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Abstract 
This paper demonstrates how to decompose general stability solutions into useful subclasses of 
buckling modes through formal definition of the mechanical assumptions that underlie a class of 
buckling modes. For example, a thin-walled lipped channel column as typically used in cold-formed 
steel can have its buckling mode response decomposed into local, distortional, global, and other 
(transverse shear and extension) modes. The solution is performed by writing a series of constraint 
equations that are consistent with the mechanical assumptions of a given buckling class. The 
mechanical assumptions that defined the buckling classes were determined so as to be consistent with 
those used in Generalized Beam Theory (see e.g., Silvestre and Camotim 2002a,b) The resulting 
constraint equations may be used to constrain the solution before analysis, and thereby provide the 
opportunity to perform significant model reduction, or may be employed after the analysis to identify 
the buckling classes that participate in a given buckling mode. This paper shows the framework for 
this process in the context of the finite strip method (building off of Ádány and Schafer 2004, 2005a,b) 
and discusses some of the interesting outcomes that result from the application of this approach. Of 
particular interest, and discussed here, is the definition of global buckling modes, and the treatment of 
members with rounded corners – each of which provide certain challenges with respect to traditional 
definitions of the buckling classes. Examples are provided to illustrate the technique and challenges. 
The long-term goal of the work is to implement the procedures in general purpose finite element codes 
and thus enable modal decomposition to become a widely available tool for analyzing thin-walled 
member cross-section stability. 

Introduction 
Understanding cross-section stability of thin-walled members is critical to successful design. 
Inherently, or explicitly, design methods rely on prediction and separation of the cross-section stability 
modes. Different post-buckling behavior and strength are associated with each of the modes. For 
example, in the case of a cold-formed steel lipped channel column, typically three buckling modes are 
identified: local, distortional, and global. Local buckling modes are most typically handled by 
effective width methods which empirically include the potential for post-buckling reserve. Global 
buckling modes, such as flexural-torsional buckling, are handled through empirical column curves and 
are combined with the local post-buckling result in some fashion to account for local-global 
interaction. Distortional buckling is treated by modified effective width’s or a modified column curve. 
Regardless of the design approaches employed, a fundamental first step is identification and prediction 
of the elastic cross-section stability modes. 

Member Stability Solutions by the Finite Strip Method 
Cross-section stability of open thin-walled members may be readily examined using the finite strip 
method. In a conventional stability solution the member is modeled as an inter-connected series of 
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strips, as highlighted in Figure 1. The nodal lines of the strips have four degrees of freedom (DOF) 
each. In the local coordinates of the strip, the membrane DOF (ui,vi) follow plane stress assumptions, 
while the bending DOF (wi, i) follow thin plate bending assumptions. The membrane DOF are 
allowed to vary linearly in the transverse direction, while the bending DOF vary as a cubic (i.e., the 
typical beam shape function). Longitudinal deformation typically employs a trigonometric function, in 
its simplest form a single half-sine wave is enforced. The strips are transformed to global coordinates 
and assembled in a conventional manner to form the global stiffness matrices. A complete discussion 
of the finite strip method is available in Cheung and Tham (1998) and explicit details for construction 
of the elastic and geometric stiffness matrices as used in the open source program CUFSM are 
available in Schafer (1997). 

Figure 1. Coordinate systems and DOFs 

The desired stability solution takes the form of an eigenvalue problem: 

dKKd g (1) 

where K is the global elastic stiffness matrix, Kg is the global geometric stiffness matrix,  is the 
buckling load multipliers, and d is the buckling mode shapes. K is dependent on cross-section 
geometry and material, while Kg is dependent on geometry and the applied longitudinal stress. The 
size of the eigenvalue problem is equal to 4n, where n is the number of nodal lines. Since both K and 
Kg vary as a function of length, the conventional approach is to sweep through all lengths of practical 
interest and construct the FSM buckling load multiplier vs. half-wavelength curve. Alternatively, one 
could fix the length and instead sweep through all sine wave “frequencies” of interest; this is in 
essence the approach in a conventional finite element method (FEM) stability analysis. 

