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Abstract

A new perspective is presented on the Galerkin solution for linear stochastic algebraic equations,
that is, linear algebraic equations with random coefficients. It is shown that (1) a stochastic algebraic
equation has an optimal Galerkin solution, that is, a Galerkin solution that is best in the mean
square sense, and (2) the optimal Galerkin solution is equal to the conditional expectation of the
exact solution with respect to a σ -field coarser than the σ -field relative to which this solution is
measurable. Galerkin solutions that are not optimal are called sub-optimal. Both optimal and sub-
optimal Galerkin solutions are defined and constructed. Optimal and sub-optimal Galerkin solutions
are used to calculate statistics of the displacement of a simply supported plate sitting on a random
elastic foundation. The accuracy of these Galerkin solutions is assessed by Monte Carlo simulation.

1. Introduction

Ordinary or partial differential equations with random coefficients, input and/or boundary conditions,
referred to as stochastic differential equations, are used to formulate a broad range of mechanics
problems. It is common to approximate the solution of stochastic differential equations by that of
algebraic equations with random coefficients, called stochastic algebraic equations. There are no
general and efficient methods for finding the probability law of the solution of a stochastic algebraic
equation. Taylor series, perturbation, Neumann series, decomposition, equivalent linearization, it-
eration, and other approximate techniques can be used to solve these equations (Deb et al. 2001;
Ghanem and Spanos, 1991; Grigoriu, 2002: section 8.3.1). Monte Carlo simulation is the only
available method capable of providing estimates for the probability law of the solution of general

Our objectives are to (1) present an alternative interpretation of the Galerkin method for solving
stochastic algebraic equations and (2) apply this method to calculate statistics for the displacement
of a plate supported by a random elastic foundation. It is shown that there is an optimal Galerkin
solution for a stochastic algebraic equation, that is, a Galerkin solution minimizing the mean square
error. The optimal Galerkin solution is equal to the conditional expectation of the exact solution
of a stochastic algebraic equation with respect to a σ -field coarser than the σ -field with respect to
which this solution is measurable. Galerkin solutions that are not optimal are said to be sub-optimal.
Second-moment properties, distributions, and other statistics are developed for both optimal and sub-
optimal Galerkin solutions. Statistics are calculated for optimal and sub-optimal Galerkin solutions
for a simply supported plate sitting on a random elastic foundation. The accuracy of the Galerkin
solutions is evaluated by Monte Carlo simulation.

2. Stochastic Algebraic Equations

Consider the stochastic algebraic equation

stochastic equations, but can be numerically prohibitive if applied to solve realistic problems.
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(
a + r(Z)

)
X = Y , (1)

where a denotes an (d, d) real-valued deterministic matrix, Z and Y are R
n-valued and R

d -valued
random variables defined on some probability spaces (�1,F1, P1) and (�2,F2, P2), respectively,
that may or may not coincide, and r is an (d, d) real-valued matrix whose entries depend on Z. It is
assumed that (1) the random variables Y and Z are independent and are in L2, (2) the function r(·)
is measurable, so that r(Z) and a + r(Z) are random variables on (�1,F1, P1), and (3) the operator
a + r(Z) is bounded almost surely (a.s.), that is, a + r(Z(ω1)) is bounded for all ω1 ∈ �1 \ N1,
where N1 ∈ F1 and P1(N1) = 0.

If det(a + r(Z)) �= 0 a.s., then Equation (1) has the unique solution

X(ω1, ω2) = (a + r(Z(ω1)))
−1 Y (ω2) = β

(
Z(ω1)

)
Y (ω2) a.s., (2)

which is a random variable on the product probability space (�1 ×�2,F1 ⊗ F2, P1 ⊗ P2), where
�1 × �2, F1 ⊗ F2, and P1 ⊗ P2 denote the product sample space, the σ -field generated by the
measurable rectangles {A1 ×A2}, A1 ∈ F1, A2 ∈ F2, and the extension of the set function R(A1 ×
A2) = P1(A1) P2(A2) defined for A1 ∈ F1 and A2 ∈ F2 to F1 ⊗ F2, respectively.

