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Abstract

This paper presents a solution for stress and deformation fields induced by a central crack in an
elasticplastic plate subject to tensile load. The solution is controlled by a crack opening parameter
related to material modulus and far-field stress.

1. Introduction

Cracks in a structure cause stress at the tip to increase to a level that could lead to structural failure.
Hence, knowledge of the stress distribution around crack tips is important to engineers and designers.
Design requirement and need for a failure analysis was the reason for a rapid development in crack
analyses especially since the World War II. Early work used small deformation theory, linear elastic
behavior and relied on un-deformed geometry to satisfy traction boundary conditions. The result
led to singular stress and strain fields at the crack tip. The contributions on this topic are part of
fracture mechanics now known as linear elastic fracture mechanics (LEFM). Because of the inherent
contradiction between small deformation and singular stress and strain fields at the tip, there is an
implicit understanding that the result obtained under such assumptions does not apply at or close to
the tip. LEFM solution does not apply at large distances from the crack tip either. The applicability
of linear elastic fracture mechanics was thus limited to a finite domain surrounding but excluding the
crack tip. However, crack tip analyses did produce the concept of stress intensity factor. This factor
controls the stress field around the tip and its value was found to depend on crack length, far field
stress and also on structural geometry. Naturally, determination of stress intensity factor became the
focus of research and its critical value became a basis for structural design.

When stresses in metals exceed yield limit, they undergo plastic deformation. Since LEFM
predicts high value for stresses in an area around crack tip, part of that area is subject to yielding
and plastic deformation. Because the yield criterion limits stresses to remain within a finite value,
the stress field within plastic zone cannot be singular. A new approach is therefore required to
accommodate plastic behavior near crack tip.

It is possible to estimate plastic zone size on the basis of elastic analyses. Irwin (1957) proposed
that the actual plastic zone is greater than this estimate. To obtain the actual size, he evaluated the
load between the tip and yield point from the elastic analysis and redistributed it over the plastic
zone. The proposal of Dugdale and Barenblatt (Barenblatt, 1962) to remove stress singularity at the
tip is based on canceling two singularities, one from the elastic analysis and other associated with the
wedge force due to yield stress. Both of these proposals considered perfectly plastic solid that allows
no strain hardening. They also assume blunting of the crack tip. There is thus an implicit recognition
that crack blunting in plastic deformation and non-singular stress field in plastic zone go hand in
hand. In other words, singular stress field is incompatible with a blunt crack tip. The conclusion is
obvious: stress at the crack tip is reduced to a finite value because of blunting of crack caused due
to deformation. If that is the case, an analysis formulated in terms of deformed geometry that allows
for blunting is expected to result in finite crack tip stress.
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Two analytical crack tip analyses for plastic solids involving work hardening nonlinear material
are due to Hutchinson (1968) and Rice and Rosenberg (1968). They obtained singular stress field
near crack tip using finite deformation theory of plasticity. They assume a stress field, known as HRR
solution, consistent with singular strain energy density. Just like the LEFM solution, HRR solution
is not valid at the tip because singular stress it predicts at the crack tip is incompatible with the
limitation on stresses imposed by plasticity. HRR solution is not valid at large distance from the tip
either. A finite element analysis by Mcmeeking et al. identifies the area over which HRR solution
applies.

Singh et al. (1994) obtained stress, strain and displacement field around a crack in an infinite,
isotropic and linear elastic plate. They used a non-classical small deformation theory. The classical
theory assumes the displacement to be small such that replacing the deformed position of a particle
by its initial un-deformed position is likely to induce negligible error in the solution. Singh et al. used
the reverse argument that in an analysis of a problem involving small displacement, it is equally
justified to use the deformed position of a particle, rather than its un-deformed position. Further,
the consistency of analysis requires the use of deformed geometry if the boundary value problem
is formulated in terms of true stress and true traction. On this basis, Singh et al. (1994) obtained a
solution for the entire plate. They obtained the geometry of the deformed crack surface as part of
their solution. In this presentation, we use their methodology to obtain stress and deformation field
in an elastic-plastic plate. Solution uses deformed geometry and linearized stress-strain behavior.