As an example of the information gained from a typical FSM analysis, consider the C-section of 
example (a) as shown in Figure 2. The developed FSM model has numerous internal nodal lines to 
ensure the accuracy of the local buckling solution. The model has a total of 21 nodal lines, and thus 84 
independent DOF. The eigenvalue problem size is thus 84x84. Further, the eigen solution is performed 
at 59 different lengths to generate the results of Figure 2b. The analysis results demonstrate FSM’s 
ability to capture all cross-section stability modes of interest, from local plate instabilities to global 
member instability, and FSM provides a means to perform an initial classification. Based on the half-
wavelength, the presence of minima, and the observed cross-section deformations, out of 84 possible 
buckling modes examined at 59 different lengths, three classes of buckling modes are approximately 
defined: local, distortional, and global. 

FSM greatly reduces the problem size below a conventional FEM (shell/plate element) stability 
analysis. However, the further conceptual reduction of the solution (e.g., our 84x84 eigen problem 
solved 59 times) down to three buckling classes: local, distortional, and global, is necessary for design. 
Without this reduction the possibilities remain too numerous, and it is impractical to provide engineers 
with reasonable guidelines on the post-buckling and collapse response of all the modes. As detailed in 
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Schafer and Adany (2005) exceptions exist where the FSM analysis is not sufficient to definitively 
identify the classes. If the buckling classes are defined properly from the start it should be possible to 
perform the solution directly for classes of modes; instead of indirectly as is done in a conventional 
FSM analysis. In this way, the conceptual reduction performed at the conclusion of an FSM analysis 
could become a mechanical reduction performed at the beginning of an analysis. 
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Figure 2. Finite strip analysis of a C-section with lips under pure compression, example (a) 

Definition of Buckling Mode Classes 
General
Generalized Beam Theory (GBT) is the only known method which is able to produce and isolate 
solutions for all the buckling modes: global, distortional and local. Further, modes identified via the 
GBT methodology are generally in accordance with commonly used definitions. Thus, our aim is to 
identify the critical assumptions in the GBT formulation that lead to the method’s ability to isolate the 
modes. However, the goal is not to mimic the GBT formulation, but rather to construct the underlying 
GBT ideas as a series of distinct mechanical assumptions. These mechanical assumptions can then be 
enforced through constraints in more general methods such as FSM or FEM. 

Mode Definitions 
Based on an analysis of the GBT methodology, we put forth the following criteria as the critical 
mechanical assumptions necessary for defining the buckling modes. (Coord. system as in Figure 1.)

   Criterion #1, membrane deformations:  

xy = 0, membrane (in-plane) shear strains are zero,  

x = 0, membrane transverse strains are zero, and  
v = f(x), long. displacements are linear in x within an element/strip.  

   Criterion #2, longitudinal warping,   

y  0, long. strains/displacements are non-zero along the length. 
   Criterion #3, transverse flexure, 

y = 0, no flexure in the transverse direction. 

The buckling modes can then be defined as follows (see also Table 1). 
Global modes are those deformation patterns that satisfy all three criteria. 
Distortional modes are those deformation patterns that satisfy criteria #1 and #2, but do not 
satisfy criterion #3 (i.e., transverse flexure occurs). 
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Local modes are those deformation patterns that satisfy criterion #1, but do not satisfy criterion 
#2 (i.e., no longitudinal warping occurs) while criterion #3 is irrelevant. 
Other modes are those deformations that do not satisfy criterion #1. Note, other modes do not 
exist in conventional GBT, but must exist in FSM due to the inclusion of membrane DOF. 

