
Introduction
Considerable studies have been undertaken on the inelastic analysis of steel frames in recent years 

(Chen and Toma 1994, Xu et al. 2005). The inelastic analysis methods are generally classified into 
two types: the distributed plasticity method and the plastic-hinge method. The distributed plasticity 
method discretizes frame members both along their length and through their cross section into many 
elements. The spread of plasticity is traced by the sequential yielding of the elements. This method is 
usually adopted to create benchmark solutions, as it is too computationally intensive and not suitable 
for practical design purposes. On the contrary, the plastic-hinge method usually involves using single 
or multiple elements to model a frame member, thus making it more efficient and the preferred 
method in engineering practice. The plastic-hinge method assumes that inelastic deformations are 
concentrated at plastic hinges at the end of elastic elements. The early studies used an elastic-plastic-
hinge model, where the relationship between moment and curvature is linear up to the full plastic-
moment of a section, after which the section becomes a perfect hinge. Though this approach is easy to 
implement, it often overestimates the ultimate strength of structural systems. More recently, refined- 
and quasi-plastic-hinge approaches (Liew et al. 1993, Attalla et al. 1994) with two-surface yielding 
criteria were proposed to account for the gradual plastification within steel members. Often, a model 
was constructed to simulate the gradual softening of plastic-hinges whose force point falls within the 
two yielding surfaces (Chen and Chan 1995, Hasan et al. 2002, Xu et al. 2005, Xu and Liu 2005). 

This study proposes a new gradual plastic-hinge model for the inelastic analysis of planar steel 
frames. The analysis approach belongs to the domain of matrix displacement method. The plastic-
hinge model is capable of mimicking the spread of plasticity both through the depth of a section and 
along the length of an element. The moment gradient of a frame member is directly taken into account 
in the plastic-hinge model. The model is unique and applicable to a general steel beam-column. 

In this study, it is assumed that the cross sections are doubly symmetric and the stress-strain 
relation for steel material is elastic-perfectly-plastic. Only moment yielding is considered, while shear 
and axial yielding are ignored. Local plate, torsional, and lateral-torsional buckling are not considered. 

Inelastic Beam-Column Model 
A hybrid element (see Fig.1) is employed to model planar inelastic beam-columns. The element 

consists of two potential plastic-hinges at the ends of an elastic beam-column. Each plastic-hinge is 
modeled by a nonlinear zero-length rotational spring (which is called a hinge-spring or spring 
hereafter). For the elastic beam-column, E, I, and A correspond to Young’s modulus, moment of 
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inertia, and cross-sectional area of the element. All the plastification is assumed to be concentrated at 
end plastic-hinges. 

The interaction between the axial force N and moment M is considered using a two-surface 
criterion, as shown in Fig. 2. For the first-yield surface, the equation is 

                                                        yryy FFNNMM 1                                           (1) 

where: My=Fy S is the first-yield moment of the section under a pure moment and S is the elastic 
modulus of the cross section; Ny=AFy is fully-plastic axial force capacity under a pure axial force; Fy

is yielding stress of steel; and Fr is the peak residual stress in the flange of cross-section. In the 
meantime, the full-yield surface is expressed as 

1a
yp NNMM                                                               (2) 

                                         
where Mp=Fy Z is the plastic moment of the section under a pure moment and Z is the plastic modulus; 
and the exponent a depends on the shape of the section. For example, a=1.3 for a wide-flange section 
under strong axis bending (Duan and Chen 1990). Therefore, any section having a force point falling 
within the shaded area is partially yielded (see Fig. 2).  

