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The micro/meso-mechanical approach for composites is commonly based on the analysis of a
representative volume element or a so-called repeated unit cell (RUC). Through analysis of the RUC
model one can predict not only macroscopic mechanical properties but also microscopic damage
initiation and its propagation in composites. In this paper, we present an overview of our contributions 
in the following three essential areas in the micro/meso-mechanical analyses: (1) a unified form of
periodic boundary conditions for the RUC modelling; (2) a nonlinear viscoelastic constitutive model
for polymer matrix materials; and (3) a post-damage constitutive model based on the concept of
smeared crack. Application examples combining the above three topics are presented, in which three
types of glass/epoxy laminates are analyzed using finite element method. The predicted results are
compared with experimental data and they are in good agreement. 

Composite materials are widely used in advanced structures in aeronautics, astronautics, automotives,
marine, petrochemical and many other industries due to their superior properties over conventional
industrial materials. In the past couple of decades many researchers have devoted considerable effort
to evaluate macro-mechanical properties of composites by using micro/meso-mechanical modelling
methods. The latter method provides overall behaviour of the composites from known properties of
the reinforcing phase (particles, fibre or fibre yarns) and the matrix phase (polymers, metals) through 
analysis of a representative volume element (RVE) or a repeated unit cell (RUC) model, see Aboudi
(1991), Nemat-Nasser and Hori (1993). Furthermore, damage in composites generally occurs in a
microscopic scale and its effect is manifested progressively into meso- and macro-scales. Micro/meso-
mechanical modelling can also be used to study damage initiation and growth in composites. 

There are three essential prerequisites for successful micro/meso-mechanical analyses of composites,
viz: (1) An appropriate RUC model must be selected and correct periodical boundary conditions
should be applied to the RUC model. (2) The constitutive models must accurately describe the
mechanical behaviour of the constituents, especially of the matrix material. (3) Appropriate damage
criteria for different damage mechanisms and post-damage constitutive model should be introduced to 
simulate damage initiation and propagation in composites.

For many composite materials, such as fibrous laminates and textile composites, the microstructure
can be envisioned as a periodic array of RUC. Therefore in the micro/meso-analysis based on a RUC, 
the equilibrium equation should be solved under appropriate periodic boundary conditions. Valid
periodic boundary conditions should ensure the compatibility of the neighbouring RUCs, i.e. both
displacement and traction continuity conditions should be met. However, there still exist ambiguities
in application of correct periodic boundary conditions. For example, in cases of shear loading or
multiaxial loading in which shear stress is involved, homogeneous boundary conditions (plane-
remains-plane or uniform boundary tractions) were applied to the RUC in some previous publications. 
Many researchers, e.g. Sun and Vaidya (1996), Yuan et al. (1997), Xia et al. (2003a), have pointed out 
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that the homogeneous boundary conditions will over- or under-estimate the effective modulus, since
by applying homogeneous boundary conditions, the displacement and traction continuity conditions
can not always be satisfied at the same time. 

Since the micro/meso-mechanical analyses are based on properties of individual constituents of the
composite, an accurate constitutive model of each constituent becomes a prerequisite in attempting to 
predict the composite behaviour. Although the reinforcing phases, such as fibres, ceramic particles
behave elastically for most of their stress-strain range, the polymer matrices are viscoelastic or
viscoelastic-viscoplastic materials. The analysis of Hashin (1966) demonstrated that the viscoelastic
effect in a unidirectional fibre composite is significant for axial shear, transverse shear and transverse 
uniaxial stress, for which the influence of matrix is dominant. Comprehensive experimental studies on 
an epoxy polymer (Hu et al. 2003, Shen et al. 2004) have indicated that these materials exhibit
complex time- and loading-history-dependent properties. The viscoelastic effects become even more
pronounced under conditions of high temperature, sustained loading and/or high stress level.
Therefore, it is necessary to develop an accurate constitutive model for the polymer matrix material.

Due to co-existence of multi-phase materials with quite different mechanical properties, damage
mechanisms of composites become more complicated. The initiation and evolution of the damages are 
essentially in the microscopic scale. Therefore, micro/meso-mechanical approaches are desirable to
capture these damage mechanisms. The polymer matrices usually have much lower strength and
stiffness than the reinforcing phases. Some damage modes (matrix micro-cracking, fiber/matrix
interfacial debonding) could occur at relatively low applied loads or even during the manufacturing
process. However, certain degree of damages may be tolerated in composites before the structural
failure modes (delamination, fiber fracture) occur. Therefore, it is essential for damage analysis of
composites to be able to identify different damage modes, to predict damage evolution within each
mode and between different modes. To this end, appropriate damage criteria and post-damage
constitutive relations are required. 