2. Background

Consider a plate with a centrally located crack subject to far field tensile stress S. for the purpose of
analysis; choose a Cartesian coordinate system with origin at the crack center, x-axis along the crack
and y-axis perpendicular to it. Suppose the crack extends from x = −a0 to x = a0 on y = 0. Let

z = a0 cosh ξ, ξ = α + iβ, i = √−1

with a = 0 describing the initial geometry of a crack in elliptical coordinates. It is a special case of
general transformation

z = x + iy = z(ξ)

that relates Cartesian coordinates (x, y) to elliptical coordinates (α, β). In the new system, crack
surface α = 0 extends from β = 0 to β = 2π . Because of the symmetry, it is sufficient to consider
the upper right quadrant (x ≥ 0, y ≥ 0) or (α ≥ 0, 0 ≤ β ≤ π/2) of the plate.

The plate under external tensile stress normal to the crack is expected to develop a non-uniform
stress field that can be obtained from solving the equation of equilibrium

∂σxx

∂x
+ ∂σxy

∂y
= 0,

∂σxy

∂x
+ ∂σyy

∂y
= 0. (1)

These equations are transformed to complex plane then combined and expressed in the form

∂

∂z
(σxx + σyy)+ ∂

∂z
(σxx − σyy − 2iσxy) = 0.

It has a solution in terms of a stress function� such that

σxx + σyy = ∂2�

∂z∂z̄
,
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σxx − σyy + 2iσxy = − ∂
2�

∂z̄∂z̄
. (2)

The main task now is to find a suitable stress function. The task becomes easier if the material
behavior is linear and isotropic. For such a solid,

∂ux

∂x
+ ∂uy

∂y
= ∂u

∂z
+ ∂ū

∂z̄
= 1 − υ − 2kυ2

E

(
∂2�

∂z∂z̄

)
,

∂ux

∂x
− ∂uy

∂y
+ i

(
∂uy

∂x
+ ∂ux

∂y

)
= 2

∂u

∂z̄
= −1 + υ

E

(
∂2�

∂z̄∂z̄

)
,

where ux and uy are the x- and y-components of displacement u (= ux+ iuy); k = 0 or 1 depending
on whether the plate is in plane stress or plane strain. The material is linear if the mechanical para-
meters E and υ are constant. Otherwise, the material is considered non-linear. The above equations
show that for a linear solid, the function�must be real and bi-harmonic, and hence ∂2�/∂z∂z̄must
be real and harmonic. For a linear solid therefore, choose

σxx + σuu = ∂2�

∂z∂z̄
= ∂f

∂z
+
(
∂f

∂z

)
, (3)

where f is an analytic function. The above equation can be integrated to yield

∂�

∂z̄
= f + z

(
∂f

∂z

)
+ ḡ, (4)

where g is another analytic function.
Suppose a particular choice of analytic function f and g solves a given boundary value problem

for an isotropic linear solid. The same analytic functions can also be used to solve the problem of
another isotropic linear solid if it is subject to the same boundary conditions. This feature can be ex-
ploited even for non-linear material provided its non-linear stress strain behavior can be replaced by
piece-wise linear approximation. In the simplest case, non-linear material response can be replaced
by bi-linear stress strain behavior involving mechanical parameters (υ,E) and (υn,En). Suppose the
first segment I represents elastic behavior and the second segment n involves plastic deformation
characterized by the plastic modulusEp and the ratio υp = 1/2 such that

1

En
= 1

E
+ 1

Ep
,

υn

En
= υ

E
+ 1

2Ep
.

Once the analytic functions f and g are known or have been found, stress field can be obtained from
(1). The displacement field in the elastic domain I is obtained from

u = z− Z = C + 8f

E
− 2

1 + υ
E

∂�

∂z̄
,

where C is a constant and z is the deformed position of a particle that initially, in the un-deformed
configuration, occupied a position Z. The relation

u = z− Z = Cn + 8f

En
− 2

1 + υn
En

∂�

∂z̄

yields displacement in the plastic domain. The constants C and Cn, and the functions f and g must
be chosen to ensure continuity of displacement and stress across the elastic plastic interface.
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In the case of perfectly plastic material, the yield stress is constant; the stress strain curve is linear
and horizontal (parallel to the strain axis) with slope En = 0. Since the stress strain curve is linear
in the plastic domain, the sum σxx + σxx can still be considered analytic. However, it is necessary
only to choose an analytic function g for determination of the stress field in plastic domain. The
yield criterion provides a second condition that can be used for this purpose. It is necessary only
to choose an analytic function that determines σxx + σxx such that the stress field it generates in
conjunction with the yield criterion leaves the crack surface free traction. It is also necessary to
maintain continuity between the stress fields of the elastic and plastic solutions across the common
boundary.

