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Abstract

Two vibrating systems are said to be isospectral if they have the same natural frequencies. This paper
reviews some recent results on isospectral conservative (i.e., undamped) discrete vibrating systems.
The paper centres around two ways of creating isospectral systems: by QR factorisation with a shift,
and by using the concept of isospectral flow. Both these procedures are illustrated by using FEM
models.
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1. Introduction

An undamped vibrating system has certain frequencies, called natural frequencies, at which it
can vibrate freely, without the application of forces. An actual physical system has theoretically
an infinity of such frequencies. A model of such a system may be either continuous or discrete,
having respectively an infinity or a finite number of natural frequencies; in this paper we consider
only discrete systems. Two systems with the same set of natural frequencies, spectrum, are said
to be isospectral. In general, the spectrum of a system mirrors the system, but does not specify it
completely: there can be many systems, an isospectral family, with the same spectrum. There are
two broad classifications of problems relating to a system and its spectrum. In inverse problems,
one attempts to construct a system with a given spectrum; in isospectral problems, one attempts
to find another system, maybe a family of systems, having the same spectrum as a given system.
In some ways, isospectral problems are easier than inverse problems: at least one is sure that there
exists at least one system, the given system, with the specified spectrum; this is not always the case
with inverse problems. For an in-depth discussion of inverse and isospectral problems, see Gladwell
(2004).

Modelling of a physical system is usually done by means of some finite element method (FEM):
the system is treated as a set of elements, connected in some way. Each element is specified by a set
of generalised displacements, an element stiffness matrix Ke, and an element mass (inertia) matrix
Me. In the process of assembling the elements, one constructs overall or global stiffness and mass
matrices, K and M, and assembles the element displacements into a displacement vector u. The

natural frequencies of the system appear as (the square roots, ω = λ
1
2 , of) the eigenvalues (λi)n1 of

the generalised eigenvalue problem

(K − λM)u = 0. (1)

A system is thus defined by a pair of matrices (K,M). We say that two systems (K,M) and
(K′,M′) are isospectral if (K′ − λM′)u′ = 0 has the same spectrum of eigenvalues as (1).

In practice, the matrices K,M have specific forms. Let Mn denote the set of square matrices
of order n, and Sn denote the subset of symmetric matrices. If the system is conservative, then
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Fig. 1. The matrix J lies on the path G1.

Fig. 2. A star, G2, on 4 vertices, and a ring, G3, on 4 vertices.

K,M ∈ Sn, K is positive semi-definite (PSD), i.e., uTKu ≥ 0; M is positive definite (PD), i.e.,
uTMu > 0, for all u �= 0.

The matrices K,M, and in particular their structure, i.e., the pattern of zero and non-zero entries,
will depend on the choices of finite elements, and on how these elements are connected. It is con-
venient to use concepts from graph theory: a (simple, undirected) graph G is a set of vertices Pi in a
vertex set V, connected by edges (i, j)(= (j, i)) in an edge set E .

A matrix A ∈ Sn is said to lie on G if aij = 0 whenever (i, j) /∈ E . For example, a symmetric
tridiagonal matrix, sometimes called a Jacobi matrix J, and written

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

. . .
. . .

. . .

. . .
. . . bn−1
bn−1 an

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

lies on a graph G1 that is a path with V = {1, 2, . . . , n} and E = {(1, 2), (2, 3), . . . , (n − 1, n)}, as
shown in Figure 1.

Figure 2 shows two simple graphs: a star, G2, and a ring, G3. The matrices A2 and A3 lie on
G2,G3 respectively.

A2 =

⎡
⎢⎢⎣
a1 b2 b3 b4
b2 a2 0 0
b3 0 a3 0
b4 0 0 a4

⎤
⎥⎥⎦ , A3 =

⎡
⎢⎢⎣
a1 b1 0 b4
b1 a2 b2 0
0 b2 a3 b3
b4 0 b3 a4

⎤
⎥⎥⎦ . (3)

The matrix A2 is an example of a bordered matrix, A3 is called a periodic Jacobi matrix. A Jacobi
matrix is a particular case of a band matrix – it is a symmetric matrix with bandwidth 1. An important
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Fig. 3. The matrix A4 lies on G4.

subset of band matrices is the set of staircase matrices, an example of which is shown in (4); A4 lies
of the graph G4.