In this paper, our recent contributions in the aforementioned three areas for polymeric composites will 
be elucidated. A unified form of periodic boundary conditions for any multiaxial loading conditions
will be presented first, and uniqueness of the solution by applying the unified periodic boundary
conditions on the RUCs will be proved. For an epoxy polymer matrix a nonlinear viscoelastic
constitutive model in differential form has been developed based on comprehensive multiaxial
experimental test data. The nonlinear viscoelasticity is described through introduction of a modulus
function and a time-scale factor. A post-damage constitutive model based on the concept of smeared
crack has also been introduced to simulate the behaviour after damage initiation. It permits crack
description in terms of stress-strain relations and stiffness reduction in particular orientations instead

three essential topics will be presented, in which three types of glass/epoxy laminates ( 45°
unidirectional, cross-ply, and ±45° angle-ply) will be analyzed using finite element method. The
predicted results are compared with experimental data and it is shown that they are in good agreement. 

Consider a large sample of periodic inhomogeneous body (composite) as shown in Fig. 1. The body
has two length scales, a global (macroscopic) length scale, D, which is of the order of the size of the
body, and a local (microscopic) length scale, d, which is proportional to the wavelength of the
variation of the microstructure. Correspondingly

1/ <<= Ddδ                         (1)

of the common element-death method in FEM codes. Application examples combining the above

Unified Periodic Boundary Conditions
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Obviously, any function f in the body depends on two variables, global (macroscopic) coordinates iX
for the body and the local (microscopic) coordinates ix  for the unit cell. For small strain elasticity, the 
boundary value problem for the composite body can be defined as the following, from which the
unknown field quantities, stress ijσ , strain ijε  and displacements iu  can be solved:

0, =jjiσ    (2)

lklkjiij C εσ =         (3)

)(
2
1

,, kllklk uu +=ε         (4)

ijji Tn =σ          on σ∂ , ii uu =     on u∂  (5)

The boundary value problem has the feature that lkjiC  varies very rapidly within a short wavelength

(order of d ) on the global length scale iX  and therefore it is difficult to find a solution that solves the 
global problem and accounts for the local oscillation at the same time. For example, in a FEM
solution, assuming roughly each unit cell should have several hundred elements to accurately capture
the large variations due to the heterogeneity of the microstructure, then for the entire composite
laminate or structure, the number of elements needed will increase by several orders. Hence, there is a 
motivation to seek a simplified solution. Since the composite body can be envisioned as a periodical
array of the RUCs, it is adequate to obtain a solution based on an individual RUC. This implies that
beyond a boundary layer of the composite body, each RUC in the composite has the same deformation 
mode and there is no separation or overlap between the neighbouring RUCs. That is, the stress and
strain fields are periodic as the microstructure (Suquet, 1987).

Since the whole body, thus each unit cell is in balance, the equilibrium equation, Eqn. (2) and Eqns.
(3)-(4) still apply in a RUC with volume V. However, the boundary conditions on the boundary of the 
RUC, ∂ , should be properly determined. In the case of periodic media, the microscopic fields have to 
fulfill suitable periodicity conditions ensuring continuity of boundary displacements and tractions
across adjacent cells. According to Suquet (1987), the displacement field for a periodic structure can
be expressed as:

),,(),,( 321
*

321 xxxuxxxxu ijiji += ε (6)

Fig. 1  RUC from a periodic composite.
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In the above, ijε is the global strain tensor of the periodic structure and the first term on the right side
represents a linear distributed displacement field. The second term on the right side is a periodic
function from one RUC to another. In addition, for a periodic RUC, the tractions on the opposite
boundary surfaces should also meet the continuity condition, i.e. 

)()()()( QnQPnP jijjij σσ −=                                 (7)

where P and Q are two periodic points (with the same in-plane coordinates) on the two opposite
boundary surfaces, n  is the unit outward normal vector to the surfaces, see Fig. 1. Note that the global 
strain ijε in Eqn. (6) and the corresponding global stress ijσ  can be defined as the averages over the
RUC volume V:

dVxxx
V V ijij ∫= ),,(1

321σσ                     (8)

dVxxx
V V ijij ),,(1

321∫= εε                            (9)

where ),,( 321 xxxijσ  and ),,( 321 xxxijε  are local (microscopic) stress and strain defined in the RUC.