3. Stress and Strain Field around Crack

To show how the proposal works, assume that the stress field in the elastic domain has been obtained
from LEFM analysis. Irwin uses the stress field on the crack line y = 0 in the form

σ11 = σ22 = KI√
2πr

, σ12 = 0,

where KI (= S
√
πa) is the stress intensity factor and r is the distance from the crack tip and S is

the far-field stress. Consider plane stress, Mises yield criterion and use the effective stress

σe =
√
σ 2

11 + σ 2
22 − σ11σ12.

Suppose the material yields at r = rY where the effective stress equals the yield stress σY . KI =
S
√

2πrY . The load transmitted across the surface y = 0 in the plastic zone is P = 2σY rY . If the
condition σ11 = σ22 holds along the crack line even in the plastic zone, the equilibrium condition
predicts the plastic zone size of

lp = P

σY
= 2rY =

(
S

σY

)2

a. (5)

To accommodate the increased plastic zone, one of the three conditions must hold: (1) the crack tip
is displaced towards the center of the crack, (2) the elastic-plastic boundary moves away from the
crack center, or (3) or a combination of the above two occurs. In Irwin’s scheme, condition (2) is
assumed to hold. That is, the elastic-plastic boundary is assumed to move such that the stress field
of LEFM begins at a distance of 2rY from the crack tip. In order for stress field (2) to hold, the crack
is assumed to be located at aeff = a + rY and the crack opens to a blunt configuration at the tip. The
crack tip opening displacement (CTOD) is calculated from the formula

x2

a2
eff

+ y2

b2 = 1

of the elastic solution. Thus CTOD at x = a is

2δ = 2
b

a + rY
√

2arY + r2
Y .

If rY = 1/2(S/σY )2a � a, the Singh solution for b along with the assumption that S � E yields

2δ = 4
S

E

S

σY
a.
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Note that the method of evaluating crack opening displacement involves the use of elastic solution
even though a part of the material undergoes plastic deformation. Moreover, the crack opening
displacement of elastic solution indicates that the material particles initially on the crack surface
(α = 0 or −a0 < x < a0, y = 0) has opened into (α > 0), otherwise there will be no crack opening.
Obviously, if the boundary conditions are expressed in terms of true stress, the traction boundary
conditions must be satisfied not on the un-deformed (α = 0) surface but on the deformed (α > 0)
surface it opens into. This shows blunting and requires σ11, vanishing at the crack tip. Further, in the
case of plane stress, σ22 = σY . This information can be used to select an analytic function f for the
plastic zone as follows.

4. Stresses in Plastic Zone

In view of the fact that in plane stress, σ11 = 0, σ22 = σY at the blunted crack tip and σ11 +σ22 must
be harmonic, choose

σ11 + σ22 = σY (sinp(z − x0)+ sinp(z̄ − x0)).

where p is a constant and z = x + iy. Rewrite the above equation in the form

σ11 + σ22 = 2σY sinp(x − x0) coshpy. (6)

On x-axis, y = 0 and σ11 + σ22 = 2σY sinp(x − x0). For a Mises solid therefore,

σ22 = σY

{
sinp(x − x0)+ 1√

3
cosp(x − x0)

}
,

σ11 = σY

{
sinp(x − x0)− 1√

3
cosp(x − x0)

}
.

To satisfy σ11 = 0 at the crack tip x = xt , choose p such that p(xt − x0) = π/6. Note that on the
extended crack-line in the plastic zone, σ11 �= σ22 except at the point where p(x − x0) = π/2.

