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1 Introduction 

A problem of major importance in structural engineering deals with the response of R/C structures 
subjected to dynamic loading. For load factored linear elastic analysis, suggested by the codes, the 
results are quite satisfactory, but do not reveal the characteristics of the true behaviour of the structure. 
However, if inelastic response is taken into account, more refined models are needed as to achieve a 
realistic behaviour. In recent years, significant research has been carried out in order to overcome the 
difficulties arising in such an analysis. Difficulties emanate not only from the inherent complexity of  
R/C structures, but also from the uncertainties related to terms such as dynamical loading, material 
nonlinearity and hysteresis.

Macro-modeling of structures has been one of the main methods introduced to simulate these complex 
phenomena. In macro-modeling simulation, the field of knowledge concerning the actual behaviour of 
reinforced concrete is incorporated in the structure using an element–based approach. In such a way, 
the well established, from matrix structural analysis, beam element is enriched with a moment 
curvature envelope describing the behaviour of both end sections, a hysteretic law and a relevant yield 
penetration rule for the beam. By introducing such an elasto-plastic element, one is able to simulate 
the gradual shift of the mechanical properties of the element as it passes from the elastic to the 
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An aspect of utmost importance, for a non linear analysis, is the hysteretic rule needed to model the 
cyclic response of the structure. Over the last twenty years, significant development has occurred in 
the so-called phenomenological approach of hysteresis. Beginning with Bouc’s original formulation 
(1967, 1969, 1971) of the single degree degrading hysteresis model with pinching, many modifications 
have been subsequently introduced, such as the Bouc-Wen model (1976, 1980), the Baber-Noori 
model (1985, 1986) and the Reinhorn model (1996). These hysteresis models –also known as smooth 
hysteretic models- are capable of simulating a number of different types of loops using a single 
smooth hysteretic function affected by a set of user-defined parameters. In doing so, one can easily 
model the three main phenomena describing the cyclic response of R/C elements namely; stiffness 
degradation, strength deterioration and pinching behaviour due to bond-slip effects. 

Following these rules, many computer programs have been developed, capable to perform a non-linear 
structural analysis such as DRAIN-2D (Kanaan and Powell,1973), SARCF (Chung et al.,1998; Gomez 
et al.,1990), IDARC (Park et al., 1978;Kunnath et al., 1992) and ANSR (Oughourlian and 
Powell,1982). The “Plastique” code presented herein, although maintains the elastoplastic behaviour 
within the 2D plane frames, works with a 3D stiffness of the entire structure based on diaphragmatic 
action.

2 Material Properties 

Material properties are defined through certain conventional stress-strain curves both for unconfined 
concrete and reinforcing steel. In the former a parabolic stress-strain relationship with a softening 
branch is used, while in the latter a bilinear stress-strain diagram with hardening is implemented. The 
aforementioned stress – strain curves are depicted in Figure 1. 

Figure 1. Stress –Strain diagrams a) for unconfined concrete and b) for reinforcing steel 

3 Element Modeling 

Three different types of two dimensional structural elements namely; beams, columns and shear walls 
are adequate to model the response of multi-storey buildings. By combining such elements one 
assembles multi-storey plane frames, which are linked together through diaphragms at the floor levels 
to create a 3D model of the structure. 

3.1 Beam Element 

Beam elements are considered as flexural elements with shear deformations with no axial 
deformations as beams belong to inextensional diaphragms and rigid zones at the ends to account for 
the stiffness increase at the joint, if needed. The element stiffness matrix varies throughout the analysis 
due to plasticity effects. In order to simulate such effects a hysteretic law and a spread plasticity model 
are introduced. The hysteretic model is formulated based on an initial moment-curvature relationship 
which represents the backbone skeleton curve. Such skeleton curves must be defined for each edge 
section of all elements. These curves can be either user defined or can be computed using a fiber 
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model and certain given properties of the section under consideration such as geometry, concrete and 
reinforcement properties. 

3.2 Column Element 

The column element formulation is identical to that of a beam, as columns are treated as 2D elements 
that participate separately to intersecting 2D frames. Plasticity zones are developed at the end regions 
of columns and axial deformations are taken into account.

3.3 Shear Wall Element 

Shear wall elements are modelled combining an axial linear-elastic spring together with a nonlinear 
shear and a nonlinear flexural spring in series. In this case not only a moment-curvature skeleton curve 
is required, but a shear force-shear deformation curve as well, which are either user defined or 
computed through a fiber model. 