Table 1. Mode classification table 

G
modes

D
modes 

L
modes 

O
modes 

xy = 0, x = 0, v is linear Yes Yes Yes No 

y  0 Yes Yes No - 

y = 0 Yes No - - 

Modal Decomposition and the Constrained Finite Strip Method 
General
The application of the above definitions implies that the appropriate deformation constraints, which 
are formulated in the three criteria, must be introduced into FSM. As a consequence, the original 
number of degrees of freedom (DOF) is necessarily reduced since the member can only deform in 
accordance with the strain conditions. Thus, our goal is to work out how the DOFs are reduced due to 
the various strain assumptions, and how this DOF reduction can practically be handled. Although the 
derivations are not extremely complicated, they are much longer than the limits provided by this paper. 
For this reason, here only a small example will be presented to demonstrate the method, which, at the 
same time, highlights all the important features of the more general derivations. Complete derivations 
can be found in (Ádány and Schafer 2005a). 

Constraint Matrix Derivation 
Consider the membrane deformation of a single finite strip, as shown in Figure 1. If the longitudinal 
distributions are assumed to be sinusoidal, as in the classical implementations of FSM, e.g., in 
CUFSM, the displacements can be expressed as a product of the assumed shape functions and the 
nodal displacements. 
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where u1, u2, v1, v2 are the transverse and longitudinal nodal displacements, m is the number of half-
sine waves in the longitudinal direction, and a and b are the length and width of the strip, respectively. 

Let us now introduce the criteria for zero transverse membrane strains: 

0
x
u

x (4) 

Substituting Eq. (2) into Eq. (4): 

0
a

ymsin
b

uu
x
u 21

x (5) 

and since the sine function is generally not equal to zero, u1 and u2 must be equal to each other in order 
to satisfy the equality. 

This implies that the transverse displacements of the strip’s two nodal lines must be identical, which is 
a natural consequence of the zero transverse strain assumption. In practice, the identical u
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displacements prevent those deformations where the two longitudinal edges of the strip are not 
parallel, as illustrated in Figure 4. 

Figure 3. Effect of x = 0 strain constraint on membrane deformations 

The above derivation demonstrates that the introduction of a strain constraint reduces the number of 
DOFs, in this particular case from 4 to 3. Thus, we can define the new, reduced DOFs by u, v1 and v2,
while the relationship of the original and reduced displacement vectors can be expressed as follows: 
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(6)  

or in short: 

rRdd (7) 
where R is the constraint matrix, which is a representation of the introduced strain constraints.  

Constraint Matrix 
In case of the more general strain-displacement constraints, and more general cross-sections, the 
derivations are somewhat more complicated, but finally the associated constraint matrices (R) can be 
defined, as shown in Ádány and Schafer (2005a,b) for G and D modes and Ádány (2004) for L and O 
modes, and thus apply for all the criterion summarized in Table 1. Since a different R matrix may be 
constructed for each of the modal classes: G, D, L, and O, taken together they span the entire original 
nodal basis and represent a transformation of the solution from the original nodal basis to a basis 
where G, D, L, and O deformation fields are segregated.  

The columns of the R constraint matrices are the deformation fields associated with the G, D, L, and O 
spaces. For the C-section of example (a), modelled only with nodal lines at the corners and the free 
edge, making for a 24 DOF model, the columns of the R matrix are provided graphically in Figure 4.
Figure 4a and b provide the warping displacements and transverse displacements for the G and D 
modes. An important characteristic of these modes is that the transverse displacements are uniquely 
defined by the warping displacements. Figure 4c provides the transverse displacements for the L 
modes (note, no warping occurs in the L modes). As shown in the figure, these L modes appear to be 
in the nodal DOF basis, but they are not identical to the original FSM nodal basis, because they 
represent only the part of the nodal rotations that meet the L constraints – note nodal rotations occur in 
the G and D modes as well. Finally, Figure 4d and e provide the O modes, associated with shear and 
transverse extension. As discussed in detail in Ádány and Schafer (2005a,b) additional transformation 
inside the G, D, L, O spaces are possible and desirable. One attractive option is to use unit-member 
axial modes as detailed in Ádány and Schafer (2005b). In many applications we are interest in only 
one mode class, and in such a case the R matrix truly represents a constraint on the original DOF and 
can be applied to reduce the problem size. 

