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Abstract

Stochastic structural mechanics deals with the analysis of random phenomena occurring in structural
systems or components. There are two major categories of structural uncertainties which involve
spatial correlation and which consequently require the treatment as random fields. These are:

• Material properties such as modulus of elasticity or strength,
• Geometrical properties such as shape or thickness

of structural components. The outcome of the stochastic structural analyses is significantly affected
by the appropriate treatment of the random properties in the context of the Finite Element method.

The paper will provide an overview of random field representation as appropriate for the stochastic
finite element method (cf. Matthies and Bucher, 1999). This includes integral representation models
as well a point representation models. In addition, conditional random fields as required in the
presence of pointwise deterministic information (e.g. from measurements) are introduced.

Example applications illustrate these concepts and discuss the numerical implications of random
field modeling. These applications involve static and dynamic problems which arise in system iden-
tification (Macke and Bucher, 2000; Bucher et al., 2003) as well as dynamic stability issues due to
geometrical imperfections of shells (Most et al., 2004).

1. Random Fields

A random field H(x) is a real-valued random variable whose statistics (mean value, standard devi-
ation, etc.) may be different for each value of x (Matthies et al., 1997; Matthies and Bucher, 1999),
i.e.,

H ∈ R; x = [x1, x2, . . . xn]
T ∈ D ⊂ R

n. (1)

The mean value function is defined as

H̄ (x) = E[H(x)], (2)

whereby the expectation operator E is to be taken at a fixed location x across the ensemble, i.e., over
all possible realizations H(x, ω) of the random field (see Figure 1).

The spatial correlation, i.e., the fact that we observe a specific dependency structure of random
field values H(x) and H(y) taken at different locations x and y is described by the auto-covariance
function

CHH (x, y) = E[{H(x)− H̄ (x)}{H(y)− H̄ (y)}]. (3)

With respect to the form of the auto-covariance function we can classify the random fields. A random
field H(x) is called weakly homogeneous if

H̄ (x) = const. ∀x ∈ D; CHH (x, x + ξ ) = CHH (ξ ) ∀x ∈ D. (4)
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Fig. 1. Ensemble of realizations of one-dimensional random field.

This property is equivalent to the stationarity of a random process. If the covariance function depends
on the distance only (not on the direction), i.e.,

CHH (x, x + ξ) = CHH (‖ξ‖) ∀x ∈ D, (5)

then a homogeneous random field H(x) is called isotropic. For numerical computations it is useful
to represent a continuous random field H(x) in terms of discrete random variables ck; k = 1 . . .∞
(Ghanem and Spanos, 1991, Brenner and Bucher, 1995):

H(x) =
∞∑
k=1

ckφk(x), x ∈ D ⊂ R
n; ck, φk ∈ R. (6)

The functions φk(x) are deterministic spatial shape functions which are usually chosen to repres-
ent an orthonormal basis on D . The random coefficients ck can be made uncorrelated, which is an
extension of orthogonality into the random variable case.

This representation is usually called Karhunen–Loève Expansion. It is based on the following
decomposition of the covariance function:

CHH (x, y) =
∞∑
k=1

λkφk(x)φk(y), (7)

in which λk and φk(x) are the eigenvalues and eigenfunctions, respectively. These are solutions to
the integral equation∫

D

CHH(x, y)φk(x)dx = λkφk(y). (8)

Mathematically, Equation (8) is an integral equation of the second kind.
In most Finite-Element applications the random field H(x) is discretized right from the start as

Hi = H(xi); i = 1 . . .N. (9)

A spectral representation for the discretized random field is then obtained by

Hi =
N∑
k=1

φk(xi)ck =
N∑
k=1

φikck. (10)
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Obviously, this is a matrix-vector multiplication

H = 	c. (11)

The orthogonality condition for the columns of 	 becomes

	T	 = I (12)

and the covariance matrix of the components of the coefficient vector c is

Ccc = diag(σ 2
ck
). (13)

Both conditions can be met if the columns φk of the matrix 	 solve the following eigenvalue
problem:

CHHφk = σ 2
ck

φk; k = 1 . . . N. (14)

Statistically, the Karhunen–Loève expansion is equivalent to a representation of the random field
by means of a Principal Component Analysis (PCA).