4 Spread Plasticity Model 

Inelastic deformations vary along element’s length. Consequently an element will also exhibit 
different flexibility characteristics. In order to formulate the elastoplastic flexibility matrix of such an 
element a spread plasticity model is introduced. This model can formulate an element’s flexibility 
matrix by taking into account the current stiffness (i.e. flexural stiffness concerning beams and 
columns and also shear stiffness for walls) at each end section, a corresponding yield penetration 
length and/or the elastic core stiffness depending on the values of the yield penetration lengths. 

5 Yield Penetration Model 

A yield penetration model is used to compute the yield penetration lengths at the end sections of an 
element as shown in Figure 2. Yield penetrations parameters  and  specify the portion of the 
element where the acting moment is greater than the corresponding yield moment of the section. For 
simplicity, a linear moment distribution is assumed even in the case of the presence of distributed 
loads. However one can subdivide each structural element into a number of elements in order to 
capture closely a parabolic variation. 

Figure 2. Yield Penetration Parameters 

As long as the current moment distribution is defined, a set of geometrical oriented rules is used in 
order to define both the yield penetration lengths and the stiffness of the central part of the element. 
The yield penetration parameters are checked with the previous maximum penetration lengths, while 
the plastic regions of the element are considered only to expand and not to contract.

6 The Hysteretic Model 

The smooth hysteretic model presented herein is a variation of the model originally proposed by Bouc 
(1967) and modified by several others (Wen 1976; Baber Noori 1985). The model was developed in 
the context of moment-curvature relationships of beam-columns. Therefore the stress variable is here 
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referred to as “moment” (M) and the strain variable as “curvature” ( ). In the case of shear-walls the 
hysteretic loop can be described in terms of a shear force-shear deformation relationship. 

The use of such a hysteretic constitutive law is necessary for the effective simulation of the behavior 
of R/C structures under cyclic loading, since often structures that undergo inelastic deformations and 
cyclic behavior weaken and lose some of their stiffness and strength. Moreover, gaps tend to develop 
due to cracking causing the material to become discontinuous. The Bouc-Wen Hysteretic Model is 
capable of simulating stiffness degradation, strength deterioration and progressive pinching effects. 

The model can be visualized as a linear and a nonlinear element in parallel, as shown in Figure 3. The 
relation between generalized moments and curvatures is given by: 

( )( )( ) 1 ( )= + −y
y

tM t M z tφα α
φ

 (1) 

where My is the yield moment; y is the yield curvature;  is the ratio of the post-yield to the initial 
elastic stiffness and z(t) is the hysteretic component defined below. 

Figure 3. Bouc-Wen Hysteretic Model 

The nondimensional hysteretic function z(t) is the solution of the following non-linear differential 
equation:
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In the above expression A, B, C, D & E are constants which control the shape of the hysteretic loop 
for each direction of loading, while the exponents nB, nC, nD & nE govern the transition from the elastic 
to the plastic state. Small values of ni lead to a smooth transition, however as ni increases the transition 
becomes sharper tending to a perfectly bilinear behavior in the limit (n ∞).
The program defaults are: 
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The parameters C, D control the gradient of the hysteretic loop after unloading occurs. The assignment 
of null values for both, results to unloading stiffness equal to that of the elastic branch. Also, the 
model is capable of simulating non symmetrical yielding, so if the positive yield moment is regarded 
as a reference point, the resulting values for B and E are those presented in equation (3). The hysteretic 
parameter Kz is then limited in the range of 0 to 1, while the hysteretic function z varies from 

- +
y y- M / M  to 1. 

z t( ) = =f (φ(t), z t( )). .
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Finally, the flexural stiffness can be expressed as: 

( ) ( ) ( )0
1 1 11 1 1= = = + − = + − = + −y y z z
y y y

dM dzK EI M M K EI K
d d

α α α α α α
φ φ φ φ φ
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6.1 Hysteretic behavior Variations  

a) Stiffness Degradation 

The stiffness degradation that occurs due to cyclic loading is taken into account by introducing the 
parameter  into the differential equation: 

( ) max
0
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The parameter  depends on the current, / yµ φ φ= , and maximum achieved plasticity, max max / yµ φ φ= .
Sk is a constant which controls the rate of stiffness decay. Common values for Sk are 0.1 and 0.05. 

b) Strength Deterioration 

The strength deterioration is simulated by multiplying the yield moment My with a degrading 
parameter S :

( )( )( ) 1 ( )= + −y
y
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 (6) 

The parameter S  depends on the damage of the section which is quantified by the Damage Index DI: 
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In the above expression Sd, Sp1, Sp2 are constants controlling the amount of strength deterioration; µc is 
the maximum plasticity that can be reached, /=c u yµ φ φ ; dissdE  is the energy dissipated before 

unloading occurs and finally Emon is the amount of energy absorbed during a monotonic loading until 
failure as shown in Figure 4.