3. Galerkin Method

The Galerkin solution of Equation (1) requires to discretize the stochastic dimension, that is, the
random variables (X,Y ,Z). Polynomials chaos representations and partitions of the sample space
�1 × �2 or of the range of the random variables (Y ,Z) can be used to discretize the stochastic di-
mension of Equation (1). Galerkin method based on polynomial chaos has been applied successfully
to solve a broad range of stochastic problems (Ghanem and Spanos, 1991), although there are some
theoretical aspects of the method that remain to be clarified. For example, the m.s. convergence of
polynomial chaos representations for Y ; Z to Y ; Z does not guarantee the m.s. convergence of the
corresponding representations for X to the exact solution X. Also, moments of order 3 and higher
of polynomial chaos representations may not converge to corresponding target moments (Field and
Grigoriu, 2004). Galerkin method using partitions of the range of the random variables (Y ,Z) views
the solution X as an unknown function of (Y ,Z), that can be approximated by polynomials or other
functions depending on some unknown coefficients. The solution of Equation (1) is found by solving
a deterministic version of this equation obtained by viewing Z as a parameter taking values in Z(�1).
The measure on Z(�1) is the density of Z rather than the Lebesgue measure (Babuška et al. 2004).

The version of the Galerkin method considered here is based on partitions of the product sample
space �1 ×�2. Let(∅,�k) = Gk,1 ⊂ · · · ⊂ Gk,i ⊂ · · · ⊂ Gk,nk = Fk, k = 1, 2, (3)

be two sequences of sub-σ -fields on probability spaces (�k,Fk, Pk), k = 1, 2, that can be
constructed from, for example, finite partitions of the sample spaces �k , k = 1, 2. Let {�q},
q = 1, . . . ,m, and {�r }, r = 1, . . . ,m′, be measurable partitions of the sample spaces �1 and �2,
respectively. The σ -fields generated by the sets {�q}, {�r }, and {�q × �r } are of type G1,i , G2,j ,
and G1,i ⊗ G2,j in Equation (3), respectively. In the reminder of this section we define optimal and
sub-optimal Galerkin solutions and give some of their properties.

Property 1. The optimal Galerkin solution corresponding to the information content of a sub-σ -field
G1,i ⊗ G2,j is

Xi,j = E
[
X | G1,i ⊗ G2,j

] = E1
[
β(Z) | G1,i

]
E2
[
Y | G2,j

]
(a. s.), (4)
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where Ek and E denote expectations with respect to the probability measures Pk , k = 1, 2, and
P1 ⊗ P2, respectively.

Generally, X = (a + r(Z))−1 Y = β(Z)Y is not G1,i ⊗ G2,j -measurable for i < n1 and/or j < n2,
that is, it is not a random variable with respect to the σ -field G1,i ⊗ G2,j . The first equality in
Equation (4) follows from the fact that the conditional expectation is the best mean square estimator
for X with respect to the information content of G1,i ⊗ G2,j (Grigoriu, 2002: section 2.17.2). The
validity of the second equality in Equation (4) results from properties of the conditional expectation,
properties of σ -fields on product spaces, Fubini’s theorem, and a theorem by Dynkin (Resnick, 1998:
section 2.2).

Consider the special case in which G2,n2 = F2. The corresponding optimal Galerkin solution is

Xi,n2 = E
[
β(Z) | G1,i

]
Y (5)

since E[Y | G2,n2 ] = Y a.s. (Equation (4)). This solution is used extensively in applications (Deb et
al., 2001). Once the conditional expectationsE[β(Z) | G1,i] have been calculated, Equation (5) can
be used to calculate statistics of the exact solution X approximately.

Property 2. The optimal Galerkin solution in Equation (4) ranges from the expectation of the exact
solution to the exact solution depending on the information content of the sub-σ -fields G1,i and
G2,j .

