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Abstract   

      A new sampling technique referred to as the hypercube point concentration sampling 
technique is proposed.  This sampling technique is based on the concepts of the Latin hypercube 
sampling technique and the point concentration method.  In the proposed technique, first, the 
probability density function of the random variables is replaced by a sufficiently large number of 
probability concentrations with magnitudes and locations determined from the moments of the 
random variables.  In other words, the probability density function is replaced by the probability 
mass function determined based on the point estimate method.  The probability mass function is 
then used with the Latin hypercube sampling technique to obtain samples.  For evaluating 
statistics of a complicated performance function of an engineering system, the proposed 
technique could be more efficient than the Latin hypercube sampling technique since for a given 
simulation cycle the required number of evaluations of the performance function in the former is 
less than that in the latter.  The proposed sampling technique is illustrated through numerical 
examples. 

Introduction 

Many random variables are involved in an engineering system.  Direct or simple Monte Carlo 
method and efficient reliability methods such as the first-order and second-order reliability 
methods (Madsen et al. 1986) can be employed to carry out probabilistic assessment of the 
system.  The reliability methods are almost exclusively used to estimate the probability of failure 
while the Monte Carlo method are employed to calculate the statistics of the responses or the 
probability of failure of the system.  Although the direct Monte Carlo method is simple to use, 
however it can be computationally intensive.  To reduce the number of simulation cycles, more 
efficient simulation methods can be used (Iman and Conover 1980, Rubinstein 1981). 

In this study, a new sampling technique is proposed.  This new sampling technique is based 
on the Latin hypercube sampling (LHS) technique and the point estimate method (Rosenblueth 
1975, 1981).  In the LHS technique (Iman and Conover 1980), the domain of the random 
variables is partitioned into many mutually exclusive and collectively exhaustive hypercubes.  
The hypercubes that do not have common domain in subspaces are selected randomly; and a 
point within each of the selected hypercubes is chosen randomly for the analysis.  For the 
proposed technique, the marginal probability density functions of the random variables are 
replaced by probability mass functions with a sufficiently large number of concentrations.  The 
locations and their associated probability concentrations are obtained based on Rosenblueth’s 
point estimate method (Rosenlueth 1975, 1981).  The probability mass functions are then used 
with the Latin hypercube sampling technique to generate values of the random variables for the 
simulation analysis.  The advantage of the new technique is that it requires less number of 
evaluations of the performance function of the system than the LHS technique.  This is because 
several generated samples are likely to fall into a same concentration point.  The proposed 
technique is described in detail in the following, and is illustrated by numerical examples. 
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Background and discussions 

Latin Hypercube sampling 
Consider that the performance of an engineering system, Z, is a function of a set of s random 

variables X, ],,[ 1 sXXX ,
)(XhZ , (1) 

where h( )  is a deterministic function.  The mathematical expectation of Zk or the k-th moments 
of Z, E(Zk), is defined as, 

xxx X dfhZE
kk )( , (2) 

where  represents the domain of X, and fX(x) is the joint probability density function of X.  The 
mean of Z, mZ, equals E(Z), and the variance of Z, 2

Z , equals 22
ZmZE .  The probability that 

Z is less than or equal to a given value zp, Pf, can be expressed as, 

0

)(
g

f dfP xxX , (3) 

where g  0  represents the domain of Z-zp  0. 
Integrals in Eqs. (2) and (3) can be estimated using the simple simulation technique.  

Alternatively, the more efficient LHS technique can be employed (Iman and Conover 1980).  
According to this technique, for practical applications with independent random variables, the 
generation of Latin hypercube samples of size n could be carried out as follows.  The domain of 
each random variable is divided into n mutually exclusive and collectively exhaustive intervals, 
and one value is selected randomly in each interval according to the probability distribution of the 
random variable.  A value is randomly selected from the n values for each of the random 
variables to form the first Latin hypercube sample.  The remaining n-1 values for each of the 
random variables are used to form the second Latin hypercube sample.  That is, a value is 
randomly selected from the n-1 remaining values for each of the random variables to form the 
second Latin hypercube sample.  This process is repeated until n Latin hypercube samples are 
obtained. 