A4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x x x

x x x x

x x x x

x x x x x x

x x x x

x x x x

x x x x x

x x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4)

The general isospectral problem is this: Given a system (K,M) with K,M ∈ Sn, and K,M,
lying on a graph G, find another (or all) isospectral system(s) (K′,M′) with K′,M′ lying on the
same graph G.

This problem is very difficult, and is still open. To simplify it somewhat, we suppose that the
systems have lumped mass, so that M,M′ are diagonal. In that case, if K is PD (PSD) then the λi
will be positive (non-negative) and K′ will be PD (PSD).

In practice, the problem is even more difficult because, instead of being just PD (PSD), K will
have to satisfy other, usually positivity constraints, that state that the system is physically realisable.
We need some more concepts from matrix theory.

Suppose A ∈ Mn. Let α = {i1, i2, . . . , ik} be a sequence of k numbers taken from {1, 2, . . . , n}.
The submatrix of A with rows taken from α = {i1, i2, . . . , ik}, and columns taken from β =
{j1, j2, . . . , jk} is denoted by A(α|β). The determinnant

det(A(α|β)) = A(α; β)
is called a minor of A. A minor A(α; α) is called a principal minor of A.

Suppose A ∈ Mn:

− A is totally positive, TP, if all its minors are positive,
− A is totally non-negative, TN, if all its minors are non-negative; A is NTN if it is non-singular

and TN,
− A is oscillatory, O, if A is TN and a power of A, AP , is TP.

It may be shown that A is O iff it is NTN, and its immediately off-diagonal entries ai,i+1 and
ai+1,i , i = 1, 2, . . . , n−1 are positive, see Gladwell (1998). Note that TP is much stronger than PD:
A ∈ Sn is PD iff its principal minors are positive.
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Note that the definition of TP, TN and O matrices applies to any matrix in Mn, not just to
symmetric matrices, those in Sn. Such matrices have many important properties.

Define Z = diag(+1,−1, . . . , (−)n−1); the operation A → ZAZ = Ã changes the signs of the
entries of A in a chequered pattern.

We list three properties:

− if A,B are O, so is AB,
− A−1 is O iff Ã is O; we say A is sign-oscillatory, SO,
− if A is O then it has n eigenvalues, and they are positive and distinct.

The last property is particularly important: recall that if A ∈ Sn, all we can say is that it has n
real eigenvalues; they may not be distinct. If we know only that A ∈ Mn, then we do not know a
priori, how many eigenvalues it has.

2. QR Factorisation

Recall that a matrix Q ∈ Mn is orthogonal if QQT = I = QTQ. If A ∈ Mn is non-singular, then
it may be factorised in the form A = QR, where Q is orthogonal, and R is upper triangular with
positive diagonal terms. This factorisation is equivalent to the Gram-Schmidt process in which the
columns of A are expressed as linear combinations of orthonormal vectors qi , the columns of Q.

QR factorisation gives us a procedure for getting another matrix, A∗, isospectral to A: if A = QR,
then A∗ = RQ may be written A∗ = QT (QR)Q = QTAQ : A∗ is orthogonally equivalent to A.
If A is symmetric, so that AT = A, then (A∗)T = (QTAQ)T = QTATQ = QTAQ = A∗ : A∗ is
symmetric; A and A∗ are isospectral.

We can applyQR → RQ transformation with a shift. Suppose µ is not an eigenvalue of A ∈ Sn,
write

A − µI = QR (5)

and construct A∗ from

A∗ − µI = RQ. (6)

Again, A∗ = µI + RQ = QT (µI + QR)Q = QTAQ, so that A and A∗ are isospectral; we write
A∗ = Gµ(A).