Equations (6) and (7) are the periodic boundary conditions for a RUC. Together with the Eqns. (2), (3) 
and (4), we complete the boundary value problem for the RUC. This boundary value problem is well-
posed, as shown e.g. in Suquet (1987). However, the periodic part of displacement, ),,( 321

* xxxui , in 
Eqn. (6) is usually unknown prior to the solution, thus it is not convenient to apply Eqn. (6) directly as 
displacement boundary conditions. In Xia et al. (2003a), a unified form of periodic boundary
conditions for any multiaxial loading and suitable for finite element analysis is developed. For the
sake of brevity only the conclusions are cited here. Interested readers are encouraged to consult the
reference for further details and illustrative examples. 

For any RUC, its boundary surfaces must always appear in parallel pairs, the displacements of two
periodic points on a pair of parallel opposite boundary surfaces can be written as

)()()( * PuPxPu ijiji += ε      (10)

)()()( * QuQxQu ijiji += ε                  (11)

In the above “P” and “Q” identify the two corresponding points on a pair of two opposite parallel
boundary surfaces of the RUC, see Fig. 1.

Note that ),,( 321
* xxxui  is a periodic function, i.e. its value is the same for two corresponding points

at the two parallel boundaries (periodicity), therefore, the difference between the above two equations 
is

jijjjijii xQxPxQuPu ∆=−=− εε )]()([)()(                              (12)

Since )()( QxPxx jjj −=∆ are constants for each pair of the parallel boundary surfaces, hence, for a 

specified ijε , the right side becomes constants. Equation (12) is a special type of displacement
boundary conditions. Instead of giving known values of boundary displacements, it specifies the
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displacement-differences between two periodic points at opposite boundaries. Obviously, the
application of Eqn. (12) will guarantee the continuity of displacement field, i.e. the neighboring RUCs 
cannot separate or encroach into each other at the boundaries after the deformation. 

Furthermore, it has been proved in Xia et al. (2006) that if a RUC is analyzed by using a displacement-
based finite element method, the application of only Eqn. (12) can guarantee the uniqueness of the
solution and thus Eqn. (7) are automatically satisfied. For the sake of brevity only the conclusions are 
cited here. 

Theorem: In a displacement-based FEM analysis, by applying the unified displacement-difference

Lemma 1 For a fixed periodic structure, different RUC’s may be defined, however, by applying the
unified displacement-difference periodic boundary conditions, Eqn. (12), in the displacement-based
FEM analysis, the solution will be independent of the choice of the RUCs.

Lemma 2 The solution obtained by applying the unified displacement-difference periodic boundary
conditions, Eqn. (12), in the displacement-based FEM analysis, will also meet the traction continuity
conditions, Eqn. (7).

It is noted that the unified periodic boundary conditions, Eqn. (12), can be easily applied in a FEM as 
the nodal displacement constraint equations. It is also noted that the proposed unified periodic
boundary conditions are in the form of global strains. In the case of given global stresses, or a
combination of the global stresses and strains, a proper proportion between the global strains must be 
applied. The required proportion can be determined without any difficulty through an iterative
procedure, see the examples to follow. 

One can also note that the derivation and proof procedures for the proposed unified periodic boundary 
conditions are not dependent on the properties of the constituent materials of the composites.
Therefore, they can be applied to nonlinear micro/meso-mechanical analyses of the composites under
any combination of multiaxial loads. 

Based on comprehensive experimental data (Hu et al. 2003, Shen et al. 2004) a new nonlinear
viscoelastic model has been recently developed by the authors (Xia et al. 2003b, Xia et al. 2005). Here 
only a brief description will be given. 

For the uniaxial stress state, the model can be represented by a finite number of nonlinear ‘Kelvin-
Voigt type’ elements and a linear spring element, connected in series (Fig. 2). The constitutive
equations, generalized to the multiaxial stress state, are sumarized below: 

{ } { } { }cet εεε &&& +=        (13) 

{ } { } { }1][
1

∑
=
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c E

A ε
τ

σ
τ

ε&  (14)

{ } [ ] { }e
1 εσ && −= AE           (15)

In the above, { }tε& , { }eε& , { }cε& ,{ }σ&  are the total strain-rate, elastic strain-rate, creep strain-rate, and
stress-rate vectors (each contains six components, respectively). E is an elastic modulus which is
assumed to be constant and [ ]A   is a matrix related to the value of Poisson’s ratio, defined by

periodic boundary conditions on a RUC, a unique solution is obtained. 