There are engineering applications in which the values of a structural property are known (e.g.
from measurements) in certain selected locations. In geotechnical applications this may be a specific
soil property which can be determined through bore holes. Between these locations, however, a
random variability is assumed. The strategy to deal with this relies on a regression approach. First we
assume that the structural property under consideration without any measurements can be modeled
by a zero mean random field H(x). This field is modified into Ĥ (x) by taking into account the
additional knowledge.

Assume that the values of the random field H(x) are known at the locations xk, k = 1 . . . m. We
then write a stochastic interpolation for the conditional random field:

Ĥ (xi ) = a(x)+
m∑
k=1

bk(x)H(xk) (15)

in which a(x) and bk(x) are random interpolating functions whose statistics have yet to be determ-
ined. They are chosen to make the mean value of the difference between the random field and the
conditional field zero, i.e. E[Ĥ (x)− H(x)] = 0 and to minimize the variance of the difference, i.e.
E[(Ĥ (x)−H(x))2] → Min.

Carrying out the analysis we obtain an expression for the mean value of the conditional random
field.

¯̂
H(x) = [

CHH (x, x1) CHH(x, x2) . . . CHH(x, xm)
]

C−1
HH

⎡
⎢⎢⎢⎣
H(x1)

H(x2)
...

H (xm)

⎤
⎥⎥⎥⎦ . (16)

In this equation, the matrix CHH denotes the covariance matrix of the random field H(x) at the
locations of the measurements. The covariance matrix of the conditional random field is given by

Ĉ(x, y) = C(x, y)− [
CHH(x, x1) CHH (x, x2) . . . CHH (x, xm)

]
C−1
HH

⎡
⎢⎢⎢⎣

CHH(y, x1)

CHH(y, x2)
...

CHH(y, xm)

⎤
⎥⎥⎥⎦ . (17)
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Fig. 2. Volume element with nodal displacements.

2. Stochastic Finite Element Formulation

As discussed earlier, the element stiffness matrix Ke relates the nodal forces Fe to the nodal dis-
placements Ue:

Fe = KeUe (18)

in which, for the element with me nodes (j); j = 1 . . .me as sketched in Figure 2:

Fe = [
(fxj , fyj , fzj ); j = 1 . . .me

]T ; Ue = [
(uj , vj ,wj ; j = 1 . . .me

]T
. (19)

Based on the principle of virtual work, the element stiffness matrix for a linear material law (assum-
ing geometrical linearity as well) is obtained as

Ke =
∫
V e

BT (x, y)D(x, y)B(x, y)dV e. (20)

Typically, the strain interpolation matrix B(x, y) is chosen in polynomial form, i.e.

B(x, y) =
∑∑
k+l≤r

Bklxkyl; k, l, r ≥ 0. (21)

In this equation, Bkl are constant matrices. In fact, for the CST element shown above there is only
one such matrix, i.e. B00. Assuming that the system randomness is described by a random elastic
modulus E(x, y), the elasticity matrix D(x, y) can be written as

D(x, y) = D0E(x, y). (22)

Using the polynomial form of B(x, y), the element stiffness matrix finally becomes

Ke =
∑∑
k+l≤r

∑∑
m+n≤r

BTklD0Bmn

∫
V e

E(x, y)xkylxmyn dV e. (23)

The last term in this equation is a so-called weighted integral of the random field E(x, y).

Xeklmn =
∫
V e

E(x, y)xkylxmyn dV e. (24)
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Using this representation, it is possible to achieve a description of the random variation of the element
stiffness matrix in terms of the mean values and the covariance matrix of the weighted integrals.

Due to the numerical rather than analytical integration procedures as utilized in FE analysis, this
weighted integral is represented by linear combinations of the values Rj ; j = 1 . . . n of the random
field at discrete integration points.

The global stiffness matrix is then assembled by applying standard FE techniques into the form

K =
n∑
j=1

KjRj , (25)

which can be used as a starting point for a perturbation analysis with respect to the discretized
random field Rj .

