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Abstract
Semirigid connections show nonlinear behavior even due to small loadings. Therefore linear analysis 
is not a proper solution algorithm for structures that have such connections; rather a nonlinear analysis 
should be done. The conventional methods of nonlinear analysis of frames are inherently iterative, and 
their final results include some small order of approximation. They usually are done through 
modification of the stiffness matrix of structure and/or load vector. 
In this paper, a new method of nonlinear analysis has been presented that contrary to iterative 
methods, it is non-iterative. It does the analysis in one step without change in the initial model and 
stiffness matrix of the structure or its load vector. Theoretically it does not include approximation and 
gives exact results. In this method to force internal moments follow their nonlinear moment-rotation 
curves, some virtual moments (that are primarily unknown) are imposed to the structure at semirigid 
connections. To find the unknown virtual moments, a quadratic programming problem is formulated 
and solved. After finding the values of virtual moments, employing superposition principle, exact 
nonlinear response of structure is obtained and internal forces and moments of members are 
calculated.
The method is capable to model semirigid connections with multilinear moment-curvature relations. 
The formulation of the problem for bilinear and trilinear moment-curvature relations has been 
presented here. Two examples are presented to demonstrate the robustness, capability and validity of 
the method. 

Keywords: Semirigid connection, multilinear moment-rotation relation, nonlinear analysis,
mathematical programming. 

Introduction
In general connection of a beam to column can be categorized in three groups. The first group are rigid 
connections in which, theoretically saying, the angle between the two connected members does not 
change due to applied moments. The second group are hinged connections in which the connected 
members can have relative rotation without any resistance. In reality there is neither solid rigid 
connection, nor theoretical hinge connection, i.e. every rigid connection admits some rotation and 
every hinge connection tolerates some moment. Semi-rigid connections that have situation between 
the two groups constitute the third group. Their characteristics are determined by moment rotation 
relations that are usually nonlinear. To simplify nonlinear analysis, nonlinearity of materials is usually 
modelled as multilinear relations between stress and strain, the first part of which characterizes linear 
relations. The most simplified nonlinear relation is the bilinear elastic-plastic relation in which there is 
an elastic relation between stress and strain up to yield point. 
If the structure is stressed up to this stress limit a linear analysis is sufficient for stress-strain 
calculations. However for further stress or strain a nonlinear analysis is necessary. 
Literature is almost mature of nonlinear analysis methods. Crisfield (1991) and Owen and Hinton 
(1980) have cited good summaries of classical nonlinear analysis techniques. Among the major 
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nonlinear analysis techniques the Incremental Scheme, Initial Stiffness method, Newton-Raphson 
method and combination of these methods can be mentioned 
There are also some other techniques, that have been established for inelastic analysis of structures 
based on theorems of Structural Variation. Structural variation theory studies the effect of change of 
properties, or even removal, of a member on the entire structure. It takes advantage of linear analysis 
and sensitivity of structure to some self equilibrating unit loads that are applied at the end nodes of 
changing members. This technique has been applied to analysis of several types of inelastic skeletal 
structures including space trusses (Saka & Celik 1985), frames (Majid & Celik 1985) and grids (Saka 
1997), etc. It has been also extended to nonlinear finite elements analysis (Abu Kassim & Topping 
1985, and Saka 1991). Although this method takes advantage of initial stiffness matrix and does not 
require change in the stiffness matrix of structure during the analysis process, it is a historical and step 
by step method of analysis in which every step uses information from the previous step. 
Nonlinear analysis of structures by mathematical programming is another field of research in this 
ground. De Donato (1977) presented fundamentals of this method for both holonomic (path 
independent) and nonholonomic material behaviours. In this method, it is assumed that displacement 
of nodes of an elastic-plastic structure comprises two parts namely elastic and plastic parts. Then, the 
problem of finding total displacement vector of a structure is formulated in the form of a quadratic 
programming (QP) problem with some complementarity yield constraints. These yield constraints 
state that individual members either are stressed within elastic limits and do not accept plastic 
deformations or they are stressed up to yield limit and, as a result, undergo some plastic deformations. 
The output of this sub-problem is linear and nonlinear deformation of structure. Despite its robustness, 
this method suffers from the considerable number of variables that enter in the QP sub-problem. 
The goal of this research work is to bypass iterative techniques in the analysis of nonlinear structures 
and build up a method based on simple equilibrium relations to conduct analysis in one step. The idea 
of this technique has been initially examined by Moharrami et al (2000) for nonlinear analysis of 
structures including tension only and compression-only truss-type elements. Here in this paper it is 
extended to  elastic-plastic flexural connections. This method holds simplicity of structural variation 
theorem, advantages and robustness of mathematical programming and precision of the results with 
less computation effort. 