To reconcile the chosen plastic field with LEFM field in the elastic domain, choose σ11 = σ22 =
σY at the yield point (x = xY = rY , y = 0). This is possible provided p(xY − x) = π/2, or
xY = 3xt − 2x0. Therefore, the plastic zone is lp = xY − xt = 2(xt − x0) = π/3p. To find its
value, evaluate P = ∫ xY

xt
σ22ds and equate it with P = 2σY rY obtained from LEFM. The result is

p = 1/(xY
√

3) and the plastic zone size is

lp = π√
3
rY = π

2
√

3

(
S

σY

)2

a

with p, lp and xY known, it is easy to evaluate x0 = xY − π/2p and xt = xY − lp.
To find the crack opening in the plastic observe that on the crack surface x = xc, y = yc,

σ11 = σ22 = σY and hence the equation of the deformed crack is

sinp(xc − x0) coshpyc = 0.5. (7)

Since the value of p is already known, the above equation can be used to find the deformed crack
surface in the plastic domain. The surface in the elastic domain is obtained from the solution of
Singh et al. and for S � E, it can be expressed in the form

xe = a cosβ, ye = 2S

E
sinβ.
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5. Crack Geometry

Consider the symmetry requirements on the deformed crack surface. Symmetry requires that x = 0
at β = π/2, and y = 0 at β = 0. The constraint imposed by continuity is that the elastic and have
the same value at the interface (α = αf , β = βY ) between two domains as a consequence, the points
on the elastic segment of the deformed crack are found to have coordinates

x1 =
(
a0 − cS

E
coshαf

)
cosβ,

y1 = cS(sinhαf + 2 coshαf )

(
sin β − sin βY

E
+ sinβY

En

)
.

For an elastic solid, E = En and hence

y1 = cS(sinhαf + 2 coshαf )

(
sin β

E

)
= c sinhαf sin β.

The crack opening parameter is therefore related to Young’s modulusE and far-field stress S. In fact

tanαf = 2S

E − S .

However, this equation is not available if the behavior is elastic plastic.
To satisfy the continuity of stress across the elastic-plastic interface, we assume the same value

for crack opening parameter on both elastic and plastic segments. Hence, the deformed position of
the points on the plastic segment is

xn =
(
a0 − cS

E
coshαf

)
cosβ +

(
a0 − cS

En
coshαf

)
(cosβ − cosβY ),

yn = c sinh αf sin β = cS

En
(sinhαf + 2 coshαf ) sin β.

The second of the above equation yield

tanαf = 2S

En − S .

Therefore, the value

αf = 0.5 ln

(
En + S
En − 3S

)

of the crack opening parameter depends on the modulusEn of the material at the tip and the far-field
stress S.

For further generalization, divide the non-linear stress-strain curve intoN segments. At the same
time, divide the crack surface also in N domains such that points in k obey the stress-strain rule of
the segment k, and β = βk is the interface between domains k − 1 and k.

Therefore, the deformed position of this interface is

xk =
k∑
i=1

(
a0 − cS

Ei
coshαf

)
(cosβi − cosβi−1),
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yk =
k∑
i=1

cS(sinhαf + 2 coshαf )

(
sin βN−i − sin βN−i+1

EN−i+1

)
.

For the purpose of book-keeping, βN and β0 in this equation corresponds, respectively, to the tip
(β = 0) and the crown (β = π/2) and Ei is the modulus of the material in the ith segment. It is of
course possible to convert the summed terms into integral forms by letting the number of segments
become infinitely large such that, in the limit, each domain shrinks to a point and

k∑
i=1

(
a0 − cS

Ei
coshαf

)
(cosβi − cosβi−1) = −

∫ β

π/2

(
a0 − cS

Et
coshαf

)
sin βdβ,

k∑
i=1

cS(sinh αf + 2 coshαf )

(
sinβN−i − sin βN−i+1

EN−i+1

)

=
∫ β

0
(sinhαf + 2 coshαf )

cS cosβ

Et
dβ,

where Et is the tangent modulus. The right-hand side can be integrated provided a relationship
between the tangent modulus and β can be established. But such a relation does exist. Recall the
first of the two expressions for stress field in (5). Since the crack surface is free of traction, stress
normal to it must vanish. Thus, in plane stress, σyy + σxx = σt is the only non-zero stress, and
Equation (5)3 can be rearranged in the form

cos 2β = cos 2αf − sinh 2αf (e2αf + 1)

e2αf + σt/S
.

