams (L/h < 8.8),
(ii) distortional-flexural-torsional buckling (modes 3 + 4 + 6) for intermediate beams (8.8 <

3 No validation is presented for the elastic-plastic GBT-based results, as the authors know no commercial FEM code
capable of calculating plastic bifurcation moments — e.g., neither ADINA (Bathe, 2003) nor ABAQUS (HKS, 2002) offer such
possibility.
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Figure 12. (a) Hat-section first 9 deformation mode shapes and (b) beam elastic and elastic-plastic M¢r vs. L/h curves
(GBT-based and ADINA results).

9 Es
ADINA GBT ADINA GBT
(D - Local-Plate Mode (@) - Distortional-Flexural-Torsional Mode
(a) (b)

Figure 13. ADINA and GBT-based elastic critical buckling mode shapes — beams with (a) L/h = 5 and (b) L/h = 10.

L/h < 20) and (iii) “classical” lateral-torsional buckling (modes 3 + 4) for the longer beams
(L/h = 20). Finally, note that the accuracy of the ADINA results deteriorate for L/h < 4
(local-plate buckling), due to the occurrence of stress concentrations in the shell element model
(in the vicinity of the end sections) — obviously, they lower the M, values.

(i) There is also a virtual coincidence between the elastic critical buckling mode shapes yielded by
GBT and ADINA obviously, the former concern the most deformed beam cross-sections.

(iii) The elastic-plastic GBT-based results confirm the well-known fact that deformation theory
leads to lower critical buckling loads than flow theory. This is particularly true for local-plate
buckling, which involves almost exclusively transverse plate bending — recall that the transverse
plate bending stiffness ¢> Ex» /12 decreases more rapidly for deformation theory (Gongalves
and Camotim, 2004b). The differences are much less relevant for distortional-flexural-torsional
buckling and vanish for lateral-torsional buckling (the beams buckle elastically). Due to higher
local-plate buckling stresses, the length interval related to critical distortional-flexural-torsional
buckling is larger for flow theory than for deformation theory.
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Figure 14. Variation of w r, for (a) 10 < L < 1000 cm and (b) 40 < L < 200 cm, and (c) modal participation diagram of
the beam fundamental vibration mode with L and M /M.

6.2. Vibration

The vibration results shown in Figures 14(a)—(c) concern laminated plate lipped channel beams
(members under uniform major axis bending) with (i) walls formed by three equally thick orthotropic
layers made of identical FRP materials (epoxy resin reinforced with e-glass fibres) and exhibiting
a cross-ply configuration [0°, 90°, 0°], (ii) locally/globally pinned and free-to-warp end sections
and (iii) uniform mass density p = 2.1 gcm’3 (Silvestre and Camotim, 2005a,b). The curves in
Figure 14(a) show how the fundamental natural frequency wy.py varies with the beam length L
(logarithmic scale) and bending moment ratio M /M., — the upper curve is related to the load-free
member (M = 0) and is always associated with single-wave vibration modes (wr.o = w1.0).4
The remaining seven curves correspond, in descending order, to increasing M /M., value — each

4 Due to space limitations, the results concerning the buckling behaviour and load-free vibration behaviour of the beams
cannot be presented here. The interested reader is referred to the recent works by Silvetre and Camotim (2005a,b).
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curve is associated with a fixed percentage of M., which varies with the beam length. Because M,
corresponds to buckling modes exhibiting several waves for 55 cm < L < 180 cm, it is interesting
to look more closely at the curves w .y (L) in this length range — thus, Figure 14(b) shows these
curves for 40 cm < L < 200 cm. Moreover, the modal participation diagrams shown in Figure 14(c)
supply additional information about the contribution of the GBT deformation modes (see Figure 2)
to the fundamental vibration modes of beams with nine M/ M values.’ Note that the presence of
none, one, two or three bars underneath a mode number indicates a single, two, three or four-wave
contribution to the vibration mode. The analysis of the results displayed in Figures 14(a)—(c) prompts
following conclusions and/or comments:

(i) For L < 55 cm or L > 180 cm, the beams buckle in single-wave critical buckling modes
(see footnote 4), which means that one has wy.p (L) = w1.»(L) and all curves have fairly
similar shapes. Moreover, it is worth pointing out that, although the beam fundamental vibration
modes always exhibit a single wave, their shapes differ from those of the beam (i1) critical
buckling modes and (i) load-free fundamental vibration modes — indeed, the beam fundamental
vibration mode shape “travels” between them as the ratio M /M., increases (see Figure 14(c)).
For instance, note that the participation of mode 2, which contributes significantly to the load-
free member flexural-torsional vibration modes, continuously decreases as M /M, grows, until
it vanishes for M = M. — mode 2 is absent from the beam critical buckling mode (it appears
in its pre-buckling path).