In particular, if the n mutually exclusive and collectively exhaustive intervals have equal 
probability, the k-th moments of Z is estimated as the average of the sum of the function (h(x))k

evaluated at each of the sample points; and the probability of failure Pf defined in Eq. (3) is 
approximated by the ratio of the number of sample points where h(x)-zp  0 to n.

Rosenblueth’s point estimate method 
The point estimate method is developed to evaluate approximately the moments of Z based 

on the first few statistical moments of X (Rosenblueth 1975, 1981).  The method does not require 
the knowledge of the probability distribution of X except their statistical moments such as the 
means, standard deviations, correlation coefficients and skewness coefficients.  The method 
basically replaces the original probability density functions of random variables by probability 
concentrations with magnitudes of the concentrations and locations determined from the moments 
of the random variables.  In particular, if Z is a function of only one random variable X, and two 
point concentration (i.e., two-point estimate method) is considered for the random variable X, the 
locations xj and magnitudes pj of the concentrations are given by (Rosenblueth 1975, 1981), 

2,1, jmx XjXj  (4) 
and,
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,2,1 ,2/12/1 2
3 jp Xj

j
j  (5) 

where 2,1  and 2/1)1(2/ 23 jX
i

Xj , and X, X and X are, respectively, the 
mean, standard deviation, and coefficient of skewness of X.  Using these concentrations the mean 
of Z, for example, can be approximated by, 

n

i
ii xhpZE

1

)()( , (6) 

where n = 2.  If Z is a polynomial of degree less than 4, Eq. (6) will provide an exact mean of Z.
In general, if n concentrations are considered, xj and pj, nj ,,2,1 , of the concentrations 

can be obtained by solving the following 2n equations, 
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where mj is the j-th moment of X with respect to the origin.  In such a case, the use of n
concentrations matches the first 2n-1 moments of the random variable X.  Therefore, if Z is a 
polynomial of degree  2n-1, the estimated mean of Z by using Eq. (6) with n concentrations is 
exact.

Discussions 
Consider the case that Z, Z = h(X), is a function of a random variable X.  We discretize the 

domain of X into two mutually exclusive and collectively exhaustive intervals Ii, i = 1,2.  The 
probability of the i-th interval pIi is given by )( iIi IXPp .  According to the LHS technique 
we randomly select a sample xsi, i = 1,2, from Ii and calculate the expected value of Z using, 

n

i
siIi xhpZE

1

)()( , (8) 

where n = 2.  This approximation, which uses only two samples, is unlikely to be accurate or 
satisfactory even for when h(X) is a linear function of X.  Clearly, we can overcome this by using 
Rosenblueth’s two-point estimate method but with the following “sampling” interpretation so that 
we can extend it later.  We replace the original probability distribution function of X according to 
Rosenblueth’s two-point estimate method leading to xj and pj, j = 1,2, given by Eqs. (4) and (5).  
We divide the space into two intervals such that the cumulative probability distribution function 

for the i-th interval Ii varies from 
1

0

i

j
jp  to 

i

j
jp

0

 where p0 = 0, i=1 and 2.  Therefore, the 

probability of the i-th interval Ii, pIi, equals pi  We randomly select a sample xsi from the interval Ii
which is equal to the location of the i-th concentration xi obtained according to Rosenblueth’s 
two-point estimate method.  Based on this sampling scheme the approximation to E(Z) calculated 
by using Eq. (8) is identical to Eq. (6) since pIi,= pi, and xsi, = xi.  As already mentioned such an 
approximation is exact if h(X) is a polynomial of degree less than 4.  Therefore, one has 
judiciously selected the “sample” points for a sampling technique to become much more efficient.  
It is noteworthy that a similar observation can be made when n samples are employed. 

The efficiency of using n point concentrations depends on the efficiency in solving the 
system of nonlinear equations (Eq. (7)) to find xj and pj, j n1 2, , , .  The well known 
approach to solve Eq. (7) (Erdelyi et al. 1953) is to first find the zeros (i.e., xj, j n1 2, , , ) of 
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the polynomial 0
1
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M .  The solution is then used to find pi in Eq. (7).   