Consider sub-σ -fields of Fk containing limited or full information on the random variables Y

and Z. The corresponding optimal Galerkin solutions are (Equation (4))

X1,1 = E1
[
β(Z)

]
E2
[
Y
] = E

[
X
]

X1,n2 = E1
[
β(Z)

]
Y

Xn1,1 = β(Z) E2
[
Y
]

Xn1,n2 = β(Z)Y = X, (6)

where the above equalities hold almost surely with respect to the product probability measure
P1 ⊗ P2. The above results follow from properties of the conditional expectation (Grigoriu, 2002:
section 2.7.2). For example, E1[β(Z) | G1,i ] is equal to E1[β(Z)] and β(Z) a.s. for i = 1 and
i = n1, respectively. Also, Xn1,n2 is equal to the exact solution X a.s. since the sub-σ -fields Gk,nk
coincide with the σ -fields Fk , so that we have E1[β(Z) | G1,n1 ] = β(Z) and E2[Y | G2,n2] = Y a.s.

Property 3. The second-moment properties of the optimal Galerkin solution are

µi,j = E
[
Xi,j

] = E
[
X
]

γ i,j = E
[(

Xi,j − E[Xi,j ]
)(

Xi,j − E[Xi,j ]
)T ]

= E1

[
E1
[
β(Z) | G1,i

]
E2
[
Ŷ Ŷ

T ]
E1
[
β(Z) | G1,i

]T ]

+ E1

[
β̂(Z) E2

[
Y
]
E2
[
Y
]T

β(Z)T
]

(7)

with the notation

Ŷ = E2
[
Y | G2,j

]− E2
[
Y
]

β̂(Z) = E1
[
β(Z) | G1,i

]− E1
[
β(Z)

]
. (8)
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The expectation of Xi,j is E1{E1[β(Z) | G1,i ]}E2{E2[Y | G2,j ]}, and these expectations are equal
to E1[β(Z)]E2[Y ] = E[β(Z)Y ] = E[X] by properties of the conditional expectation and the
independence of Z and Y . Hence, the optimal Galerkin solution Xi,j in Equation (4) is an unbiased
approximation for the exact solution X = β(Z)Y .

We have Xi,j − E[Xi,j ] = E1[β(Z) | G1,i] Ŷ + β̂(Z) E2[Y ] with the notation in Equation (8).
The definition of the covariance matrix γ i,j , the independence of Z and Y , and properties of the

conditional expectation give the second relation in Equation (7). If G2,j coincides with F2, then Ŷ

in Equation (8) becomes Y − E2[Y ].
In the remainder of the paper we denote σ -fields of the type G1,i , G2,j , and G1,i ⊗ G2,j by G1,

G2, and G = G1 ⊗ G2 for simplicity. Generally, we chose the σ -fields G1, G2, and G to be coarser
then F1, F2, and F1 ⊗ F2, that is, we have G1 ⊂ F1, G2 ⊂ F2, and G ⊂ F1 ⊗ F2. Accordingly, the
optimal Galerkin solution with respect to G is (Equation (4))

X̃ = E
[
X | G

] = E1
[
β(Z) | G1

]
E2
[
Y | G2

]
. (9)

We also consider Galerkin solutions that differ from E[X | G]. These solutions are referred to as
sub-optimal Galerkin solutions, and are also denoted by X̃. Generally, sub-optimal Galerkin solution
are biased approximations of the exact solutions. The error of a sub-optimal Galerkin solution X̃ is

X̃ − X =
(
E
[
X | G

]− X

)
+
(

X̃ − E[X | G
])
. (10)

for a given G. The second term in Equation (10) corresponds to the difference between the optimal
and a sub-optimal Galerkin solutions. This component of the error can be reduced by improving the
sub-optimal solution.