Applications for the Constrained Finite Strip Method 
Pure Mode Calculation 
By the application of constraints associated with the strain assumptions of the various modes as 
described in Table 1, the problem of pure buckling mode calculation can be solved. Instead of solving 
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the generalized eigenvalue problem of the member, as given in Eq. (1) one solves the reduced (or 
constrained) problem: 

dKdK grr (8) 

where Kr = RTKR and Kgr = RTKgR are the elastic and geometric stiffness matrix of the reduced DOF 
problem, respectively. R may be associated with any combination of the G, D, L, and O spaces or may 
include as little as one deformation field, for example D1 of Figure 4, and thus reduce the problem to 
as little as one DOF. 

G1/O1 G2 G3 G4 D1 D2
(a) warping displacements of G and D modes 

G1/O1 G2 G3 G4 D1 D2
(b) transverse displacements of G and D modes 

L1 L2 L3 L4 L5 L6 L7 L8
(c) transverse displacements of L modes (warping displacements are zero) 

O2 O3 O4 O5 O6
(d) warping displacement of O modes based on shear deformation (transverse displacements are zero) 

O7 O8 O9 O10 O11
(e) transverse displacement of O modes based on transverse extension (warping displacements are zero) 

Figure 4. Deformation modes of example (a) (nodal lines at fold lines only, model has 24 DOF) 

To demonstrate the pure mode calculation results consider again the analysis of example (a). In Figure 
5a the conventional FSM analysis is compared to three separate analyses, one constrained to the L 
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the 8 deformation modes of Figure 4c requires solution of an 8x8 eigen problem. The D space, 
spanned by the last two deformation modes of Figure 4a and b requires solution of a 2x2 eigen 
problem, but actually the anti-symmetric D2 mode does not contribute in this loading, so the solution 
can be simplified to a simple algebraic equation involving only the D1 mode. The G space, spanned by 
the second through the fourth deformation modes of Figure 4a and b requires solution of a 3x3 eigen 
problem, and may be reduced to an algebraic equation for weak-axis flexural buckling and a 2x2 
equation for flexural-torsional buckling. The constraint conditions successfully separate the modes. 

The difference between the conventional FSM analysis and the D mode analysis is the most striking 
feature of the comparison. In Figure 5b the contribution of the L deformation modes and O 
deformation modes to this difference is demonstrated. Based on the mechanical definitions assumed 
here, the distortional minima in a conventional FSM analysis is not a pure mode; rather it includes 
interaction with additional mode classes; most notably, local buckling. Analysis of the combined LD 
space (9 DOF) provides a solution within ½% of the conventional FSM analysis (24 DOF). In this 
example the O modes must also be included (an additional 10 DOF) to close the error to zero. In other 
cross-sections distortional buckling may have a stronger interaction with global modes and thus the G 
space may be more important to include than the L space. No general conclusion can currently be 
made with regard to the significance of D modes which have interaction with L or G modes, but it is 
reasonable to assume that such a situation does impact the nature of the post-buckling response. 
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Figure 5. Comparison of conventional FSM analysis results with constrained models for example (a) 

Mode Contribution Calculation 
It is desirable to understand how the different pure modes of Eq. (8) for G, D, L, and O contribute in 
an all-mode or traditional FSM calculation, i.e. Eq. (1). This may be completed by transforming any 
displaced shape (buckled mode shape) into the eigenbasis created by the pure mode solution of Eq. 
(8). The eigenvectors d from the solution to Eq. (8) fully describe the pure mode solutions. Eq. (7) 
provides transformation from (or to) the pure mode space to the original DOF space. 