The solution for xj and pj, does exist and pj are larger than zero.  This comes directly from a 
theorem in the orthogonal polynomials and quadrature formulas which state that (Erdelyi et al. 
1953, Stroud and Secrest 1966): 
For a non-negative weight function f(x) (in our case it represents probability density function), if 
mi exist and M n2 0 , a unique sequence of orthogonal polynomial {qi(x)}, i = 1,•••, n, (except 
normalization constants) can be constructed.  qn(x) has n distinct roots (abscissas) which lie in the 
orthogonality interval.  Using these n roots we can find the weights pi such that, 

n

i
ii xhpdxxhxf

1

)()( , (10) 

is exact if h(x) is a polynomial of degree  2n-1.  Further, pi are positive. 
In other words, the above says that we can find the abscissas xi and the positive weights pi

such that, 
n

i

k
ii

k
k xpdxxhxfxm

1

)( ,   or   
n

i

k
iik xpm

1

   for  12,,2,1 nk , (11) 

which is equivalent to Eq. (7).  Therefore, if some commonly used weighting functions can be 
transformed into the probability density functions by appropriate normalization constants, the 
obtained abscissas and weights for the Guassian quadrature formulas can be directly transformed 
into locations and probability concentrations in the point estimate method.  There are three well 
known classical weighting functions associated with the Jacobi integration, the (generalized) 
Laguerre integration and the Hermite integration.  With appropriate normalization constants, 
these weighting functions can be transformed into the beta distribution, the gamma distribution 
and the normal distribution.  The correspondences between the abscissas and locations and 
between the weights and the probability concentrations for these cases are listed in Table 1.  Note 
that the Legender integration is a particular case of the Jacobi integration.  Values of the abscissas 
and weights for these quadrature formulas are tabulated in Stroud and Secrest (1966).  They can 
also be calculated using the algorithms given in Press et al. (1992). 

If Z, )(XhZ , is a function of s random variables, we can generate n samples according to 
the LHS technique and evaluate h(x) at these n sampling points in order to estimate the mean of 
E(Z).  The number of random variables s does not change the fact that we need to evaluate n
times the function h(x).  However, if one uses the point estimate method with n concentrations for 
each random variable, one need to evaluate ns times the function h(x).  This can be extremely 
large and make the point estimate method unattractive.  For example, ns equals 9765625 for n = 5 
and s = 10.  In such a case, one is better off by using the LHS technique or any other simulation 
techniques.  It is noted that the point estimate schemes with less number of concentrations that 
have reported in the literature (see Hong (1998) and the references listed thereafter) may also be 
employed.  However, none of these schemes can appropriately take into account the cross terms 
of order higher than 3. 

In short, the above indicates that the point estimate method is very efficient if we are 
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interested in a function of only one random variable, while the use of the LHS sampling 
technique is desirable if the number of random variables is large.  In the following we propose a 
method that takes advantage of both of these methods. 

Hypercube point concentration sampling 

If Z is a function of s independent random variables, we replace each of the original 
probability distributions of the random variables by k probability concentrations whose locations 
and magnitudes are determined by the probability concentration method discussed in the previous 
section.  Therefore, for the i-th random variable Xi, i s1 2, , , , we have a “discrete” 
probability distribution function with locations and probability concentrations represented by xi,j
and pi,j, kj ,,2,1 .  For k equal to 5, a schematic representation of the cumulative distribution 
function for the i-th random variable based on the above discretization is shown in Figure 1. 

a)  Representation according to point estimate method for k = 5 
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b)  Partition and samples for n = 8 
Figure 1.  Schematic representations. 

Now, for the i-th random variable we partition the range of the cumulative probability values 
(i.e., from 0 to 1) into mutually exclusive and collectively exhaustive n intervals each having a 
value Pi,m, nm ,,2,1 .  This partition is based on the discrete representation of the probability 
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distribution function defined by (xi,j, pi,j), si ,,2,1 , and kj ,,2,1 .  For example, for n
equal to 8 and k = 5, this partition is illustrated in Figure 1 again for the i-th random variable.  
Since there are s random variables, the sample space is partitioned into ns cells (hypercubes) each 
with probability mssmmm PPPP ,3,32,21,1  where m1 to ms can take values from 1 to n.