This equation relates β on the crack surface to the tangential stress σt which in turn is related
to the tangential modulus via the stress strain law. In that case, the stress-strain law need not be
linearized. However, it must be emphasized that the purpose of linearization was to make the stress
function biharmonic and allow the use of analytic function f and g in the analysis. It is of course
possible to assume a form for stress and strain fields on some other ground in such a manner that the
stress field is an approximate solution of the equations of equilibrium. This is the course adopted
by Hutchinson (1968) and Rice and Rosenberg (1968). In our case, we have opted in favor of
approximating the stress-strain law but, at the same time, choosing a stress field that satisfies the
equations of equilibrium.

6. Results and Discussion

Let us first examine if the use of deformed configuration in the analysis has any influence on stresses.
Consider the basic assumptions. Both linear elastic fracture mechanics and the classical infinitesimal
strain theory assume small deformation. Therefore, displacement z–Z is considered small and hence
z ∼= Z in lieu of deformed position z on the basis that this choice is expected to introduce negligible
error. In view of this argument, the two theories use αf = 0 for the crack line, and assume the crack
tip at α = β = 0. Or, in terms of cylindrical polar coordinates with origin at the crack tip, the two
theories use θ = π for the crack surface, and assume the crack-tip at r = 0. The two stress fields (5)3
and (5)4 both display singular behavior in the limit as α, β → 0 or as the crack-tip is approached.
Both linear elastic fracture mechanics and HRR solutions exhibit such singularity (Barenblatt, 1962;
Hutchinson, 1968; Irwin, 1957).
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We adopt another view point. Let us assume small deformation and consider the displacement
z–Z to be small such that z ∼= Z. In that case, we propose to use the deformed position z of the
particle in place of its un-deformed position Z in solving a boundary value problem. This particular
choice can be justified on the basis of the argument employed in the classical theory that replacing
one by the other is expected to introduce negligible error. There is yet another reason in favor of the
present choice. If the boundary value problem is formulated in terms of true stress and true traction,
and if the analysis is to be consistent with the formulation, solution must depend on the deformed
geometry. Note that true stress and true traction are defined in terms of load over unit current or
deformed area. The use of undeformed geometry in boundary value problems formulated in terms of
true stress is only a convenient approximation. It should not be considered a requirement that must
be imposed.

Suppose the crack opens under and the crack opening parameter αf has non-zero value, implying
crack tip blunting. The tip is initially at (α = 0, β = 0) and is displaced under deformation to
(α = αf , β = 0). The stress field in (5) is no longer singular even though the stresses near the
tip are still high. Stress distribution depends on αf , which can be used as a parameter that controls
stresses. Under sufficiently high stresses, the crack tip and the area around it yield and undergo
plastic deformation. The extent of plasticity along the crack surface can be determined from (5)3.

The problem involving elastic behavior was solved by Singh et al. (1994). They obtained the
value

αe = 0.5 ln

(
E + S
E − 3S

)

for the crack opening parameter. With αf = αe in Equations (5)3 and (5)4, stresses can be obtained
from (6).

Equation (5)1 with C = 0 and u = c cosh(αe + iβ)− a0 cosβ yields the location

x = c coshαe cosβ = E

E + S a0 cosβ,

y = c sinhαe sinβ = 2S

E − S a0 sin β

of points on the deformed crack surface.
For a bilinear solid, the crack tip opening and consequent blunting is governed by the modulus

at the tip. The parameter

αn = 0.5 ln

(
En + S
En − 3S

)

controls stresses in the plastic domain and determines the deformed shape of the crack opening at
the tip. Since the tangential stress along the crack surface must remain continuous across elastic-
plastic boundary, the parameter α must have a common value αb at that point. The parameter αe that
determines the shape of the elastic part of the crack is no longer linked to Young’s modulus E. It is
therefore possible to assume αf = αe = αn = αb . In that case, the parameter αn controls the stress
field. The choice also ensures the continuity of stresses across the elastic-plastic boundary.

Since σyy = En at the crack tip, a solid with lower modulus entails larger crack opening para-
meter, more blunting and lower stress at the tip. However, this solution is not applicable if the yield
stress dominates stress field of the plastic domain.

In the case of ideal plastic behavior, there is no strain hardening and therefore En = E. It is
inconceivable that Young’s modulus will control stress field in the plastic domain. It is more likely
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to be controlled by the yield stress σY which is expected to play an important role in stress analysis
in the plastic zone.