Nonlinear Viscoelastic Constitutive Model for Epoxy Polymers
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In Eqn. (14) ),,2,1( niEiii L== ητ denotes the retardation time, iE is the spring stiffness and

iη is the dashpot viscosity for the i-th ‘Kelvin-Voigt type’ element, respectively. Based on Eqn. (14),
the retardation time iτ  has a damped exponential character as in an exponential-type function. Its
value determines the time duration after which contribution from the individual ‘Kelvin-Voigt type’
element becomes negligible. Therefore, the number of the ‘Kelvin-Voigt type’  elements adopted in
the constitutive equation depends on the required time range. For simplicity, we introduce a time scale 
factor α , and assume that

( ) 1
1τατ −= i

i               (17)

In this way all iτ  are related through the scale factor α . A time span of order of n would be covered, 
if n ‘Kelvin-Voigt type’ elements were chosen and the value of α is taken to be 10.

coupled with an elastic spring.

The description of the nonlinear behaviour in the current model is achieved by letting iE ’s be
functions of the current equivalent stress, eqσ . Furthermore, a single function form for all iE ’s is
assumed, i.e.

Fig. 2  A uniaxial visoelastic model represented by a finite series of ‘Kelvin-Voigt type’ elements
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)(1 eqi EE σ=                (18)

with

( ) ( )
R

RJIRIR
eq 2

1211 2
2

1
2

1 +−+−
=σ                   (19)

where 3211 σσσ ++=I  is the first invariant of the stress tensor, 2/2 ijij ssJ =  is the second
invariant of the deviatoric stress and R is the ratio of compressive to tensile ‘yield  stress’. Note that
when 1=R , then Eqn. (19) reduces to the von Mises equivalent stress, 23Jeq =σ .

The five constants ( 1,,, ταυE , R) and the functional form of )(1 eqE σ can be determined from
uniaxial creep curves tested at different stress levels by a simple procedure described in Xia et al.
(2003b).

A distinct feature of this constitutive model is its capacity to distinguish between loading and
unloading cases by introducing a stress memory surface and a corresponding switch rule. The stress
memory surface is defined as:

0
2
3)( 22 =−=− memijijmemijm RssRf σσ                     (20)

where ijkkijijs δσσ
3
1−= are the deviatoric stress components. The radius of the memory surface,

memR , is determined by the maximum von Mises stress level experienced by the material during its

previous loading history, i.e. max)2/3( ijijmem ssR = . Therefore, for a monotonic loading from a

stress free state, the memory surface will expand isotropically with the increasing stress level. If t
ijσ is

the current stress point, t
ijdσ  is the stress increment at time t , and t

ijij ss
ij

f
=∂

∂ )(
σ

 represents the

direction of the normal to the memory surface at the current stress point, then the criterion to
distinguish the loading/unloading cases is defined as follows:

• if the current stress point is on the memory surface and 0)( ≥⋅
∂
∂ t

ij
ij

df
t
ij

σ
σ σ , this signifies a

loading case;

• if the current stress point is on the memory surface and 0)( <⋅
∂
∂ t

ij
ij

df
t
ij

σ
σ σ , then a switch from

loading to unloading occurs;
• if the current stress point is inside the memory surface, i.e. 0)( 2 <− mem

t
ijm Rf σσ , it is then an

unloading case.

For the loading case the spring stiffness of the ‘Kelvin-Voigt type’ elements is defined as a function of 
the equivalent stress, )(1 eqi EE σ= . For the unloading case, it is assumed that iE  remains the same

during the entire unloading process, and its value is that of the iE  at which the switch from loading to 
unloading took place.
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Upon increasing the applied load, micro-cracks will develop in the matrix. These cracks cause
reduction in stiffness of the laminate. In contrast to a predefined single dominant crack in isotropic
materials, the orientation and location or even numbers of cracks in a laminate is unknown, thus this
makes it difficult to deal with such cracks through the classical fracture mechanics approach. Instead,
the so-called ‘smeared crack’ approach will be used. In this approach the reduction of load bearing
capacity induced by a crack is described by stress-strain softening relationship. In this manner the
discontinuity caused by a crack is smeared out, and this procedure can be implemented into a FEM
code.