The simplest application of this result is to isospectral in-line spring-mass systems. Now K is a
Jacobi matrix with negative off-diagonal and M is diagonal: M = diag(m1,m2, . . . ,mn). We write
M = P2, where P = diag(p1, p2, . . . , pn); Equation (1) may be written

P−1(K − λP2)P−1Pu = 0,

or

(A − λI)x = 0, A = P−1KP−1, x = Pu.

The matrix A is a Jacobi matrix with negative off-diagonal. We form A∗ from (5), (6) and then
factorise A∗ in the form A∗ = P∗−1K∗P∗−1 to obtain a new in-line spring-mass system. The details
of the analysis may be found in Gladwell (1995). The extension to a system in which K,M are both
Jacobi matrices, with negative, positive off-diagonals respectively, may be found in Gladwell (1999).

This application depends on the fact that the operation Gµ defined by (5), (6) changes a Jacobi
matrix A with negative (positive) off-diagonal into a Jacobi matrix A∗ with negative (positive) off-
diagonal. It may be verified that A∗ is PD (PSD) iff A is PD (PSD). This is a special case of a
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general result, proved in Gladwell (1998): Suppose A ∈ Sn, and µ is not an eigenvalue of A (both
these conditions are necessary), then A,A∗ have the same staircase pattern, and A∗ is TP, NTN, O
or SO, iff A is TP, NTN, O or SO, respectively.

This general result may be used to find an isospectral family of FEM models of a thin straight
rod in longitudinal vibration. Now K,M are Jacobi matrices with negative, positive, off-diagonals
respectively. We start from Equation (1), factorise M = BBT where B is a bi-diagonal upper triangle
matrix, and reduce (1) to standard form

(B−1KB−T − λI)BT u = 0.

It may be shown that A = B−1KB−T is SO. We find A∗ = Gµ(A), and then factorise A∗ =
B∗−1K∗B∗−T to form a new FEM model, K∗,M∗ with M∗ = B∗B∗T ; K∗,M∗, like K,M are Jacobi
matrices with negative, positive, off-diagonals respectively, corresponding to a FEM model of a new
rod, as described in Gladwell (1997).

The operation Gµ is essentially tied to staircase matrices: A∗ is a staircase iff A is a staircase. To
obtain a wider class of isospectral matrices, we must consider the concept of isospectral flow.

3. Isospectral Flow

If A is symmetric, i.e., A ∈ Sn, it has n eigenvalues (λi)n1 and n corresponding orthonormal
eigevectors qi that span Rn. The matrix A may be written

A = Q∧QT ,

where

∧ = diag(λ1, λ2, . . . , λn), Q = [q1,q2, . . . ,qn], QQT = QTQ = I.

The family of matrices with all possible orthogonal matrices Q forms an isospectral family, the
complete family with the given spectrum (λi)n1.

Instead of seeking the complete family, we look for a family in which Q depends on a single
parameter t .

A(t) = Q(t)∧QT (t).

Differentiating w.r.t. t we find

Ȧ = Q∧Q̇
T + Q̇∧Q

T
.

Since Q is orthogonal, we may write

Ȧ = (Q∧QT )(QQ̇
T
)+ (Q̇Q

T
)(Q∧QT ).

Put QQ̇
T = S then, since Q∧QT = A, we have

Ȧ = AS + STA.

Now, Q is orthogonal, so that QQT = I, and hence

QQ̇
T + Q̇Q

T = 0 : S + ST = 0.

This means that
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Ȧ = AS − SA (7)

and that S is a skew-symmetric matrix. We note that (7) is a so-called autonomous differential
equation: the parameter t does not appear explicitly; it appears implicitly because S depends on
A, i.e., S = S(A), and A depends on t .

Most importantly, we may argue conversely: if S is skew symmetric and A varies according to
(7) then A(t) keeps the same eigenvalues, those for A(0). We may choose S in many ways; different
choices will lead to different isospectral families.

The autonomous differential equation (7), called the Toda flow equation, was investigated first
for tridiagonal matrices, with the choice

A(t) =

⎡
⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

. . .
. . .

. . .

. . .
. . . bn−1
bn−1 an

⎤
⎥⎥⎥⎥⎥⎦ , S(t) =

⎡
⎢⎢⎢⎢⎢⎣

0 b1
−b1 0 b2

. . .
. . .