The general situation of a SFE analysis in nonlinear dynamics generally requires the solution of
the following matrix-vector equation

Mẍ + Cẋ + r(x) = f(t). (26)

In Equation (26), M is the mass matrix, C is the damping matrix, x denotes the vector of nodal dis-
placements, r(x) is the vector of restoring forces depending nonlinearly on the nodal displacements,
and f(t) is the applied load.

Within the FE concept, the restoring force vector r(x) is assembled from corresponding element
forces, e.g. based on the principle of virtual work in the form

r(x)δxe =
∫
Ve

σe(ε)δεedVe. (27)

In Equation (27), the subscript e refers to a particular element. Obviously, this equation implies that
the randomness of the material properties immediately affects the calculated restoring forces due to
the integration over the volume of the element. Consequently any randomness of these material data
will be reflected in the restoring forces as well as the tangential stiffness matrix KT derived from
them.

Utilizing a linearization approach at element level, classical SFE-methods as outlined above can
be applied.

3. Perturbation Approach

For static problems, the linear finite element equations are

Ku = F, (28)

where K is the stiffness matrix, u is the nodal displacement vector and F is the nodal force vector.
In the following we will assume that only the stiffness matrix involves randomness, i.e. the Young’s
modulus E(x) is described as

E(x) = Ē(1 + εf (x)) (29)

with Ē and ε as the mean and the coefficient of variation of the Young’s modulus, respectively, and
f (x) as a zero-mean unit random field. Utilizing the stochastic finite element method the random
field is discretized by a set of n zero-mean unit random variables Rj with covariances Cov[Rj ,Rk]
(j, k = 1, . . . , n). In case of small to moderate coefficients of variation ε of the Young’s modulus a
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first-order perturbation approach suffices to render accurate second-moment results. Therewith, the
nodal displacements can be written as

u = ū + ε K̄−1
n∑
j=1

∂K
∂Rj

∣∣∣∣
µj

Rj ū, (30)

whereby K̄ and ū are the stiffness matrix and the nodal displacement vector evaluated at the means
µj = 0 of the random variables Rj . Taking expectations, the mean and the covariance of the nodal
displacements are given by

E[u] = ū (31)

and

Cov[u,u] = ε2K̄−1
n∑
j=1

n∑
k=1

∂K
∂Rj

∣∣∣∣
µj

ū ūT
∂K
∂Rk

∣∣∣∣
T

µk

Cov[Rj ,Rk]K̄−T , (32)

respectively.
To include measured dynamic responses in the random field description – and therewith the nodal

displacements – the generalized eigenvalue problem

(−Mλi + K)ei = 0 (33)

has to be solved, with M denoting the (deterministic) stiffness matrix, and λi and ei the i-th eigen-
value and eigenvector, respectively. Expressing the eigenvalues by their Rayleigh coefficients

λi = eTi Kei
eTi Mei

(34)

and applying again a first-order perturbation approach, the random eigenvalues λi can be expressed
as a linear combination of the random variables Rj , i.e.

λi = λ̄i + ε
n∑
j=1

γijRj = λ̄i + ε
n∑
j=1

1

ēTi Mēi
ēTi
∂K
∂Rj

∣∣∣∣
µj

ēiRj , (35)

where ēi are the eigenvectors evaluated at µj = 0. Givenm identified frequencies ωi (λi = ω2
i ), this

information can be included in the random field description by transforming the random variables
Rj such that they are conditional on the set of measurements s = [s1, s2, . . . , sm], whereby si =
λi − λ̄i . Consequently, also the nodal displacements are conditional on the measurements s, i.e. the
conditional mean and covariance are

E[u|s] = ū + ε K̄−1
n∑
j=1

∂K
∂Rj

∣∣∣∣
µj

E[Rj |s] ū (36)

and

Cov[u,u|s] = ε2K̄−1
n∑
j=1

n∑
k=1

∂K
∂Rj

∣∣∣∣
µj

ū ūT
∂K
∂Rk

∣∣∣∣
T

µk

Cov[Rj ,Rk|s]K̄−T . (37)
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4. Random Fields Conditional on Dynamic Measurements

4.1. Formulation

As can be seen from Equation (35), the random eigenvalues can be expressed as a linear combination
of the random variables Rj with coefficients γij . Constructing a new set of random variables Q by
the transformation