Given a random variable, for each of the partition, we randomly generate a sample.  Let sxi,m

denote the randomly generated sample from the partition defined by Pi,m, nm ,,2,1 , for the i-
th random variable.  The selected values sxi,m, nm ,,2,1 , must coincide with one of the xi,j,

kj ,,2,1 .  Again, this is graphically illustrated in Figure 1 (in this particular case sxi,1 = xi,1,
sxi,2 = sxi,3 = xi,1, sxi,4 = sxi,5 = xi,3, sxi,6 = sxi,7 = xi,4, sxi,8 = xi,5).  As in the LHS technique, we use 
these samples sxi,m, where si ,,2,1  and nm ,,2,1 , to form n samples xj, nj ,,2,1 , in 
the s-dimension sample space.  That is, the first sample x1 is formed by randomly selecting a 
value from the n values for each of the random variables.  This results in 

ksssksks xxx ,2,21,11 ,,,x  and the probability associated with the cell from which the sample x1

was obtained, p1, equals ksskkk PPPP ,3,32,21,1  where each of k1, k2, , ks, takes a values 
from 1 to n.  The second sample x2 and the probability associated with the cell from which the 
sample x2 was obtained, p2, are formed in the same way but based only on the remaining n-1 
values for each of the random variables.  This process is continued until xn and pn is formed.  
Since the samples obtained in this way represent corners of the Hypercubes formed by the Point 
Concentrations we will refer this sampling technique as the HPCS technique. 

We can use these samples to estimate the expected value of Z, E(Z) from the statistic, S,
defined by 

n

j
jj

s hpnS
1

1 )(x , (12) 

where pj is the probability associated with the cell from which the sample xj was obtained. 
To show that the use of the above in estimating E(Z) is adequate, one can shown, following a 

similar proof given by Iman and Conover (1980), that S is an unbiased estimator of E(Z) when Z
= h(x) is a polynomial of degree less than 2k-1 if k concentrations are employed to replace the 
probability distribution function. 

Note that dependent random variables can be transformed into independent random variables 
by using the Rosenblatt transformation, and that if only the correlation coefficients between the 
dependent random variables are available (i.e., incomplete information), one could use the Nataf 
translation system to transform the correlated random variables into uncorrelated random 
variables (Madsen et al. 1986).  For each of the independent random variables if its moments 
exist we can calculate xi,j and pi,j of the probability concentrations using Eq. (7).  Alternatively, to 
avoid the evaluation of xi,j and pi,j we can transform the independent random variables into 
uniform, beta, exponential, gamma and/or normal variates since for these distributions xi,j and pi,j
are readily available (see Table 1).  In the transformed space, we can use the proposed HPCS 
technique to carry out the probabilistic analysis. 

Illustrative numerical examples 

Example 1.  Polynomial with two random variables.  Consider a simple example with Z
defined by, 
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where s = 2, X1 and X2 are independent normally distributed random variables with a mean of 
zero and standard deviation of one.  It can be shown that the exact mean equals 7. 

Table 1.  Relation between the locations, xi, and probability concentrations, pi, in the point 
estimate method and the abscissas, xi ' , and weights, wi, of well known integration formulas. 

Guassian Integration formulas 

t

n

i
ii thwdtthtw

1

)()()(

 Point estimate methods 

X

n

i
ii xhpdxxhxf

1

)()()(

Jacobi integration 
)1()1()( tttw

)1,1(t

Beta distribution 
),()(/)()()( 1 Babxaxbxf  , ),( baX

2/)()(,),()(/ 1 abtabxBabwp iiii

Legender integration 
1)(tw , )1,1(t

Uniform distribution 
)/(1)( abxf , ),( baX ,   

2/)()(,2/ abtabxwp iiii

Generalized Laguerre 
integration 

tettw )( , ),0(t

Gamma distribution 
)1(/)( 1 xexxf , ),0(X

/),1(/ iiii txwp
Laguerre integration 

tetw )( , ),0(t ,
Exponential distribution 

xexf )( , ),0(X , /, iiii txwp
Hermite integration 

2
)( tetw , ),(t

Normal distribution 
2

2
1exp

2
1)( mxxf , ),(X

2,/ iiii tmxwp

If we use the LHS technique, samples for a typical run with 100 cycles are shown in Figure 2.  
These samples are obtained by partitioning the domain of each random variable into 100 intervals 
each with the same probability.  Now if we replace the original probability distribution function 
of each of the random variables by 5 concentrations obtained using the point estimate method, the 
samples for a typical run with 100 cycles obtained by using the HPCS technique are also shown 
in Figure 2.  Note that by using the HPCS, one need to carry out only 13 evaluations for this 
particular run because many samples fall into the same point. 

