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Abstract 

This article presents an efficient method for inelastic analysis of semirigid planar steel frameworks. A 
compound element comprised of a plastic-hinge element and a semirigid connection element is located 
at member ends that may potentially undergo inelastic deformation. Nonlinear inelastic flexural 
behaviour is modeled by an empirical relation between moment and rotation for which the parameters 
are available from experimental results. A four-parameter model is employed to simulate the nonlinear 
moment-rotation behaviour of semirigid connections. The member stiffness matrix involving the 
compound element is expressed explicitly in terms of stiffness degradation factors that vary depending 
on the loading level. This permits direct account for the combined influence of inelastic and nonlinear 
connection behaviour on structure stiffness. A semirigid steel portal frame is analyzed to illustrate the 
proposed analysis method, and the results are compared with those obtained from experiments 
involving the same frame.  
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1. Introduction 
Many studies have been devoted to developing practical methods of nonlinear analysis accounting for 
both semirigid connections and member plastic behaviour (Ziemian et al 1992; Chen et al 1994; Yau 
et al 1994; Chen et al 1996). However, little work has been done to investigate the interaction between 
the behaviour of semirigid connections and that of member plasticity. This study focuses on such 
interaction using the concept of a compound element, which is shown in Figure 1 and explained in 
detail in the following. 

Figure 1(a) is a typical beam-to-column connection joint involving member plasticity. Typically, 
the connection is semirigid and possibly includes bolts, welds and angles. The member plastic zone 
forms at the beam end due to concentrated internal loads. To facilitate nonlinear analysis, Figure 1(a) 
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Figure 1. Connection and inelasticity model at a joint 
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may be replaced by the analytical model shown in Figure 1(b), where one of the two springs represents 
the plasticity formed at the member end while the other spring represents the semirigid connection. 

A method of analysis has been recently developed by the authors to deal with geometric and 
material nonlinearities (Grierson et al 2005, Xu et al 2005). The goal of this article is to extend this 
method to account for semirigid connections using a so-called compound-element approach. At each 
stage of the analysis, the combined-stiffness degradation due to semirigid connection and member 
plasticity behaviour is determined, and the corresponding tangent stiffness matrix for the structure is 
formed. The process ends when the specified external loads are completely applied on the structure or 
the limit loading state is reached.  

 2 Rotational Compound Element 
This section uses the series theorem to develop a compound element representing the combined 
rotational stiffness behaviour of a semirigid connection together with a member-end plastic hinge. The 
determination of the stiffness of semirigid connections is discussed in detail, while that for member-
end plasticity is adopted directly from the authors’ previous research (Grierson et al 2005, Xu et al
2005). 

2.1 Series Element Model 
The series element model involves a semirigid connection spring, an inelastic spring and an elastic 
member all connected in series. The nature of the compound element is indicated in Figure 2, where 
parameters Rn, Re, Rc, Rp denote the rotational stiffnesses of the compound member end, elastic 
member end, semirigid connection spring, and the member plasticity spring, respectively. Only end 1 
of the member is considered, while end 2 may or may not have the same nature as end 1. 

The case in Figure 2(a) is conventionally used in structural analysis, where a beam-to-column 
connection at node 1 is assumed as either a pinned connection (Rn = 0) or fixed connection (Rn = Re).
This assumption makes analysis and design simple both for hand and computer-based analysis. 
However, if the effect of actual connections on structural responses must be considered, the model of 
the semirigid connection shown in Figure 2(b) is introduced in the analysis and design of structures. 
Another case is also popular in rigid-plastic analysis, where a plastic hinge is abruptly formed rather 
than gradually degrading from initial yield to full yield states. To improve the accuracy in this latter 
method, the inelastic model shown in Figure 2(c) is used to model the property of the gradual stiffness 
degradation due to the presence of plasticity. Finally, if both semirigid connection and plasticity 
behaviour may occur at the same time, the series-element model shown in Figure 2(d) should be 
introduced in analysis and design, as in the work of Yau and Chan (1994) where, however, the 
influences of plasticity and semirigid connections were considered separately. To facilitate structural 

Figure 2. Compound-rotational element at the member end  
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analysis accounting for both connection and inelasticity stiffness degradations and their interactions, 
an integrated compound element is needed and is investigated in detail as follows. 