. . .

. . .
. . . bn−1

−bn−1 0

⎤
⎥⎥⎥⎥⎥⎦ , (8)

as in Symes (1982). Watkins (1984) gives a survey of the general theory. See also Chapter 7 of
Gladwell (2004). In this case, it may easily be shown that AS − SA is tridiagonal, so that if A(0) is
tridiagonal, then A(t) will be tridiagonal. This is a special case of he result that if A(0) is a staircase
matrix and if

S(t) = A+(t)− A+T (t), (9)

where A+(t) denotes the upper triangle of A(t), then Equation (7) constrains A(t) to remain a
staircase matrix, with the same staircase dimensions as A(0). In general, even if A(0) is a staircase
with holes, these holes will eventually be filled in. Gladwell (2002) showed that the Toda flow (7),
with S given by (9) maintains the properties TP, NTN, O and SO.

There are two important engineering structures for which the stiffness matrix is a staircase matrix:
the rod in logitudinal vibration, already mentioned; an Euler–Bernoulli beam in flexure, for which
the stiffness matrix is pentadiagonal, see Gladwell (2002b).

To obtain an isospectral flow for more general cases, we must pose the question: How may we
construct an isospectral flow that constrains A to lie on a given graph G?

Consider a very simple graph, the star on n vertices, as shown in Figure 4; a matrix on G has
the form A5 in Equation (10); the only non-zero entries are those on the borders, i.e., the first row
and column, and the diagonal. The matrix S must be skew-symmetric, so that we need consider
only its upper triangle. We choose sij = aij for entries in the first row, and then find the remaining
entries below the first row and above the diagonal by making ȧij = 0 for those entries; there are
m = (n− 1)(n− 2)/2 algebraic equations for the m unknown sij .

A5 =

⎡
⎢⎢⎢⎢⎣
a1 b2 b3 . . . bn
b1 a2
b3 a3
...

. . .

bn an

⎤
⎥⎥⎥⎥⎦ , S5 =

⎡
⎢⎢⎢⎢⎣

0 b2 b3 . . . bn
0 s23 . . . s2n

0

skew
. . . sn−1,n

0

⎤
⎥⎥⎥⎥⎦ (10)

The equations for the sij are separable, that for sij is

(ai − aj )sij + 2bibj = 0 i = 2, . . . , n, j = i + 1, . . . , n. (11)
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Fig. 4. A star on n vertices.

These m algebraic equations are combined with the equations

ȧ1 = −2
n∑
i=2

b2
i , ȧj = 2b2

j , j = 2, . . . , n (12)

ḃj = (a1 − aj )bj +
j−1∑
i=2

sij bi −
n∑

i=j+1

sjibi, j = 2, . . . , n. (13)

On substituting for sij from (11) into (13), we find

ḃj = bj

{
a1 − aj + 2

n∑
k=2

′ b2
k

aj − ak

}
, j = 2, . . . , n, (14)

where ′ denotes k �= j . It may be shown that if the ai(0), i = 2, . . . , n are distinct, and the bi(0), i =
2, . . . , n are non-zero, then the ai(t), i = 2, . . . , n will be distinct, and the bi(t) will be non-zero, so
that the denominators in (14) will remain non-zero.

This procedure may be generalised: in the upper triangle of S, take sij = aij when (i, j) ∈ E ;
find sij for the remaining entries (i, j) /∈ E by demanding that ȧij = 0 when (i, j) /∈ E ; this gives a
set of p algebraic equations for the p entries, sij which are combined with the remaining equations
for ȧij , (i, j) ∈ E , and ȧii , i = 1, 2, . . . , n. The algebraic equations for the sij will have coefficients
that are linear combinations of the aij , as in Equation (11) for the star. In general, unlike for the star,
we cannot assume that the p equations for the p entries sij will always admit a solution; we will
have to fall back on continuity arguments – if they admit a solution when t = 0, they will admit a
solution for some small interval of t around t = 0.

The application of this procedure to a typical FEM model, a triangular model of a membrane, is
the topic of a forthcoming paper.
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