Figure 4. Dissipated Energy (Ediss) and Monotonic Energy (Emon). 
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Pinching of hysteretic loops due to shear cracking and bond slip of the reinforcement is commonly 
observed in reinforced concrete structures during cyclic loading. This phenomenon is taken into 
account by introducing in the expression of Kz the “slip length” parameter  a, and a function f (z):

1 a ( )
=

+ ⋅ ⋅
pin z
z

z

KK
f z K

 (8) 

In the above equation pin
zK  is the hysteretic parameter affected by pinching, Kz is the original 

expression of the hysteretic parameter obtained from (3) and parameters a, f(z) are given by: 
2

m
2

(z-z )a ( ' 1)  &  f(z)=exp -= −s
s

A
z

µ  (9) 

where As is a control parameter which may be linked to the size of crack opening or reinforcement slip 
or both; µ   is the normalized curvature attained at the load reversal prior the current loading circle; zs
is the range where slip occurs. A non zero value of the parameter zm will shift the effective slip region 
so that it is symmetric about z=zm.

7 Method of Analysis 

The computer program “Plastique” which is described herein, is capable to perform the different types 
of analysis, namely; Push-over analysis, Quasi-static analysis, Non-linear dynamic analysis and  
Eigenvalue analysis 
The first two analysis types, although significantly simplified, can lead to valuable conclusions 
concerning the behavior of the structure and the possible collapse mechanism. The applied procedure 
can be described in brief as follows. In the case of 2-D analysis the structure is assumed to consist of a 
finite number of nodes interconnected by a finite number of elements. The types of elements have 
been described in section 3. In the case of 3-D analysis the structure is assumed to consist of the 
aforementioned 2-D frames, assuming a rigid diaphragm assemblage of their horizontal dof’s per floor 
slab. Loads may be applied at the nodes or along the elements. In both cases though, they are 
transformed to nodal loads. 

Figure 5. Modified Newton Raphson Method 

After the formation of the stiffness matrix the equilibrium equations are solved by an efficient 
algorithm based on the Gaussian elimination method. The structure stiffness is stored in a banded form 

c) Pinching or Slip 
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stress redistribution which occurs due to the non linear behaviour of the structure. An iterative process 
(modified Newton Raphson Method) is incorporated in each load step so that a higher level of 
accuracy can be achieved, as shown in Figure 5. 

The member forces are computed for each load increment and the tangent stiffness matrix is updated 
to account for changes in any stiffness coefficient of the element. A spread plasticity model is used, as 
described in section 4, in order to simulate the changes in the flexibility in each element. In the case of 

motion.

The equation of motion to be solved at any stage of the analysis is written as: 

int ext g

where [M] is the mass matrix; [C] is the damping matrix; [Pint] is the internal load vector of the 
structure; [Pext] is the external load vector of the structure; [S] is a modal influence vector; [U] is the 
structure displacement vector and { }gU  is the ground acceleration vector. 

The above system of equations is solved using the constant acceleration method, according to which 
equation (10) can be rewritten for time t+ t and iteration k as: 

[ ] { }( ) ( ) ( 1) ( )
int[ ] { } { } [ ] { } { }+∆+∆ +∆ − +∆ +∆⋅ + ⋅ + + ⋅ ∆ =t tt t k k t t k t t t k t t

t extM U C U P K U P  (11) 

The hysteretic model applied is the Bouc Wen - Baber Noori model which, as mentioned previously, is 
able to simulate R/C behaviour such as stiffness degradation, strength deterioration and pinching. At 
every step of the analysis, the Damage Indices of the elements and the structure are calculated 
providing an evaluation not only of the inflicted damage, but also of the structure’s residual strength 
and capacity to withstand further loading. The Damage Index for each section is given by relation (7). 
The Damage Index for each element is computed as the maximum Damage Index of its sections’ and 
finally the Damage Index of the whole structure can be obtained from the following expressions:

,

,
( )= tot i

i
i tot i

i

E
DI DI

E
 (12) 

where (DI)i is the Damage Index for each element and Etot,i is the total amount of absorbed energy per 
element.

8 Numerical Examples 

8.1 Example 1 

This example demonstrates the usage of the different analysis and design options of “Plastique”. The 
structure used is a one bay single srorey 2D frame shown in Figure 6.

the dynamic analysis the Newmark Method is used for the direct integration of the equations of 

[M ]{U}+ [C]{U}+{P } = {P } = −[M ]{S}{U } (10) 
.. . ..

.. .

..