By repeating the above analysis many times, the average value and the standard deviation of 
the mean of Z are shown in Figure 3.  The results shown in the figure indicate that the accuracy of 
the proposed HPCS technique is comparable to that of LHS the technique. 

Example 2.  Polynomial with many random variables.  Consider Eq. (13) but with s equal to 5.  
Xi, si ,,2,1 , are independent normally distributed variates with a mean of zero and standard 
deviation of one. 

We replace the original probability distribution function of each of the random variables by k
concentrations based on the point estimate method.  For k equal to 3, 4 and 5, the joint probability 
distribution of the random variables is represented, respectively, by 243, 1024 and 3125 
probability concentrations.  Using n partitions with equal probability of 1/n for each of the 
random variables and carrying out simulation analysis using the HPCS, the obtained results are 
shown in Table 2a.  Also shown in the table is the number of evaluations of h(X), ne, needed by 
the HPCS for the simulation runs carried out.  Clearly, the results show that ne is less than n
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which represents the number of functional evaluations if the LHS technique is employed.  The 
reduction in the computational effort is most significant if k is small and/or n large.  Note that in
all cases the obtained mean values are close to the exact value which is equal to 25. 

Figure 2.  Illustration of sample points for the LHS technique and the HPCS technique. 

Figure 3.  Mean and standard deviation of the mean of the performance function. 
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Results for Example 2 with s = 5.
k = 3k k = 4 k k = 5 k

N ne

Estimated
mean ne

Estimated
mean ne

Estimated
mean

100 55 24.66 68 24.47 73 24.45
500 115 24.98 168 24.76 205 24.76

1000 162 25.20 235 25.01 304 25.25
5000 224 24.96 408 24.98 594 24.97 

10000 236 25.04 517 24.94 757 25.05

Results for Example 2 with s = 10.
k = 3k k = 4k k = 5 k

n ne

Estimated
mean ne

Estimated
mean ne

Estimated
mean

100 94 76.14 98 73.13 100 74.64 
500 434 74.30 484 74.63 489 73.92 

1000 795 75.15 929 75.32 974 74.90
5000 2915 74.78 3783 74.81 4444 74.75 
10000 4713 74.86 6530 74.71 8095 74.83

Table 2a.

Table 2b.
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Repeat this analysis but with s = 10.  The obtained results are shown in Table 2b.  
Comparison of the results shown in Tables 2a and 2b suggests that ne for s = 5 is smaller than that 
for s = 10.  This is expected since in the latter for k equal to 3, 4 and 5, the joint probability 
distribution function of the random variables is represented, respectively, by 59049, 1048576, and 
9765625 concentrations. 

Summary and conclusions 

A new sampling technique is proposed in this study.  This sampling technique is based on 
salient features of the Latin hypercube sampling technique and the point concentration method.  
In this technique, the original probability density function of a random variable is replaced by k
probability concentrations determined from the point estimate method.  These probability 
concentrations are then used with the Latin hypercube sampling technique to obtain samples.  It is 
shown that by using this technique an unbiased estimator of the expectation of a performance 
function that is a polynomial of degree less than 2k-1 can be obtained.  For highly nonlinear 
functions, the proposed technique provides an approximate estimate and the error is due to terms 
of order higher than 2k-1.

Illustrative numerical examples indicate that the proposed technique could be more efficient 
than the Latin hypercube sampling technique since the former could significantly reduce the 
required number of evaluations of the performance function.  This is particularly important when 
the numerical evaluation of the performance function is computationally intensive.  Also the 
numerical results suggest that the proposed technique provides relatively stable and accurate 
results even for highly nonlinear performance functions. 
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