Formulation of the Solution Procedure
For simplicity of formulation of the problem, first the elastic-plastic model of nonlinear behaviour is 
considered and formulated. Then the formulation is extended to more complicated behaviours. In 
general the elastic-plastic behaviour of a semi-rigid connection is defined as in Fig.(1) in which 
moment in the connection is proportional to rotation up to certain limits. Beyond these limits, despite 
increase in rotation, moment remains constant. In the elastic-plastic semi-rigid connections the 
Moment-Rotation relation in each direction can be defined by two parameters Mlim and R0 . R0 is the 
stiffness of the connection and for rigid connections it tends to be infinity. It is zero for hinge 
connections and accordingly in this case Mlim is zero. To formulate the solution procedure, it is noted 
that the elastic-plastic behaviour of the connection can be mathematically written as : 

+− ≤≤ limlim MMM           (1)
in which −

limM  and +
limM are limits of negative and positive moments in the connection respectively. 

This is equal to the two following relations: 

++

−−

≤

≤

lim

lim

MM

MM
           (2)

Noting that the Moment in the connection is either positive ( +M ) or negative ( −M ), the above 
relation can be written as follows: 

+−+− ≤−≤ limlim MMMM          (3)
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To formulate the new method, we first focus on a condition that one of the inequalities in 
Eq.(2) is governing. Later on the formulation will be extended for the case that both are 
concerned.

Fig.(1): Elastic-Plastic Behaviour 

Elastic-Plastic Connections with Limited Capacity of Negative Moment 
Consider a connection in which the second inequality in Eq.(2) is ignored, i.e. it is assumed 
that the behaviour of the connection is such that there is only a limit on negative moment but 
there is not any limit on positive moment, i.e. ∞=+

limM . In this case if a linear analysis is 
done and the value of moment exceeds the capacity of the connection it is necessary to add a 
positive moment to the connection such that after its distribution in the structure, it reduces 
the moment in the connection to the capacity limit −

limM . Let us assume that this unknown 
positive moment is X+. To maintain the equilibrium and compatibility in the structure, it is 
necessary that this moment be accompanied by a moment at the other end and a pair of shear 
forces at the two ends of connected member. 

Fig(2): Application of Self-Equilibrated Positive Moment X+  at two ends of a member 
and its related moment and shear forces.   (a) Connection at i  (b) Connection at j

Fig.(2) shows the application of self equilibrated moment and its accompanied moment and 
shear forces to a connection. From this point forward whenever it is talked about addition of a 
moment, it is meant a self equilibrated set of moments and shear forces.

Analysis of Structures Including Nonlinear Semirigid Connections 331



moment in i. Considering that there are n such artificial moment +
iX on the structure, the resultant 

moment Mri in a typical connection i can be obtained from the following equation: 

=

++
∧

++=
n

j
jijiiri XmXMM

1

         (4)

In Eq.(4), 
−∧

M  is the moment obtained from linear elastic analysis. It should be pointed out that since 
in applying unit moments at the connection i at member i-j two external moments Mi=1 and Mj=-.5 are 
applied, these moments should be added to iim  and jim  values. This why the +

iX  appears in Eq. (4). 
From this point forward, mij that comprises Mi=1 and Mj=-.5, is replaced for ijm  to include the effect 
of external unit moments and corresponding shear forces. Therefore Eq.(4) will be written as 

=

+
∧

+=
n

j
jijiri XmMM

1

          (5)

Provided that +X are known, Eq. (5) can be used for calculation of moment in all joints/connections. 