The rotational deformation involving nonlinear connection and inelasticity behaviour indicated in 
Figure 2(d) is graphically represented in Figure 3(a) using two springs. It can be verified that the two 
series-connected springs may be substituted by the compound element shown in Figure 3(b) involving 
a single spring. The compound stiffness R that reflects the combined stiffnesses Rc and Rp can be 
derived as in the following (Liu 2005).  

Provided that a moment M is applied at the joint in Figure 3(a), the relative rotations c and p are 
given by, 

cc RM / ; pp RM /        (1) 

Since the total relative rotation  between the joint and the elastic member end is the summation of 
rotations induced by the connection and inelastic springs, from Eqs (1) the rotation  can be expressed 
as, 

RMRMRM pcpc ///      (2) 

where the compound rotational stiffness,    
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accounts for both connection and plasticity stiffness.  

2.2 Determining stiffness Rc

It remains to determine the stiffness of the compound element through Eq. (3). The inelastic stiffness
Rp of the member is directly available in the literature (Grierson et al 2005). Thus, only the connection 
stiffness Rc in Eq. (3) need be established herein.  

Several semirigid connection models have been proposed (Xu 1994), and of these models the four-
parameter power model, originally proposed for modeling the post-elastic stress-strain relation 
(Richard et al 1975), is commonly used in analysis. Recently, this model has been further confirmed to 
be effective and accurate for predicting the behaviour of end-plate connections on the basis of 
experimental data for extended-end-plate and flush-end-plate connections (Kishi et al 2004). Thus, the 
following four-parameter model,
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is employed in this study to simulate the behaviour of semirigid connections. In Eq. (4), c denotes the 
relative rotation of the semirigid connection, and the four parameters Rce, Rcp, M0, and  are the initial 
rotation stiffness, strain-hardening/softening stiffness, reference moment, and shape parameter of the 

Figure 3. Simplified compound member-end model  
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connection, respectively. The initial yield moment Mcy and corresponding rotation cy determine the 
elastic stiffness Rce= Mcy/ cy, while the reference moment M0, strain-hardening/softening stiffness Rcp,
and rotation capacity u determine the ultimate moment capacity to be, 

cpuu RMM 0         (5)
where the rotation capacity u depends on the connection type and can be determined from the results 
of existing research (e.g., Bjorhovde et al 1990). The four parameters in Eq. (4) can be found for 
different types of connections from an existing database of experimental results (Xu 1994). 

Differentiating Eq. (4) with respect to rotation c determines the tangent stiffness of the connection 
to be (Richard et al 1975), 
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where Rce is the elastic rotational stiffness at the initial condition c = 0, while Rcp is the strain-
hardening/softening stiffness when rotation c tends to infinity (for practical steel structures, c can 
reach at most to the limiting rotation capacity of the connection when fracture occurs (Bjorhovde et al
1990).  

It is seen from Eqs (4) and (6) that the four-parameter model reduces to a linear model with Rc = 
Rce when Rcp tends to Rce , whereas a bilinear model is reached when the shape parameter  approaches 
to infinity. If Rcp is set to zero (i.e., strain-hardening/softening is ignored), Eq. (4) reduces to the 
following three-parametric model that was previously suggested by Kishi and Chen (1987), 
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where the reference moment M0 is replaced by the ultimate moment Mu. Note that the rotation c can 
be explicitly obtained from Eq. (7) as,  

/1])/(1[/ ucec MMRM        (8)
Using an expression for post-elastic rotation previously derived by the authors (Grierson et al 2005, 

Xu et al 2005), and the connection rotation given by Eq. (8), the total relative rotation  of the 
compound element can be explicitly expressed as, 
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which represents the moment-rotation relationship of the compound element. The benefit of using the 
three-parameter model is that the rotation c of the connection is directly obtained in the nonlinear 
analysis for the given moment M; the disadvantage is that the strain-hardening or softening nature of 
the connection is omitted. In contrast, strain hardening/softening is accounted for in the four-parameter 
model, but an iterative procedure is needed to find the relative rotation c of the connection. Both of 
the connection models are considered for the verification analysis presented later. 

2.3 Degradation Factors 
The flexural stiffness degradation factor associated with the semirigid stiffness Rc is given by 
(Monforton et al 1963), 

)/31/(1 cc LREIr       (10) 

where EI/L is the flexural stiffness of the elastic member. The factor rc is interpreted as the ratio of the 
end rotation of the elastic member to the combined rotation of the elastic member and the connection 
due to unit end-moment (Xu, 1994).  
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Similarly, the stiffness degradation factor associated with the inelastic stiffness Rp is given by 
(Grierson et al 2005), 

)/31/(1 pp LREIr        (11) 

where the factor rp is interpreted as the ratio of the inelastic rotation M/Rp to the total elastic and 
inelastic rotation M/Rp + ML/3EI under the action of bending moment M applied at the end connected 
to the compound element in the case when the far end of the elastic member is simply supported (Xu 
et al 2005).  