Adaptive Gradual Plastic-Hinge Model 
To assign a plasticity-factor p (see Eq. 8 for definition) to a partially-yielded section (e.g., a 

section with force point E in Fig. 2) during a loading process, it is assumed that the ratio M/N for the 
section remains invariant when M 0 (see line O-Oy-E-Op in Fig. 2. Oy and Op thus represent the first-
yield and full-yield ‘times’ for the section, respectively.). Defining =(Mp/Ny)(N/M), the reduced first-

Fig. 1  Hybrid beam-column element and its end rotation 

Fig. 2 Yielding criteria under combined axial force and bending moment 
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yield moment Myr for the section in post-elastic range under combined axial force and bending 
moment is 

                                                       11 yryyr FFMM                                                    (3)                             

where  =Z/S is shape factor. The reduced full-yield moment Mpr is found from Eq. 2 as 

                                                        1
a

pprppr MMMM                                                      (4) 

                                     
Note that the assumption of N/M as invariant is not necessarily true. This assumption purely 

serves the purpose of evaluating the plasticity-factor for a partially yielded hinge.    
The rotational stiffness of a hinge-spring degrades from infinity to zero as the moment M at the 

hinge section increases from Myr to Mpr.  This degradation is represented by a moment-plastic rotation 
curve (see Fig. 3). On this curve, point (0, Myr) corresponds to the first-yield of the hinge, while point 
( pu, Mpr) corresponds to the full-yield. This curve is expressed as (Xu et al. 2005) 

                           1
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where pu is the plastic rotation at which the hinge-spring has zero stiffness; and exponent  is a 
parameter dependent on the shape of the cross-section. Upon differentiating moment M with respect to 
plastic rotation p in Eq. 5, the instantaneous rotational stiffness of the hinge-spring is found as     
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Equation 6 can be rewritten as 
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Fig. 3  Moment-plastic rotation curve of plastic-hinges 
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Then, the plasticity-factor p for a plastic-hinge is defined as

                                                    
LREI

p
mpe

e

31

1
                                                       (8)           

where: e= M L/3EI is the incremental end rotation of the elastic beam-column (see Fig.1); M is a 
moment increment; and p= M/Rm is the incremental rotation of the spring. For a fully elastic section 
Rm=  and p=1, for a fully plastic hinge Rm=0 and p=0, while for a partially plastic hinge 0<p<1.

Upon introducing the plasticity-factor by Eq. 8, the stiffness matrix Ke for the hybrid element in 
Fig.1 is found as (Xu 2001, Hasan et al. 2002),

                                                                          
                                                                   Ke = S Cs + G Cg                                                               (9)        
                                            
where: S is the standard stiffness matrix for an elastic frame member; Cs is a correction matrix 
expressed in terms of plasticity-factors p (Hasan et al. 2002); G is the standard geometric stiffness 
matrix; and Cg is the corresponding correction matrix formulated as a function of p (Hasan et al. 2002).

A unique feature of the stiffness matrix Ke is that the stiffness of the springs Rm is not directly 
included in Eq. 9. Instead, the contribution of the hinge-springs to the element stiffness is incorporated 
through the plasticity-factors p. Such a treatment for Rm significantly improves the accuracy of the 
element model. To explain this, the Rm-M curves (see Eq. 7) and the corresponding p-M curves for an 
element of W200 46 section (CISC 2004) are drawn in Figs. 4 and 5, respectively. From Fig. 4, it is 
seen that spring stiffness Rm is extremely sensitive to moment M in the early post-elastic range. The 
stiffness Rm is infinite when M=Myr, then Rm dramatically drops as M begins to exceed Myr. Rm is also 
very sensitive to slight variations in parameter . For instance, Rm=166323 kN-m/radian for =1.8
under M=1.03Myr, which is 2.5 times of that for =1.5 under the same moment. This high sensitivity 
of Rm to M and  can be interpreted as a difficulty in modeling Rm numerically since some 
approximation in the Rm model is generally unavoidable. Therefore, if Rm is directly included in the 
stiffness matrix, considerable errors may be introduced. On the contrary, the plasticity-factor p has a 
relatively even degradation rate with the increasing of M, as shown in Fig. 5. Thus, some inaccuracy in 
Rm model does not cause much error in p value. Therefore plasticity-factor p serves as an ‘error filter’ 
in the hinge model.  

There are two key parameters,  and pu, in the hinge-spring model Eq. 7. This study makes full 
use of these two parameters by employing  to simulate the spread of plasticity through the depth of a 
cross section and pu to mimic the spread of plasticity along the length of an element.  