The basis vectors must be normalized. Here, we select a normalization so that each base vector is 
associated with unit strain energy. In practice, let us consider again the eigenvalue problem of the 
member, as defined by Eq. (1). Any orthogonalized base vector satisfies Eq. (1), thus, we may write: 

ogo dKKd (9) 

where do denotes the orthogonalized base vector. By pre-multiplying Eq. (9) with ½do
T:

ogooo dKdKdd TT

2
1

2
1 (10) 

space, one constrained to the D space, and one constrained to the G space. The L space, spanned by 
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where the left-hand side of the equation is the elastic strain energy, which by scaling the do vector can 
be set to unity. Any displacement vector can now be expressed as a linear combination of the basis 
vectors, by solving the linear matrix-equation as follows: 

dcDo (11) 
where Do is a square matrix constructed from the orthonormal do base vectors so that each column of 
Do would be a base vector; d is the given general displacement vector, while c is a vector containing 
the coefficients which are to be calculated. The contribution of any individual mode can be calculated 
as the ratio of the coefficient of that mode and the sum of all the coefficients, as follows: 

all
ii cc (12) 

Similarly, the contribution of a mode class can be defined as: 

all
i

mode
i cc (13) 

These definitions are preliminary, and imperfect. Currently the modal contributions defined in this 
manner are not unique. However, from a heuristic standpoint, they have value in allowing for an 
exploration of the various modal contributions. 

Figure 6 provides modal contribution results for the cross-section of example (a), following Eq. (13). 
Generally the figure indicates the extent to which the G, D, L, or O classes contribute to the 
deformations at a given half-wavelength. For example, at the location of the distortional minimum 
(second minima in the curve of Figure 6a) D is the dominant class, but contributions from the other 
classes are observed. The defined contributions are imperfect, as they do not directly reflect the 
deformations impact on the buckling load. For example, at the local minima both D and O classes 
would appear to provide a significant modal contribution, but the analysis of Figure 5a indicates that 
the L class can provide the buckling load with only small error. While a robust modal contribution 
factor still remains a topic of future work, the value of such a metric is illustrated in Figure 6.
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Figure 6. Mode contribution/identification for example (a) 

Discussion of Global Modes 
A comparison of different solution methods for global modes highlight some important differences 
between constrained FSM, conventional FSM, and classically used analytical solutions. In Figure 7a
the constrained FSM solution is compared to the classical analytical solution for flexural-torsional 
buckling (Timoshenko and Gere 1936). In the Figure, “Theory G1 – G3” represent the first three roots 
of the classical cubic equation that is solved for flexural-torsional buckling, and “G1 – G3” represent 
the first three eigenvalues of an FSM model constrained to only the deformations consistent with 
global modes (see Figure 4a and b). Constrained FSM gives higher critical forces. The difference is 
near 10% for any buckling lengths of practical importance. This difference is a direct consequence of 
the basic assumptions between beam and plate theory. 
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Constitutive Relations and Global Modes 
In classical analytical solutions for global flexural buckling only the longitudinal normal stresses are 
considered, while the transverse normal stresses are assumed negligible. The problem is handled by a 
beam model, and only a one-dimensional constitutive relation, e.g.: 

0

E
0

z

yy

x

(14) 

Although rarely considered, transverse strains are not zero, even if they are small. FSM calculations 
are predicated on a plate model, and thus a two-dimensional constitutive relation, e.g.: 
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 (15) 

It is assumed that the plates that form the cross-section are thin enough (compared to their width and 
length) that the Poisson effect should be considered. Thus, neither x nor y is negligible, while z is 
implicitly assumed to be zero. If we calculate the pure global or distortional modes by applying the 
constraint matrix (R), we generate deformations that must satisfy the conditions that x and xy are zero. 
Thus, for constrained FSM the normal stresses can be expressed as follows: 

0
1

E
1

E

z

y2y

y2x

 (16) 

The difference between the beam model, Eq. (14), and the constrained FSM model, Eq. (16), is 
conspicuous. For longitudinal stresses the difference is equal to 1/(1- 2). Considering that for steel the 
Poisson’s ratio is approximately 0.3, the difference in the longitudinal stresses is approximately 10%. 
For flexural (global) buckling the only non-zero stress component (according to a beam model) is the 
longitudinal stress, consequently this difference in the longitudinal stresses directly transfers into a 
difference in the critical loads. The difference between the flexural buckling load calculated by the 
beam model and the constrained FSM is 1/(1- 2) or 10% for =0.3. Flexural-torsional global buckling 
involves shear stresses which are not affected by the Poisson’s ratio, therefore, a smaller difference 
(i.e., < 10%) occurs between analytical and constrained FSM solutions. 