To evaluate the combined stiffness effect, a stiffness degradation factor associated with the 
compound stiffness R is introduced and similarly expressed as r = 1/(1+3EI/LR). The factor r is the 
ratio of the rotation of the compound element to the sum total of the rotation of the compound element 
plus the rotation of the elastic member when simply supported at the far end. From Eqs (3), (10) and 
(11), the compound stiffness degradation factor is found as, 
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which maps R  [0, ] to r  [0, 1]. From Eq. (12), the stiffness degradation factor for the compound 
element is a function of the degradation factors of the semirigid connection and member inelasticity, 
such that if any of these factors degrades to zero then the stiffness of the compound element will 
degrade to zero as well. 

3 Characteristics of Compound Rotational Element 
The behaviour of the compound rotational element is dependent upon the strength capacities of the 
connection and the connected beam members. For the current study, the effect of connected columns 
on the behaviour of the beam-column connection is ignored and the shear deformation of panel zones 
is not considered. 

If considering only the effect of member plasticity, the moment-rotation relation in the post-elastic 
range is as shown in Figure 4(a), whereas when considering the effect of the semirigid connection 
alone the moment-rotation relationship is as shown in Figure 4(b). In Figure 4, Mu is the ultimate 
moment capacity of the connection, while My and Mp are the initial-yield and fully-plastic moment 
capacities of the connected member, respectively. Depending on the interaction of member inelasticity 
and nonlinear connection behaviour, three types of semirigid connections may be characterized by the 
compound element, as described in the following. 

Figure 4. Stiffness-degradation relationship at a member end  
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Figure 5. M-  relations of compound 

(1) Under-strength connections:  Mu  < My
In this situation, the performance of the compound element is governed purely by the semirigid 

connection, and no inelasticity occurs in the vicinity of the member end. This may occur for single 
web-angle (SWA) connections with Mu = Mu

SWA. The combined moment-rotation behaviour of the 
compound element is shown in Figure 5, which is exactly the semirigid behaviour shown in Figure 
4(b). This kind of connection is referred to as an Under-strength connection since the strength capacity 
of the compound element is less than the yield strength of the member. If Mu is small enough or the 
rotational constraint is ignored, this type of connection is categorized as a conventional simple or 
pinned connection (AISC 2001, CISC 2004). 
(2) Intermediate-strength connections: My  Mu  Mp

In this second case, both the semirigid connection and member inelasticity govern the behaviour of 
the compound element, but the limit strength is determined by the nature of the connection. Such 
behaviour of the compound element may occur for a flush end-plate (FEP) connection. This type of 
connection is referred to as an intermediate-strength connection and corresponds to a partially 
restrained (AISC 2001) or semirigid (CISC 2004) connection. 

(3) Over-strength connections: Mp < Mu
Finally, when the ultimate moment of the connection is greater than the plastic moment of the 

connected member, and even though the connection influences the stiffness degradation of the 
compound element due to its nonlinear behavior, the member inelasticity dominates the behaviour of 
the compound element. An example for an extended end-plate (EEP) connection is illustrated in 
Figures 4 and 5 (where the dotted moment-rotation curve refers to the EEP connection considered 
alone). It can be seen from Figure 5 that the moment-rotation behaviour of the compound element 
(solid curve) is dominated by the plastic capacity of the member. This kind of connection is referred to 
as an over-strength connection and corresponds to a fully restrained (AISC 2001) or rigid (CISC 2004) 
connection (i.e., in the limit when the connection stiffness is considered infinite). 

It can be seen from the foregoing discussion that a satisfactory design may be achieved if both the 
connection and the corresponding connected member have the same strength capacity, i.e., Mp = Mu. It 
is not good to use an over-strength connection, i.e., Mu>Mp, since the over-strength of the connection 
is not utilized in any way. Lower-strength connections may be used in circumstances where stiffeners 
can be added to avoid excessive deformation. 