Fig. 4  Relations between moment and stiffness of hinge-spring 
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It is obvious that parameter  has a significant impact on the degradation rate of the spring 
stiffness. For instance, the spring having =1.8 degrades faster than the spring having =2.1 (see 
Fig.5). In fact, this variation in degradation rate reflects the geometric difference among various cross 
sections. For example, an I-section degrades faster than a rectangular section under bending since an I-
section has more materials allocated away from its neutral axis than a rectangular section has. Thus, 
the determination of  value is dependent on the shape of cross section. As it is shown in the 
numerical examples,  is taken as 1.8 for wide flange I-sections (and it was calibrated with 
experimental results). It appears that =2.1 is reasonable for a rectangular section and =2.4 for a 
solid circular section. By determining the  value in such a way one can simulate the spread of 
plasticity through a cross section.  

Before determining parameter pu, it is instructive to examine how pu affects the plasticity-factor 
of a hinge-spring. The relations between p and M for different pu values are presented in Fig. 6 for the 
same element of W200 46 section. Figure 6 clearly illustrates that a larger pu value will result in a 
softer hinge-spring. When pu value is very small, the hinge-spring behavior is approaching that of a 
conventional elastic-plastic-hinge.

To simulate the spread of plasticity along the length of a member, the parameter pu must consider 
the distribution of bending moment along the length of the member (called moment gradient). In the 
following, the moment-curvature-thrust relations for beam-columns will be reviewed first, and then 

pu value will be computed considering different moment gradients.  

pu

Fig. 5  Relations between moment and plasticity-factor 

Fig. 6  Relations between plasticity-factor and 
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Moment-Curvature-Thrust Curves (M– –N) of Beam-Columns 
The moment-curvature-thrust curves for general beam-columns were given by Chen (1971). A 

typical presentation of these curves is shown in Fig. 7, where the curvature is normalized by y

( y=2 y/d, where d=depth of a section, y=Fy/E). According to Chen (1971), it needs two functions to 
represent M-  relation in the post-elastic range. 

In this study, the moment-curvature-thrust curves in Fig. 7 are expressed approximately as a 
unified form as shown in Fig. 8a. In the elastic range (M Myc, where Myc is the first-yield moment 
allowing for axial force), =M/EI (and yc=Myc/EI at the first-yield). After M>Myc, M-  relation 
becomes nonlinear, and = e + p ( = total curvature, e=elastic curvature, and p=plastic curvature). 
The section is approximately fully yielded at curvature f u, where fu can be expressed as a constant 1

multiplied by pc ( pc=Mpc/EI, where Mpc is the full-yield moment allowing for axial force). Note that 
the determination of moments Myc and Mpc does not involve the assumption of M/N being constant 
(hence different symbols are used). From Eqs. 1 and 2, we have  

                                                   yyryyc NNFFMM 1                                                         (10) 

                                         a
yy

a
yppc NNMNNMM 11                                         (11) 

For I-sections bending about strong axis, 1=1.9. The corresponding moment is found to have an 
average value of 96% of Mpc for 0 N/Ny 0.6 (Chen 1971). The plastic curvature at the onset of full-
yield is approximately equal to pu= fu – pc=( 1–1) pc= 2 pc. For applying M- p relation later in this 

Fig. 7  Moment-curvature-thrust curves 

Fig. 8  Moment-curvature relationships: (a) total curvature (b) plastic curvature 
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study, the shaded area to the left of the curve (see Fig. 8b) can be found to be ( 3 pu b1) and the 
centroid of the shaded area to the M=Mpc line is x = 4b1. From Fig. 8a, we have 

                    a
yy

a
yypcpu NNdNNSFEIEIM 11 2               (12)      

where: y=Fy /E, I/S=d/2, and d=depth of a cross section.    
                                     
Computation of Parameter pu

For the hybrid element, the total rotation  at an end is comprised of two parts (see Fig. 1). The 
first part, e, represents the end rotation of the elastic beam-column, while p represents the plastic 
rotation of the hinge. Thus, at the full-yield = e+ pu. To simulate the spread of plasticity of an actual 
inelastic beam-column, the  of the hybrid element must be identical to that of an actual beam-column.   