Let us assume that the plate is in a state of plane stress and obeys Mises yield criterion. Consider
Mises effective stress σe = σY and rewrite it in the form

3
(σyy − σxx + 2iσxy)

2

(σyy − σxx − 2iσxy)

2
=
(
σ 2
Y −

(
σyy + σxx

2

)2
)
.

To satisfy the above equation, choose

σyy + σxx = 2σY sin t,

σyy − σxx + 2iσxy = 2σY√
3

cos teiϕ.

Note that we use linearized stress-strain curve in the case of work hardening material. The curve is
linear even for non-hardening material. Since the sum σyy + σxx known to be harmonic for linear
solids, choose an analytic function fp(z) in the plastic domain such that

σyy + σxx = (f ′
p + f̄ ′

p).

Therefore,

Re f ′
p = σY sin t,

where Re f ′
p is the real part of ∂fp/∂z.

Since the crack surface is traction free, the only non-zero stress on it is tangential. It can be
identified with the effective stress. In other words, σyy +σxx = σY or t = π/6, in the plastic domain
of the crack surface.

On the surface y = 0, the shear stress must vanish because of symmetry. Therefore, x- and
y-surfaces on the extended crack line are principal planes on which the principal stresses are

σ2 = σY (sin t + cos t/
√

3),

σ1 = σY (sin t − cos t/
√

3).

Some general conclusions regarding the stress distribution for x ≥ α on the line y = 0 can be
drawn even if the exact form of the function f ′

p is unknown. For example, at the crack tip, σ1 = 0,
σ2 = σY , hence Re fp = σY /2. Thereafter, both principal stresses increase with Re f ′

p until at

Re f ′
p = √

3/4 σY , σ1 = σY /
√

3 and σ2 attains a maximum value of 2σY /
√

3. Subsequently, σ2
decreases while σ1 continues to increase until the elastic plastic boundary is reached.

In view of the piece-wise linear stress-strain behavior assumed in the analysis, the analytic func-
tion f , or rather its derivative ∂f/∂z of the elastic domain can be used in the plastic domain as well.
However, the analytic function g has no role in the plastic domain in which the yield criterion must
be used for evaluating deviatoric stresses. It means that an additional term must be added to ∂f/∂z of
the elastic domain to obtain the corresponding function of the plastic domain. Accordingly, choose

f ′
p = A1 + A2 coth ξ + A3/ sinh ξ.

This choice immediately leads to

σyy + σxx = 8A1 + 4
A2 sinh(ξ + ξ̄ )+ 2A3(sinh ξ + sinh ξ̄ )

sinh ξ sinh ξ̄
.
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A yield criterion must be used to obtain deviatoric stress components. For a Mises solid in plane
stress for example, the yield criterion can be rearranged to obtain

(σyy − σxx + 2iσxy)

2

(σyy − σxx − 2iσxy)

2
= 1

3

(
σ 2
e −

(
σyy + σxx

2

)2
)
.

To find the values of the constants A1, A2 and A3, it is necessary to impose the condition that
the stresses must be continuous across the elastic-plastic interface. Moreover, for a non-hardening
material, stress along the crack surface in the plastic domain must remain at the yield value σY . The
second condition can be satisfied easily by choosingA1 = σY /8 and

A2 coshαf + A3 cosβ = 0.

Both αf and β must therefore vary in the plastic domain. At the elastic-plastic interface, αf = αe
and β = βY and hence

A3 = −coshαe
cosβ

A2.

The value α = αt at the crack tip can be obtained from

coshαt = −A3

A2
= coshαe

cosβY
.

To find the value of A2, use the expression for stresses on the line β = 0 on which

σyy + σxx = σY + 8
A2 coshα + A3

sinh ε
= σY + 8A2

cosh α − coshαt
coshα

.

For continuity across the elastic-plastic boundary α = αY , the above equation must yield a value
equal to that obtained from the elastic solution. Therefore,

σY + 8A2
coshαY − coshαt

sinhαY
= S(−e2αe + (e2αe + 1) cothαY ).

The above equation can be solved for

8A2 = S(−e2αe + (e2αe + 1) cothαY )− σY
coshαY − coshαt

sinhαY .

Hence on β = 0,

σyy + σxx = σY +
(
S(−e2αe + (e2αe + 1) cothαY )− σY

coshαY − coshαt
− sinh αY

)
coshα − coshα − t

coshα
.