surfaces, i.e. 121 , σσ and 013 →σ . The subscript 1 denotes the Cartesian axis perpendicular to the
crack plane while 2 and 3 are in the crack plane. However, the ability to transfer the other stress

coordinate system be designated by{ }crσ cr , respectively. Thus, the post-damage constitutive
model in the crack coordinate system is

{ } [ ]{ } [ ]{ }crcr
t

cr BDE σχεσ −∆=∆ (21)

or written in its full form: 
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In the above,
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tE is the modulus of the epoxy under uniaxial tensile loading at the instant of damage initiation, β is a 
small number which represents the loss of the stiffness in these three particular stress directions and
the constant χ  allows the three stress components to decrease to a near zero value in a sufficiently
short time duration. 

The response of three types of glass fiber/epoxy polymer matrix laminates subject to a tensile loading 
are presented herein, see Ellyin and Kujawski (1995), Zhang et al. (2005). These are: (1) a
unidirectional laminate under 45° off-axis loading; (2) a [0°/90°]ns cross-ply laminate under
transverse loading, and (3) a [±45°]ns angle-ply laminate under tensile loading, see Fig. 3(a), (b), (c),
respectively. The 45° off-axis tension on the unidirectional laminate (Fig. 3a) and the tensile load on

Application Examples 

∆

Once a crack is formed, it is assumed that it cannot transfer normal and shear stresses across the crack

components is not affected by the crack formation. Let the stress and strain vectors in the local (crack) 
and{ }ε

Post-Damage Constitutive Model Based on the Concept of Smeared Crack
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the [±45°]ns angle-ply laminate (Fig 3c) result in combined normal and shear traction boundary
conditions as shown in figures with

στσσ 5.0=== xyyx                                                    (24)

xσσ =
xσxσ

σ

σ

xyτ

xσ

yσ

xσ

σ

σ
yσ

yσ

yσ

°45
xyτ °45

                           (a)                                              (b)                                                 (c)

transverse loading; (c) a [±45°]ns angle-ply laminate under tensile loading.

The RUC for the unidirectional laminate is a unit cube containing a cylindrical fiber and the
RUCs for both [0°/90°]ns cross-ply laminate and [±45°]ns angle-ply laminate are the same
consisting of two cubes with the two cylindrical fibers at an angle of 90° (Fig. 4a, b).

(a) (b)

ply laminate.

The finite element code ADINA was used to conduct the numerical analysis. The nonlinear
viscoelastic constitutive model of the epoxy matrix and the post-damage constitutive model were
implemented into the code through its user-defined subroutine. It is to be noted that in Eqn. (24) the
multiaxial loads are the global stress components applied to the RUCs. The applied periodic boundary 
conditions, Eqn. (12), are in the form of global strain components. An iterative procedure is required
to ensure proper proportion of the increments of the global strain components are applied so that Eqn.
(24) is satisfied at each time step. The iteration procedure is as follows. 

(i) For each time step, t∆ , we apply a set of trial global strain increments, ijε∆ .

Fig. 3  (a) a unidirectional laminate under 45° off-axis loading; (b) a cross-ply laminate under 

Fig. 4  Meshed RUCs for (a) unidirectional laminate and for (b) cross-ply laminate and [±45°]ns angle-
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(ii) The solution gives the stress distribution in the RUC, so the global stress components are the
average values over the volume V of the RUC (see Eqn. 8.)
(iii) Equation (24) is checked and, if it is satisfied (within a certain error limit), then one proceeds to
the next time step. If not, new values of ijε∆ are obtained and the steps (i) to (iii) are repeated. For a

small time step, it could be assumed that the increments of ijε∆ are proportional to the corresponding

increment of average stress components, then the new values of ijε∆ can be estimated.

Two damage mechanisms were considered in the analyses, i.e. matrix cracking and fibre breaking. For
the epoxy polymer matrix, a maximum principal strain criterion was adopted, i.e. if %8.41 =≥ crεε ,
the matrix element was assumed to be damaged and subsequently the post-damage constitutive
relation would be used. (The manufacturer did not provide the failure strain for the neat resin, the
value assumed here was taken from another resin system).  For the glass fiber, the average axial strain 
of the fibre was monitored and if it exceeded a prescribed maximum value, i.e. %3.2max =≥ ffa εε
then the fiber was assumed to have fractured and the calculation was then terminated. The above
critical strain values were taken from experimental data and the fiber volume fraction of the laminates 
was assumed to be 52.5%. 