Property 4. If {�q}, q = 1, . . . ,m, is a partition of �1, G1 = σ({�q}), and G2 = F2, then the
mean, the correlation, and the distribution of the corresponding optimal and sub-optimal Galerkin
solutions X̃ have the expressions:

E
[
X̃
] =

m∑
q=1

E2
[
W q

]
P1
(
�q
)

E
[
X̃ X̃

T ] =
m∑
q=1

E2
[
W q WT

q

]
P1
(
�q
)

P
(
X̃i1 ≤ ξ1, . . . , X̃is ≤ ξs

) =
m∑
q=1

P2
(
Wq,i1 ≤ ξ1, . . . ,Wq,is ≤ ξs

)
P1
(
�q
)
, (11)

where W = αq Y is a vector in R
d with coordinatesWq,j , j = 1, . . . , d , and

αq =
{
E
[
β(Z) | �q

]
, for optimal Galerkin solution

βq = β(zq), for sub-optimal Galerkin solution.
(12)

We have

X̃ =
( m∑
q=1

αq 1�q

)
, Y =

m∑
q=1

W q 1�q (13)

The first term in Equation (10) is the error of the optimal Galerkin solution, and cannot be reduced

520



Galerkin Method for Stochastic Algebraic Equations

by properties of the conditional expectation and Equation (5). The above sub-optimal Galerkin solu-
tion corresponds to an approximate representation of Z setting this variable constant and equal to
zq in each �q , that is, Z is approximated by the simple random variable Z̃ = ∑m

q=1 zq 1�q , where
1�q denotes the indicator function for�q defined by 1�q (ω1) = 1 and 0 for ω1 ∈ �q and ω1 /∈ �q ,
respectively.

The results in Equation (11) follow from Equation (4), by the linearity of the expectation operator
and the law of total probability. If Y = z is a deterministic vector, then E2[W q ] = wq = αq z,
E2[W q WT

q ] = wq wTq , and P2(Wq,i1 ≤ ξ1, . . . ,Wq,is ≤ ξs) = 1
(
wq,i1 ≤ ξ1, . . . , wq,is ≤ ξs).

If Y is a random vector, then E2[W q ] = αq E2[Y ] and E2[W q WT
q ] = αq E2[Y Y T ] αTq and

the probabilities P2(Wq,i1 ≤ ξ1, . . . ,Wq,is ≤ ξs) can be calculated by, for example, Monte Carlo
simulation.

4. Plates on Random Elastic Foundation

Consider a simply supported rectangular plate with unit stiffness sitting on a linear elastic founda-
tion with stiffness K(x, y) and subjected to a spatially distributed load Q(x, y). The displacement
W(x, y) of the plate is the solution of the partial differential equation

��W(x, y)+K(x, y)W(x, y) = Q(x, y), (x, y) ∈ D = (0, a)× (0, b), (14)

where � = ∂2/∂x2 + ∂2/∂y2 denotes the Laplace operator. The plate displacement satisfies the
conditions W = 0 on the boundary ∂D of D, ∂2W/∂x2 = 0 on {0} × (0, b) and {a} × (0, b), and
∂2W/∂y2 = 0 on (0, a) × {0} and (0, a) × {b}. It is assumed that the foundation stiffness K is
random and the applied loadQ is deterministic.

The foundation stiffness is modeled by the homogeneous translation field

K(x, y) = α1 + (
α2 − α1

)
�
(
G(x, y)

) = α1 + (
α2 − α1

)
�
(
θ(x, y)Z

)
, (15)

where 0 < α1 < α2 < ∞ are some constants,

G(x, y) =
n/2∑
k=1

σk

(
Ak cos(νk · (x, y))+ Bk sin(νk · (x, y))

)

= θ(x, y)Z, (x, y) ∈ D = (0, a)× (0, b), (16)

is a homogeneous Gaussian field, n/2 ≥ 1 is an integer,

θ(x, y) = [
σ1 cos(ν1 · (x, y)) . . . σn cos(νn · (x, y)) σ1 sin(ν1 · (x, y)) . . . σn sin(νn · (x, y))],

ZT = [
A1 . . . An/2 B1 . . . Bn/2

]
, (17)

νk = (νk,x, νk,y) are wave frequencies, νk,x, νk,y > 0 are some constants, νk · (x, y) = νk,x x +
νk,y y, σk > 0 are some constants such that

∑n/2
k=1 σ

2
k = 1, and (Ak, Bk) are independent N(0, 1)

variables. We note that K depends on n independentN(0, 1) random variables, the entries of Z, and
its marginal distribution is uniform in (α1, α2). The Gaussian field G has mean 0, variance 1, and
covariance function