Classical Flexural-Torsional Buckling Beam Model 
Although the beam model is the classical model of structural mechanics, applied for centuries, and at 
least for decades even in buckling problems, its application for thin-walled members can be regarded 
as only an approximation. Two important approximations are involved: (i) transverse stresses are 
neglected and (ii) transverse plate flexure is neglected.  

To asses the consequence of neglecting the transverse stresses, let us consider the flexural buckling of 
Example (a). Either the column buckles about its minor or major axis. The majority of the elastic 
strain energy develops from membrane strains/stresses. If the plates that make up the member are 
slender enough, the plane stress assumption is certainly more reasonable than the 1D stress assumption, 
which means that the transverse stresses (Poisson effect) cannot be neglected. Thus, from this aspect 
the beam model under-estimates the column rigidity. Transverse flexure, though small in extent, 
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FEM analysis. It is obvious that transverse flexure provides additional flexibility to the column, 
consequently, from this aspect the beam model over-estimates the column rigidity. Thus, the beam 
model involves two competing approximations which nearly compensate each other so that the global 
buckling load provided by the beam model shows good agreement with more sophisticated models 
(e.g. FSM, see below) for most of practical cases, see Figure 7b.

Conventional FSM Model 
A conventional FSM model (which is equivalent with a plate FEM model) considers both the Poisson 
effect and transverse plate flexure. If the analyzed plate elements are thin enough (which is always the 
case for cold-formed steel), and the applied finitization is sufficiently dense, both effects are 
considered in a correct way. Although these models still involve certain approximations (e.g. 
stresses/strains perpendicular to the plates are neglected), it is fair to say that FSM models calculate 
the elastic buckling of a thin-walled member with negligible error.  

Constrained FSM Model 
The constrained FSM model is a reduction of the regular FSM model, therefore it handles the plate 
elements as plates, i.e. together with the Poisson effect. However, the transverse strains as well as 
transverse flexure is completely eliminated, consequently a constrained FSM model behaves more 
rigidly than a regular FSM model. At the same time it differs from beam models, too, as already 
demonstrated via Eqs. (14) and (16), because it is not possible to simultaneously enforce zero 
transverse strains (which is a requirement from the basic GBT assumptions) and zero transverse 
stresses (which is the assumption of beam models). Since the constrained FSM satisfies the zero 
transverse strain condition, it gives larger rigidity, consequently higher critical forces than the beam 
models, as presented in Figure 7a.

Modified Constrained FSM 
Unconstrained FSM provides the most rigorous solution, but does not allow decomposition nor 
identification of the buckling modes. Constrained FSM is clearly defined, but its lack of agreement 
with classical analytical solutions (the beam model) makes its practical use limited. Exact agreement 
between the beam model and constrained FSM is impossible. However, if we artificially assume that 
Poisson’s ratio is zero, the constitutive equation for the constrained FSM model, Eq. (16) reduces to 
that of the beam model, Eq. (14). The two models are not identical, since transverse strains are zero in 
constrained FSM and non-zero in the beam model, but this difference has little effect, as Figure 7b
shows.  
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Figure 7. Comparison of global mode calculations for example (a) 