Therefore It remains to find the values of +X ’s for all nonlinear connections. To that end substitute the 
Mri from Eq. (5) into Eq. (2) for all nonlinear connections to have: 

n,...,,i,MXmMM lim

n

j
jijiri 21

1

=≥+= −

=

+
∧

     (6)

Eq. (6) provides a set of n inequalities that can be used for determination of n unknowns. However 
there is a special condition that should be observed during solution of this set of inequalities.
Considering that due to applied loads the value of Mri from Eq.(5) does not exceed the moment 
capacity limit −

limM , then it would not be necessary to apply the unknown moment +
iX , i.e. in this 

case +
iX =0. Otherwise the artificial moment .X i 0≥+  should be applied to the joint/ connection to 

make −= limri MM . These mutual conditions which are in fact the complementary conditions for the set of 
inequalities (6) can be written in the following form: 

n,...,,i;.)MM(X limririi 210 ==− −−+        (7)

To solve the set of inequalities (6) with the conditions in Eq. (7), a Quadratic Programming (QP) 
problem as follows is established in which Eqs. (7) constitute its objective function and the set of 
inequalities in Eq. (6) comprise its constraints. It is noted that for arbitrary values of .X i 0≥+  that 
satisfies Eq. (6) the value of )MM(X limrii

−+ − is always positive. Therefore minimization of the objective 
function reduces it to zero. 

n.,..,i,MXmMMtoSubject

)MM(X   Minimize

lim

n

j
jijiri

n

1i
ilim,rii

1
1

=≥+=

−

−

=

+
∧

=

−+

      (8)

Due to the applied moment +
iX in a connection or a joint named i, a moment += ijiji XmM  will be 

produced in joint j. In this equation jim  is the moment produced in joint/connection j due to unit 
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Elastic-Plastic Connections with Limited Capacity of Positive Moment 

In this type of connections it is assumed that positive moment is limited to +
limM but it is not limited in 

negative direction. If we use the same unit moments that was used in the previous section, similar 
formulation can be derived except that to keep unique coordinate system there will be a negative sign 
in behind of −X . In this case the sub-problem Eq. (8) will be as in Eq. (9) 

n.,..,i,MXmMMtoSubject

)MM(X  Minimize

lim

n

j
jijiri

n

1i
riilim,i

1
1

=≤−=

−

+

=

−
∧

=

+−

      (9)

Elastic-Plastic Connections with Limited Capacity in both directions 

The formulation of the problem in this case which provides the general elastic-plastic behaviour can 
be extracted from the formulation of previous sections. Noting that the artificial moment should be 
applied in either positive or negative direction, a general formula for evaluation of moment can be 
written as follows:

n.,..,i,)XX(mMM
n

j
jjijiri 1

1

=−+=
=

−+
∧

       (10)

in which in any time one of the artificial moments can be present. i.e. in the presence of either of +
iX

or −
iX , the other one will have zero value. This can be mathematically stated as: 0=× −+

ii XX .
Substituting the general Mri from Eq.(10) into Eq.(3) for M+ -M- and using a combination of objective 
functions in Eq.(8) and Eq.(9) and the complementary condition of 0=−+

ii XX  yields the following 
problem for the general elastic-plastic behaviour of a nonlinear connection. 

n.,..,i,M)XX(mMMtoSubject

]XX)MM(X)MM(X[  Minimize

ilim,

n

j
jjiji

-
ilim,

n
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+

=

−+
∧

=

−++−−+

    (11)

Example 1. 