Consider an actual inelastic beam-column under linear distributed first-order moments (see Fig. 
9a). Define moment gradient = |M2 / M1|, where M2 and M1 are the bending moments at Ends 1 and 2, 
respectively, and M2 M1. Moment gradient  is positive for double curvature and negative for single 
curvature (-1 1). The lengths of the plastic zones at Ends 1 and 2 are L1 and L2, respectively. The 
corresponding curvature distribution along the member is illustrated in Fig. 9b. The plastic curvature 
begins at the section where moment is equal to Myc. Figure 9c shows the distribution of plastic 
curvature alone at the onset of full-yield at End 1. Note that the identical relationship between M and

p at End 1 and in Fig. 8b. Amongst the total rotation End 1 undergoes, the portion of plastic rotation 
comes from the plastic curvatures along the length of the member. Assume that pu of the hinge-spring 
is equal to the plastic rotation p at End 1when the end is at the onset of full-yield.   

The conjugate beam method is used to evaluate the plastic rotation at End 1 for the beam-column 
under a curvature loading shown in Fig. 9c. The conjugate beam is under the loading of plastic 
curvatures alone since only plastic rotation is of concern. The end rotation of the actual beam-column 
is equal to the shear at the same section of its conjugate beam.  

For calculating pu, moments Myc and Mpc shall be computed from Eqs. 10 and 11, respectively. 
This can be seen clearly from the fact that the load path from the section with zero moment along the 
member length to End 1 follows line D-Op in Fig. 2 (N remains unchanged along the member length).  

It is desirable to correlate pu to the moment gradient  because plastic zones within a member are 
dependent on the moment distribution along the length (see Fig. 9a). In the following pu values 
corresponding to four particular moment gradient  are determined first. Then, the interpolation 
method is used to compute pu value for any moment gradient .

For the convenience of deriving formulations for pu, the ratio  is defined as 

                                                 
a

y

yyr
pcyc

NN

NNFF
MM

1

1
                                                 (13)                            

                
Then, pu values corresponding to four different moment gradient  are found as follows:

(1) =1, double curvature. M1=M2=Mpc and p= pu at both end sections. The lengths of plastic 
zones are L1=L2=0.5(1– )L. The centroid of curvature loading at each end is x = 4L1, while the area 
of plastic curvature loading at each end is equal to ( 3 pu L1). Therefore, the shear force at End 1 of 
the conjugate beam under the plastic curvature loading is equal to  

             dLNNLxLL a
yypupu 11112 4321   ( =1)        (14) 

                                               
(2) =0, single curvature. M1=Mpc and p = pu at End 1, while M2=0 and p=0 at End 2. Plastic 

zones are L1=(1– )L at End 1 and L2=0 at End 2. Hence, the shear force at End 1 of the conjugate 
beam under the plastic curvature loading is equal to     
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              dLNNLxLL a
yypupu 11112 4321   ( =0)      (15)  

(3) = – , single curvature. M1=Mpc and p= pu at End 1, and M2=Myc and p=0 at End 2. Then 
L1=L at End 1 and L2=0 at End 2. The shear force at End 1 of the conjugate beam under the plastic 
curvature loading is equal to     

                       dLNNLxLL a
yypupu 112 4323    ( = – )              (16)             

(4) = –1, single curvature. M1=M2=Mpc and p= pu along the length of the member. The 
conjugate beam is under uniform plastic curvature loading. The shear force at the end of the conjugate 
beam is  
                              dLNNL a

yypupu 12 2   ( = –1)                                          (17) 

Equations 14 to 17 are for a general beam-column. The factors 2, 3, 4, a, , and  are 
dependent on the sectional properties of the beam-column.  

I-Sections
This section is to illustrate how to use Eqs. 14 through 17 to determine pu-  relation for wide 

flange I-sections bending about strong axis (i.e. W-sections in CISC 2004). For W-sections: it is found 
that 2=0.9, 3=0.308, and 4=0.21 using the moment-curvature-thrust curves given by Chen (1971); 
the average section shape factor  =1.14; the peak residual stress is commonly taken to be 30% of 
yielding strength (i.e., Fr=0.3Fy).