In the common case of a pinned connection, i.e., rc = 0, the compound element has zero rotational 
stiffness regardless of the value of rp. In this case, any connected member does not experience plastic 
behaviour. If rc = 1, the compound element behaviour is determined by the inelastic behaviour of the 
member, i.e., r = rp in the case of a rigid connection. It is noted that when the plasticity factor is 
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smaller than unity (e.g., rp = 0.7), the r value of the compound element is close to the value of rc (Liu 
2005). This means that even if the member end has experienced some plasticity (e.g., 100-70 = 30%), 
the stiffness of the compound element is dominated by the connection. In other words, the level of 
inelasticity has insignificant effect on the stiffness degradation of the compound element. If the 
ultimate strength of a connection is close to, or lower than, the initial yield strength of the connected 
member, the influence of member plasticity on structural response may be ignored. 

4 Structural Analysis 
Once the stiffness degradation factor of a compound element is determined, as discussed in the 
previous sections, the structural analysis is readily conducted. This study focuses planar steel 
frameworks comprised of beam-column members with compact sections, for which plastic 
deformation is not precluded by local buckling (AISC 2001). The plastic bending, shearing or axial 
deformation ( ,  or ) of a member under the action of moment, shear or axial force (M, V or P) is 
concentrated at a member-end section (Xu et al 2005). Figure 6(a) shows a general member with 
Young’s modulus E, shear modulus G, member length L, cross-section moment of inertia I, sectional 
area A, and equivalent shear area As. The parameters Rpj, Tpj and Npj are respectively the post-elastic 
rotational bending, transverse shearing and normal axial stiffness of the member at the two end 
sections j =1, 2, while Rcj, Tcj and Ncj are respectively the rotational bending, transverse shearing and 
normal axial stiffness of the connections at the two end sections. Upon adopting a compound element 
at each member-end, the simplified model shown in Figure 6(b) is obtained, where the determination 
of the corresponding parameters is discussed in the following. 

The evaluation of connection and member rotational stiffnesses Rcj and Rpj in Figure 6(a), and 
corresponding stiffness degradation factors rcj and rpj , has been discussed in detail in the previous 
sections. The member transverse shear and normal axial stiffnesses Tpj and Npj were determined in 
previous research, where it was shown that the corresponding stiffness degradation factors tpj and npj
are given by (Grierson et al 2005, Xu et al 2005), 

)/31/(1 3
pjpj TLEIt ; )/1/(1 pjpj LNEAn     (13a, b) 

which map Tpj or Npj  [0, ] into tpj or npj  [0, 1]. Similarly, the transverse and normal stiffness 
degradation factors for the connection can be expressed as, 

Figure 6. Beam-column-member model used in analysis 
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)/31/(1 3
cjcj TLEIt ; )/1/(1 cjcj LNEAn     (14a, b) 

where Tcj and Ncj are the transverse shear and normal axial stiffnesses of the connection.
In this study, it is assumed that: 1) the transverse shear stiffness Tcj or normal axial stiffness Ncj of a 

connection is infinite when the materials are in the elastic range, and that the corresponding 
degradation factor tcj or ncj in Eqs (14) is unity; and 2) the stiffness Tcj or Ncj is zero when the materials 
are in the plastic range, and that the corresponding degradation factor tcj or ncj is zero. Such idealized 
perfectly elastic-plastic models are shown in Figure 7.  

Upon determining the parameters characterizing the compound element, the general planar 
compound member shown in Figure 6(b) is generated, where fi and di (i =1, 2,..., 6) are local-axis joint 
forces and deformations, respectively. The parameters rj, tj and nj (j =1, 2) in Figure 6(b) are the so-
called bending, shearing and axial stiffness degradation factors of the compound element. The factors 
rj are calculated through Eq. (12), while tj and nj are similarly found as, 
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Based on the compound model shown in Figure 6(b), the local stiffness matrix k for each element 
is derived accounting for the effects of shear deformation and geometrical nonlinearity. The local 
element stiffness matrices are transformed into the global coordinate system and then assembled as the 
structure stiffness matrix K. If K is nonsingular at the end of an incremental load step, the 
corresponding incremental nodal displacements u are solved for and the incremental member-end 
forces f and deformations d are found. After each load step i, the total nodal displacements u =

ui and member-end forces f = fi and deformations d = di accumulated thus far over the load 
history are found. The initial-yield and full-yield conditions for each member-end section are checked 
to detect plastic behaviour, and the corresponding bending, shearing and axial stiffness degradation 
factors are found. The degraded stiffnesses Rc, Tc, Nc are determined based on the moments, shear and 
axial forces given by the analysis results at the current loading level. The degradation factors (rp, tp, np,
rc, tc, nc) are applied to modify the element stiffness matrices k and, hence, the structure stiffness 
matrix K, before commencing the next load step. The incremental-load analysis procedure continues 
until either a specified load level F is reached or the structure stiffness matrix K becomes singular at a 
lower load level as a consequence of failure of part or all of the structure. (If the structure has not 
failed at load level F, the analysis may be continued beyond that level until failure of the structure 
does occur.) 