To illustrate the solution procedure, and capabilities of the method a one-bay, one-story portal frame 
as shown in Fig.(3-a) is considered. In this example the moment-curvature relation of connections of 
beam to columns are assumed to be elastic-plastic in both positive and negative directions. All 
members are assumed to have the similar cross-sections. It is assumed that the frame will be loaded 
laterally up to 40 KN. The Moment capacity of connections in each direction has been intentionally 
assumed to be 85% of the members’ plastic limit as shown in Fig (3-b). 

The solution of QP problem in Eq. (8) while reduces the objective function to zero provides the values 
of +

iX ’s. Then the Eq. (5) can be used to determine the moments in every joint of the structure 
regardless that there are or not any artificial moment. 
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Fig.(3): Example 1, a) Properties of a Portal Frame,  b)M-  relations for connections 2 and 3 

To have a comparison tool in hand, first the non-linear analysis of the frame will be done in a 
historical manner and then it is compared to the results of proposed solution procedure. Assuming that 
the structure behaves linearly, it is analysed under total lateral load (40-H & 65-V KN). The result of 
linear analysis has been reported in the first row of Table 1. 

Table 1: Results of analysis of Example 1 
Loading M1 M2 Midspan M3 M4

Total (Linear) -23.892 0.961 41.456 -48.050 47.098 
First Yield -21.132 .850 36.668 -42.5 41.658 
Load increment -6.715 0.904 7.959 0 6.240 
Total Nonlinear -27.847 1.755 44.627 -42.5 47.898 

Since value of M3 =-48.05 exceeds the plastic limit of the connection (42.5 KN.m), the structure will 
experience inelastic behaviour under this intensity of load. The values of moments in all joints/ 
connections at the threshold of inelastic behaviour can be obtained by scaling the initial results 
by

05048
542

.
. . The results have been reported at second row of Table1. In the next stage, for the rest of 

loading (i.e. 4.620-H and 6.507-V), the frame model will contain a hinge at connection 3. The result of 
this load increment has been reported in the third row of the Table 1. The total moments due to 
nonlinear behaviour is the sum of second and third row of the Table and has been reported in the 
fourth row. 
The analysis of the problem via proposed method requires analysis of the structure under unit 
moments that are applied in all elastic-plastic connections. The results of such analysis for unit loads 
at joints 2 and3 have been shown in Table 2. 
Employing Eq. (10), the resultant moments at connections 2 and 3 can be written as follows: 

)XX)(.()XX)(..(.M

)XX)(..()XX)(.(.M

r

r
−+−+

−+−+

−−+−+−+−=

−+−+−−+=

33223

33222

682301545405005048

54540506823019610

 Now according to Eq. (11) a quadratic programming problem is established as follows: 
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Solution of this QP problem gives the following results: 

03223 ==== −−++ XXXand17.46783X

Table 2: Results of analysis of Example 1 for unit loads and Proposed Method. 
Loading M1 M2 Midspan M3 M4

Unit moment at 2 +0.0458 1-0.6823 +0.1816 +0.5454-.5 -0.2264 
Unit moment at 3 -0.2264 +0.5454-.5 +0.1816 1-0.6823 +0.0458 
Total external 
loads -23.892 0.961 41.456 -48.050 47.098 

Unit moment at 3 
× 17.46783 -3.955 0.793 3.172 5.55 0.800 

Sum of the Two 
Above Rows -27.847 1.754 44.628 -42.5 47.898 

It remains to obtain internal forces in all sections using Eq. (10). The results of moment calculations 
have been shown in fifth and sixth rows of Table2. If the results of Table 1 and Table 2 are compared, 
it is observed that there is a very small difference between the two results which may have been 
because of numerical round off error in either of the algorithms/methods or both. As a conclusion, in 
this example it was shown that the proposed method is capable of solving the nonlinear problem and 
theoretically saying, it results in exact nonlinear solution.