It is found that pu is not sensitive to N/Ny ratios when =1 and 0. Thus, Eqs. 16 and 17 are 
simplified respectively for W-sections as  

                                                         dLypu 116.0    ( =1)                                                     (18) 

                                                         dLypu 0.233    ( =0)                                                     (19)                             

plastic zones (b) total curvature distribution and curvature loading for conjugate beam (c) plastic 
curvature distribution when End 1 is at the incipience of full-yield.

Fig. 9  Conjugate beam method for computing end rotation: (a) linear moment distribution and 
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Assuming a moderate axial force N=0.2Ny for a general beam-column, then  [1 – (N/Ny)
a] = 1.0 

in Eqs. 16 and 17, which are respectively simplified as     

                                                       dLypu 438.0    ( = –0.5)                                                 (20)                             

                                                          dLypu 0.9    ( = –1)                                                     (21)          

Based on Eqs. 18 through 21, a piecewise pu-  curve is established for W-sections in Fig. 10. 
Using the interpolation method, a unique pu value is available corresponding to the  value of an 
element. The moment gradient  of an element at the first-yield of one hinge-spring is used to 
determine the pu value for that spring. After the pu value is computed for a particular hinge-spring, its 
value will remain unchanged during the rest of the loading history. 

pu value for W-sections 

Analysis Procedures 
Incremental single-step method, as described in the following, is employed to conduct nonlinear 

analysis for steel frameworks.  
1) Discretize frame members into elements. Initialize plasticity-factors to be p1=p2=1 for all elements.  
2) Form element stiffness matrix Ke for each element, which involves using plasticity-factors from 

previous loading step to compute Cs and Cg (p=1 for the first loading step). Then assemble overall 
structure stiffness matrix K. If the tangent stiffness matrix K is found to be singular, which 
indicates the structure collapses, terminate analysis. 

3) Solve for incremental nodal displacements by F=K u, where u and F are the vectors of overall 
nodal displacements and loads respectively. Calculate incremental deformations and forces for each 
element. Update the total overall nodal displacements and loads, and member internal forces by 
u= u, F= F, and fj= fj, respectively, where fj is the vector of member internal force.  

4) Check the yielding status for each hinge-spring at the ends of each element. The combined actions 
of axial force and bending moment at a hinge-spring are, from Eqs. 1 and 2, denoted as 

1=M/My+N/Ny and 2=M/Mp+(N/Ny)
a. Then update p for each spring as below:

    (i) If 1  (1– Fr / Fy), the hinge-spring is still fully elastic with p=1.
    (ii) If 1>(1–Fr /Fy) and 2<1, the hinge-spring is partially plastic. Calculate Myr and Mpr from Eqs. 3 

and 4, respectively. If the hinge-spring is found to be yielding for the first time, calculate its pu

value using pu-  relation. Compute the post-elastic rotational stiffness of the hinge-spring from 
Eq. 7 and the plasticity-factor p from Eq. 8. 

    (iii) If 2 1, the hinge-spring is fully plastic with p=0.
5) Go back to step 2.

Fig. 10  Relation between moment gradient  and 
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Numerical Examples 
The inelastic analysis is illustrated for two structures comprised of steel members of wide flange 

I-section. All the members are oriented with their webs in the loading plane. The exponent  in Eq. 5 
is taken as 1.8. Young’s modulus is E=2 105 MPa. 

Example 1: A Simply-Supported Beam
The first example is a simply-supported beam (see Fig. 11), which was tested by Lay and 

Galambos (1964). The section is W130 28, with the measured properties being A=3606 mm2,
I=11.16 106 mm4, S=168.8 103 mm3, Z=190.1 103 mm3, d=132 mm, Fy=247 MPa, and Fr = 19.8 MPa. 
Mp = Z Fy = 47 kN-m, and load capacity P=71 kN. Equations 14 to 17 are used to establish pu-
relation for this beam. 2=0.9, 3=0.308 and 4=0.21.

The middle portion of this beam is a region of constant moment. This entire region begins to yield 
when its moment exceeds the first-yield moment. Therefore, this beam is of particular interest for this 
study since the wide spread of plasticity both through the depth of the section and along the length of 
the beam took place. Such a structure with a large plastic zone is generally regarded as being difficult 
for a plastic-hinge method to model.  