The final analysis results include the values of the bending, shearing and axial post-elastic 
compound stiffness degradation factors r, t and n indicating the extent of plastic and connection 
deformation in the beam-to-column connection regions. Further computational details are provided 
through the analysis example presented in the following section. 

Figure 7. Idealized shear & axial force-displacement relations for 
connections
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Figure 8. Tested semirigid portal frame  

5 Portal Frame Example  
To illustrate and verify the proposed method it is applied to the portal frame shown in Figure 8, for 
which experimental test results are available in the literature (Liew et al 1997). In the analysis, 
Young’s modulus E = 200 GPa and shear rigidity G = 77 GPa. Residual stress in the members for 
bending and axial behaviour is taken as r = 0.3 y, while for shearing behaviour r = 0.05 y, where y

and y are respectively the normal and shearing yield stresses for steel. From the published test data 
(Liew et al 1997), the properties of the beam are: cross-section area A = 4740 mm2, moment of inertia 
I = 5547 104 mm4, plastic modulus Z = 485 103 mm3, normal yield stress y = 345 MPa, and shear 
yield stress y = 199 MPa (based on von Mises criterion). The properties for both of the columns are: 
area A = 7600 mm2, moment of inertia I = 6103 104 mm4, plastic modulus Z = 654 103 mm3, and 
yield stresses y = 336 MPa and y = 194 MPa. Semirigid connections are modeled by the adopted 
four-parameter model (Richard et al 1975), for which the parameter values are obtained from the test 
results as described in the following. Upon applying a curve-fitting technique (Liu 2005) to the 
moment-rotation test results for the beam-to-column connection C1 (Liew et al 1997), the model 
parameters in Eq. (6) were determined to be M0 = 79 kN-m, Rce = 7202 kN-m/rad, Rcp = 144 kN-m/rad, 
and  = 0.57; similarly, for the column-to-base connection C2, the model parameters were determined 
to be M0 = 148 kN-m, Rce = 24721 kN-m/rad, Rcp = 151 kN-m/rad, and  = 0.78. 

To match with the experimental test setup, the loads for the analysis procedure proposed by this 
study are monotonically increased up to the collapse load level by incrementally changing the 
magnitude of the load parameter H, while maintaining the fixed proportional coefficients on the 
horizontal and vertical loads shown in Figure 8. The beam is divided into three elements, while each 
column is taken as one element. The load-deflection behaviour of joint 6 was found by the analysis to 
be as given by Curve 1 in Figure 9(a). Also shown in Figure 9(a) are the test results (Liew et al 1997) 
and those found using a refined plastic hinge (PHINGE) analysis method (Chen et al 1996). It can be 
seen that at lower loading levels (H < 60 kN), the load-deflection results found by this study and 
PHINGE method are in good agreement with each other and those obtained in the test. At higher 
loading levels, the results of the current study are slightly less than those of the PHINGE method 
because the latter does not account for elastic shear deformation as herein. Note that the results 
obtained by both analysis methods are significantly less than the test results at higher load levels. The 
proposed method predicted structure collapse at load level Hc = 74 kN, which is close to the value of 
77 kN predicted by the PHINGE method, but both of these values are considerably less than the 99 kN 
value found as the limit load by the experimental test.
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It likely that the above noted discrepancy between experimental and analytical results is a 
consequence of the analysis methods adopting connection behaviour data determined from separate 
pilot experiments (Liew et al 1997) that is different from that for the actual connections in the frame 
itself. In fact, a good prediction compared to the test results is found by adjusting the data for the 
beam-to-column connection C1 to be: M0 = 111 kN-m, Rce = 4629 kN-m/rad, Rcp = 1099 kN-m/rad, 
and  = 0.97. The proposed analysis procedure then finds the load-deflection behaviour of joint 6 to be 
as defined by Curve 2 in Figure 9(a), which is observed to be in very good agreement with the 
experimental test results. The plastic behaviour shown in Figure 9(b) corresponds to Curve 2 in Figure 
9(a). It is seen that the development of plasticity at member ends is not very significant. This is 
because the connections C1 and C2 respectively have ultimate moment capacities Mu = 133 kN-m and 
Mu = 151 kN-m, which are not that much greater than the yield moment capacities My = 100 kN-m and 
My = 134 kN-m of the beam and columns, respectively. In essence, the behaviour of the portal frame is 
governed by semi-rigid connection behaviour rather than member plasticity.