(i) For 55 < L < 180 cm, the beam critical buckling modes have more than one wave (see foot-
note 4) and the shapes of the curves wr.ps(L) become visibly different as the value of M /M,
increases, as clearly illustrated in Figure 14(b) — these curves (ii1 ) cease to decrease monotonic-
ally and, for large enough M /M., values, (iiz) they are no longer “smooth”, exhibiting sudden
and quite pronounced slope reversals. Moreover, Figure 14(c) shows that the beam fundamental
vibration mode wave number varies between one and the number of waves appearing in the
beam critical buckling mode, as M /M., grows — for M > 0.90M,, the fundamental vibration
mode successively exhibits 2, 3 and 4 waves (Figure 14(b) identifies very well the L — M /M,
combinations associated with each case). Apparently, the M /M., value that triggers a non-
single wave number depends on the percentage difference between M, and Mp.; (bifurcation
moment leading to a single-wave buckling mode), i.e., a M./ Mp.1 decrease lowers the M /M.,
value corresponding to the change (Silvestre and Camotim, 2005a,b).

(iii) Figure 14(c) shows that a beam with L = 100 cm vibrates in (iii;) a flexural-torsional-
distortional mode (2 + 4 + 6) for M = 0, (iii») another flexural-torsional-distortional mode
2+446+5)for0 < M/M. < 0.3, (iii3) a single-wave distortional mode (5 4 6) for 0.3 <
M /M < 0.8 and (iiig) similar two or three-wave distortional modes for 0.8 < M /M. < 0.9
and 0.9 < M/M. < 1, respectively. Since the combination of modes 5 and 6 attenuates
the rotation of the tensioned flange-lip assembly and increases that of the compressed one
(see Figure 2), it is possible to conclude that, for increasing M /M, values, the amplitudes
of the tensioned and compressed flange-lip motions tend to decrease and increase, respectively.
Therefore, for moderate-to-high M /M, values (0.3 < M/My < 1), only the compressed
flange-lip and the web upper half (due to compatibility) vibrate — they exhibit either 1, 2 or 3
waves (see the last two modes in Figure 15).

In order to validate the GBT-based results, some shell finite element analyses were carried out
using the code ABAQUS (HKS, 2002) — they all involved beams with L = 100 cm and the results

5 It was found that the shear modes associated with non-linear warping (see Figure 9) do not contribute to the beram
fundamental vibration modes. Nevertheless, they were included in all analyses.
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Figure 15. FEM-based beam fundamental frequencies and vibration mode shapes (L = 100 cm).

determined concerned M /M.y = 0.271, 0.407, 0.488, 0.516, 0.537, 0.543 (the last ratio means
M = M.;). The GBT and FEM-based w .y values read (i) wy.p = 502, 463, 409, 325, 146, 0 g1
(GBT) and (ii) wy.p = 508, 487, 463, 418, 315, 268 s~! (FEM), thus making it obvious that they
become increasingly apart as M /Mp.1 grows. In particular, note that, for M = M, GBT yields
the (theoretically expected) null w .y, while the FEM-based wy.p value is about 50% of wy.o =
538 s~! (it only becomes null for M = 1.0134M,,). It was subsequently found that this rather
surprising discrepancies stem from the fact that the ABAQUS shell FEA incorporate the stiffening
effect due to the primary (first-order) bending deflections, which is not taken into account by the
developed GBT formulation. This fact was overcome by performing the FEM vibration analyses in
“adequately pre-cambered beams” (Silvestre and Camotim, 2005a,b), thus enabling a meaningful
comparison between the two sets of wy.y values. Figure 15 shows the FEM-based fundamental
vibration mode shapes and frequency values for beams with L = 100 cm acted by M = 0; 0.5;
0.9M_, — the FEM values w .o = 530 s~ w05 =504 s~!and wfr.09 = 330 g1 agree very well
with the GBT ones wf.0 = 538 s, w05 = 502 s~ and ws.09 = 325 s~! (differences of 1.5, 0.3
and 1.5%).

6.3. Post-Buckling

The results presented here concern the distortional post-buckling behaviour of two identical FRP
laminated plate lipped channel columns (i) having locally/globally pinned and free-to-warp end
sections, (ii) with the material properties and cross-section dimensions displayed in Figure 11(b)
(identical to the ones considered in the vibration analyses presented in the previous subsection),
(iii) containing critical-mode initial geometrical imperfections with amplitudes vo = £0.15 - ¢ (¢
is the wall thickness and vg is the outward/inward motion of the flange-lip corners at mid-span),
(iv) with length L = 40 cm and (v) discretised into (v1) 6 natural and 17 intermediate (5 in the web
and flanges and 1 per lip) nodes and (v2) 8 finite elements (Silvestre and Camotim, 2004e). It is
worth noting that the adopted column geometry ensures that (i) bifurcation occurs in a single-wave
distortional mode and that (ii) local-plate/distortional mode interaction effects are not relevant — the
ratio between the minimum local-plate and distortional buckling loads is 1.6 (Silvestre and Camotim,
2004c).