E[G(x, y)G(x ′, y ′)] =
n∑
k=1

σ 2
k cos

(
νk · (x − x ′, y − y ′)

)
(18)

so that it is homogeneous. The translation field K in Equation (15) with G in Equation (16) is
homogeneous and its covariance and correlation functions can be calculated from the probability
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law of G. In applications the covariance function of K , rather than that of G, is given, and we need
to find a Gaussian field G such that K in Equation (15) has the required properties. The existence
of G and the determination of the second-moment properties of G, if it exists, are discussed in
(Grigoriu, 1995: section 3.1).

4.1. Galerkin Solution

The solution of Equation (14) involves two steps. First, Equation (14) is approximated by a stochastic
algebraic equation. Second, optimal and sub-optimal Galerkin solutions are developed for this
stochastic algebraic equation and some of their statistics are calculated.

The stochastic differential equation forW in Equation (14) with K in Equation (15) depends on
the random variable Z in the definition of the random field K . The finite difference approximation
of Equation (14) at an interior node has the form(

20 +Ki,j
)
Wi,j + 2

(
Wi−1,j−1 +Wi−1,j+1 +Wi+1,j−1 +Wi+1,j+1

)
− 8

(
Wi,j−1 +Wi,j+1 +Wi−1,j +Wi+1,j

)
+Wi,j−2 +Wi,j+2 +Wi−2,j +Wi+2,j = Qi,j , (19)

where Wi,j , Ki,j , and Qi,j denote the values of W(x, y), K(x, y), and Q(x, y) and the node (i, j)
of the finite difference mesh. The above relation written at all nodes with adequate modifications to
account for boundary conditions yields a stochastic algebraic equation of the type in Equation (1)
with coefficients depending on the random variables Z and solution X with entries the displacements
Wi,j .

Since Z in Equation (17) is a standard Gaussian vector in R
n, n = 12, it has the representation

Z = U R, (20)

where U is uniformly distributed on the unit sphere Sn(1) in R
n centered at the origin of this space

and R is a real-valued random variable following a chi distribution with n degrees of freedom. The
random variable R is independent of U and has the distribution

P1
(
R ≤ r) = I

(
r2/2, n/2

)
, (21)

where I (x, q) = ∫ x
0 t

q−1 e−t dt/�(q) and �(q) denote the incomplete and the complete gamma
functions, respectively.

We begin the construction of a partition {�q} of �1 by dividing R
n in rings of radii 0 = r0 <

r1 < . . . < rnr = ∞ such that each ring has the same probability content, that is,

P1
(
ru−1 < R ≤ ru

) = I
(
r2
u/2, n/2

)− I(r2
u−1/2, n/2

) = 1/nr, u = 1, . . . , nr . (22)

We then divide each ring in subsets of equal volume, and these subsets define the partition {�q} of
�1 used to construct the optimal Galerkin solution. The resulting sets �q have the same probability
content, that is, P1(�q) = 1/(nr nl) for all q , where nl ≥ 1 denotes the number of subsets of equal
volume in each ring. The conditional expectations E1[β(Z) | �q ] in the definition of the optimal
Galerkin solution can be estimated from

E1
[
β(Z) | �q

] � 1

ns

ns∑
u=1

β
(
Z(ω1,u)

)
1�q (ω1,u) (23)

where {Z(ω1,u)}, u = 1, . . . , ns , are ns independent samples of Z.
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Fig. 1. Probability density function of Xms.