Nonlinear Analysis with Tri-linear M-Υ Curve 
In this section the formulation of nonlinear analysis for tri-linear type of connection is presented. Fig. 
(4) shows such a typical relation. A tri-linear relation usually fits better on an M-Υ curve. It can also 
model strain-hardening of a typical connection. This type of relation may be applicable for both 
negative and positive moment directions 
As shown in Fig. (4) the tri-linear relation may be characterized by four parameters: M1, Mlim ,R0 and 
R1. In which Mlim is the limit of bending moment capacity, R0 and R1 are initial and secondary flexural 
stiffness of the connection and M1 is the first yield in the M-Υ curve. Similar to the previous 
procedure for formulation of the problem, first the case of negative moment is considered. 
Depending on the value of moment or rotation in a connection, the M-Υ relation may coincide one of 
the three linear relations shown in Fig. (4). 

If 1ii θθ ≤ , then the connection behaves linearly. In this case: Mr= iM
∧

 and there will be no need for 
external virtual moment.  

If 21 iii θθθ ≤≤ , the actual value of 
−
iM  for a given value of Υ can be obtained from Eq. (12). 

iiiii R*)(MM 111 θθ −+=
−

         (12)
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From linear analysis we have: iii RM θ0=
−∧

 and 101 θiRM =− , therefore it looks possible to substitute 
for values of Υi and Υ1i to find: 

0

1
11 R

R
*)MM(MM i

iii
−

∧
−−

−+=          (13)

Eq. (13) stipulates that in the connection with reduced stiffness, only partial part of the 
moment in excess of M1 is stored and some part of the excess moment should be distributed 
in the structure. 

Fig.(4): Atypical Tri-linear M-Υ relation for a connection 

From the above explanation it is understood that the )R/R(*)MM( ii 011 1 −− −
∧

− part of the 
excess moment should be distributed in the structure. However any moment redistribution 
from connection into the structure not only affects the value of rotations of connection and 
corresponding moments in connected members but also affects the moment distribution in the 
structure which in turn affects again the value of excess moment in the connection. The study 
on this mutual moment redistribution between softened connection and the structure shows 
that there is a reciprocal relation as in Eq. (13) between remained moment in the connection 
and other parameters such as the moment distribution factor mii , the ratio of stiffness of 
member to the connection  (EI/L)/R0 and the rate of stiffness softening R0/R1. 

)
R

L/EI)(
R
R

(m

MofexcessinMomenticonnectioninMomentremained

ii
i

i

01

0

1

4111 −+=

×=

γ

γ
    (14)
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in which mii is the measured moment at connection i due to application of a unit moment at i. The 
statement in Eq. (14) can be mathematically written as the following equation for the softened range of 
behaviour of the connection. 

iii,

n

j
jjjjijiri *MM))XX(XX(mMM γ∆+≥+−++= −

=

−−++
−∧

−
1

1
2121     (15)

The value of ∆M in the above equation includes all transferred moments from all virtually loaded 
connections onto the connection in question i.e. 

≠=

−−++−
−∧

− +−++−=
n

ij,j
jjjjijii ))XX(XX(mMMM

1
21211∆       (16)

Substituting for ∆M from Eq. (16) into Eq. (15) and rearranging for unknowns gives the yield 
condition for the case of stiffness softening in the connection as follows: 

)(*)MM())XX(XX(m)(Xm iii,

n

ij,j
jjjjijiiii γγ −−≥+−+−+

−∧
−

≠=

−−+++ 11 1
1

21211    (17)

Similarly when 2ii θθ ≥  we should add the external virtual moment Xi2 to the connection to reduce the 
moment to Mlim . In this case the following relation can be written between resultant moment in joint i
and limit moment: 

−

=

−−++
−∧

− ≥+−++= lim

n

j
jjjjijiri M))XX(XX(mMM

1
2121       (18)