Also shown in Figure 9(a) are two special cases where the portal frame was analyzed taking some 
or all of the connections to be rigid. For Case 1 when both the beam-to-column and beam-to-base 
connections were taken to be rigid, it can be observed from the corresponding load-deflection 
behaviour that the limit deflection is only about one-fifth of that found for the case of semi-rigid 
connections, at a limit load level Hf = 143.3 kN. For Case 2 when the beam-to-column connections 
were assumed rigid while the column-to-base connections were taken to be pinned, which is a 
conventional situation in design, the corresponding load-deflection behaviour is close to that when the 
connections are all semi-rigid, with a frame limit load capacity Hf = 82.4 kN. The post-elastic 
behaviour of the frame at the limit state for the two cases is shown in Figure 10. From Figure 10(a) for 
the case of all rigid connections, four plastic hinges (i.e., 100% plasticity) form in the beam and right 
column, while the left column base undergoes 52% plasticity under combined axial force and bending 
moment. The formation of the fourth plastic hinge at node 4 occurs when the horizontal load Hf =
143.3 kN. At the same time, the frame fails due to inelastic instability signaled by the horizontal 
displacement of node 6 becoming infinitely large (i.e., the corresponding stiffness coefficient tends to 
zero and causes the structure stiffness matrix to become singular). From Figure 10(b) for the case of 
beam-to-column rigid connections and column-to-base pinned connections, the beam experiences 
more serious plastic deformation than the columns. The formation of the plastic hinge at the right end 

Figure 9. Load-deflection and plasticity formation 
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of the beam occurs when the horizontal load reaches H= 77.7 kN. At limit load level Hf = 82.4 kN, the 
frame fails due to inelastic instability signaled by the horizontal displacement of node 6 becoming 
infinitely large (i.e., the same failure mode as for the rigid frame). Table 1 indicates the different 
degrees of member-end stiffness degradation for the scenarios when all connections are semi-rigid and 
the two cases where all or some of the connections are rigid. 

Table 1. Stiffness degradation factors 
Semirigid Rigid Member End Initial: rc0 rc rp r Case 1: r Case 2: r

C13 E1 0.671 0.051 0.966 0.051 0.482 - 
C26 E2 0.671 0.049 0.943 0.049 0.000 - 
B34 E3 0.115 0.051 1.000 0.051 1.000 0.572 
B56 E6 0.115 0.043 0.829 0.043 0.000 0.000 

6 Summary and Conclusions 
This article has presented a method of nonlinear analysis based on a compound-element that accounts 
for both member plasticity and semi-rigid connection behaviour. Depending on the properties of the 
compound element, connections can be categorized as being over-strength as for conventional fully-
restrained or rigid connections, intermediate-strength as for partially-restrained or semi-rigid 
connections, and under-strength as for simple or pinned connections. Analysis results show that for an 
over-strength connection, both plasticity of the member and the semi-rigid nature of the connection 
affect nonlinear behaviour but the member strength dominates the failure state. An intermediate-
strength connection has similar nonlinear behaviour but the connection strength dominates the failure 
state. For an under-strength connection, only the semi-rigid connection affects the nonlinear behaviour 
and the connection strength controls the failure state. Over-strength connections may be inappropriate 
for use in practice since their stiffness and strength are not fully utilized. A satisfactory design can be 
achieved if the connection and the connected member have about the same loading capacity. 

A portal frame example demonstrated that the proposed method of nonlinear analysis can well 
predict the responses of structures with semirigid connections. Albeit, it was observed that the results 
are very dependent on properly modelling the behaviour of semi-rigid connections and that data from 
isolated connection tests may not be correct for assembled frameworks. The results show that the 
proposed method is effective and efficient for nonlinear analysis of steel frameworks taking into 
account flexural, shearing and axial stiffness degradation due to the combined action of member 
plasticity and semi-rigid connection behaviour.  

Figure 10. Post-elastic behaviour of the rigid frame with different supports 
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