4.2. Numerical Results

Numerical results are for a = 60, b = 40, a finite difference mesh with equal step of 10 in the x
and y directions, Q(x, y) = 1 in D so that the load vector is Y = y = 1, and foundation stiffness
K with parameters α1 = 1, α2 = 7, n = 12, σk = 1/

√
6, ν1 = −ν4 = (1, 2), ν2 = −ν5 = (2, 1),

and ν3 = −ν6 = (2, 2). The resulting stochastic algebraic equation depends on n = 12 independent
N(0, 1) variables, the entries of Z, and has dimension d = 15, so that X and Y are vectors in R

15.
We use for the optimal Galerkin solution nr = 5 rings and partition of Sn(1) as follows. The

sphere S2(1) has been divided in 4 equal parts. The image of each of this parts in S3(1) has been
divided in two equal parts. The division in two equal parts has been continued to partition the sphere
Sk(1), k = 4, . . . , 12. The resulting number of partitions of S12(1) is 4096. Two partitions of �1
have been used to construct sub-optimal Galerkin solutions, the partition {�q} defining the optimal
Galerkin solution with zq ∈ �q and a coarser partition. The corresponding solutions are referred
to as sub-optimal 1 and sub-optimal 2 Galerkin solutions, respectively. The points zq for the sub-
optimal 2 Galerkin are the points of intersections of spheres of radii (ru−1 + ru)/2, u = 1, . . . , nr ,
with the coordinates of R

n. Each of these spheres intersects the coordinates of R
n at 2 n points,

so that there are m = 2 n nr = 70 points zq and subsets �q . The probability of the sets �q is
P1(�q) = 1/(2 n nr) for all q’s.

Let Xms and Xmsn denote the plate displacement at the mid span node of the finite difference
mesh and at a node neighboring it, respectively. Figure 1 shows estimates of the probability density
function of Xms obtained by Monte Carlo simulation and optimal/sub-optimal Galerkin solutions.
The estimate obtained by the sub-optimal 2 Galerkin solution exhibits relatively large fluctuations.
The estimates of the density of Xms by the other Galerkin solutions are similar to that obtained
by direct Monte Carlo. The density of Xms by the sub-optimal 1 Galerkin solution and Monte
Carlo simulation nearly coincide. The Monte Carlo estimates have been calculated from 100,000
independent samples of Z and the Galerkin estimates have been calculated from Equations (11) and
(12). Figure 2 shows estimates of the joint probability density of (Xms,Xmsn). The estimates of this
density by optimal and sub-optimal 1 Galerkin solutions and by Monte Carlo are similar. The sub-
optimal 2 Galerkin solution provides a less satisfactory approximation. As in the previous figure, the

523



M. Grigoriu

Fig. 2. Joint probability density function of (Xms, Xmsn)

Monte Carlo estimates are based on 100,000 independent samples of Z and the Galerkin solutions
have been calculated from Equations (11) and (12). The differences between the mean displacements
by Galerkin solutions and Monte Carlo simulation are less then 0.0958%, 0.1267%, and 1.1056% for
optimal, sub-optimal 1, and sub-optimal 2 Galerkin solutions, respectively. These differences and the
plots in Figures 1 and 2 show that the optimal Galerkin solution is closer to the Monte Carlo result
in the average, consistent with the fact that this solution is unbiased, but the sub-optimal 1 Galerkin
solution provides a superior approximation for the probability law of the displacement field.

5. Conclusions

Galerkin solutions have been presented for a class of stochastic algebraic equations, that is, linear
algebraic equations with random coefficients. The construction of the Galerkin solution is based
on partitions of the sample space associated with the random parameters in the definition of a
stochastic algebraic equation. It was shown that there is a Galerkin solution for an arbitrary stochastic
algebraic equation that is optimal in the mean square sense. Moreover, the optimal Galerkin solution
is equal to the conditional expectation of the exact solution of a stochastic differential equation
taken with respect to a σ -field coarser than the σ -field relative to which this solution is measurable.
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Galerkin solutions that are not optimal are referred to as sub-optimal. Algorithms are presented for
the construction of both optimal and sub-optimal Galerkin solutions.

Optimal and sub-optimal Galerkin solutions have been used to calculate statistics for the displace-
ment of the simply supported plate sitting on a random elastic foundation. The elastic foundation is
modeled by a homogeneous translation random field with uniform marginal distribution. The accur-
acy of the Galerkin solutions depends on the partition of the sample space used in their definition,
and was evaluated by Monte Carlo simulation.
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