A monotonic push-over analysis can provide the collapse mechanism of the particular structure as 
shown in Figure 7. 

arithmetic operations are avoided. An incremental method is applied for all types of analysis. The 
specified loads are divided to sufficiently smaller sub-loads, in order to simulate more efficiently the 

to optimize the use of core storage and during 
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Figure 7. Possible Collapse Mechanism 

In addition, a dynamic analysis is carried out. The accelerogram of the Northridge earthquake, 
normalized at 0.50g, was chosen for the particular analysis (Figure 8). 

The resulting displacement time history, the force displacement hysteretic loop, as well as the final 
Damage Indices (DI) and yield penetration lengths are presented in the following figures (Figures 9 to 
11).

In Figure 10, one can notice the gradual shift in the column section’s stiffness due to stiffness and 
strength degradation effects, and the gradual shift of plastic deformation at a number of steps until the 
rest at a deformed state. 
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The damaged state of the structure at the end of the analysis is depicted in Figure 11. The reduced 
sections are a graphical representation of the inelasticity distribution along each member’s length. The 
damage index offers a measure of the accumulated damage at each member. 

8.2 Example 2 

As another example the behavior of a three storey building subjected to dynamical loading of time 
varying frequency content is presented. The Tabas (Iran – 0.68g) earthquake was chosen for this 
particular analysis and the method of wavelets was applied for the construction of the corresponding 
time-frequency spectrum. The analysis demonstrates the response of the structure to a short of 
“sliding” resonance between the first eigen frequency of the structure and the primary frequency of the 
excitation, that both are shifted as time progresses. The structure due to plastification and the 
excitation due to a time – frequency variation that often occurs in strong ground motion excitations.  

The original Tabas accelerogram is presented in Figure 12 accompanied by its corresponding time-
frequency spectrum (Figure 13). 

From the time-frequency spectrum one can identify the three peaks presented in Table 0. Since Max2
and Max3 have similar values and arise in relatively close time interval they can be substituted by an 
“equivalent” spectral frequency presented in the last row. 
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Figure 14. Three storey building 

The 3D structure studied in the present example is depicted in Figure 14. A convenient set of 
geometrical/mechanical properties and hysteretic parameters was used in order to achieve an eigen 
frequency variation for the primary mode which would start from a value of 8.15Hz for a duration of  
11.1 sec approaching 5.55 Hz around 13 sec. A dynamic analysis was performed using the Tabas 
accelerogram as excitation in the x direction The structure’s response is presented in Figure 15, where 
it can be observed that after t = 13.5 sec the top floor displacement increases rapidly, leading the 
structure finally to failure at  t = 14.4 sec.

By careful examination of the results it turns out that most of the critical sections of the structural 
elements yield and fail within the time interval of 11 to 14.4 sec. Similar evidence is provided by 
examining the variation of the primary frequency of the building, that remains steady at approximately 
8.15Hz for the first 12.5 sec, decreasing rapidly in steps due to the successive degradation phenomena 
to the value of 5.55Hz at around 13.5 sec (Figure 15). 

Figure 15. a) Top floor displacement time history- b) Frequency Variation. 

In order to verify whether the failure is due to the previously described pattern of successive resonance 
a non linear analysis is performed on the previous structure after filtering out the second highest 
spectral frequency of the excitation (of approximately 5.552Hz), i.e by considering an excitation 
without the time – frequency variation. For this case although the structure suffers a severe damage 
does not collapse as it remains steady at a top storey displacement of the order of 50 mm (Figure 16).

Time (T)TIME T (sec)
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Figure 16. Top story displacement time history after filtering the accelerogram. 

By examining the status of elements and its evolution in time a different development in the failure 
mechanism is observed mainly for t>13 sec, which is due to the absence of the filtered frequency.

9 Conclusions 

A new computer program, “Plastique”, for the inelastic analysis of structures is presented. A macro 
modeling approach is implemented, combined with a spread plasticity and a yield penetration model to 
account for the inelastic phenomena on structural response. By introducing a smooth Bouc Wen type 
hysteretic model a close to reality simulation of R/C cyclic response is achieved. An iterative 
procedure is used in order to solve the equilibrium equations. The program proves to be a versatile tool 
offering different analysis options. In comparison to other similar nonlinear analysis programs, 
“Plastique” is capable of performing a full 3D inelastic analysis, using the same model for every plan 
orientation of the seismic excitation.

Inelastic analysis reveals a more realistic response of the structure, demanding though a more accurate 
description of the structural properties and their variations. Seismic hazard analysis becomes even 
more crucial, as compared to an elastic analysis, while time-frequency distribution of the frequency 
content of an earthquake, as demonstrated in the second example, can be decisive on the fate of the 
structure.
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