Figure 16(a) shows the post-buckling equilibrium paths ¢ /ocr.p Vs. v/t (0¢r.p = 38.6 MPa is the
column critical buckling load and v is the additional outward/inward flange-lip motion) of the two
columns, henceforth termed “outward” and “inward”. Also included are the results yielded by the
shell FEA performed in ABAQUS (HKS, 2002). Figure 16(b), on the other hand, displays diagrams
that provide the contributions of the various GBT deformations modes (depicted in Figures 2, 9
and 10) to various column deformed configurations located along their equilibrium paths. Finally,
Figure 16(c) provides the post-buckling evolution of the mid-span normal stress distribution along
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the mid-lines of the outward and inward column outer layers (longitudinally aligned fibres).® After

aclo

®

(i)

(iii)

(iv)

se observation of the above figures, one is led to the following conclusions:

First of all, one instantly recognises the important role played by the initial imperfection “sign”.
Indeed, the inward column post-buckling stiffness and strength are larger than their outward
column counterparts by a non-negligible amount. Like in the case of the isotropic members
(Silvestre and Camotim, 2003), this distortional post-buckling asymmetry stems mostly from
the different contributions of the shear modes 15 4 19 4+ 23 to the outward and inward column
deformed configurations.

Then, attention should be drawn to the virtual coincidence between the GBT-based equilibrium
paths and the post-buckling results yielded by ABAQUS. The fact that the GBT analyses never
involved more than 450 degrees of freedom provides a clear assessment of the high compu-
tational efficiency of this approach. The corresponding (and similarly accurate) FEM results
required the discretisation of the thin-walled columns by means of very refined shell element
meshes.

In the initial pre-buckling stages, the normal stress distribution is uniform, since mode 1 dom-
inates. As post-buckling progresses and regardless of the vg sign (outward or inward motions),
the normal stress distribution becomes non-linear in the web and flanges, mostly due to the
shear modes 15 + 19 + 23.

In the outward column post-buckling stages, the contributions of modes § and 15 account for
the fact that the compressive stresses (ivy) increase near the web-flange node and (iv,) decrease
in the vicinity of the flange-lip corner. Moreover, for o/oc.p > 1.0, tensile stresses start to
develop around the flange-lip node and rather high compressive stresses appear close to the
lip free ends. Conversely, the inward column exhibits a compressive stress increase near the
flange-lip corner (all the flanges are under compression) and high tensile stresses develop in

6 Due to symmetry, only one half of the normal stress distributions are represented in Figure 16(c).
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the neighbourhood of the lip free ends — however, these tensile stresses are lower than the com-
pressive ones appearing in the outward column. This last fact is due to the relevant participation
of mode 19, reinforcing mode 5 in the outward column and opposing it in the inward one.

7. Conclusion and Future Developments

After an extremely brief overview of the concepts/procedures involved in a “conventional” GBT
analysis, the paper reported on the GBT formulations/applications recently developed at the TU
Lisbon, namely:

(i) The use of “conventional GBT” to derive approximate analytical formulae to estimate dis-
tortional buckling stresses in lipped channel, zed-section and rack-section cold-formed steel
members.

(ii)) Extensions of the conventional GBT to cover members with (iij) arbitrary open/closed
branched cross-sections and (iip) made of orthotropic linear elastic and non-linear elastic-plastic
materials.

(iii)) A GBT formulation to analyse the vibration behaviour of loaded folded-plate members made
of orthotropic linear elastic materials.

(iv) A geometrically non-linear GBT formulation to analyse the post-buckling behaviour of folded-
plate members made of orthotropic linear elastic materials.

To illustrate the application and provide an idea of the capabilities of the GBT approach to solve
structural analysis problems, a few numerical results were presented and very briefly commented.
For validation purposes, some of these results were also compared with values yielded by shell finite
element analyses, performed in the commercial codes ADINA and ABAQUS.

Because a very rich research activity on GBT formulations, implementations and applications is
still under way at the TU Lisbon, further developments are to be expected in the near-to-intermediate
future. For instance, the topics being currently investigated include:

(i) GBT formulations to analyse the buckling behaviour of thin-walled members made of ortho-
tropic linear elastic or non-linear elastic-plastic materials that exhibit arbitrary closed/branched
cross-sections.

(ii)) GBT formulations to analyse the vibration behaviour of thin-walled members made of
orthotropic linear elastic materials and exhibiting arbitrary closed/branched cross-sections.

(iii)) GBT formulations to analyse the buckling and vibration behaviour of isotropic linear elastic
thin-walled members exhibiting arbitrary closed/branched cross-sections and subjected to non-
uniform internal force and moment diagrams (i.e., under stress gradients).

(iv) GBT formulations to analyse the first and second-order behaviour of isotropic elastic-plastic
thin-walled members with unbranched open cross-sections.

(v) A GBT formulation to analyse the post-buckling behaviour of orthotropic linear elastic thin-
walled members with open branched and arbitrary closed/branched cross-sections.

(vi) The influence of local-plate/distortional and local/global mode interaction effects on the elastic
post-buckling behaviour of cold-formed steel members.

(vii) The development of GBT-based beam finite elements intended to enable the performance of
elastic first-order and buckling analyses of plane and spatial frames made of thin-walled steel
members.
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