Q = [
γ 1, γ 2, . . . , γ n

]T R = �TR, (38)

whereby the transformation vectors γ i are defined as γ i = [γi1, γi2, . . . , γin], the mean and covari-
ance of Q are

E [Q] = �T E [R] (39)

and

Cov [Q,Q] = �TCov [R,R] �, (40)

respectively. Given a set of m measurements s, these measurements can be interpreted as a realiza-
tion of the random vector S = [Q1,Q2, . . . ,Qm]. To include the measurement information in the
statistical description of the random field, a conditional random field is defined with mean

E[Qj |s] = E[Qj ] + Cov[Qj,S](Cov[S,S])−1(s − E[S]) (41)

and covariance

Cov[Qj,Qk |s] = Cov[Qj,Qk] − Cov[Qj ,S](Cov[S,S])−1
Cov[S,Qk] (42)

that possesses the desired properties (Ditlevsen, 1991). In other words, the random field described by
Equations (41) and (42) is conditional on complete agreement with the measurements s made. The
conditional mean and covariance of the original random variables R – as required by Equations (36)
and (37) – are given by

E [R|s] = �−T E [Q|s] (43)

and

Cov [R,R|s] = �−T Cov [Q,Q|s] �−1, (44)

respectively.

4.2. Numerical Example: Plate Structure

As a numerical example a plate structure of size 4l by 2l (l = 1.25 m) with thickness t = 0.25 m is
investigated (see Figure 3). Young’s modulus E = 30.0 GPa, Poisson’s ratio ν = 0.16, correlation
length lc = 1.0 m, coefficient of variation ε = 0.1, mass density � = 2500 kg/m3, p(x, y) =
1.6 MPa.

It is assumed that a set of natural frequencies ωi is measured (cf. Table 1) for one particular
realization of the random field as shown in Figure 4. The unconditional mean and standard deviation
of the vertical deflection under the given static load are shown in Figures 5 and 6, respectively.
By including the measurements of the two lowest natural frequencies, the standard deviation of the
deflection is considerably reduced as shown in Figure 7. As shown in Macke and Bucher (2000), the
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Fig. 3. Plate structure.

Fig. 4. Realization of random field.

Table 1. Mean and measured frequencies.

i ω̄i ωi

1 499 504

2 797 796

3 1290 1294

4 1686 1694

5 1976 1979

6 1976 1993

7 2457 2472

Fig. 5. Mean displacement ū.

effect of including additional frequency measurement on further reduction of the standard deviation
is very small.
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Fig. 6. Initial standard deviation.

Fig. 7. Conditional standard deviation.

5. Dynamic Stability Analysis

5.1. Nonlinear Stability Analysis

The equation of motion of a geometrically nonlinear structural model is given by

Mẍ + r(x, ẋ) = f(t). (45)

For neighboring trajectories, the tangential equation of motion may be utilized to describe temporal
evolution of the difference y(t)

Mÿ + Cẏ + Ky = 0. (46)

To analyze the dynamic stability behaviour of nonlinear systems an integration of Equation (45) is
necessary until stochastic stationarity is reached. In each time step, the tangential stiffness matrix K
has to be determined. With this kind of analysis a criterion for sample stability is developed. In order
to speed up explicit time integration, this equation can be projected into a subspace of dimension
m as spanned by the eigenvectors of the undamped system corresponding to the m smallest natural
frequencies (Bucher, 2001). These eigenvectors are the solutions to(

K (xstat)− ω2
i M

)
	 = 0; i = 1 . . .m (47)
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In this equation, xstat is chosen to be the displacement solution of Equation (45) under static loading
conditions. The mode shapes are assumed to be mass normalized. A transformation x = 	 v and
a multiplication of Equation (45) with 	T represents a projection of the differential equation of
motion for the reference solution into the subspace of dimension m as spanned by the eigenvectors:

v̈ + 	 T r(x, ẋ) = 	T f. (48)

The integration of Equation (48) by the central difference method (Bathe, 1996) requires a minimal
time step.