The difference in stresses is obtained with the help of the yield criterion and it can be expressed in
the form

σyy − σxx =
√

4σ 2
Y − (σyy + σxx)2

3
.

The above two equations can be used to find stresses σxx and σyy between the crack tip and the yield
point on β = 0.
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Appendix

Uniaxial stress-strain equation for a bilinear solid can be expressed in the form

ε = σY

E
+ σ − σY

En
,

where E is Young’s modulus (slope of the stress strain line of the first segment), En is the slope of
the second line and σY is the translation stress between the two linear segments. It can be identified
with the yield stress. The transverse strain is

εtr = −υ σY
E

− υn σ − σY
En

,

where υn is the Poisson ratio for the second segment.
Suppose the strain in the second segment consists of a sum of elastic and plastic deformation

such that

1

En
= 1

E
+ 1

Epn
.

Therefore, ε = (σ/E)+ (σ − σY )/Epn. Assuming plastic incompressibility, we obtain

εtr = −υ σY
E

− υn σ − σY
En

= −υ σ
E

− σ − σY
2Epn

.

For a work hardening solid in plastic deformation, σ > σY and hence the above equation can be
rearranged to yield

υn

En
= υ

E
+ 1

2Epn
.

Suppose the crack surface open in the form used in LEFM solution or as predicted by the solution
of Singh et al. (1994).

Suppose a crack α = 0 opens under external load into a surface α = αf . The presence of crack
is likely to induce non-homogeneity in the stress field. Hence, to solve for stresses, choose

f = cA cos ξ + cB sin ξ + C = c(A+ B) cosh ξ − cBe−ξ + C,
where A, B, C and c are constants. Since the crack surface remains free of traction,

∂�

∂z̄
= f + z

(
∂f

∂z

)
+ ḡ + C = A constant on α = αf .

To satisfy the above condition, choose

ḡ = −2cA cosh(2αf − ξ̄ )− cB cosh 2αf
sinh ξ̄

.

In view of these choices,

∂�

∂z̄
= 2cA{cosh ξ − cosh(2αf − ξ̄ )} + cB cosh 2α − cosh 2αf

sinh ξ̄
+ C.
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Stress field can now be obtained as follows:∑
s

≡ σyy + σxx = 4
∂2�

∂z∂z̄
= 8A+ 8B

sinh 2α

cosh 2α − cos 2β
,

∑
d

≡ σyy − σxx − 2iσxy = ∂2�

∂z̄∂z̄
= 8A

sinh(2αf − ξ̄
sinh ξ̄

+ 4B
cosh 2αf cosh ξ̄ − cosh ξ

(sinh ξ̄ )3
.

To evaluate the constants A and B, observe that the above stress field must be consistent with
the applied far-field stress at large distances from the origin. In other words, they must satisfy the
condition that both

∑
s and

∑
d → S as α → ∞. These conditions lead to

A = −Se2αf /8, B = S(e2αf + 1)/8.

When these constants are substituted in (2), (3) and (4), they lead to

f = cS

8
{−e2αf cosh ξ + (e2αf + 1) sinh ξ} + C,

∂�

∂z̄
= cS

8

{
−2e2αf (cosh ξ − cosh(2αf − ξ̄ ))+ (e2αf + 1)

cosh 2α − cosh 2αf
sinh ξ̄

}
,

∑
s

≡ σyy + σxx
S

= −2e2αf + (2e2αf + 1)
sinh 2α

cosh 2α − cos 2β
,

∑
d

≡ σyy − σxx − 2iσxy
S

= −2e2αf sinh(2αf − ξ̄ )
sinh ξ̄

+ (2e2αf + 1)
cosh 2αf cosh ξ̄ − cosh ξ

(sinh ξ̄ )3
.

To find stress components, it is necessary to evaluate the real and imaginary parts, Re
∑
d and

Im
∑
d of

∑
d . Subsequently, stresses can be obtained from

σxx = S

∑
s −Re

∑
d

2
, σyy = S

∑
s +Re

∑
d

2
, σxy = −S Im

∑
d

2
.

The last two equations in (5) suggest that for a given applied load S, stresses in the plate depend only
on the crack opening parameter αf . It is therefore reasonable to assume that the parameter controls
the stress field around the crack. To find its value, consider the displacement of points on the crack
surface.
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