First, the beam was analysed by using four elements, as shown in Fig. 12b where the digit inside a 
rectangular box represents the element number. The middle portion is represented by two identical 
elements 2 and 3. The moment-deflection curve at midspan section is drawn in Fig. 11. Compared 
with the test curve, the errors of the theoretical analysis are within 5%. Next, the beam was re-
analysed using a 3-element discretization scheme (see Fig. 12a). Table 1 records the pu value for 
hinge-springs of different discretization schemes. The deflection at the one-third point at the 
incipience of collapse is also recorded in Table 1. The plasticity-factors under 90% of the collapse 
load are depicted in Fig. 12, where an oval represents a hinge-spring and the number inscribed in it is 
the corresponding plasticity-factor p.

pu for hinge-springs Discretization 
scheme Element 1 Element 2 Element 3 

Deflection at one-third point at 
collapse (mm) 

3-element 0.00068 0.00626 0.00068 11.723 
4-element 0.00068 0.00313 0.00313 11.723 

For the 3-element scheme, Table 1 shows that the pu value for the hinge-springs of element 2 is 
9.2 times as large as that for the hinge-springs of elements 1 and 3. Therefore, the hinge-springs of 
element 2 have a significantly smaller p value (i.e., p1=p2=0.18) than the hinge-springs of elements 1 
(p2=0.67) and 3 (p1=0.67) as illustrated in Fig. 12a, even though all these hinge-springs are subjected 

Fig. 11  Moment-deflection curve of the simply-supported beam 

Table 1  Analysis of the simply-supported beam using different discretization schemes 
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to an identical moment. This substantially smaller p value for element 2 is translated into a much 
smaller stiffness for the middle portion of the beam, which is in keeping with the fact that the entire 
middle portion is a plastic zone. Thus, the parameter pu is capable of imitating the spread of plasticity 
along the length of a member.  

It is noted from Table 1 that the two analyses obtain identical deflection. It is further noted from 
Figs. 12a and 12b that the plasticity-factors are identical for these two discretization schemes.  The 
two discretization schemes have identical beam stiffness at every loading step. This can be explained 
by inspecting Eqs. 7 and 8 and pu values in the table. The pu value for elements 2 and 3 of the 4-
element scheme is half of that for element 2 of the 3-element scheme ( pu is proportional to element 
length L. The elements in the middle portion have = –1). Hence, the product RmL in Eq. 8 remains 
unchanged whether the middle portion of the beam is represented by one or two (or more) elements.  

Example 2: A 2-Story Moment Frame 
Consider the steel frame subjected to the gravity loads shown in Fig. 13. The structure supports 

specified loads of 110 kN/m on floor beams B1 and B2 and 51 kN/m on roof beams B3 and B4, where 
the factored loads are 1.4 times the corresponding specified loads. Fy=248 MPa and Fr=0.3Fy.

For the nonlinear analysis of this example, each column is represented by two elements while 
each beam is represented by four elements. The distributed loads are lumped at nodal points. 
Equations 18 to 21 are used to establish the pu-  relationship. The analysis terminated when the frame 
failed at load ratio =1.09. The lateral displacement of the top right corner of the frame during the 
loading history is described by the continuous line in Fig. 14. The analysis results are in close 
agreement with those from other researchers.  

Conclusions
This paper presents a nonlinear analysis method for steel frames using a new plastic-hinge model. 

Two separate parameters are used in the hinge model to mimic the spread of plasticity both through 
section depth and along member length respectively. The proposed plastic-hinge model is general and 
applicable to all kinds of beam-columns, while specific numerical examples were conducted for steel 
frames with wide flange I-sections. The method is simple to implement since it only involves the 

pFig.12  Plasticity-factors for two discretization schemes at M=0.9M : (a) 3-element, (b) 4-element 

Fig. 13  Two-story moment frame 
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modification of a conventional elastic matrix displacement procedure. Numerical examples 
demonstrated the accuracy of the proposed analysis method.                                 
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