The time integration in the subspace and the computing of the restoring forces on the full system
causes the following problem: If the start displacement or velocity vector of the time integration
is not zero, for example by static loading, the projection of this vectors into the subspace is an
optimiziation problem caused by the higher number of variables in the full space. By using a least
square approach:

v = 	−1x; 	−1 =
(
	T	

)
	T (49)

this projection is optimal approximated, but not suitable for a subspace spanned by a small number
of eigenvectors. A possibility to handle this, is to start the time integration in the subspace with a
displacement and velocity vector equal to zero. The start vectors have to be saved in the full system
and the restoring force vector has to be computed by addition of the start and the time integration
vectors:

r(x, ẋ) = r(xstart + 	v, ẋstart + 	v̇);

v(t = 0) = v̇(t = 0) = 0. (50)

In the investigated cases the start vector xstart is the static displacement vector, the start velocities are
assumed to be vanished.

To analyze the stability behaviour of the reference solution x0(t), the long-term behavior of the
neighboring motion (Equation (46)) is investigated. To reduce the dimension of the equation system,
this equation can be projected into the same or a smaller subspace as Equation (48). Transformed
into the state space description we obtain:

ż =
[

0 I
−	TK	 −	TC	

]
z = A[x0(t)]z (51)

From this equation, the Lyapunov exponent λ can be determined by a limiting process:

λ(x0, s) = lim
t→∞

1

t
log ||�(x0, t)s|| (52)

in which s is an arbitrary unit vector. In Equation (52), �(x0, t) is the transition matrix from time
0 to t associated with Equation (51). Based on the multiplicative ergodic theorem (e.g. Arnold and
Imkeller, 1994) the Lyapunov exponent can also be calculated as an expected value:

λ(x0, s) = E

[
d

dt
log ||�(x0, t)s||

]
. (53)

In the current investigation, the norm ||�(x0, t)s|| is expressed in terms of

‖�(x0, t)s‖ ≤ ‖�(x0, t)‖ · ‖s‖ = ‖�(x0, t)‖. (54)
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Finally, this result is used in calculating the Lyapunov exponent according to Equation (52) by using
a matrix norm equal to the eigenvalueµmax of �(x0, t) with the maximum absolute value. The time
domain t has to be taken large enough that the Lyapunov exponent convergences to a stationary
value. For the statistical estimation of the convergence of the Lyapunov exponent, Equation (53) is
suitable.

5.2. Linear Stability Analysis

The Lyapunov exponent for the stability of the second moments of a linearized reference solution can
be determined by the Itô analysis. The nonlinear stiffness matrix in Equation (46) can be expanded
into an asymptotic series with respect to a static loading condition. Under the assumption that the
fluctuating part is small enough this series can be truncated after the linear term:

Mÿ + Cẏ + (K (xstat)+ f(t)K1) y = 0. (55)

This equation of motion is projected into a subspace of dimension m and then transformed into its
state space description analogous to Equation (51):

ż = [A + Bf(t)] z, (56)

where the coefficient matrices A and B are constant. The fluctuating part of the loading function is
assumed to be Gaussian white noise. Then Equation (56) represents a first order stochastic differ-
ential equation. For this system the Lyapunov exponent λ2 for the second moments can be easily
derived by applying the Itô calculus (e.g. Soong and Grigoriu, 1992; Lin and Cai, 1995).

The Lyapunov exponents for almost sure stability can be approximated for linear SDOF-systems
analytically (Lin and Cai, 1995):

λ = −ζ0ω0 + πSff ω
2
0

4
, (57)

where ω0 is the eigenfrequency, ζ0 is the modal damping ratio and Sff is the power spectral density
of the white noise excitation. The Lyapunov exponent λ2 for the second moments can be calculated
with

λ2 = −2ζ0ω0 + πSff ω2
0. (58)

By exploiting this, the Lyapunov exponent for the samples can be appproximated from the second
moment exponent according to

λ = λ2

4
− ζ0ω0

2
. (59)

This equation can also be applied on MDOF-systems, it should be mentioned that the term −ζ0ω0
corresponds then to the Lyapunov exponent of the system without random parametric excitation.