always takes place during flexural buckling. This may easily be demonstrated in a regular FSM or 
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The Impact of Corner Radii 
In existing models with GBT the corners are always modeled as sharp, no corner radii is included. 
Comparison of FSM models with and without corner radii modeled, as shown in Figure 8a support the 
notion that the basic behavior is little influenced by small corner radii. A slight change in distortional 
buckling is observed, but this is still less than a few percent difference between the models. 
However, from the standpoint of modal decomposition and the constrained FSM methods developed 
herein, the addition of corner radii has an important effect. Figure 8b illustrates the prediction of the 
local and distortional modes with three different models: an all mode, or conventional FSM analysis, 
and constrained models including only the D modes, and L modes. In addition, the figure also 
provides the predicted trasnverse displacements for the first minima (local buckling mode) predicted 
in the half-wavelength vs. buckling load plot. Even though the only change to the model is the 
addition of rounded corners, now the D modes do a better job of capturing the first minima than the L 
modes. Comparing this to the model with sharp corners of Figure 5a, the difference is striking. In fact, 
the predicted buckled shape via the L mode analysis is far too stiff when compared to a conventional 
(all mode) FSM analysis, and does not capture the appropriate deformations. 
Comparing the transverse displacements in local buckling (Figure 8b); the L modes allow rotation 
only for the main nodes, and due to the angle changes around the corner all of the corner nodes are 
main nodes, thus the L modes effectively prevent the rotation of the corner as a global (rigid-body-like 
rotation). On the other hand, D modes allow transverse displacements, even though it is a special case 
of transverse flexure only, but since there are a many nodes in the vicinity of the corners, these 
transverse displacements result in a reasonable approximation of the real (all-mode) displacements. 
The addition of the corners also have a pronounced influence on the relationship between warping 
displacements and in-plane deformations. With the corners modeled explicitly, a gradient in the 
warping displacements through the corners allows a rotation to be engaged that closely mimics the 
corner rotations in the L modes of the sharp corner model. This may be best seen in the observed 
warping displacements, as given in Figure 9.
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Figure 8. Impact of modeling cross-section with round corners on (a) FSM and (b) decomposition 

The warping (longitudinal) displacements for the local buckling minima are provided in Figure 9.
Comparison of Figure 9a and b, demonstrates that inclusion of corner radii alters the expected 
warping displacements. In a sharp corner model, the warping displacements only exist near the 
flange/lip juncture and have little impact on the actual result. With corner radii included in the model 
non-negligible warping also exists at the web/flange juncture; and further the warping distribution 
across the flange is approximately uniform. For constrained FSM models (Figure 9c and d) the D 
modes are unsuccessful in reproducing the actual (all mode) warping displacements, but the rounded 
corners allow warping at the web/flange juncture to engage bending in the web – and thus reasonably 
approximate the all mode local minima. Of course, the analysis consisting of L modes has, by 
definition, no warping, and in this case is a poor predictor.  
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sharp corner round corner model
(a) all modes (b) all modes, (c) D modes (d) L modes 

Figure 9. FSM predicted warping displacements for the local buckling minima 

The constrained FSM method, based on GBT’s mechanical assumptions, provides a unique means of 
decomposing a solution; however, it can not yet provide a general tool for modal classification and/or 
identification. The primary reason for this, is that reliance on heuristic definitions that describe the in-
plane deformations; or simply point to minima in an FSM plot; are not themselves based on strict 
mechanical assumptions. Agreed upon definitions are needed in order to advance the field; however 
even simple issues such as models with corner radius included, demonstrate the challenges inherent in 
employing strict mechanical definitions. The corner radius models also suggest that further exploration 
of the relationship between criterion 3 regarding transverse flexure, and local plate bending are needed. 

Conclusions 
This paper provides an introduction to a new numerical method whereby general purpose finite 
element or finite strip methods can be constrained to deformation fields consistent with a particular 
class of buckling modes. The mechanical assumptions employed for this decomposition are based on 
Generalized Beam Theory, and implemented in a finite strip analysis. The decomposition (or 
constraining) of the conventional cross-section stability solution provides increased numerical 
efficiency and the potential to investigate cross-section stability behavior in a more detailed fashion. 
Some challenges exist when the approach is adopted; primarily related to the assumptions inherent in 
conventional solutions. For example, with global buckling modes it is shown that the constrained finite 
strip solutions are stiffer than analytic solutions due to the underlying constitutive relations. Models 
with and without corner radii present additional challenges for the mechanical definitions used to 
decompose the modes. Mechanics-based definitions of the cross-section stability modes do not agree 
well with current heuristic definitions when corner radii are present. Reasons for this difference are 
discussed in the paper. Modal decomposition brings the basic tools of Generalized Beam Theory for 
use in the more general finite strip method context, in doing so, both the advantages and limitations of 
such an approach are highlighted. 
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