It should be noted that, although Xi1 and Xi2 as shown in Fig.(4), are independent virtual moments, they 
can not exist simultaneously. Since it is not known a priori that how much is the iθ , both of 
Eqs.(17&18) should be considered in the solution of the problem. In general the QP problem for 
calculation of unknown X’s become as follows: 
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Similar QP problem can be established for reverse direction i.e. the case of a tri-linear connection in 
positive moment direction and unlimited linear relation in negative moment direction. If R0 , R1 , M1
and Mlim properties in positive direction are assumed to be the same as their counterpart in negative 
direction, the following QP problem can be obtained. However one may use different properties for 
two different directions of moments. 
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n.,..,i;MM))XX()XX((m
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Combining equations (19) and (20) and noting that one of −+−+
iiii XandX,X,X 2211 can possess nonzero 

value at a time, and the others are zero, yields the following QP sub-problem from which all unknown 
Virtual Moments can be evaluated. 
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Example 2 
To illustrate the capability of the proposed method in the analysis, a portal frame with un-equal 
column lengths under vertical and lateral load as shown in Fig.(6-a) is considered. The M-Υ relation 
for connections 2 and 3 is shown in Fig(6-b). It is assumed that the members can be loaded up to their 
plastic moment Mp. Beyond this moment, there will establish a plastic hinge that is assumed to be 
bilinear.

Fig(6): Example 2, A Portal Frame with Tri-linear Connections at 2 and 3. 
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It is to be noted that in general a connection is separate than a member and its role should be modeled 
as a torsional spring with rigidity of R0 , R1 and 0 at the three ranges of rotations. In this example the 
connections in 2 and 3 had to be modeled as in Figure 7-a. This required special analysis software. 
Instead the model in figure 7-b which can be analyzed by most of commercial softwares was used. In 
this model torsional rigidity of the members 2-6 and 3-7 are equal to the flexural stiffness of 
connection. Note that in nodes 1 and 4 there is no connection and the capacity of the structure at these 
nodes is determines by capacity of the members. 

Fig.(7): Actual Analysis model (a) and its equivalent 3-D model (b) 

To solve the problem we need to perform a linear elastic analysis for the applied loads and do some 
analysis for unit moments. The number of virtual unit moments depends on the number of potentially 
nonlinear points in the structure. Here we assume that all nodes will have nonlinear behavior. 
However the behavior of joints 1 and 4 will be assumed to be the same as elastic-plastic behavior of 
members. The moment at midspan does not seem to exceed its proportionate limit. As a result unit 
moment has not been applied there. Therefore there will be four virtual loadings. The results of 
aforementioned analyses have been reported in Table 3.

Table 3: Results of Analysis of Frame of Example 2 for Various Types of Loadings 

Moment
Position

Full
External
Load

Unit M at 1 in 
member 1-2 

Unit M at 2 in 
member 2-3 

Unit M at 3 in 
member 2-3 

Unit M at 4 in 
member 3-4 

Joint No. 1 -92.815 1.0-0.8503 0.12693 -0.10811 0.32734 
Connection 2 7.726 0.5476-0.5 1.0-0.85089 0.4961-0.5 -0.00362 
Midspan 28.256 0.00353 0.07260 0.07694 -0.03709 
Connection 3 -11.213 -0.04054 0.4961-.5 1.0-0.84222 0.46202-0.5 
Joint No. 4 27.206 +0.16367 -0.04828 -0.05064 1-0.31091 