Figures 5 and 6 display the predicted global stress-strain curves of the three types of laminates and the 
comparison with the test results. All the calculations use the same set of material constants and the
same set of constants used in the post-damage constitutive model. The test specimens were made of
“Scotchply 1003” prepregs of 3M Company. The test data of cross-ply laminates were taken from the 
technical data of the 3M Company and that of the [±45°]ns angle-ply laminates and unidirectional
laminates (UDC) under 45° off-axis loading were from Ellyin and Kujawski (1995). It is seen that the 
predictions of the drastically different responses of the three types of laminates are in good agreement 
with the experimental data. 

UDC under 45° off-axis tensile loading. of cross-ply and angle-ply laminates.
Fig. 5  Predicted stress-strain curve of a Fig. 6  Predicted stress-strain curves 

Prediction of Stress-Strain Curves for the Three Types of Laminates  
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In the case of the unidirectional laminate, it is noted that the predicted trend is in good agreement with 
the test results, Fig. 5. The predicted initial stiffness is 10.1 GPa, and the maximum load is 68 MPa,
while the corresponding test results are 10.1 GPa and 82 MPa. 

The effect of viscoelastic behavior of the matrix is manifested by the nonlinearity of the stress-strain
curve, which is noticeable once the stress exceeds 40 MPa (about 0.5% strain). Since damage has not 
yet occurred at this load level (for the unidirectional laminate, damage initiates at the peak of the
stress-strain curve), therefore this nonlinearity is mainly caused by the viscoelasticity of the epoxy
matrix.

For the cross-ply and angle-ply laminates the test and predicted results are shown in Figure 6. For the
cross-ply laminate, a bilinear stress-strain curve is predicted in which the two ‘moduli’ are
approximately 25.5 GPa and 17.4 GPa. The corresponding test values are 25.5 GPa and 15.6 GPa,
respectively. The knee between the two straight lines corresponds to the load level at which the
transverse cracking of matrix occurs in the laminate. And the final failure of the specimen is due to the 
fracture of fibers in the 0° plies. From the technical data of the ‘Scotchply’, the test value of tensile
strength of cross-ply laminate is 480 MPa, and the present prediction of 470 MPa is very close to that 
of the test. Note, however, that for the other two laminates, no fiber fracture occurs within the strain
range of the present calculations. 

The unique nonlinear stress-strain curve of the [±45°]ns laminate is also well predicted. For example,
the predicted initial stiffness of 10.1 GPa agreed very well with the test value of 10.1 GPa. In contrast 
to the unidirectional laminate under 45° off-axis loading which failed at a relatively low global strain
of 0.9%, at the same strain level, the [±45°]ns laminate is capable of carrying the applied load albeit at 
a reduced stiffness. However, prior to the ‘yield’ point, the stress-strain curve also manifested a
nonlinear response. Since the damage has not yet occurred at this load level (50 MPa), this
nonlinearity is mainly caused by the viscoelasticity of the epoxy matrix. Note that the nonlinearity of
the stress-strain curve has different causes at different strain levels: at lower strain levels, it is mainly
caused by the viscoelasticity of the matrix, while at higher strain values, the onset of damage and its
evolution is the main contributor to the nonlinear response. Finally, it should be noted that the
simulation is carried out up to about 2.3% applied global strain. Thereafter, it is difficult to continue
the simulation, since the local deformation is very large and the present FEM model is based on the
small deformation formulation. 

To perform an effective micro/meso-mechanical analysis of composite materials and to obtain reliable 
predictions, the following three prerequisites are essential: 

(1) Correct periodic boundary conditions must be applied to the repeated unit cells (RUCs).
• A unified form of periodic boundary conditions for RUCs of composites has been presented.
• Application of the proposed periodic boundary conditions can guarantee both the displacement

and traction continuity. The solution is also independent on the choice of RUCs. 

(2) The constitutive models must accurately represent the constituents’ behaviours.
• A nonlinear viscoelastic constitutive model has been developed for epoxy polymers. 
• The model is capable of predicting complicated time- and loading-history-dependent response of

the polymer matrix materials. 

(3) Proper damage criteria and post-damage constitutive model must be included in the analyses to
simulate different damage modes in composite materials. 
• A post-damage constitutive model based on smeared crack concept has been developed. 

Conclusions
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• Initiation and propagation of matrix cracking in composites are well simulated by using this
post-damage constitutive model.
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