5.3. Reliability Investigation of a Shell Structure

A cylindrical panel was considered, which is mentioned e.g. in Krätzig (1989) and Schorling and
Bucher (1999). The assumed structure is shown in Figure 8. The geometrical and the material
proberties were given as: radius R = 83.33 m, the half width and heigth a = 5 m, the thickness
h = 0.1 m, the Young’s modulus E = 3.4 × 1010 N/m2, the mass density ρ = 3400 kg/m3 and the
Poisson’s ratio µ = 0.2. The constant load factor is P = 1000 N/m.

481



C. Bucher

Fig. 8. Nonlinear cylindrical shell structure with associated weighted imperfection shapes.

Fig. 9. Stability boundaries vs. imperfection size.

The structure is discretized with 7 × 7 nodes and meshed with geometrically nonlinear 9-node
shell elements. At a static load factor of νcrit = 16825 the structure reaches an unstable state (Krätzig,
1989: νcrit = 15120; Schorling and Bucher, 1999: νcrit = 16200). The static load is assumed to be
P0 = 0.85νcritP . The fluctuating load is considered as Pfluct = �f (t)P , where f (t) is the unit white
noise process and � is the load factor. The damping is assumed as modal damping with the damping
ratio ζk = 0.02 for all modes.

The geometrical imperfections are considered in terms of radial deviations from the perfect panel
surface and are modelled as a conditional Gaussian random field. The mean is assumed as zero
and the standard deviation as σ = 10−3 m. The correlation length of the exponential correlation
function is considered with lH = 10 m. The imperfection shapes are obtained by the decomposition
of the covariance matrix according to Equation (14). The first four imperfection shapes are shown
in Figure 8 as well. The corresponding standard deviations σYi in uncorrelated normal space are
indicated in the figure. The first shape is very similar to the buckling shape.

The structure was investigated by using the Itô analysis and it was found that only the first
imperfection shape has a major influence on the stability behaviour. The critical noise intensity of
the perfect system was obtained as D0crit = 92000π with the linear and D0crit = 20000π with the
nonlinear method by averaging 20 simulations with 105 time steps. The nonlinear analysis uses a
modal subspace spanned by 12 of the 213 eigenmodes with a critical time step of�t = 6.3 · 10−3 s.
The investigation of the first imperfection shape obtained by nonlinear analysis show observable
deviations from the linear results. This points out that the nonlinearities of this structure have a
higher influence as compared to the previous example. The obtained stability boundaries depending
on the imperfection size are displayed in Figure 9 for the linear and the nonlinear analysis.

The failure probability for this one dimensional problem can be obtained analytical from the
stability boundaries and is shown in Figure 10 depending on the noise intensity for both methods. It
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Fig. 10. Failure probabilities for both methods.

Table 2. Critical static and dynamic loads.

Model νcrit D0crit D0crit
ν = 0.85νcrit ν = 0.85νcrit,7×7

7 × 7 16825 91736π 91736π

11 × 13 15968 43946π 32116π

25 × 25 15744 32353π 13854π

is to be seen in the picture, that a sufficient approximation of the nonlinear probability graph is not
possible with the linear method.

Furthermore the discretisation influence on the stability boundaries was investigated on the per-
fect panel. Additional to the 7×7 node model, systems modeled with 11×13 (Schorling and Bucher,
1999) and 25 × 25 nodes and meshed with geometrically nonlinear 9-node shell elements were
analyzed. The critical static buckling loads are shown in Table 2. The dynamic stability boundaries
are obtained by using the linear Itô analysis under considering the static load first with 0.85νcrit of the
same model. This leads to different static loads. To obtain the stability boundaries by a constant static
load this load was assumed as 0.85νcrit of the 7 × 7 node model. The results are shown additional in
Table 2. It is to be seen that the influence of the discretization on the critical noise intensity is much
higher than on the static buckling load.

The nonlinear method was not applicable for the 11 × 13 and 25 × 25 node models, caused by
the hugh numerical effort. Simulations with the 11 × 13 node model by using a modal reduction
from 657 eigenmodes to 33 eigenmodes (the critical time step is then 3.4 · 10−3 s) did not lead to
sufficient results. The Lyapunov exponent did not converge to a stationary value, caused be the to
short time window of the simulations, limited by the available computer capacities.
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