According to the results in Table 3, a QP sub-problem, can be established as follows. In the following 
QP problem a combination of Eq.(11) and Eq.(21) is used. This is because the joints 1 and 4 have 
bilinear behavior and obey the rules of Eq.(11) and joints 2 and 3 have tri-linear behavior and obey 
Eq.(21). In addition since in this simple problem we know the direction of applied virtual moments, it 
is evident that 04323122211 ====== +−−++− XXXXXX . Therefore only those virtual moments that 
potentially are nonzero have been participated in the formulation. Because of this decision, only the 
complementary condition on .XX ii 021 =× ±±  has been considered. 
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 In this sub-problem mij values are given in Table 3. Other parameters are as follows: 

m.KNMMMM lim,lim,lim,lim, 504411 =−==−= −+−+

m.KNMMMM ,,,, 2831312121 =−==−= −+−+

m.KNMMMM lim,lim,lim,lim, 423322 =−==−= −+−+

759365507887760 32 .and. == γγ
Solution of the problem yields the following results: 

0615107638901396574 431211 .X.1X54.6801X.X ==== −+−+

According to these results evaluation of internal forces in members is quite simple. Table 4 shows the 
calculation of final nonlinear response for moments. 
It can be seen from the Table 4 that the position of vertical point load (Midspan) is still in its 
proportionate range and therefore, as it was foreseen, there is no need to apply external virtual 
moments. On the other hand except Node No. 1 it did not seem that other nodes can reach to nonlinear 
stage. But results show that Node No. 4 has reached to its plastic limit; and the moments at 
connections No. 2 & 3 are a little beyond the first yield of the connection. It is obvious that if the load 
is increased, the moments at connections 1 and 4 will remain constant and the moments of Midspan, 
Node 2 and Node 3 will increase.
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Table 4: Calculation of nonlinear response of Example 2, Proposed method. 
Effect of Xj at joints 
and connections Values of Virtual Moments Total Moment 

+
1X −

21X +
31X −

4X
Moment  Position 

574.1396 54.6801 10.6389 107.0615 

∧
M + +

1X + −
21X

+ +
31X + −

4X

Node No. 1 85.9506 -6.9404 -1.1502 -35.0454 -50.0000 

Connection No. 2 27.3277 -8.1531 -0.0415 3.8752 30.7340 

Midspan 2.0254 -3.9699 0.8186 3.9705 31.1010 

Connection No. 3 -23.2768 0.2134 1.6787 4.0658 -28.5319 

Node No. 4 93.9691 2.6389 -0.5387 -73.7753 50.0000 

Conclusion
In this paper, a new, non-iterative method of nonlinear analysis was proposed. In the proposed method 
to make internal moments follow their nonlinear moment-rotation curves, some virtual moments (that 
are primarily unknown) were imposed onto the structure at semirigid connections. To find the 
unknown virtual moments, a quadratic programming problem was formulated and solved. In the 
proposed method, the exact nonlinear response of structure including internal forces and moments of 
members are calculated by employing the values of virtual moments and using the superposition 
principle. Compared to the classical methods of nonlinear analysis, the following preferences can be 
mentioned for the proposed method. 

• In the classical methods, the nonlinear analysis is done through iterative procedures which 
consist of modification of the stiffness matrix of structure and/or load vector, but in the 
proposed method the nonlinear analysis is performed in one step without change in the initial 
model and stiffness matrix of the structure or its load vector. 

• the final result of iterative methods are somewhat dependant on the start point and the 
convergence criteria while in the proposed method it is obtained by solution of a Quadratic 
programming method and therefore  not only it does not require any initial point, but also it 
does not require convergence criterion and mathematically saying it gives exact results. 

• To increase the accuracy of the results in the classical methods it is necessary to decrease the 
incremental loading and tighten the convergence criterion. This increases the number of 
required analysis. However in the proposed method the results are exact and only preventing 
round off error in calculations increases the accuracy. 

The method is capable to model semirigid connections with multilinear moment-curvature relations. 
The formulation of the problem for bilinear and trilinear moment-curvature relations was presented. 
Two examples were solved to demonstrate the robustness, capability and validity of the method. It was 
shown that the method not only can be used for nonlinear connections but also provided that the 
critical sections are pre-specified, it can do the plastic analysis in a flexural frame as well. 
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